/usr/bin/rsem-calculate-expression is in rsem 1.2.31+dfsg-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | #!/usr/bin/env perl
use Getopt::Long qw(:config no_auto_abbrev);
use Pod::Usage;
use File::Basename;
use FindBin;
use lib $FindBin::RealBin;
use rsem_perl_utils qw(runCommand collectResults showVersionInfo getSAMTOOLS hasPolyA);
use Env qw(@PATH);
@PATH = ($FindBin::RealBin, "$FindBin::RealBin/" . getSAMTOOLS(), @PATH);
use strict;
#const
my $BURNIN = 200;
my $NCV = 1000;
my $SAMPLEGAP = 1;
my $CONFIDENCE = 0.95;
my $NSPC = 50;
my $NMB = 1024; # default
my $status = 0;
my $read_type = 1; # default, single end with qual
my $bowtie_path = "";
my $C = 2;
my $E = 99999999;
my $L = 25;
my $maxHits = 200;
my $chunkMbs = 0; # 0 = use bowtie default
my $phred33 = 0;
my $phred64 = 0;
my $solexa = 0;
my $is_alignment = 0;
my $faiF = "";
my $tagName = "XM";
my $probF = 0.5;
my $minL = 1;
my $maxL = 1000;
my $mean = -1;
my $sd = 0;
my $estRSPD = 0;
my $B = 20;
my $nThreads = 1;
my $genBamF = 1; # default is generating transcript bam file
my $genGenomeBamF = 0;
my $sampling = 0;
my $sort_bam_by_coordinate = 0;
my $sort_bam_by_read_name = 0;
my $sort_bam_memory = "1G"; # default as 1G per thread
my $calcPME = 0;
my $calcCI = 0;
my $single_cell_prior = 0;
my $quiet = 0;
my $help = 0;
my $paired_end = 0;
my $no_qual = 0;
my $keep_intermediate_files = 0;
my $strand_specific = 0;
my $bowtie2 = 0;
my $bowtie2_path = "";
my $bowtie2_mismatch_rate = 0.1;
my $bowtie2_k = 200;
my $bowtie2_sensitivity_level = "sensitive"; # must be one of "very_fast", "fast", "sensitive", "very_sensitive"
my $seed = "NULL";
my $appendNames = 0;
my $version = 0;
my $mTime = 0;
my ($time_start, $time_end, $time_alignment, $time_rsem, $time_ci) = (0, 0, 0, 0, 0);
my $mate1_list = "";
my $mate2_list = "";
my $inpF = "";
my ($refName, $sampleName, $sampleToken, $temp_dir, $stat_dir, $imdName, $statName) = ();
my $gap = 32;
my $alleleS = 0;
my $star = 0;
my $star_path = '';
my $star_gzipped_read_file = 0;
my $star_bzipped_read_file = 0;
my $star_output_genome_bam = 0;
GetOptions("keep-intermediate-files" => \$keep_intermediate_files,
"temporary-folder=s" => \$temp_dir,
"no-qualities" => \$no_qual,
"paired-end" => \$paired_end,
"strand-specific" => \$strand_specific,
"alignments|sam|bam" => \$is_alignment,
"fai=s" => \$faiF,
"tag=s" => \$tagName,
"seed-length=i" => \$L,
"bowtie-path=s" => \$bowtie_path,
"bowtie-n=i" => \$C,
"bowtie-e=i" => \$E,
"bowtie-m=i" => \$maxHits,
"bowtie-chunkmbs=i" => \$chunkMbs,
"phred33-quals" => \$phred33,
"phred64-quals" => \$phred64, #solexa1.3-quals" => \$phred64,
"solexa-quals" => \$solexa,
"bowtie2" => \$bowtie2,
"bowtie2-path=s" => \$bowtie2_path,
"bowtie2-mismatch-rate=f" => \$bowtie2_mismatch_rate,
"bowtie2-k=i" => \$bowtie2_k,
"bowtie2-sensitivity-level=s" => \$bowtie2_sensitivity_level,
"forward-prob=f" => \$probF,
"fragment-length-min=i" => \$minL,
"fragment-length-max=i" => \$maxL,
"fragment-length-mean=f" => \$mean,
"fragment-length-sd=f" => \$sd,
"estimate-rspd" => \$estRSPD,
"num-rspd-bins=i" => \$B,
"p|num-threads=i" => \$nThreads,
"append-names" => \$appendNames,
"sampling-for-bam" => \$sampling,
"no-bam-output" => sub { $genBamF = 0; },
"output-genome-bam" => \$genGenomeBamF,
"sort-bam-by-coordinate" => \$sort_bam_by_coordinate,
"sort-bam-by-read-name" => \$sort_bam_by_read_name,
"sort-bam-memory-per-thread=s" => \$sort_bam_memory,
"single-cell-prior" => \$single_cell_prior,
"calc-pme" => \$calcPME,
"gibbs-burnin=i" => \$BURNIN,
"gibbs-number-of-samples=i" => \$NCV,
"gibbs-sampling-gap=i", \$SAMPLEGAP,
"calc-ci" => \$calcCI,
"ci-credibility-level=f" => \$CONFIDENCE,
"ci-memory=i" => \$NMB,
"ci-number-of-samples-per-count-vector=i" => \$NSPC,
'star' => \$star,
'star-path=s' => \$star_path,
"star-gzipped-read-file" => \$star_gzipped_read_file,
"star-bzipped-read-file" => \$star_bzipped_read_file,
"star-output-genome-bam" => \$star_output_genome_bam,
"seed=i" => \$seed,
"time" => \$mTime,
"version" => \$version,
"q|quiet" => \$quiet,
"h|help" => \$help) or pod2usage(-exitval => 2, -verbose => 2);
pod2usage(-verbose => 2) if ($help == 1);
&showVersionInfo($FindBin::RealBin) if ($version == 1);
#check parameters and options
if ($is_alignment) {
pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (scalar(@ARGV) != 3);
pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m, --phred33-quals, --phred64-quals, --solexa-quals, --bowtie2, --bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k, --bowtie2-sensitivity-level, --star, --star-path, and --star-output-genome-bam cannot be set if input is SAM/BAM/CRAM format!", -exitval => 2, -verbose => 2) if ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200 || $phred33 || $phred64 || $solexa || $bowtie2 || $bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive" || $star || $star_path ne "" || $star_output_genome_bam);
}
else {
pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (!$paired_end && scalar(@ARGV) != 3 || $paired_end && scalar(@ARGV) != 4);
pod2usage(-msg => "If --no-qualities is set, neither --phred33-quals, --phred64-quals or --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($no_qual && ($phred33 + $phred64 + $solexa > 0));
pod2usage(-msg => "Only one of --phred33-quals, --phred64-quals, and --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($phred33 + $phred64 + $solexa > 1);
pod2usage(-msg => "--bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k and --bowtie2-sensitivity-level cannot be set if bowtie aligner is used!", -exitval => 2, -verbose => 2) if (!$bowtie2 && ($bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive"));
pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m cannot be set if bowtie2 aligner is used!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200));
pod2usage(-msg => "Mismatch rate must be within [0, 1]!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie2_mismatch_rate < 0.0 || $bowtie2_mismatch_rate > 1.0));
pod2usage(-msg => "Sensitivity level must be one of \"very_fast\", \"fast\", \"sensitive\", and \"very_sensitive\"!", -exitval => 2, -verbose => 2) if ($bowtie2 && (($bowtie2_sensitivity_level ne "very_fast") && ($bowtie2_sensitivity_level ne "fast") && ($bowtie2_sensitivity_level ne "sensitive") && ($bowtie2_sensitivity_level ne "very_sensitive")));
if ($faiF ne "") { print "Warning: There is no need to set --fai if you ask RSEM to align reads for you.\n" }
}
pod2usage(-msg => "Forward probability should be in [0, 1]!", -exitval => 2, -verbose => 2) if ($probF < 0 || $probF > 1);
pod2usage(-msg => "Min fragment length should be at least 1!", -exitval => 2, -verbose => 2) if ($minL < 1);
pod2usage(-msg => "Min fragment length should be smaller or equal to max fragment length!", -exitval => 2, -verbose => 2) if ($minL > $maxL);
pod2usage(-msg => "The memory allocated for calculating credibility intervals should be at least 1 MB!\n", -exitval => 2, -verbose => 2) if ($NMB < 1);
pod2usage(-msg => "Number of threads should be at least 1!\n", -exitval => 2, -verbose => 2) if ($nThreads < 1);
pod2usage(-msg => "Seed length should be at least 5!\n", -exitval => 2, -verbose => 2) if ($L < 5);
pod2usage(-msg => "--sampling-for-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($sampling && !$genBamF);
pod2usage(-msg => "--output-genome-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($genGenomeBamF && !$genBamF);
pod2usage(-msg => "The seed for random number generator must be a non-negative 32bit integer!\n", -exitval => 2, -verbose => 2) if (($seed ne "NULL") && ($seed < 0 || $seed > 0xffffffff));
pod2usage(-msg => "The credibility level should be within (0, 1)!\n", -exitval => 2, -verbose => 2) if ($CONFIDENCE <= 0.0 || $CONFIDENCE >= 1.0);
pod2usage(-msg => "Gzipped read files can only be used for aligner STAR\n", -exitval=>2, -verbose =>2) if ( ( $star == 0 ) && ( $star_gzipped_read_file != 0));
pod2usage(-msg => "Bzipped read files can only be used for aligner STAR\n", -exitval=>2, -verbose =>2) if ( ( $star == 0 ) && ( $star_bzipped_read_file != 0));
if ($L < 25) { print "Warning: the seed length set is less than 25! This is only allowed if the references are not added poly(A) tails.\n"; }
if ($strand_specific) { $probF = 1.0; }
if ($paired_end) {
if ($no_qual) { $read_type = 2; }
else { $read_type = 3; }
}
else {
if ($no_qual) { $read_type = 0; }
else { $read_type = 1; }
}
if (scalar(@ARGV) == 3) {
if ($is_alignment) { $inpF = $ARGV[0]; }
else {$mate1_list = $ARGV[0]; }
$refName = $ARGV[1];
$sampleName = $ARGV[2];
}
else {
$mate1_list = $ARGV[0];
$mate2_list = $ARGV[1];
$refName = $ARGV[2];
$sampleName = $ARGV[3];
}
if (((-e "$refName.ta") && !(-e "$refName.gt")) || (!(-e "$refName.ta") && (-e "$refName.gt"))) {
print "Allele-specific expression related reference files are corrupted!\n";
exit(-1);
}
$alleleS = (-e "$refName.ta") && (-e "$refName.gt");
pod2usage(-msg => "RSEM reference cannot contain poly(A) tails if you want to use STAR aligner!", -exitval => 2, -verbose => 2) if ($star && (&hasPolyA("$refName.seq")));
if ($genGenomeBamF) {
open(INPUT, "$refName.ti");
my $line = <INPUT>; chomp($line);
close(INPUT);
my ($M, $type) = split(/ /, $line);
pod2usage(-msg => "No genome information provided, so genome bam file cannot be generated!\n", -exitval => 2, -verbose => 2) if ($type != 0);
}
my $pos = rindex($sampleName, '/');
if ($pos < 0) { $sampleToken = $sampleName; }
else { $sampleToken = substr($sampleName, $pos + 1); }
if ($temp_dir eq "") { $temp_dir = "$sampleName.temp"; }
$stat_dir = "$sampleName.stat";
if (!(-d $temp_dir) && !mkdir($temp_dir)) { print "Fail to create folder $temp_dir.\n"; exit(-1); }
if (!(-d $stat_dir) && !mkdir($stat_dir)) { print "Fail to create folder $stat_dir.\n"; exit(-1); }
$imdName = "$temp_dir/$sampleToken";
$statName = "$stat_dir/$sampleToken";
if (!$is_alignment && !$no_qual && ($phred33 + $phred64 + $solexa == 0)) { $phred33 = 1; }
my ($mate_minL, $mate_maxL) = (1, $maxL);
if ($bowtie_path ne "") { $bowtie_path .= "/"; }
if ($bowtie2_path ne "") { $bowtie2_path .= "/"; }
if ($star_path ne '') { $star_path .= '/'; }
my $command = "";
if (!$is_alignment) {
if ( $star ) {
## align reads by STAR
my $star_genome_path = dirname($refName);
$command = "$star_path"."STAR" .
## ENCODE3 pipeline parameters
" --genomeDir $star_genome_path " .
' --outSAMunmapped Within ' .
' --outFilterType BySJout ' .
' --outSAMattributes NH HI AS NM MD ' .
' --outFilterMultimapNmax 20 ' .
' --outFilterMismatchNmax 999 ' .
' --outFilterMismatchNoverLmax 0.04 ' .
' --alignIntronMin 20 ' .
' --alignIntronMax 1000000 ' .
' --alignMatesGapMax 1000000 ' .
' --alignSJoverhangMin 8 ' .
' --alignSJDBoverhangMin 1 ' .
' --sjdbScore 1 ' .
" --runThreadN $nThreads " .
##
## different than ENCODE3 pipeline
## do not allow using shared memory
' --genomeLoad NoSharedMemory ' .
##
## different than ENCODE3 pipeline, which sorts output BAM
## no need to do it here to save time and memory
' --outSAMtype BAM Unsorted ' .
##
## unlike ENCODE3, we don't output bedGraph files
' --quantMode TranscriptomeSAM '.
' --outSAMheaderHD \@HD VN:1.4 SO:unsorted '.
## define output file prefix
" --outFileNamePrefix $imdName ";
##
if ( $star_gzipped_read_file ) {
$command .= ' --readFilesCommand zcat ';
} elsif ( $star_bzipped_read_file ) {
$command .= ' --readFilesCommand bzip2 -c ';
}
if ( $read_type == 0 || $read_type == 1 ) {
$command .= " --readFilesIn $mate1_list ";
} else {
$command .= " --readFilesIn $mate1_list $mate2_list";
}
} elsif (!$bowtie2) {
$command = $bowtie_path."bowtie";
if ($no_qual) { $command .= " -f"; }
else { $command .= " -q"; }
if ($phred33) { $command .= " --phred33-quals"; }
elsif ($phred64) { $command .= " --phred64-quals"; }
elsif ($solexa) { $command .= " --solexa-quals"; }
$command .= " -n $C -e $E -l $L";
if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL"; }
if ($chunkMbs > 0) { $command .= " --chunkmbs $chunkMbs"; }
if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
elsif ($probF == 0.0) { $command .= " --nofw"; }
$command .= " -p $nThreads -a -m $maxHits -S";
if ($quiet) { $command .= " --quiet"; }
$command .= " $refName";
if ($read_type == 0 || $read_type == 1) {
$command .= " $mate1_list";
}
else {
$command .= " -1 $mate1_list -2 $mate2_list";
}
# pipe to samtools to generate a BAM file
$command .= " | samtools view -S -b -o $imdName.bam -";
}
else {
$command = $bowtie2_path."bowtie2";
if ($no_qual) { $command .= " -f"; }
else { $command .= " -q"; }
if ($phred33) { $command .= " --phred33"; }
elsif ($phred64) { $command .= " --phred64"; }
elsif ($solexa) { $command .= " --solexa-quals"; }
if ($bowtie2_sensitivity_level eq "very_fast") { $command .= " --very-fast"; }
elsif ($bowtie2_sensitivity_level eq "fast") { $command .= " --fast"; }
elsif ($bowtie2_sensitivity_level eq "sensitive") { $command .= " --sensitive"; }
else { $command .= " --very-sensitive"; }
$command .= " --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-$bowtie2_mismatch_rate";
if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL --no-mixed --no-discordant"; }
if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
elsif ($probF == 0.0) { $command .= " --nofw"; }
$command .= " -p $nThreads -k $bowtie2_k";
if ($quiet) { $command .= " --quiet"; }
$command .= " -x $refName";
if ($read_type == 0 || $read_type == 1) {
$command .= " -U $mate1_list";
}
else {
$command .= " -1 $mate1_list -2 $mate2_list";
}
# pipe to samtools to generate a BAM file
$command .= " | samtools view -S -b -o $imdName.bam -";
}
if ($mTime) { $time_start = time(); }
&runCommand($command);
if ($mTime) { $time_end = time(); $time_alignment = $time_end - $time_start; }
$inpF = "$imdName.bam";
if ( $star ) {
my $star_tr_bam = $imdName . 'Aligned.toTranscriptome.out.bam';
rename $star_tr_bam, $inpF
or die "can't rename $star_tr_bam to $inpF: $!\n";
rmdir $imdName . "_STARtmp/";
my $star_genome_bam = $imdName . "Aligned.out.bam";
my $rsem_star_genome_bam = $sampleName.'.STAR.genome.bam';
if ( $star_output_genome_bam ) {
rename $star_genome_bam, $rsem_star_genome_bam or die
"can't move $star_genome_bam to $rsem_star_genome_bam: $!\n";
} else {
unlink $star_genome_bam or die "can't remove $star_genome_bam: $!\n";
}
}
}
if ( $sort_bam_by_read_name ) {
my $sorted_bam = "$imdName.sorted.bam";
$command = "samtools sort -n -@ $nThreads -m $sort_bam_memory -o $sorted_bam $inpF";
&runCommand($command);
if (!$is_alignment) {
$command = "rm -f $inpF";
&runCommand($command);
}
$inpF = $sorted_bam;
}
if ($mTime) { $time_start = time(); }
$command = "rsem-parse-alignments $refName $imdName $statName $inpF $read_type";
if ($faiF ne "") { $command .= " -t $faiF"; }
if ($tagName ne "") { $command .= " -tag $tagName"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
$command = "rsem-build-read-index $gap";
if ($read_type == 0) { $command .= " 0 $quiet $imdName\_alignable.fa"; }
elsif ($read_type == 1) { $command .= " 1 $quiet $imdName\_alignable.fq"; }
elsif ($read_type == 2) { $command .= " 0 $quiet $imdName\_alignable_1.fa $imdName\_alignable_2.fa"; }
elsif ($read_type == 3) { $command .= " 1 $quiet $imdName\_alignable_1.fq $imdName\_alignable_2.fq"; }
else { print "Impossible! read_type is not in [1,2,3,4]!\n"; exit(-1); }
&runCommand($command);
my $doesOpen = open(OUTPUT, ">$imdName.mparams");
if ($doesOpen == 0) { print "Cannot generate $imdName.mparams!\n"; exit(-1); }
print OUTPUT "$minL $maxL\n";
print OUTPUT "$probF\n";
print OUTPUT "$estRSPD\n";
print OUTPUT "$B\n";
print OUTPUT "$mate_minL $mate_maxL\n";
print OUTPUT "$mean $sd\n";
print OUTPUT "$L\n";
close(OUTPUT);
my @seeds = ();
if ($seed ne "NULL") {
srand($seed);
for (my $i = 0; $i < 3; $i++) {
push(@seeds, int(rand(1 << 32)));
}
}
$command = "rsem-run-em $refName $read_type $sampleName $imdName $statName -p $nThreads";
if ($genBamF) {
$command .= " -b $inpF";
if ($faiF ne "") { $command .= " 1 $faiF"; }
else { $command .= " 0"; }
if ($sampling) { $command .= " --sampling"; }
if ($seed ne "NULL") { $command .= " --seed $seeds[0]"; }
}
if ($calcPME || $calcCI) { $command .= " --gibbs-out"; }
if ($appendNames) { $command .= " --append-names"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
if ($alleleS) {
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
if ($genBamF) {
if ($genGenomeBamF) {
$command = "rsem-tbam2gbam $refName $sampleName.transcript.bam $sampleName.genome.bam";
&runCommand($command);
}
if ($sort_bam_by_coordinate) {
$command = "samtools sort -@ $nThreads -m $sort_bam_memory -o $sampleName.transcript.sorted.bam $sampleName.transcript.bam";
&runCommand($command);
$command = "samtools index $sampleName.transcript.sorted.bam";
&runCommand($command);
if ($genGenomeBamF) {
$command = "samtools sort -@ $nThreads -m $sort_bam_memory -o $sampleName.genome.sorted.bam $sampleName.genome.bam";
&runCommand($command);
$command = "samtools index $sampleName.genome.sorted.bam";
&runCommand($command);
}
}
}
if ($mTime) { $time_end = time(); $time_rsem = $time_end - $time_start; }
if ($mTime) { $time_start = time(); }
if ($calcPME || $calcCI ) {
$command = "rsem-run-gibbs $refName $imdName $statName $BURNIN $NCV $SAMPLEGAP";
$command .= " -p $nThreads";
if ($seed ne "NULL") { $command .= " --seed $seeds[1]"; }
if ($single_cell_prior) { $command .= " --pseudo-count 0.1"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
}
if ($calcPME || $calcCI) {
if ($alleleS) {
system("mv $sampleName.alleles.results $imdName.alleles.results.bak1");
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
system("mv $sampleName.genes.results $imdName.genes.results.bak1");
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
system("mv $sampleName.genes.results $imdName.genes.results.bak1");
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
}
if ($calcCI) {
$command = "rsem-calculate-credibility-intervals $refName $imdName $statName $CONFIDENCE $NCV $NSPC $NMB";
$command .= " -p $nThreads";
if ($seed ne "NULL") { $command .= " --seed $seeds[2]"; }
if ($single_cell_prior) { $command .= " --pseudo-count 0.1"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
if ($alleleS) {
system("mv $sampleName.alleles.results $imdName.alleles.results.bak2");
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
system("mv $sampleName.genes.results $imdName.genes.results.bak2");
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
system("mv $sampleName.genes.results $imdName.genes.results.bak2");
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
}
if ($mTime) { $time_end = time(); $time_ci = $time_end - $time_start; }
if ($mTime) { $time_start = time(); }
if (!$keep_intermediate_files) {
&runCommand("rm -rf $temp_dir", "Fail to delete the temporary folder!");
}
if ($mTime) { $time_end = time(); }
if ($mTime) {
open(OUTPUT, ">$sampleName.time");
print OUTPUT "Aligning reads: $time_alignment s.\n";
print OUTPUT "Estimating expression levels: $time_rsem s.\n";
print OUTPUT "Calculating credibility intervals: $time_ci s.\n";
# my $time_del = $time_end - $time_start;
# print OUTPUT "Delete: $time_del s.\n";
close(OUTPUT);
}
__END__
=head1 NAME
rsem-calculate-expression
=head1 PURPOSE
Estimate gene and isoform expression from RNA-Seq data.
=head1 SYNOPSIS
rsem-calculate-expression [options] upstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --alignments [--paired-end] input reference_name sample_name
=head1 ARGUMENTS
=over
=item B<upstream_read_files(s)>
Comma-separated list of files containing single-end reads or upstream reads for paired-end data. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected.
=item B<downstream_read_file(s)>
Comma-separated list of files containing downstream reads which are paired with the upstream reads. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected.
=item B<input>
SAM/BAM/CRAM formatted input file. If "-" is specified for the filename, the input is instead assumed to come from standard input. RSEM requires all alignments of the same read group together. For paired-end reads, RSEM also requires the two mates of any alignment be adjacent. In addition, RSEM does not allow the SEQ and QUAL fields to be empty. See Description section for how to make input file obey RSEM's requirements.
=item B<reference_name>
The name of the reference used. The user must have run 'rsem-prepare-reference' with this reference_name before running this program.
=item B<sample_name>
The name of the sample analyzed. All output files are prefixed by this name (e.g., sample_name.genes.results)
=back
=head1 BASIC OPTIONS
=over
=item B<--paired-end>
Input reads are paired-end reads. (Default: off)
=item B<--no-qualities>
Input reads do not contain quality scores. (Default: off)
=item B<--strand-specific>
The RNA-Seq protocol used to generate the reads is strand specific, i.e., all (upstream) reads are derived from the forward strand. This option is equivalent to --forward-prob=1.0. With this option set, if RSEM runs the Bowtie/Bowtie 2 aligner, the '--norc' Bowtie/Bowtie 2 option will be used, which disables alignment to the reverse strand of transcripts. (Default: off)
=item B<-p/--num-threads> <int>
Number of threads to use. Both Bowtie/Bowtie2, expression estimation and 'samtools sort' will use this many threads. (Default: 1)
=item B<--alignments>
Input file contains alignments in SAM/BAM/CRAM format. The exact file format will be determined automatically. (Default: off)
=item B<--fai> <file>
If the header section of input alignment file does not contain reference sequence information, this option should be turned on. <file> is a FAI format file containing each reference sequence's name and length. Please refer to the SAM official website for the details of FAI format. (Default: off)
=item B<--bowtie2>
Use Bowtie 2 instead of Bowtie to align reads. Since currently RSEM does not handle indel, local and discordant alignments, the Bowtie2 parameters are set in a way to avoid those alignments. In particular, we use options '--sensitive --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.1' by default. The last parameter of '--score-min', '-0.1', is the negative of maximum mismatch rate. This rate can be set by option '--bowtie2-mismatch-rate'. If reads are paired-end, we additionally use options '--no-mixed' and '--no-discordant'. (Default: off)
=item B<--star>
Use STAR to align reads. Alignment parameters are from ENCODE3's STAR-RSEM pipeline. To save computational time and memory resources, STAR's Output BAM file is unsorted. It is stored in RSEM's temporary directory with name as 'sample_name.bam'. Each STAR job will have its own private copy of the genome in memory. (Default: off)
=item B<--append-names>
If gene_name/transcript_name is available, append it to the end of gene_id/transcript_id (separated by '_') in files 'sample_name.isoforms.results' and 'sample_name.genes.results'. (Default: off)
=item B<--seed> <uint32>
Set the seed for the random number generators used in calculating posterior mean estimates and credibility intervals. The seed must be a non-negative 32 bit integer. (Default: off)
=item B<--single-cell-prior>
By default, RSEM uses Dirichlet(1) as the prior to calculate posterior mean estimates and credibility intervals. However, much less genes are expressed in single cell RNA-Seq data. Thus, if you want to compute posterior mean estimates and/or credibility intervals and you have single-cell RNA-Seq data, you are recommended to turn on this option. Then RSEM will use Dirichlet(0.1) as the prior which encourage the sparsity of the expression levels. (Default: off)
=item B<--calc-pme>
Run RSEM's collapsed Gibbs sampler to calculate posterior mean estimates. (Default: off)
=item B<--calc-ci>
Calculate 95% credibility intervals and posterior mean estimates. The credibility level can be changed by setting '--ci-credibility-level'. (Default: off)
=item B<-q/--quiet>
Suppress the output of logging information. (Default: off)
=item B<-h/--help>
Show help information.
=item B<--version>
Show version information.
=back
=head1 OUTPUT OPTIONS
=over
=item B<--sort-bam-by-read-name>
Sort BAM file aligned under transcript coordidate by read name. Setting this option on will produce deterministic maximum likelihood estimations from independent runs. Note that sorting will take long time and lots of memory. (Default: off)
=item B<--no-bam-output>
Do not output any BAM file. (Default: off)
=item B<--sampling-for-bam>
When RSEM generates a BAM file, instead of outputting all alignments a read has with their posterior probabilities, one alignment is sampled according to the posterior probabilities. The sampling procedure includes the alignment to the "noise" transcript, which does not appear in the BAM file. Only the sampled alignment has a weight of 1. All other alignments have weight 0. If the "noise" transcript is sampled, all alignments appeared in the BAM file should have weight 0. (Default: off)
=item B<--output-genome-bam>
Generate a BAM file, 'sample_name.genome.bam', with alignments mapped to genomic coordinates and annotated with their posterior probabilities. In addition, RSEM will call samtools (included in RSEM package) to sort and index the bam file. 'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' will be generated. (Default: off)
=item B<--sort-bam-by-coordinate>
Sort RSEM generated transcript and genome BAM files by coordinates and build associated indices. (Default: off)
=item B<--sort-bam-memory-per-thread> <string>
Set the maximum memory per thread that can be used by 'samtools sort'. <string> represents the memory and accepts suffices 'K/M/G'. RSEM will pass <string> to the '-m' option of 'samtools sort'. Note that the default used here is different from the default used by samtools. (Default: 1G)
=back
=head1 ALIGNER OPTIONS
=over
=item B<--seed-length> <int>
Seed length used by the read aligner. Providing the correct value is important for RSEM. If RSEM runs Bowtie, it uses this value for Bowtie's seed length parameter. Any read with its or at least one of its mates' (for paired-end reads) length less than this value will be ignored. If the references are not added poly(A) tails, the minimum allowed value is 5, otherwise, the minimum allowed value is 25. Note that this script will only check if the value >= 5 and give a warning message if the value < 25 but >= 5. (Default: 25)
=item B<--phred33-quals>
Input quality scores are encoded as Phred+33. (Default: on)
=item B<--phred64-quals>
Input quality scores are encoded as Phred+64 (default for GA Pipeline ver. >= 1.3). (Default: off)
=item B<--solexa-quals>
Input quality scores are solexa encoded (from GA Pipeline ver. < 1.3). (Default: off)
=item B<--bowtie-path> <path>
The path to the Bowtie executables. (Default: the path to the Bowtie executables is assumed to be in the user's PATH environment variable)
=item B<--bowtie-n> <int>
(Bowtie parameter) max # of mismatches in the seed. (Range: 0-3, Default: 2)
=item B<--bowtie-e> <int>
(Bowtie parameter) max sum of mismatch quality scores across the alignment. (Default: 99999999)
=item B<--bowtie-m> <int>
(Bowtie parameter) suppress all alignments for a read if > <int> valid alignments exist. (Default: 200)
=item B<--bowtie-chunkmbs> <int>
(Bowtie parameter) memory allocated for best first alignment calculation (Default: 0 - use Bowtie's default)
=item B<--bowtie2-path> <path>
(Bowtie 2 parameter) The path to the Bowtie 2 executables. (Default: the path to the Bowtie 2 executables is assumed to be in the user's PATH environment variable)
=item B<--bowtie2-mismatch-rate> <double>
(Bowtie 2 parameter) The maximum mismatch rate allowed. (Default: 0.1)
=item B<--bowtie2-k> <int>
(Bowtie 2 parameter) Find up to <int> alignments per read. (Default: 200)
=item B<--bowtie2-sensitivity-level> <string>
(Bowtie 2 parameter) Set Bowtie 2's preset options in --end-to-end mode. This option controls how hard Bowtie 2 tries to find alignments. <string> must be one of "very_fast", "fast", "sensitive" and "very_sensitive". The four candidates correspond to Bowtie 2's "--very-fast", "--fast", "--sensitive" and "--very-sensitive" options. (Default: "sensitive" - use Bowtie 2's default)
=item B<--star-path> <path>
The path to STAR's executable. (Default: the path to STAR executable is assumed to be in user's PATH environment variable)
=item B<--star-gzipped-read-file>
(STAR parameter) Input read file(s) is compressed by gzip. (Default: off)
=item B<--star-bzipped-read-file>
(STAR parameter) Input read file(s) is compressed by bzip2. (Default: off)
=item B<--star-output-genome-bam>
(STAR parameter) Save the BAM file from STAR alignment under genomic coordinate to 'sample_name.STAR.genome.bam'. This file is NOT sorted by genomic coordinate. In this file, according to STAR's manual, 'paired ends of an alignment are always adjacent, and multiple alignments of a read are adjacent as well'. (Default: off)
=back
=head1 ADVANCED OPTIONS
=over
=item B<--tag> <string>
The name of the optional field used in the SAM input for identifying a read with too many valid alignments. The field should have the format <tagName>:i:<value>, where a <value> bigger than 0 indicates a read with too many alignments. (Default: "")
=item B<--forward-prob> <double>
Probability of generating a read from the forward strand of a transcript. Set to 1 for a strand-specific protocol where all (upstream) reads are derived from the forward strand, 0 for a strand-specific protocol where all (upstream) read are derived from the reverse strand, or 0.5 for a non-strand-specific protocol. (Default: 0.5)
=item B<--fragment-length-min> <int>
Minimum read/insert length allowed. This is also the value for the Bowtie/Bowtie2 -I option. (Default: 1)
=item B<--fragment-length-max> <int>
Maximum read/insert length allowed. This is also the value for the Bowtie/Bowtie 2 -X option. (Default: 1000)
=item B<--fragment-length-mean> <double>
(single-end data only) The mean of the fragment length distribution, which is assumed to be a Gaussian. (Default: -1, which disables use of the fragment length distribution)
=item B<--fragment-length-sd> <double>
(single-end data only) The standard deviation of the fragment length distribution, which is assumed to be a Gaussian. (Default: 0, which assumes that all fragments are of the same length, given by the rounded value of B<--fragment-length-mean>)
=item B<--estimate-rspd>
Set this option if you want to estimate the read start position distribution (RSPD) from data. Otherwise, RSEM will use a uniform RSPD. (Default: off)
=item B<--num-rspd-bins> <int>
Number of bins in the RSPD. Only relevant when '--estimate-rspd' is specified. Use of the default setting is recommended. (Default: 20)
=item B<--gibbs-burnin> <int>
The number of burn-in rounds for RSEM's Gibbs sampler. Each round passes over the entire data set once. If RSEM can use multiple threads, multiple Gibbs samplers will start at the same time and all samplers share the same burn-in number. (Default: 200)
=item B<--gibbs-number-of-samples> <int>
The total number of count vectors RSEM will collect from its Gibbs samplers. (Default: 1000)
=item B<--gibbs-sampling-gap> <int>
The number of rounds between two succinct count vectors RSEM collects. If the count vector after round N is collected, the count vector after round N + <int> will also be collected. (Default: 1)
=item B<--ci-credibility-level> <double>
The credibility level for credibility intervals. (Default: 0.95)
=item B<--ci-memory> <int>
Maximum size (in memory, MB) of the auxiliary buffer used for computing credibility intervals (CI). (Default: 1024)
=item B<--ci-number-of-samples-per-count-vector> <int>
The number of read generating probability vectors sampled per sampled count vector. The crebility intervals are calculated by first sampling P(C | D) and then sampling P(Theta | C) for each sampled count vector. This option controls how many Theta vectors are sampled per sampled count vector. (Default: 50)
=item B<--keep-intermediate-files>
Keep temporary files generated by RSEM. RSEM creates a temporary directory, 'sample_name.temp', into which it puts all intermediate output files. If this directory already exists, RSEM overwrites all files generated by previous RSEM runs inside of it. By default, after RSEM finishes, the temporary directory is deleted. Set this option to prevent the deletion of this directory and the intermediate files inside of it. (Default: off)
=item B<--temporary-folder> <string>
Set where to put the temporary files generated by RSEM. If the folder specified does not exist, RSEM will try to create it. (Default: sample_name.temp)
=item B<--time>
Output time consumed by each step of RSEM to 'sample_name.time'. (Default: off)
=back
=head1 DESCRIPTION
In its default mode, this program aligns input reads against a reference transcriptome with Bowtie and calculates expression values using the alignments. RSEM assumes the data are single-end reads with quality scores, unless the '--paired-end' or '--no-qualities' options are specified. Alternatively, users can use STAR to align reads using the '--star' option. RSEM has provided options in 'rsem-prepare-reference' to prepare STAR's genome indices. Users may use an alternative aligner by specifying '--alignments', and providing an alignment file in SAM/BAM/CRAM format. However, users should make sure that they align against the indices generated by 'rsem-prepare-reference' and the alignment file satisfies the requirements mentioned in ARGUMENTS section.
One simple way to make the alignment file satisfying RSEM's requirements is to use the 'convert-sam-for-rsem' script. This script accepts SAM/BAM/CRAM files as input and outputs a BAM file. For example, type the following command to convert a SAM file, 'input.sam', to a ready-for-use BAM file, 'input_for_rsem.bam':
convert-sam-for-rsem input.sam input_for_rsem
For details, please refer to 'convert-sam-for-rsem's documentation page.
=head1 NOTES
1. Users must run 'rsem-prepare-reference' with the appropriate reference before using this program.
2. For single-end data, it is strongly recommended that the user provide the fragment length distribution parameters (--fragment-length-mean and --fragment-length-sd). For paired-end data, RSEM will automatically learn a fragment length distribution from the data.
3. Some aligner parameters have default values different from their original settings.
4. With the '--calc-pme' option, posterior mean estimates will be calculated in addition to maximum likelihood estimates.
5. With the '--calc-ci' option, 95% credibility intervals and posterior mean estimates will be calculated in addition to maximum likelihood estimates.
6. The temporary directory and all intermediate files will be removed when RSEM finishes unless '--keep-intermediate-files' is specified.
=head1 OUTPUT
=over
=item B<sample_name.isoforms.results>
File containing isoform level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM IsoPct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'transcript_id' is the transcript name of this transcript. 'gene_id'
is the gene name of the gene which this transcript belongs to (denote
this gene as its parent gene). If no gene information is provided,
'gene_id' and 'transcript_id' are the same.
'length' is this transcript's sequence length (poly(A) tail is not
counted). 'effective_length' counts only the positions that can
generate a valid fragment. If no poly(A) tail is added,
'effective_length' is equal to transcript length - mean fragment
length + 1. If one transcript's effective length is less than 1, this
transcript's both effective length and abundance estimates are set to
0.
'expected_count' is the sum of the posterior probability of each read
comes from this transcript over all reads. Because 1) each read
aligning to this transcript has a probability of being generated from
background noise; 2) RSEM may filter some alignable low quality reads,
the sum of expected counts for all transcript are generally less than
the total number of reads aligned.
'TPM' stands for Transcripts Per Million. It is a relative measure of
transcript abundance. The sum of all transcripts' TPM is 1
million. 'FPKM' stands for Fragments Per Kilobase of transcript per
Million mapped reads. It is another relative measure of transcript
abundance. If we define l_bar be the mean transcript length in a
sample, which can be calculated as
l_bar = \sum_i TPM_i / 10^6 * effective_length_i (i goes through every transcript),
the following equation is hold:
FPKM_i = 10^3 / l_bar * TPM_i.
We can see that the sum of FPKM is not a constant across samples.
'IsoPct' stands for isoform percentage. It is the percentage of this
transcript's abandunce over its parent gene's abandunce. If its parent
gene has only one isoform or the gene information is not provided,
this field will be set to 100.
'posterior_mean_count', 'pme_TPM', 'pme_FPKM' are posterior mean
estimates calculated by RSEM's Gibbs
sampler. 'posterior_standard_deviation_of_count' is the posterior
standard deviation of counts. 'IsoPct_from_pme_TPM' is the isoform
percentage calculated from 'pme_TPM' values.
'TPM_ci_lower_bound', 'TPM_ci_upper_bound', 'FPKM_ci_lower_bound' and
'FPKM_ci_upper_bound' are lower(l) and upper(u) bounds of 95%
credibility intervals for TPM and FPKM values. The bounds are
inclusive (i.e. [l, u]).
'TPM_coefficient_of_quartile_variation' and
'FPKM_coefficient_of_quartile_variation' are coefficients of quartile
variation (CQV) for TPM and FPKM values. CQV is a robust way of
measuring the ratio between the standard deviation and the mean. It is
defined as
CQV := (Q3 - Q1) / (Q3 + Q1),
where Q1 and Q3 are the first and third quartiles.
=item B<sample_name.genes.results>
File containing gene level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
gene_id transcript_id(s) length effective_length expected_count TPM FPKM [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'transcript_id(s)' is a comma-separated list of transcript_ids
belonging to this gene. If no gene information is provided, 'gene_id'
and 'transcript_id(s)' are identical (the 'transcript_id').
A gene's 'length' and 'effective_length' are
defined as the weighted average of its transcripts' lengths and
effective lengths (weighted by 'IsoPct'). A gene's abundance estimates
are just the sum of its transcripts' abundance estimates.
=item B<sample_name.alleles.results>
Only generated when the RSEM references are built with allele-specific
transcripts.
This file contains allele level expression estimates for
allele-specific expression calculation. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
allele_id transcript_id gene_id length effective_length expected_count TPM FPKM AlleleIsoPct AlleleGenePct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM AlleleIsoPct_from_pme_TPM AlleleGenePct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound TPM_coefficient_of_quartile_variation FPKM_ci_lower_bound FPKM_ci_upper_bound FPKM_coefficient_of_quartile_variation]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'allele_id' is the allele-specific name of this allele-specific transcript.
'AlleleIsoPct' stands for allele-specific percentage on isoform
level. It is the percentage of this allele-specific transcript's
abundance over its parent transcript's abundance. If its parent
transcript has only one allele variant form, this field will be set to
100.
'AlleleGenePct' stands for allele-specific percentage on gene
level. It is the percentage of this allele-specific transcript's
abundance over its parent gene's abundance.
'AlleleIsoPct_from_pme_TPM' and 'AlleleGenePct_from_pme_TPM' have
similar meanings. They are calculated based on posterior mean
estimates.
Please note that if this file is present, the fields 'length' and
'effective_length' in 'sample_name.isoforms.results' should be
interpreted similarly as the corresponding definitions in
'sample_name.genes.results'.
=item B<sample_name.transcript.bam>
Only generated when --no-bam-output is not specified.
'sample_name.transcript.bam' is a BAM-formatted file of read
alignments in transcript coordinates. The MAPQ field of each alignment
is set to min(100, floor(-10 * log10(1.0 - w) + 0.5)), where w is the
posterior probability of that alignment being the true mapping of a
read. In addition, RSEM pads a new tag ZW:f:value, where value is a
single precision floating number representing the posterior
probability. Because this file contains all alignment lines produced
by bowtie or user-specified aligners, it can also be used as a
replacement of the aligner generated BAM/SAM file.
=item B<sample_name.transcript.sorted.bam and sample_name.transcript.sorted.bam.bai>
Only generated when --no-bam-output is not specified and --sort-bam-by-coordinate is specified.
'sample_name.transcript.sorted.bam' and
'sample_name.transcript.sorted.bam.bai' are the sorted BAM file and
indices generated by samtools (included in RSEM package).
=item B<sample_name.genome.bam>
Only generated when --no-bam-output is not specified and --output-genome-bam is specified.
'sample_name.genome.bam' is a BAM-formatted file of read alignments in
genomic coordinates. Alignments of reads that have identical genomic
coordinates (i.e., alignments to different isoforms that share the
same genomic region) are collapsed into one alignment. The MAPQ field
of each alignment is set to min(100, floor(-10 * log10(1.0 - w) +
0.5)), where w is the posterior probability of that alignment being
the true mapping of a read. In addition, RSEM pads a new tag
ZW:f:value, where value is a single precision floating number
representing the posterior probability. If an alignment is spliced, a
XS:A:value tag is also added, where value is either '+' or '-'
indicating the strand of the transcript it aligns to.
=item B<sample_name.genome.sorted.bam and sample_name.genome.sorted.bam.bai>
Only generated when --no-bam-output is not specified, and --sort-bam-by-coordinate and --output-genome-bam are specified.
'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' are the
sorted BAM file and indices generated by samtools (included in RSEM package).
=item B<sample_name.time>
Only generated when --time is specified.
It contains time (in seconds) consumed by aligning reads, estimating expression levels and calculating credibility intervals.
=item B<sample_name.stat>
This is a folder instead of a file. All model related statistics are stored in this folder. Use 'rsem-plot-model' can generate plots using this folder.
'sample_name.stat/sample_name.cnt' contains alignment statistics. The format and meanings of each field are described in 'cnt_file_description.txt' under RSEM directory.
'sample_name.stat/sample_name.model' stores RNA-Seq model parameters learned from the data. The format and meanings of each filed of this file are described in 'model_file_description.txt' under RSEM directory.
=back
=head1 EXAMPLES
Assume the path to the bowtie executables is in the user's PATH environment variable. Reference files are under '/ref' with name 'mouse_125'.
1) '/data/mmliver.fq', single-end reads with quality scores. Quality scores are encoded as for 'GA pipeline version >= 1.3'. We want to use 8 threads and generate a genome BAM file. In addition, we want to append gene/transcript names to the result files:
rsem-calculate-expression --phred64-quals \
-p 8 \
--append-names \
--output-genome-bam \
/data/mmliver.fq \
/ref/mouse_125 \
mmliver_single_quals
2) '/data/mmliver_1.fq' and '/data/mmliver_2.fq', paired-end reads with quality scores. Quality scores are in SANGER format. We want to use 8 threads and do not generate a genome BAM file:
rsem-calculate-expression -p 8 \
--paired-end \
/data/mmliver_1.fq \
/data/mmliver_2.fq \
/ref/mouse_125 \
mmliver_paired_end_quals
3) '/data/mmliver.fa', single-end reads without quality scores. We want to use 8 threads:
rsem-calculate-expression -p 8 \
--no-qualities \
/data/mmliver.fa \
/ref/mouse_125 \
mmliver_single_without_quals
4) Data are the same as 1). This time we assume the bowtie executables are under '/sw/bowtie'. We want to take a fragment length distribution into consideration. We set the fragment length mean to 150 and the standard deviation to 35. In addition to a BAM file, we also want to generate credibility intervals. We allow RSEM to use 1GB of memory for CI calculation:
rsem-calculate-expression --bowtie-path /sw/bowtie \
--phred64-quals \
--fragment-length-mean 150.0 \
--fragment-length-sd 35.0 \
-p 8 \
--output-genome-bam \
--calc-ci \
--ci-memory 1024 \
/data/mmliver.fq \
/ref/mouse_125 \
mmliver_single_quals
5) '/data/mmliver_paired_end_quals.bam', BAM-formatted alignments for paired-end reads with quality scores. We want to use 8 threads:
rsem-calculate-expression --paired-end \
--alignments \
-p 8 \
/data/mmliver_paired_end_quals.bam \
/ref/mouse_125 \
mmliver_paired_end_quals
6) '/data/mmliver_1.fq.gz' and '/data/mmliver_2.fq.gz', paired-end reads with quality scores and read files are compressed by gzip. We want to use STAR to aligned reads and assume STAR executable is '/sw/STAR'. Suppose we want to use 8 threads and do not generate a genome BAM file:
rsem-calculate-expression --paired-end \
--star \
--star-path /sw/STAR \
--gzipped-read-file \
-p 8 \
/data/mmliver_1.fq.gz \
/data/mmliver_2.fq.gz \
/ref/mouse_125 \
mmliver_paired_end_quals
=cut
|