This file is indexed.

/usr/include/styx/hset.h is in styx-dev 2.0.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*----------------------------------------------------------------------------*/
/*                                                                            */
/* [hset.h]                 Type: Hash Set/Relation                           */
/*                                                                            */
/* Copyright (c) 1993 by D\olle, Manns                                        */
/*----------------------------------------------------------------------------*/

/* File generated by 'ctoh'. Don't change manually. */

#ifndef hset_INCL
#define hset_INCL


#include "standard.h"
#include "prim.h"      /* for primitive types */


#ifdef __cplusplus
extern "C" {
#endif


/*  
   [hset] implements sets and relations based on finite maps.
*/

/* There is no Copy Semantic for Domain Values !          */
/* A Set Operation on a special binary Relations leads to */
/* an ordinary binary Relation.                           */

/* ------------------------------ Types ------------------------------------- */

AbstractType(HS_Set); /* Abstract set/relation type           */
AbstractType(HS_Elm); /* Abstract set/relation element type   */
AbstractType(HS_Dom); /* Abstract tuple component type        */
AbstractType(HS_Itr); /* Abstract set/relation iterator type  */

#define SET(type)   HS_Set   /* Polymorphic SET - Type */

/* -------------------------- Set/Relation Iterator ------------------------- */

/*  No changes are allowed on the underlaying set/relation while iterating ! */

HS_Itr HS_createItr(HS_Set set)
#define HS_CREATE_ITR HS_createItr
/* creates an iterator on set/relation 'set' */
;

void HS_dropItr(HS_Itr itr)
#define HS_DROP_ITR HS_dropItr
/* removes iterator 'itr' */
;

c_bool HS_emptyItr(HS_Itr itr)
#define HS_EMPTY_ITR HS_emptyItr
/* whether iterator 'itr' is empty */
;

void HS_get(HS_Itr itr, HS_Elm* elm)
#define HS_GET(itr,pElm) HS_get(itr,(HS_Elm*)(pElm))
/* get the next element from iterator 'itr' into 'elm' */
;


/*  <p><b>iterator macro for convenience</b> */

#define HS_FORALL(elm,itr,set) for                            \
                               (                              \
                                 itr = HS_CREATE_ITR(set);    \
                                 HS_EMPTY_ITR(itr)            \
                                 ? (HS_DROP_ITR(itr), C_False)  \
                                 : (HS_GET(itr, ((StdCPtr)&elm)), C_True); \
                               )

/* ======================= Sets & Relations ================================= */

/* ------------------------- Creation of sets ------------------------------- */

HS_Set HS_createSet
       (                                    /* function parameter:       */
         c_bool (*equal)(HS_Elm l, HS_Elm r), /* equality on set elements  */
         long (*hash)(HS_Elm elm)           /* hash value of set element */
       )
#define HS_CREATE_SET(type,equ,hsh)                                       \
        HS_createSet                                                      \
        (                                                                 \
          (c_bool (*)(HS_Elm l, HS_Elm r))(equ),(long (*)(HS_Elm elm))(hsh) \
        )
#define HS_CREATE_ADTSET(type) HS_CREATE_SET(type,primEqual,primHash)
/** creates a new set */
;


/* ---------------------- Basics for sets and relations --------------------- */

void HS_dropSet(HS_Set set)
#define HS_DROP_SET HS_dropSet
/* removes set/relation 'set' */
;

HS_Set HS_clear(HS_Set set)
#define HS_CLEAR HS_clear
/* clears set/relation 'set'; removes all elements */
;

HS_Set HS_copy(HS_Set set)
#define HS_COPY HS_copy
/* copies set/relation 'set' */
;


/* -------------- Operations and predicates on one set/relation ------------- */

long HS_card(HS_Set set)
#define HS_CARD HS_card
/* cardinality of set/relation 'set' */
;

c_bool HS_emptySet(HS_Set set)
#define HS_EMPTY_SET HS_emptySet
/* whether set/relation 'set' is empty */
;


/*  
   The following functions can also be applied to relations.
   In this case the element represents a tuple.
*/

void HS_setElm(HS_Elm elm, HS_Set set)
#define HS_SET_ELM(elm,set) HS_setElm(ABS_CAST(HS_Elm,elm),set)
/* set = set U { elm } */
;

void HS_delElm(HS_Elm elm, HS_Set set)
#define HS_DEL_ELM(elm,set) HS_delElm((HS_Elm)(elm),set)
/* set = set \ { elm } */
;

c_bool HS_mbrElm(HS_Elm elm, HS_Set set)
#define HS_MBR_ELM(elm,set) HS_mbrElm((HS_Elm)(elm),set)
/* whether 'elm' is a member of set/relation 'set' */
;

HS_Set HS_part(HS_Set set, c_bool (*wherepart)(HS_Elm elm))
#define HS_PART(set,where) HS_part(set,(c_bool (*)(HS_Elm elm))(where))
/* result = { e in set | wherepart(e) } */
;


/* ------------- Operations and predicates on two sets/relations ------------ */

/*  <p>The predicate functions expects equal types ! */

c_bool HS_equal(HS_Set l, HS_Set r)
#define HS_EQUAL HS_equal
/* l = r ? */
;

c_bool HS_subset(HS_Set l, HS_Set r)
#define HS_SUBSET HS_subset
/* l <= r ? */
;

HS_Set HS_union(HS_Set dst, HS_Set l, HS_Set r)
#define HS_UNION HS_union
/* dst = l U r */
;

HS_Set HS_minus(HS_Set dst, HS_Set l, HS_Set r)
#define HS_MINUS HS_minus
/* dst = l \ r */
;

HS_Set HS_inter(HS_Set dst, HS_Set l, HS_Set r)
#define HS_INTER HS_inter
/* dst = l & r */
;

HS_Set HS_product(HS_Set l, HS_Set r, c_bool plane)
#define HS_PRODUCT HS_product
/* result = l X r ( plane --> no tuple hierarchy ) */
;


/* ------------------------- Creation of relations -------------------------- */

HS_Set HS_createRel
       (                                    /* function parameter:                    */
         int argcnt,                        /* tuple arity; number of following pairs */
         c_bool (*equal)(HS_Dom l, HS_Dom r), /* equality on tuple components           */
         long (*hash)(HS_Dom d), ...        /* hash value of tuple component          */
       )
#define HS_CREATE_REL_2(t1,e1,h1,t2,e2,h2)    \
        HS_createRel                          \
        (                                     \
          4,                                  \
          (c_bool (*)(HS_Dom l, HS_Dom r))(e1), \
          (long (*)(HS_Dom d))(h1),           \
          (c_bool (*)(HS_Dom l, HS_Dom r))(e2), \
          (long (*)(HS_Dom d))(h2)            \
        )
#define HS_CREATE_ADTREL_2(t1,t2) \
        HS_CREATE_REL_2(t1,primEqual,primHash,t2,primEqual,primHash)
/** creates a new relation */
;


/* ------------------------- Basics for relations --------------------------- */

int HS_arity(HS_Elm tpl)
#define HS_ARITY HS_arity
/* number of tuple components */
;

HS_Dom HS_tplcol(HS_Elm tpl, int Nth)
#define HS_TPLCOL(typ,t,n) ((typ)HS_tplcol(t,n))
/* Nth tuple component ( Nth >= 1 ) */
;


/* --------------- Operations and predicates on one relation ---------------- */

void HS_setTpl(int argcnt, HS_Set rel, HS_Dom dom, ...)
#define HS_SETTPL_2(d1,d2,rel) HS_setTpl(3,rel,(HS_Dom)(d1),(HS_Dom)(d2))
/* rel = rel U { (dom,...) } */
;

void HS_delTpl(int argcnt, HS_Set rel, HS_Dom dom, ...)
#define HS_DELTPL_2(d1,d2,rel) HS_delTpl(3,rel,(HS_Dom)(d1),(HS_Dom)(d2))
/* rel = rel \ { (dom,...) } */
;

c_bool HS_mbrTpl
     (
       int argcnt, HS_Set rel, HS_Dom dom, ...
     )
#define HS_MBRTPL_2(d1,d2,rel) HS_mbrTpl(3,rel,(HS_Dom)(d1),(HS_Dom)(d2))
/* whether (dom,...) is a member of relation 'rel' */
;

HS_Set HS_project(HS_Set rel, int Nth)
#define HS_PROJECT HS_project
/* result = rel.Nth column ( Nth >= 1 ) */
;

HS_Set HS_range
       (
         int argcnt, HS_Set rel, HS_Dom dom, ...
       )
#define HS_RANGE_1(d,rel) HS_range(2,rel,(HS_Dom)(d))
/* result = Range((dom,...)) */
;

HS_Set HS_domain
       (
         int argcnt, HS_Set rel, HS_Dom rng, ...
       )
#define HS_DOMAIN_1(r,rel) HS_domain(2,rel,(HS_Dom)(r))
/* result = Domain((rng,...)) */
;

HS_Set HS_trans(HS_Set rel)
#define HS_TRANS HS_trans
/* R' (reverse elements) */
;


/*  
   The following functions can be applied only to binary relations
   over a single domain !
*/

HS_Set HS_rclosure(HS_Set dst, HS_Set rel, HS_Set set)
#define HS_IR_RCLOSURE     HS_rclosure
#define HS_R_RCLOSURE(d,r) HS_rclosure(d,r,(HS_Set)NULL)
/* dst = R + Id ( relation 'rel', domain 'set' ) */
;

HS_Set HS_sclosure(HS_Set dst, HS_Set rel)
#define HS_SCLOSURE HS_sclosure
/* dst = R + R' */
;

HS_Set HS_closure(HS_Set dst, HS_Set rel, HS_Set set)
#define HS_IR_CLOSURE     HS_closure
#define HS_R_CLOSURE(d,r) HS_closure(d,r,(HS_Set)NULL)
/* dst = R* ( relation 'rel', domain 'set' ) */
;

HS_Set HS_iclosure(HS_Set dst, HS_Set rel)
#define HS_ICLOSURE HS_iclosure
/* dst = R+ */
;

HS_Set HS_eclosure
       (
         HS_Set dst, HS_Set rel, HS_Set set, int (*compare)(HS_Dom l, HS_Dom r)
       )
#define HS_IR_ECLOSURE       HS_eclosure
#define HS_R_ECLOSURE(d,r,c) HS_eclosure(d,r,(HS_Set)NULL,c)
/* dst = (R + R')* ( relation 'rel', domain 'set' and 'compare' ) */
;

void HS_quotient(HS_Set eclosure,int (*compare)(HS_Dom l, HS_Dom r))
#define HS_QUOTIENT(ecl,cmp) \
        HS_quotient(ecl,(int (*)(HS_Dom l, HS_Dom r))(cmp))
/* re-sets class representants [eclosure] of partition 'eclosure' */
;

HS_Dom HS_class(HS_Dom dom, HS_Set eclosure)
#define HS_CLASS(typ,dom,ecl) ((typ)HS_class((HS_Dom)(dom),ecl))
/* get class representant [dom] of domain 'dom' in partition 'eclosure' */
;

HS_Set HS_kern(HS_Set dst, HS_Set iclosure)
#define HS_KERN HS_kern
/* dst = R+ \ square(R+) */
;

HS_Set HS_conclusion(HS_Set dst, HS_Set rel)
#define HS_CONCLUSION HS_conclusion
/* dst = square(R) */
;


/* --------------- Operations and predicates on two relations --------------- */

HS_Set HS_join
       (
         int argcnt, HS_Set l, HS_Set r, /* ( long cl, long cr ) */ ...
       )
#define HS_JOIN(l,r)         HS_join(2,l,r)
#define HS_JOIN_1(l,r,cl,cr) HS_join(4,l,r,(long)(cl),(long)(cr))
/** joins two relations, using columns ( cl, cr ),... */
;


/*  
   The following functions can be applied only to binary relations !
*/

HS_Set HS_compose(HS_Set dst, HS_Set l, HS_Set r)
#define HS_COMPOSE HS_compose
/* dst = l * r ( special binary relation --> binary relation ) */
;


/* ---------------------------- Printing ------------------------------------ */

void HS_fprint
     (
       FILE* file,
       HS_Set set,
       int indent,
       void (*fpMember)(FILE *file, HS_Elm elm)
     )
#define HS_PRINT(set,ind,pMbr) \
        HS_fprint(STDOUT,set,(ind),(void (*)(FILE *file, HS_Elm elm))(pMbr))
/* prints set/relation 'set' to 'file' */
;



#ifdef __cplusplus
}
#endif

#endif