This file is indexed.

/usr/lib/python3/dist-packages/pyresample/test/test_bilinear.py is in python3-pyresample 1.8.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import unittest
import numpy as np

from pyproj import Proj

import pyresample.bilinear as bil
from pyresample import geometry, utils, kd_tree


class Test(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        cls.pts_irregular = (np.array([[-1., 1.], ]),
                             np.array([[1., 2.], ]),
                             np.array([[-2., -1.], ]),
                             np.array([[2., -4.], ]))
        cls.pts_vert_parallel = (np.array([[-1., 1.], ]),
                                 np.array([[1., 2.], ]),
                                 np.array([[-1., -1.], ]),
                                 np.array([[1., -2.], ]))
        cls.pts_both_parallel = (np.array([[-1., 1.], ]),
                                 np.array([[1., 1.], ]),
                                 np.array([[-1., -1.], ]),
                                 np.array([[1., -1.], ]))

        # Area definition with four pixels
        target_def = geometry.AreaDefinition('areaD',
                                             'Europe (3km, HRV, VTC)',
                                             'areaD',
                                             {'a': '6378144.0',
                                              'b': '6356759.0',
                                              'lat_0': '50.00',
                                              'lat_ts': '50.00',
                                              'lon_0': '8.00',
                                              'proj': 'stere'},
                                             4, 4,
                                             [-1370912.72,
                                              -909968.64000000001,
                                              1029087.28,
                                              1490031.3600000001])

        # Input data around the target pixel at 0.63388324, 55.08234642,
        in_shape = (100, 100)
        cls.data1 = np.ones((in_shape[0], in_shape[1]))
        cls.data2 = 2. * cls.data1
        lons, lats = np.meshgrid(np.linspace(-5., 5., num=in_shape[0]),
                                 np.linspace(50., 60., num=in_shape[1]))
        cls.swath_def = geometry.SwathDefinition(lons=lons, lats=lats)

        radius = 50e3
        cls.neighbours = 32
        input_idxs, output_idxs, idx_ref, dists = \
            kd_tree.get_neighbour_info(cls.swath_def, target_def,
                                       radius, neighbours=cls.neighbours,
                                       nprocs=1)
        input_size = input_idxs.sum()
        index_mask = (idx_ref == input_size)
        idx_ref = np.where(index_mask, 0, idx_ref)

        cls.input_idxs = input_idxs
        cls.target_def = target_def
        cls.idx_ref = idx_ref


    def test_calc_abc(self):
        # No np.nan inputs
        pt_1, pt_2, pt_3, pt_4 = self.pts_irregular
        res = bil._calc_abc(pt_1, pt_2, pt_3, pt_4, 0.0, 0.0)
        self.assertFalse(np.isnan(res[0]))
        self.assertFalse(np.isnan(res[1]))
        self.assertFalse(np.isnan(res[2]))
        # np.nan input -> np.nan output
        res = bil._calc_abc(np.array([[np.nan, np.nan]]),
                            pt_2, pt_3, pt_4, 0.0, 0.0)
        self.assertTrue(np.isnan(res[0]))
        self.assertTrue(np.isnan(res[1]))
        self.assertTrue(np.isnan(res[2]))

    def test_get_ts_irregular(self):
        res = bil._get_ts_irregular(self.pts_irregular[0],
                                    self.pts_irregular[1],
                                    self.pts_irregular[2],
                                    self.pts_irregular[3],
                                    0., 0.)
        self.assertEqual(res[0], 0.375)
        self.assertEqual(res[1], 0.5)
        res = bil._get_ts_irregular(self.pts_vert_parallel[0],
                                    self.pts_vert_parallel[1],
                                    self.pts_vert_parallel[2],
                                    self.pts_vert_parallel[3],
                                    0., 0.)
        self.assertTrue(np.isnan(res[0]))
        self.assertTrue(np.isnan(res[1]))

    def test_get_ts_uprights_parallel(self):
        res = bil._get_ts_uprights_parallel(self.pts_vert_parallel[0],
                                            self.pts_vert_parallel[1],
                                            self.pts_vert_parallel[2],
                                            self.pts_vert_parallel[3],
                                            0., 0.)
        self.assertEqual(res[0], 0.5)
        self.assertEqual(res[1], 0.5)

    def test_get_ts_parallellogram(self):
        res = bil._get_ts_parallellogram(self.pts_both_parallel[0],
                                         self.pts_both_parallel[1],
                                         self.pts_both_parallel[2],
                                         0., 0.)
        self.assertEqual(res[0], 0.5)
        self.assertEqual(res[1], 0.5)

    def test_get_ts(self):
        out_x = np.array([[0.]])
        out_y = np.array([[0.]])
        res = bil._get_ts(self.pts_irregular[0],
                          self.pts_irregular[1],
                          self.pts_irregular[2],
                          self.pts_irregular[3],
                          out_x, out_y)
        self.assertEqual(res[0], 0.375)
        self.assertEqual(res[1], 0.5)
        res = bil._get_ts(self.pts_both_parallel[0],
                          self.pts_both_parallel[1],
                          self.pts_both_parallel[2],
                          self.pts_both_parallel[3],
                          out_x, out_y)
        self.assertEqual(res[0], 0.5)
        self.assertEqual(res[1], 0.5)
        res = bil._get_ts(self.pts_vert_parallel[0],
                          self.pts_vert_parallel[1],
                          self.pts_vert_parallel[2],
                          self.pts_vert_parallel[3],
                          out_x, out_y)
        self.assertEqual(res[0], 0.5)
        self.assertEqual(res[1], 0.5)

    def test_solve_quadratic(self):
        res = bil._solve_quadratic(1, 0, 0)
        self.assertEqual(res[0], 0.0)
        res = bil._solve_quadratic(1, 2, 1)
        self.assertTrue(np.isnan(res[0]))
        res = bil._solve_quadratic(1, 2, 1, min_val=-2.)
        self.assertEqual(res[0], -1.0)
        # Test that small adjustments work
        pt_1, pt_2, pt_3, pt_4 = self.pts_vert_parallel
        pt_1 = self.pts_vert_parallel[0].copy()
        pt_1[0][0] += 1e-7
        res = bil._calc_abc(pt_1, pt_2, pt_3, pt_4, 0.0, 0.0)
        res = bil._solve_quadratic(res[0], res[1], res[2])
        self.assertAlmostEqual(res[0], 0.5, 5)
        res = bil._calc_abc(pt_1, pt_3, pt_2, pt_4, 0.0, 0.0)
        res = bil._solve_quadratic(res[0], res[1], res[2])
        self.assertAlmostEqual(res[0], 0.5, 5)

    def test_get_output_xy(self):
        proj = Proj(self.target_def.proj4_string)
        out_x, out_y = bil._get_output_xy(self.target_def, proj)
        self.assertTrue(out_x.all())
        self.assertTrue(out_y.all())

    def test_get_input_xy(self):
        proj = Proj(self.target_def.proj4_string)
        in_x, in_y = bil._get_output_xy(self.swath_def, proj)
        self.assertTrue(in_x.all())
        self.assertTrue(in_y.all())

    def test_get_bounding_corners(self):
        proj = Proj(self.target_def.proj4_string)
        out_x, out_y = bil._get_output_xy(self.target_def, proj)
        in_x, in_y = bil._get_input_xy(self.swath_def, proj,
                                       self.input_idxs, self.idx_ref)
        res = bil._get_bounding_corners(in_x, in_y, out_x, out_y,
                                        self.neighbours, self.idx_ref)
        for i in range(len(res) - 1):
            pt_ = res[i]
            for j in range(2):
                # Only the sixth output location has four valid corners
                self.assertTrue(np.isfinite(pt_[5, j]))

    def test_get_bil_info(self):
        t__, s__, input_idxs, idx_arr = bil.get_bil_info(self.swath_def,
                                                         self.target_def)
        # Only 6th index should have valid values
        for i in range(len(t__)):
            if i == 5:
                self.assertAlmostEqual(t__[i], 0.684850870155, 5)
                self.assertAlmostEqual(s__[i], 0.775433912393, 5)
            else:
                self.assertTrue(np.isnan(t__[i]))
                self.assertTrue(np.isnan(s__[i]))

    def test_get_sample_from_bil_info(self):
        t__, s__, input_idxs, idx_arr = bil.get_bil_info(self.swath_def,
                                                         self.target_def)
        # Sample from data1
        res = bil.get_sample_from_bil_info(self.data1.ravel(), t__, s__,
                                           input_idxs, idx_arr)
        self.assertEqual(res[5], 1.)
        # Sample from data2
        res = bil.get_sample_from_bil_info(self.data2.ravel(), t__, s__,
                                           input_idxs, idx_arr)
        self.assertEqual(res[5], 2.)
        # Reshaping
        res = bil.get_sample_from_bil_info(self.data2.ravel(), t__, s__,
                                           input_idxs, idx_arr,
                                           output_shape=self.target_def.shape)
        res = res.shape
        self.assertEqual(res[0], self.target_def.shape[0])
        self.assertEqual(res[1], self.target_def.shape[1])

    def test_resample_bilinear(self):
        # Single array
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def)
        self.assertEqual(res.shape, self.target_def.shape)
        # There should be only one pixel with value 1, all others are 0
        self.assertEqual(res.sum(), 1)

        # Single array with masked output
        res = bil.resample_bilinear(self.data1,
                                    self.swath_def,
                                    self.target_def, fill_value=None)
        self.assertTrue(hasattr(res, 'mask'))
        # There should be only one valid pixel
        self.assertEqual(self.target_def.size - res.mask.sum(), 1)

        # Two stacked arrays
        data = np.dstack((self.data1, self.data2))
        res = bil.resample_bilinear(data,
                                    self.swath_def,
                                    self.target_def)
        shp = res.shape
        self.assertEqual(shp[0:2], self.target_def.shape)
        self.assertEqual(shp[-1], 2)


def suite():
    """The test suite.
    """
    loader = unittest.TestLoader()
    mysuite = unittest.TestSuite()
    mysuite.addTest(loader.loadTestsFromTestCase(Test))

    return mysuite