/usr/bin/rsem-plot-model is in rsem 1.2.31+dfsg-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | #!/usr/bin/env Rscript
argv <- commandArgs(TRUE)
if (length(argv) != 2) {
cat("Usage: rsem-plot-model sample_name output_plot_file\n")
q(status = 1)
}
strvec <- strsplit(argv[1], split = "/")[[1]]
token <- strvec[length(strvec)]
stat.dir <- paste(argv[1], ".stat", sep = "")
if (!file.exists(stat.dir)) {
cat("Error: directory does not exist: ", stat.dir, "\n", sep = "")
q(status = 1)
}
modelF <- paste(stat.dir, "/", token, ".model", sep = "")
cntF <- paste(stat.dir, "/", token, ".cnt", sep = "")
pdf(argv[2])
con <- file(modelF, open = "r")
# model type and forward probability
model_type <- as.numeric(readLines(con, n = 4)[1])
# fragment length distribution
strvec <- readLines(con, n = 3)
vec <- as.numeric(strsplit(strvec[1], split = " ")[[1]])
maxL <- vec[2] # maxL used for Profile
x <- (vec[1] + 1) : vec[2]
y <- as.numeric(strsplit(strvec[2], split = " ")[[1]])
mode_len = which(y == max(y)) + vec[1]
mean <- weighted.mean(x, y)
std <- sqrt(weighted.mean((x - mean)^2, y))
plot(x, y, type = "h",
main = "Fragment Length Distribution",
sub = sprintf("Mode = %d, Mean = %.1f, and Std = %.1f", mode_len, mean, std),
xlab = "Fragment Length",
ylab = "Probability")
abline(v = mode_len, col = "red", lty = "dashed")
# mate length distribution
if (model_type == 0 || model_type == 1) bval <- as.numeric(readLines(con, n = 1)[1]) else bval <- 1
if (bval == 1) {
list <- strsplit(readLines(con, n = 2), split = " ")
vec <- as.numeric(list[[1]])
maxL <- vec[2]
x <- (vec[1] + 1) : vec[2]
y <- as.numeric(list[[2]])
mode_len = which(y == max(y)) + vec[1]
mean <- weighted.mean(x, y)
std <- sqrt(weighted.mean((x - mean)^2, y))
plot(x, y, type = "h",
main = "Read Length Distribution",
sub = sprintf("Mode = %d, Mean = %.1f, and Std = %.1f", mode_len, mean, std),
xlab = "Read Length",
ylab = "Probability")
}
strvec <- readLines(con, n = 1)
# RSPD
bval <- as.numeric(readLines(con, n = 1)[1])
if (bval == 1) {
bin_size <- as.numeric(readLines(con, n = 1)[1])
y <- as.numeric(strsplit(readLines(con, n = 1), split = " ")[[1]])
par(cex.axis = 0.7)
barplot(y, space = 0, names.arg = 1:bin_size, main = "Read Start Position Distribution", xlab = "Bin #", ylab = "Probability")
par(cex.axis = 1.0)
}
strvec <- readLines(con, n = 1)
# plot sequencing errors
if (model_type == 1 || model_type == 3) {
# skip QD
N <- as.numeric(readLines(con, n = 1)[1])
readLines(con, n = N + 1)
readLines(con, n = 1) # for the blank line
# QProfile
readLines(con, n = 1)
x <- c()
peA <- c() # probability of sequencing error given reference base is A
peC <- c()
peG <- c()
peT <- c()
for (i in 1 : N) {
strvec <- readLines(con, n = 6)
list <- strsplit(strvec[1:4], split = " ")
vecA <- as.numeric(list[[1]])
vecC <- as.numeric(list[[2]])
vecG <- as.numeric(list[[3]])
vecT <- as.numeric(list[[4]])
if (sum(c(vecA, vecC, vecG, vecT)) < 1e-8) next
x <- c(x, (i - 1))
peA <- c(peA, ifelse(sum(vecA) < 1e-8, NA, -10 * log10(1.0 - vecA[1])))
peC <- c(peC, ifelse(sum(vecC) < 1e-8, NA, -10 * log10(1.0 - vecC[2])))
peG <- c(peG, ifelse(sum(vecG) < 1e-8, NA, -10 * log10(1.0 - vecG[3])))
peT <- c(peT, ifelse(sum(vecT) < 1e-8, NA, -10 * log10(1.0 - vecT[4])))
}
matplot(x, cbind(peA, peC, peG, peT), type = "b", lty = 1:4, pch = 0:3, col = 1:4,
main = "Observed Quality vs. Phred Quality Score",
xlab = "Phred Quality Score",
ylab = "Observed Quality")
legend("topleft", c("A", "C", "G", "T"), lty = 1:4, pch = 0:3, col = 1:4)
} else {
# Profile
readLines(con, n = 1)
x <- c()
peA <- c() # probability of sequencing error given reference base is A
peC <- c()
peG <- c()
peT <- c()
for (i in 1: maxL) {
strvec <- readLines(con, n = 6)
list <- strsplit(strvec[1:4], split = " ")
vecA <- as.numeric(list[[1]])
vecC <- as.numeric(list[[2]])
vecG <- as.numeric(list[[3]])
vecT <- as.numeric(list[[4]])
if (sum(c(vecA, vecC, vecG, vecT)) < 1e-8) next
x <- c(x, i)
peA <- c(peA, ifelse(sum(vecA) < 1e-8, NA, (1.0 - vecA[1]) * 100))
peC <- c(peC, ifelse(sum(vecC) < 1e-8, NA, (1.0 - vecC[2]) * 100))
peG <- c(peG, ifelse(sum(vecG) < 1e-8, NA, (1.0 - vecG[3]) * 100))
peT <- c(peT, ifelse(sum(vecT) < 1e-8, NA, (1.0 - vecT[4]) * 100))
}
matplot(x, cbind(peA, peC, peG, peT), type = "b", lty = 1:4, pch = 0:3, col = 1:4, main = "Position vs. Percentage Sequence Error", xlab = "Position", ylab = "Percentage of Sequencing Error")
legend("topleft", c("A", "C", "G", "T"), lty = 1:4, pch = 0:3, col = 1:4)
}
close(con)
# Alignment statistics
pair <- read.table(file = cntF, skip = 3, sep = "\t")
stat_len = dim(pair)[1]
upper_bound = pair[stat_len - 1, 1]
my_labels = append(0:upper_bound, pair[stat_len, 1])
my_heights = rep(0, upper_bound + 2)
dummy = sapply(1:(stat_len - 1), function(id) { my_heights[pair[id, 1] + 1] <<- pair[id, 2] })
my_heights[upper_bound + 2] = pair[stat_len, 2]
my_colors = c("green", "blue", rep("dimgrey", upper_bound - 1), "red")
barplot(my_heights, names.arg = my_labels,
col = my_colors, border = NA,
xlab = "Number of alignments per read",
ylab = "Number of reads",
main = "Alignment statistics")
pie_values = c(my_heights[1], my_heights[2], sum(my_heights[3:(upper_bound + 1)]), my_heights[upper_bound + 2])
pie_names = c("Unalignable", "Unique", "Multi", "Filtered")
pie_labels = sprintf("%s %.0f%%", pie_names, pie_values * 100.0 / sum(pie_values))
par(fig = c(0.4, 1, 0.35, 0.95), new = T)
pie(pie_values, labels = pie_labels, col = c("green", "blue", "dimgrey", "red"), clockwise = T, init.angle = 270, cex = 0.8)
par(fig = c(0, 1, 0, 1))
dev.off.output <- dev.off()
|