/usr/share/perl5/Games/Go/Diagram.pm is in sgf2dg 4.026-10build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 | # $Id: Diagram.pm 143 2005-06-03 21:05:57Z reid $
# Diagram
#
# Copyright (C) 2005 Reid Augustin reid@netchip.com
# 1000 San Mateo Dr.
# Menlo Park, CA 94025 USA
#
# This library is free software; you can redistribute it and/or modify it
# under the same terms as Perl itself, either Perl version 5.8.5 or, at your
# option, any later version of Perl 5 you may have available.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.
#
=head1 NAME
Games::Go::Diagram - Perl extension to make go diagrams similar to printed diagrams
=head1 SYNOPSIS
use Games::Go::Diagram
my $diagram = Games::Go::Diagram->new (options);
$diagram->put($coords, 'white' | 'black', ? number ?);
$diagram->mark($coords);
$diagram->label($coords, 'a');
$diagram->get($coords);
my $new_diagram = $diagram->next;
=head1 DESCRIPTION
A Games::Go::Diagram object represents a diagram similar to those
seen in go textbooks and magazines. The caller B<put>s 'white' or
'black' stones (possibly B<number>ed), on the intersection selected
by $coords. The caller may also B<mark> and B<label> intersections
and stones.
B<put>ting, B<mark>ing, B<label>ing and B<property>ing are 'actions'.
Actions are provisional until the B<node> method is called. If any
provisioanl actions cause a conflict, none of the actions associated
with the node are applied, and the B<node> method either calls a
user-defined callback function, or returns an error.
When a conflict occurs, the caller should dispose of the current
B<Diagram> by B<get>ting the information from each intersection and
doing something (like printing it). Then the caller converts the
B<Diagram> to the starting point of the next diagram by calling the
B<clear> method. Alternatively, the caller may save the current
B<Diagram> and create the starting point for the next diagram by
calling the B<next> method. B<clear> and B<next> may also be called
at arbitrary times (for example, to launch a variation diagram).
'coords' may be any unique identifier for the intersection. For
example:
my $coords = 'qd'; # SGF format
my $coords = 'a4'; # NNGS / IGS style coordinates
my $coords = "$x,$y"; # real coordinates
my $coords = 'George'; # as long as there's only one George
=cut
use strict;
require 5.001;
package Games::Go::Diagram;
use Carp;
our @ISA = qw(Exporter);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
# This allows declaration use PackageName ':all';
# If you do not need this, moving things directly into @EXPORT or @EXPORT_OK
# will save memory.
our %EXPORT_TAGS = ( 'all' => [ qw(
) ] );
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );
our @EXPORT = qw(
);
BEGIN {
our $VERSION = sprintf "1.%03d", '$Revision: 143 $' =~ /(\d+)/;
}
######################################################
#
# Class Variables
#
#####################################################
# the following are valid options to ->new. they are also preserved
# or copied during calls to ->clear and ->next (except hoshi,
# black, and white)
# watch out for reference copies!
our %options = (hoshi => [],
black => [],
white => [],
node => 1,
callback => undef,
enable_overstones => 1,
overstone_eq_mark => 1);
######################################################
#
# Public methods
#
#####################################################
=head1 METHODS
=over
=item my $diagram = Games::Go::Diagram-E<gt>B<new> (?options?)
A B<new> Games::Go::Diagram can take the following options:
Options:
=over
=item B<hoshi> =E<gt> ['coords', ...]
A reference to a list of coordinates where the Diagram should place
hoshi points.
=item B<black> =E<gt> ['coords', ...]
A reference to a list of coordinates where the Diagram should start
with black stones already in place.
=item B<white> =E<gt> ['coords', ...]
A reference to a list of coordinates where the Diagram should start
with white stones already in place.
=item B<callback> =E<gt> \&user_defined_callback
A reference to a user defined callback function. The user callback
is called (with a reference to the B<Diagram> as the only argument)
when B<node> is called after conflict is detected.
The user callback should either save the current B<Diagram> and
call <next>, or flush the B<Diagram> (by printing for example) and
call <clear>.
If the user callback is defined, a call to B<node> always returns
non-zero (the current node number).
=item B<enable_overstones> =E<gt> true | false
If true (default), overstones are enabled and may be created by
the B<Diagram> during a call to the B<put> method. The user must be
prepared to deal with overstones information in response to a
call to the B<get> method.
=item B<overstone_eq_mark> =E<gt> true | false
If true (default), overstones are assumed to be indistinguishable
from B<mark>s which means there can be conflicts between B<mark>s
and overstones. If false, B<marks> and overstones are assumed
to use different symbols and there are no conflicts between them.
=back
=cut
sub new {
my ($proto, %args) = @_;
my $my = {};
bless($my, ref($proto) || $proto);
$my->{number} = {};
$my->{property} = {};
$my->{name} = [];
$my->{offset} = 0;
foreach (keys(%options)) {
$my->{$_} = $options{$_}; # transfer default options
}
# transfer user args
foreach (keys(%args)) {
croak("I don't understand option $_\n") unless(exists($options{$_}));
$my->{$_} = $args{$_}; # transfer user option
}
foreach my $type (qw(hoshi black white)) {
next unless (exists($my->{$type}));
my $coordList = delete($my->{$type});
for (my $ii = 0; $ii < @{$coordList}; $ii++) {
$my->{board}{$coordList->[$ii]}{$type} = $my->{node};
if (($type eq 'white') and
exists($my->{board}{$coordList->[$ii]}{black})) {
carp("Black and white on the same intersection (at $coordList->[$ii]");
}
}
}
$my->{actions} = []; # no actions yet
$my->{provisional} = 1; # make all actions provisional
return($my);
}
=item $diagram-E<gt>B<clear>
Clears the B<Diagram>. All B<mark>s, B<label>s, and B<number>s are
removed from the stones and intersections. All B<capture>d stones
are removed, and all overstones are deleted (at which point, the
B<Diagram> is in the same state as a B<new> B<Diagram>). Pending
actions that were not applied due to conflicts are now applied to
the B<clear>ed B<Diagram>.
The following options are preserved:
=over
=item *
node (gets incremented)
=item *
callback
=item *
enable_overstones
=item *
overstone_eq_mark
=back
Z<>
=cut
sub clear {
my ($my) = @_;
# print "clear\n";
my $actions = delete($my->{actions}); # save pending actions
foreach my $key (keys(%{$my})) {
next if (($key eq 'board') or
exists($options{$key}));
delete($my->{$key});
}
my %new_board;
# make a new board, keeping only hoshi and un-numbered stones
foreach my $coords (keys(%{$my->{board}})) {
my $int = $my->{board}{$coords}; # intersection
$new_board{$coords}{hoshi} = $int->{hoshi} if(exists($int->{hoshi}));
my $stone = $my->_game_stone_int($int);
$new_board{$coords}{$stone} = 0 if (defined($stone));
}
delete($my->{board});
$my->{board} = \%new_board;
if (@{$actions}) {
foreach(@{$actions}) {
&{$_}($my); # call the closures
}
}
$my->{node}++;
$my->{actions} = []; # no actions yet
$my->{provisional} = 1; # make all actions provisional
return $my;
}
=item my $nextDiagram = $diagram-E<gt>B<next>
Creates a new B<Diagram> object starting from the current
B<Diagram>. $nextDiagram is the starting point for the next
B<Diagram> in a series, or for a variation.
As with the B<clear> method, all B<capture>d stones are removed, and
all overstones are deleted. Pending actions that were not
applied due to conflicts are now applied to the B<next> B<Diagram>.
The following options are preserved:
=over
=item *
node (gets incremented)
=item *
callback
=item *
enable_overstones
=item *
overstone_eq_mark
=back
Z<>
=cut
sub next {
my ($my) = @_;
my (@hoshi, @black, @white);
# print "next\n";
foreach my $coords (keys(%{$my->{board}})) {
my $int = $my->{board}{$coords}; # intersection
if (exists($int->{hoshi})) {
push(@hoshi, $coords);
}
my $stone = $my->_game_stone_int($int);
next unless(defined($stone));
push(@white, $coords) if($stone eq 'white');
push(@black, $coords) if($stone eq 'black');
}
my %o;
foreach my $key (keys(%options)) {
next if (($key eq 'black') or
($key eq 'white') or
($key eq 'hoshi') or
($key eq 'node'));
$o{$key} = $my->{$key}; # watch out for reference copies!
}
my $next = Games::Go::Diagram->new(
hoshi => \@hoshi,
white => \@white,
black => \@black,
%o,
);
foreach(@{$my->{actions}}) {
&{$_}($next); # call the closures on new Diagram
}
$next->node; # and complete them
return $next;
}
=item $diagram-E<gt>B<hoshi(@hoshi_coords)>
Adds the coords listed in @hoshi_coords to any existing hoshi
points. In array context, returns the list of coords that are hoshi
points. In scalar context, returns a reference to the list.
=cut
sub hoshi {
my ($my, @new_hoshi) = @_;
foreach(@new_hoshi) {
$my->{board}{$_}{hoshi} = $my->{node};
}
my @hoshi;
foreach (keys(%{$my->{board}})) {
push (@hoshi, $_) if (exists($my->{board}{$_}{hoshi}));
}
return wantarray ? @hoshi : \@hoshi;
}
=item $diagram-E<gt>B<node>
All actions (B<put>, B<mark>, B<label> and B<property>) are
provisional until B<node> is called. This makes a collection of
actions atomic. A B<Diagram> node is analogous to a Smart Go Format
(SGF) node. If there are no conflicts with the collected
provisional actions, B<node> incorporates them into the B<Diagram>
and returns non-zero (the current node number).
If there is a conflict and a user B<callback> is defined, B<node>
calls the callback with a reference to the B<Diagram> ($diagram) as
the only argument. The user callback should either flush the
B<Diagram> and call B<clear> (to reuse the B<Diagram>) or save the
current B<Diagram>, and call B<next> (to generate a new B<Diagram>).
If there is a conflict and no user B<callback> is defined, B<node>
returns 0. The user should either:
=over
=item *
flush the current B<Diagram> and call $diagram-E<gt>B<clear>
to continue working with the current B<Diagram>, or:
=item *
save the current B<Diagram> (and call $diagram-E<gt>B<next> to
create a new B<Diagram> to continue working with)
Z<>
=back
Calling either B<next> or B<clear> causes the pending collection of
conflicting actions to be incorporated into the resulting
B<Diagram>.
=cut
sub node {
my ($my) = @_;
# print "node $my->{node}\n";
if ($my->{conflict}) {
if (exists($my->{callback})) {
# print "calling callback\n";
&{$my->{callback}}($my);
return $my->{node};
}
return 0; # conflict: user needs to do something
}
$my->{provisional} = 0; # make all actions actual
foreach(@{$my->{actions}}) {
&{$_}($my); # call the closures
}
$my->{actions} = []; # clear actions list
$my->{provisional} = 1; # make all actions provisional
return ++$my->{node};
}
=item $diagram-E<gt>B<put> ('coords', 'black' | 'white', ? number ? )
B<put> a black or white stone on the B<Diagram> at B<coords>. The
stone color is must be 'black' or 'white' (case insensitive, 'b' and
'w' also work). Optional B<number> is the number on the stone. If
not defined, the stone is un-numbered (which is probably a mistake
except at the very start of a B<Diagram>.
B<put>ting can cause any of the following conflicts:
=over
=item *
stone is numbered and number is already used
=item *
stone is numbered and the intersection is already labeled
Z<>
=back
In certain situations, (notably ko and snapbacks but also some other
capturing situations), B<put> stones may become overstones.
overstones are stones played on an intersection that contains a
stone that has been B<capture>d, but not yet removed from the
B<Diagram>. There are two kinds of overstones: normal and
B<mark>ed, depending on the state of the underlying (B<capture>d but
not yet removed) stone.
If the underlying stone is B<number>ed or B<label>ed, the overstone
is normal and there will be no conflicts (unless the number is
already used!).
If the underlying stone is un-B<number>ed and un-B<label>ed, the
B<Diagram> attempts to convert it into a B<mark>ed stone. If the
conversion succeeds, the overstone becomes a marked overstone,
and there is no conflict.
The conversion of the underlying stone causes a conflict if:
=over
=item *
a stone of the same color as the underlying stone has already
been converted elsewhere in the B<Diagram>, or
=item *
B<overstone_eq_mark> is true and a mark of the same color as
the underlying stone exists elsewhere in the B<Diagram>.
=back
See the B<get> method for details of how overstone information is
returned.
=cut
sub put {
my ($my, $coords, $color, $num) = @_;
return 0 unless($my->_checkArgs('put', \$coords, \$color, \$num));
my $num_msg = defined($num) ? " at move $num" : '';
$my->{board}{$coords} = {} unless defined($my->{board}{$coords});
my $int = $my->{board}{$coords}; # intersection
if (exists($int->{$color}) and # same color and
((not defined($num) and
not exists($int->{number})) or # both unnumbered or
(defined($num) and
exists($int->{number}) and # both the same number
($num == $int->{number})))) {
return $my->{node}; # it's exactly the same
}
if (defined($my->game_stone($coords))) { # must not be a stone here now
my $err = "coords = $coords, new color = $color,\nalready here: ";
$err .= $my->game_stone($coords) . ' ';
if(exists($int->{overstones})) {
my $ii = scalar(@{$int->{overstones}}) - 2; # get last two entries
$err .= $int->{overstones}[$ii + 1]; # number of last stone played
} elsif (exists $int->{number}) {
$err .= $int->{number};
} else {
$err .= '(numberless)';
}
carp("can't 'put' a stone on top of a stone$num_msg: $err");
return 0;
}
if ($my->{provisional}) {
push (@{$my->{actions}}, sub { $_[0]->put($coords, $color, $num); } );
}
my $makeOverStone = (exists($int->{white}) or # stone already here?
exists($int->{black})); # make an overstone
if ($makeOverStone) {
$my->_overstone($coords, $color, $num)
} elsif (exists($int->{mark}) or # not supposed to be marks on empty anyway
(defined($num) and # new stone is numbered?
(exists($my->{number}{$num}) or # already used number?
exists($int->{label})))) { # label already here?
# print "put conflict $color$num_msg\n";
$my->{conflict} = 1;
return 0;
}
unless ($my->{provisional}) {
if (defined($num)) {
$int->{number} = $num unless($makeOverStone);
$my->{number}{$num} = $my->{node};
}
delete($int->{capture});
$int->{$color} = $my->{node} unless ($makeOverStone);
}
return $my->{node};
}
sub _overstone {
my ($my, $coords, $color, $num) = @_;
unless(defined($num)) { # overstones must be numbered
# print "overstone 0 conflict $color\n";
$my->{conflict} = 1;
return 0;
}
my $int = $my->{board}{$coords};
my $underColor = exists($int->{black}) ? 'black' : 'white';
if (exists($int->{number}) or
exists($int->{label})) {
# OK, no conflict
} else {
# understone isn't numbered/labeled,
# can we convert it to a marked stone?
if (exists($my->{marked_overstone}{$underColor})) {
if ($my->{marked_overstone}{$underColor} ne $coords) {
# print "overstone 1 conflict $color $num\n";
$my->{conflict} = 1;
return 0;
} # else this intersection is already marked
} elsif ($my->{overstone_eq_mark} and
exists($my->{mark}{$underColor})) {
# print "overstone 2 conflict $color $num\n";
$my->{conflict} = 1;
return 0;
}
unless($my->{provisional}) {
if ($my->{overstone_eq_mark}) {
$int->{mark} = $my->{node};
} else {
$int->{overstone} = $my->{node};
}
$my->{marked_overstone}{$underColor} = $coords;
$my->{mark}{$underColor} = $my->{node} if ($my->{overstone_eq_mark});
}
}
unless($my->{provisional}) {
push(@{$my->{overlist}}, $int) unless(exists($int->{overstones}));
push(@{$int->{overstones}}, $color, $num);
delete($int->{capture});
}
}
=item $diagram-E<gt>B<renumber>($coords, $color, $old_num, $new_num);
Changes the number of a stone already on the board. $color, and
$old_num must match the existing color and number for the stone at
$coords ($old_num or $new_num may be undef for an un-numbered
stone). Only the displayed stone is compared for the match,
overstones (B<game_stone>s) are not considered.
Fails and returns 0 if:
=over
=item *
there is no diagram stone on the intersection, or
=item *
$color or $old_num don't match, or
=item *
$new_num is already used, or
=item *
a B<property> item exists for $old_num and $new_num is undef
=back
If none of the above, B<renumber> sets the new number and returns 1.
=cut
sub renumber {
my ($my, $coords, $color, $old_num, $new_num) = @_;
return 0 unless($my->_checkArgs('renumber', \$coords, \$color, \$old_num));
return 0 unless($my->_checkArgs('renumber', \$coords, \$color, \$new_num));
$my->{board}{$coords} = {} unless defined($my->{board}{$coords});
my $int = $my->{board}{$coords}; # intersection
return 0 if (not exists($int->{$color}) or
(defined($new_num) and
exists($my->{number}{$new_num})) or
(defined($old_num) and
exists($my->{property}{$old_num}) and
not defined ($new_num)));
return 0 unless((not defined($old_num) and
not exists($int->{number})) or
(defined($old_num) and
defined($int->{number}) and
($old_num == $int->{number})));
delete($my->{number}{$old_num}) if(defined($old_num));
if (defined($new_num)) {
$int->{number} = $new_num;
$my->{number}{$new_num} = $my->{node};
if(defined($old_num) and
exists($my->{property}{$old_num})) {
$my->{property}{$new_num} = delete($my->{property}{$old_num});
}
} else {
delete($int->{number});
}
return 1;
}
=item my $offset = $diagram-E<gt>B<offset>($new_offset);
Set a new offset for the diagram if $new_offset is defined. Returns
the current value of the offset, or 0 if no offset has been set.
Note that B<Diagram> doesn't use the offset for anything, but
external programs (like a converter) can use it to adjust the
numbering.
=cut
sub offset {
my ($my, $new_offset) = @_;
$my->{offset} = $new_offset if(defined($new_offset));
return $my->{offset};
}
sub _checkArgs {
my ($my, $name, $coords, $color, $num) = @_;
my $num_msg = defined($$num) ? " at move $$num" : '';
unless(defined($$coords)) {
carp("'$name' expects a '\$coords' argument$num_msg");
return 0;
}
my $c = $$color;
$c = 'undef' unless defined($c);
$c = lc $c;
$c = 'black' if ($c eq 'b');
$c = 'white' if ($c eq 'w');
if (($c ne 'white') and
($c ne 'black')) {
carp("'$name' expects 'white' or 'black', not $$color$num_msg");
return 0;
}
if (defined($$num) and
($$num =~ /\D/)) {
carp("'$name' expects number or undef for $$color stone, not $$num$num_msg");
return 0;
}
$$color = $c; # normalize color
return 1;
}
=item $diagram-E<gt>B<label>('coords', 'char');
Place a label on an intersection. B<char> must be a single letter
from A to Z or from a to z.
The same label can be applied to several intersections only if they
are all labeled within a single B<node>.
If the intersection or stone is already labeled, or occupied by a
marked, or numbered stone, or if the label has already been used
outside the labeling group, B<label> causes a conflict.
=cut
sub label {
my ($my, $coords, $label) = @_;
unless(defined($coords)) {
carp("'label' expects a '\$coords' argument");
return 0;
}
unless (defined($label) and
($label =~ /^[[:upper:][:lower:]]$/)) {
$label = 'undef' unless defined($label);
carp("'label' expects a single letter, not $label");
return 0;
}
if ($my->{provisional}) {
# print "provisional ";
push (@{$my->{actions}}, sub { $_[0]->label($coords, $label); } );
}
# print "label $coords with $label\n";
$my->{board}{$coords} = {} unless defined($my->{board}{$coords});
my $int = $my->{board}{$coords}; # intersection
if ((exists($int->{label}) and
($int->{label} ne $label)) or # different label already here?
exists($int->{mark}) or # a mark?
exists($int->{number}) or # a number?
(exists($my->{label}{$label}) and # label already used?
($my->{label}{$label} != $my->{node}))) { # outside labeling group?
# print "label conflict $coords $label\n";
$my->{conflict} = 1;
return 0;
}
unless ($my->{provisional}) {
$int->{label} = $label;
$int->{$label} = $my->{node};
$my->{label}{$label} = $my->{node};
}
return $my->{node};
}
=item $diagram-E<gt>B<mark>('coords');
Place a mark on a stone (empty intersections cannot be marked).
The mark can be applied to several stones only if they are either:
=over
=item *
different color stones (black, white)
=item *
all marked within one B<node>.
=back
Z<>
The B<mark> causes a conflict if:
=over
=item *
the stone is a B<label>led or numbered stone, or
=item *
the same color mark already exists in the B<Diagram> for a
different B<mark>ing group, or
=item *
B<overstone_eq_mark> is true and there is already an
overstone of the same color in the B<Diagram>.
=back
Z<>
=cut
sub mark {
my ($my, $coords) = @_;
unless(defined($coords)) {
carp("'mark' expects a '\$coords' argument");
return 0;
}
if ($my->{provisional}) {
push (@{$my->{actions}}, sub { $_[0]->mark($coords); } );
}
$my->{board}{$coords} = {} unless defined($my->{board}{$coords});
my $int = $my->{board}{$coords}; # intersection
my $color = 'empty';
$color = 'white' if (exists($int->{white}));
$color = 'black' if (exists($int->{black}));
if (exists($int->{label}) or # label already here?
exists($int->{number}) or # number already here?
(exists($my->{mark}{$color}) and # mark/color already used?
($my->{mark}{$color} != $my->{node}))) { # outside group?
# print "put mark $coords\n";
$my->{conflict} = 1;
return 0;
}
unless ($my->{provisional}) {
$int->{mark} = $my->{node};
$my->{mark}{$color} = $my->{node};
}
return $my->{node};
}
=item my $nameListRef = $diagram-E<gt>B<name> (? name, ... ?)
Adds B<name>(s) to the current B<Diagram>. Names accumulate by
getting pushed onto a list.
In array context, B<name> returns the current name list. In scalar
context, B<name> returns a reference to the list of names.
=cut
sub name {
my ($my, @names) = @_;
if (defined($names[0])) {
push (@{$my->{name}}, @names);
}
return wantarray ? @{$my->{name}} : $my->{name};
}
=item $diagram-E<gt>B<property> ($number, $propName, $propValue, ? $propValue... ?);
=item my $prop_ref = $diagram-E<gt>B<property> ($number);
=item my $all_props_ref = $diagram-E<gt>B<property> ();
If $propName and $propVal are defined, pushes them onto the
collection of properties associated with move $number.
Note that B<renumber>ing a move also B<renumber>s the properties.
If $number is defined and $propName/$propValue are not, B<property>
returns a reference to the (possibly empty) hash of property IDs and
property Values associated with the move number:
my $prop_value = $prop_ref->{$propID}->[$idx].
If $number is not defined, returns a reference to the (possibly
empty) hash of properties stored in the B<Diagram>. Hash keys are
the move number, and each hash value is in turn a hash. The keys of
the property hashes are (short) property IDs and the hash values are
lists of property values for each property ID:
my $prop_value = $all_props_ref->{$moveNumber}->{$propID}->[$idx]
B<property> (when $propName and $propValue are defined) is an action
(it is provisional until B<node> is called) because properties are
associated with a node in the SGF. However, B<property> never
causes a conflict.
=cut
sub property {
my ($my, $number, $propId, @propVals) = @_;
if (defined($propId)) {
push(@{$my->{actions}}, sub { push(@{$_[0]->{property}{$number}{$propId}}, @propVals); } );
}
return {} unless(exists($my->{property}));
return ($my->{property}{$number} || {}) if (defined($number));
return $my->{property};
}
=item $diagram-E<gt>B<capture> ('coords')
Captures the stone at the intersection.
Note that B<capture> has no visible affect on the diagram. Rather,
it marks the stone so that it is removed when creating the B<next>
B<Diagram>.
B<capture> is not considered an action because it cannot cause a
conflict or change the visible status of the board.
=cut
sub capture {
my ($my, $coords) = @_;
unless(defined($coords)) {
carp("'capture' expects a '\$coords' argument");
return 0;
}
my $stone = $my->game_stone($coords);
unless (defined($stone)) {
carp("'capture(\$coords=$coords)' called, but there's no stone here");
return undef;
}
my $int = $my->{board}{$coords}; # intersection
$int->{capture} = $my->{node};
return $my->{node};
}
=item $diagram-E<gt>B<remove> ('coords')
Removes the stone at the intersection.
Unlike B<capture>, B<remove> changes the visible status of the
B<Diagram>: the stone is deleted, along with all marks and letters
(only the 'hoshi', if any, is retained).
B<remove> is typically used at the start of a variation to remove
any stones that are improperly placed for the variation. It is
closely related to the AddEmpty (AE) SGF property.
=cut
sub remove {
my ($my, $coords) = @_;
unless(defined($coords)) {
carp("'remove' expects a '\$coords' argument");
return 0;
}
my $int = $my->{board}{$coords}; # intersection
foreach (keys(%{$int})) {
delete($int->{$_}) unless($_ eq 'hoshi');
}
return $my->{node};
}
=item my $stone = $diagram-E<gt>B<game_stone>(coords);
Returns 'black' or 'white' if there is a stone currently on the
intersection, otherwise returns undef.
Note that the return value is determined by the game perspective,
not the diagram perspective. If a stone is B<put> and later
B<capture>d, B<game_stone> returns undef even though the diagram
should still show the original stone. If a white stone is B<put>
and later B<capture>d, and then a black stone is B<put>,
B<game_stone> returns 'black', and B<get> indicates that a white
stone should be displayed on the diagram.
Note also that since B<put> is provisional until B<node> is called.
If you use B<game_stone> to check for liberties and captures, it
must be done I<after> the call to B<node> that realizes the B<put>.
=cut
sub game_stone {
my ($my, $coords) = @_;
unless(defined($coords)) {
carp("'game_stone' expects a '\$coords' argument");
return 0;
}
my $int = $my->{board}{$coords}; # intersection
return $my->_game_stone_int($my->{board}{$coords});
}
sub _game_stone_int {
my ($my, $int) = @_;
return undef unless(defined($int));
return undef if(exists($int->{capture})); # well, it *was* here a moment ago...
# check overstone history
if(exists($int->{overstones})) {
my $ii = scalar(@{$int->{overstones}}) - 2; # get last two entries
return($int->{overstones}[$ii]); # last color played
}
return 'black' if (exists($int->{black}));
return 'white' if (exists($int->{white}));
return undef;
}
=item $diagram-E<gt>B<get> ('coords')
Return the current status of the intersection. Status is returned
as a reference to a hash. The keys of the hash indicate the items
of interest, and the values of the hash are the indices where the
item was applied, except where noted below.
Only keys that have been applied are returned - an empty hash means
an empty intersection.
The hash keys can be any of:
=over
=item 'hoshi'
This intersection is a hoshi point. Note that since hoshi points
are determined at B<new> time, the value of this hash entry is
always 0. This key is returned even if a stone has been placed on
the intersection.
=item 'white'
The color of a stone at this intersection.
=item 'black'
The color of a stone at this intersection.
=item 'number'
The hash value is the number on the stone. The node for
B<number> is found in the 'black' or 'white' hash value.
=item 'capture'
The stone on this intersection has been B<capture>d, the
intersection is currently empty from the perspective of the game.
=item 'mark'
The intersection or stone is marked.
=item 'overstone'
If B<overstone_eq_mark> is false, this hash entry gets the current
node when an un-numbered, un-labeled stone is converted to an
overstone. If B<overstone_eq_mark> is false, this hash entry is
never set (under the same circumstances, the intersection is
'mark'ed instead).
=item 'label'
The hash key is the word 'label', and the value is the single
character passed to the B<label> method. Note that the node can be
retrieved with:
my $intersection = $diagram->get;
my $label = $intersection->{label};
my $label_node = $intersection->{$label};
=item label
The hash key is the single character a-z or A-Z that is the B<label>
for this intersection or stone. The hash value is the node.
=item 'overstones'
If this hash entry exists it means that one or more stones were
overlayed on the stone that is currently displayed on this
intersection of the B<Diagram>.
The hash value is a reference to an array of color/number pairs.
The colors and numbers were passed to the B<put> method which
decided to convert the stone into an overstone.
This is typically seen as notes to the side of the diagram saying
something like "black 33 was played at the marked white stone". In
this example. the information returned by B<get> describes 'the
marked white stone', while 'black' will be the first item in the
'overstones' array, and '33' will be the second.
=back
The hash reference returned by B<get> points to the data in the
B<Diagram> object - don't change it unless you know what you are
doing.
=cut
sub get {
my ($my, $coords) = @_;
unless(defined($coords)) {
carp("'get' expects a '\$coords' argument");
return {};
}
return $my->{board}{$coords} || {};
}
=item my $first_number = $diagram-E<gt>B<first_number>
Returns the lowest number B<put> on the B<Diagram>, or 0 if no
numbered stones have been B<put>.
=cut
sub first_number {
my ($my) = @_;
my $first;
foreach my $num (keys(%{$my->{number}})) {
$first = $num unless(defined($first));
$first = $num if ($num < $first);
}
$first = 0 unless(defined($first));
return $first;
}
=item my $last_number = $diagram-E<gt>B<last_number>
Returns the highest number B<put> on the B<Diagram>, or 0 if no
numbered stones have been B<put>.
=cut
sub last_number {
my ($my) = @_;
my $last = 0;
foreach my $num (keys(%{$my->{number}})) {
$last = $num if ($num > $last);
}
return $last;
}
=item my $parentDiagram = $diagram-E<gt>B<parent> (? $parent ?)
If $parent is defined, sets the B<parent> for this diagram.
Always returns the current value of B<parent> (possibly undef).
=cut
sub parent {
my ($my, $new) = @_;
$my->{parent} = $new if (defined($new));
return $my->{parent};
}
=item my $move_number = $diagram-E<gt>B<var_on_move> (? $new_number ?)
If $new_number is defined, sets the B<var_on_move> for this diagram.
This is intended to be used in conjunction with the <Bparent>
information to title diagrams such as
my $title = "Variation 2 on move " .
$diagram->var_on_move .
" in " .
$diagram->parent->name;
Always returns the current value of B<var_on_move> (possibly undef).
=cut
sub var_on_move {
my ($my, $new) = @_;
$my->{var_on_move} = $new if (defined($new));
return $my->{var_on_move};
}
=item my $overListRef = $diagram-E<gt>B<getoverlist>
Returns a reference to the list of intersections with overstones.
The list members are the same intersection hash references returned
by the B<get> method.
The list is sorted by the order the intersections first had an
overstone B<put> on. If there are no intersections with overstones,
returns a reference to an empty list.
=cut
sub getoverlist {
my ($my) = @_;
return($my->{overlist}) if (exists($my->{overlist}));
return [];
}
=item my $user = $diagram-E<gt>B<user> ( ? $new_user ? )
If $new_user is defined, sets the B<user> value for the B<Diagram>.
Note that the B<user> is not used within B<Diagram>, but can be used
by external code for any purpose. Most useful is probably if
$new_user is a reference to a hash of user-defined items of
interest.
Returns the current B<user> value (default is undef).
=cut
sub user {
my ($my, $user) = @_;
$my->{user} = $user if(defined($user));
return $my->{user};
}
1;
__END__
=back
=head1 SEE ALSO
=over 4
=item L<sgf2dg>(1)
Script to convert SGF format files to Go diagrams
=back
=head1 BUGS
With the current architecture, conflicts within a node are not
detected. I think this would probably be malformed SGF. This
deficiency could be fixed by adding a 'shadow' diagram to which
provisional actions are applied.
=head1 AUTHOR
Reid Augustin, E<lt>reid@netchip.comE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2005 by Reid Augustin
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.8.5 or,
at your option, any later version of Perl 5 you may have available.
=cut
|