This file is indexed.

/usr/lib/python3/dist-packages/pyresample/plot.py is in python3-pyresample 1.8.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010-2015
#
# Authors:
#    Esben S. Nielsen
#    Thomas Lavergne
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import absolute_import
import numpy as np


def ellps2axis(ellps_name):
    """Get semi-major and semi-minor axis from ellipsis definition

    Parameters
    ---------
    ellps_name : str
        Standard name of ellipsis

    Returns
    -------
    (a, b) : semi-major and semi-minor axis
    """

    ellps = {'helmert': {'a': 6378200.0, 'b': 6356818.1696278909},
             'intl': {'a': 6378388.0, 'b': 6356911.9461279465},
             'merit': {'a': 6378137.0, 'b': 6356752.2982159676},
             'wgs72': {'a': 6378135.0, 'b': 6356750.5200160937},
             'sphere': {'a': 6370997.0, 'b': 6370997.0},
             'clrk66': {'a': 6378206.4000000004, 'b': 6356583.7999999998},
             'nwl9d': {'a': 6378145.0, 'b': 6356759.7694886839},
             'lerch': {'a': 6378139.0, 'b': 6356754.2915103417},
             'evrstss': {'a': 6377298.5559999999, 'b': 6356097.5503008962},
             'evrst30': {'a': 6377276.3449999997, 'b': 6356075.4131402401},
             'mprts': {'a': 6397300.0, 'b': 6363806.2827225132},
             'krass': {'a': 6378245.0, 'b': 6356863.0187730473},
             'walbeck': {'a': 6376896.0, 'b': 6355834.8466999996},
             'kaula': {'a': 6378163.0, 'b': 6356776.9920869097},
             'wgs66': {'a': 6378145.0, 'b': 6356759.7694886839},
             'evrst56': {'a': 6377301.2429999998, 'b': 6356100.2283681016},
             'new_intl': {'a': 6378157.5, 'b': 6356772.2000000002},
             'airy': {'a': 6377563.3959999997, 'b': 6356256.9100000001},
             'bessel': {'a': 6377397.1550000003, 'b': 6356078.9628181886},
             'seasia': {'a': 6378155.0, 'b': 6356773.3205000004},
             'aust_sa': {'a': 6378160.0, 'b': 6356774.7191953054},
             'wgs84': {'a': 6378137.0, 'b': 6356752.3142451793},
             'hough': {'a': 6378270.0, 'b': 6356794.3434343431},
             'wgs60': {'a': 6378165.0, 'b': 6356783.2869594367},
             'engelis': {'a': 6378136.0499999998, 'b': 6356751.3227215428},
             'apl4.9': {'a': 6378137.0, 'b': 6356751.796311819},
             'andrae': {'a': 6377104.4299999997, 'b': 6355847.4152333336},
             'sgs85': {'a': 6378136.0, 'b': 6356751.301568781},
             'delmbr': {'a': 6376428.0, 'b': 6355957.9261637237},
             'fschr60m': {'a': 6378155.0, 'b': 6356773.3204827355},
             'iau76': {'a': 6378140.0, 'b': 6356755.2881575283},
             'plessis': {'a': 6376523.0, 'b': 6355863.0},
             'cpm': {'a': 6375738.7000000002, 'b': 6356666.221912113},
             'fschr68': {'a': 6378150.0, 'b': 6356768.3372443849},
             'mod_airy': {'a': 6377340.1890000002, 'b': 6356034.4460000005},
             'grs80': {'a': 6378137.0, 'b': 6356752.3141403561},
             'bess_nam': {'a': 6377483.8650000002, 'b': 6356165.3829663256},
             'fschr60': {'a': 6378166.0, 'b': 6356784.2836071067},
             'clrk80': {'a': 6378249.1449999996, 'b': 6356514.9658284895},
             'evrst69': {'a': 6377295.6639999999, 'b': 6356094.6679152036},
             'grs67': {'a': 6378160.0, 'b': 6356774.5160907144},
             'evrst48': {'a': 6377304.0630000001, 'b': 6356103.0389931547}}
    try:
        ellps_axis = ellps[ellps_name.lower()]
        a = ellps_axis['a']
        b = ellps_axis['b']
    except KeyError as e:
        raise ValueError(('Could not determine semi-major and semi-minor axis '
                          'of specified ellipsis %s') % ellps_name)
    return a, b


def area_def2basemap(area_def, **kwargs):
    """Get Basemap object from AreaDefinition

    Parameters
    ---------
    area_def : object
        geometry.AreaDefinition object
    \*\*kwargs: Keyword arguments
        Additional initialization arguments for Basemap

    Returns
    -------
    bmap : Basemap object
    """

    from mpl_toolkits.basemap import Basemap
    try:
        a, b = ellps2axis(area_def.proj_dict['ellps'])
        rsphere = (a, b)
    except KeyError:
        try:
            a = float(area_def.proj_dict['a'])
            try:
                b = float(area_def.proj_dict['b'])
                rsphere = (a, b)
            except KeyError:
                rsphere = a
        except KeyError:
            # Default to WGS84 ellipsoid
            a, b = ellps2axis('wgs84')
            rsphere = (a, b)

    # Add projection specific basemap args to args passed to function
    basemap_args = kwargs
    basemap_args['rsphere'] = rsphere

    if area_def.proj_dict['proj'] in ('ortho', 'geos', 'nsper'):
        llcrnrx, llcrnry, urcrnrx, urcrnry = area_def.area_extent
        basemap_args['llcrnrx'] = llcrnrx
        basemap_args['llcrnry'] = llcrnry
        basemap_args['urcrnrx'] = urcrnrx
        basemap_args['urcrnry'] = urcrnry
    else:
        llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat = area_def.area_extent_ll
        basemap_args['llcrnrlon'] = llcrnrlon
        basemap_args['llcrnrlat'] = llcrnrlat
        basemap_args['urcrnrlon'] = urcrnrlon
        basemap_args['urcrnrlat'] = urcrnrlat

    if area_def.proj_dict['proj'] == 'eqc':
        basemap_args['projection'] = 'cyl'
    else:
        basemap_args['projection'] = area_def.proj_dict['proj']

    # Try adding potentially remaining args
    for key in ('lon_0', 'lat_0', 'lon_1', 'lat_1', 'lon_2', 'lat_2',
                'lat_ts'):
        try:
            basemap_args[key] = float(area_def.proj_dict[key])
        except KeyError:
            pass

    return Basemap(**basemap_args)


def _get_quicklook(area_def, data, vmin=None, vmax=None,
                   label='Variable (units)', num_meridians=45,
                   num_parallels=10, coast_res='c', cmap='jet'):
    """Get default Basemap matplotlib plot
    """

    if area_def.shape != data.shape:
        raise ValueError('area_def shape %s does not match data shape %s' %
                         (list(area_def.shape), list(data.shape)))
    import matplotlib.pyplot as plt
    bmap = area_def2basemap(area_def, resolution=coast_res)
    bmap.drawcoastlines()
    if num_meridians > 0:
        bmap.drawmeridians(np.arange(-180, 180, num_meridians))
    if num_parallels > 0:
        bmap.drawparallels(np.arange(-90, 90, num_parallels))
    if not (np.ma.isMaskedArray(data) and data.mask.all()):
        col = bmap.imshow(data, origin='upper', vmin=vmin, vmax=vmax, cmap=cmap)
        plt.colorbar(col, shrink=0.5, pad=0.05).set_label(label)
    return plt


def show_quicklook(area_def, data, vmin=None, vmax=None,
                   label='Variable (units)', num_meridians=45,
                   num_parallels=10, coast_res='c', cmap='jet'):
    """Display default quicklook plot

    Parameters
    ---------
    area_def : object
        geometry.AreaDefinition object
    data : numpy array | numpy masked array
        2D array matching area_def. Use masked array for transparent values
    vmin : float, optional
        Min value for luminescence scaling
    vmax : float, optional
        Max value for luminescence scaling
    label : str, optional
        Label for data
    num_meridians : int, optional
        Number of meridians to plot on the globe
    num_parallels : int, optional
        Number of parallels to plot on the globe
    coast_res : {'c', 'l', 'i', 'h', 'f'}, optional
        Resolution of coastlines

    Returns
    -------
    bmap : Basemap object
    """

    plt = _get_quicklook(area_def, data, vmin=vmin, vmax=vmax,
                         label=label, num_meridians=num_meridians,
                         num_parallels=num_parallels, coast_res=coast_res,
                         cmap=cmap)
    plt.show()
    plt.close()


def save_quicklook(filename, area_def, data, vmin=None, vmax=None,
                   label='Variable (units)', num_meridians=45,
                   num_parallels=10, coast_res='c', backend='AGG',
                   cmap='jet'):
    """Display default quicklook plot

    Parameters
    ----------
    filename : str
        path to output file
    area_def : object
        geometry.AreaDefinition object
    data : numpy array | numpy masked array
        2D array matching area_def. Use masked array for transparent values
    vmin : float, optional
        Min value for luminescence scaling
    vmax : float, optional
        Max value for luminescence scaling
    label : str, optional
        Label for data
    num_meridians : int, optional
        Number of meridians to plot on the globe
    num_parallels : int, optional
        Number of parallels to plot on the globe
    coast_res : {'c', 'l', 'i', 'h', 'f'}, optional
        Resolution of coastlines
    backend : str, optional
        matplotlib backend to use'
    """

    import matplotlib
    matplotlib.use(backend, warn=False)
    plt = _get_quicklook(area_def, data, vmin=vmin, vmax=vmax,
                         label=label, num_meridians=num_meridians,
                         num_parallels=num_parallels, coast_res=coast_res)
    plt.savefig(filename, bbox_inches='tight')
    plt.close()