This file is indexed.

/usr/lib/python3/dist-packages/segyio/segy.py is in python3-segyio 1.5.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
"""
segy modes

Welcome to segyio.segy. Here you will find references and examples for the
various segy modes and how to interact with segy files. To start interacting
with files, please refer to the segyio.open and segyio.create documentation, by
typing `help(segyio.open)` or `help(segyio.create)`.

The primary way of obtaining a file instance is calling segyio.open. When you
have a file instance you can interact with it as described in this module.

The explanations and examples here are meant as a quick guide and reference.
You can also have a look at the example programs that are distributed with
segyio which you can find in the examples directory or where your distribution
installs example programs.
"""
import itertools
try:
    from future_builtins import zip
    range = xrange
except (NameError, ImportError): pass

import numpy as np

from segyio._header import Header
from segyio._gather import Gather
from segyio._line import Line
from segyio._trace import Trace
from segyio._field import Field
import segyio._segyio as _segyio

from segyio.tracesortingformat import TraceSortingFormat


class SegyFile(object):

    _unstructured_errmsg = "File opened in unstructured mode."

    def __init__(self, filename, mode, iline=189, xline=193, tracecount=0, binary=None):
        """
        Constructor, internal.
        """

        self._filename = filename
        self._mode = mode
        self._il = iline
        self._xl = xline

        # property value holders
        self._ilines = None
        self._xlines = None
        self._offsets = None
        self._samples = None

        # private values
        self._iline_length = None
        self._iline_stride = None
        self._xline_length = None
        self._xline_stride = None

        self._trace = Trace(self)
        self._header = Header(self)
        self._iline = None
        self._xline = None
        self._gather = None

        self.xfd = _segyio.segyiofd(filename, mode, tracecount, binary)
        metrics = self.xfd.metrics()
        self._fmt = metrics['format']
        self._tracecount = metrics['tracecount']
        self._ext_headers = metrics['ext_headers']

        super(SegyFile, self).__init__()

    def __str__(self):
        f = "SegyFile {}:".format(self._filename)

        if self.unstructured:
            il =  "  inlines: None"
            xl =  "  crosslines: None"
            of =  "  offsets: None"
        else:
            il =  "  inlines: {} [{}, {}]".format(len(self.ilines), self.ilines[0], self.ilines[-1])
            xl =  "  crosslines: {} [{}, {}]".format(len(self.xlines), self.xlines[0], self.xlines[-1])
            of =  "  offsets: {} [{}, {}]".format(len(self.offsets), self.offsets[0], self.offsets[-1])

        tr =  "  traces: {}".format(self.tracecount)
        sm =  "  samples: {}".format(self.samples)
        fmt = "  float representation: {}".format(self.format)

        props = [f, il, xl, tr, sm]

        if self.offsets is not None and len(self.offsets) > 1:
            props.append(of)

        props.append(fmt)
        return '\n'.join(props)


    def __repr__(self):
        return "SegyFile('{}', '{}', iline = {}, xline = {})".format(
                        self._filename, self._mode, self._il, self._xl)

    def __enter__(self):
        """Internal.
        :rtype: segyio.segy.SegyFile
        """
        return self

    def __exit__(self, type, value, traceback):
        """Internal."""
        self.close()

    def flush(self):
        """Flush a file - write the library buffers to disk.

        Since v1.1

        This method is mostly useful for testing.

        It is not necessary to call this method unless you want to observe your
        changes while the file is still open. The file will automatically be
        flushed for you if you use the `with` statement when your routine is
        completed.

        Examples:
            Flush::
                >>> with segyio.open(path) as f:
                ...     # write something to f
                ...     f.flush()
        """
        self.xfd.flush()

    def close(self):
        """Close the file.

        Since v1.1

        This method is mostly useful for testing.

        It is not necessary to call this method if you're using the `with`
        statement, which will close the file for you.
        """
        self.xfd.close()

    def mmap(self):
        """Memory map the file
        :rtype: bool

        Since v1.1

        Memory map the file. This is an advanced feature for speed and
        optimization; however, it is no silver bullet. If your file is smaller
        than the memory available on your system this will likely result in
        faster reads and writes, especially for line modes. However, if the
        file is very large, or memory is very pressured, this optimization
        might cause overall system slowdowns. However, if you're opening the
        same file from many different instances of segyio then memory mapping
        may significantly reduce the memory pressure.

        If this call returns true, the file is memory mapped. If memory mapping
        was build-time disabled or is not available for your platform this call
        always return false. If the memory mapping is unsuccessful you can keep
        using segyio - reading and writing falls back on non-memory mapped
        features.

        Examples:
            Memory map::
            >>> mapped = f.mmap()
            >>> if mapped: print( "File is memory mapped!" )
            >>> # keep using segyio as per usual
            >>> print( f.trace[10] )
        """
        return self.xfd.mmap()

    @property
    def sorting(self):
        """ :rtype: int """
        return self._sorting

    @property
    def tracecount(self):
        """ :rtype: int """
        return self._tracecount

    @property
    def samples(self):
        """ :rtype: numpy.ndarray """
        return self._samples

    @property
    def offsets(self):
        """ :rtype: numpy.ndarray"""
        return self._offsets

    @property
    def ext_headers(self):
        """ :rtype: int """
        return self._ext_headers

    @property
    def unstructured(self):
        return self.ilines is None

    @property
    def header(self):
        """ Interact with segy in header mode.

        Since v1.1

        This mode gives access to reading and writing functionality of headers,
        both in individual (trace) mode and line mode. Individual headers are
        accessed via generators and are not read from or written to disk until
        the generator is realised and the header in question is used. Supports
        python slicing (which yields a generator), as well as direct lookup and
        common dict operations.

        The header can be considered a dictionary with a constant set of keys.

        Examples:
            Reading a field in a trace::
                >>> import segyio
                >>> f = segyio.open("filename")
                >>> f.header[10][TraceField.offset]

            Writing a field in a trace::
                >>> f.header[10][TraceField.offset] = 5

            Copy a header from another header::
                >>> f.header[28] = f.header[29]

            Reading multiple fields in a trace. If raw, numerical offsets are
            used they must align with the defined byte offsets by the SEGY
            specification::
                >>> f.header[10][TraceField.offset, TraceField.INLINE_3D]
                >>> f.header[10][37, 189]

            Write multiple fields in a trace::
                >>> f.header[10] = { 37: 5, TraceField.INLINE_3D: 2484 }

            Iterate over headers and gather line numbers::
                >>> [h[TraceField.INLINE_3D] for h in f.header]
                >>> [h[25, 189] for h in f.header]

            Write field in all headers::
                >>> for h in f.header:
                ...     h[37] = 1
                ...     h = { TraceField.offset: 1, 2484: 10 }
                ...

            Read a field in 10 first headers::
                >>> [h[25] for h in f.header[0:10]]

            Read a field in every other header::
                >>> [h[37] for h in f.header[::2]]

            Write a field in every other header::
                >>> for h in f.header[::2]:
                ...     h = { TraceField.offset : 2 }
                ...

            Cache a header:
                >>> h = f.header[12]
                >>> x = foo()
                >>> h[37] = x

            A convenient way for operating on all headers of a file is to use the
            default full-file range.  It will write headers 0, 1, ..., n, but uses
            the iteration specified by the right-hand side (i.e. can skip headers
            etc).

            If the right-hand-side headers are exhausted before all the destination
            file headers the writing will stop, i.e. not all all headers in the
            destination file will be written to.

            Copy headers from file g to file f:
                >>> f = segyio.open("path to file")
                >>> g = segyio.open("path to another file")
                >>> f.header = g.header

            Set offset field::
                >>> f.header = { TraceField.offset: 5 }

            Copy every 12th header from the file g to f's 0, 1, 2...::
                >>> f.header = g.header[::12]
                >>> f.header[0] == g.header[0]
                True
                >>> f.header[1] == g.header[12]
                True
                >>> f.header[2] == g.header[2]
                False
                >>> f.header[2] == g.header[24]
                True

            The header mode can also be accessed with line addressing, which
            supports all of iline and xline's indexing features.

            Rename the iline 3 to 4::
                >>> f.header.iline[3][TraceField.INLINE_3D] = 4
                >>> # please note that rewriting the header won't update the
                >>> # file's interpretation of the file until you reload it, so
                >>> # the new iline 4 will be considered iline 3 until the file
                >>> # is reloaded

            Set offset line 3 offset 3 to 5::
                >>> f.header.iline[3, 3] = { TraceField.offset: 5 }

            Since v1.3, common dict operations are supported.

            Get a list of keys and values::
                >>> f.header[10].keys()
                >>> f.header[10].values()

            Get a list of key-value pairs::
                >>> f.header[10].items()

            Get the number of keys-value pairs in a header::
                >>> len(f.header[10])

            Update a set of values::
                >>> d = { segyio.su.tracl: 10, segyio.su.nhs: 5 }
                >>> f.header[10].update(d)
                >>> l = [ (segyio.su.sy, 11), (segyio.su.sx, 4) ]
                >>> f.header[11].update(l)

        :rtype: segyio._header.Header
        """
        return self._header

    @header.setter
    def header(self, val):
        if isinstance(val, Field) or isinstance(val, dict):
            val = itertools.repeat(val)

        h, buf = self.header, None
        for i, v in zip(range(self.tracecount), val):
            h[i, buf] = v

    def attributes(self, field):
        """ File-wide attribute (header word) reading

        Since v1.1

        A range-oriented function that reads some attribute for all the
        specified headers file-wide. Supports index lookup, slices and
        numpy-style list-of-indices.

        Examples:
            Read all unique sweep frequency end::
                >>> end = segyio.TraceField.SweepFrequencyEnd
                >>> sfe = np.unique(f.attributes( end )[:])

            Discover the first traces of each unique sweep frequency end::
                >>> end = segyio.TraceField.SweepFrequencyEnd
                >>> attrs = f.attributes(end)
                >>> sfe, tracenos = np.unique(attrs[:], return_index = True)

            Scatter plot group x/y-coordinates with SFEs (using matplotlib)::
                >>> end = segyio.TraceField.SweepFrequencyEnd
                >>> attrs = f.attributes(end)
                >>> _, tracenos = np.unique(attrs[:], return_index = True)
                >>> gx = f.attributes(segyio.TraceField.GroupX)[tracenos]
                >>> gy = f.attributes(segyio.TraceField.GroupY)[tracenos]
                >>> scatter(gx, gy)
        """
        class attr:
            def __getitem__(inner, rng):
                try: iter(rng)
                except TypeError: pass
                else: return inner._getitem_list(rng)

                if not isinstance(rng, slice):
                    rng = slice(rng, rng + 1, 1)

                traces = self.tracecount
                start, stop, step = rng.indices(traces)
                attrs = np.empty(len(range(*rng.indices(traces))), dtype = np.intc)
                return self.xfd.field_forall(attrs, start, stop, step, field)

            def _getitem_list(inner, xs):
                if not isinstance(xs, np.ndarray):
                    xs = np.asarray(xs, dtype = np.intc)

                xs = xs.astype(dtype = np.intc, order = 'C', copy = False)
                attrs = np.empty(len(xs), dtype = np.intc)
                return self.xfd.field_foreach(attrs, xs, field)

        return attr()


    @property
    def trace(self):
        """ Interact with segy in trace mode.

        Since v1.1

        This mode gives access to reading and writing functionality for traces.
        The primary data type is the numpy ndarray. Traces can be accessed
        individually or with python slices, and writing is done via assignment.

        All examples use `np` for `numpy`.

        Examples:
            Read all traces in file f and store in a list::
                >>> l = [np.copy(tr) for tr in f.trace]

            Do numpy operations on a trace::
                >>> tr = f.trace[10]
                >>> tr = np.transpose(tr)
                >>> tr = tr * 2
                >>> tr = tr - 100
                >>> avg = np.average(tr)

            Do numpy operations on every other trace::
                >>> for tr in f.trace[::2]:
                ...     print( np.average(tr) )
                ...

            Traverse traces in reverse::
                >>> for tr in f.trace[::-1]:
                ...     print( np.average(tr) )
                ...

            Double every trace value and write to disk. Since accessing a trace
            gives a numpy value, to write to the respective trace we need its index::
                >>> for i, tr in enumerate(f.trace):
                ...     tr = tr * 2
                ...     f.trace[i] = tr
                ...

            Reuse an array for memory efficiency when working with indices.
            When using slices or full ranges this is done for you::
                >>> tr = None
                >>> for i in range(100):
                ...     tr = f.trace[i, tr]
                ...     tr = tr * 2
                ...     print(np.average(tr))
                ...

            Read a value directly from a file. The second [] is numpy access
            and supports all numpy operations, including negative indexing and
            slicing::
                >>> f.trace[0][0]
                1490.2
                >>> f.trace[0][1]
                1490.8
                >>> f.trace[0][-1]
                1871.3
                >>> f.trace[-1][100]
                1562.0

            Trace mode supports len(), returning the number of traces in a
            file::
                >>> len(f.trace)
                300

            Convenient way for setting traces from 0, 1, ... n, based on the
            iterable set of traces on the right-hand-side.

            If the right-hand-side traces are exhausted before all the destination
            file traces the writing will stop, i.e. not all all traces in the
            destination file will be written.

            Copy traces from file f to file g::
                >>> f.trace = g.trace.

            Copy first half of the traces from g to f::
                >>> f.trace = g.trace[:len(g.trace)/2]

            Fill the file with one trace (filled with zeros)::
                >>> tr = np.zeros(f.samples)
                >>> f.trace = itertools.repeat(tr)

            For advanced users: sometimes you want to load the entire segy file
            to memory and apply your own structural manipulations or operations
            on it. Some segy files are very large and may not fit, in which
            case this feature will break down. This is an optimisation feature;
            using it should generally be driven by measurements.

            Read the first 10 traces::
                >>> f.trace.raw[0:10]

            Read *all* traces to memory::
                >>> f.trace.raw[:]

            Read every other trace to memory::
                >>> f.trace.raw[::2]
        """

        return self._trace

    @trace.setter
    def trace(self, val):
        tr = self.trace
        for i, v in zip(range(len(tr)), val):
            tr[i] = v

    def _shape_buffer(self, shape, buf):
        if buf is None:
            return np.empty(shape=shape, dtype=np.single)
        if not isinstance(buf, np.ndarray):
            return buf
        if buf.dtype != np.single:
            return np.empty(shape=shape, dtype=np.single)
        if buf.shape[0] == shape[0]:
            return buf
        if buf.shape != shape and buf.size == np.prod(shape):
            return buf.reshape(shape)
        return buf

    def _line_buffer(self, length, buf=None):
        shape = (length, len(self.samples))
        return self._shape_buffer(shape, buf)

    def _fread_line(self, trace0, length, stride, buf):
        offsets = len(self.offsets)
        return self.xfd.getline(trace0, length, stride, offsets, buf)

    @property
    def ilines(self):
        """ :rtype: numpy.ndarray"""
        return self._ilines

    @property
    def iline(self):
        """ Interact with segy in inline mode.

        Since v1.1

        This mode gives access to reading and writing functionality for inlines.
        The primary data type is the numpy ndarray. Inlines can be accessed
        individually or with python slices, and writing is done via assignment.
        Note that accessing inlines uses the line numbers, not their position,
        so if a files has inlines [2400..2500], accessing line [0..100] will be
        an error. Note that each line is returned as a numpy array, meaning
        accessing the intersections of the inline and crossline is 0-indexed.

        Additionally, the iline mode has a concept of offsets, which is useful
        when dealing with prestack files. Offsets are accessed via so-called
        sub indexing, meaning iline[10, 4] will give you line 10 at offset 4.
        Please note that offset, like lines, are accessed via their numbers,
        not their indices. If your file has the offsets [150, 250, 350, 450]
        and the lines [2400..2500], you can access the third offset with
        [2403,350]. Please refer to the examples for more details. If no offset
        is specified, segyio will give you the first.

        Examples:
            Read an inline::
                >>> il = f.iline[2400]

            Copy every inline into a list::
                >>> l = [np.copy(x) for x in f.iline]

            The number of inlines in a file::
                >>> len(f.iline)

            Numpy operations on every other inline::
                >>> for line in f.iline[::2]:
                ...     line = line * 2
                ...     avg = np.average(line)
                ...     print(avg)
                ...

            Read inlines up to 2430::
                >>> for line in f.iline[:2430]:
                ...     print(np.average(line))
                ...

            Copy a line from file g to f::
                >>> f.iline[2400] = g.iline[2834]

            Copy lines from the first line in g to f, starting at 2400,
            ending at 2410 in f::
                >>> f.iline[2400:2411] = g.iline

            Convenient way for setting inlines, from left-to-right as the inline
            numbers are specified in the file.ilines property, from an iterable
            set on the right-hand-side.

            If the right-hand-side inlines are exhausted before all the destination
            file inlines the writing will stop, i.e. not all all inlines in the
            destination file will be written.

            Copy inlines from file f to file g::
                >>> f.iline = g.iline.

            Copy first half of the inlines from g to f::
                >>> f.iline = g.iline[:g.ilines[len(g.ilines)/2]]

            Copy every other inline from a different file::
                >>> f.iline = g.iline[::2]

            Accessing offsets work the same way as accessing lines, and slicing
            is supported as well. When doing range-based offset access, the
            lines will be generated offsets-first, i.e equivalent to:
            [(line1 off1), (line1 off2), (line1 off3), (line2 off1), ...]
            or the double for loop::
                >>> for line in lines:
                ...     for off in offsets:
                ...         yield (line, off)
                ...

            Copy all lines at all offsets::
                >>> [np.copy(x) for x in f.iline[:,:]]

            Print all line 10's offsets::
                >>> print(f.iline[10,:])

            Numpy operations at every line at offset 120::
                >>> for line in f.iline[:, 120]:
                ...     line = line * 2
                ...     print(np.average(line))

            Copy every other line and offset::
                >>> map(np.copy, f.iline[::2, ::2])

            Print offsets in reverse::
                >>> for line in f.iline[:, ::-1]:
                ...     print(line)

            Copy all offsets [200, 250, 300, 350, ...] in the range [200, 800)
            for all ilines [2420,2460)::
                >>> [np.copy(x) for x in f.iline[2420:2460, 200:800:50]]

            Copy every third offset from f to g::
                >>> g.iline[:,:] = f.iline[:,::3]

            Copy an iline from f to g at g's offset 200::
                >>> g.iline[12, 200] = f.iline[21]
        """

        if self.unstructured:
            raise ValueError(self._unstructured_errmsg)

        if self._iline is not None:
            return self._iline

        il_len, il_stride = self._iline_length, self._iline_stride
        lines = self.ilines
        other_lines = self.xlines
        buffn = lambda x=None: self._line_buffer(il_len, x)
        readfn = self._fread_line

        def writefn(t0, length, step, val):
            val = buffn(val)
            step *= len(self.offsets)
            for i, v in zip(range(t0, t0 + (step * length), step), val):
                Trace.write_trace(i, v, self)

        self._iline = Line(self, il_len, il_stride, lines, other_lines, buffn, readfn, writefn, "inline")
        return self._iline

    @iline.setter
    def iline(self, value):
        self.iline[:] = value

    @property
    def xlines(self):
        """ :rtype: numpy.ndarray"""
        return self._xlines

    @property
    def xline(self):
        """ Interact with segy in crossline mode.

        Since v1.1

        This mode gives access to reading and writing functionality for crosslines.
        The primary data type is the numpy ndarray. crosslines can be accessed
        individually or with python slices, and writing is done via assignment.
        Note that accessing crosslines uses the line numbers, not their position,
        so if a files has crosslines [1400..1450], accessing line [0..100] will be
        an error. Note that each line is returned as a numpy array, meaning
        accessing the intersections of the inline and crossline is 0-indexed.

        Additionally, the xline mode has a concept of offsets, which is useful
        when dealing with prestack files. Offsets are accessed via so-called
        sub indexing, meaning xline[10, 4] will give you line 10 at offset 4.
        Please note that offset, like lines, are accessed via their numbers,
        not their indices. If your file has the offsets [100, 200, 300, 400]
        and the lines [1400..1450], you can access the second offset with
        [1421,300]. Please refer to the examples for more details. If no offset
        is specified, segyio will give you the first.

        Examples:
            Read an crossline::
                >>> il = f.xline[1400]

            Copy every crossline into a list::
                >>> l = [np.copy(x) for x in f.xline]

            The number of crosslines in a file::
                >>> len(f.xline)

            Numpy operations on every third crossline::
                >>> for line in f.xline[::3]:
                ...     line = line * 6
                ...     avg = np.average(line)
                ...     print(avg)
                ...

            Read crosslines up to 1430::
                >>> for line in f.xline[:1430]:
                ...     print(np.average(line))
                ...

            Copy a line from file g to f::
                >>> f.xline[1400] = g.xline[1603]

            Copy lines from the first line in g to f, starting at 1400,
            ending at 1415 in f::
                >>> f.xline[1400:1416] = g.xline


            Convenient way for setting crosslines, from left-to-right as the crossline
            numbers are specified in the file.xlines property, from an iterable
            set on the right-hand-side.

            If the right-hand-side crosslines are exhausted before all the destination
            file crosslines the writing will stop, i.e. not all all crosslines in the
            destination file will be written.

            Copy crosslines from file f to file g::
                >>> f.xline = g.xline.

            Copy first half of the crosslines from g to f::
                >>> f.xline = g.xline[:g.xlines[len(g.xlines)/2]]

            Copy every other crossline from a different file::
                >>> f.xline = g.xline[::2]

            Accessing offsets work the same way as accessing lines, and slicing
            is supported as well. When doing range-based offset access, the
            lines will be generated offsets-first, i.e equivalent to:
            [(line1 off1), (line1 off2), (line1 off3), (line2 off1), ...]
            or the double for loop::
                >>> for line in lines:
                ...     for off in offsets:
                ...         yield (line, off)
                ...

            Copy all lines at all offsets::
                >>> [np.copy(x) for x in f.xline[:,:]]

            Print all line 10's offsets::
                >>> print(f.xline[10,:])

            Numpy operations at every line at offset 120::
                >>> for line in f.xline[:, 120]:
                ...     line = line * 2
                ...     print(np.average(line))

            Copy every other line and offset::
                >>> map(np.copy, f.xline[::2, ::2])

            Print offsets in reverse::
                >>> for line in f.xline[:, ::-1]:
                ...     print(line)

            Copy all offsets [200, 250, 300, 350, ...] in the range [200, 800)
            for all xlines [2420,2460)::
                >>> [np.copy(x) for x in f.xline[2420:2460, 200:800:50]]

            Copy every third offset from f to g::
                >>> g.xline[:,:] = f.xline[:,::3]

            Copy an xline from f to g at g's offset 200::
                >>> g.xline[12, 200] = f.xline[21]
        """
        if self.unstructured:
            raise ValueError(self._unstructured_errmsg)

        if self._xline is not None:
            return self._xline

        xl_len, xl_stride = self._xline_length, self._xline_stride
        lines = self.xlines
        other_lines = self.ilines
        buffn = lambda x=None: self._line_buffer(xl_len, x)
        readfn = self._fread_line

        def writefn(t0, length, step, val):
            val = buffn(val)
            step *= len(self.offsets)
            for i, v in zip(range(t0, t0 + step * length, step), val):
                Trace.write_trace(i, v, self)

        self._xline = Line(self, xl_len, xl_stride, lines, other_lines, buffn, readfn, writefn, "crossline")
        return self._xline

    @xline.setter
    def xline(self, value):
        self.xline[:] = value

    def _depth_buffer(self, buf=None):
        il_len = self._iline_length
        xl_len = self._xline_length

        if self.sorting == TraceSortingFormat.CROSSLINE_SORTING:
            shape = (il_len, xl_len)
        elif self.sorting == TraceSortingFormat.INLINE_SORTING:
            shape = (xl_len, il_len)
        else:
            raise RuntimeError("Unexpected sorting type")

        return self._shape_buffer(shape, buf)

    @property
    def fast(self):
        """ Access the 'fast' dimension

        Since v1.1

        This mode yields iline or xline mode, depending on which one is laid
        out "faster", i.e. the line with linear disk layout. Use this mode if
        the inline/crossline distinction isn't as interesting as traversing in
        a fast manner (typically when you want to apply a function to the whole
        file, line-by-line).
        """
        if self.sorting == TraceSortingFormat.INLINE_SORTING:
            return self.iline
        elif self.sorting == TraceSortingFormat.CROSSLINE_SORTING:
            return self.xline
        else:
            raise RuntimeError("Unknown sorting.")

    @property
    def slow(self):
        """ Access the 'slow' dimension

        Since v1.1

        This mode yields iline or xline mode, depending on which one is laid
        out "slower", i.e. the line with strided disk layout. Use this mode if
        the inline/crossline distinction isn't as interesting as traversing in
        the slower direction.
        """
        if self.sorting == TraceSortingFormat.INLINE_SORTING:
            return self.xline
        elif self.sorting == TraceSortingFormat.CROSSLINE_SORTING:
            return self.iline
        else:
            raise RuntimeError("Unknown sorting.")

    @property
    def depth_slice(self):
        """ Interact with segy in depth slice mode.

        Since v1.1

        This mode gives access to reading and writing functionality for depth
        slices, a horizontal cut of the survey.

        The primary data type is the numpy ndarray. Depth slices can be
        accessed individually or with python slices, and writing is done via
        assignment.  Note that each slice is returned as a numpy array, meaning
        accessing the values of the slice is 0-indexed.

        Examples:
            Read a depth slice:
                >>> il = f.depth_slice[199]

            Copy every depth slice into a list::
                >>> l = [np.copy(x) for x in f.depth_slice]

            The number of depth slices in a file::
                >>> len(f.depth_slice)

            Numpy operations on every third depth slice::
                >>> for depth_slice in f.depth_slice[::3]:
                ...     depth_slice = depth_slice * 6
                ...     avg = np.average(depth_slice)
                ...     print(avg)
                ...

            Read depth_slices up to 250::
                >>> for depth_slice in f.depth_slice[:250]:
                ...     print(np.average(depth_slice))
                ...

            Copy a slice from file g to f::
                >>> f.depth_slice[4] = g.depth_slice[19]

            Copy slice from the first line in g to f, starting at 10,
            ending at 49 in f::
                >>> f.depth_slice[10:50] = g.depth_slice


            Convenient way for setting depth slices, from left-to-right as the depth slices
            numbers are specified in the file.depth_slice property, from an iterable
            set on the right-hand-side.

            If the right-hand-side depth slices are exhausted before all the destination
            file depth slices the writing will stop, i.e. not all all depth slices in the
            destination file will be written.

            Copy depth slices from file f to file g::
                >>> f.depth_slice = g.depth_slice

            Copy first half of the depth slices from g to f::
                >>> f.depth_slice = g.depth_slice[:g.samples/2]]

            Copy every other depth slices from a different file::
                >>> f.depth_slice = g.depth_slice[::2]
        """

        if self.unstructured:
            raise ValueError(self._unstructured_errmsg)

        indices = np.asarray(list(range(len(self.samples))), dtype=np.intc)
        other_indices = np.asarray([0], dtype=np.intc)
        buffn = self._depth_buffer

        slice_trace_count = self._iline_length * self._xline_length
        offsets = len(self.offsets)

        def readfn(depth, length, stride, buf):
            return self.xfd.getdepth(depth, slice_trace_count, offsets, buf)

        def writefn(depth, length, stride, val):
            val = buffn(val)

            buf_view = val.reshape(self._iline_length * self._xline_length)

            for i, trace_buf in enumerate(self.trace):
                trace_buf[depth] = buf_view[i]
                self.trace[i] = trace_buf

        return Line(self, len(self.samples), 1, indices, other_indices, buffn, readfn, writefn, "depth")

    @depth_slice.setter
    def depth_slice(self, value):
        self.depth_slice[:] = value

    @property
    def gather(self):
        """ Interact with segy in gather mode

        Since v1.1

        A gather is in this context the intersection of lines in a cube, i.e.
        all the offsets at some iline/xline intersection. The primary data type
        is the numpy ndarray, with dimensions depending on the range of offsets
        specified. Offsets uses the line and offset numbers (names), not
        0-based indices.

        When using ranges over lines, a generator is returned.

        Examples:

            Read one offset at an intersection::
                >>> f.gather[200, 241, 25] # returns a samples-long 1d-array

            Read all offsets at an intersection::
                >>> f.gather[200, 241, :] # returns offsets x samples ndarray
                >>> # If no offset is specified, this is implicitly (:)
                >>> f.gather[200, 241, :] == f.gather[200, 241]

            All offsets for a set of ilines, intersecting one crossline::
                >>> f.gather[200:300, 241, :]

            Some offsets for a set of ilines, interescting one crossline::
                >>> f.gather[200:300, 241, 10:25:5]

            Some offsets for a set of ilines and xlines. This effectively yields a subcube::
                >>> f.gather[200:300, 241:248, 1:10]
        """
        if self.unstructured:
            raise ValueError(self._unstructured_errmsg)

        if self._gather is not None:
            return self._gather

        self._gather = Gather(self.trace, self.iline, self.xline, self.offsets, self.sorting)
        return self._gather

    @property
    def text(self):
        """ Interact with segy in text mode.

        Since v1.1

        This mode gives access to reading and writing functionality for textual
        headers.

        The primary data type is the python string. Reading textual headers is
        done via [], and writing is done via assignment. No additional
        structure is built around the textual header, so everything is treated
        as one long string without line breaks.

        Examples:
            Print the textual header::
                >>> print(f.text[0])

            Print the first extended textual header::
                >>> print(f.text[1])

            Write a new textual header::
                >>> f.text[0] = make_new_header()

            Copy a tectual header::
                >>> f.text[1] = g.text[0]

            Print a textual header line-by-line::
                >>> # using zip, from the zip documentation
                >>> text = f.text[0]
                >>> lines = map(''.join, zip( *[iter(text)] * 80))
                >>> for line in lines:
                ...     print(line)
                ...
        """
        return TextHeader(self)

    @property
    def bin(self):
        """ Interact with segy in binary mode.

        Since v1.1

        This mode gives access to reading and writing functionality for the
        binary header. Please note that using numeric binary offsets uses the
        offset numbers from the specification, i.e. the first field of the
        binary header starts at 3201, not 1. If you're using the enumerations
        this is handled for you.

        Examples:
            Copy a header from file g to file f::
                >>> f.bin = g.bin

            Reading a field in a trace::
                >>> traces_per_ensemble = f.bin[3213]

            Writing a field in a trace::
                >>> f.bin[BinField.Traces] = 5

            Reading multiple fields::
                >>> d = f.bin[BinField.Traces, 3233]

            Copy a field from file g to file f::
                >>> f.bin[BinField.Format] = g.bin[BinField.Format]

            Copy full binary from file f to file g::
                >>> f.bin = g.bin

            Copy multiple fields from file f to file g::
                >>> f.bin = g.bin[BinField.Traces, 3233]

            Write field in binary header via dict::
                >>> f.bin = { BinField.Traces: 350 }

            Write multiple fields in a trace::
                >>> f.bin = { 3213: 5, BinField.SweepFrequencyStart: 17 }

            Since v1.3, common dict operations are supported.

            Get a list of keys and values::
                >>> f.bin.keys()
                >>> f.bin.values()

            Get a list of key-value pairs::
                >>> f.bin.items()

            Get the number of keys-value pairs in a header::
                >>> len(f.bin)

            Update a set of values::
                >>> d = { segyio.su.jobid: 10, segyio.su.lino: 5 }
                >>> f.bin.update(d)
                >>> l = [ (segyio.su.hdt, 11), (segyio.su.hsfs, 4) ]
                >>> f.bin.update(l)
        """

        return Field.binary(self)

    @bin.setter
    def bin(self, value):
        self.bin.update(value)

    @property
    def format(self):
        d = {
            1: "4-byte IBM float",
            2: "4-byte signed integer",
            3: "2-byte signed integer",
            4: "4-byte fixed point with gain",
            5: "4-byte IEEE float",
            8: "1-byte signed char"
        }

        class fmt:
            def __int__(inner):
                return self._fmt

            def __str__(inner):
                if not self._fmt in d:
                    return "Unknown format"

                return d[self._fmt]

        return fmt()

class spec:
    def __init__(self):
        self.iline = 189
        self.ilines = None
        self.xline = 193
        self.xlines = None
        self.offsets = [1]
        self.samples = None
        self.ext_headers = 0
        self.format = None
        self.sorting = None

class TextHeader(object):

    def __init__(self, outer):
        self.outer = outer

    def __getitem__(self, index):
        if not 0 <= index <= self.outer.ext_headers:
            raise IndexError("Textual header {} not in file".format(index))

        return self.outer.xfd.gettext(index)

    def __setitem__(self, index, val):
        if isinstance(val, TextHeader):
            self[index] = val[0]
            return

        if not 0 <= index <= self.outer.ext_headers:
            raise IndexError("Textual header {} not in file".format(index))

        self.outer.xfd.puttext(index, val)

    def __repr__(self):
        return "Text(external_headers = {})".format(self.outer.ext_headers)

    def __str__(self):
        return '\n'.join(map(''.join, zip(*[iter(str(self[0]))] * 80)))