/usr/lib/python3/dist-packages/matplotlib/ticker.py is in python3-matplotlib 2.1.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 | """
Tick locating and formatting
============================
This module contains classes to support completely configurable tick
locating and formatting. Although the locators know nothing about major
or minor ticks, they are used by the Axis class to support major and
minor tick locating and formatting. Generic tick locators and
formatters are provided, as well as domain specific custom ones.
Default Formatter
-----------------
The default formatter identifies when the x-data being plotted is a
small range on top of a large off set. To reduce the chances that the
ticklabels overlap the ticks are labeled as deltas from a fixed offset.
For example::
ax.plot(np.arange(2000, 2010), range(10))
will have tick of 0-9 with an offset of +2e3. If this is not desired
turn off the use of the offset on the default formatter::
ax.get_xaxis().get_major_formatter().set_useOffset(False)
set the rcParam ``axes.formatter.useoffset=False`` to turn it off
globally, or set a different formatter.
Tick locating
-------------
The Locator class is the base class for all tick locators. The locators
handle autoscaling of the view limits based on the data limits, and the
choosing of tick locations. A useful semi-automatic tick locator is
`MultipleLocator`. It is initialized with a base, e.g., 10, and it picks
axis limits and ticks that are multiples of that base.
The Locator subclasses defined here are
:class:`AutoLocator`
`MaxNLocator` with simple defaults. This is the default tick locator for
most plotting.
:class:`MaxNLocator`
Finds up to a max number of intervals with ticks at nice locations.
:class:`LinearLocator`
Space ticks evenly from min to max.
:class:`LogLocator`
Space ticks logarithmically from min to max.
:class:`MultipleLocator`
Ticks and range are a multiple of base; either integer or float.
:class:`FixedLocator`
Tick locations are fixed.
:class:`IndexLocator`
Locator for index plots (e.g., where ``x = range(len(y))``).
:class:`NullLocator`
No ticks.
:class:`SymmetricalLogLocator`
Locator for use with with the symlog norm; works like `LogLocator` for the
part outside of the threshold and adds 0 if inside the limits.
:class:`LogitLocator`
Locator for logit scaling.
:class:`OldAutoLocator`
Choose a `MultipleLocator` and dynamically reassign it for intelligent
ticking during navigation.
:class:`AutoMinorLocator`
Locator for minor ticks when the axis is linear and the
major ticks are uniformly spaced. Subdivides the major
tick interval into a specified number of minor intervals,
defaulting to 4 or 5 depending on the major interval.
There are a number of locators specialized for date locations - see
the `dates` module.
You can define your own locator by deriving from Locator. You must
override the ``__call__`` method, which returns a sequence of locations,
and you will probably want to override the autoscale method to set the
view limits from the data limits.
If you want to override the default locator, use one of the above or a custom
locator and pass it to the x or y axis instance. The relevant methods are::
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)
The default minor locator is `NullLocator`, i.e., no minor ticks on by default.
Tick formatting
---------------
Tick formatting is controlled by classes derived from Formatter. The formatter
operates on a single tick value and returns a string to the axis.
:class:`NullFormatter`
No labels on the ticks.
:class:`IndexFormatter`
Set the strings from a list of labels.
:class:`FixedFormatter`
Set the strings manually for the labels.
:class:`FuncFormatter`
User defined function sets the labels.
:class:`StrMethodFormatter`
Use string `format` method.
:class:`FormatStrFormatter`
Use an old-style sprintf format string.
:class:`ScalarFormatter`
Default formatter for scalars: autopick the format string.
:class:`LogFormatter`
Formatter for log axes.
:class:`LogFormatterExponent`
Format values for log axis using ``exponent = log_base(value)``.
:class:`LogFormatterMathtext`
Format values for log axis using ``exponent = log_base(value)``
using Math text.
:class:`LogFormatterSciNotation`
Format values for log axis using scientific notation.
:class:`LogitFormatter`
Probability formatter.
:class:`EngFormatter`
Format labels in engineering notation
:class:`PercentFormatter`
Format labels as a percentage
You can derive your own formatter from the Formatter base class by
simply overriding the ``__call__`` method. The formatter class has
access to the axis view and data limits.
To control the major and minor tick label formats, use one of the
following methods::
ax.xaxis.set_major_formatter(xmajor_formatter)
ax.xaxis.set_minor_formatter(xminor_formatter)
ax.yaxis.set_major_formatter(ymajor_formatter)
ax.yaxis.set_minor_formatter(yminor_formatter)
See :ref:`sphx_glr_gallery_ticks_and_spines_major_minor_demo.py` for an
example of setting major and minor ticks. See the :mod:`matplotlib.dates`
module for more information and examples of using date locators and formatters.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import itertools
import locale
import math
import numpy as np
from matplotlib import rcParams
from matplotlib import cbook
from matplotlib import transforms as mtransforms
from matplotlib.cbook import mplDeprecation
import warnings
__all__ = ('TickHelper', 'Formatter', 'FixedFormatter',
'NullFormatter', 'FuncFormatter', 'FormatStrFormatter',
'StrMethodFormatter', 'ScalarFormatter', 'LogFormatter',
'LogFormatterExponent', 'LogFormatterMathtext',
'IndexFormatter', 'LogFormatterSciNotation',
'LogitFormatter', 'EngFormatter', 'PercentFormatter',
'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator',
'LinearLocator', 'LogLocator', 'AutoLocator',
'MultipleLocator', 'MaxNLocator', 'AutoMinorLocator',
'SymmetricalLogLocator', 'LogitLocator')
if six.PY3:
long = int
# Work around numpy/numpy#6127.
def _divmod(x, y):
if isinstance(x, np.generic):
x = x.item()
if isinstance(y, np.generic):
y = y.item()
return six.moves.builtins.divmod(x, y)
def _mathdefault(s):
return '\\mathdefault{%s}' % s
class _DummyAxis(object):
def __init__(self, minpos=0):
self.dataLim = mtransforms.Bbox.unit()
self.viewLim = mtransforms.Bbox.unit()
self._minpos = minpos
def get_view_interval(self):
return self.viewLim.intervalx
def set_view_interval(self, vmin, vmax):
self.viewLim.intervalx = vmin, vmax
def get_minpos(self):
return self._minpos
def get_data_interval(self):
return self.dataLim.intervalx
def set_data_interval(self, vmin, vmax):
self.dataLim.intervalx = vmin, vmax
def get_tick_space(self):
# Just use the long-standing default of nbins==9
return 9
class TickHelper(object):
axis = None
def set_axis(self, axis):
self.axis = axis
def create_dummy_axis(self, **kwargs):
if self.axis is None:
self.axis = _DummyAxis(**kwargs)
def set_view_interval(self, vmin, vmax):
self.axis.set_view_interval(vmin, vmax)
def set_data_interval(self, vmin, vmax):
self.axis.set_data_interval(vmin, vmax)
def set_bounds(self, vmin, vmax):
self.set_view_interval(vmin, vmax)
self.set_data_interval(vmin, vmax)
class Formatter(TickHelper):
"""
Create a string based on a tick value and location.
"""
# some classes want to see all the locs to help format
# individual ones
locs = []
def __call__(self, x, pos=None):
"""
Return the format for tick value `x` at position pos.
``pos=None`` indicates an unspecified location.
"""
raise NotImplementedError('Derived must override')
def format_data(self, value):
"""
Returns the full string representation of the value with the
position unspecified.
"""
return self.__call__(value)
def format_data_short(self, value):
"""
Return a short string version of the tick value.
Defaults to the position-independent long value.
"""
return self.format_data(value)
def get_offset(self):
return ''
def set_locs(self, locs):
self.locs = locs
def fix_minus(self, s):
"""
Some classes may want to replace a hyphen for minus with the
proper unicode symbol (U+2212) for typographical correctness.
The default is to not replace it.
Note, if you use this method, e.g., in :meth:`format_data` or
call, you probably don't want to use it for
:meth:`format_data_short` since the toolbar uses this for
interactive coord reporting and I doubt we can expect GUIs
across platforms will handle the unicode correctly. So for
now the classes that override :meth:`fix_minus` should have an
explicit :meth:`format_data_short` method
"""
return s
class IndexFormatter(Formatter):
"""
Format the position x to the nearest i-th label where i=int(x+0.5)
"""
def __init__(self, labels):
self.labels = labels
self.n = len(labels)
def __call__(self, x, pos=None):
"""
Return the format for tick value `x` at position pos.
The position is ignored and the value is rounded to the nearest
integer, which is used to look up the label.
"""
i = int(x + 0.5)
if i < 0 or i >= self.n:
return ''
else:
return self.labels[i]
class NullFormatter(Formatter):
"""
Always return the empty string.
"""
def __call__(self, x, pos=None):
"""
Returns an empty string for all inputs.
"""
return ''
class FixedFormatter(Formatter):
"""
Return fixed strings for tick labels based only on position, not
value.
"""
def __init__(self, seq):
"""
Set the sequence of strings that will be used for labels.
"""
self.seq = seq
self.offset_string = ''
def __call__(self, x, pos=None):
"""
Returns the label that matches the position regardless of the
value.
For positions ``pos < len(seq)``, return `seq[i]` regardless of
`x`. Otherwise return empty string. `seq` is the sequence of
strings that this object was initialized with.
"""
if pos is None or pos >= len(self.seq):
return ''
else:
return self.seq[pos]
def get_offset(self):
return self.offset_string
def set_offset_string(self, ofs):
self.offset_string = ofs
class FuncFormatter(Formatter):
"""
Use a user-defined function for formatting.
The function should take in two inputs (a tick value ``x`` and a
position ``pos``), and return a string containing the corresponding
tick label.
"""
def __init__(self, func):
self.func = func
def __call__(self, x, pos=None):
"""
Return the value of the user defined function.
`x` and `pos` are passed through as-is.
"""
return self.func(x, pos)
class FormatStrFormatter(Formatter):
"""
Use an old-style ('%' operator) format string to format the tick.
The format string should have a single variable format (%) in it.
It will be applied to the value (not the position) of the tick.
"""
def __init__(self, fmt):
self.fmt = fmt
def __call__(self, x, pos=None):
"""
Return the formatted label string.
Only the value `x` is formatted. The position is ignored.
"""
return self.fmt % x
class StrMethodFormatter(Formatter):
"""
Use a new-style format string (as used by `str.format()`)
to format the tick.
The field used for the value must be labeled `x` and the field used
for the position must be labeled `pos`.
"""
def __init__(self, fmt):
self.fmt = fmt
def __call__(self, x, pos=None):
"""
Return the formatted label string.
`x` and `pos` are passed to `str.format` as keyword arguments
with those exact names.
"""
return self.fmt.format(x=x, pos=pos)
class OldScalarFormatter(Formatter):
"""
Tick location is a plain old number.
"""
def __call__(self, x, pos=None):
"""
Return the format for tick val `x` based on the width of the
axis.
The position `pos` is ignored.
"""
xmin, xmax = self.axis.get_view_interval()
d = abs(xmax - xmin)
return self.pprint_val(x, d)
def pprint_val(self, x, d):
"""
Formats the value `x` based on the size of the axis range `d`.
"""
#if the number is not too big and it's an int, format it as an
#int
if abs(x) < 1e4 and x == int(x):
return '%d' % x
if d < 1e-2:
fmt = '%1.3e'
elif d < 1e-1:
fmt = '%1.3f'
elif d > 1e5:
fmt = '%1.1e'
elif d > 10:
fmt = '%1.1f'
elif d > 1:
fmt = '%1.2f'
else:
fmt = '%1.3f'
s = fmt % x
#print d, x, fmt, s
tup = s.split('e')
if len(tup) == 2:
mantissa = tup[0].rstrip('0').rstrip('.')
sign = tup[1][0].replace('+', '')
exponent = tup[1][1:].lstrip('0')
s = '%se%s%s' % (mantissa, sign, exponent)
else:
s = s.rstrip('0').rstrip('.')
return s
class ScalarFormatter(Formatter):
"""
Format tick values as a number.
Tick value is interpreted as a plain old number. If
``useOffset==True`` and the data range is much smaller than the data
average, then an offset will be determined such that the tick labels
are meaningful. Scientific notation is used for ``data < 10^-n`` or
``data >= 10^m``, where ``n`` and ``m`` are the power limits set
using ``set_powerlimits((n,m))``. The defaults for these are
controlled by the ``axes.formatter.limits`` rc parameter.
"""
def __init__(self, useOffset=None, useMathText=None, useLocale=None):
# useOffset allows plotting small data ranges with large offsets: for
# example: [1+1e-9,1+2e-9,1+3e-9] useMathText will render the offset
# and scientific notation in mathtext
if useOffset is None:
useOffset = rcParams['axes.formatter.useoffset']
self._offset_threshold = rcParams['axes.formatter.offset_threshold']
self.set_useOffset(useOffset)
self._usetex = rcParams['text.usetex']
if useMathText is None:
useMathText = rcParams['axes.formatter.use_mathtext']
self.set_useMathText(useMathText)
self.orderOfMagnitude = 0
self.format = ''
self._scientific = True
self._powerlimits = rcParams['axes.formatter.limits']
if useLocale is None:
useLocale = rcParams['axes.formatter.use_locale']
self._useLocale = useLocale
def get_useOffset(self):
return self._useOffset
def set_useOffset(self, val):
if val in [True, False]:
self.offset = 0
self._useOffset = val
else:
self._useOffset = False
self.offset = val
useOffset = property(fget=get_useOffset, fset=set_useOffset)
def get_useLocale(self):
return self._useLocale
def set_useLocale(self, val):
if val is None:
self._useLocale = rcParams['axes.formatter.use_locale']
else:
self._useLocale = val
useLocale = property(fget=get_useLocale, fset=set_useLocale)
def get_useMathText(self):
return self._useMathText
def set_useMathText(self, val):
if val is None:
self._useMathText = rcParams['axes.formatter.use_mathtext']
else:
self._useMathText = val
useMathText = property(fget=get_useMathText, fset=set_useMathText)
def fix_minus(self, s):
"""
Replace hyphens with a unicode minus.
"""
if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']:
return s
else:
return s.replace('-', '\N{MINUS SIGN}')
def __call__(self, x, pos=None):
"""
Return the format for tick value `x` at position `pos`.
"""
if len(self.locs) == 0:
return ''
else:
s = self.pprint_val(x)
return self.fix_minus(s)
def set_scientific(self, b):
"""
Turn scientific notation on or off.
.. seealso:: Method :meth:`set_powerlimits`
"""
self._scientific = bool(b)
def set_powerlimits(self, lims):
"""
Sets size thresholds for scientific notation.
``lims`` is a two-element sequence containing the powers of 10
that determine the switchover threshold. Numbers below
``10**lims[0]`` and above ``10**lims[1]`` will be displayed in
scientific notation.
For example, ``formatter.set_powerlimits((-3, 4))`` sets the
pre-2007 default in which scientific notation is used for
numbers less than 1e-3 or greater than 1e4.
.. seealso:: Method :meth:`set_scientific`
"""
if len(lims) != 2:
raise ValueError("'lims' must be a sequence of length 2")
self._powerlimits = lims
def format_data_short(self, value):
"""
Return a short formatted string representation of a number.
"""
if self._useLocale:
return locale.format_string('%-12g', (value,))
else:
return '%-12g' % value
def format_data(self, value):
"""
Return a formatted string representation of a number.
"""
if self._useLocale:
s = locale.format_string('%1.10e', (value,))
else:
s = '%1.10e' % value
s = self._formatSciNotation(s)
return self.fix_minus(s)
def get_offset(self):
"""
Return scientific notation, plus offset.
"""
if len(self.locs) == 0:
return ''
s = ''
if self.orderOfMagnitude or self.offset:
offsetStr = ''
sciNotStr = ''
if self.offset:
offsetStr = self.format_data(self.offset)
if self.offset > 0:
offsetStr = '+' + offsetStr
if self.orderOfMagnitude:
if self._usetex or self._useMathText:
sciNotStr = self.format_data(10 ** self.orderOfMagnitude)
else:
sciNotStr = '1e%d' % self.orderOfMagnitude
if self._useMathText:
if sciNotStr != '':
sciNotStr = r'\times%s' % _mathdefault(sciNotStr)
s = ''.join(('$', sciNotStr, _mathdefault(offsetStr), '$'))
elif self._usetex:
if sciNotStr != '':
sciNotStr = r'\times%s' % sciNotStr
s = ''.join(('$', sciNotStr, offsetStr, '$'))
else:
s = ''.join((sciNotStr, offsetStr))
return self.fix_minus(s)
def set_locs(self, locs):
"""
Set the locations of the ticks.
"""
self.locs = locs
if len(self.locs) > 0:
vmin, vmax = self.axis.get_view_interval()
d = abs(vmax - vmin)
if self._useOffset:
self._compute_offset()
self._set_orderOfMagnitude(d)
self._set_format(vmin, vmax)
def _compute_offset(self):
locs = self.locs
if locs is None or not len(locs):
self.offset = 0
return
# Restrict to visible ticks.
vmin, vmax = sorted(self.axis.get_view_interval())
locs = np.asarray(locs)
locs = locs[(vmin <= locs) & (locs <= vmax)]
if not len(locs):
self.offset = 0
return
lmin, lmax = locs.min(), locs.max()
# Only use offset if there are at least two ticks and every tick has
# the same sign.
if lmin == lmax or lmin <= 0 <= lmax:
self.offset = 0
return
# min, max comparing absolute values (we want division to round towards
# zero so we work on absolute values).
abs_min, abs_max = sorted([abs(float(lmin)), abs(float(lmax))])
sign = math.copysign(1, lmin)
# What is the smallest power of ten such that abs_min and abs_max are
# equal up to that precision?
# Note: Internally using oom instead of 10 ** oom avoids some numerical
# accuracy issues.
oom_max = np.ceil(math.log10(abs_max))
oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
if abs_min // 10 ** oom != abs_max // 10 ** oom)
if (abs_max - abs_min) / 10 ** oom <= 1e-2:
# Handle the case of straddling a multiple of a large power of ten
# (relative to the span).
# What is the smallest power of ten such that abs_min and abs_max
# are no more than 1 apart at that precision?
oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
if abs_max // 10 ** oom - abs_min // 10 ** oom > 1)
# Only use offset if it saves at least _offset_threshold digits.
n = self._offset_threshold - 1
self.offset = (sign * (abs_max // 10 ** oom) * 10 ** oom
if abs_max // 10 ** oom >= 10**n
else 0)
def _set_orderOfMagnitude(self, range):
# if scientific notation is to be used, find the appropriate exponent
# if using an numerical offset, find the exponent after applying the
# offset
if not self._scientific:
self.orderOfMagnitude = 0
return
locs = np.abs(self.locs)
if self.offset:
oom = math.floor(math.log10(range))
else:
if locs[0] > locs[-1]:
val = locs[0]
else:
val = locs[-1]
if val == 0:
oom = 0
else:
oom = math.floor(math.log10(val))
if oom <= self._powerlimits[0]:
self.orderOfMagnitude = oom
elif oom >= self._powerlimits[1]:
self.orderOfMagnitude = oom
else:
self.orderOfMagnitude = 0
def _set_format(self, vmin, vmax):
# set the format string to format all the ticklabels
if len(self.locs) < 2:
# Temporarily augment the locations with the axis end points.
_locs = list(self.locs) + [vmin, vmax]
else:
_locs = self.locs
locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude
loc_range = np.ptp(locs)
# Curvilinear coordinates can yield two identical points.
if loc_range == 0:
loc_range = np.max(np.abs(locs))
# Both points might be zero.
if loc_range == 0:
loc_range = 1
if len(self.locs) < 2:
# We needed the end points only for the loc_range calculation.
locs = locs[:-2]
loc_range_oom = int(math.floor(math.log10(loc_range)))
# first estimate:
sigfigs = max(0, 3 - loc_range_oom)
# refined estimate:
thresh = 1e-3 * 10 ** loc_range_oom
while sigfigs >= 0:
if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh:
sigfigs -= 1
else:
break
sigfigs += 1
self.format = '%1.' + str(sigfigs) + 'f'
if self._usetex:
self.format = '$%s$' % self.format
elif self._useMathText:
self.format = '$%s$' % _mathdefault(self.format)
def pprint_val(self, x):
xp = (x - self.offset) / (10. ** self.orderOfMagnitude)
if np.abs(xp) < 1e-8:
xp = 0
if self._useLocale:
return locale.format_string(self.format, (xp,))
else:
return self.format % xp
def _formatSciNotation(self, s):
# transform 1e+004 into 1e4, for example
if self._useLocale:
decimal_point = locale.localeconv()['decimal_point']
positive_sign = locale.localeconv()['positive_sign']
else:
decimal_point = '.'
positive_sign = '+'
tup = s.split('e')
try:
significand = tup[0].rstrip('0').rstrip(decimal_point)
sign = tup[1][0].replace(positive_sign, '')
exponent = tup[1][1:].lstrip('0')
if self._useMathText or self._usetex:
if significand == '1' and exponent != '':
# reformat 1x10^y as 10^y
significand = ''
if exponent:
exponent = '10^{%s%s}' % (sign, exponent)
if significand and exponent:
return r'%s{\times}%s' % (significand, exponent)
else:
return r'%s%s' % (significand, exponent)
else:
s = ('%se%s%s' % (significand, sign, exponent)).rstrip('e')
return s
except IndexError:
return s
class LogFormatter(Formatter):
"""
Base class for formatting ticks on a log or symlog scale.
It may be instantiated directly, or subclassed.
Parameters
----------
base : float, optional, default: 10.
Base of the logarithm used in all calculations.
labelOnlyBase : bool, optional, default: False
If True, label ticks only at integer powers of base.
This is normally True for major ticks and False for
minor ticks.
minor_thresholds : (subset, all), optional, default: (1, 0.4)
If labelOnlyBase is False, these two numbers control
the labeling of ticks that are not at integer powers of
base; normally these are the minor ticks. The controlling
parameter is the log of the axis data range. In the typical
case where base is 10 it is the number of decades spanned
by the axis, so we can call it 'numdec'. If ``numdec <= all``,
all minor ticks will be labeled. If ``all < numdec <= subset``,
then only a subset of minor ticks will be labeled, so as to
avoid crowding. If ``numdec > subset`` then no minor ticks will
be labeled.
linthresh : None or float, optional, default: None
If a symmetric log scale is in use, its ``linthresh``
parameter must be supplied here.
Notes
-----
The `set_locs` method must be called to enable the subsetting
logic controlled by the ``minor_thresholds`` parameter.
In some cases such as the colorbar, there is no distinction between
major and minor ticks; the tick locations might be set manually,
or by a locator that puts ticks at integer powers of base and
at intermediate locations. For this situation, disable the
minor_thresholds logic by using ``minor_thresholds=(np.inf, np.inf)``,
so that all ticks will be labeled.
To disable labeling of minor ticks when 'labelOnlyBase' is False,
use ``minor_thresholds=(0, 0)``. This is the default for the
"classic" style.
Examples
--------
To label a subset of minor ticks when the view limits span up
to 2 decades, and all of the ticks when zoomed in to 0.5 decades
or less, use ``minor_thresholds=(2, 0.5)``.
To label all minor ticks when the view limits span up to 1.5
decades, use ``minor_thresholds=(1.5, 1.5)``.
"""
def __init__(self, base=10.0, labelOnlyBase=False,
minor_thresholds=None,
linthresh=None):
self._base = float(base)
self.labelOnlyBase = labelOnlyBase
if minor_thresholds is None:
if rcParams['_internal.classic_mode']:
minor_thresholds = (0, 0)
else:
minor_thresholds = (1, 0.4)
self.minor_thresholds = minor_thresholds
self._sublabels = None
self._linthresh = linthresh
def base(self, base):
"""
change the `base` for labeling.
.. warning::
Should always match the base used for :class:`LogLocator`
"""
self._base = base
def label_minor(self, labelOnlyBase):
"""
Switch minor tick labeling on or off.
Parameters
----------
labelOnlyBase : bool
If True, label ticks only at integer powers of base.
"""
self.labelOnlyBase = labelOnlyBase
def set_locs(self, locs=None):
"""
Use axis view limits to control which ticks are labeled.
The ``locs`` parameter is ignored in the present algorithm.
"""
if np.isinf(self.minor_thresholds[0]):
self._sublabels = None
return
# Handle symlog case:
linthresh = self._linthresh
if linthresh is None:
try:
linthresh = self.axis.get_transform().linthresh
except AttributeError:
pass
vmin, vmax = self.axis.get_view_interval()
if vmin > vmax:
vmin, vmax = vmax, vmin
if linthresh is None and vmin <= 0:
# It's probably a colorbar with
# a format kwarg setting a LogFormatter in the manner
# that worked with 1.5.x, but that doesn't work now.
self._sublabels = set((1,)) # label powers of base
return
b = self._base
if linthresh is not None: # symlog
# Only compute the number of decades in the logarithmic part of the
# axis
numdec = 0
if vmin < -linthresh:
rhs = min(vmax, -linthresh)
numdec += math.log(vmin / rhs) / math.log(b)
if vmax > linthresh:
lhs = max(vmin, linthresh)
numdec += math.log(vmax / lhs) / math.log(b)
else:
vmin = math.log(vmin) / math.log(b)
vmax = math.log(vmax) / math.log(b)
numdec = abs(vmax - vmin)
if numdec > self.minor_thresholds[0]:
# Label only bases
self._sublabels = {1}
elif numdec > self.minor_thresholds[1]:
# Add labels between bases at log-spaced coefficients;
# include base powers in case the locations include
# "major" and "minor" points, as in colorbar.
c = np.logspace(0, 1, int(b)//2 + 1, base=b)
self._sublabels = set(np.round(c))
# For base 10, this yields (1, 2, 3, 4, 6, 10).
else:
# Label all integer multiples of base**n.
self._sublabels = set(np.arange(1, b + 1))
def _num_to_string(self, x, vmin, vmax):
if x > 10000:
s = '%1.0e' % x
elif x < 1:
s = '%1.0e' % x
else:
s = self.pprint_val(x, vmax - vmin)
return s
def __call__(self, x, pos=None):
"""
Return the format for tick val `x`.
"""
if x == 0.0: # Symlog
return '0'
sign = np.sign(x)
x = abs(x)
b = self._base
# only label the decades
fx = math.log(x) / math.log(b)
is_x_decade = is_close_to_int(fx)
exponent = np.round(fx) if is_x_decade else np.floor(fx)
coeff = np.round(x / b ** exponent)
if self.labelOnlyBase and not is_x_decade:
return ''
if self._sublabels is not None and coeff not in self._sublabels:
return ''
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
s = self._num_to_string(x, vmin, vmax)
return self.fix_minus(s)
def format_data(self, value):
b = self.labelOnlyBase
self.labelOnlyBase = False
value = cbook.strip_math(self.__call__(value))
self.labelOnlyBase = b
return value
def format_data_short(self, value):
"""
Return a short formatted string representation of a number.
"""
return '%-12g' % value
def pprint_val(self, x, d):
#if the number is not too big and it's an int, format it as an
#int
if abs(x) < 1e4 and x == int(x):
return '%d' % x
if d < 1e-2:
fmt = '%1.3e'
elif d < 1e-1:
fmt = '%1.3f'
elif d > 1e5:
fmt = '%1.1e'
elif d > 10:
fmt = '%1.1f'
elif d > 1:
fmt = '%1.2f'
else:
fmt = '%1.3f'
s = fmt % x
tup = s.split('e')
if len(tup) == 2:
mantissa = tup[0].rstrip('0').rstrip('.')
exponent = int(tup[1])
if exponent:
s = '%se%d' % (mantissa, exponent)
else:
s = mantissa
else:
s = s.rstrip('0').rstrip('.')
return s
class LogFormatterExponent(LogFormatter):
"""
Format values for log axis using ``exponent = log_base(value)``.
"""
def _num_to_string(self, x, vmin, vmax):
fx = math.log(x) / math.log(self._base)
if abs(fx) > 10000:
s = '%1.0g' % fx
elif abs(fx) < 1:
s = '%1.0g' % fx
else:
fd = math.log(vmax - vmin) / math.log(self._base)
s = self.pprint_val(fx, fd)
return s
class LogFormatterMathtext(LogFormatter):
"""
Format values for log axis using ``exponent = log_base(value)``.
"""
def _non_decade_format(self, sign_string, base, fx, usetex):
'Return string for non-decade locations'
if usetex:
return (r'$%s%s^{%.2f}$') % (sign_string, base, fx)
else:
return ('$%s$' % _mathdefault('%s%s^{%.2f}' %
(sign_string, base, fx)))
def __call__(self, x, pos=None):
"""
Return the format for tick value `x`.
The position `pos` is ignored.
"""
usetex = rcParams['text.usetex']
min_exp = rcParams['axes.formatter.min_exponent']
if x == 0: # Symlog
if usetex:
return '$0$'
else:
return '$%s$' % _mathdefault('0')
sign_string = '-' if x < 0 else ''
x = abs(x)
b = self._base
# only label the decades
fx = math.log(x) / math.log(b)
is_x_decade = is_close_to_int(fx)
exponent = np.round(fx) if is_x_decade else np.floor(fx)
coeff = np.round(x / b ** exponent)
if is_x_decade:
fx = nearest_long(fx)
if self.labelOnlyBase and not is_x_decade:
return ''
if self._sublabels is not None and coeff not in self._sublabels:
return ''
# use string formatting of the base if it is not an integer
if b % 1 == 0.0:
base = '%d' % b
else:
base = '%s' % b
if np.abs(fx) < min_exp:
if usetex:
return r'${0}{1:g}$'.format(sign_string, x)
else:
return '${0}$'.format(_mathdefault(
'{0}{1:g}'.format(sign_string, x)))
elif not is_x_decade:
return self._non_decade_format(sign_string, base, fx, usetex)
else:
if usetex:
return (r'$%s%s^{%d}$') % (sign_string,
base,
nearest_long(fx))
else:
return ('$%s$' % _mathdefault(
'%s%s^{%d}' %
(sign_string, base, nearest_long(fx))))
class LogFormatterSciNotation(LogFormatterMathtext):
"""
Format values following scientific notation in a logarithmic axis
"""
def _non_decade_format(self, sign_string, base, fx, usetex):
'Return string for non-decade locations'
b = float(base)
exponent = math.floor(fx)
coeff = b ** fx / b ** exponent
if is_close_to_int(coeff):
coeff = nearest_long(coeff)
if usetex:
return (r'$%s%g\times%s^{%d}$') % \
(sign_string, coeff, base, exponent)
else:
return ('$%s$' % _mathdefault(r'%s%g\times%s^{%d}' %
(sign_string, coeff, base, exponent)))
class LogitFormatter(Formatter):
"""
Probability formatter (using Math text).
"""
def __call__(self, x, pos=None):
s = ''
if 0.01 <= x <= 0.99:
s = '{:.2f}'.format(x)
elif x < 0.01:
if is_decade(x):
s = '$10^{{{:.0f}}}$'.format(np.log10(x))
else:
s = '${:.5f}$'.format(x)
else: # x > 0.99
if is_decade(1-x):
s = '$1-10^{{{:.0f}}}$'.format(np.log10(1-x))
else:
s = '$1-{:.5f}$'.format(1-x)
return s
def format_data_short(self, value):
'return a short formatted string representation of a number'
return '%-12g' % value
class EngFormatter(Formatter):
"""
Formats axis values using engineering prefixes to represent powers
of 1000, plus a specified unit, e.g., 10 MHz instead of 1e7.
"""
# The SI engineering prefixes
ENG_PREFIXES = {
-24: "y",
-21: "z",
-18: "a",
-15: "f",
-12: "p",
-9: "n",
-6: "\N{GREEK SMALL LETTER MU}",
-3: "m",
0: "",
3: "k",
6: "M",
9: "G",
12: "T",
15: "P",
18: "E",
21: "Z",
24: "Y"
}
def __init__(self, unit="", places=None, sep=" "):
"""
Parameters
----------
unit : str (default: "")
Unit symbol to use, suitable for use with single-letter
representations of powers of 1000. For example, 'Hz' or 'm'.
places : int (default: None)
Precision with which to display the number, specified in
digits after the decimal point (there will be between one
and three digits before the decimal point). If it is None,
the formatting falls back to the floating point format '%g',
which displays up to 6 *significant* digits, i.e. the equivalent
value for *places* varies between 0 and 5 (inclusive).
sep : str (default: " ")
Separator used between the value and the prefix/unit. For
example, one get '3.14 mV' if ``sep`` is " " (default) and
'3.14mV' if ``sep`` is "". Besides the default behavior, some
other useful options may be:
* ``sep=""`` to append directly the prefix/unit to the value;
* ``sep="\\N{THIN SPACE}"`` (``U+2009``);
* ``sep="\\N{NARROW NO-BREAK SPACE}"`` (``U+202F``);
* ``sep="\\N{NO-BREAK SPACE}"`` (``U+00A0``).
"""
self.unit = unit
self.places = places
self.sep = sep
def __call__(self, x, pos=None):
s = "%s%s" % (self.format_eng(x), self.unit)
# Remove the trailing separator when there is neither prefix nor unit
if len(self.sep) > 0 and s.endswith(self.sep):
s = s[:-len(self.sep)]
return self.fix_minus(s)
def format_eng(self, num):
"""
Formats a number in engineering notation, appending a letter
representing the power of 1000 of the original number.
Some examples:
>>> format_eng(0) # for self.places = 0
'0'
>>> format_eng(1000000) # for self.places = 1
'1.0 M'
>>> format_eng("-1e-6") # for self.places = 2
u'-1.00 \N{GREEK SMALL LETTER MU}'
`num` may be a numeric value or a string that can be converted
to a numeric value with ``float(num)``.
"""
if isinstance(num, six.string_types):
warnings.warn(
"Passing a string as *num* argument is deprecated since"
"Matplotlib 2.1, and is expected to be removed in 2.3.",
mplDeprecation)
dnum = float(num)
sign = 1
fmt = "g" if self.places is None else ".{:d}f".format(self.places)
if dnum < 0:
sign = -1
dnum = -dnum
if dnum != 0:
pow10 = int(math.floor(math.log10(dnum) / 3) * 3)
else:
pow10 = 0
# Force dnum to zero, to avoid inconsistencies like
# format_eng(-0) = "0" and format_eng(0.0) = "0"
# but format_eng(-0.0) = "-0.0"
dnum = 0.0
pow10 = np.clip(pow10, min(self.ENG_PREFIXES), max(self.ENG_PREFIXES))
mant = sign * dnum / (10.0 ** pow10)
# Taking care of the cases like 999.9..., which
# may be rounded to 1000 instead of 1 k. Beware
# of the corner case of values that are beyond
# the range of SI prefixes (i.e. > 'Y').
_fmant = float("{mant:{fmt}}".format(mant=mant, fmt=fmt))
if _fmant >= 1000 and pow10 != max(self.ENG_PREFIXES):
mant /= 1000
pow10 += 3
prefix = self.ENG_PREFIXES[int(pow10)]
formatted = "{mant:{fmt}}{sep}{prefix}".format(
mant=mant, sep=self.sep, prefix=prefix, fmt=fmt)
return formatted
class PercentFormatter(Formatter):
"""
Format numbers as a percentage.
How the number is converted into a percentage is determined by the
`xmax` parameter. `xmax` is the data value that corresponds to 100%.
Percentages are computed as ``x / xmax * 100``. So if the data is
already scaled to be percentages, `xmax` will be 100. Another common
situation is where `xmax` is 1.0.
`symbol` is a string which will be appended to the label. It may be
`None` or empty to indicate that no symbol should be used. LaTeX
special characters are escaped in `symbol` whenever latex mode is
enabled, unless `is_latex` is `True`.
`decimals` is the number of decimal places to place after the point.
If it is set to `None` (the default), the number will be computed
automatically.
"""
def __init__(self, xmax=100, decimals=None, symbol='%', is_latex=False):
self.xmax = xmax + 0.0
self.decimals = decimals
self._symbol = symbol
self._is_latex = is_latex
def __call__(self, x, pos=None):
"""
Formats the tick as a percentage with the appropriate scaling.
"""
ax_min, ax_max = self.axis.get_view_interval()
display_range = abs(ax_max - ax_min)
return self.fix_minus(self.format_pct(x, display_range))
def format_pct(self, x, display_range):
"""
Formats the number as a percentage number with the correct
number of decimals and adds the percent symbol, if any.
If `self.decimals` is `None`, the number of digits after the
decimal point is set based on the `display_range` of the axis
as follows:
+---------------+----------+------------------------+
| display_range | decimals | sample |
+---------------+----------+------------------------+
| >50 | 0 | ``x = 34.5`` => 35% |
+---------------+----------+------------------------+
| >5 | 1 | ``x = 34.5`` => 34.5% |
+---------------+----------+------------------------+
| >0.5 | 2 | ``x = 34.5`` => 34.50% |
+---------------+----------+------------------------+
| ... | ... | ... |
+---------------+----------+------------------------+
This method will not be very good for tiny axis ranges or
extremely large ones. It assumes that the values on the chart
are percentages displayed on a reasonable scale.
"""
x = self.convert_to_pct(x)
if self.decimals is None:
# conversion works because display_range is a difference
scaled_range = self.convert_to_pct(display_range)
if scaled_range <= 0:
decimals = 0
else:
# Luckily Python's built-in ceil rounds to +inf, not away from
# zero. This is very important since the equation for decimals
# starts out as `scaled_range > 0.5 * 10**(2 - decimals)`
# and ends up with `decimals > 2 - log10(2 * scaled_range)`.
decimals = math.ceil(2.0 - math.log10(2.0 * scaled_range))
if decimals > 5:
decimals = 5
elif decimals < 0:
decimals = 0
else:
decimals = self.decimals
s = '{x:0.{decimals}f}'.format(x=x, decimals=int(decimals))
return s + self.symbol
def convert_to_pct(self, x):
return 100.0 * (x / self.xmax)
@property
def symbol(self):
"""
The configured percent symbol as a string.
If LaTeX is enabled via ``rcParams['text.usetex']``, the special
characters `{'#', '$', '%', '&', '~', '_', '^', '\\', '{', '}'}`
are automatically escaped in the string.
"""
symbol = self._symbol
if not symbol:
symbol = ''
elif rcParams['text.usetex'] and not self._is_latex:
# Source: http://www.personal.ceu.hu/tex/specchar.htm
# Backslash must be first for this to work correctly since
# it keeps getting added in
for spec in r'\#$%&~_^{}':
symbol = symbol.replace(spec, '\\' + spec)
return symbol
@symbol.setter
def symbol(self):
self._symbol = symbol
class Locator(TickHelper):
"""
Determine the tick locations;
Note, you should not use the same locator between different
:class:`~matplotlib.axis.Axis` because the locator stores references to
the Axis data and view limits
"""
# Some automatic tick locators can generate so many ticks they
# kill the machine when you try and render them.
# This parameter is set to cause locators to raise an error if too
# many ticks are generated.
MAXTICKS = 1000
def tick_values(self, vmin, vmax):
"""
Return the values of the located ticks given **vmin** and **vmax**.
.. note::
To get tick locations with the vmin and vmax values defined
automatically for the associated :attr:`axis` simply call
the Locator instance::
>>> print((type(loc)))
<type 'Locator'>
>>> print((loc()))
[1, 2, 3, 4]
"""
raise NotImplementedError('Derived must override')
def set_params(self, **kwargs):
"""
Do nothing, and rase a warning. Any locator class not supporting the
set_params() function will call this.
"""
warnings.warn("'set_params()' not defined for locator of type " +
str(type(self)))
def __call__(self):
"""Return the locations of the ticks"""
# note: some locators return data limits, other return view limits,
# hence there is no *one* interface to call self.tick_values.
raise NotImplementedError('Derived must override')
def raise_if_exceeds(self, locs):
"""raise a RuntimeError if Locator attempts to create more than
MAXTICKS locs"""
if len(locs) >= self.MAXTICKS:
msg = ('Locator attempting to generate %d ticks from %s to %s: ' +
'exceeds Locator.MAXTICKS') % (len(locs), locs[0], locs[-1])
raise RuntimeError(msg)
return locs
def view_limits(self, vmin, vmax):
"""
select a scale for the range from vmin to vmax
Normally this method is overridden by subclasses to
change locator behaviour.
"""
return mtransforms.nonsingular(vmin, vmax)
def autoscale(self):
"""autoscale the view limits"""
return self.view_limits(*self.axis.get_view_interval())
def pan(self, numsteps):
"""Pan numticks (can be positive or negative)"""
ticks = self()
numticks = len(ticks)
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
if numticks > 2:
step = numsteps * abs(ticks[0] - ticks[1])
else:
d = abs(vmax - vmin)
step = numsteps * d / 6.
vmin += step
vmax += step
self.axis.set_view_interval(vmin, vmax, ignore=True)
def zoom(self, direction):
"Zoom in/out on axis; if direction is >0 zoom in, else zoom out"
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
interval = abs(vmax - vmin)
step = 0.1 * interval * direction
self.axis.set_view_interval(vmin + step, vmax - step, ignore=True)
def refresh(self):
"""refresh internal information based on current lim"""
pass
class IndexLocator(Locator):
"""
Place a tick on every multiple of some base number of points
plotted, e.g., on every 5th point. It is assumed that you are doing
index plotting; i.e., the axis is 0, len(data). This is mainly
useful for x ticks.
"""
def __init__(self, base, offset):
'place ticks on the i-th data points where (i-offset)%base==0'
self._base = base
self.offset = offset
def set_params(self, base=None, offset=None):
"""Set parameters within this locator"""
if base is not None:
self._base = base
if offset is not None:
self.offset = offset
def __call__(self):
"""Return the locations of the ticks"""
dmin, dmax = self.axis.get_data_interval()
return self.tick_values(dmin, dmax)
def tick_values(self, vmin, vmax):
return self.raise_if_exceeds(
np.arange(vmin + self.offset, vmax + 1, self._base))
class FixedLocator(Locator):
"""
Tick locations are fixed. If nbins is not None,
the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1.
The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the
array of possibilities, then it is guaranteed to be one of
the chosen ticks.
"""
def __init__(self, locs, nbins=None):
self.locs = np.asarray(locs)
self.nbins = nbins
if self.nbins is not None:
self.nbins = max(self.nbins, 2)
def set_params(self, nbins=None):
"""Set parameters within this locator."""
if nbins is not None:
self.nbins = nbins
def __call__(self):
return self.tick_values(None, None)
def tick_values(self, vmin, vmax):
""""
Return the locations of the ticks.
.. note::
Because the values are fixed, vmin and vmax are not used in this
method.
"""
if self.nbins is None:
return self.locs
step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1)
ticks = self.locs[::step]
for i in range(1, step):
ticks1 = self.locs[i::step]
if np.abs(ticks1).min() < np.abs(ticks).min():
ticks = ticks1
return self.raise_if_exceeds(ticks)
class NullLocator(Locator):
"""
No ticks
"""
def __call__(self):
return self.tick_values(None, None)
def tick_values(self, vmin, vmax):
""""
Return the locations of the ticks.
.. note::
Because the values are Null, vmin and vmax are not used in this
method.
"""
return []
class LinearLocator(Locator):
"""
Determine the tick locations
The first time this function is called it will try to set the
number of ticks to make a nice tick partitioning. Thereafter the
number of ticks will be fixed so that interactive navigation will
be nice
"""
def __init__(self, numticks=None, presets=None):
"""
Use presets to set locs based on lom. A dict mapping vmin, vmax->locs
"""
self.numticks = numticks
if presets is None:
self.presets = {}
else:
self.presets = presets
def set_params(self, numticks=None, presets=None):
"""Set parameters within this locator."""
if presets is not None:
self.presets = presets
if numticks is not None:
self.numticks = numticks
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
if vmax < vmin:
vmin, vmax = vmax, vmin
if (vmin, vmax) in self.presets:
return self.presets[(vmin, vmax)]
if self.numticks is None:
self._set_numticks()
if self.numticks == 0:
return []
ticklocs = np.linspace(vmin, vmax, self.numticks)
return self.raise_if_exceeds(ticklocs)
def _set_numticks(self):
self.numticks = 11 # todo; be smart here; this is just for dev
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
if vmax < vmin:
vmin, vmax = vmax, vmin
if vmin == vmax:
vmin -= 1
vmax += 1
if rcParams['axes.autolimit_mode'] == 'round_numbers':
exponent, remainder = _divmod(
math.log10(vmax - vmin), math.log10(max(self.numticks - 1, 1)))
exponent -= (remainder < .5)
scale = max(self.numticks - 1, 1) ** (-exponent)
vmin = math.floor(scale * vmin) / scale
vmax = math.ceil(scale * vmax) / scale
return mtransforms.nonsingular(vmin, vmax)
def closeto(x, y):
if abs(x - y) < 1e-10:
return True
else:
return False
class Base(object):
'this solution has some hacks to deal with floating point inaccuracies'
def __init__(self, base):
if base <= 0:
raise ValueError("'base' must be positive")
self._base = base
def lt(self, x):
'return the largest multiple of base < x'
d, m = _divmod(x, self._base)
if closeto(m, 0) and not closeto(m / self._base, 1):
return (d - 1) * self._base
return d * self._base
def le(self, x):
'return the largest multiple of base <= x'
d, m = _divmod(x, self._base)
if closeto(m / self._base, 1): # was closeto(m, self._base)
#looks like floating point error
return (d + 1) * self._base
return d * self._base
def gt(self, x):
'return the smallest multiple of base > x'
d, m = _divmod(x, self._base)
if closeto(m / self._base, 1):
#looks like floating point error
return (d + 2) * self._base
return (d + 1) * self._base
def ge(self, x):
'return the smallest multiple of base >= x'
d, m = _divmod(x, self._base)
if closeto(m, 0) and not closeto(m / self._base, 1):
return d * self._base
return (d + 1) * self._base
def get_base(self):
return self._base
class MultipleLocator(Locator):
"""
Set a tick on every integer that is multiple of base in the
view interval
"""
def __init__(self, base=1.0):
self._base = Base(base)
def set_params(self, base):
"""Set parameters within this locator."""
if base is not None:
self._base = base
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
if vmax < vmin:
vmin, vmax = vmax, vmin
vmin = self._base.ge(vmin)
base = self._base.get_base()
n = (vmax - vmin + 0.001 * base) // base
locs = vmin - base + np.arange(n + 3) * base
return self.raise_if_exceeds(locs)
def view_limits(self, dmin, dmax):
"""
Set the view limits to the nearest multiples of base that
contain the data
"""
if rcParams['axes.autolimit_mode'] == 'round_numbers':
vmin = self._base.le(dmin)
vmax = self._base.ge(dmax)
if vmin == vmax:
vmin -= 1
vmax += 1
else:
vmin = dmin
vmax = dmax
return mtransforms.nonsingular(vmin, vmax)
def scale_range(vmin, vmax, n=1, threshold=100):
dv = abs(vmax - vmin) # > 0 as nonsingular is called before.
meanv = (vmax + vmin) / 2
if abs(meanv) / dv < threshold:
offset = 0
else:
offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv)
scale = 10 ** (math.log10(dv / n) // 1)
return scale, offset
class MaxNLocator(Locator):
"""
Select no more than N intervals at nice locations.
"""
default_params = dict(nbins=10,
steps=None,
integer=False,
symmetric=False,
prune=None,
min_n_ticks=2)
def __init__(self, *args, **kwargs):
"""
Keyword args:
*nbins*
Maximum number of intervals; one less than max number of
ticks. If the string `'auto'`, the number of bins will be
automatically determined based on the length of the axis.
*steps*
Sequence of nice numbers starting with 1 and ending with 10;
e.g., [1, 2, 4, 5, 10]
*integer*
If True, ticks will take only integer values, provided
at least `min_n_ticks` integers are found within the
view limits.
*symmetric*
If True, autoscaling will result in a range symmetric
about zero.
*prune*
['lower' | 'upper' | 'both' | None]
Remove edge ticks -- useful for stacked or ganged plots
where the upper tick of one axes overlaps with the lower
tick of the axes above it, primarily when
`rcParams['axes.autolimit_mode']` is `'round_numbers'`.
If `prune=='lower'`, the smallest tick will
be removed. If `prune=='upper'`, the largest tick will be
removed. If `prune=='both'`, the largest and smallest ticks
will be removed. If `prune==None`, no ticks will be removed.
*min_n_ticks*
Relax `nbins` and `integer` constraints if necessary to
obtain this minimum number of ticks.
"""
if args:
kwargs['nbins'] = args[0]
if len(args) > 1:
raise ValueError(
"Keywords are required for all arguments except 'nbins'")
self.set_params(**self.default_params)
self.set_params(**kwargs)
@staticmethod
def _validate_steps(steps):
if not np.iterable(steps):
raise ValueError('steps argument must be a sequence of numbers '
'from 1 to 10')
steps = np.asarray(steps)
if np.any(np.diff(steps) <= 0):
raise ValueError('steps argument must be uniformly increasing')
if steps[-1] > 10 or steps[0] < 1:
warnings.warn('Steps argument should be a sequence of numbers\n'
'increasing from 1 to 10, inclusive. Behavior with\n'
'values outside this range is undefined, and will\n'
'raise a ValueError in future versions of mpl.')
if steps[0] != 1:
steps = np.hstack((1, steps))
if steps[-1] != 10:
steps = np.hstack((steps, 10))
return steps
@staticmethod
def _staircase(steps):
# Make an extended staircase within which the needed
# step will be found. This is probably much larger
# than necessary.
flights = (0.1 * steps[:-1], steps, 10 * steps[1])
return np.hstack(flights)
def set_params(self, **kwargs):
"""Set parameters within this locator."""
if 'nbins' in kwargs:
self._nbins = kwargs['nbins']
if self._nbins != 'auto':
self._nbins = int(self._nbins)
if 'trim' in kwargs:
warnings.warn(
"The 'trim' keyword has no effect since version 2.0.",
mplDeprecation)
if 'symmetric' in kwargs:
self._symmetric = kwargs['symmetric']
if 'prune' in kwargs:
prune = kwargs['prune']
if prune is not None and prune not in ['upper', 'lower', 'both']:
raise ValueError(
"prune must be 'upper', 'lower', 'both', or None")
self._prune = prune
if 'min_n_ticks' in kwargs:
self._min_n_ticks = max(1, kwargs['min_n_ticks'])
if 'steps' in kwargs:
steps = kwargs['steps']
if steps is None:
self._steps = np.array([1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10])
else:
self._steps = self._validate_steps(steps)
self._extended_steps = self._staircase(self._steps)
if 'integer' in kwargs:
self._integer = kwargs['integer']
def _raw_ticks(self, vmin, vmax):
if self._nbins == 'auto':
if self.axis is not None:
nbins = np.clip(self.axis.get_tick_space(),
max(1, self._min_n_ticks - 1), 9)
else:
nbins = 9
else:
nbins = self._nbins
scale, offset = scale_range(vmin, vmax, nbins)
_vmin = vmin - offset
_vmax = vmax - offset
raw_step = (vmax - vmin) / nbins
steps = self._extended_steps * scale
if self._integer:
# For steps > 1, keep only integer values.
igood = (steps < 1) | (np.abs(steps - np.round(steps)) < 0.001)
steps = steps[igood]
istep = np.nonzero(steps >= raw_step)[0][0]
# Classic round_numbers mode may require a larger step.
if rcParams['axes.autolimit_mode'] == 'round_numbers':
for istep in range(istep, len(steps)):
step = steps[istep]
best_vmin = (_vmin // step) * step
best_vmax = best_vmin + step * nbins
if (best_vmax >= _vmax):
break
# This is an upper limit; move to smaller steps if necessary.
for i in range(istep):
step = steps[istep - i]
if (self._integer and
np.floor(_vmax) - np.ceil(_vmin) >= self._min_n_ticks - 1):
step = max(1, step)
best_vmin = (_vmin // step) * step
low = np.round(Base(step).le(_vmin - best_vmin) / step)
high = np.round(Base(step).ge(_vmax - best_vmin) / step)
ticks = np.arange(low, high + 1) * step + best_vmin + offset
nticks = ((ticks <= vmax) & (ticks >= vmin)).sum()
if nticks >= self._min_n_ticks:
break
return ticks
@cbook.deprecated("2.0")
def bin_boundaries(self, vmin, vmax):
return self._raw_ticks(vmin, vmax)
def __call__(self):
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
if self._symmetric:
vmax = max(abs(vmin), abs(vmax))
vmin = -vmax
vmin, vmax = mtransforms.nonsingular(
vmin, vmax, expander=1e-13, tiny=1e-14)
locs = self._raw_ticks(vmin, vmax)
prune = self._prune
if prune == 'lower':
locs = locs[1:]
elif prune == 'upper':
locs = locs[:-1]
elif prune == 'both':
locs = locs[1:-1]
return self.raise_if_exceeds(locs)
def view_limits(self, dmin, dmax):
if self._symmetric:
dmax = max(abs(dmin), abs(dmax))
dmin = -dmax
dmin, dmax = mtransforms.nonsingular(
dmin, dmax, expander=1e-12, tiny=1e-13)
if rcParams['axes.autolimit_mode'] == 'round_numbers':
return self._raw_ticks(dmin, dmax)[[0, -1]]
else:
return dmin, dmax
def decade_down(x, base=10):
'floor x to the nearest lower decade'
if x == 0.0:
return -base
lx = np.floor(np.log(x) / np.log(base))
return base ** lx
def decade_up(x, base=10):
'ceil x to the nearest higher decade'
if x == 0.0:
return base
lx = np.ceil(np.log(x) / np.log(base))
return base ** lx
def nearest_long(x):
if x == 0:
return long(0)
elif x > 0:
return long(x + 0.5)
else:
return long(x - 0.5)
def is_decade(x, base=10):
if not np.isfinite(x):
return False
if x == 0.0:
return True
lx = np.log(np.abs(x)) / np.log(base)
return is_close_to_int(lx)
def is_close_to_int(x):
if not np.isfinite(x):
return False
return abs(x - nearest_long(x)) < 1e-10
class LogLocator(Locator):
"""
Determine the tick locations for log axes
"""
def __init__(self, base=10.0, subs=(1.0,), numdecs=4, numticks=None):
"""
Place ticks on the locations : subs[j] * base**i
Parameters
----------
subs : None, string, or sequence of float, optional, default (1.0,)
Gives the multiples of integer powers of the base at which
to place ticks. The default places ticks only at
integer powers of the base.
The permitted string values are ``'auto'`` and ``'all'``,
both of which use an algorithm based on the axis view
limits to determine whether and how to put ticks between
integer powers of the base. With ``'auto'``, ticks are
placed only between integer powers; with ``'all'``, the
integer powers are included. A value of None is
equivalent to ``'auto'``.
"""
if numticks is None:
if rcParams['_internal.classic_mode']:
numticks = 15
else:
numticks = 'auto'
self.base(base)
self.subs(subs)
self.numdecs = numdecs
self.numticks = numticks
def set_params(self, base=None, subs=None, numdecs=None, numticks=None):
"""Set parameters within this locator."""
if base is not None:
self.base(base)
if subs is not None:
self.subs(subs)
if numdecs is not None:
self.numdecs = numdecs
if numticks is not None:
self.numticks = numticks
# FIXME: these base and subs functions are contrary to our
# usual and desired API.
def base(self, base):
"""
set the base of the log scaling (major tick every base**i, i integer)
"""
self._base = float(base)
def subs(self, subs):
"""
set the minor ticks for the log scaling every base**i*subs[j]
"""
if subs is None: # consistency with previous bad API
self._subs = 'auto'
elif isinstance(subs, six.string_types):
if subs not in ('all', 'auto'):
raise ValueError("A subs string must be 'all' or 'auto'; "
"found '%s'." % subs)
self._subs = subs
else:
self._subs = np.asarray(subs, dtype=float)
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
if self.numticks == 'auto':
if self.axis is not None:
numticks = np.clip(self.axis.get_tick_space(), 2, 9)
else:
numticks = 9
else:
numticks = self.numticks
b = self._base
# dummy axis has no axes attribute
if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
vmax = math.ceil(math.log(vmax) / math.log(b))
decades = np.arange(vmax - self.numdecs, vmax)
ticklocs = b ** decades
return ticklocs
if vmin <= 0.0:
if self.axis is not None:
vmin = self.axis.get_minpos()
if vmin <= 0.0 or not np.isfinite(vmin):
raise ValueError(
"Data has no positive values, and therefore can not be "
"log-scaled.")
vmin = math.log(vmin) / math.log(b)
vmax = math.log(vmax) / math.log(b)
if vmax < vmin:
vmin, vmax = vmax, vmin
numdec = math.floor(vmax) - math.ceil(vmin)
if isinstance(self._subs, six.string_types):
_first = 2.0 if self._subs == 'auto' else 1.0
if numdec > 10 or b < 3:
if self._subs == 'auto':
return np.array([]) # no minor or major ticks
else:
subs = np.array([1.0]) # major ticks
else:
subs = np.arange(_first, b)
else:
subs = self._subs
stride = 1
if rcParams['_internal.classic_mode']:
# Leave the bug left over from the PY2-PY3 transition.
while numdec / stride + 1 > numticks:
stride += 1
else:
while numdec // stride + 1 > numticks:
stride += 1
# Does subs include anything other than 1?
have_subs = len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0)
decades = np.arange(math.floor(vmin) - stride,
math.ceil(vmax) + 2 * stride, stride)
if hasattr(self, '_transform'):
ticklocs = self._transform.inverted().transform(decades)
if have_subs:
if stride == 1:
ticklocs = np.ravel(np.outer(subs, ticklocs))
else:
ticklocs = []
else:
if have_subs:
ticklocs = []
if stride == 1:
for decadeStart in b ** decades:
ticklocs.extend(subs * decadeStart)
else:
ticklocs = b ** decades
return self.raise_if_exceeds(np.asarray(ticklocs))
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
b = self._base
vmin, vmax = self.nonsingular(vmin, vmax)
if self.axis.axes.name == 'polar':
vmax = math.ceil(math.log(vmax) / math.log(b))
vmin = b ** (vmax - self.numdecs)
if rcParams['axes.autolimit_mode'] == 'round_numbers':
if not is_decade(vmin, self._base):
vmin = decade_down(vmin, self._base)
if not is_decade(vmax, self._base):
vmax = decade_up(vmax, self._base)
return vmin, vmax
def nonsingular(self, vmin, vmax):
if not np.isfinite(vmin) or not np.isfinite(vmax):
return 1, 10 # initial range, no data plotted yet
if vmin > vmax:
vmin, vmax = vmax, vmin
if vmax <= 0:
warnings.warn(
"Data has no positive values, and therefore cannot be "
"log-scaled.")
return 1, 10
minpos = self.axis.get_minpos()
if not np.isfinite(minpos):
minpos = 1e-300 # This should never take effect.
if vmin <= 0:
vmin = minpos
if vmin == vmax:
vmin = decade_down(vmin, self._base)
vmax = decade_up(vmax, self._base)
return vmin, vmax
class SymmetricalLogLocator(Locator):
"""
Determine the tick locations for symmetric log axes
"""
def __init__(self, transform=None, subs=None, linthresh=None, base=None):
"""
place ticks on the location= base**i*subs[j]
"""
if transform is not None:
self._base = transform.base
self._linthresh = transform.linthresh
elif linthresh is not None and base is not None:
self._base = base
self._linthresh = linthresh
else:
raise ValueError("Either transform, or both linthresh "
"and base, must be provided.")
if subs is None:
self._subs = [1.0]
else:
self._subs = subs
self.numticks = 15
def set_params(self, subs=None, numticks=None):
"""Set parameters within this locator."""
if numticks is not None:
self.numticks = numticks
if subs is not None:
self._subs = subs
def __call__(self):
'Return the locations of the ticks'
# Note, these are untransformed coordinates
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
b = self._base
t = self._linthresh
if vmax < vmin:
vmin, vmax = vmax, vmin
# The domain is divided into three sections, only some of
# which may actually be present.
#
# <======== -t ==0== t ========>
# aaaaaaaaa bbbbb ccccccccc
#
# a) and c) will have ticks at integral log positions. The
# number of ticks needs to be reduced if there are more
# than self.numticks of them.
#
# b) has a tick at 0 and only 0 (we assume t is a small
# number, and the linear segment is just an implementation
# detail and not interesting.)
#
# We could also add ticks at t, but that seems to usually be
# uninteresting.
#
# "simple" mode is when the range falls entirely within (-t,
# t) -- it should just display (vmin, 0, vmax)
has_a = has_b = has_c = False
if vmin < -t:
has_a = True
if vmax > -t:
has_b = True
if vmax > t:
has_c = True
elif vmin < 0:
if vmax > 0:
has_b = True
if vmax > t:
has_c = True
else:
return [vmin, vmax]
elif vmin < t:
if vmax > t:
has_b = True
has_c = True
else:
return [vmin, vmax]
else:
has_c = True
def get_log_range(lo, hi):
lo = np.floor(np.log(lo) / np.log(b))
hi = np.ceil(np.log(hi) / np.log(b))
return lo, hi
# First, calculate all the ranges, so we can determine striding
if has_a:
if has_b:
a_range = get_log_range(t, -vmin + 1)
else:
a_range = get_log_range(-vmax, -vmin + 1)
else:
a_range = (0, 0)
if has_c:
if has_b:
c_range = get_log_range(t, vmax + 1)
else:
c_range = get_log_range(vmin, vmax + 1)
else:
c_range = (0, 0)
total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0])
if has_b:
total_ticks += 1
stride = max(np.floor(float(total_ticks) / (self.numticks - 1)), 1)
decades = []
if has_a:
decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1],
stride)[::-1])))
if has_b:
decades.append(0.0)
if has_c:
decades.extend(b ** (np.arange(c_range[0], c_range[1], stride)))
# Add the subticks if requested
if self._subs is None:
subs = np.arange(2.0, b)
else:
subs = np.asarray(self._subs)
if len(subs) > 1 or subs[0] != 1.0:
ticklocs = []
for decade in decades:
ticklocs.extend(subs * decade)
else:
ticklocs = decades
return self.raise_if_exceeds(np.array(ticklocs))
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
b = self._base
if vmax < vmin:
vmin, vmax = vmax, vmin
if rcParams['axes.autolimit_mode'] == 'round_numbers':
if not is_decade(abs(vmin), b):
if vmin < 0:
vmin = -decade_up(-vmin, b)
else:
vmin = decade_down(vmin, b)
if not is_decade(abs(vmax), b):
if vmax < 0:
vmax = -decade_down(-vmax, b)
else:
vmax = decade_up(vmax, b)
if vmin == vmax:
if vmin < 0:
vmin = -decade_up(-vmin, b)
vmax = -decade_down(-vmax, b)
else:
vmin = decade_down(vmin, b)
vmax = decade_up(vmax, b)
result = mtransforms.nonsingular(vmin, vmax)
return result
class LogitLocator(Locator):
"""
Determine the tick locations for logit axes
"""
def __init__(self, minor=False):
"""
place ticks on the logit locations
"""
self.minor = minor
def set_params(self, minor=None):
"""Set parameters within this locator."""
if minor is not None:
self.minor = minor
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
# dummy axis has no axes attribute
if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
raise NotImplementedError('Polar axis cannot be logit scaled yet')
vmin, vmax = self.nonsingular(vmin, vmax)
vmin = np.log10(vmin / (1 - vmin))
vmax = np.log10(vmax / (1 - vmax))
decade_min = np.floor(vmin)
decade_max = np.ceil(vmax)
# major ticks
if not self.minor:
ticklocs = []
if (decade_min <= -1):
expo = np.arange(decade_min, min(0, decade_max + 1))
ticklocs.extend(list(10**expo))
if (decade_min <= 0) and (decade_max >= 0):
ticklocs.append(0.5)
if (decade_max >= 1):
expo = -np.arange(max(1, decade_min), decade_max + 1)
ticklocs.extend(list(1 - 10**expo))
# minor ticks
else:
ticklocs = []
if (decade_min <= -2):
expo = np.arange(decade_min, min(-1, decade_max))
newticks = np.outer(np.arange(2, 10), 10**expo).ravel()
ticklocs.extend(list(newticks))
if (decade_min <= 0) and (decade_max >= 0):
ticklocs.extend([0.2, 0.3, 0.4, 0.6, 0.7, 0.8])
if (decade_max >= 2):
expo = -np.arange(max(2, decade_min), decade_max + 1)
newticks = 1 - np.outer(np.arange(2, 10), 10**expo).ravel()
ticklocs.extend(list(newticks))
return self.raise_if_exceeds(np.array(ticklocs))
def nonsingular(self, vmin, vmax):
initial_range = (1e-7, 1 - 1e-7)
if not np.isfinite(vmin) or not np.isfinite(vmax):
return initial_range # no data plotted yet
if vmin > vmax:
vmin, vmax = vmax, vmin
# what to do if a window beyond ]0, 1[ is chosen
if self.axis is not None:
minpos = self.axis.get_minpos()
if not np.isfinite(minpos):
return initial_range # again, no data plotted
else:
minpos = 1e-7 # should not occur in normal use
# NOTE: for vmax, we should query a property similar to get_minpos, but
# related to the maximal, less-than-one data point. Unfortunately,
# Bbox._minpos is defined very deep in the BBox and updated with data,
# so for now we use 1 - minpos as a substitute.
if vmin <= 0:
vmin = minpos
if vmax >= 1:
vmax = 1 - minpos
if vmin == vmax:
return 0.1 * vmin, 1 - 0.1 * vmin
return vmin, vmax
class AutoLocator(MaxNLocator):
def __init__(self):
if rcParams['_internal.classic_mode']:
nbins = 9
steps = [1, 2, 5, 10]
else:
nbins = 'auto'
steps = [1, 2, 2.5, 5, 10]
MaxNLocator.__init__(self, nbins=nbins, steps=steps)
class AutoMinorLocator(Locator):
"""
Dynamically find minor tick positions based on the positions of
major ticks. The scale must be linear with major ticks evenly spaced.
"""
def __init__(self, n=None):
"""
*n* is the number of subdivisions of the interval between
major ticks; e.g., n=2 will place a single minor tick midway
between major ticks.
If *n* is omitted or None, it will be set to 5 or 4.
"""
self.ndivs = n
def __call__(self):
'Return the locations of the ticks'
if self.axis.get_scale() == 'log':
warnings.warn('AutoMinorLocator does not work with logarithmic '
'scale')
return []
majorlocs = self.axis.get_majorticklocs()
try:
majorstep = majorlocs[1] - majorlocs[0]
except IndexError:
# Need at least two major ticks to find minor tick locations
# TODO: Figure out a way to still be able to display minor
# ticks without two major ticks visible. For now, just display
# no ticks at all.
return []
if self.ndivs is None:
x = int(np.round(10 ** (np.log10(majorstep) % 1)))
if x in [1, 5, 10]:
ndivs = 5
else:
ndivs = 4
else:
ndivs = self.ndivs
minorstep = majorstep / ndivs
vmin, vmax = self.axis.get_view_interval()
if vmin > vmax:
vmin, vmax = vmax, vmin
t0 = majorlocs[0]
tmin = ((vmin - t0) // minorstep + 1) * minorstep
tmax = ((vmax - t0) // minorstep + 1) * minorstep
locs = np.arange(tmin, tmax, minorstep) + t0
cond = np.abs((locs - t0) % majorstep) > minorstep / 10.0
locs = locs.compress(cond)
return self.raise_if_exceeds(np.array(locs))
def tick_values(self, vmin, vmax):
raise NotImplementedError('Cannot get tick locations for a '
'%s type.' % type(self))
class OldAutoLocator(Locator):
"""
On autoscale this class picks the best MultipleLocator to set the
view limits and the tick locs.
"""
def __init__(self):
self._locator = LinearLocator()
def __call__(self):
'Return the locations of the ticks'
self.refresh()
return self.raise_if_exceeds(self._locator())
def tick_values(self, vmin, vmax):
raise NotImplementedError('Cannot get tick locations for a '
'%s type.' % type(self))
def refresh(self):
'refresh internal information based on current lim'
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
d = abs(vmax - vmin)
self._locator = self.get_locator(d)
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
d = abs(vmax - vmin)
self._locator = self.get_locator(d)
return self._locator.view_limits(vmin, vmax)
def get_locator(self, d):
'pick the best locator based on a distance'
d = abs(d)
if d <= 0:
locator = MultipleLocator(0.2)
else:
try:
ld = math.log10(d)
except OverflowError:
raise RuntimeError('AutoLocator illegal data interval range')
fld = math.floor(ld)
base = 10 ** fld
#if ld==fld: base = 10**(fld-1)
#else: base = 10**fld
if d >= 5 * base:
ticksize = base
elif d >= 2 * base:
ticksize = base / 2.0
else:
ticksize = base / 5.0
locator = MultipleLocator(ticksize)
return locator
|