This file is indexed.

/usr/lib/python3/dist-packages/Cryptodome/Math/_Numbers_int.py is in python3-pycryptodome 3.4.7-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

from Cryptodome.Util.number import long_to_bytes, bytes_to_long
from Cryptodome.Util.py3compat import maxint

class Integer(object):
    """A class to model a natural integer (including zero)"""

    def __init__(self, value):
        if isinstance(value, float):
            raise ValueError("A floating point type is not a natural number")
        try:
            self._value = value._value
        except AttributeError:
            self._value = value

    # Conversions
    def __int__(self):
        return self._value

    def __str__(self):
        return str(int(self))

    def __repr__(self):
        return "Integer(%s)" % str(self)

    def to_bytes(self, block_size=0):
        if self._value < 0:
            raise ValueError("Conversion only valid for non-negative numbers")
        result = long_to_bytes(self._value, block_size)
        if len(result) > block_size > 0:
            raise ValueError("Value too large to encode")
        return result

    @staticmethod
    def from_bytes(byte_string):
        return Integer(bytes_to_long(byte_string))

    # Relations
    def __eq__(self, term):
        try:
            result = self._value == term._value
        except AttributeError:
            result = self._value == term
        return result

    def __ne__(self, term):
        return not self.__eq__(term)

    def __lt__(self, term):
        try:
            result = self._value < term._value
        except AttributeError:
            result = self._value < term
        return result

    def __le__(self, term):
        return self.__lt__(term) or self.__eq__(term)

    def __gt__(self, term):
        return not self.__le__(term)

    def __ge__(self, term):
        return not self.__lt__(term)

    def __bool__(self):
        return self._value != 0

    def is_negative(self):
        return self._value < 0

    # Arithmetic operations
    def __add__(self, term):
        try:
            return Integer(self._value + term._value)
        except AttributeError:
            return Integer(self._value + term)

    def __sub__(self, term):
        try:
            diff = self._value - term._value
        except AttributeError:
            diff = self._value - term
        return Integer(diff)

    def __mul__(self, factor):
        try:
            return Integer(self._value * factor._value)
        except AttributeError:
            return Integer(self._value * factor)

    def __floordiv__(self, divisor):
        try:
            divisor_value = divisor._value
        except AttributeError:
            divisor_value = divisor
        return Integer(self._value // divisor_value)

    def __mod__(self, divisor):
        try:
            divisor_value = divisor._value
        except AttributeError:
            divisor_value = divisor
        if divisor_value < 0:
            raise ValueError("Modulus must be positive")
        return Integer(self._value % divisor_value)

    def inplace_pow(self, exponent, modulus=None):
        try:
            exp_value = exponent._value
        except AttributeError:
            exp_value = exponent
        if exp_value < 0:
            raise ValueError("Exponent must not be negative")

        try:
            mod_value = modulus._value
        except AttributeError:
            mod_value = modulus
        if mod_value is not None:
            if mod_value < 0:
                raise ValueError("Modulus must be positive")
            if mod_value == 0:
                raise ZeroDivisionError("Modulus cannot be zero")
        self._value = pow(self._value, exp_value, mod_value)
        return self

    def __pow__(self, exponent, modulus=None):
        result = Integer(self)
        return result.inplace_pow(exponent, modulus)

    def __abs__(self):
        return abs(self._value)

    def sqrt(self):
        # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
        if self._value < 0:
            raise ValueError("Square root of negative value")
        x = self._value
        y = (x + 1) // 2
        while y < x:
            x = y
            y = (x + self._value // x) // 2
        return Integer(x)

    def __iadd__(self, term):
        try:
            self._value += term._value
        except AttributeError:
            self._value += term
        return self

    def __isub__(self, term):
        try:
            self._value -= term._value
        except AttributeError:
            self._value -= term
        return self

    def __imul__(self, term):
        try:
            self._value *= term._value
        except AttributeError:
            self._value *= term
        return self

    def __imod__(self, term):
        try:
            modulus = term._value
        except AttributeError:
            modulus = term
        if modulus == 0:
            raise ZeroDivisionError("Division by zero")
        if modulus < 0:
            raise ValueError("Modulus must be positive")
        self._value %= modulus
        return self

    # Boolean/bit operations
    def __and__(self, term):
        try:
            return Integer(self._value & term._value)
        except AttributeError:
            return Integer(self._value & term)

    def __or__(self, term):
        try:
            return Integer(self._value | term._value)
        except AttributeError:
            return Integer(self._value | term)

    def __rshift__(self, pos):
        try:
            try:
                return Integer(self._value >> pos._value)
            except AttributeError:
                return Integer(self._value >> pos)
        except OverflowError:
            raise ValueError("Incorrect shift count")

    def __irshift__(self, pos):
        try:
            try:
                self._value >>= pos._value
            except AttributeError:
                self._value >>= pos
        except OverflowError:
            raise ValueError("Incorrect shift count")
        return self

    def __lshift__(self, pos):
        try:
            try:
                return Integer(self._value << pos._value)
            except AttributeError:
                return Integer(self._value << pos)
        except OverflowError:
            raise ValueError("Incorrect shift count")

    def __ilshift__(self, pos):
        try:
            try:
                self._value <<= pos._value
            except AttributeError:
                self._value <<= pos
        except OverflowError:
            raise ValueError("Incorrect shift count")
        return self


    def get_bit(self, n):
        try:
            try:
                return (self._value >> n._value) & 1
            except AttributeError:
                return (self._value >> n) & 1
        except OverflowError:
            raise ValueError("Incorrect bit position")

    # Extra
    def is_odd(self):
        return (self._value & 1) == 1

    def is_even(self):
        return (self._value & 1) == 0

    def size_in_bits(self):

        if self._value < 0:
            raise ValueError("Conversion only valid for non-negative numbers")

        if self._value == 0:
            return 1

        bit_size = 0
        tmp = self._value
        while tmp:
            tmp >>= 1
            bit_size += 1

        return bit_size

    def size_in_bytes(self):
        return (self.size_in_bits() - 1) // 8 + 1

    def is_perfect_square(self):
        if self._value < 0:
            return False
        if self._value in (0, 1):
            return True

        x = self._value // 2
        square_x = x ** 2

        while square_x > self._value:
            x = (square_x + self._value) // (2 * x)
            square_x = x ** 2

        return self._value == x ** 2

    def fail_if_divisible_by(self, small_prime):
        try:
            if (self._value % small_prime._value) == 0:
                raise ValueError("Value is composite")
        except AttributeError:
            if (self._value % small_prime) == 0:
                raise ValueError("Value is composite")

    def multiply_accumulate(self, a, b):
        if type(a) == Integer:
            a = a._value
        if type(b) == Integer:
            b = b._value
        self._value += a * b
        return self

    def set(self, source):
        if type(source) == Integer:
            self._value = source._value
        else:
            self._value = source

    def inplace_inverse(self, modulus):
        try:
            modulus = modulus._value
        except AttributeError:
            pass
        if modulus == 0:
            raise ZeroDivisionError("Modulus cannot be zero")
        if modulus < 0:
            raise ValueError("Modulus cannot be negative")
        r_p, r_n = self._value, modulus
        s_p, s_n = 1, 0
        while r_n > 0:
            q = r_p // r_n
            r_p, r_n = r_n, r_p - q * r_n
            s_p, s_n = s_n, s_p - q * s_n
        if r_p != 1:
            raise ValueError("No inverse value can be computed" + str(r_p))
        while s_p < 0:
            s_p += modulus
        self._value = s_p
        return self

    def inverse(self, modulus):
        result = Integer(self)
        result.inplace_inverse(modulus)
        return result

    def gcd(self, term):
        try:
            term = term._value
        except AttributeError:
            pass
        r_p, r_n = abs(self._value), abs(term)
        while r_n > 0:
            q = r_p // r_n
            r_p, r_n = r_n, r_p - q * r_n
        return Integer(r_p)

    def lcm(self, term):
        try:
            term = term._value
        except AttributeError:
            pass
        if self._value == 0 or term == 0:
            return Integer(0)
        return Integer(abs((self._value * term) // self.gcd(term)._value))

    @staticmethod
    def jacobi_symbol(a, n):
        if isinstance(a, Integer):
            a = a._value
        if isinstance(n, Integer):
            n = n._value

        if (n & 1) == 0:
            raise ValueError("n must be even for the Jacobi symbol")

        # Step 1
        a = a % n
        # Step 2
        if a == 1 or n == 1:
            return 1
        # Step 3
        if a == 0:
            return 0
        # Step 4
        e = 0
        a1 = a
        while (a1 & 1) == 0:
            a1 >>= 1
            e += 1
        # Step 5
        if (e & 1) == 0:
            s = 1
        elif n % 8 in (1, 7):
            s = 1
        else:
            s = -1
        # Step 6
        if n % 4 == 3 and a1 % 4 == 3:
            s = -s
        # Step 7
        n1 = n % a1
        # Step 8
        return s * Integer.jacobi_symbol(n1, a1)