/usr/lib/R/library/Matrix/test-tools-Matrix.R is in r-cran-matrix 1.2-12-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | #### Tools for Package Testing --- in Matrix, sourced by ./test-tools.R
#### -------------------------
### ------- Part III -- "Matrix" (classes) specific ----------------------
## lower.tri() and upper.tri() -- masking base definitions
## R/src/library/base/R/lower.tri.R
## R/src/library/base/R/upper.tri.R
## but we do __not__ want to coerce to "base R" 'matrix' via as.matrix():
##
lower.tri <- function(x, diag = FALSE) if(diag) row(x) >= col(x) else row(x) > col(x)
upper.tri <- function(x, diag = FALSE) if(diag) row(x) <= col(x) else row(x) < col(x)
lsM <- function(...) {
for(n in ls(..., envir=parent.frame()))
if(is((. <- get(n)),"Matrix"))
cat(sprintf("%5s: '%s' [%d x %d]\n",n,class(.), nrow(.),ncol(.)))
}
asD <- function(m) { ## as "Dense"
if(canCoerce(m, "denseMatrix")) as(m, "denseMatrix")
else if(canCoerce(m, (cl <- paste(.M.kind(m), "denseMatrix", sep=''))))
as(m, cl)
else if(canCoerce(m, "dgeMatrix")) as(m, "dgeMatrix")
else stop("cannot coerce to a typical dense Matrix")
}
## "normal" sparse Matrix: Csparse, no diag="U"
asCsp <- function(x) diagU2N(as(x, "CsparseMatrix"))
##' @title quasi-identical dimnames
Qidentical.DN <- function(dx, dy) {
stopifnot(is.list(dx) || is.null(dx),
is.list(dy) || is.null(dy))
## "empty"
(is.null.DN(dx) && is.null.DN(dy)) || identical(dx, dy)
}
##' quasi-identical() for 'Matrix' matrices
Qidentical <- function(x,y, strictClass = TRUE) {
if(class(x) != class(y)) {
if(strictClass || !is(x, class(y)))
return(FALSE)
## else try further
}
slts <- slotNames(x)
if("Dimnames" %in% slts) { ## always (or we have no 'Matrix')
slts <- slts[slts != "Dimnames"]
if(!Qidentical.DN(x@Dimnames, y@Dimnames) &&
## allow for "completion" of (NULL, <names>) dimnames of symmetricMatrix:
!Qidentical.DN(dimnames(x), dimnames(y)))
return(FALSE)
}
if("factors" %in% slts) { ## allow one empty and one non-empty 'factors'
slts <- slts[slts != "factors"]
## if both are not empty, they must be the same:
if(length(xf <- x@factors) && length(yf <- y@factors))
if(!identical(xf, yf)) return(FALSE)
}
for(sl in slts)
if(!identical(slot(x,sl), slot(y,sl)))
return(FALSE)
TRUE
}
##' quasi-identical() for traditional ('matrix') matrices
mQidentical <- function(x,y, strictClass = TRUE) {
if(class(x) != class(y)) {
if(strictClass || !is(x, class(y)))
return(FALSE)
## else try further
}
if(!Qidentical.DN(dimnames(x), dimnames(y)))
return(FALSE)
identical(unname(x), unname(y))
}
Q.C.identical <- function(x,y, sparse = is(x,"sparseMatrix"),
checkClass = TRUE, strictClass = TRUE) {
if(checkClass && class(x) != class(y)) {
if(strictClass || !is(x, class(y)))
return(FALSE) ## else try further
}
if(sparse)
Qidentical(as(x,"CsparseMatrix"), as(y,"CsparseMatrix"),
strictClass=strictClass)
else Qidentical(x,y, strictClass=strictClass)
}
##' <description>
##'
##' <details>
##' @title Quasi-equal for 'Matrix' matrices
##' @param x Matrix
##' @param y Matrix
##' @param superclasses x and y must coincide in (not) extending these; set to empty,
##' if no class/inheritance checks should happen.
##' @param dimnames.check logical indicating if dimnames(.) much match
##' @param tol NA (--> use "==") or numerical tolerance for all.equal()
##' @return logical: Are x and y (quasi) equal ?
Q.eq <- function(x, y,
superclasses =
c("sparseMatrix", "denseMatrix",
"dMatrix", "lMatrix", "nMatrix"),
dimnames.check = TRUE, tol = NA) {
## quasi-equal - for 'Matrix' matrices
if(any(dim(x) != dim(y)))
return(FALSE)
if(dimnames.check &&
!identical(dimnames(x),
dimnames(y))) return(FALSE)
xcl <- getClassDef(class(x))
ycl <- getClassDef(class(y))
for(SC in superclasses) {
if( extends(xcl, SC) &&
!extends(ycl, SC)) return(FALSE)
}
asC <- ## asCommon
if((isDense <- extends(xcl,"denseMatrix")))
function(m) as(m, "matrix")
else function(m)
as(as(as(m,"CsparseMatrix"), "dMatrix"), "dgCMatrix")
if(is.na(tol)) {
if(isDense)
all(x == y | (is.na(x) & is.na(y)))
else ## 'x == y' blows up for large sparse matrices:
isTRUE(all.equal(asC(x), asC(y), tolerance = 0.,
check.attributes = dimnames.check))
}
else if(is.numeric(tol) && tol >= 0) {
isTRUE(all.equal(asC(x), asC(y), tolerance = tol,
check.attributes = dimnames.check))
}
else stop("'tol' must be NA or non-negative number")
}
Q.eq2 <- function(x, y,
superclasses = c("sparseMatrix", "denseMatrix"),
dimnames.check = FALSE, tol = NA)
Q.eq(x,y, superclasses=superclasses,
dimnames.check=dimnames.check, tol=tol)
##' <description>
##'
##' <details>
##' @title Quasi-equality of symmpart(m) + skewpart(m) with m
##' @param m Matrix
##' @param tol numerical tolerance for all.equal()
##' @return logical
##' @author Martin Maechler
Q.eq.symmpart <- function(m, tol = 8 * .Machine$double.eps)
{
ss <- symmpart(m) + skewpart(m)
if(hasNA <- any(iNA <- is.na(ss))) {
## ss has the NA's symmetrically, but typically m has *not*
iiNA <- which(iNA) # <- useful! -- this tests which() methods!
## assign NA's too -- using correct kind of NA:
m[iiNA] <- as(NA, Matrix:::.type.kind[Matrix:::.M.kind(m)])
}
Q.eq2(m, ss, tol = tol)
}
##' sample.int(n, size, replace=FALSE) for really large n:
sampleL <- function(n, size) {
if(n < .Machine$integer.max)
sample.int(n, size)
else {
i <- unique(round(n * runif(1.8 * size)))
while(length(i) < size) {
i <- unique(c(i, round(n * runif(size))))
}
i[seq_len(size)]
}
}
## Useful Matrix constructors for testing:
##' @title Random Sparse Matrix
##' @param n
##' @param m number of columns; default (=n) ==> square matrix
##' @param density the desired sparseness density:
##' @param nnz number of non-zero entries; default from \code{density}
##' @param giveCsparse logical specifying if result should be CsparseMatrix
##' @return a [TC]sparseMatrix, n x m
##' @author Martin Maechler, Mar 2008
rspMat <- function(n, m = n, density = 1/4, nnz = round(density * n*m),
giveCsparse = TRUE)
{
stopifnot(length(n) == 1, n == as.integer(n),
length(m) == 1, m == as.integer(m),
0 <= density, density <= 1,
0 <= nnz,
nnz <= (N <- n*m))
in0 <- sampleL(N, nnz)
x <- sparseVector(i = in0, x = as.numeric(1L + seq_along(in0)), length = N)
dim(x) <- c(n,m)#-> sparseMatrix
if (giveCsparse) as(x, "CsparseMatrix") else x
}
## __DEPRECATED__ !!
rSparseMatrix <- function(nrow, ncol, nnz,
rand.x = function(n) round(rnorm(nnz), 2), ...)
{
stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
.Deprecated("rsparsematrix")
##=========
sparseMatrix(i = sample(nrow, nnz, replace = TRUE),
j = sample(ncol, nnz, replace = TRUE),
x = rand.x(nnz), dims = c(nrow, ncol), ...)
}
rUnitTri <- function(n, upper = TRUE, ...)
{
## Purpose: random unit-triangular sparse Matrix .. built from rspMat()
## ----------------------------------------------------------------------
## Arguments: n: matrix dimension
## upper: logical indicating if upper or lower triangular
## ... : further arguments passed to rspMat(), eg. 'density'
## ----------------------------------------------------------------------
## Author: Martin Maechler, Date: 5 Mar 2008, 11:35
r <- (if(upper) triu else tril)(rspMat(n, ...))
## make sure the diagonal is empty
diag(r) <- 0
r <- drop0(r)
r@diag <- "U"
r
}
##' Construct a nice (with exact numbers) random artificial \eqn{A = L D L'}
##' decomposition with a sparse \eqn{n \times n}{n x n} matrix \code{A} of
##' density \code{density} and square root \eqn{D} determined by \code{d0}.
##'
##' If one of \code{rcond} or \code{condest} is true, \code{A} must be
##' non-singular, both use an \eqn{LU} decomposition requiring
##' non-singularity.
##' @title Make Nice Artificial A = L D L' (With Exact Numbers) Decomposition
##' @param n matrix dimension \eqn{n \times n}{n x n}
##' @param density ratio of number of non-zero entries to total number
##' @param d0 The sqrt of the diagonal entries of D default \code{10}, to be
##' \dQuote{different} from \code{L} entries.
##' @param rcond logical indicating if \code{\link{rcond}(A, useInv=TRUE)}
##' should be returned which requires non-singular A and D.
##' @param condest logical indicating if \code{\link{condest}(A)$est}
##' should be returned which requires non-singular A and D.
##' @return list with entries A, L, d.half, D, ..., where A inherits from
##' class \code{"\linkS4class{symmetricMatrix}"} and should be equal to
##' \code{as(L \%*\% D \%*\% t(L), "symmetricMatrix")}.
##' @author Martin Maechler, Date: 15 Mar 2008
mkLDL <- function(n, density = 1/3,
d0 = 10, d.half = d0 * sample.int(n), # random permutation
rcond = (n < 99), condest = (n >= 100))
{
stopifnot(n == round(n), density <= 1)
n <- as.integer(n)
stopifnot(n >= 1, is.numeric(d.half),
length(d.half) == n, d.half >= 0)
L <- Matrix(0, n,n)
nnz <- round(density * n*n)
L[sample(n*n, nnz)] <- seq_len(nnz)
L <- tril(L, -1L)
diag(L) <- 1
dh2 <- d.half^2
non.sing <- sum(dh2 > 0) == n
D <- Diagonal(x = dh2)
A <- tcrossprod(L * rep(d.half, each=n))
## = as(L %*% D %*% t(L), "symmetricMatrix")
list(A = A, L = L, d.half = d.half, D = D,
rcond.A = if (rcond && non.sing) rcond(A, useInv=TRUE),
cond.A = if(condest && non.sing) condest(A)$est)
}
eqDeterminant <- function(m1, m2, NA.Inf.ok=FALSE, tol=.Machine$double.eps^0.5, ...)
{
d1 <- determinant(m1) ## logarithm = TRUE
d2 <- determinant(m2)
d1m <- as.vector(d1$modulus)# dropping attribute
d2m <- as.vector(d2$modulus)
if((identical(d1m, -Inf) && identical(d2m, -Inf)) ||
## <==> det(m1) == det(m2) == 0, then 'sign' may even differ !
(is.na(d1m) && is.na(d2m)))
## if both are NaN or NA, we "declare" that's fine here
return(TRUE)
else if(NA.Inf.ok && ## first can be NA, second infinite:
## wanted: base::determinant.matrix() sometimes gives -Inf instead
## of NA,e.g. for matrix(c(0,NA,0,0,NA,NA,0,NA,0,0,1,0,0,NA,0,1), 4,4))
is.na(d1m) && is.infinite(d2m)) return(TRUE)
## else
if(is.infinite(d1m)) d1$modulus <- sign(d1m)* .Machine$double.xmax
if(is.infinite(d2m)) d2$modulus <- sign(d2m)* .Machine$double.xmax
## now they are finite or *one* of them is NA/NaN, and all.equal() will tell so:
all.equal(d1, d2, tolerance=tol, ...)
}
##' @param A a non-negative definite sparseMatrix, typically "dsCMatrix"
##'
##' @return a list with components resulting from calling
##' Cholesky(., perm = .P., LDL = .L., super = .S.)
##'
##' for all 2*2*3 combinations of (.P., .L., .S.)
allCholesky <- function(A, verbose = FALSE, silentTry = FALSE)
{
## Author: Martin Maechler, Date: 16 Jul 2009
##' @param r list of CHMfactor objects, typically with names() as '. | .'
##'
##' @return an is(perm,LDL,super) matrix with interesting and *named* rownames
CHM_to_pLs <- function(r) {
is.perm <- function(.)
if(inherits(., "try-error")) NA else !all(.@perm == 0:(.@Dim[1]-1))
is.LDL <- function(.)if(inherits(., "try-error")) NA else isLDL(.)
r.st <-
cbind(perm = sapply(r, is.perm),
LDL = sapply(r, is.LDL),
super = sapply(r, class) == "dCHMsuper")
names(dimnames(r.st)) <- list(" p L s", "")
r.st
}
my.Cholesky <- {
if(verbose)
function (A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...) {
cat(sprintf("Chol..(*, perm= %1d, LDL= %1d, super=%1d):",
perm, LDL, super))
r <- Cholesky(A, perm=perm, LDL=LDL, super=super, Imult=Imult, ...)
cat(" [Ok]\n")
r
}
else Cholesky
}
logi <- c(FALSE, TRUE)
d12 <- expand.grid(perm = logi, LDL = logi, super = c(logi,NA),
KEEP.OUT.ATTRS = FALSE)
r1 <- lapply(seq_len(nrow(d12)),
function(i) try(do.call(my.Cholesky,
c(list(A = A), as.list(d12[i,]))),
silent=silentTry))
names(r1) <- apply(d12, 1,
function(.) paste(symnum(.), collapse=" "))
dup.r1 <- duplicated(r1)
r.all <- CHM_to_pLs(r1)
if(!identical(dup.r1, duplicated(r.all)))
warning("duplicated( <pLs-matrix> ) differs from duplicated( <CHM-list> )",
immediate. = TRUE)
list(Chol.A = r1,
dup.r.all = dup.r1,
r.all = r.all,
r.uniq = CHM_to_pLs(r1[ ! dup.r1]))
}
##' Cheap Boolean Arithmetic Matrix product
##' Should be equivalent to %&% which is faster [not for large dense!].
##' Consequently mainly used in checkMatrix()
boolProd <- function(x,y) as((abs(x) %*% abs(y)) > 0, "nMatrix")
###----- Checking a "Matrix" -----------------------------------------
##' Check the compatibility of \pkg{Matrix} package Matrix with a
##' \dQuote{traditional} \R matrix and perform a host of internal consistency
##' checks.
##'
##' @title Check Compatibility of Matrix Package Matrix with Traditional R Matrices
##'
##' @param m a "Matrix"
##' @param m.m as(m, "matrix") {if 'do.matrix' }
##' @param do.matrix logical indicating if as(m, "matrix") should be applied;
##' typically false for large sparse matrices
##' @param do.t logical: is t(m) "feasible" ?
##' @param doNorm
##' @param doOps
##' @param doSummary
##' @param doCoerce
##' @param doCoerce2
##' @param do.prod
##' @param verbose logical indicating if "progress output" is produced.
##' @param catFUN (when 'verbose' is TRUE): function to be used as generalized cat()
##' @return TRUE (invisibly), unless an error is signalled
##' @author Martin Maechler, since 11 Apr 2008
checkMatrix <- function(m, m.m = if(do.matrix) as(m, "matrix"),
do.matrix = !isSparse || prod(dim(m)) < 1e6,
do.t = TRUE, doNorm = TRUE, doOps = TRUE,
doSummary = TRUE, doCoerce = TRUE,
doCoerce2 = doCoerce && !isRsp, doDet = do.matrix,
do.prod = do.t && do.matrix && !isRsp,
verbose = TRUE, catFUN = cat)
{
## is also called from dotestMat() in ../tests/Class+Meth.R
stopifnot(is(m, "Matrix"))
validObject(m) # or error(....)
clNam <- class(m)
cld <- getClassDef(clNam) ## extends(cld, FOO) is faster than is(m, FOO)
isCor <- extends(cld, "corMatrix")
isSym <- extends(cld, "symmetricMatrix")
if(isSparse <- extends(cld, "sparseMatrix")) { # also true for these
isRsp <- extends(cld, "RsparseMatrix")
isDiag <- extends(cld, "diagonalMatrix")
isInd <- extends(cld, "indMatrix")
isPerm <- extends(cld, "pMatrix")
} else isRsp <- isDiag <- isInd <- isPerm <- FALSE
isTri <- !isSym && !isDiag && !isInd && extends(cld, "triangularMatrix")
is.n <- extends(cld, "nMatrix")
nonMatr <- clNam != (Mcl <- MatrixClass(clNam, cld))
Cat <- function(...) if(verbose) cat(...)
CatF <- function(...) if(verbose) catFUN(...)
## warnNow <- function(...) warning(..., call. = FALSE, immediate. = TRUE)
DO.m <- function(expr) if(do.matrix) eval(expr) else TRUE
vec <- function(x) {
dim(x) <- c(length(x), 1L)
dimnames(x) <- list(NULL,NULL)
x
}
eps16 <- 16 * .Machine$double.eps
ina <- is.na(m)
if(do.matrix) {
stopifnot(all(ina == is.na(m.m)),
all(is.finite(m) == is.finite(m.m)),
all(is.infinite(m) == is.infinite(m.m)),
all(m == m | ina), ## check all() , "==" [Compare], "|" [Logic]
if(ncol(m) > 0) identical3(unname(m[,1]), unname(m.m[,1]),
as(m[,1,drop=FALSE], "vector"))
else identical(as(m, "vector"), as.vector(m.m)))
if(any(m != m & !ina)) stop(" any (m != m) should not be true")
} else {
if(any(m != m)) stop(" any (m != m) should not be true")
if(ncol(m) > 0)
stopifnot(identical(unname(m[,1]), as(m[,1,drop=FALSE], "vector")))
else stopifnot(identical(as(m, "vector"), as.vector(as(m, "matrix"))))
}
if(do.t) {
tm <- t(m)
if(isSym) ## check that t() swaps 'uplo' L <--> U :
stopifnot(c("L","U") == sort(c(m@uplo, tm@uplo)))
ttm <- t(tm)
## notInd: "pMatrix" ok, but others inheriting from "indMatrix" are not
notInd <- (!isInd || isPerm)
if(notInd && (extends(cld, "CsparseMatrix") ||
extends(cld, "generalMatrix") || isDiag))
stopifnot(Qidentical(m, ttm, strictClass = !nonMatr))
else if(do.matrix) {
if(notInd) stopifnot(nonMatr || class(ttm) == clNam)
stopifnot(all(m == ttm | ina))
## else : not testing
}
## crossprod() %*% etc
if(do.prod) {
c.m <- crossprod(m)
tcm <- tcrossprod(m)
tolQ <- if(isSparse) NA else eps16
stopifnot(dim(c.m) == rep.int(ncol(m), 2),
dim(tcm) == rep.int(nrow(m), 2),
## FIXME: %*% drops dimnames
Q.eq2(c.m, tm %*% m, tol = tolQ),
Q.eq2(tcm, m %*% tm, tol = tolQ),
## should work with dimnames:
Q.eq(m %&% tm, boolProd(m, tm), superclasses=NULL, tol = 0)
,
Q.eq(tm %&% m, boolProd(tm, m), superclasses=NULL, tol = 0)
)
}
}
if(!do.matrix) {
CatF(" will *not* coerce to 'matrix' since do.matrix is FALSE\n")
} else if(doNorm) {
CatF(sprintf(" norm(m [%d x %d]) :", nrow(m), ncol(m)))
for(typ in c("1","I","F","M")) {
Cat('', typ, '')
stopifnot(all.equal(norm(m,typ), norm(m.m,typ)))
}
Cat(" ok\n")
}
if(do.matrix && doSummary) {
summList <- lapply(getGroupMembers("Summary"), get,
envir = asNamespace("Matrix"))
CatF(" Summary: ")
for(f in summList) {
## suppressWarnings(): e.g. any(<double>) would warn here:
r <- suppressWarnings(if(isCor) all.equal(f(m), f(m.m)) else
identical(f(m), f(m.m)))
if(!isTRUE(r)) {
f.nam <- sub("..$", '', sub("^\\.Primitive..", '', format(f)))
## prod() is delicate: NA or NaN can both happen
(if(f.nam == "prod") message else stop)(
sprintf("%s(m) [= %g] differs from %s(m.m) [= %g]",
f.nam, f(m), f.nam, f(m.m)))
}
}
if(verbose) cat(" ok\n")
}
## and test 'dim()' as well:
d <- dim(m)
isSqr <- d[1] == d[2]
if(do.t) stopifnot(identical(diag(m), diag(t(m))))
## TODO: also === diag(band(m,0,0))
if(prod(d) < .Machine$integer.max && !extends(cld, "modelMatrix")) {
vm <- vec(m)
stopifnot(is(vm, "Matrix"), validObject(vm), dim(vm) == c(d[1]*d[2], 1))
}
if(!isInd)
m.d <- local({ m. <- m; diag(m.) <- diag(m); m. })
if(do.matrix)
stopifnot(identical(dim(m.m), dim(m)),
## base::diag() keeps names [Matrix FIXME]
## now that "pMatrix" subsetting gives *LOGICAL*
## if(isPerm) {
## identical(as.integer(unname(diag(m))), unname(diag(m.m)))
## } else
identical(unname(diag(m)),
unname(diag(m.m))),## not for NA: diag(m) == diag(m.m),
identical(nnzero(m), sum(m.m != 0)),
identical(nnzero(m, na.= FALSE), sum(m.m != 0, na.rm = TRUE)),
identical(nnzero(m, na.= TRUE), sum(m.m != 0 | is.na(m.m)))
)
if(isSparse) {
n0m <- drop0(m) #==> n0m is Csparse
has0 <- !Qidentical(n0m, as(m,"CsparseMatrix"))
if(!isInd && !isRsp &&
!(extends(cld, "TsparseMatrix") && anyDuplicatedT(m, di = d)))
# 'diag<-' is does not change attrib:
stopifnot(Qidentical(m, m.d))# e.g., @factors may differ
}
else if(!identical(m, m.d)) { # dense : 'diag<-' is does not change attrib
if(isTri && m@diag == "U" && m.d@diag == "N" &&
all(m == m.d))
message("unitriangular m: diag(m) <- diag(m) lost \"U\" .. is ok")
else stop("diag(m) <- diag(m) has changed 'm' too much")
}
## use non-square matrix when "allowed":
## m12: sparse and may have 0s even if this is not: if(isSparse && has0)
m12 <- as(as( m, "lMatrix"),"CsparseMatrix")
m12 <- drop0(m12)
if(do.matrix) {
## "!" should work (via as(*, "l...")) :
m11 <- as(as(!!m,"CsparseMatrix"), "lMatrix")
if(!Qidentical(m11, m12))
stopifnot(Qidentical(as(m11, "generalMatrix"),
as(m12, "generalMatrix")))
}
if(isSparse && !is.n) {
## ensure that as(., "nMatrix") gives nz-pattern
CatF("as(., \"nMatrix\") giving full nonzero-pattern: ")
n1 <- as(m, "nMatrix")
ns <- as(m, "nsparseMatrix")
stopifnot(identical(n1,ns),
isDiag || ((if(isSym) Matrix:::nnzSparse else sum)(n1) ==
length(if(isInd) m@perm else diagU2N(m)@x)))
Cat("ok\n")
}
if(doOps) {
## makes sense with non-trivial m (!)
CatF("2*m =?= m+m: ")
if(identical(2*m, m+m)) Cat("identical\n")
else if(do.matrix) {
eq <- as(2*m,"matrix") == as(m+m, "matrix") # but work for NA's:
stopifnot(all(eq | (is.na(m) & is.na(eq))))
Cat("ok\n")
} else {# !do.matrix
stopifnot(identical(as(2*m, "CsparseMatrix"),
as(m+m, "CsparseMatrix")))
Cat("ok\n")
}
if(do.matrix) {
## m == m etc, now for all, see above
CatF("m >= m for all: "); stopifnot(all(m >= m | ina)); Cat("ok\n")
}
if(prod(d) > 0) {
CatF("m < m for none: ")
mlm <- m < m
if(!any(ina)) stopifnot(!any(mlm))
else if(do.matrix) stopifnot(!any(mlm & !ina))
else { ## !do.matrix & any(ina) : !ina can *not* be used
mlm[ina] <- FALSE
stopifnot(!any(mlm))
}
Cat("ok\n")
}
if(isSqr) {
if(do.matrix) {
## determinant(<dense>) "fails" for triangular with NA such as
## (m <- matrix(c(1:0,NA,1), 2))
CatF("symmpart(m) + skewpart(m) == m: ")
Q.eq.symmpart(m)
CatF("ok; determinant(): ")
if(!doDet)
Cat(" skipped (!doDet): ")
else if(any(is.na(m.m)) && extends(cld, "triangularMatrix"))
Cat(" skipped: is triang. and has NA: ")
else
stopifnot(eqDeterminant(m, m.m, NA.Inf.ok=TRUE))
Cat("ok\n")
}
} else assertError(determinant(m))
}# end{doOps}
if(doCoerce && do.matrix && canCoerce("matrix", clNam)) {
CatF("as(<matrix>, ",clNam,"): ", sep='')
m3 <- as(m.m, clNam)
Cat("valid:", validObject(m3), "\n")
## m3 should ``ideally'' be identical to 'm'
}
if(doCoerce2 && do.matrix) { ## not for large m: !m will be dense
if(is.n) {
mM <- if(nonMatr) as(m, Mcl) else m
stopifnot(identical(mM, as(as(m, "dMatrix"),"nMatrix")),
identical(mM, as(as(m, "lMatrix"),"nMatrix")),
identical(which(m), which(m.m)))
}
else if(extends(cld, "lMatrix")) { ## should fulfill even with NA:
stopifnot(all(m | !m | ina), !any(!m & m & !ina))
if(extends(cld, "TsparseMatrix")) # allow modify, since at end here
m <- uniqTsparse(m, clNam)
stopifnot(identical(m, m & TRUE),
identical(m, FALSE | m))
## also check the coercions to [dln]Matrix
m. <- if(isSparse && has0) n0m else m
m1. <- m. # replace NA by 1 in m1. , carefully not changing class:
if(any(ina)) m1.@x[is.na(m1.@x)] <- TRUE
stopifnot(identical(m. , as(as(m. , "dMatrix"),"lMatrix")),
clNam == "ldiMatrix" || # <- there's no "ndiMatrix"
## coercion to n* and back: only identical when no extra 0s:
identical(m1., as(as(m1., "nMatrix"),"lMatrix")),
identical(which(m), which(m.m)))
}
else if(extends(cld, "dMatrix")) {
m. <- if(isSparse && has0) n0m else m
m1 <- (m. != 0)*1
if(!isSparse && substr(clNam,1,3) == "dpp")
## no "nppMatrix" possible
m1 <- unpack(m1)
m1. <- m1 # replace NA by 1 in m1. , carefully not changing class:
if(any(ina)) m1.@x[is.na(m1.@x)] <- 1
## coercion to n* (nz-pattern!) and back: only identical when no extra 0s and no NAs:
stopifnot(Q.C.identical(m1., as(as(m., "nMatrix"),"dMatrix"),
isSparse, checkClass = FALSE),
Q.C.identical(m1 , as(as(m., "lMatrix"),"dMatrix"),
isSparse, checkClass = FALSE))
}
if(extends(cld, "triangularMatrix")) {
mm. <- m
i0 <- if(m@uplo == "L")
upper.tri(mm.) else lower.tri(mm.)
n.catchWarn <- if(is.n) suppressWarnings else identity
n.catchWarn( mm.[i0] <- 0 ) # ideally, mm. remained triangular, but can be dge*
CatF("as(<triangular (ge)matrix>, ",clNam,"): ", sep='')
tm <- as(as(mm., "triangularMatrix"), clNam)
Cat("valid:", validObject(tm), "\n")
if(m@uplo == tm@uplo) ## otherwise, the matrix effectively was *diagonal*
## note that diagU2N(<dtr>) |-> dtC :
stopifnot(Qidentical(tm, as(diagU2N(m), clNam)))
}
else if(isDiag) {
## TODO
} else {
## TODO
}
}# end {doCoerce2 && ..}
if(doCoerce && isSparse) { ## coerce to sparseVector and back :
v <- as(m, "sparseVector")
stopifnot(length(v) == prod(d))
dim(v) <- d
stopifnot(Q.eq2(m, v))
}
invisible(TRUE)
}
|