This file is indexed.

/usr/lib/stimfit/hdf5tools.py is in stimfit 0.15.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import sys
sys.argv = ""
import tables
import numpy as np

class Recording():
    def __init__(self, channels, comment, date, time):
        self.channels = channels
        self.comment = comment
        self.date = date
        self.time = time

    def __getitem__( self, i ):
        return self.channels[i]

    def get_list( self ):
        return [ [ s.data for s in c.sections ] for c in self.channels ]

    def __len__( self ):
        return len( self.channels )

class Channel():
    def __init__(self, sections, name):
        self.sections = sections
        self.name = name

    def __len__( self ):
        return len( self.sections )

    def __getitem__( self, i ):
        return self.sections[i]

class Section():
    def __init__(self, data, dt, xunits, yunits):
        self.data = data
        self.dt = dt
        self.xunits = xunits
        self.yunits = yunits

    def __len__( self ):
        return len( self.data )

    def __getitem__( self, i ):
        return self.data[i]

class RecordingDescription(tables.IsDescription):
    channels = tables.Int32Col()
    date = tables.StringCol(128)
    time = tables.StringCol(128)

class ChannelDescription(tables.IsDescription):
    n_sections = tables.Int32Col()

class SectionDescription(tables.IsDescription):
    dt = tables.Float64Col()
    xunits = tables.StringCol(16)
    yunits = tables.StringCol(16)

def save_hdf5( rec, filename ):

    h5file = tables.openFile(filename, mode = "w", title = "%s, converted to hdf5" % filename)
    # write global file description
    root_table = h5file.createTable(h5file.root, "description", RecordingDescription, "Description of %s" % filename)
    root_row = root_table.row
    
    root_row['channels'] = len(rec)
    root_row['date'] = rec.date
    root_row['time'] = rec.time
    root_row.append()
    root_table.flush()

    # write comment
    comment_group = h5file.createGroup("/", "comment", "multiline file comment")
    strarray = h5file.createArray(comment_group, "comment", [rec.comment,], "multiline file comment")
    
    # create group for channel names:
    chroot_group = h5file.createGroup("/", "channels", "channel names")

    # loop through channels:
    for n_c in range(len(rec)):
        channel_name = rec[n_c].name
        if channel_name == "":
            channel_name = "ch%d" % (n_c)
            
        channel_group = h5file.createGroup("/", channel_name, "channel%d" % (n_c))

        # write channel name to root group:
        strarray = h5file.createArray(chroot_group, "ch%d" % n_c, [channel_name,], "channel name")
        
        channel_table = h5file.createTable(channel_group, "description", ChannelDescription, "Description of %s" % channel_name)
        channel_row = channel_table.row
        channel_row['n_sections'] = len(rec[n_c])
        channel_row.append()
        channel_table.flush()
        
        if len(rec[n_c])==1:
            max_log10 = 0
        else:
            max_log10 = int(np.log10(len(rec[n_c])-1))
        
        for n_s in range(len(rec[n_c])):
            # construct a number with leading zeros:
            if n_s==0:
                n10 = 0
            else:
                n10 = int(np.log10(n_s))
            strZero = ""
            for n_z in range(n10,max_log10):
                strZero += "0"

            # construct a section name:
            section_name = "sec%d" % (n_s)

            # create a child group in the channel:
            section_group = h5file.createGroup(channel_group, "section_%s%d" % (strZero, n_s), section_name)
            
            # add data and description:
            array = h5file.createArray(section_group, "data", np.array(rec[n_c][n_s].data, dtype=np.float32), "data in %s" % section_name)
            desc_table = h5file.createTable(section_group, "description", SectionDescription, "description of %s" % section_name)
            desc_row = desc_table.row
            desc_row['dt'] = rec[n_c][n_s].dt
            desc_row['xunits'] = rec[n_c][n_s].xunits
            desc_row['yunits'] = rec[n_c][n_s].yunits
            desc_row.append()
            desc_table.flush()

    h5file.close()
    return True

def export_hdf5( filename="" ):
    """
    Exports a file in hdf5 format using PyTables.
    """
    stf = __import__("stf")

    if filename=="":
        filename = "%s.h5" % (stf.get_filename())

    # loop through channels:
    channel_list = list()
    
    for n_c in range(stf.get_size_recording()):
        section_list = [ 
            Section( stf.get_trace(n_s, n_c), stf.get_sampling_interval(), stf.get_xunits(n_s, n_c), stf.get_yunits(n_s, n_c) ) \
                for n_s in range(stf.get_size_channel(n_c)) 
            ]
        channel_list.append( Channel( section_list, stf.get_channel_name() ) )

    rec = Recording( channel_list, stf.get_recording_comment(), stf.get_recording_date(), stf.get_recording_time() )
    save_hdf5( rec, filename )
    return True

def import_hdf5( filename ):
    """
    Imports a file in hdf5 format stored by stimfit using PyTables, returns a Recording object.
    """
    h5file = tables.openFile( filename, mode='r' )

    # read global file description
    root_node = h5file.getNode("/", "description")
    date = root_node.col("date")[0]
    time = root_node.col("time")[0]
    n_channels = root_node.col("channels")[0]

    # read comment
    com = h5file.getNode("/", "comment")
    comment = ""
    for entry in h5file.walkNodes(com,classname='Array'):
        comment += "%s" % entry.read()[0]

    # read channel names
    channel_names = list()
    chan = h5file.getNode("/", "channels")
    for entry in h5file.walkNodes(chan, classname='Array'):
        channel_names.append( "%s" % entry.read()[0] )

    # read data from channels: 
    channel_list = list()
    for n_c in range(n_channels):
        channel_node = h5file.getNode("/", channel_names[n_c])
        chdesc_node = h5file.getNode( channel_node, "description" )
        n_sections = chdesc_node.col("n_sections")[0]

        # required number of zeros:
        if n_sections==1:
            max_log10 = 0
        else:
            max_log10 = int(np.log10(n_sections-1))

        # loop through sections:
        section_list = list()
        for n_s in range(n_sections):
            # construct a number with leading zeros:
            if n_s==0:
                n10 = 0
            else:
                n10 = int(np.log10(n_s))
            strZero = ""
            for n_z in range(n10,max_log10):
                strZero += "0"

            section_name = "section_%s%d" % ( strZero, n_s)
            section_node = h5file.getNode( channel_node, section_name )
            secdesc_node = h5file.getNode( section_node, "description" )
            dt = secdesc_node.col("dt")[0]
            xunits = secdesc_node.col("xunits")[0]
            yunits = secdesc_node.col("yunits")[0]
            data = h5file.getNode( section_node, "data").read()
            section_list.append( Section(data, dt, xunits, yunits) )

        channel_list.append( Channel(section_list, channel_names[n_c]) )

    h5file.close()

    return Recording( channel_list, comment, date, time )

def open_hdf5( filename ):
    """
    Opens and shows an hdf5 file with stimfit
    """
    rec = import_hdf5( filename )
    stf = __import__("stf")

    stf._gNames_resize( len(rec.channels) )
    for n_c in range(len(rec.channels)):
        stf._gNames_at( rec.channels[n_c].name, n_c )
    
    stf.new_window_list( rec.get_list() )
    n_channels = stf.get_size_recording()
    dt = rec.channels[0].sections[0].dt
    stf.set_sampling_interval( dt )
    stf.set_recording_comment( rec.comment )
    stf.set_recording_date( rec.date )
    stf.set_recording_time( rec.time )
    for n_c in range(stf.get_size_recording()):
        for n_s in range(stf.get_size_channel(n_c)):
            xunits = rec.channels[n_c].sections[n_s].xunits
            yunits = rec.channels[n_c].sections[n_s].yunits

            stf.set_xunits( xunits )
            stf.set_yunits( yunits, n_s, n_c )

    return True

def show_rec( rec ):
    """
    Shows recording object in a new stimfit window
    """
    stf = __import__("stf")

    stf._gNames_resize( len(rec.channels) )
    for n_c in range(len(rec.channels)):
        stf._gNames_at( rec.channels[n_c].name, n_c )
    
    stf.new_window_list( rec.get_list() )
    n_channels = stf.get_size_recording()
    dt = rec.channels[0].sections[0].dt
    stf.set_sampling_interval( dt )
    stf.set_recording_comment( rec.comment )
    stf.set_recording_date( rec.date )
    stf.set_recording_time( rec.time )
    for n_c in range(stf.get_size_recording()):
        for n_s in range(stf.get_size_channel(n_c)):
            xunits = rec.channels[n_c].sections[n_s].xunits
            yunits = rec.channels[n_c].sections[n_s].yunits

            stf.set_xunits( xunits )
            stf.set_yunits( yunits, n_s, n_c )

    return True

def test():
    export_hdf5()
    open_hdf5("/home/cs/data/EE07_04_11_2AC.dat.h5")