This file is indexed.

/usr/lib/python3/dist-packages/photutils/psf/matching/windows.py is in python3-photutils 0.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Window (or tapering) functions for matching PSFs using Fourier methods.
"""
from __future__ import division
import numpy as np


__all__ = ['SplitCosineBellWindow', 'HanningWindow', 'TukeyWindow',
           'CosineBellWindow', 'TopHatWindow']


def _radial_distance(shape):
    """
    Return an array where each value is the Euclidean distance from the
    array center.

    Parameters
    ----------
    shape : tuple of int
        The size of the output array along each axis.

    Returns
    -------
    result : `~numpy.ndarray`
        An array containing the Euclidian radial distances from the
        array center.
    """

    if len(shape) != 2:
        raise ValueError('shape must have only 2 elements')
    position = (np.asarray(shape) - 1) / 2.
    x = np.arange(shape[1]) - position[1]
    y = np.arange(shape[0]) - position[0]
    xx, yy = np.meshgrid(x, y)
    return np.sqrt(xx**2 + yy**2)


class SplitCosineBellWindow(object):
    """
    Class to define a 2D split cosine bell taper function.

    Parameters
    ----------
    alpha : float, optional
        The percentage of array values that are tapered.

    beta : float, optional
        The inner diameter as a fraction of the array size beyond which
        the taper begins. ``beta`` must be less or equal to 1.0.

    Examples
    --------
    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import SplitCosineBellWindow
        taper = SplitCosineBellWindow(alpha=0.4, beta=0.3)
        data = taper((101, 101))
        plt.imshow(data, cmap='viridis', origin='lower')
        plt.colorbar()

    A 1D cut across the image center:

    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import SplitCosineBellWindow
        taper = SplitCosineBellWindow(alpha=0.4, beta=0.3)
        data = taper((101, 101))
        plt.plot(data[50, :])
    """

    def __init__(self, alpha, beta):
        self.alpha = alpha
        self.beta = beta

    def __call__(self, shape):
        """
        Return a 2D split cosine bell.

        Parameters
        ----------
        shape : tuple of int
            The size of the output array along each axis.

        Returns
        -------
        result : `~numpy.ndarray`
            A 2D array containing the cosine bell values.
        """

        radial_dist = _radial_distance(shape)
        npts = (np.array(shape).min() - 1.) / 2.
        r_inner = self.beta * npts
        r = radial_dist - r_inner
        r_taper = int(np.floor(self.alpha * npts))

        if r_taper != 0:
            f = 0.5 * (1.0 + np.cos(np.pi * r / r_taper))
        else:
            f = np.ones(shape)

        f[radial_dist < r_inner] = 1.
        r_cut = r_inner + r_taper
        f[radial_dist > r_cut] = 0.

        return f


class HanningWindow(SplitCosineBellWindow):
    """
    Class to define a 2D `Hanning (or Hann) window
    <https://en.wikipedia.org/wiki/Hann_function>`_ function.

    The Hann window is a taper formed by using a raised cosine with ends
    that touch zero.

    Examples
    --------
    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import HanningWindow
        taper = HanningWindow()
        data = taper((101, 101))
        plt.imshow(data, cmap='viridis', origin='lower')
        plt.colorbar()

    A 1D cut across the image center:

    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import HanningWindow
        taper = HanningWindow()
        data = taper((101, 101))
        plt.plot(data[50, :])
    """

    def __init__(self):
        self.alpha = 1.0
        self.beta = 0.0


class TukeyWindow(SplitCosineBellWindow):
    """
    Class to define a 2D `Tukey window
    <https://en.wikipedia.org/wiki/Window_function#Tukey_window>`_
    function.

    The Tukey window is a taper formed by using a split cosine bell
    function with ends that touch zero.

    Parameters
    ----------
    alpha : float, optional
        The percentage of array values that are tapered.

    Examples
    --------
    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import TukeyWindow
        taper = TukeyWindow(alpha=0.4)
        data = taper((101, 101))
        plt.imshow(data, cmap='viridis', origin='lower')
        plt.colorbar()

    A 1D cut across the image center:

    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import TukeyWindow
        taper = TukeyWindow(alpha=0.4)
        data = taper((101, 101))
        plt.plot(data[50, :])

    """

    def __init__(self, alpha):
        self.alpha = alpha
        self.beta = 1. - self.alpha


class CosineBellWindow(SplitCosineBellWindow):
    """
    Class to define a 2D cosine bell window function.

    Parameters
    ----------
    alpha : float, optional
        The percentage of array values that are tapered.

    Examples
    --------
    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import CosineBellWindow
        taper = CosineBellWindow(alpha=0.3)
        data = taper((101, 101))
        plt.imshow(data, cmap='viridis', origin='lower')
        plt.colorbar()

    A 1D cut across the image center:

    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import CosineBellWindow
        taper = CosineBellWindow(alpha=0.3)
        data = taper((101, 101))
        plt.plot(data[50, :])
    """

    def __init__(self, alpha):
        self.alpha = alpha
        self.beta = 0.0


class TopHatWindow(SplitCosineBellWindow):
    """
    Class to define a 2D top hat window function.

    Parameters
    ----------
    beta : float, optional
        The inner diameter as a fraction of the array size beyond which
        the taper begins. ``beta`` must be less or equal to 1.0.

    Examples
    --------
    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import TopHatWindow
        taper = TopHatWindow(beta=0.4)
        data = taper((101, 101))
        plt.imshow(data, cmap='viridis', origin='lower',
                   interpolation='nearest')
        plt.colorbar()

    A 1D cut across the image center:

    .. plot::
        :include-source:

        import matplotlib.pyplot as plt
        from photutils import TopHatWindow
        taper = TopHatWindow(beta=0.4)
        data = taper((101, 101))
        plt.plot(data[50, :])
    """

    def __init__(self, beta):
        self.alpha = 0.0
        self.beta = beta