This file is indexed.

/usr/bin/rsem-calculate-expression is in rsem 1.2.31+dfsg-1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
#!/usr/bin/env perl

use Getopt::Long qw(:config no_auto_abbrev);
use Pod::Usage;
use File::Basename;
use FindBin;
use lib $FindBin::RealBin;
use rsem_perl_utils qw(runCommand collectResults showVersionInfo getSAMTOOLS hasPolyA);

use Env qw(@PATH);

@PATH = ($FindBin::RealBin, "$FindBin::RealBin/" . getSAMTOOLS(), @PATH);

use strict;

#const
my $BURNIN = 200;
my $NCV = 1000;
my $SAMPLEGAP = 1;
my $CONFIDENCE = 0.95;
my $NSPC = 50;

my $NMB = 1024; # default

my $status = 0;

my $read_type = 1; # default, single end with qual

my $bowtie_path = "";
my $C = 2;
my $E = 99999999;
my $L = 25;
my $maxHits = 200;
my $chunkMbs = 0;	# 0 = use bowtie default
my $phred33 = 0;
my $phred64 = 0;
my $solexa = 0;

my $is_alignment = 0;
my $faiF = "";
my $tagName = "XM";

my $probF = 0.5;

my $minL = 1;
my $maxL = 1000;
my $mean = -1;
my $sd = 0;

my $estRSPD = 0;
my $B = 20;

my $nThreads = 1;


my $genBamF = 1;  # default is generating transcript bam file
my $genGenomeBamF = 0;
my $sampling = 0;

my $sort_bam_by_coordinate = 0;
my $sort_bam_by_read_name = 0;
my $sort_bam_memory = "1G"; # default as 1G per thread

my $calcPME = 0;
my $calcCI = 0;
my $single_cell_prior = 0;
my $quiet = 0;
my $help = 0;

my $paired_end = 0;
my $no_qual = 0;
my $keep_intermediate_files = 0;

my $strand_specific = 0;

my $bowtie2 = 0;
my $bowtie2_path = "";
my $bowtie2_mismatch_rate = 0.1;
my $bowtie2_k = 200;
my $bowtie2_sensitivity_level = "sensitive"; # must be one of "very_fast", "fast", "sensitive", "very_sensitive"

my $seed = "NULL";

my $appendNames = 0;

my $version = 0;

my $mTime = 0;
my ($time_start, $time_end, $time_alignment, $time_rsem, $time_ci) = (0, 0, 0, 0, 0);

my $mate1_list = "";
my $mate2_list = "";
my $inpF = "";

my ($refName, $sampleName, $sampleToken, $temp_dir, $stat_dir, $imdName, $statName) = ();
my $gap = 32;

my $alleleS = 0;

my $star = 0;
my $star_path  = '';
my $star_gzipped_read_file = 0;
my $star_bzipped_read_file = 0;
my $star_output_genome_bam = 0;

GetOptions("keep-intermediate-files" => \$keep_intermediate_files,
	   "temporary-folder=s" => \$temp_dir,
	   "no-qualities" => \$no_qual,
	   "paired-end" => \$paired_end,
	   "strand-specific" => \$strand_specific,
	   "alignments|sam|bam" => \$is_alignment,
	   "fai=s" => \$faiF,
	   "tag=s" => \$tagName,
	   "seed-length=i" => \$L,
	   "bowtie-path=s" => \$bowtie_path,
	   "bowtie-n=i" => \$C,
	   "bowtie-e=i" => \$E,
	   "bowtie-m=i" => \$maxHits,
	   "bowtie-chunkmbs=i" => \$chunkMbs,
	   "phred33-quals" => \$phred33,
	   "phred64-quals" => \$phred64, #solexa1.3-quals" => \$phred64,
	   "solexa-quals" => \$solexa,
	   "bowtie2" => \$bowtie2,
	   "bowtie2-path=s" => \$bowtie2_path,
	   "bowtie2-mismatch-rate=f" => \$bowtie2_mismatch_rate,
	   "bowtie2-k=i" => \$bowtie2_k,
	   "bowtie2-sensitivity-level=s" => \$bowtie2_sensitivity_level,
	   "forward-prob=f" => \$probF,
	   "fragment-length-min=i" => \$minL,
	   "fragment-length-max=i" => \$maxL,
	   "fragment-length-mean=f" => \$mean,
	   "fragment-length-sd=f" => \$sd,
	   "estimate-rspd" => \$estRSPD,
	   "num-rspd-bins=i" => \$B,
	   "p|num-threads=i" => \$nThreads,
	   "append-names" => \$appendNames,
	   "sampling-for-bam" => \$sampling,
	   "no-bam-output" => sub { $genBamF = 0; },
	   "output-genome-bam" => \$genGenomeBamF,
	   "sort-bam-by-coordinate" => \$sort_bam_by_coordinate,
	   "sort-bam-by-read-name" => \$sort_bam_by_read_name,
	   "sort-bam-memory-per-thread=s" => \$sort_bam_memory,
	   "single-cell-prior" => \$single_cell_prior,
	   "calc-pme" => \$calcPME,
	   "gibbs-burnin=i" => \$BURNIN,
	   "gibbs-number-of-samples=i" => \$NCV,
	   "gibbs-sampling-gap=i", \$SAMPLEGAP,
	   "calc-ci" => \$calcCI,
	   "ci-credibility-level=f" => \$CONFIDENCE,
	   "ci-memory=i" => \$NMB,
	   "ci-number-of-samples-per-count-vector=i" => \$NSPC,
	   'star' => \$star,
	   'star-path=s' => \$star_path,
	   "star-gzipped-read-file" => \$star_gzipped_read_file,
	   "star-bzipped-read-file" => \$star_bzipped_read_file,
	   "star-output-genome-bam" => \$star_output_genome_bam,	   
	   "seed=i" => \$seed,
	   "time" => \$mTime,
	   "version" => \$version,
	   "q|quiet" => \$quiet,
	   "h|help" => \$help) or pod2usage(-exitval => 2, -verbose => 2);

pod2usage(-verbose => 2) if ($help == 1);
&showVersionInfo($FindBin::RealBin) if ($version == 1);

#check parameters and options

if ($is_alignment) {
    pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (scalar(@ARGV) != 3);
    pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m, --phred33-quals, --phred64-quals, --solexa-quals, --bowtie2, --bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k, --bowtie2-sensitivity-level, --star, --star-path, and --star-output-genome-bam cannot be set if input is SAM/BAM/CRAM format!", -exitval => 2, -verbose => 2) if ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200 || $phred33 || $phred64 || $solexa || $bowtie2 || $bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive" || $star || $star_path ne "" || $star_output_genome_bam);
}
else {
    pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (!$paired_end && scalar(@ARGV) != 3 || $paired_end && scalar(@ARGV) != 4);    
    pod2usage(-msg => "If --no-qualities is set, neither --phred33-quals, --phred64-quals or --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($no_qual && ($phred33 + $phred64 + $solexa > 0));
    pod2usage(-msg => "Only one of --phred33-quals, --phred64-quals, and --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($phred33 + $phred64 + $solexa > 1);    
    pod2usage(-msg => "--bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k and --bowtie2-sensitivity-level cannot be set if bowtie aligner is used!", -exitval => 2, -verbose => 2) if (!$bowtie2 && ($bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive"));
    pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m cannot be set if bowtie2 aligner is used!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200));
    pod2usage(-msg => "Mismatch rate must be within [0, 1]!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie2_mismatch_rate < 0.0 || $bowtie2_mismatch_rate > 1.0));
    pod2usage(-msg => "Sensitivity level must be one of \"very_fast\", \"fast\", \"sensitive\", and \"very_sensitive\"!", -exitval => 2, -verbose => 2) if ($bowtie2 && (($bowtie2_sensitivity_level ne "very_fast") && ($bowtie2_sensitivity_level ne "fast") && ($bowtie2_sensitivity_level ne "sensitive") && ($bowtie2_sensitivity_level ne "very_sensitive")));
    if ($faiF ne "") { print "Warning: There is no need to set --fai if you ask RSEM to align reads for you.\n" }
}

pod2usage(-msg => "Forward probability should be in [0, 1]!", -exitval => 2, -verbose => 2) if ($probF < 0 || $probF > 1);
pod2usage(-msg => "Min fragment length should be at least 1!", -exitval => 2, -verbose => 2) if ($minL < 1);
pod2usage(-msg => "Min fragment length should be smaller or equal to max fragment length!", -exitval => 2, -verbose => 2) if ($minL > $maxL);
pod2usage(-msg => "The memory allocated for calculating credibility intervals should be at least 1 MB!\n", -exitval => 2, -verbose => 2) if ($NMB < 1);
pod2usage(-msg => "Number of threads should be at least 1!\n", -exitval => 2, -verbose => 2) if ($nThreads < 1);
pod2usage(-msg => "Seed length should be at least 5!\n", -exitval => 2, -verbose => 2) if ($L < 5);
pod2usage(-msg => "--sampling-for-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($sampling && !$genBamF);
pod2usage(-msg => "--output-genome-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($genGenomeBamF && !$genBamF);
pod2usage(-msg => "The seed for random number generator must be a non-negative 32bit integer!\n", -exitval => 2, -verbose => 2) if (($seed ne "NULL") && ($seed < 0 || $seed > 0xffffffff));
pod2usage(-msg => "The credibility level should be within (0, 1)!\n", -exitval => 2, -verbose => 2) if ($CONFIDENCE <= 0.0 || $CONFIDENCE >= 1.0);
pod2usage(-msg => "Gzipped read files can only be used for aligner STAR\n", -exitval=>2, -verbose =>2) if ( ( $star == 0 ) && ( $star_gzipped_read_file != 0));
pod2usage(-msg => "Bzipped read files can only be used for aligner STAR\n", -exitval=>2, -verbose =>2) if ( ( $star == 0 ) && ( $star_bzipped_read_file != 0));

if ($L < 25) { print "Warning: the seed length set is less than 25! This is only allowed if the references are not added poly(A) tails.\n"; }

if ($strand_specific) { $probF = 1.0; }

if ($paired_end) {
    if ($no_qual) { $read_type = 2; }
    else { $read_type = 3; }
}
else {
    if ($no_qual) { $read_type = 0; }
    else { $read_type = 1; }
}

if (scalar(@ARGV) == 3) {
    if ($is_alignment) { $inpF = $ARGV[0]; } 
    else {$mate1_list = $ARGV[0]; }
    $refName = $ARGV[1];
    $sampleName = $ARGV[2];
}
else {
    $mate1_list = $ARGV[0];
    $mate2_list = $ARGV[1];
    $refName = $ARGV[2];
    $sampleName = $ARGV[3];
}

if (((-e "$refName.ta") && !(-e "$refName.gt")) || (!(-e "$refName.ta") && (-e "$refName.gt"))) {
    print "Allele-specific expression related reference files are corrupted!\n";
    exit(-1);
}

$alleleS = (-e "$refName.ta") && (-e "$refName.gt");

pod2usage(-msg => "RSEM reference cannot contain poly(A) tails if you want to use STAR aligner!", -exitval => 2, -verbose => 2) if ($star && (&hasPolyA("$refName.seq")));

if ($genGenomeBamF) {
    open(INPUT, "$refName.ti");
    my $line = <INPUT>; chomp($line);
    close(INPUT);
    my ($M, $type) = split(/ /, $line);
    pod2usage(-msg => "No genome information provided, so genome bam file cannot be generated!\n", -exitval => 2, -verbose => 2) if ($type != 0);
}

my $pos = rindex($sampleName, '/');
if ($pos < 0) { $sampleToken = $sampleName; }
else { $sampleToken = substr($sampleName, $pos + 1); }

if ($temp_dir eq "") { $temp_dir = "$sampleName.temp"; }
$stat_dir = "$sampleName.stat";

if (!(-d $temp_dir) && !mkdir($temp_dir)) { print "Fail to create folder $temp_dir.\n"; exit(-1); }
if (!(-d $stat_dir) && !mkdir($stat_dir)) { print "Fail to create folder $stat_dir.\n"; exit(-1); }

$imdName = "$temp_dir/$sampleToken";
$statName = "$stat_dir/$sampleToken";

if (!$is_alignment && !$no_qual && ($phred33 + $phred64 + $solexa == 0)) { $phred33 = 1; }

my ($mate_minL, $mate_maxL) = (1, $maxL);

if ($bowtie_path ne "") { $bowtie_path .= "/"; }
if ($bowtie2_path ne "") { $bowtie2_path .= "/"; }
if ($star_path ne '') { $star_path .= '/'; }

my $command = "";

if (!$is_alignment) {
	if ( $star ) {
	    ## align reads by STAR
	    my $star_genome_path = dirname($refName);
	    $command = "$star_path"."STAR" . 
	               ## ENCODE3 pipeline parameters
	               " --genomeDir $star_genome_path " .
	               ' --outSAMunmapped Within ' .
	               ' --outFilterType BySJout ' .
	               ' --outSAMattributes NH HI AS NM MD ' .
	               ' --outFilterMultimapNmax 20 ' .
	               ' --outFilterMismatchNmax 999 ' .
	               ' --outFilterMismatchNoverLmax 0.04 ' .
	               ' --alignIntronMin 20 ' .
	               ' --alignIntronMax 1000000 ' .
	               ' --alignMatesGapMax 1000000 ' .
	               ' --alignSJoverhangMin 8 ' .
	               ' --alignSJDBoverhangMin 1 ' .
	               ' --sjdbScore 1 ' .
	               " --runThreadN $nThreads " .
	               ##
	
	               ## different than ENCODE3 pipeline 
	               ## do not allow using shared memory
	               ' --genomeLoad NoSharedMemory ' .
	               ##
	
	               ## different than ENCODE3 pipeline, which sorts output BAM
	               ## no need to do it here to save time and memory 
	               ' --outSAMtype BAM Unsorted ' .
	               ##
	
	               ## unlike ENCODE3, we don't output bedGraph files
	
	               ' --quantMode TranscriptomeSAM '.
	               ' --outSAMheaderHD \@HD VN:1.4 SO:unsorted '.
	
	               ## define output file prefix
	               " --outFileNamePrefix $imdName ";
	               ##
	
	    if ( $star_gzipped_read_file ) {
		$command .= ' --readFilesCommand zcat ';
	    } elsif ( $star_bzipped_read_file ) {
		$command .= ' --readFilesCommand bzip2 -c ';
	    }
	
	    if ( $read_type == 0 || $read_type == 1 ) {
		$command .= " --readFilesIn $mate1_list ";
	    } else {
		$command .= " --readFilesIn $mate1_list $mate2_list";
	    }
	} elsif (!$bowtie2) {
	    $command = $bowtie_path."bowtie";
	    if ($no_qual) { $command .= " -f"; }
	    else { $command .= " -q"; }
	    
	    if ($phred33) { $command .= " --phred33-quals"; }
	    elsif ($phred64) { $command .= " --phred64-quals"; }
	    elsif ($solexa) { $command .= " --solexa-quals"; }
    
	    $command .= " -n $C -e $E -l $L";
	    if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL"; }
	    if ($chunkMbs > 0) { $command .= " --chunkmbs $chunkMbs"; }
	
	    if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
	    elsif ($probF == 0.0) { $command .= " --nofw"; }
	
	    $command .= " -p $nThreads -a -m $maxHits -S";
	    if ($quiet) { $command .= " --quiet"; }    
	    
	    $command .= " $refName";
	    if ($read_type == 0 || $read_type == 1) {
		$command .= " $mate1_list"; 
	    }
	    else {
		$command .= " -1 $mate1_list -2 $mate2_list";
	    }
	    
	    # pipe to samtools to generate a BAM file
	    $command .= " | samtools view -S -b -o $imdName.bam -";
	}
	else {
	    $command = $bowtie2_path."bowtie2";
	    if ($no_qual) { $command .= " -f"; }
	    else { $command .= " -q"; }
	    
	    if ($phred33) { $command .= " --phred33"; }
	    elsif ($phred64) { $command .= " --phred64"; }
	    elsif ($solexa) { $command .= " --solexa-quals"; }
	    
	    if ($bowtie2_sensitivity_level eq "very_fast") { $command .= " --very-fast"; }
	    elsif ($bowtie2_sensitivity_level eq "fast") { $command .= " --fast"; }
	    elsif ($bowtie2_sensitivity_level eq "sensitive") { $command .= " --sensitive"; }
	    else { $command .= " --very-sensitive"; }
	    
	    $command .= " --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-$bowtie2_mismatch_rate";  
	    
	    if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL --no-mixed --no-discordant"; }
	    
	    if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
	    elsif ($probF == 0.0) { $command .= " --nofw"; }
	    
	    $command .= " -p $nThreads -k $bowtie2_k";
	    if ($quiet) { $command .= " --quiet"; }    
	    
	    $command .= " -x $refName";
	    if ($read_type == 0 || $read_type == 1) {
		$command .= " -U $mate1_list"; 
	    }
	    else {
		$command .= " -1 $mate1_list -2 $mate2_list";
	    }

	    # pipe to samtools to generate a BAM file
	    $command .= " | samtools view -S -b -o $imdName.bam -";
	}
	
	if ($mTime) { $time_start = time(); }

	&runCommand($command);
	
	if ($mTime) { $time_end = time(); $time_alignment = $time_end - $time_start; }

	$inpF = "$imdName.bam";

	if ( $star ) {
	    my $star_tr_bam = $imdName . 'Aligned.toTranscriptome.out.bam';
	    rename $star_tr_bam, $inpF
		or die "can't rename $star_tr_bam to $inpF: $!\n";
	    rmdir $imdName . "_STARtmp/";
	    my $star_genome_bam = $imdName . "Aligned.out.bam";
	    my $rsem_star_genome_bam = $sampleName.'.STAR.genome.bam';
	    if ( $star_output_genome_bam ) {
		rename $star_genome_bam, $rsem_star_genome_bam or die 
		    "can't move $star_genome_bam to $rsem_star_genome_bam: $!\n";
	    } else {
		unlink $star_genome_bam or die "can't remove $star_genome_bam: $!\n";
	    }
	}
}

if ( $sort_bam_by_read_name ) {
    my $sorted_bam = "$imdName.sorted.bam";
    $command = "samtools sort -n -@ $nThreads -m $sort_bam_memory -o $sorted_bam $inpF";
    &runCommand($command);
    if (!$is_alignment) {
	$command = "rm -f $inpF";
	&runCommand($command);
    }
    $inpF = $sorted_bam;
}

if ($mTime) { $time_start = time(); }

$command = "rsem-parse-alignments $refName $imdName $statName $inpF $read_type";
if ($faiF ne "") { $command .= " -t $faiF"; }
if ($tagName ne "") { $command .= " -tag $tagName"; }
if ($quiet) { $command .= " -q"; }

&runCommand($command);

$command = "rsem-build-read-index $gap"; 
if ($read_type == 0) { $command .= " 0 $quiet $imdName\_alignable.fa"; }
elsif ($read_type == 1) { $command .= " 1 $quiet $imdName\_alignable.fq"; }
elsif ($read_type == 2) { $command .= " 0 $quiet $imdName\_alignable_1.fa $imdName\_alignable_2.fa"; }
elsif ($read_type == 3) { $command .= " 1 $quiet $imdName\_alignable_1.fq $imdName\_alignable_2.fq"; }
else { print "Impossible! read_type is not in [1,2,3,4]!\n"; exit(-1); }
&runCommand($command);

my $doesOpen = open(OUTPUT, ">$imdName.mparams");
if ($doesOpen == 0) { print "Cannot generate $imdName.mparams!\n"; exit(-1); }
print OUTPUT "$minL $maxL\n";
print OUTPUT "$probF\n";
print OUTPUT "$estRSPD\n";
print OUTPUT "$B\n";
print OUTPUT "$mate_minL $mate_maxL\n";
print OUTPUT "$mean $sd\n";
print OUTPUT "$L\n";
close(OUTPUT);  

my @seeds = ();
if ($seed ne "NULL") { 
    srand($seed); 
    for (my $i = 0; $i < 3; $i++) {
	push(@seeds, int(rand(1 << 32))); 
    }
}

$command = "rsem-run-em $refName $read_type $sampleName $imdName $statName -p $nThreads";
if ($genBamF) { 
    $command .= " -b $inpF";
    if ($faiF ne "") { $command .= " 1 $faiF"; }
    else { $command .= " 0"; }
    if ($sampling) { $command .= " --sampling"; }
    if ($seed ne "NULL") { $command .= " --seed $seeds[0]"; }
}
if ($calcPME || $calcCI) { $command .= " --gibbs-out"; }
if ($appendNames) { $command .= " --append-names"; }
if ($quiet) { $command .= " -q"; }

&runCommand($command);

if ($alleleS) {
    &collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
    &collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
    &collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
} 
else {
    &collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
    &collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}

if ($genBamF) {
    if ($genGenomeBamF) {
	$command = "rsem-tbam2gbam $refName $sampleName.transcript.bam $sampleName.genome.bam";
	&runCommand($command);
    }
    
    if ($sort_bam_by_coordinate) {
	$command = "samtools sort -@ $nThreads -m $sort_bam_memory -o $sampleName.transcript.sorted.bam $sampleName.transcript.bam";
	&runCommand($command);
	$command = "samtools index $sampleName.transcript.sorted.bam";
	&runCommand($command);

	if ($genGenomeBamF) {
	    $command = "samtools sort -@ $nThreads -m $sort_bam_memory -o $sampleName.genome.sorted.bam $sampleName.genome.bam";
	    &runCommand($command);
	    $command = "samtools index $sampleName.genome.sorted.bam";
	    &runCommand($command);
	}
    }
}

if ($mTime) { $time_end = time(); $time_rsem = $time_end - $time_start; }

if ($mTime) { $time_start = time(); }

if ($calcPME || $calcCI ) {
    $command = "rsem-run-gibbs $refName $imdName $statName $BURNIN $NCV $SAMPLEGAP";
    $command .= " -p $nThreads";
    if ($seed ne "NULL") { $command .= " --seed $seeds[1]"; }
    if ($single_cell_prior) { $command .= " --pseudo-count 0.1"; }
    if ($quiet) { $command .= " -q"; }
    &runCommand($command);
}

if ($calcPME || $calcCI) {
    if ($alleleS) {
	system("mv $sampleName.alleles.results $imdName.alleles.results.bak1");
	system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
	system("mv $sampleName.genes.results $imdName.genes.results.bak1");
	&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
	&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
	&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
    }
    else {
	system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
	system("mv $sampleName.genes.results $imdName.genes.results.bak1");
	&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
	&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
    }
}

if ($calcCI) {
    $command = "rsem-calculate-credibility-intervals $refName $imdName $statName $CONFIDENCE $NCV $NSPC $NMB";
    $command .= " -p $nThreads";
    if ($seed ne "NULL") { $command .= " --seed $seeds[2]"; }
    if ($single_cell_prior) { $command .= " --pseudo-count 0.1"; }
    if ($quiet) { $command .= " -q"; }
    &runCommand($command);

    if ($alleleS) {
	system("mv $sampleName.alleles.results $imdName.alleles.results.bak2");
	system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
	system("mv $sampleName.genes.results $imdName.genes.results.bak2");
	&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
	&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
	&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
    }
    else {
	system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
	system("mv $sampleName.genes.results $imdName.genes.results.bak2");
	&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
	&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
    }
}

if ($mTime) { $time_end = time(); $time_ci = $time_end - $time_start; }

if ($mTime) { $time_start = time(); }

if (!$keep_intermediate_files) {
    &runCommand("rm -rf $temp_dir", "Fail to delete the temporary folder!");
}

if ($mTime) { $time_end = time(); }

if ($mTime) { 
    open(OUTPUT, ">$sampleName.time");
    print OUTPUT "Aligning reads: $time_alignment s.\n";
    print OUTPUT "Estimating expression levels: $time_rsem s.\n";
    print OUTPUT "Calculating credibility intervals: $time_ci s.\n";
#    my $time_del = $time_end - $time_start;
#    print OUTPUT "Delete: $time_del s.\n";
    close(OUTPUT);
}

__END__

=head1 NAME

rsem-calculate-expression

=head1 PURPOSE

Estimate gene and isoform expression from RNA-Seq data.

=head1 SYNOPSIS

 rsem-calculate-expression [options] upstream_read_file(s) reference_name sample_name 
 rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name 
 rsem-calculate-expression [options] --alignments [--paired-end] input reference_name sample_name

=head1 ARGUMENTS

=over

=item B<upstream_read_files(s)>

Comma-separated list of files containing single-end reads or upstream reads for paired-end data.  By default, these files are assumed to be in FASTQ format.  If the --no-qualities option is specified, then FASTA format is expected.

=item B<downstream_read_file(s)>

Comma-separated list of files containing downstream reads which are paired with the upstream reads.  By default, these files are assumed to be in FASTQ format.  If the --no-qualities option is specified, then FASTA format is expected.

=item B<input>

SAM/BAM/CRAM formatted input file.  If "-" is specified for the filename, the input is instead assumed to come from standard input. RSEM requires all alignments of the same read group together. For paired-end reads, RSEM also requires the two mates of any alignment be adjacent. In addition, RSEM does not allow the SEQ and QUAL fields to be empty. See Description section for how to make input file obey RSEM's requirements.

=item B<reference_name>                        

The name of the reference used.  The user must have run 'rsem-prepare-reference' with this reference_name before running this program.

=item B<sample_name>

The name of the sample analyzed. All output files are prefixed by this name (e.g., sample_name.genes.results)

=back

=head1 BASIC OPTIONS

=over

=item B<--paired-end>

Input reads are paired-end reads. (Default: off)

=item B<--no-qualities>

Input reads do not contain quality scores. (Default: off)

=item B<--strand-specific>

The RNA-Seq protocol used to generate the reads is strand specific, i.e., all (upstream) reads are derived from the forward strand.  This option is equivalent to --forward-prob=1.0.  With this option set, if RSEM runs the Bowtie/Bowtie 2 aligner, the '--norc' Bowtie/Bowtie 2 option will be used, which disables alignment to the reverse strand of transcripts.  (Default: off)

=item B<-p/--num-threads> <int>

Number of threads to use. Both Bowtie/Bowtie2, expression estimation and 'samtools sort' will use this many threads. (Default: 1)

=item B<--alignments>

Input file contains alignments in SAM/BAM/CRAM format. The exact file format will be determined automatically. (Default: off)

=item B<--fai> <file>

If the header section of input alignment file does not contain reference sequence information, this option should be turned on. <file> is a FAI format file containing each reference sequence's name and length. Please refer to the SAM official website for the details of FAI format. (Default: off)

=item B<--bowtie2>

Use Bowtie 2 instead of Bowtie to align reads. Since currently RSEM does not handle indel, local and discordant alignments, the Bowtie2 parameters are set in a way to avoid those alignments. In particular, we use options '--sensitive --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.1' by default. The last parameter of '--score-min', '-0.1', is the negative of maximum mismatch rate. This rate can be set by option '--bowtie2-mismatch-rate'. If reads are paired-end, we additionally use options '--no-mixed' and '--no-discordant'. (Default: off)

=item B<--star>

Use STAR to align reads. Alignment parameters are from ENCODE3's STAR-RSEM pipeline. To save computational time and memory resources, STAR's Output BAM file is unsorted. It is stored in RSEM's temporary directory with name as 'sample_name.bam'. Each STAR job will have its own private copy of the genome in memory. (Default: off) 

=item B<--append-names>

If gene_name/transcript_name is available, append it to the end of gene_id/transcript_id (separated by '_') in files 'sample_name.isoforms.results' and 'sample_name.genes.results'. (Default: off)

=item B<--seed> <uint32>

Set the seed for the random number generators used in calculating posterior mean estimates and credibility intervals. The seed must be a non-negative 32 bit integer. (Default: off)

=item B<--single-cell-prior>

By default, RSEM uses Dirichlet(1) as the prior to calculate posterior mean estimates and credibility intervals. However, much less genes are expressed in single cell RNA-Seq data. Thus, if you want to compute posterior mean estimates and/or credibility intervals and you have single-cell RNA-Seq data, you are recommended to turn on this option. Then RSEM will use Dirichlet(0.1) as the prior which encourage the sparsity of the expression levels. (Default: off)

=item B<--calc-pme>

Run RSEM's collapsed Gibbs sampler to calculate posterior mean estimates. (Default: off) 

=item B<--calc-ci>

Calculate 95% credibility intervals and posterior mean estimates. The credibility level can be changed by setting '--ci-credibility-level'. (Default: off)

=item B<-q/--quiet>

Suppress the output of logging information. (Default: off)

=item B<-h/--help>

Show help information.

=item B<--version>

Show version information.

=back

=head1 OUTPUT OPTIONS

=over

=item B<--sort-bam-by-read-name>

Sort BAM file aligned under transcript coordidate by read name. Setting this option on will produce deterministic maximum likelihood estimations from independent runs. Note that sorting will take long time and lots of memory. (Default: off)

=item B<--no-bam-output>

Do not output any BAM file. (Default: off)

=item B<--sampling-for-bam>

When RSEM generates a BAM file, instead of outputting all alignments a read has with their posterior probabilities, one alignment is sampled according to the posterior probabilities. The sampling procedure includes the alignment to the "noise" transcript, which does not appear in the BAM file. Only the sampled alignment has a weight of 1. All other alignments have weight 0. If the "noise" transcript is sampled, all alignments appeared in the BAM file should have weight 0. (Default: off)

=item B<--output-genome-bam>

Generate a BAM file, 'sample_name.genome.bam', with alignments mapped to genomic coordinates and annotated with their posterior probabilities. In addition, RSEM will call samtools (included in RSEM package) to sort and index the bam file. 'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' will be generated. (Default: off)

=item B<--sort-bam-by-coordinate>

Sort RSEM generated transcript and genome BAM files by coordinates and build associated indices. (Default: off)  

=item B<--sort-bam-memory-per-thread> <string>

Set the maximum memory per thread that can be used by 'samtools sort'. <string> represents the memory and accepts suffices 'K/M/G'. RSEM will pass <string> to the '-m' option of 'samtools sort'. Note that the default used here is different from the default used by samtools. (Default: 1G)

=back

=head1 ALIGNER OPTIONS

=over

=item B<--seed-length> <int>

Seed length used by the read aligner.  Providing the correct value is important for RSEM. If RSEM runs Bowtie, it uses this value for Bowtie's seed length parameter. Any read with its or at least one of its mates' (for paired-end reads) length less than this value will be ignored. If the references are not added poly(A) tails, the minimum allowed value is 5, otherwise, the minimum allowed value is 25. Note that this script will only check if the value >= 5 and give a warning message if the value < 25 but >= 5. (Default: 25)

=item B<--phred33-quals>

Input quality scores are encoded as Phred+33. (Default: on)

=item B<--phred64-quals>

Input quality scores are encoded as Phred+64 (default for GA Pipeline ver. >= 1.3). (Default: off)

=item B<--solexa-quals>

Input quality scores are solexa encoded (from GA Pipeline ver. < 1.3). (Default: off)

=item B<--bowtie-path> <path>

The path to the Bowtie executables. (Default: the path to the Bowtie executables is assumed to be in the user's PATH environment variable)

=item B<--bowtie-n> <int>

(Bowtie parameter) max # of mismatches in the seed. (Range: 0-3, Default: 2)

=item B<--bowtie-e> <int>

(Bowtie parameter) max sum of mismatch quality scores across the alignment. (Default: 99999999)

=item B<--bowtie-m> <int>

(Bowtie parameter) suppress all alignments for a read if > <int> valid alignments exist. (Default: 200)

=item B<--bowtie-chunkmbs> <int>

(Bowtie parameter) memory allocated for best first alignment calculation (Default: 0 - use Bowtie's default)

=item B<--bowtie2-path> <path>

(Bowtie 2 parameter) The path to the Bowtie 2 executables. (Default: the path to the Bowtie 2 executables is assumed to be in the user's PATH environment variable)

=item B<--bowtie2-mismatch-rate> <double>

(Bowtie 2 parameter) The maximum mismatch rate allowed. (Default: 0.1)

=item B<--bowtie2-k> <int>

(Bowtie 2 parameter) Find up to <int> alignments per read. (Default: 200)

=item B<--bowtie2-sensitivity-level> <string>

(Bowtie 2 parameter) Set Bowtie 2's preset options in --end-to-end mode. This option controls how hard Bowtie 2 tries to find alignments. <string> must be one of "very_fast", "fast", "sensitive" and "very_sensitive". The four candidates correspond to Bowtie 2's "--very-fast", "--fast", "--sensitive" and "--very-sensitive" options. (Default: "sensitive" - use Bowtie 2's default)

=item B<--star-path> <path>

The path to STAR's executable. (Default: the path to STAR executable is assumed to be in user's PATH environment variable)

=item B<--star-gzipped-read-file>

(STAR parameter) Input read file(s) is compressed by gzip. (Default: off)

=item B<--star-bzipped-read-file>

(STAR parameter) Input read file(s) is compressed by bzip2. (Default: off)

=item B<--star-output-genome-bam>

(STAR parameter) Save the BAM file from STAR alignment under genomic coordinate to 'sample_name.STAR.genome.bam'. This file is NOT sorted by genomic coordinate. In this file, according to STAR's manual, 'paired ends of an alignment are always adjacent, and multiple alignments of a read are adjacent as well'. (Default: off)

=back

=head1 ADVANCED OPTIONS

=over

=item B<--tag> <string>

The name of the optional field used in the SAM input for identifying a read with too many valid alignments. The field should have the format <tagName>:i:<value>, where a <value> bigger than 0 indicates a read with too many alignments. (Default: "")

=item B<--forward-prob> <double>

Probability of generating a read from the forward strand of a transcript. Set to 1 for a strand-specific protocol where all (upstream) reads are derived from the forward strand, 0 for a strand-specific protocol where all (upstream) read are derived from the reverse strand, or 0.5 for a non-strand-specific protocol. (Default: 0.5)

=item B<--fragment-length-min> <int>

Minimum read/insert length allowed. This is also the value for the Bowtie/Bowtie2 -I option. (Default: 1)

=item B<--fragment-length-max> <int>

Maximum read/insert length allowed. This is also the value for the Bowtie/Bowtie 2 -X option. (Default: 1000)

=item B<--fragment-length-mean> <double>

(single-end data only) The mean of the fragment length distribution, which is assumed to be a Gaussian. (Default: -1, which disables use of the fragment length distribution)

=item B<--fragment-length-sd> <double>

(single-end data only) The standard deviation of the fragment length distribution, which is assumed to be a Gaussian.  (Default: 0, which assumes that all fragments are of the same length, given by the rounded value of B<--fragment-length-mean>)

=item B<--estimate-rspd>

Set this option if you want to estimate the read start position distribution (RSPD) from data. Otherwise, RSEM will use a uniform RSPD. (Default: off)

=item B<--num-rspd-bins> <int>

Number of bins in the RSPD. Only relevant when '--estimate-rspd' is specified.  Use of the default setting is recommended. (Default: 20)

=item B<--gibbs-burnin> <int>

The number of burn-in rounds for RSEM's Gibbs sampler. Each round passes over the entire data set once. If RSEM can use multiple threads, multiple Gibbs samplers will start at the same time and all samplers share the same burn-in number. (Default: 200)

=item B<--gibbs-number-of-samples> <int>

The total number of count vectors RSEM will collect from its Gibbs samplers. (Default: 1000)

=item B<--gibbs-sampling-gap> <int>

The number of rounds between two succinct count vectors RSEM collects. If the count vector after round N is collected, the count vector after round N + <int> will also be collected. (Default: 1) 

=item B<--ci-credibility-level> <double>

The credibility level for credibility intervals. (Default: 0.95)

=item B<--ci-memory> <int>

Maximum size (in memory, MB) of the auxiliary buffer used for computing credibility intervals (CI). (Default: 1024)

=item B<--ci-number-of-samples-per-count-vector> <int>

The number of read generating probability vectors sampled per sampled count vector. The crebility intervals are calculated by first sampling P(C | D) and then sampling P(Theta | C) for each sampled count vector. This option controls how many Theta vectors are sampled per sampled count vector. (Default: 50)

=item B<--keep-intermediate-files>

Keep temporary files generated by RSEM.  RSEM creates a temporary directory, 'sample_name.temp', into which it puts all intermediate output files. If this directory already exists, RSEM overwrites all files generated by previous RSEM runs inside of it. By default, after RSEM finishes, the temporary directory is deleted.  Set this option to prevent the deletion of this directory and the intermediate files inside of it. (Default: off)

=item B<--temporary-folder> <string>

Set where to put the temporary files generated by RSEM. If the folder specified does not exist, RSEM will try to create it. (Default: sample_name.temp)

=item B<--time>

Output time consumed by each step of RSEM to 'sample_name.time'. (Default: off)

=back

=head1 DESCRIPTION

In its default mode, this program aligns input reads against a reference transcriptome with Bowtie and calculates expression values using the alignments.  RSEM assumes the data are single-end reads with quality scores, unless the '--paired-end' or '--no-qualities' options are specified. Alternatively, users can use STAR to align reads using the '--star' option. RSEM has provided options in 'rsem-prepare-reference' to prepare STAR's genome indices. Users may use an alternative aligner by specifying '--alignments', and providing an alignment file in SAM/BAM/CRAM format. However, users should make sure that they align against the indices generated by 'rsem-prepare-reference' and the alignment file satisfies the requirements mentioned in ARGUMENTS section. 

One simple way to make the alignment file satisfying RSEM's requirements is to use the 'convert-sam-for-rsem' script. This script accepts SAM/BAM/CRAM files as input and outputs a BAM file. For example, type the following command to convert a SAM file, 'input.sam', to a ready-for-use BAM file, 'input_for_rsem.bam':

  convert-sam-for-rsem input.sam input_for_rsem  

For details, please refer to 'convert-sam-for-rsem's documentation page.

=head1 NOTES

1. Users must run 'rsem-prepare-reference' with the appropriate reference before using this program.

2. For single-end data, it is strongly recommended that the user provide the fragment length distribution parameters (--fragment-length-mean and --fragment-length-sd).  For paired-end data, RSEM will automatically learn a fragment length distribution from the data.

3. Some aligner parameters have default values different from their original settings.
 
4. With the '--calc-pme' option, posterior mean estimates will be calculated in addition to maximum likelihood estimates.

5. With the '--calc-ci' option, 95% credibility intervals and posterior mean estimates will be calculated in addition to maximum likelihood estimates.

6. The temporary directory and all intermediate files will be removed when RSEM finishes unless '--keep-intermediate-files' is specified.

=head1 OUTPUT

=over

=item B<sample_name.isoforms.results> 

File containing isoform level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:

transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM IsoPct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]

Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.

'transcript_id' is the transcript name of this transcript. 'gene_id'
is the gene name of the gene which this transcript belongs to (denote
this gene as its parent gene). If no gene information is provided,
'gene_id' and 'transcript_id' are the same.

'length' is this transcript's sequence length (poly(A) tail is not
counted). 'effective_length' counts only the positions that can
generate a valid fragment. If no poly(A) tail is added,
'effective_length' is equal to transcript length - mean fragment
length + 1. If one transcript's effective length is less than 1, this
transcript's both effective length and abundance estimates are set to
0.

'expected_count' is the sum of the posterior probability of each read
comes from this transcript over all reads. Because 1) each read
aligning to this transcript has a probability of being generated from
background noise; 2) RSEM may filter some alignable low quality reads,
the sum of expected counts for all transcript are generally less than
the total number of reads aligned.

'TPM' stands for Transcripts Per Million. It is a relative measure of
transcript abundance. The sum of all transcripts' TPM is 1
million. 'FPKM' stands for Fragments Per Kilobase of transcript per
Million mapped reads. It is another relative measure of transcript
abundance. If we define l_bar be the mean transcript length in a
sample, which can be calculated as

l_bar = \sum_i TPM_i / 10^6 * effective_length_i (i goes through every transcript), 

the following equation is hold:

FPKM_i = 10^3 / l_bar * TPM_i.

We can see that the sum of FPKM is not a constant across samples.

'IsoPct' stands for isoform percentage. It is the percentage of this
transcript's abandunce over its parent gene's abandunce. If its parent
gene has only one isoform or the gene information is not provided,
this field will be set to 100.

'posterior_mean_count', 'pme_TPM', 'pme_FPKM' are posterior mean
estimates calculated by RSEM's Gibbs
sampler. 'posterior_standard_deviation_of_count' is the posterior
standard deviation of counts. 'IsoPct_from_pme_TPM' is the isoform
percentage calculated from 'pme_TPM' values.

'TPM_ci_lower_bound', 'TPM_ci_upper_bound', 'FPKM_ci_lower_bound' and
'FPKM_ci_upper_bound' are lower(l) and upper(u) bounds of 95%
credibility intervals for TPM and FPKM values. The bounds are
inclusive (i.e. [l, u]). 

'TPM_coefficient_of_quartile_variation' and
'FPKM_coefficient_of_quartile_variation' are coefficients of quartile
variation (CQV) for TPM and FPKM values. CQV is a robust way of
measuring the ratio between the standard deviation and the mean. It is
defined as

CQV := (Q3 - Q1) / (Q3 + Q1),

where Q1 and Q3 are the first and third quartiles. 

=item B<sample_name.genes.results>

File containing gene level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:

gene_id transcript_id(s) length effective_length expected_count TPM FPKM [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]

Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.

'transcript_id(s)' is a comma-separated list of transcript_ids
belonging to this gene. If no gene information is provided, 'gene_id'
and 'transcript_id(s)' are identical (the 'transcript_id').

A gene's 'length' and 'effective_length' are
defined as the weighted average of its transcripts' lengths and
effective lengths (weighted by 'IsoPct'). A gene's abundance estimates
are just the sum of its transcripts' abundance estimates.

=item B<sample_name.alleles.results>

Only generated when the RSEM references are built with allele-specific
transcripts.

This file contains allele level expression estimates for
allele-specific expression calculation. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:

allele_id transcript_id gene_id length effective_length expected_count TPM FPKM AlleleIsoPct AlleleGenePct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM AlleleIsoPct_from_pme_TPM AlleleGenePct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]

Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.

'allele_id' is the allele-specific name of this allele-specific transcript.

'AlleleIsoPct' stands for allele-specific percentage on isoform
level. It is the percentage of this allele-specific transcript's
abundance over its parent transcript's abundance. If its parent
transcript has only one allele variant form, this field will be set to
100.

'AlleleGenePct' stands for allele-specific percentage on gene
level. It is the percentage of this allele-specific transcript's
abundance over its parent gene's abundance.

'AlleleIsoPct_from_pme_TPM' and 'AlleleGenePct_from_pme_TPM' have
similar meanings. They are calculated based on posterior mean
estimates.

Please note that if this file is present, the fields 'length' and
'effective_length' in 'sample_name.isoforms.results' should be
interpreted similarly as the corresponding definitions in
'sample_name.genes.results'.

=item B<sample_name.transcript.bam> 

Only generated when --no-bam-output is not specified.

'sample_name.transcript.bam' is a BAM-formatted file of read
alignments in transcript coordinates. The MAPQ field of each alignment
is set to min(100, floor(-10 * log10(1.0 - w) + 0.5)), where w is the
posterior probability of that alignment being the true mapping of a
read.  In addition, RSEM pads a new tag ZW:f:value, where value is a
single precision floating number representing the posterior
probability. Because this file contains all alignment lines produced
by bowtie or user-specified aligners, it can also be used as a
replacement of the aligner generated BAM/SAM file.

=item B<sample_name.transcript.sorted.bam and sample_name.transcript.sorted.bam.bai>

Only generated when --no-bam-output is not specified and --sort-bam-by-coordinate is specified.

'sample_name.transcript.sorted.bam' and
'sample_name.transcript.sorted.bam.bai' are the sorted BAM file and
indices generated by samtools (included in RSEM package).

=item B<sample_name.genome.bam>

Only generated when --no-bam-output is not specified and --output-genome-bam is specified.

'sample_name.genome.bam' is a BAM-formatted file of read alignments in
genomic coordinates. Alignments of reads that have identical genomic
coordinates (i.e., alignments to different isoforms that share the
same genomic region) are collapsed into one alignment.  The MAPQ field
of each alignment is set to min(100, floor(-10 * log10(1.0 - w) +
0.5)), where w is the posterior probability of that alignment being
the true mapping of a read.  In addition, RSEM pads a new tag
ZW:f:value, where value is a single precision floating number
representing the posterior probability. If an alignment is spliced, a
XS:A:value tag is also added, where value is either '+' or '-'
indicating the strand of the transcript it aligns to.

=item B<sample_name.genome.sorted.bam and sample_name.genome.sorted.bam.bai>

Only generated when --no-bam-output is not specified, and --sort-bam-by-coordinate and --output-genome-bam are specified.

'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' are the
sorted BAM file and indices generated by samtools (included in RSEM package).

=item B<sample_name.time>

Only generated when --time is specified.

It contains time (in seconds) consumed by aligning reads, estimating expression levels and calculating credibility intervals.

=item B<sample_name.stat>

This is a folder instead of a file. All model related statistics are stored in this folder. Use 'rsem-plot-model' can generate plots using this folder. 

'sample_name.stat/sample_name.cnt' contains alignment statistics. The format and meanings of each field are described in 'cnt_file_description.txt' under RSEM directory.

'sample_name.stat/sample_name.model' stores RNA-Seq model parameters learned from the data. The format and meanings of each filed of this file are described in 'model_file_description.txt' under RSEM directory.

=back

=head1 EXAMPLES

Assume the path to the bowtie executables is in the user's PATH environment variable. Reference files are under '/ref' with name 'mouse_125'. 

1) '/data/mmliver.fq', single-end reads with quality scores. Quality scores are encoded as for 'GA pipeline version >= 1.3'. We want to use 8 threads and generate a genome BAM file. In addition, we want to append gene/transcript names to the result files:

 rsem-calculate-expression --phred64-quals \
                           -p 8 \
                           --append-names \
                           --output-genome-bam \
                           /data/mmliver.fq \
                           /ref/mouse_125 \
                           mmliver_single_quals

2) '/data/mmliver_1.fq' and '/data/mmliver_2.fq', paired-end reads with quality scores. Quality scores are in SANGER format. We want to use 8 threads and do not generate a genome BAM file:

 rsem-calculate-expression -p 8 \
                           --paired-end \
                           /data/mmliver_1.fq \
                           /data/mmliver_2.fq \
                           /ref/mouse_125 \
                           mmliver_paired_end_quals

3) '/data/mmliver.fa', single-end reads without quality scores. We want to use 8 threads:

 rsem-calculate-expression -p 8 \
                           --no-qualities \
                           /data/mmliver.fa \
                           /ref/mouse_125 \
                           mmliver_single_without_quals

4) Data are the same as 1). This time we assume the bowtie executables are under '/sw/bowtie'. We want to take a fragment length distribution into consideration. We set the fragment length mean to 150 and the standard deviation to 35. In addition to a BAM file, we also want to generate credibility intervals. We allow RSEM to use 1GB of memory for CI calculation:

 rsem-calculate-expression --bowtie-path /sw/bowtie \
                           --phred64-quals \
                           --fragment-length-mean 150.0 \
                           --fragment-length-sd 35.0 \
                           -p 8 \
                           --output-genome-bam \
                           --calc-ci \
                           --ci-memory 1024 \
                           /data/mmliver.fq \
                           /ref/mouse_125 \
                           mmliver_single_quals

5) '/data/mmliver_paired_end_quals.bam', BAM-formatted alignments for paired-end reads with quality scores. We want to use 8 threads:

 rsem-calculate-expression --paired-end \
                           --alignments \
                           -p 8 \
                           /data/mmliver_paired_end_quals.bam \
                           /ref/mouse_125 \
                           mmliver_paired_end_quals

6) '/data/mmliver_1.fq.gz' and '/data/mmliver_2.fq.gz', paired-end reads with quality scores and read files are compressed by gzip. We want to use STAR to aligned reads and assume STAR executable is '/sw/STAR'. Suppose we want to use 8 threads and do not generate a genome BAM file:

 rsem-calculate-expression --paired-end \
                           --star \
                           --star-path /sw/STAR \
                           --gzipped-read-file \
                           -p 8 \
                           /data/mmliver_1.fq.gz \
                           /data/mmliver_2.fq.gz \
                           /ref/mouse_125 \
                           mmliver_paired_end_quals

=cut