/usr/lib/swi-prolog/library/MANUAL is in swi-prolog-nox 7.6.4+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 | VU University Amsterdam University of Amsterdam
~ De1Boelelaan01081a,81 HV Amsterdam KruislaanV419,A1098Amsterdam
The Netherlands The Netherlands
SWI-Prolog 7.6
Reference Manual
_U_p_d_a_t_e_d _f_o_r _v_e_r_s_i_o_n _7_._6_-_4_, _J_a_n_u_a_r_y _2_0_1_8
_J_a_n _W_i_e_l_e_m_a_k_e_r
J.Wielemaker@vu.nl
http://www.swi-prolog.org
SWI-Prolog is a comprehensive and portable implementation of
the Prolog programming language. SWI-Prolog aims to be a
robust and scalable implementation supporting a wide range of
applications. In particular, it ships with a wide range of
interface libraries, providing interfaces to other languages,
databases, graphics and networking. It provides extensive
support for managing HTML/SGML/XML and RDF documents. The
system is particularly suited for server applications due to
robust support for multithreading and HTTP server libraries.
SWI-Prolog is designed in the `Edinburgh tradition'. In
addition to the ISO Prolog standard it is largely compatible
to Quintus, SICStus and YAP Prolog. SWI-Prolog provides a
compatibility framework developed in cooperation with YAP and
instantiated for YAP, SICStus and IF/Prolog.
SWI-Prolog aims at providing a good development environment,
including extensive editor support, graphical source-level
debugger, autoloading and `make' facility and much more.
SWI-Prolog editor and the PDT plugin for Eclipse provide
alternative environments.
This document gives an overview of the features, system limits
and built-in predicates.
~
This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.
CChhaapptteerr 11.. IINNTTRROODDUUCCTTIIOONN
This document is a _r_e_f_e_r_e_n_c_e _m_a_n_u_a_l. That means that it documents the
system, but it does not explain the basics of the Prolog language and
it leaves many details of the syntax, semantics and built-in primitives
undefined where SWI-Prolog follows the standards. This manual is
intended for people that are familiar with Prolog. For those not
familiar with Prolog, we recommend to start with a Prolog textbook such
as [??], [??] or [??]. For more advanced Prolog usage we recommend [??].
11..11 PPoossiittiioonniinngg SSWWII--PPrroolloogg
Most implementations of the Prolog language are designed to serve a
limited set of use cases. SWI-Prolog is no exception to this rule.
SWI-Prolog positions itself primarily as a Prolog environment for
`programming in the large' and use cases where it plays a central role
in an application, i.e., where it acts as `glue' between components.
At the same time, SWI-Prolog aims at providing a productive rapid
prototyping environment. Its orientation towards programming in the
large is backed up by scalability, compiler speed, program structuring
(modules), support for multithreading to accommodate servers, Unicode
and interfaces to a large number of document formats, protocols and
programming languages. Prototyping is facilitated by good development
tools, both for command line usage as for usage with graphical
development tools. Demand loading of predicates from the library and
a `make' facility avoids the _r_e_q_u_i_r_e_m_e_n_t for using declarations and
reduces typing.
SWI-Prolog is traditionally strong in education because it is free and
portable, but also because of its compatibility with textbooks and its
easy-to-use environment.
Note that these positions do not imply that the system cannot be used
with other scenarios. SWI-Prolog is used as an embedded language where
it serves as a small rule subsystem in a large application. It is also
used as a deductive database. In some cases this is the right choice
because SWI-Prolog has features that are required in the application,
such as threading or Unicode support. In general though, for example,
GNU-Prolog is more suited for embedding because it is small and can
compile to native code, XSB is better for deductive databases because
it provides advanced resolution techniques (tabling), and ECLiPSe is
better at constraint handling.
The syntax and set of built-in predicates is based on the ISO
standard [??]. Most extensions follow the `Edinburgh tradition' (DEC10
Prolog and C-Prolog) and Quintus Prolog [??]. The infrastructure
for constraint programming is based on hProlog [??]. Some libraries
are copied from the YAP system. Together with YAP we developed a
portability framework (see section ????). This framework has been filled
for SICStus Prolog, YAP, IF/Prolog and Ciao. SWI-Prolog version 7
introduces various extensions to the Prolog language (see section ????).
The _s_t_r_i_n_g data type and its supporting set of built-in predicates is
compatibility with ECLiPSe.
11..22 SSttaattuuss aanndd rreelleeaasseess
This manual describes version 7.6 of SWI-Prolog. SWI-Prolog is widely
considered to be a robust and scalable implementation of the Prolog
language. It is widely used in education and research. In addition,
it is in use for 247* mission critical commercial server processes.
The site http://www.swi-prolog.org is hosted using the SWI-Prolog HTTP
server infrastructure. It receives approximately 2.3 million hits
and serves approximately 300 Gbytes on manual data and downloads each
month. SWI-Prolog applications range from student assignments to
commercial applications that count more than one million lines of
Prolog code.
SWI-Prolog has two development tracks. _S_t_a_b_l_e releases have an even
_m_i_n_o_r version number (e.g., 6.2.1) and are released as a branch from
the development version when the development version is considered
stable and there is sufficient new functionality to justify a stable
release. Stable releases often get a few patch updates to deal with
installation issues or major flaws. A new _D_e_v_e_l_o_p_m_e_n_t version is
typically released every couple of weeks as a snapshot of the public
git repository. `Extra editions' of the development version may
be released after problems that severely hindered the user in their
progress have been fixed.
Known bugs that are not likely to be fixed soon are described as
footnotes in this manual.
11..33 SShhoouulldd II bbee uussiinngg SSWWII--PPrroolloogg??
There are a number of reasons why it might be better to choose a
commercial, or another free, Prolog system:
o _S_W_I_-_P_r_o_l_o_g _c_o_m_e_s _w_i_t_h _n_o _w_a_r_r_a_n_t_i_e_s
Although the developers or the community often provide a
work-around or a fix for a bug, there is no place you can go to for
guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on
all major platforms. Users requiring more support should ensure
access to knowledgeable developers.
o _P_e_r_f_o_r_m_a_n_c_e _i_s _y_o_u_r _f_i_r_s_t _c_o_n_c_e_r_n
Various free and commercial systems have better performance. But,
`standard' Prolog benchmarks disregard many factors that are often
critical to the performance of large applications. SWI-Prolog is
not good at fast calling of simple predicates and if-then-else
selection based on simple built-in tests, but it is fast with
dynamic code, meta-calling and predicates that contain large
numbers of clauses. Many of SWI-Prolog's built-in predicates are
written in C and have excellent performance.
o _Y_o_u _n_e_e_d _f_e_a_t_u_r_e_s _n_o_t _o_f_f_e_r_e_d _b_y _S_W_I_-_P_r_o_l_o_g
Although SWI-Prolog has many features, it also lacks some important
features. The most well known is probably _t_a_b_l_i_n_g [??]. If you
require additional features and you have resources, be it financial
or expertise, please contact the developers.
On the other hand, SWI-Prolog offers some facilities that are widely
appreciated by users:
o _N_i_c_e _e_n_v_i_r_o_n_m_e_n_t
SWI-Prolog provides a good command line environment, including `Do
What I Mean', autocompletion, history and a tracer that operates on
single key strokes. The system automatically recompiles modified
parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and
line based on its source database. It ships with various graphical
tools and can be combined with the SWI-Prolog editor, PDT (Eclipse
plugin for Prolog) or GNU-Emacs.
o _F_a_s_t _c_o_m_p_i_l_e_r
Even very large applications can be loaded in seconds on most
machines. If this is not enough, there is the Quick Load Format.
See qcompile/1 and qsave_program/2.
o _T_r_a_n_s_p_a_r_e_n_t _c_o_m_p_i_l_e_d _c_o_d_e
SWI-Prolog compiled code can be treated just as interpreted code:
you can list it, trace it, etc. This implies you do not have to
decide beforehand whether a module should be loaded for debugging
or not, and the performance of debugged code is close to that of
normal operation.
o _S_o_u_r_c_e _l_e_v_e_l _d_e_b_u_g_g_e_r
The source level debugger provides a good overview of your
current location in the search tree, variable bindings, your
source code and open choice points. Choice point inspection
provides meaningful insight to both novices and experienced users.
Avoiding unintended choice points often provides a huge increase in
performance and a huge saving in memory usage.
o _P_r_o_f_i_l_i_n_g
SWI-Prolog offers an execution profiler with either textual output
or graphical output. Finding and improving hotspots in a Prolog
program may result in huge speedups.
o _F_l_e_x_i_b_i_l_i_t_y
SWI-Prolog can easily be integrated with C, supporting non-
determinism in Prolog calling C as well as C calling Prolog (see
section ????). It can also be _e_m_b_e_d_d_e_d in external programs (see
section ????). System predicates can be redefined locally to provide
compatibility with other Prolog systems.
o _T_h_r_e_a_d_s
Robust support for multiple threads may improve performance and is
a key enabling factor for deploying Prolog in server applications.
o _I_n_t_e_r_f_a_c_e_s
SWI-Prolog ships with many extension packages that provide
robust interfaces to processes, encryption, TCP/IP, TIPC, ODBC,
SGML/XML/HTML, RDF, HTTP, graphics and much more.
11..44 SSuuppppoorrtt tthhee SSWWII--PPrroolloogg pprroojjeecctt
You can support the SWI-Prolog project in several ways. Academics
are invited to cite one of the publications on SWI-Prolog. Users
can help by identifying and/or fixing problems with the code or
its documentation.. Users can contribute new features or, more
lightweight, contribute packs. Commercial users may consider
contacting the developers to sponsor the development of new features
or seek for opportunities to cooperate with the developers or other
commercial users.
11..55 IImmpplleemmeennttaattiioonn hhiissttoorryy
SWI-Prolog started back in 1986 with the requirement for a Prolog that
could handle recursive interaction with the C-language: Prolog calling
C and C calling Prolog recursively. In those days Prolog systems were
not very aware of their environment and we needed such a system to
support interactive applications. Since then, SWI-Prolog's development
has been guided by requests from the user community, especially
focussing on (in arbitrary order) interaction with the environment,
scalability, (I/O) performance, standard compliance, teaching and the
program development environment.
SWI-Prolog is based on a simple Prolog virtual machine called ZIP
[??, ??] which defines only 7 instructions. Prolog can easily be
compiled into this language, and the abstract machine code is easily
decompiled back into Prolog. As it is also possible to wire a
standard 4-port debugger in the virtual machine, there is no need for a
distinction between compiled and interpreted code. Besides simplifying
the design of the Prolog system itself, this approach has advantages
for program development: the compiler is simple and fast, the user
does not have to decide in advance whether debugging is required,
and the system only runs slightly slower in debug mode compared to
normal execution. The price we have to pay is some performance
degradation (taking out the debugger from the VM interpreter improves
performance by about 20%) and somewhat additional memory usage to help
the decompiler and debugger.
SWI-Prolog extends the minimal set of instructions described in
[??] to improve performance. While extending this set, care has
been taken to maintain the advantages of decompilation and tracing
of compiled code. The extensions include specialised instructions
for unification, predicate invocation, some frequently used built-in
predicates, arithmetic, and control (;/2, |/2), if-then (->/2) and
negation-by-failure (\+/1).
11..66 AAcckknnoowwlleeddggeemmeennttss
Some small parts of the Prolog code of SWI-Prolog are modified versions
of the corresponding Edinburgh C-Prolog code: grammar rule compilation
and writef/2. Also some of the C-code originates from C-Prolog:
finding the path of the currently running executable and some of the
code underlying absolute_file_name/2. Ideas on programming style and
techniques originate from C-Prolog and Richard O'Keefe's _t_h_i_e_f editor.
An important source of inspiration are the programming techniques
introduced by Anjo Anjewierden in PCE version 1 and 2.
Our special thanks go to those who had the fate of using the early
versions of this system, suggested extensions or reported bugs. Among
them are Anjo Anjewierden, Huub Knops, Bob Wielinga, Wouter Jansweijer,
Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.
Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind
to reorganise the sources for version 2.1.3 of this manual. Horst von
Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!
Randy Sharp fixed many issues in the 6.0.x version of the manual.
Bart Demoen and Tom Schrijvers have helped me adding coroutining,
constraints, global variables and support for cyclic terms to the
kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska
contributed the current clp(fd) implementation as well as the clp(b)
implementation.
Tom Schrijvers and Bart Demoen initiated the implementation of
_d_e_l_i_m_i_t_e_d _c_o_n_t_i_n_u_a_t_i_o_n_s (section ????), which was used by Benoit Desouter
and Tom Schrijvers to implement _t_a_b_l_i_n_g (section ????) as a library.
Fabrizio Riguzzi added a first implementation for _m_o_d_e _d_i_r_e_c_t_e_d _t_a_b_l_i_n_g
(section ????).
The SWI-Prolog 7 extensions (section ????) are the result of a long
heated discussion on the mailinglist. Nicos Angelopoulos' wish for a
smooth integration with the R language triggered the overall intend of
these extensions to enable a smoother integration of Prolog with other
languages. Michael Hendrix suggested and helped shaping SWI-Prolog
_q_u_a_s_i _q_u_o_t_a_t_i_o_n_s.
Paul Singleton has integrated Fred Dushin's Java-calls-Prolog side with
his Prolog-calls-Java side into the current bidirectional JPL interface
package.
Richard O'Keefe is gratefully acknowledged for his efforts to educate
beginners as well as valuable comments on proposed new developments.
Scientific Software and Systems Limited, www.sss.co.nz has sponsored
the development of the SSL library, unbounded integer and rational
number arithmetic and many enhancements to the memory management of the
system.
Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Jeff Rosenwald contributed the TIPC networking library and Google's
protocol buffer handling.
Paulo Moura's great experience in maintaining Logtalk for many
Prolog systems including SWI-Prolog has helped in many places fixing
compatibility issues. He also worked on the MacOS port and fixed many
typos in the 5.6.9 release of the documentation.
Kyndi (https://kyndi.com/) sponsored the development of the _e_n_g_i_n_e_s
interface (chapter ????). The final API was established after discussion
with the founding father of engines, Paul Tarau and Paulo Moura. Kyndi
also sponsored JIT indexing on multiple arguments.
CChhaapptteerr 22.. OOVVEERRVVIIEEWW
22..11 GGeettttiinngg ssttaarrtteedd qquuiicckkllyy
22..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg
22..11..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg oonn UUnniixx
By default, SWI-Prolog is installed as `swipl'. The command line
arguments of SWI-Prolog itself and its utility programs are documented
using standard Unix man pages. SWI-Prolog is normally operated as an
interactive application simply by starting the program:
________________________________________________________________________| |
|$ swipl |
|Welcome to SWI-Prolog ... |
|... |
| |
|1|?-___________________________________________________________________ | |
After starting Prolog, one normally loads a program into it
using consult/1, which may be abbreviated by putting the
name of the program file between square brackets. The
following goal loads the file https://raw.githubusercontent.com/SWI-
Prolog/swipl-devel/master/demo/likes.pllikes.pl containing clauses for
the predicates likes/2:
________________________________________________________________________| |
|?- [likes]. |
|true. |
| |
|?-|____________________________________________________________________ | |
Alternatively, the source file may be given as command line arguments:
________________________________________________________________________| |
|$ swipl likes.pl |
|Welcome to SWI-Prolog ... |
|... |
| |
|1|?-___________________________________________________________________ | |
After this point, Unix and Windows users unite, so if you are using
Unix please continue at section ????.
22..11..11..22 SSttaarrttiinngg SSWWII--PPrroolloogg oonn WWiinnddoowwss
After SWI-Prolog has been installed on a Windows system, the following
important new things are available to the user:
o A folder (called _d_i_r_e_c_t_o_r_y in the remainder of this document)
called swipl containing the executables, libraries, etc., of the
system. No files are installed outside this directory.
o A program swipl-win.exe, providing a window for interaction with
Prolog. The program swipl.exe is a version of SWI-Prolog that runs
in a console window.
o The file extension .pl is associated with the program swipl-
win.exe. Opening a .pl file will cause swipl-win.exe to start,
change directory to the directory in which the file to open
resides, and load this file.
The normal way to start the likes.pl file mentioned in section ???? is by
simply double-clicking this file in the Windows explorer.
22..11..22 AAddddiinngg rruulleess ffrroomm tthhee ccoonnssoollee
Although we strongly advice to put your program in a file, optionally
edit it and use make/0 to reload it (see section ????), it is possible to
manage facts and rules from the terminal. The most conveniant way to
add a few clauses is by consulting the pseudo file user. The input is
ended using the system end-of-file character.
________________________________________________________________________| |
|?- [user]. |
||: hello :- format('Hello world~n'). |
||: ^D |
|true. |
| |
|?- hello. |
|Hello world |
|true.|_________________________________________________________________ | |
The predicates assertz/1 and retract/1 are alternatives to add and
remove rules and facts.
22..11..33 EExxeeccuuttiinngg aa qquueerryy
After loading a program, one can ask Prolog queries about the program.
The query below asks Prolog what food `sam' likes. The system responds
with X = <_v_a_l_u_e> if it can prove the goal for a certain _X. The user can
type the semi-colon (;) or spacebar if (s)he wants another solution.
Use the return key if you do not want to see the more answers. Prolog
completes the output with a full stop (.) if the user uses the return
key or Prolog _k_n_o_w_s there are no more answers. If Prolog cannot find
(more) answers, it writes ffaallssee.. Finally, Prolog answers using an
error message to indicate the query or program contains an error.
________________________________________________________________________| |
|?- likes(sam, X). |
|X = dahl ; |
|X = tandoori ; |
|... |
|X = chips. |
| |
|?-|____________________________________________________________________ | |
Note that the answer written by Prolog is a valid Prolog program
that, when executed, produces the same set of answers as the original
program.
22..11..44 EExxaammiinniinngg aanndd mmooddiiffyyiinngg yyoouurr pprrooggrraamm
If properly configured, the predicate edit/1 starts the built-in or
user configured editor on the argument. The argument can be anything
that can be linked to a location: a file name, predicate name, module
name, etc. If the argument resolves to only one location the editor is
started on this location, otherwise the user is presented a choice.
If a graphical user interface is available, the editor normally creates
a new window and the system prompts for the next command. The user
may edit the source file, save it and run make/0 to update any modified
source file. If the editor cannot be opened in a window it the same
console and leaving the editor runs make/0 to reload any source files
that have been modified.
________________________________________________________________________| |
|?- edit(likes). |
| |
|true. |
|?- make. |
|% /home/jan/src/pl-devel/linux/likes compiled 0.00 sec, 0 clauses |
| |
|?- likes(sam, X). |
|...|___________________________________________________________________ | |
The program can also be _d_e_c_o_m_p_i_l_e_d using listing/1 as below. The
argument is listing/1 is just a predicate name, a predicate _i_n_d_i_c_a_t_o_r
of the form _N_a_m_e_/_A_r_i_t_y, e.g., ?- listing(mild/1). or a _h_e_a_d, e.g.,
?- listing(likes(sam, _)., listing all _m_a_t_c_h_i_n_g clauses. The predicate
listing/0, i.e., without arguments lists the entire program.
________________________________________________________________________| |
|?- listing(mild). |
|mild(dahl). |
|mild(tandoori). |
|mild(kurma). |
| |
|true.|_________________________________________________________________ | |
22..11..55 SSttooppppiinngg PPrroolloogg
The interactive toplevel can be stopped in two ways: enter the system
end-of-file character (typically _C_o_n_t_r_o_l_-_D) or by executing the halt/0
predicate:
________________________________________________________________________| |
|?- halt. |
|$|_____________________________________________________________________ | |
22..22 TThhee uusseerr''ss iinniittiiaalliissaattiioonn ffiillee
After the system initialisation, the system consults (see consult/1)
the user's startup file. The basename of this file follows conventions
of the operating system. On MS-Windows, it is the file swipl.ini
and on Unix systems .swiplrc. The file is searched using the
file_search_path/2 clauses for user_profile. The table below shows the
default value for this search path. The phrase <_a_p_p_d_a_t_a> refers to the
Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See
also win_folder/2
__________________________________
|____________|UUnniixx__||WWiinnddoowwss__________________________ ||
||_hhoommee_||~___|<_a_p_p_d_a_t_a>/SWI-Prolog_|
After the first startup file is found it is loaded and Prolog stops
looking for further startup files. The name of the startup file can be
changed with the `-f file' option. If _F_i_l_e denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same
conventions as for the default startup file. Finally, if _f_i_l_e is none,
no file is loaded.
The installation provides a file customize/dotswiplrc with (commented)
commands that are often used to customize the behaviour of Prolog, such
as interfacing to the editor, color selection or history parameters.
Many of the development tools provide menu entries for editing the
startup file and starting a fresh startup file from the system
skeleton.
See also the -s (script) and -F (system-wide initialisation) in
section ???? and section ????.
22..33 IInniittiiaalliissaattiioonn ffiilleess aanndd ggooaallss
Using command line arguments (see section ????), SWI-Prolog can be
forced to load files and execute queries for initialisation purposes or
non-interactive operation. The most commonly used options are -f file
or -s file to make Prolog load a file, -g goal to define initialisation
goals and -t goal to define the _t_o_p_-_l_e_v_e_l _g_o_a_l. The following is a
typical example for starting an application directly from the command
line.
________________________________________________________________________| |
|machine%|swipl_-s_load.pl_-g_go_-t_halt________________________________ | |
It tells SWI-Prolog to load load.pl, start the application using
the _e_n_t_r_y _p_o_i_n_t go/0 and ---instead of entering the interactive top
level--- exit after completing go/0.
The command line may have multiple -g goal occurrences. The goals are
executed in order. Possible choice points of individual goals are
pruned. If a _g_o_a_l fails execution stops with exit status 1. If a _g_o_a_l
raises an exception, the exception is printed and the process stops
with exit code 2.
The -q may be used to suppress all informational messages as well as
the error message that is normally printed if an initialisation goal
_f_a_i_l_s.
In MS-Windows, the same can be achieved using a short-cut with
appropriately defined command line arguments. A typically seen
alternative is to write a file run.pl with content as illustrated
below. Double-clicking run.pl will start the application.
________________________________________________________________________| |
|:- [load]. % load program |
|:- go. % run it |
|:-|halt.________________________%_and_exit_____________________________ | |
Section ???? discusses further scripting options, and chapter ????
discusses the generation of runtime executables. Runtime executables
are a means to deliver executables that do not require the Prolog
system.
22..44 CCoommmmaanndd lliinnee ooppttiioonnss
SWI-Prolog can be executed in one of the following modes:
swipl --help
swipl --version
swipl --arch
swipl --dump-runtime-variables
These options must appear as only option. They cause Prolog to
print an informational message and exit. See section ????.
swipl [[_o_p_t_i_o_n ......]] _s_c_r_i_p_t_-_f_i_l_e [[_a_r_g ......]]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [_o_p_t_i_o_n ...] is executed. Arguments after
the script file are made available in the Prolog flag argv.
swipl [[_o_p_t_i_o_n ......]] _p_r_o_l_o_g_-_f_i_l_e ...... [[[[--]] _a_r_g ......]]
This is the normal way to start Prolog. The options are described
in section ????, section ???? and section ????. The Prolog flag argv
provides access to _a_r_g ... If the _o_p_t_i_o_n_s are followed by
one or more Prolog file names (i.e., names with extension .pl,
.prolog or (on Windows) the user preferred extension registered
during installation), these files are loaded. The first file
is registered in the Prolog flag associated_file. In addition,
pl-win[.exe] switches to the directory in which this primary source
file is located using working_directory/2.
swipl --oo _o_u_t_p_u_t --cc _p_r_o_l_o_g_-_f_i_l_e ......
The -c option is used to compile a set of Prolog files into an
executable. See section ????.
swipl --oo _o_u_t_p_u_t --bb _b_o_o_t_f_i_l_e _p_r_o_l_o_g_-_f_i_l_e ......
Bootstrap compilation. See section ????.
22..44..11 IInnffoorrmmaattiioonnaall ccoommmmaanndd lliinnee ooppttiioonnss
--arch
When given as the only option, it prints the architecture
identifier (see Prolog flag arch) and exits. See also
-dump-runtime-variables. Also available as -arch.
--dump-runtime-variables _[_=_f_o_r_m_a_t_]
When given as the only option, it prints a sequence of variable
settings that can be used in shell scripts to deal with
Prolog parameters. This feature is also used by swipl-ld (see
section ????). Below is a typical example of using this feature.
____________________________________________________________________| |
| eval `swipl --dump-runtime-variables` |
||cc_-I$PLBASE/include_-L$PLBASE/lib/$PLARCH_...____________________ ||
The option can be followed by =sh to dump in POSIX shell format
(default) or =cmd to dump in MS-Windows cmd.exe compatible format.
--help
When given as the only option, it summarises the most important
options. Also available as -h and -help.
--version
When given as the only option, it summarises the version and the
architecture identifier. Also available as -v.
22..44..22 CCoommmmaanndd lliinnee ooppttiioonnss ffoorr rruunnnniinngg PPrroolloogg
--home=DIR
Use DIR as home directory. See section ???? for details.
--quiet
Set the Prolog flag verbose to silent, suppressing informational
and banner messages. Also available as -q.
--nodebug
Disable debugging. See the current_prolog_flag/2 flag
generate_debug_info for details.
--nosignals
Inhibit any signal handling by Prolog, a property that is sometimes
desirable for embedded applications. This option sets the flag
signals to false. See section ???? for details. Note that the
handler to unblock system calls is still installed. This can be
prevented using --sigalert=0 additionally. See --sigalert.
--pldoc _[_=_p_o_r_t_]
Start the PlDoc documentation system on a free network port and
launch the user's browser on http://localhost:_p_o_r_t. If _p_o_r_t is
specified, the server is started at the given port and the browser
is _n_o_t launched.
--sigalert=NUM
Use signal _N_U_M (1...31) for alerting a thread. This is needed
to make thread_signal/2, and derived Prolog signal handling act
immediately when the target thread is blocked on an interruptable
system call (e.g., sleep/1, read/write to most devices). The
default is to use SIGUSR2. If _N_U_M is 0 (zero), this handler is not
installed. See prolog_alert_signal/2to query or modify this value
at runtime.
-tty
Unix only. Switches controlling the terminal for allowing
single-character commands to the tracer and get_single_char/1. By
default, manipulating the terminal is enabled unless the system
detects it is not connected to a terminal or it is running as a
GNU-Emacs inferior process. See also tty_control.
--win_app
This option is available only in swipl-win.exe and is used
for the start-menu item. If causes plwin to start in the
folder ...\My Documents\Prolog or local equivalent thereof (see
win_folder/2). The Prolog subdirectory is created if it does not
exist.
-O
Optimised compilation. See current_prolog_flag/2flag optimise for
details.
-l _f_i_l_e
Load _f_i_l_e. This flag provides compatibility with some other
Prolog systems. It is used in SWI-Prolog to skip the program
initialization specified using initialization/2 directives. See
also section ????, and initialize/0.
-s _f_i_l_e
Use _f_i_l_e as a script file. The script file is loaded after the
initialisation file specified with the -f file option. Unlike
-f file, using -s does not stop Prolog from loading the personal
initialisation file.
-f _f_i_l_e
Use _f_i_l_e as initialisation file instead of the default .swiplrc
(Unix) or swipl.ini (Windows). `-f none' stops SWI-Prolog from
searching for a startup file. This option can be used as an
alternative to -s file that stops Prolog from loading the personal
initialisation file. See also section ????.
-F _s_c_r_i_p_t
Select a startup script from the SWI-Prolog home directory. The
script file is named <_s_c_r_i_p_t>.rc. The default _s_c_r_i_p_t name is
deduced from the executable, taking the leading alphanumerical
characters (letters, digits and underscore) from the program name.
-F none stops looking for a script. Intended for simple management
of slightly different versions. One could, for example, write
a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.
-x _b_o_o_t_f_i_l_e
Boot from _b_o_o_t_f_i_l_e instead of the system's default boot file. A
boot file is a file resulting from a Prolog compilation using the
-b or -c option or a program saved using qsave_program/[1,2].
-p _a_l_i_a_s_=_p_a_t_h_1_[_:_p_a_t_h_2 _._._._]
Define a path alias for file_search_path. _a_l_i_a_s is the name
of the alias, and argpath1 ... is a list of values for the
alias. On Windows the list separator is ;. On other systems
it is :. A value is either a term of the form alias(value) or
pathname. The computed aliases are added to file_search_path/2
using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file location
mechanism.
--traditional
This flag disables the most important extensions of SWI-Prolog
version 7 (see section ????) that introduce incompatibilities with
earlier versions. In particular, lists are represented in the
traditional way, double quoted text is represented by a list
of character codes and the functional notation on dicts is not
supported. Dicts as a syntactic entity, and the predicates that
act on them, are still supported if this flag is present.
--
Stops scanning for more arguments, so you can pass arguments for
your application after this one. See current_prolog_flag/2 using
the flag argv for obtaining the command line arguments.
22..44..33 CCoonnttrroolllliinngg tthhee ssttaacckk ssiizzeess
The default limit for the Prolog stacks is 128 MB on 32-bit and 256 MB
on 64-bit hardware. The 128 MB limit on 32-bit systems is the highest
possible value and the command line options can thus only be used to
lower the limit. On 64-bit systems, the limit can both be reduced
and enlarged. See section ????. Below are two examples, the first
reducing the local stack limit to catch unbounded recursion quickly and
the second using a big (32 GB) global limit, which is only possible on
64-bit hardware. Note that setting the limit using the command line
only sets a _s_o_f_t limit. Stack parameters can be changed (both reduced
and enlarged) at any time using the predicate set_prolog_stack/2.
________________________________________________________________________| |
|$ swipl -L8m |
|$|swipl_-G32g__________________________________________________________ | |
-G_s_i_z_e_[_k_m_g_]
Limit for the global stack (sometimes also called _t_e_r_m _s_t_a_c_k or
_h_e_a_p). This is where compound terms and large numbers live.
-L_s_i_z_e_[_k_m_g_]
Limit for the local stack (sometimes also called _e_n_v_i_r_o_n_m_e_n_t
_s_t_a_c_k). This is where environments and choice points live.
-T_s_i_z_e_[_k_m_g_]
Limit for the trail stack. This is where we keep track of
assignments, so we can rollback on backtracking or exceptions.
-M_s_i_z_e_[_k_m_g_]
Limit for the _t_a_b_l_e _s_p_a_c_e. This is where tries holding memoized
answers for _t_a_b_l_i_n_g are stored. The default is 1Gb on 64-bit
machines and 512Mb on 32-bit machines. See the Prolog flag
table_space
22..44..44 RRuunnnniinngg ggooaallss ffrroomm tthhee ccoommmmaanndd lliinnee
-g _g_o_a_l
_G_o_a_l is executed just before entering the top level. This option
may appear multiple times. See section ???? for details. If no
initialization goal is present the system calls version/0 to print
the welcome message. The welcome message can be suppressed with
--quiet, but also with -g true. _g_o_a_l can be a complex term. In
this case quotes are normally needed to protect it from being
expanded by the shell. A safe way to run a goal non-interactively
is below. If go/0/succeeds -g halt causes the process to stop with
exit code 0. If it fails, the exit code is 1 and it it raises an
exception the exit code is 2.
____________________________________________________________________| |
||%_swipl_<options>_-g_go_-g_halt___________________________________ ||
-t _g_o_a_l
Use _g_o_a_l as interactive top level instead of the default goal
prolog/0. The _g_o_a_l can be a complex term. If the top-level goal
succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed
as an uncaught error and the top level is _r_e_s_t_a_r_t_e_d. This flag
also determines the goal started by break/0 and abort/0. If you
want to prevent the user from entering interactive mode, start the
application with `-g goal -t halt'.
22..44..55 CCoommppiillaattiioonn ooppttiioonnss
-c _f_i_l_e _._._.
Compile files into an `intermediate code file'. See section ????.
-o _o_u_t_p_u_t
Used in combination with -c or -b to determine output file for
compilation.
22..44..66 MMaaiinntteennaannccee ooppttiioonnss
The following options are for system maintenance. They are given for
reference only.
-b _i_n_i_t_f_i_l_e _._._.-c _f_i_l_e _._._.
Boot compilation. _i_n_i_t_f_i_l_e _._._. are compiled by the C-written
bootstrap compiler, _f_i_l_e _._._. by the normal Prolog compiler.
System maintenance only.
-d _t_o_k_e_n_1_,_t_o_k_e_n_2_,_._._.
Print debug messages for DEBUG statements tagged with one of the
indicated tokens. Only has effect if the system is compiled with
the -DO_DEBUG flag. System maintenance only.
22..55 GGNNUU EEmmaaccss IInntteerrffaaccee
Unfortunately the default Prolog mode of GNU Emacs is not very good.
There are several alternatives though:
o https://bruda.ca/emacs/prolog_mode_for_emacs
Prolog mode for Emacs and XEmacs maintained by Stefan Bruda.
o https://www.metalevel.at/pceprolog/
Recommended configuration options for editing Prolog code with
Emacs.
o https://www.metalevel.at/ediprolog/
Interact with SWI-Prolog directly in Emacs buffers.
o https://www.metalevel.at/etrace/
Trace Prolog code with Emacs.
22..66 OOnnlliinnee HHeellpp
SWI-Prolog provides an online help system that covers this manual.
If the XPCE graphics system is available, online help opens a
graphical window. Otherwise the documentation is shown in the
Prolog console. The help system is controlled by the predicates
below. Note that this help system only covers the core SWI-Prolog
manual. The website provides an integrated manual that covers the core
system as well as all standard extension packages. It is possible
to install the SWI-Prolog website locally by cloning the website
repository git://www.swi-prolog.org/home/pl/git/plweb.git and following
the instructions in the README file.
hheellpp
Equivalent to help(help/1).
hheellpp((_+_W_h_a_t))
Show specified part of the manual. _W_h_a_t is one of:
<_N_a_m_e>/<_A_r_i_t_y> Give help on specified predicate
<_N_a_m_e> Give help on named predicate with any
arity or C interface function with that
name
<_S_e_c_t_i_o_n> Display specified section. Section
numbers are dash-separated numbers: 2-3
refers to section 2.3 of the manual.
Section numbers are obtained using
apropos/1.
Examples:
?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help('PL_retry'). Give help on interface function
PL_retry()
See also apropos/1 and the SWI-Prolog home page at http:
//www.swi-prolog.org, which provides a FAQ, an HTML version of
the manual for online browsing, and HTML and PDF versions for
downloading.
aapprrooppooss((_+_P_a_t_t_e_r_n))
Display all predicates, functions and sections that have _P_a_t_t_e_r_n in
their name or summary description. Lowercase letters in _P_a_t_t_e_r_n
also match a corresponding uppercase letter. Example:
?- apropos(file). Display predicates, functions
and sections that have `file'
(or `File', etc.) in their
summary description.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n))
Give an explanation on the given `object'. The argument may be any
Prolog data object. If the argument is an atom, a term of the
form _N_a_m_e_/_A_r_i_t_y or a term of the form _M_o_d_u_l_e_:_N_a_m_e_/_A_r_i_t_y, explain/1
describes the predicate as well as possible references to it. See
also gxref/0.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n_, _-_E_x_p_l_a_n_a_t_i_o_n))
Unify _E_x_p_l_a_n_a_t_i_o_n with an explanation for _T_o_E_x_p_l_a_i_n. Backtracking
yields further explanations.
22..77 CCoommmmaanndd lliinnee hhiissttoorryy
SWI-Prolog offers a query substitution mechanism similar to what is
seen in Unix shells. The availability of this feature is controlled by
set_prolog_flag/2, using the history Prolog flag. By default, history
is available if no interactive command line editor is available. To
enable history, remembering the last 50 commands, put the following
into your startup file (see section ????):
________________________________________________________________________| |
|:-|set_prolog_flag(history,_50)._______________________________________ | |
The history system allows the user to compose new queries from those
typed before and remembered by the system. The available history
commands are shown in table ????. History expansion is not done if these
sequences appear in quoted atoms or strings.
______________________________________________
| !!. |Repeat last query |
| !nr. |Repeat query numbered <_n_r> |
| !str. |Repeat last query starting with <_s_t_r> |
| h. |Show history of commands |
|_!h.___|Show_this_list_______________________ |
Table 2.1: History commands
22..88 RReeuussee ooff ttoopp--lleevveell bbiinnddiinnggss
Bindings resulting from the successful execution of a top-level goal
are asserted in a database _i_f _t_h_e_y _a_r_e _n_o_t _t_o_o _l_a_r_g_e. These values may
be reused in further top-level queries as $Var. If the same variable
name is used in a subsequent query the system associates the variable
with the latest binding. Example:
________________________________________________________________________| |
|1 ?- maplist(plus(1), "hello", X). |
|X = [105,102,109,109,112]. |
| |
|2 ?- format('~s~n', [$X]). |
|ifmmp |
|true. |
| |
|3|?-___________________________________________________________________ | |
Figure 2.1: Reusing top-level bindings
Note that variables may be set by executing =/2:
________________________________________________________________________| |
|6 ?- X = statistics. |
|X = statistics. |
| |
|7 ?- $X. |
|28.00 seconds cpu time for 183,128 inferences |
|4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules |
|55,915 byte codes; 11,239 external references |
| |
| Limit Allocated In use |
|Heap : 624,820 Bytes |
|Local stack : 2,048,000 8,192 404 Bytes |
|Global stack : 4,096,000 16,384 968 Bytes |
|Trail stack : 4,096,000 8,192 432 Bytes |
|true.|_________________________________________________________________ | |
22..99 OOvveerrvviieeww ooff tthhee DDeebbuuggggeerr
SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer
[??, ??] with two additional ports. The optional _u_n_i_f_y port allows
the user to inspect the result after unification of the head. The
_e_x_c_e_p_t_i_o_n port shows exceptions raised by throw/1 or one of the
built-in predicates. See section ????.
The standard ports are called call, exit, redo, fail and unify. The
tracer is started by the trace/0 command, when a spy point is reached
and the system is in debugging mode (see spy/1 and debug/0), or when an
exception is raised that is not caught.
The interactive top-level goal trace/0 means ``trace the next query''.
The tracer shows the port, displaying the port name, the current depth
of the recursion and the goal. The goal is printed using the Prolog
predicate write_term/2. The style is defined by the Prolog flag
debugger_write_options and can be modified using this flag or using the
w, p and d commands of the tracer.
________________________________________________________________________| |
|min_numlist([H|T], Min) :- |
| min_numlist(T, H, Min). |
| |
|min_numlist([], Min, Min). |
|min_numlist([H|T], Min0, Min) :- |
| Min1 is min(H, Min0), |
||_______min_numlist(T,_Min1,_Min)._____________________________________ ||
________________________________________________________________________| |
|1 ?- visible(+all), leash(-exit). |
|true. |
| |
|2 ?- trace, min_numlist([3, 2], X). |
| Call: (7) min_numlist([3, 2], _G0) ? creep |
| Unify: (7) min_numlist([3, 2], _G0) |
| Call: (8) min_numlist([2], 3, _G0) ? creep |
| Unify: (8) min_numlist([2], 3, _G0) |
|^ Call: (9) _G54 is min(2, 3) ? creep |
|^ Exit: (9) 2 is min(2, 3) |
| Call: (9) min_numlist([], 2, _G0) ? creep |
| Unify: (9) min_numlist([], 2, 2) |
| Exit: (9) min_numlist([], 2, 2) |
| Exit: (8) min_numlist([2], 3, 2) |
| Exit: (7) min_numlist([3, 2], 2) |
|X|=_2._________________________________________________________________ | |
Figure 2.2: Example trace of the program above showing all ports.
The lines marked ^ indicate calls to _t_r_a_n_s_p_a_r_e_n_t predicates. See
section ????.
On _l_e_a_s_h_e_d _p_o_r_t_s (set with the predicate leash/1, default are call,
exit, redo and fail) the user is prompted for an action. All actions
are single-character commands which are executed wwiitthhoouutt waiting for a
return, unless the command line option -tty is active. Tracer options:
+ ((SSppyy))
Set a spy point (see spy/1) on the current predicate.
- ((NNoo ssppyy))
Remove the spy point (see nospy/1) from the current predicate.
/ ((FFiinndd))
Search for a port. After the `/', the user can enter a line to
specify the port to search for. This line consists of a set of
letters indicating the port type, followed by an optional term,
that should unify with the goal run by the port. If no term is
specified it is taken as a variable, searching for any port of the
specified type. If an atom is given, any goal whose functor has a
name equal to that atom matches. Examples:
/f Search for any fail port
/fe solve Search for a fail or exit port of
any goal with name solve
/c solve(a, _) Search for a call to solve/2 whose
first argument is a variable or the
atom a
/a member(_, _) Search for any port on member/2.
This is equivalent to setting a spy
point on member/2.
. ((RReeppeeaatt ffiinndd))
Repeat the last find command (see `/').
A ((AAlltteerrnnaattiivveess))
Show all goals that have alternatives.
C ((CCoonntteexxtt))
Toggle `Show Context'. If on, the context module of the goal is
displayed between square brackets (see section ????). Default is
off.
L ((LLiissttiinngg))
List the current predicate with listing/1.
a ((AAbboorrtt))
Abort Prolog execution (see abort/0).
b ((BBrreeaakk))
Enter a Prolog break environment (see break/0).
c ((CCrreeeepp))
Continue execution, stop at next port. (Also return, space).
d ((DDiissppllaayy))
Set the max_depth(_D_e_p_t_h) option of debugger_write_options, limiting
the depth to which terms are printed. See also the w and p
options.
e ((EExxiitt))
Terminate Prolog (see halt/0).
f ((FFaaiill))
Force failure of the current goal.
g ((GGooaallss))
Show the list of parent goals (the execution stack). Note that due
to tail recursion optimization a number of parent goals might not
exist any more.
h ((HHeellpp))
Show available options (also `?').
i ((IIggnnoorree))
Ignore the current goal, pretending it succeeded.
l ((LLeeaapp))
Continue execution, stop at next spy point.
n ((NNoo ddeebbuugg))
Continue execution in `no debug' mode.
p ((PPrriinntt))
Set the Prolog flag debugger_write_options to [quoted(true), por-
tray(true), max_depth(10), priority(699)]. This is the default.
r ((RReettrryy))
Undo all actions (except for database and I/O actions) back to the
call port of the current goal and resume execution at the call
port.
s ((SSkkiipp))
Continue execution, stop at the next port of tthhiiss goal (thus
skipping all calls to children of this goal).
u ((UUpp))
Continue execution, stop at the next port of tthhee ppaarreenntt goal (thus
skipping this goal and all calls to children of this goal). This
option is useful to stop tracing a failure driven loop.
w ((WWrriittee))
Set the Prolog flag debugger_write_options to [quoted(true), at-
tributes(write), priority(699)], bypassing portray/1, etc.
The ideal 4-port model [??] as described in many Prolog books [??] is
not visible in many Prolog implementations because code optimisation
removes part of the choice and exit points. Backtrack points
are not shown if either the goal succeeded deterministically or its
alternatives were removed using the cut. When running in debug mode
(debug/0) choice points are only destroyed when removed by the cut. In
debug mode, last call optimisation is switched off.
Reference information to all predicates available for manipulating the
debugger is in section ????.
22..1100 CCoommppiillaattiioonn
22..1100..11 DDuurriinngg pprrooggrraamm ddeevveellooppmmeenntt
During program development, programs are normally loaded using the
list abbreviation (?- [load].). It is common practice to organise a
project as a collection of source files and a _l_o_a_d _f_i_l_e, a Prolog file
containing only use_module/[1,2] or ensure_loaded/1 directives, possibly
with a definition of the _e_n_t_r_y _p_o_i_n_t of the program, the predicate that
is normally used to start the program. This file is often called
load.pl. If the entry point is called _g_o, a typical session starts as:
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|1 ?- [load]. |
|<compilation messages> |
|true. |
| |
|2 ?- go. |
|<program|interaction>__________________________________________________ | |
When using Windows, the user may open load.pl from the Windows
explorer, which will cause swipl-win.exe to be started in the directory
holding load.pl. Prolog loads load.pl before entering the top level.
If Prolog is started from an interactive shell, one may choose the type
swipl -s load.pl.
22..1100..22 FFoorr rruunnnniinngg tthhee rreessuulltt
There are various options if you want to make your program ready for
real usage. The best choice depends on whether the program is to be
used only on machines holding the SWI-Prolog development system, the
size of the program, and the operating system (Unix vs. Windows).
22..1100..22..11 UUssiinngg PPrroollooggSSccrriipptt
A Prolog source file can be used directly as a Unix program using the
Unix #! magic start. The Unix #! magic is allowed because if the first
letter of a Prolog file is #, the first line is treated as a comment.
To create a Prolog script, use one of the two alternatives below as
first line. The first can be used to bind a script to a specific
Prolog installation, while the latter uses the default prolog installed
in $PATH.
________________________________________________________________________| |
|#!/path/to/swipl |
|#!/usr/bin/env|swipl___________________________________________________ | |
The interpretation of arguments to the executable in the _H_a_s_h_B_a_n_g line
differs between Unix-derived systems. For portability, the #! must
be followed immediately with an absolute path to the executable and
should have none or one argument. Neither the executable path, nor the
argument shall use quotes or spaces. When started this way, the Prolog
flag argv contains the command line arguments that follow the script
invocation.
Starting with version 7.5.8, initialization/2 support the _W_h_e_n options
program and main, allowing for the following definition of a Prolog
script that evaluates an arithmetic expression on the command line.
Note that main/0 is defined lib the library main. It calls main/1 with
the command line arguments after disabling signal handling.
________________________________________________________________________| |
|#!/usr/bin/env swipl |
| |
|:- initialization(main, main). |
| |
|main(Argv) :- |
| concat_atom(Argv, ' ', SingleArg), |
| term_to_atom(Term, SingleArg), |
| Val is Term, |
||_______format('~w~n',_[Val])._________________________________________ ||
And here are two example runs:
________________________________________________________________________| |
|% ./eval 1+2 |
|3 |
|% ./eval foo |
|ERROR:|is/2:_Arithmetic:_`foo/0'_is_not_a_function_____________________ | |
Prolog script may be lauched for debugging or inspection purposes using
the -l or -t. For example, -l merely loads the script, ignoring main
and program initialization.
________________________________________________________________________| |
|swipl -l eval 1+1 |
|<banner> |
| |
|?- main. |
|2 |
|true. |
| |
|?-|____________________________________________________________________ | |
We can also force the program to enter the interactive toplevel after
the application is completed using -t prolog:
________________________________________________________________________| |
|swipl -t prolog eval 1+1 |
|2 |
|?-|____________________________________________________________________ | |
The Windows version simply ignores the #! line.
22..1100..22..22 CCrreeaattiinngg aa sshheellll ssccrriipptt
With the introduction of _P_r_o_l_o_g_S_c_r_i_p_t (see section ????), using shell
scripts as explained in this section has become redundant for most
applications.
Especially on Unix systems and not-too-large applications, writing a
shell script that simply loads your application and calls the entry
point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.
________________________________________________________________________| |
|#!/bin/sh |
| |
|base=<absolute-path-to-source> |
|PL=swipl |
| |
|exec|$PL_-q_-f_"$base/load"_--_________________________________________ | |
________________________________________________________________________| |
|:- initialization go. |
| |
|go :- |
| current_prolog_flag(argv, Arguments), |
| go(Arguments). |
| |
|go(Args) :- |
||_______...____________________________________________________________ ||
On Windows systems, similar behaviour can be achieved by creating a
shortcut to Prolog, passing the proper options or writing a .bat file.
22..1100..22..33 CCrreeaattiinngg aa ssaavveedd ssttaattee
For larger programs, as well as for programs that are required to
run on systems that do not have the SWI-Prolog development system
installed, creating a saved state is the best solution. A saved
state is created using qsave_program/[1,2] or the -c command line
option. A saved state is a file containing machine-independent
intermediate code in a format dedicated for fast loading. Optionally,
the emulator may be integrated in the saved state, creating a single
file, but machine-dependent, executable. This process is described in
chapter ????.
22..1100..22..44 CCoommppiillaattiioonn uussiinngg tthhee --cc ccoommmmaanndd lliinnee ooppttiioonn
This mechanism loads a series of Prolog source files and then creates a
saved state as qsave_program/2 does. The command syntax is:
________________________________________________________________________| |
|%|swipl_[option_...]_[-o_output]_-c_file.pl_...________________________ | |
The _o_p_t_i_o_n_s argument are options to qsave_program/2 written in the
format below. The option names and their values are described with
qsave_program/2.
--_o_p_t_i_o_n_-_n_a_m_e=_o_p_t_i_o_n_-_v_a_l_u_e
For example, to create a stand-alone executable that starts by
executing main/0 and for which the source is loaded through load.pl,
use the command
________________________________________________________________________| |
|%|swipl_--goal=main_--stand_alone=true_-o_myprog_-c_load.pl____________ | |
This performs exactly the same as executing
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|?- [load]. |
|?- qsave_program(myprog, |
| [ goal(main), |
| stand_alone(true) |
| ]). |
|?-|halt._______________________________________________________________ | |
22..1111 EEnnvviirroonnmmeenntt CCoonnttrrooll ((PPrroolloogg ffllaaggss))
The predicates current_prolog_flag/2 and set_prolog_flag/2 allow the
user to examine and modify the execution environment. It provides
access to whether optional features are available on this version,
operating system, foreign code environment, command line arguments,
version, as well as runtime flags to control the runtime behaviour
of certain predicates to achieve compatibility with other Prolog
environments.
ccuurrrreenntt__pprroolloogg__ffllaagg((_?_K_e_y_, _-_V_a_l_u_e)) _[_I_S_O_]
The predicate current_prolog_flag/2defines an interface to instal-
lation features: options compiled in, version, home, etc. With
both arguments unbound, it will generate all defined Prolog flags.
With _K_e_y instantiated, it unifies _V_a_l_u_e with the value of the
Prolog flag or fails if the _K_e_y is not a Prolog flag.
Flags marked rrww can be modified by the user using
set_prolog_flag/2. Flag values are typed. Flags marked
as bool can have the values true or false. The predicate
create_prolog_flag/3 may be used to create flags that describe or
control behaviour of libraries and applications. The library
settings provides an alternative interface for managing notably
application parameters.
Some Prolog flags are not defined in all versions, which is
normally indicated in the documentation below as _`_`_i_f _p_r_e_s_e_n_t _a_n_d
_t_r_u_e_'_'. A boolean Prolog flag is true iff the Prolog flag is
present aanndd the _V_a_l_u_e is the atom true. Tests for such flags
should be written as below:
____________________________________________________________________| |
| ( current_prolog_flag(windows, true) |
| -> <Do MS-Windows things> |
| ; <Do normal things> |
||________)_________________________________________________________ ||
Some Prolog flags are scoped to a source file. This implies
that if they are set using a directive inside a file, the flag
value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags
are scoped to the source file: generate_debug_info and optimise.
A new thread (see section ????) _c_o_p_i_e_s all flags from the thread that
created the new thread (its _p_a_r_e_n_t). As a consequence, modifying a
flag inside a thread does not affect other threads.
aacccceessss__lleevveell _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag defines a normal `user' view (user, default) or
a `system' view. In system view all system code is fully
accessible as if it was normal user code. In user view,
certain operations are not permitted and some details are kept
invisible. We leave the exact consequences undefined, but,
for example, system code can be traced using system access and
system predicates can be redefined.
aaddddrreessss__bbiittss _(_i_n_t_e_g_e_r_)
Address size of the hosting machine. Typically 32 or 64.
Except for the maximum stack limit, this has few implications
to the user. See also the Prolog flag arch.
aaggcc__mmaarrggiinn _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If this amount of atoms possible garbage atoms exist perform
atom garbage collection at the first opportunity. Initial
value is 10,000. May be changed. A value of 0 (zero)
disables atom garbage collection. See also PL_register_atom().
aappppllee _(_b_o_o_l_)
If present and true, the operating system is MacOSX. Defined
if the C compiler used to compile this version of SWI-Prolog
defines __APPLE__. Note that the unix is also defined for
MacOSX.
aallllooww__ddoott__iinn__aattoomm _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), dots may be embedded into atoms
that are not quoted and start with a letter. The embedded
dot _m_u_s_t be followed by an identifier continuation character
(i.e., letter, digit or underscore). The dot is allowed
in identifiers in many languages, which can make this a
useful flag for defining DSLs. Note that this conflicts with
cascading functional notation. For example, Post.meta.author
is read as .(Post, 'meta.author' if this flag is set to true.
aallllooww__vvaarriiaabbllee__nnaammee__aass__ffuunnccttoorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default is false), Functor(arg) is read as if it
were written 'Functor'(arg). Some applications use the Prolog
read/1 predicate for reading an application-defined script
language. In these cases, it is often difficult to explain
to non-Prolog users of the application that constants and
functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by
calling read_term/2 using the option variable_names and binding
the variables to their name. Using this feature, F(x) can be
turned into valid syntax for such script languages. Suggested
by Robert van Engelen. SWI-Prolog specific.
aarrggvv _(_l_i_s_t_, _c_h_a_n_g_e_a_b_l_e_)
List is a list of atoms representing the application command
line arguments. Application command line arguments are
those that have _n_o_t been processed by Prolog during its
initialization. Note that Prolog's argument processing stops
at -- or the first non-option argument. See also os_argv.
aarrcchh _(_a_t_o_m_)
Identifier for the hardware and operating system SWI-Prolog
is running on. Used to select foreign files for the right
architecture. See also section ???? and file_search_path/2.
aassssoocciiaatteedd__ffiillee _(_a_t_o_m_)
Set if Prolog was started with a prolog file as argument.
Used by e.g., edit/0 to edit the initial file.
aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) autoloading of library functions is enabled.
bbaacckk__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_s_t_r_i_n_g_,_s_y_m_b_o_l___c_h_a_r_, _c_h_a_n_g_e_a_b_l_e_)
Defines the term-representation for back-quoted material. The
default is codes. If --traditional is given, the default
is symbol_char, which allows using ` in operators composed of
symbols.. See also section ????.
bbaacckkttrraaccee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), print a backtrace on an uncaught exception.
bbaacckkttrraaccee__ddeepptthh _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If backtraces on errors are enabled, this flag defines the
maximum number of frames that is printed (default 20).
bbaacckkttrraaccee__ggooaall__ddeepptthh _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
The frame of a backtrace is printed after making a shallow
copy of the goal. This flag determines the depth to which the
goal term is copied. Default is `3'.
bbaacckkttrraaccee__sshhooww__lliinneess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), try to reconstruct the line number at which
the exception happened.
bboouunnddeedd _(_b_o_o_l_)
ISO Prolog flag. If true, integer representation is bound
by min_integer and max_integer. If false integers can be
arbitrarily large and the min_integer and max_integer are not
present. See section ????.
bbrreeaakk__lleevveell _(_i_n_t_e_g_e_r_)
Current break-level. The initial top level (started with -t)
has value 0. See break/0. This flag is absent from threads
that are not running a top-level loop.
cc__cccc _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Name of the C compiler used to compile SWI-Prolog. Normally
either gcc or cc. See section ????.
cc__ccffllaaggss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
CFLAGS used to compile SWI-Prolog. See section ????.
cc__llddffllaaggss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
LDFLAGS used to link SWI-Prolog. See section ????.
cc__lliibbss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Libraries needed to link executables that embed SWI-Prolog.
Typically -lswipl if the SWI-Prolog kernel is a shared (DLL).
If the SWI-Prolog kernel is in a static library, this flag
also contains the dependencies.
cc__lliibbppllssoo _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Libraries needed to link extensions (shared object, DLL) to
SWI-Prolog. Typically empty on ELF systems and -lswipl on
COFF-based systems. See section ????.
cchhaarr__ccoonnvveerrssiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether character conversion takes place while
reading terms. See also char_conversion/2.
cchhaarraacctteerr__eessccaappeess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), read/1 interprets \ escape sequences in
quoted atoms and strings. May be changed. This flag is local
to the module in which it is changed. See section ????.
ccoolloonn__sseettss__ccaalllliinngg__ccoonntteexxtt _(_b_o_o_l_)
Using the construct <_m_o_d_u_l_e>:<_g_o_a_l> sets the _c_a_l_l_i_n_g _c_o_n_t_e_x_t for
executing <_g_o_a_l>. This flag is defined by ISO/IEC 13211-2
(Prolog modules standard). See section ????.
ccoolloorr__tteerrmm _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
This flag is managed by library ansi_term, which is loaded at
startup if the two conditions below are both true. Note that
this implies that setting this flag to false from the system
or personal initialization file (see section ???? disables
colored output. The predicate message_property/2 can be used
to control the actual color scheme depending in the message
type passed to print_message/2.
o stream_property(current_output, tty(true))
o \+ current_prolog_flag(color_term, false)
ccoommppiillee__mmeettaa__aarrgguummeennttss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Experimental flag that controls compilation of arguments
passed to meta-calls marked `0' or `^' (see meta_predicate/1).
Supported values are:
ffaallssee
(default). Meta-arguments are passed verbatim.
ccoonnttrrooll
Compile meta-arguments that contain control structures
((A,B), (A;B), (A->B;C), etc.). If not compiled at
compile time, such arguments are compiled to a temporary
clause before execution. Using this option enhances
performance of processing complex meta-goals that are
known at compile time.
ttrruuee
Also compile references to normal user predicates. This
harms performance (a little), but enhances the power of
poor-mens consistency check used by make/0 and implemented
by list_undefined/0.
aallwwaayyss
Always create an intermediate clause, even for system
predicates. This prepares for replacing the normal
head of the generated predicate with a special reference
(similar to database references as used by, e.g.,
assert/2) that provides direct access to the executable
code, thus avoiding runtime lookup of predicates for
meta-calling.
ccoommppiilleedd__aatt _(_a_t_o_m_)
Describes when the system has been compiled. Only available
if the C compiler used to compile SWI-Prolog provides the
__DATE__and __TIME__macros.
ccoonnssoollee__mmeennuu _(_b_o_o_l_)
Set to true in swipl-win.exe to indicate that the console
supports menus. See also section ????.
ccppuu__ccoouunntt _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
Number of physical CPUs or cores in the system. The flag is
marked read-write both to allow pretending the system has more
or less processors. See also thread_setconcurrency/2 and the
library thread. This flag is not available on systems where
we do not know how to get the number of CPUs. This flag is
not included in a saved state (see qsave_program/1).
ddddee _(_b_o_o_l_)
Set to true if this instance of Prolog supports DDE as
described in section ????.
ddeebbuugg _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Switch debugging mode on/off. If debug mode is activated
the system traps encountered spy points (see spy/1) and trace
points (see trace/1). In addition, last-call optimisation
is disabled and the system is more conservative in destroying
choice points to simplify debugging.
Disabling these optimisations can cause the system to run out
of memory on programs that behave correctly if debug mode is
off.
ddeebbuugg__oonn__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, start the tracer after an error is detected.
Otherwise just continue execution. The goal that raised
the error will normally fail. See also the Prolog flag
report_error. Default is true.
ddeebbuuggggeerr__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing goals by the debugger. Modified by the `w', `p' and
`<N> d' commands of the debugger. Default is [quoted(true),
portray(true), max_depth(10), attributes(portray)].
ddeebbuuggggeerr__sshhooww__ccoonntteexxtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, show the context module while printing a stack-frame
in the tracer. Normally controlled using the `C' option of
the tracer.
ddiiaalleecctt _(_a_t_o_m_)
Fixed to swi. The code below is a reliable and portable way
to detect SWI-Prolog.
_______________________________________________________________| |
|is_dialect(swi) :- |
||_______catch(current_prolog_flag(dialect,_swi),__,_fail).____ ||
ddoouubbllee__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_a_t_o_m_,_s_t_r_i_n_g_, _c_h_a_n_g_e_a_b_l_e_)
This flag determines how double quoted strings are read by
Prolog and is ---like character_escapes and back_quotes---
maintained for each module. The default is string,
which produces a string as described in section ????. If
--traditional is given, the default is codes, which produces
a list of character codes, integers that represent a Unicode
code-point. The value chars produces a list of one-character
atoms and the value atom makes double quotes the same as
single quotes, creating a atom. See also section ????.
eeddiittoorr _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines the editor used by edit/1. See section ???? for
details on selecting the editor used.
eemmaaccss__iinnffeerriioorr__pprroocceessss _(_b_o_o_l_)
If true, SWI-Prolog is running as an _i_n_f_e_r_i_o_r _p_r_o_c_e_s_s of
(GNU/X-)Emacs. SWI-Prolog assumes this is the case if the
environment variable EMACS is t and INFERIOR is yes.
eennccooddiinngg _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Default encoding used for opening files in text mode. The
initial value is deduced from the environment. See section ????
for details.
eexxeeccuuttaabbllee _(_a_t_o_m_)
Pathname of the running executable. Used by qsave_program/2 as
default emulator.
eexxiitt__ssttaattuuss _(_i_n_t_e_g_e_r_)
Set by halt/1 to its argument, making the exit status
available to hooks registered with at_halt/1.
ffiillee__nnaammee__ccaassee__hhaannddlliinngg _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag defines how Prolog handles the case of file names.
The flag is used for case normalization and to determine
whether two names refer to the same file. It has one of the
following values:
ccaassee__sseennssiittiivvee
The filesystem is fully case sensitive. Prolog does
not perform any case modification or case insensitive
matching. This is the default on Unix systems.
ccaassee__pprreesseerrvviinngg
The filesystem is case insensitive, but it preserves the
case with which the user jas created a file. This is the
default on Windows systems.
ccaassee__iinnsseennssiittiivvee
The filesystem doesn't store or match case. In this
scenario Prolog maps all file names to lower case.
ffiillee__nnaammee__vvaarriiaabblleess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), expand $_v_a_r_n_a_m_e and ~ in ar-
guments of built-in predicates that accept a file name
(open/3, exists_file/1, access_file/2, etc.). The predicate
expand_file_name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for
backward compatibility with older versions of SWI-Prolog.
ffiillee__sseeaarrcchh__ccaacchhee__ttiimmee _(_n_u_m_b_e_r_, _c_h_a_n_g_e_a_b_l_e_)
Time in seconds for which search results from
absolute_file_name/3 are cached. Within this time
limit, the system will first check that the old search result
satisfies the conditions. Default is 10 seconds, which
typically avoids most repetitive searches for (library) files
during compilation. Setting this value to 0 (zero) disables
the cache.
ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), the garbage collector is active. If false,
neither garbage collection, nor stack shifts will take place,
even not on explicit request. May be changed.
ggcc__tthhrreeaadd _(_b_o_o_l_)
If true (default if threading is enabled), atom and clause
garbage collection are executed in a seperate thread with
the _a_l_i_a_s gc. Otherwise the thread the detect sufficient
garbage executes the garbage collector. As running these
global collectors may take relatively using a seperate thread
improves real time behaviour. The gc thread can be controlled
using set_prolog_gc_thread/1.
ggeenneerraattee__ddeebbuugg__iinnffoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) generate code that can be debugged using
trace/0, spy/1, etc. Can be set to false using the -nodebug.
This flag is scoped within a source file. Many of the
libraries have :- set_prolog_flag(generate_debug_info, false)
to hide their details from a normal trace.
ggmmpp__vveerrssiioonn _(_i_n_t_e_g_e_r_)
If Prolog is linked with GMP, this flag gives the major
version of the GMP library used. See also section ????.
gguuii _(_b_o_o_l_)
Set to true if XPCE is around and can be used for graphics.
hhiissttoorryy _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If _i_n_t_e_g_e_r >0, support Unix csh(1)-like history as described
in section ????. Otherwise, only support reusing commands
through the command line editor. The default is to set this
Prolog flag to 0 if a command line editor is provided (see
Prolog flag readline) and 15 otherwise.
hhoommee _(_a_t_o_m_)
SWI-Prolog's notion of the home directory. SWI-Prolog
uses its home directory to find its startup file as
<_h_o_m_e>/boot32.prc(32-bit machines) or <_h_o_m_e>/boot64.prc (64-bit
machines) and to find its library as <_h_o_m_e>/library.
hhwwnndd _(_i_n_t_e_g_e_r_)
In swipl-win.exe, this refers to the MS-Windows window handle
of the console window.
iinntteeggeerr__rroouunnddiinngg__ffuunnccttiioonn _(_d_o_w_n_,_t_o_w_a_r_d___z_e_r_o_)
ISO Prolog flag describing rounding by // and rem arithmetic
functions. Value depends on the C compiler used.
iissoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Include some weird ISO compatibility that is incompatible with
normal SWI-Prolog behaviour. Currently it has the following
effect:
o The //2 (float division) _a_l_w_a_y_s returns a float, even if
applied to integers that can be divided.
o In the standard order of terms (see section ????), all
floats are before all integers.
o atom_length/2 yields a type error if the first argument is
a number.
o clause/[2,3] raises a permission error when accessing
static predicates.
o abolish/[1,2] raises a permission error when accessing
static predicates.
o Syntax is closer to the ISO standard:
{{ Unquoted commas and bars appearing as atoms are not
allowed. Instead of f(,,a) now write f(',',a).
Unquoted commas can only be used to separate
arguments in functional notation and list notation,
and as a conjunction operator. Unquoted bars
can only appear within lists to separate head and
tail, like [Head|Tail], and as infix operator for
alternation in grammar rules, like a --> b | c.
{{ Within functional notation and list notation terms
must have priority below 1000. That means that
rules and control constructs appearing as arguments
need bracketing. A term like [a :- b, c]. must
now be disambiguated to mean [(a :- b), c]. or
[(a :- b, c)].
{{ Operators appearing as operands must be bracketed.
Instead of X == -, true. write X == (-), true.
Currently, this is not entirely enforced.
{{ Backslash-escaped newlines are interpreted according
to the ISO standard. See section ????.
llaarrggee__ffiilleess _(_b_o_o_l_)
If present and true, SWI-Prolog has been compiled with _l_a_r_g_e
_f_i_l_e _s_u_p_p_o_r_t (LFS) and is capable of accessing files larger
than 2GB on 32-bit hardware. Large file support is default on
installations built using configure that support it and may be
switched off using the configure option --disable-largefile.
llaasstt__ccaallll__ooppttiimmiissaattiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether or not last-call optimisation is enabled.
Normally the value of this flag is the negation of the
debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable
it during debugging.
mmaaxx__aarriittyy _(_u_n_b_o_u_n_d_e_d_)
ISO Prolog flag describing there is no maximum arity to
compound terms.
mmaaxx__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section ????.
mmaaxx__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value represented as a `tagged' value. Tagged
integers require one word storage. Larger integers are
represented as `indirect data' and require significantly more
space.
mmiinn__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Minimum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section ????.
mmiinn__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Start of the tagged-integer value range.
ooccccuurrss__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag controls unification that creates an infinite
tree (also called _c_y_c_l_i_c _t_e_r_m) and can have three values.
Using false (default), unification succeeds, creating an
infinite tree. Using true, unification behaves as
unify_with_occurs_check/2, failing silently. Using error, an
attempt to create a cyclic term results in an occurs_check
exception. The latter is intended for debugging unintentional
creations of cyclic terms. Note that this flag is a global
flag modifying fundamental behaviour of Prolog. Changing the
flag from its default may cause libraries to stop functioning
properly.
ooppeenn__sshhaarreedd__oobbjjeecctt _(_b_o_o_l_)
If true, open_shared_object/2 and friends are implemented,
providing access to shared libraries (.so files) or dynamic
link libraries (.DLL files).
ooppttiimmiissee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, compile in optimised mode. The initial value is true
if Prolog was started with the -O command line option. The
optimise flag is scoped to a source file.
Currently optimised compilation implies compilation of
arithmetic, and deletion of redundant true/0 that may result
from expand_goal/2.
Later versions might imply various other optimisations such as
integrating small predicates into their callers, eliminating
constant expressions and other predictable constructs. Source
code optimisation is never applied to predicates that are
declared dynamic (see dynamic/1).
ooss__aarrggvv _(_l_i_s_t_, _c_h_a_n_g_e_a_b_l_e_)
List is a list of atoms representing the command line
arguments used to invoke SWI-Prolog. Please note that aallll
arguments are included in the list returned. See argv to get
the application options.
ppiidd _(_i_n_t_)
Process identifier of the running Prolog process. Existence
of this flag is implementation-defined.
ppiippee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, open(pipe(command), mode, Stream), etc. are sup-
ported. Can be changed to disable the use of pipes in
applications testing this feature. Not recommended.
pprriinntt__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
Specifies the options for write_term/2 used by print/1 and
print/2.
pprroommpptt__aalltteerrnnaattiivveess__oonn _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines prompting for alternatives in the Prolog top level.
Default is determinism, which implies the system prompts
for alternatives if the goal succeeded while leaving choice
points. Many classical Prolog systems behave as groundness:
they prompt for alternatives if and only if the query contains
variables.
pprrootteecctt__ssttaattiicc__ccooddee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), clause/2 does not operate on static
code, providing some basic protection from hackers that wish
to list the static code of your Prolog program. Once the flag
is true, it cannot be changed back to false. Protection is
default in ISO mode (see Prolog flag iso). Note that many
parts of the development environment require clause/2 to work
on static code, and enabling this flag should thus only be
used for production code.
qqccoommppiillee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This option provides the default for the qcompile(_+_A_t_o_m)
option of load_files/2.
rreeaaddlliinnee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Specifies which form of command line editing is provided.
Possible values are below. The flag may be set from the
user's init file (see section ????) to one of false, readline or
editline. This causes the toplevel not to load a command line
editor (false) or load the specified one. If loading fails
the flag is set to false.
ffaallssee
No command line editing is available.
rreeaaddlliinnee
The library readline is loaded, providing line editing
based on the GNU readline library.
eeddiittlliinnee
The library editline is loaded, providing line editing
based on the BSD libedit. This is the default if editline
is available and can be loaded.
sswwiippll__wwiinn
SWI-Prolog uses its own console (swipl-win.exe on Windows,
the Qt based swipl-win on MacOS) which provides line
editing.
rreessoouurrccee__ddaattaabbaassee _(_a_t_o_m_)
Set to the absolute filename of the attached state. Typically
this is the file boot32.prc, the file specified with -x or the
running executable. See also resource/3.
rreeppoorrtt__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, print error messages; otherwise suppress them. May
be changed. See also the debug_on_errorProlog flag. Default
is true, except for the runtime version.
rruunnttiimmee _(_b_o_o_l_)
If present and true, SWI-Prolog is compiled with -DO_RUNTIME,
disabling various useful development features (currently the
tracer and profiler).
ssaannddbbooxxeedd__llooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), load_files/2 calls hooks to allow
library(sandbox) to verify the safety of directives.
ssaavveedd__pprrooggrraamm _(_b_o_o_l_)
If present and true, Prolog has been started from a state
saved with qsave_program/[1,2].
sshhaarreedd__oobbjjeecctt__eexxtteennssiioonn _(_a_t_o_m_)
Extension used by the operating system for shared objects.
.so for most Unix systems and .dll for Windows. Used for
locating files using the file_type executable. See also
absolute_file_name/3.
sshhaarreedd__oobbjjeecctt__sseeaarrcchh__ppaatthh _(_a_t_o_m_)
Name of the environment variable used by the system to search
for shared objects.
ssiiggnnaallss _(_b_o_o_l_)
Determine whether Prolog is handling signals (software in-
terrupts). This flag is false if the hosting OS does not
support signal handling or the command line option -nosignals
is active. See section ???? for details.
ssttrreeaamm__ttyyppee__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines whether and how strictly the system validates that
byte I/O should not be applied to text streams and text I/O
should not be applied to binary streams. Values are false (no
checking), true (full checking) and loose. Using checking
mode loose (default), the system accepts byte I/O from text
stream that use ISO Latin-1 encoding and accepts writing text
to binary streams.
ssyysstteemm__tthhrreeaadd__iidd _(_i_n_t_)
Available in multithreaded version (see section ????) where
the operating system provides system-wide integer thread
identifiers. The integer is the thread identifier used
by the operating system for the calling thread. See also
thread_self/1.
ttaabbllee__ssppaaccee _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
Space reserved for storing answer tables for _t_a_b_l_e_d _p_r_e_d_i_c_a_t_e_s
(see table/1). When exceeded a resource_error(_t_a_b_l_e___s_p_a_c_e)
exception is raised.
ttiimmeezzoonnee _(_i_n_t_e_g_e_r_)
Offset in seconds west of GMT of the current time zone. Set
at initialization time from the timezone variable associated
with the POSIX tzset() function. See also format_time/3.
ttoopplleevveell__ggooaall _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines the goal that is executed after running the ini-
tialization goals and entry point (see -g, initialization/2
and section ????. The initial value is default, starting a
normal interactive session. This value may be changed using
the command line option -t. The explicit value prolog is
equavalent to default. If initialization(_G_o_a_l_,_m_a_i_n) is used
and the toplevel is default, the toplevel is set to halt (see
halt/0).
ttoopplleevveell__mmooddee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
If backtracking (default), the toplevel backtracks after
completing a query. If recursive, the toplevel is implemented
as a recursive loop. This implies that global variables set
using b_setval/2 are maintained between queries. In _r_e_c_u_r_s_i_v_e
mode, answers to toplevel variables (see section ????) are kept
in backtrackable global variables and thus nnoott ccooppiieedd. In
_b_a_c_k_t_r_a_c_k_i_n_g mode answers to toplevel variables are kept in
the recorded database (see section ????).
The recursive mode has been added for interactive usage of CHR
(see section ????), which maintains the global constraint store
in backtrackable global variables.
ttoopplleevveell__pprriinntt__aannoonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, top-level variables starting with an underscore (_)
are printed normally. If false they are hidden. This may be
used to hide bindings in complex queries from the top level.
ttoopplleevveell__pprriinntt__ffaaccttoorriizzeedd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false) show the internal sharing of subterms
in the answer substitution. The example below reveals
internal sharing of leaf nodes in _r_e_d_-_b_l_a_c_k _t_r_e_e_s as
implemented by the rbtrees predicate rb_new/1:
_______________________________________________________________| |
|?- set_prolog_flag(toplevel_print_factorized, true). |
|?- rb_new(X). |
|X = t(_S1, _S1), % where |
||____S1_=_black('',__G387,__G388,_'').________________________ ||
If this flag is false, the % where notation is still used to
indicate cycles as illustrated below. This example also shows
that the implementation reveals the internal cycle length, and
_n_o_t the minimal cycle length. Cycles of different length are
indistinguishable in Prolog (as illustrated by S == R).
_______________________________________________________________| |
|?- S = s(S), R = s(s(R)), S == R. |
|S = s(S), |
|R|=_s(s(R)).__________________________________________________ | |
aannsswweerr__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing results of queries. Default is [quoted(true),
portray(true), max_depth(10), attributes(portray)].
ttoopplleevveell__pprroommpptt _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Define the prompt that is used by the interactive top level.
The following ~ (tilde) sequences are replaced:
_____________________________________________________________________~m_T_y_p_e _i_n module if not user (see module/1)
~l _B_r_e_a_k _l_e_v_e_l if not 0 (see break/0)
~d _D_e_b_u_g_g_i_n_g _s_t_a_t_e if not normal execution (see debug/0, trace/0)
_~!___H_i_s_t_o_r_y__e_v_e_n_t_if_history_is_enabled_(see_flag_history)__________
ttoopplleevveell__vvaarr__ssiizzee _(_i_n_t_, _c_h_a_n_g_e_a_b_l_e_)
Maximum size counted in literals of a term returned as a
binding for a variable in a top-level query that is saved for
re-use using the $ variable reference. See section ????.
ttrraaccee__ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), garbage collections and stack-shifts
will be reported on the terminal. May be changed. Values are
reported in bytes as G+T, where G is the global stack value
and T the trail stack value. `Gained' describes the number
of bytes reclaimed. `used' the number of bytes on the stack
after GC and `free' the number of bytes allocated, but not in
use. Below is an example output.
_______________________________________________________________| |
|% GC: gained 236,416+163,424 in 0.00 sec; |
||_____used_13,448+5,808;_free_72,568+47,440___________________ ||
ttrraaddiittiioonnaall _(_b_o_o_l_)
Available in SWI-Prolog version 7. If true, `traditional'
mode has been selected using --traditional. Notice that some
SWI7 features, like the functional notation on dicts, do not
work in this mode. See also section ????.
ttttyy__ccoonnttrrooll _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether the terminal is switched to raw mode for
get_single_char/1, which also reads the user actions for the
trace. May be set. If this flag is false at startup, command
line editing is disabled. See also the +/-tty command line
option.
uunniixx _(_b_o_o_l_)
If present and true, the operating system is some version
of Unix. Defined if the C compiler used to compile this
version of SWI-Prolog either defines __unix__ or unix. On
other systems this flag is not available. See also apple and
windows.
uunnkknnoowwnn _(_f_a_i_l_,_w_a_r_n_i_n_g_,_e_r_r_o_r_, _c_h_a_n_g_e_a_b_l_e_)
Determines the behaviour if an undefined procedure is en-
countered. If fail, the predicate fails silently. If
warn, a warning is printed, and execution continues as if
the predicate was not defined, and if error (default), an
existence_error exception is raised. This flag is local to
each module and inherited from the module's _i_m_p_o_r_t_-_m_o_d_u_l_e.
Using default setup, this implies that normal modules inherit
the flag from user, which in turn inherit the value error
from system. The user may change the flag for module user
to change the default for all application modules or for
a specific module. It is strongly advised to keep the
error default and use dynamic/1 and/or multifile/1 to specify
possible non-existence of a predicate.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarriieess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), unload all loaded foreign libraries.
Default is false because modern OSes reclaim the resources
anyway and unloading the foreign code may cause registered
hooks to point to no longer existing data or code.
uusseerr__ffllaaggss _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Define the behaviour of set_prolog_flag/2 if the flag is
not known. Values are silent, warning and error. The
first two create the flag on-the-fly, where warning prints
a message. The value error is consistent with ISO: it
raises an existence error and does not create the flag. See
also create_prolog_flag/3. The default is silent, but future
versions may change that. Developers are encouraged to use
another value and ensure proper use of create_prolog_flag/3 to
create flags for their library.
vvaarr__pprreeffiixx _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), variables must start with an under-
score (_). May be changed. This flag is local to the module
in which it is changed. See section ????.
vveerrbboossee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag is used by print_message/2. If its value is silent,
messages of type informational and banner are suppressed. The
-q switches the value from the initial normal to silent.
vveerrbboossee__aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true the normal consult message will be printed if a
library is autoloaded. By default this message is suppressed.
Intended to be used for debugging purposes.
vveerrbboossee__llooaadd _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines messages printed for loading (compiling) Prolog
files. Current values are full (print a message at the
start and end of each file loaded), normal (print a message
at the end of each file loaded), brief (print a message at
end of loading the toplevel file), and silent (no messages
are printed, default). The value of this flag is normally
controlled by the option silent(_B_o_o_l) provided by load_files/2.
vveerrbboossee__ffiillee__sseeaarrcchh _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), print messages indicating the
progress of absolute_file_name/[2,3] in locating files.
Intended for debugging complicated file-search paths. See
also file_search_path/2.
vveerrssiioonn _(_i_n_t_e_g_e_r_)
The version identifier is an integer with value:
10000_*Major+ 100_*Minor+_P_a_t_c_h
vveerrssiioonn__ddaattaa _(_s_w_i_(_M_a_j_o_r_, _M_i_n_o_r_, _P_a_t_c_h_, _E_x_t_r_a_)_)
Part of the dialect compatibility layer; see also the Prolog
flag dialect and section ????. _E_x_t_r_a provides platform-specific
version information as a list. _E_x_t_r_a is used for _t_a_g_g_e_d
_v_e_r_s_i_o_n_s such as ``7.4.0-rc1'', in which case _E_x_t_r_a contains a
term tag(_r_c_1).
vveerrssiioonn__ggiitt _(_a_t_o_m_)
Available if created from a git repository. See git-describe
for details.
wwaarrnn__oovveerrrriiddee__iimmpplliicciitt__iimmppoorrtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), a warning is printed if an implicitly
imported predicate is clobbered by a local definition. See
use_module/1 for details.
wwiinn__ffiillee__aacccceessss__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Controls the behaviour or access_file/2 under Windows. There
is no reliable way to check access to files and directories
on Windows. This flag allows for switching between three
alternative approximations.
aacccceessss
Use Windows _waccess() function. This ignores ACLs (Access
Control List) and thus may indicate that access is allowed
while it is not.
ffiilleesseeccuurriittyy
Use the Windows GetFileSecurity() function. This does not
work on all file systems, but is probably the best choice
on file systems that do support it, notably local NTFS
volumes.
ooppeenncclloossee
Try to open the file and close it. This works reliable
for files, but not for directories. Currently directories
are checked using _waccess(). This is the default.
wwiinnddoowwss _(_b_o_o_l_)
If present and true, the operating system is an implementation
of Microsoft Windows. This flag is only available on
MS-Windows based versions. See also unix.
wwrriittee__aattttrriibbuutteess _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines how write/1 and friends write attributed variables.
The option values are described with the attributes option of
write_term/3. Default is ignore.
wwrriittee__hheellpp__wwiitthh__oovveerrssttrriikkee _(_b_o_o_l_)
Internal flag used by help/1 when writing to a terminal. If
present and true it prints bold and underlined text using
_o_v_e_r_s_t_r_i_k_e.
xxppccee _(_b_o_o_l_)
Available and set to true if the XPCE graphics system is
loaded.
xxppccee__vveerrssiioonn _(_a_t_o_m_)
Available and set to the version of the loaded XPCE system.
xxrreeff _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, source code is being read for _a_n_a_l_y_s_i_s purposes such
as cross-referencing. Otherwise (default) it is being read
to be compiled. This flag is used at several places by
term_expansion/2 and goal_expansion/2 hooks, notably if these
hooks use side effects. See also the libraries prolog_source
and prolog_xref.
sseett__pprroolloogg__ffllaagg((_:_K_e_y_, _+_V_a_l_u_e)) _[_I_S_O_]
Define a new Prolog flag or change its value. _K_e_y is an atom.
If the flag is a system-defined flag that is not marked _c_h_a_n_g_e_a_b_l_e
above, an attempt to modify the flag yields a permission_error.
If the provided _V_a_l_u_e does not match the type of the flag, a
type_error is raised.
Some flags (e.g., unknown) are maintained on a per-module basis.
The addressed module is determined by the _K_e_y argument.
In addition to ISO, SWI-Prolog allows for user-defined Prolog
flags. The type of the flag is determined from the initial value
and cannot be changed afterwards. Defined types are boolean (if
the initial value is one of false, true, on or off), atom if the
initial value is any other atom, integer if the value is an integer
that can be expressed as a 64-bit signed value. Any other initial
value results in an untyped flag that can represent any valid
Prolog term.
The behaviour when _K_e_y denotes a non-existent key depends on the
Prolog flag user_flags. The default is to define them silently.
New code is encouraged to use create_prolog_flag/3 for portability.
ccrreeaattee__pprroolloogg__ffllaagg((_+_K_e_y_, _+_V_a_l_u_e_, _+_O_p_t_i_o_n_s)) _[_Y_A_P_]
Create a new Prolog flag. The ISO standard does not foresee
creation of new flags, but many libraries introduce new flags.
_O_p_t_i_o_n_s is a list of the options below. See also user_flags.
aacccceessss((_+_A_c_c_e_s_s))
Define access rights for the flag. Values are read_write and
read_only. The default is read_write.
ttyyppee((_+_A_t_o_m))
Define a type restriction. Possible values are boolean, atom,
integer, float and term. The default is determined from
the initial value. Note that term restricts the term to be
ground.
kkeeeepp((_+_B_o_o_l_e_a_n))
If true, do not modify the flag if it already exists. Other-
wise (default), this predicate behaves as set_prolog_flag/2 if
the flag already exists.
22..1122 AAnn oovveerrvviieeww ooff hhooookk pprreeddiiccaatteess
SWI-Prolog provides a large number of hooks, mainly to control handling
messages, debugging, startup, shut-down, macro-expansion, etc. Below
is a summary of all defined hooks with an indication of their
portability.
o _p_o_r_t_r_a_y_/_1
Hook into write_term/3 to alter the way terms are printed (ISO).
o _m_e_s_s_a_g_e___h_o_o_k_/_3
Hook into print_message/2 to alter the way system messages are
printed (Quintus/SICStus).
o _m_e_s_s_a_g_e___p_r_o_p_e_r_t_y_/_2
Hook into print_message/2 that defines prefix, output stream,
color, etc.
o _l_i_b_r_a_r_y___d_i_r_e_c_t_o_r_y_/_1
Hook into absolute_file_name/3 to define new library directories
(most Prolog systems).
o _f_i_l_e___s_e_a_r_c_h___p_a_t_h_/_2
Hook into absolute_file_name/3 to define new search paths
(Quintus/SICStus).
o _t_e_r_m___e_x_p_a_n_s_i_o_n_/_2
Hook into load_files/2 to modify read terms before they are
compiled (macro-processing) (most Prolog systems).
o _g_o_a_l___e_x_p_a_n_s_i_o_n_/_2
Same as term_expansion/2 for individual goals (SICStus).
o _p_r_o_l_o_g___l_o_a_d___f_i_l_e_/_2
Hook into load_files/2 to load other data formats for Prolog
sources from `non-file' resources. The load_files/2 predicate is
the ancestor of consult/1, use_module/1, etc.
o _q_p_r_e_d_r_e_f_p_r_o_l_o_g___e_d_i_t_l_o_c_a_t_e_3
Hook into edit/1 to locate objects (SWI).
o _q_p_r_e_d_r_e_f_p_r_o_l_o_g___e_d_i_t_e_d_i_t___s_o_u_r_c_e_1
Hook into edit/1 to call an internal editor (SWI).
o _p_r_o_l_o_g___e_d_i_t_:_e_d_i_t___c_o_m_m_a_n_d_/_2
Hook into edit/1 to define the external editor to use (SWI).
o _p_r_o_l_o_g___l_i_s_t___g_o_a_l_/_1
Hook into the tracer to list the code associated to a particular
goal (SWI).
o _p_r_o_l_o_g___t_r_a_c_e___i_n_t_e_r_c_e_p_t_i_o_n_/_4
Hook into the tracer to handle trace events (SWI).
o _q_p_r_e_d_r_e_f_p_r_o_l_o_g_d_e_b_u_g___c_o_n_t_r_o_l___h_o_o_k_1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these
control predicates to higher-level libraries.
o _q_p_r_e_d_r_e_f_p_r_o_l_o_g_h_e_l_p___h_o_o_k_1
Hook in help/0, help/1 and apropos/1 to extend the help system.
o _r_e_s_o_u_r_c_e_/_3
Define a new resource (not really a hook, but similar) (SWI).
o _e_x_c_e_p_t_i_o_n_/_3
Old attempt to a generic hook mechanism. Handles undefined
predicates (SWI).
o _a_t_t_r___u_n_i_f_y___h_o_o_k_/_2
Unification hook for attributed variables. Can be defined in any
module. See section ???? for details.
22..1133 AAuuttoommaattiicc llooaaddiinngg ooff lliibbrraarriieess
If ---at runtime--- an undefined predicate is trapped, the system will
first try to import the predicate from the module's default module (see
section ????. If this fails the _a_u_t_o _l_o_a_d_e_r is activated. On first
activation an index to all library files in all library directories
is loaded in core (see library_directory/1, file_search_path/2 and
reload_library_index/0). If the undefined predicate can be located in
one of the libraries, that library file is automatically loaded and the
call to the (previously undefined) predicate is restarted. By default
this mechanism loads the file silently. The current_prolog_flag/2 key
verbose_autoload is provided to get verbose loading. The Prolog flag
autoload can be used to enable/disable the autoload system.
Autoloading only handles (library) source files that use the module
mechanism described in chapter ????. The files are loaded with
use_module/2 and only the trapped undefined predicate is imported into
the module where the undefined predicate was called. Each library
directory must hold a file INDEX.pl that contains an index to all
library files in the directory. This file consists of lines of the
following format:
________________________________________________________________________| |
|index(Name,|Arity,_Module,_File).______________________________________ | |
The predicate make/0 updates the autoload index. It searches for
all library directories (see library_directory/1 and file_search_path/2)
holding the file MKINDEX.pl or INDEX.pl. If the current user can write
or create the file INDEX.pl and it does not exist or is older than the
directory or one of its files, the index for this directory is updated.
If the file MKINDEX.pl exists, updating is achieved by loading this
file, normally containing a directive calling make_library_index/2.
Otherwise make_library_index/1is called, creating an index for all *.pl
files containing a module.
Below is an example creating an indexed library directory.
________________________________________________________________________| |
|% mkdir ~/lib/prolog |
|% cd ~/lib/prolog |
|%|swipl_-g_true_-t_'make_library_index(.)'_____________________________ | |
If there is more than one library file containing the desired
predicate, the following search schema is followed:
1. If there is a library file that defines the module in which the
undefined predicate is trapped, this file is used.
2. Otherwise library files are considered in the order they appear
in the library_directory/1 predicate and within the directory
alphabetically.
aauuttoollooaadd__ppaatthh((_+_D_i_r_A_l_i_a_s))
Add _D_i_r_A_l_i_a_s to the libraries that are used by the autoloader.
This extends the search path autoload and reloads the library
index. For example:
____________________________________________________________________| |
||:-_autoload_path(library(http)).__________________________________ ||
If this call appears as a directive, it is term-expanded
into a clause for user:file_search_path/2 and a directive calling
reload_library_index/0. This keeps source information and allows
for removing this directive.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y))
Create an index for this directory. The index is written to the
file 'INDEX.pl' in the specified directory. Fails with a warning
if the directory does not exist or is write protected.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y_, _+_L_i_s_t_O_f_P_a_t_t_e_r_n_s))
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for
_D_i_r_e_c_t_o_r_y, indexing all files that match one of the file patterns
in _L_i_s_t_O_f_P_a_t_t_e_r_n_s.
Sometimes library packages consist of one public load file and a
number of files used by this load file, exporting predicates that
should not be used directly by the end user. Such a library can be
placed in a sub-directory of the library and the files containing
public functionality can be added to the index of the library.
As an example we give the XPCE library's MKINDEX.pl, including
the public functionality of trace/browse.pl to the autoloadable
predicates for the XPCE package.
____________________________________________________________________| |
| :- make_library_index('.', |
| [ '*.pl', |
| 'trace/browse.pl' |
||______________________])._________________________________________ ||
rreellooaadd__lliibbrraarryy__iinnddeexx
Force reloading the index after modifying the set of library
directories by changing the rules for library_directory/1,
file_search_path/2, adding or deleting INDEX.pl files. This
predicate does _n_o_t update the INDEX.pl files. Check
make_library_index/[1,2] and make/0 for updating the index files.
Normally, the index is reloaded automatically if a predicate cannot
be found in the index and the set of library directories has
changed. Using reload_library_index/0 is necessary if directories
are removed or the order of the library directories is changed.
When creating an executable using either qsave_program/2 or the -c
command line options, it is necessarry to load all predicates that
would normally be autoloaded explicitly. This is discussed in
section ????. See autoload/0.
22..1144 PPaacckkss:: ccoommmmuunniittyy aadddd--oonnss
SWI-Prolog has a mechanism for easy incorporation of community
extensions. See the http://www.swi-prolog.org/pack/listpack landing
page for details and available packs. This section documents
the built-in predicates to attach packs. Predicates for creating,
registering and installing packs are provided by the library
prolog_pack.
aattttaacchh__ppaacckkss
Attaches all packs in subdirectories of directories that are
accessible through the _f_i_l_e _s_e_a_r_c_h _p_a_t_h (see absolute_file_name/3)
pack. The default for this search path is:
____________________________________________________________________| |
| user:file_search_path(pack, app_data(pack)). |
||user:file_search_path(pack,_swi(pack)).___________________________ ||
The predicate attach_packs/0 is called on startup of SWI-Prolog.
aattttaacchh__ppaacckkss((_+_D_i_r_e_c_t_o_r_y))
Attach all packs in subdirectories of _D_i_r_e_c_t_o_r_y. Same as
attach_packs(_D_i_r_e_c_t_o_r_y_, _[_]).
aattttaacchh__ppaacckkss((_+_D_i_r_e_c_t_o_r_y_, _+_O_p_t_i_o_n_s))
Attach all packs in subdirectories of _D_i_r_e_c_t_o_r_y. Options is one
of:
sseeaarrcchh((_+_W_h_e_r_e))
Determines the order in which pack library directories are
searched. Default is to add new packages at the end (last).
Using first, new packages are added at the start.
dduupplliiccaattee((_+_A_c_t_i_o_n))
Determines what happens if a pack with the same name is
already attached. Default is warning, which prints a warning
and ignores the new pack. Other options are keep, which is
like warning but operates silently and replace, which detaches
the old pack and attaches the new.
The predicate attach_packs/2 can be used to attach packages that
are bundled with an application.
22..1155 GGaarrbbaaggee CCoolllleeccttiioonn
SWI-Prolog provides garbage collection, last-call optimization and atom
garbage collection. These features are controlled using Prolog flags
(see current_prolog_flag/2).
22..1166 TThhee SSWWII--PPrroolloogg ssyynnttaaxx
SWI-Prolog syntax is close to ISO-Prolog standard syntax, which
is based on the Edinburgh Prolog syntax. A formal description
can be found in the ISO standard document. For an informal
introduction we refer to Prolog text books (see section ????) and
http://www.swi-prolog.org/Links.htmlonline tutorials. In addition to
the differences from the ISO standard documented here, SWI-Prolog
offers several extensions, some of which also extend the syntax. See
section ???? for more information.
22..1166..11 IISSOO SSyynnttaaxx SSuuppppoorrtt
This section lists various extensions w.r.t. the ISO Prolog syntax.
22..1166..11..11 PPrroocceessssoorr CChhaarraacctteerr SSeett
The processor character set specifies the class of each character used
for parsing Prolog source text. Character classification is fixed to
http://www.unicode.org/Unicode. See also section ????.
22..1166..11..22 NNeesstteedd ccoommmmeennttss
SWI-Prolog allows for nesting /* ...*/ comments. Where the ISO
standard accepts /* .../* ...*/ as a comment, SWI-Prolog will search
for a terminating */. This is useful if some code with /* ...*/
comment statements in it should be commented out. This modification
also avoids unintended commenting in the example below, where the
closing */ of the first comment has been forgotten.
________________________________________________________________________| |
|/* comment |
| |
|code |
| |
|/* second comment */ |
| |
|code |
||______________________________________________________________________ ||
22..1166..11..33 CChhaarraacctteerr EEssccaappee SSyynnttaaxx
Within quoted atoms (using single quotes: '<atom>') special characters
are represented using escape sequences. An escape sequence is led
in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard but contains some extensions, and
the interpretation of numerically specified characters is slightly more
flexible to improve compatibility. Undefined escape characters raise a
syntax_error exception.
\a
Alert character. Normally the ASCII character 7 (beep).
\b
Backspace character.
\c
No output. All input characters up to but not including the
first non-layout character are skipped. This allows for the
specification of pretty-looking long lines. Not supported by ISO.
Example:
____________________________________________________________________| |
| format('This is a long line that looks better if it was \c |
||_______split_across_multiple_physical_lines_in_the_input')________ ||
\<NEWLINE>
When in ISO mode (see the Prolog flag iso), only skip this
sequence. In native mode, white space that follows the newline
is skipped as well and a warning is printed, indicating that this
construct is deprecated and advising to use \c. We advise using
\c or putting the layout _b_e_f_o_r_e the \, as shown below. Using
\c is supported by various other Prolog implementations and will
remain supported by SWI-Prolog. The style shown below is the most
compatible solution.
____________________________________________________________________| |
| format('This is a long line that looks better if it was \ |
||split_across_multiple_physical_lines_in_the_input')_______________ ||
instead of
____________________________________________________________________| |
| format('This is a long line that looks better if it was\ |
||_split_across_multiple_physical_lines_in_the_input')______________ ||
Note that SWI-Prolog also allows unescaped newlines to appear in
quoted material. This is not allowed be the ISO standard, but used
to be common practice before.
\e
Escape character (ASCII 27). Not ISO, but widely supported.
\f
Form-feed character.
\n
Next-line character.
\r
Carriage-return only (i.e., go back to the start of the line).
\s
Space character. Intended to allow writing 0'\s to get the
character code of the space character. Not ISO.
\t
Horizontal tab character.
\v
Vertical tab character (ASCII 11).
\xXX..\
Hexadecimal specification of a character. The closing \ is
obligatory according to the ISO standard, but optional in
SWI-Prolog to enhance compatibility with the older Edinburgh
standard. The code \xa\3 emits the character 10 (hexadecimal `a')
followed by `3'. Characters specified this way are interpreted as
Unicode characters. See also \u.
\uXXXX
Unicode character specification where the character is specified
using _e_x_a_c_t_l_y 4 hexadecimal digits. This is an extension to the
ISO standard, fixing two problems. First, where \x defines a
numeric character code, it doesn't specify the character set in
which the character should be interpreted. Second, it is not
needed to use the idiosyncratic closing \ ISO Prolog syntax.
\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.
\40
Octal character specification. The rules and remarks for
hexadecimal specifications apply to octal specifications as well.
\\
Escapes the backslash itself. Thus, '\\' is an atom consisting of
a single \.
\'
Single quote. Note that '\'' and '''' both describe the atom with
a single ', i.e., '\'' == '''' is true.
\"
Double quote.
\`
Back quote.
Character escaping is only available if
current_prolog_flag(character_escapes, true) is active (default). See
current_prolog_flag/2. Character escapes conflict with writef/2 in
two ways: \40 is interpreted as decimal 40 by writef/2, but as
octal 40 (decimal 32) by read. Also, the writef/2 sequence \l is
illegal. It is advised to use the more widely supported format/[2,3]
predicate instead. If you insist upon using writef/2, either switch
character_escapes to false, or use double \\, as in writef('\\l').
22..1166..11..44 SSyynnttaaxx ffoorr nnoonn--ddeecciimmaall nnuummbbeerrss
SWI-Prolog implements both Edinburgh and ISO representations for
non-decimal numbers. According to Edinburgh syntax, such numbers are
written as <_r_a_d_i_x>'<number>, where <_r_a_d_i_x> is a number between 2 and 36.
ISO defines binary, octal and hexadecimal numbers using 0[bxo]<_n_u_m_b_e_r>.
For example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers
are always unsigned.
22..1166..11..55 UUssiinngg ddiiggiitt ggrroouuppss iinn llaarrggee iinntteeggeerrss
SWI-Prolog supports splitting long integers into _d_i_g_i_t _g_r_o_u_p_s.
Digit groups can be separated with the sequence <_u_n_d_e_r_s_c_o_r_e>,
<_o_p_t_i_o_n_a_l _w_h_i_t_e _s_p_a_c_e>. If the <_r_a_d_i_x> is 10 or lower, they may also
be separated with exactly one space. The following all express the
integer 1 million:
________________________________________________________________________| |
|1_000_000 |
|1 000 000 |
|1_000_/*more*/000|_____________________________________________________ | |
Integers can be printed using this notation with format/2, using the ~I
format specifier. For example:
________________________________________________________________________| |
|?- format('~I', [1000000]). |
|1_000_000|_____________________________________________________________ | |
The current syntax has been proposed by Ulrich Neumerkel on the
SWI-Prolog mailinglist.
22..1166..11..66 NNaaNN aanndd IInnffiinniittyy ffllooaattss aanndd tthheeiirr ssyynnttaaxx
SWI-Prolog supports reading an printing `special' floating point values
according to http://eclipseclp.org/Specs/core_update_float.htmlProposal
for Prolog Standard core update wrt floating point arithmetic by
Joachim Schimpf and available in ECLiPSe Prolog. In particular,
o Infinity is printed as 1.0Inf or -1.0Inf. Any sequence matching
the regular expression [+-]?\sd+[.]\sd+Inf is mapped to plus or
minus infinity.
o NaN (Not a Number) is printed as 1.xxxNaN, where _1_._x_x_x is the
float after replacing the exponent by `1'. Such numbers are read,
resulting in the same NaN. The NaN constant can also be produced
using the function nan/0, e.g.,
____________________________________________________________________| |
| ?- A is nan. |
||A_=_1.5NaN._______________________________________________________ ||
Note that, compliant with the ISO standard, SWI-Prolog arithmetic (see
section ????) never returns one of the above values but instead raises an
_e_x_c_e_p_t_i_o_n, e.g.,
________________________________________________________________________| |
|?- A is 1/0. |
|ERROR:|//2:_Arithmetic:_evaluation_error:_`zero_divisor'_______________ | |
There is one exception to this rule. For compatibility the functions
inf/0 and nan/0 return 1.0Inf and the default system NaN. The ability
to create, read and write such values is primarily provided to exchange
data with languages that can represent the full range of IEEE doubles.
22..1166..11..77 FFoorrccee oonnllyy uunnddeerrssccoorree ttoo iinnttrroodduuccee aa vvaarriiaabbllee
According to the ISO standard and most Prolog systems, identifiers that
start with an uppercase letter or an underscore are variables. In
the past, _P_r_o_l_o_g _b_y _B_I_M provided an alternative syntax, where only
the underscore (_) introduces a variable. As of SWI-Prolog 7.3.27
SWI-Prolog supports this alternative syntax, controlled by the Prolog
flag var_prefix. As the character_escapes flag, this flag is maintained
per module, where the default is false, supporting standard syntax.
Having only the underscore introduce a variable is particularly useful
if code contains identifiers for case sensitive external languages.
Examples are the RDF library where code frequently specifies property
and class names and the R interface for specifying functions or
variables that start with an uppercase character. Lexical databases
were part of the terms start with an uppercase letter is another
category were the readability of the code improves using this option.
22..1166..11..88 UUnniiccooddee PPrroolloogg ssoouurrccee
The ISO standard specifies the Prolog syntax in ASCII characters. As
SWI-Prolog supports Unicode in source files we must extend the syntax.
This section describes the implication for the source files, while
writing international source files is described in section ????.
The SWI-Prolog Unicode character classification is based on version
6.0.0 of the Unicode standard. Please note that char_type/2 and
friends, intended to be used with all text except Prolog source code,
is based on the C library locale-based classification routines.
o _Q_u_o_t_e_d _a_t_o_m_s _a_n_d _s_t_r_i_n_g_s
Any character of any script can be used in quoted atoms and
strings. The escape sequences \uXXXX and \UXXXXXXXX (see
section ????) were introduced to specify Unicode code points in ASCII
files.
o _A_t_o_m_s _a_n_d _V_a_r_i_a_b_l_e_s
We handle them in one item as they are closely related. The
Unicode standard defines a syntax for identifiers in computer
languages. In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as
a single token in SWI-Prolog. The token is a _v_a_r_i_a_b_l_e iff it
starts with an uppercase character or an underscore (_). Otherwise
it is an atom. Note that many languages do not have the notion
of character case. In such languages variables _m_u_s_t be written as
_name.
o _W_h_i_t_e _s_p_a_c_e
All characters marked as separators (Z*) in the Unicode tables are
handled as layout characters.
o _C_o_n_t_r_o_l _a_n_d _u_n_a_s_s_i_g_n_e_d _c_h_a_r_a_c_t_e_r_s
Control and unassigned (C*) characters produce a syntax error if
encountered outside quoted atoms/strings and outside comments.
o _O_t_h_e_r _c_h_a_r_a_c_t_e_r_s
The first 128 characters follow the ISO Prolog standard. Unicode
symbol and punctuation characters (general category S* and P*) act
as glueing symbol characters (i.e., just like ==: an unquoted
sequence of symbol characters are combined into an atom).
Other characters (this is mainly No: _a _n_u_m_e_r_i_c _c_h_a_r_a_c_t_e_r _o_f _o_t_h_e_r
_t_y_p_e) are currently handled as `solo'.
22..1166..11..99 SSiinngglleettoonn vvaarriiaabbllee cchheecckkiinngg
A _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e is a variable that appears only one time in a
clause. It can always be replaced by _, the _a_n_o_n_y_m_o_u_s variable. In
some cases, however, people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give
a warning (controlled by style_check/1) if a variable is used only
once. The system can be informed that a variable is meant to appear
once by _s_t_a_r_t_i_n_g it with an underscore, e.g., _Name. Please note that
any variable, except plain _, shares with variables of the same name.
The term t(_X, _X) is equivalent to t(X, X), which is _d_i_f_f_e_r_e_n_t from
t(_, _).
As Unicode requires variables to start with an underscore in many
languages, this schema needs to be extended. First we define the two
classes of named variables.
o _N_a_m_e_d _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e_s
Named singletons start with a double underscore (__) or a single
underscore followed by an uppercase letter, e.g., __var or _Var.
o _N_o_r_m_a_l _v_a_r_i_a_b_l_e_s
All other variables are `normal' variables. Note this makes _var a
normal variable.
Any normal variable appearing exactly once in the clause _a_n_d any named
singleton variables appearing more than once are reported. Below are
some examples with warnings in the right column. Singleton messages
can be suppressed using the style_check/1 directive.
___________________________________________________________________________
| test(_). | |
| test(_a). |Singleton variables: [_a] |
| test(_12). |Singleton variables: [_12] |
| test(A). |Singleton variables: [A] |
| test(_A). | |
| test(__a). | |
| test(_, _). | |
| test(_a, _a). | |
| test(__a, __a).S|ingleton-marked variables appearing more than once: [__a] |
| test(_A, _A). |Singleton-marked variables appearing more than once: [_A] |
|_test(A,_A).__|__________________________________________________________|_
SSeemmaannttiicc ssiinngglleettoonnss
Starting with version 6.5.1, SWI-Prolog has _s_y_n_t_a_c_t_i_c _s_i_n_g_l_e_t_o_n_s and
_s_e_m_a_n_t_i_c _s_i_n_g_l_e_t_o_n_s. The first are checked by read_clause/3 (and
read_term/3 using the option singletons(_w_a_r_n_i_n_g)). The latter are
generated by the compiler for variables that appear alone in a _b_r_a_n_c_h.
For example, in the code below the variable _X is not a _s_y_n_t_a_c_t_i_c
singleton, but the variable _X does not communicate any bindings and
replacing _X with _does not change the semantics.
________________________________________________________________________| |
|test :- |
| ( test_1(X) |
| ; test_2(X) |
||_______)._____________________________________________________________ ||
22..1177 RRaattiioonnaall ttrreeeess ((ccyycclliicc tteerrmmss))
SWI-Prolog supports rational trees, also known as cyclic terms.
`Supports' is so defined that most relevant built-in predicates
terminate when faced with rational trees. Almost all SWI-Prolog's
built-in term manipulation predicates process terms in a time that is
linear to the amount of memory used to represent the term on the stack.
The following set of predicates safely handles rational trees: =../2,
==/2, =@=/2, =/2, @</2 , @=</2, @>=/2, @>/2, \==/2, \=@=/2, \=/2,
acyclic_term/1, bagof/3, compare/3, copy_term/2, cyclic_term/1, dif/2,
duplicate_term/2, findall/3, ground/1, term_hash/2, numbervars/3,
numbervars/4, recorda/3, recordz/3, setof/3, subsumes_term/2,
term_variables/2, throw/1, unify_with_occurs_check/2, unifiable/3,
when/2, write/1 (and related predicates) .
In addition, some built-ins recognise rational trees and raise an
appropriate exception. Arithmetic evaluation belongs to this group.
The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide
meaningful processing of rational trees raise a representation_error.
Predicates for which rational trees have no meaningful interpretation
raise a type_error. For example:
________________________________________________________________________| |
|1 ?- A = f(A), asserta(a(A)). |
|ERROR: asserta/1: Cannot represent due to `cyclic_term' |
|2 ?- A = 1+A, B is A. |
|ERROR: is/2: Type error: `expression' expected, found |
||____________`@(S_1,[S_1=1+S_1])'_(cyclic_term)________________________ ||
22..1188 JJuusstt--iinn--ttiimmee ccllaauussee iinnddeexxiinngg
SWI-Prolog provides `just-in-time' indexing over multiple arguments.
`Just-in-time' means that clause indexes are not built by the compiler
(or asserta/1 for dynamic predicates), but on the first call to such
a predicate where an index might help (i.e., a call where at least
one argument is instantiated). This section describes the rules used
by the indexing logic. Note that this logic is not `set in stone'.
The indexing capabilities of the system will change. Although this
inevitably leads to some regressing on some particular use cases, we
strive to avoid significant slowdowns.
The list below describes the clause selection process for various
predicates and calls. The alternatives are considered in the order
they are presented.
o _S_p_e_c_i_a_l _p_u_r_p_o_s_e _c_o_d_e
Currently two special cases are recognised by the compiler: static
code with exactly one clause and static code with two clauses, one
where the first argument is the empty list ([]) and one where the
first argument is a non-empty list ([_|_]).
o _L_i_n_e_a_r _s_c_a_n _o_n _f_i_r_s_t _a_r_g_u_m_e_n_t
The principal clause list maintains a _k_e_y for the first argument.
An indexing key is either a constant or a functor (name/arity
reference). Calls with an instantiated first argument and less
than 10 clauses perform a linear scan for a possible matching
clause using this index key.
o _H_a_s_h _l_o_o_k_u_p
If none of the above applies, the system considers the available
hash tables for which the corresponding argument is instantiated.
If a table is found with acceptable characteristics, it is used.
Otherwise it assesses the clauses for all instantiated arguments
and selects the best candidate for creating a new hash table.
If there is no single argument that provides an acceptable hash
quality it will search for a combination of arguments.
Clauses that have a variable at an otherwise indexable argument
must be linked into all hash buckets. Currently, predicates that
have more than 10% such clauses for a specific argument are not
considered for indexing on that argument.
Disregarding variables, the suitability of an argument for hashing
is expressed as the number of unique indexable values divided by
the standard deviation of the number of duplicate values for each
value plus one.
The indexes of dynamic predicates are deleted if the number of
clauses is doubled since its creation or reduced below 1/4th. The
JIT approach will recreate a suitable index on the next call.
Indexes of running predicates cannot be deleted. They are added
to a `removed index list' associated to the predicate. Outdated
indexes of predicates are reclaimed by garbage_collect_clauses/0.
The clause garbage collector is scheduled automatically, based on
time and space based heuristics. See garbage_collect_clauses/0 for
details.
The library prolog_jiti provides jiti_list/0,1 to list the characteris-
tics of all or some of the created hash tables.
22..1188..11 FFuuttuurree ddiirreeccttiioonnss
o The current indexing system is largely prepared for secondary
indexes. This implies that if there are many clauses that match
a given key, the system could (JIT) create a secondary index.
This secondary index could exploit another argument or, if the key
denotes a functor, an argument inside the compound term.
o The `special cases' can be extended. This is notably attractive
for static predicates with a relatively small number of clauses
where a hash lookup is too costly.
22..1188..22 IInnddeexxiinngg aanndd ppoorrttaabbiilliittyy
The base-line functionality of Prolog implementations provides indexing
on constants and functor (name/arity) on the first argument. This must
be your assumption if wide portability of your program is important.
This can typically be achieved by exploiting term_hash/2 or term_hash/4
and/or maintaining multiple copies of a predicate with reordered
arguments and wrappers that update all implementations (assert/retract)
and selects the appropriate implementation (query).
YAP provides full JIT indexing, including indexing arguments of
compound terms. YAP's indexing has been the inspiration for enhancing
SWI-Prolog's indexing capabilities.
22..1199 WWiiddee cchhaarraacctteerr ssuuppppoorrtt
SWI-Prolog supports _w_i_d_e _c_h_a_r_a_c_t_e_r_s, characters with character codes
above 255 that cannot be represented in a single _b_y_t_e. _U_n_i_v_e_r_s_a_l
_C_h_a_r_a_c_t_e_r _S_e_t (UCS) is the ISO/IEC 10646 standard that specifies a
unique 31-bit unsigned integer for any character in any language. It
is a superset of 16-bit Unicode, which in turn is a superset of
ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages, and character
classification (uppercase, lowercase, digit, etc.) and operations such
as case conversion are unambiguously defined.
For this reason SWI-Prolog has two representations for atoms and string
objects (see section ????). If the text fits in ISO Latin-1, it is
represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue
is completely transparent to the Prolog user. Users of the foreign
language interface as described in chapter ???? sometimes need to be
aware of these issues though.
Character coding comes into view when characters of strings need to be
read from or written to file or when they have to be communicated to
other software components using the foreign language interface. In
this section we only deal with I/O through streams, which includes file
I/O as well as I/O through network sockets.
22..1199..11 WWiiddee cchhaarraacctteerr eennccooddiinnggss oonn ssttrreeaammss
Although characters are uniquely coded using the UCS standard
internally, streams and files are byte (8-bit) oriented and there are
a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web,
is UTF-8. Bytes 0 ... 127 represent simply the corresponding US-ASCII
character, while bytes 128 ... 255 are used for multi-byte encoding of
characters placed higher in the UCS space. Especially on MS-Windows
the 16-bit Unicode standard, represented by pairs of bytes, is also
popular.
Prolog I/O streams have a property called _e_n_c_o_d_i_n_g which specifies the
used encoding that influences get_code/2 and put_code/2 as well as all
the other text I/O predicates.
The default encoding for files is derived from the Prolog flag
encoding, which is initialised from the environment. If the
environment variable LANG ends in "UTF-8", this encoding is assumed.
Otherwise the default is text and the translation is left to
the wide-character functions of the C library. The encoding can
be specified explicitly in load_files/2 for loading Prolog source
with an alternative encoding, open/4 when opening files or using
set_stream/2 on any open stream. For Prolog source files we
also provide the encoding/1 directive that can be used to switch
between encodings that are compatible with US-ASCII (ascii, iso_latin_1,
utf8 and many locales). See also section ???? for writing Prolog
files with non-US-ASCII characters and section ???? for syntax issues.
For additional information and Unicode resources, please visit
http://www.unicode.org/.
SWI-Prolog currently defines and supports the following encodings:
oocctteett
Default encoding for binary streams. This causes the stream to be
read and written fully untranslated.
aasscciiii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but
generates errors and warnings on encountering values above 127.
iissoo__llaattiinn__11
8-bit encoding supporting many Western languages. This causes the
stream to be read and written fully untranslated.
tteexxtt
C library default locale encoding for text files. Files are read
and written using the C library functions mbrtowc() and wcrtomb().
This may be the same as one of the other locales, notably it may be
the same as iso_latin_1 for Western languages and utf8 in a UTF-8
context.
uuttff88
Multi-byte encoding of full UCS, compatible with ascii. See above.
uunniiccooddee__bbee
Unicode _B_i_g _E_n_d_i_a_n. Reads input in pairs of bytes, most
significant byte first. Can only represent 16-bit characters.
uunniiccooddee__llee
Unicode _L_i_t_t_l_e _E_n_d_i_a_n. Reads input in pairs of bytes, least
significant byte first. Can only represent 16-bit characters.
Note that not all encodings can represent all characters. This implies
that writing text to a stream may cause errors because the stream
cannot represent these characters. The behaviour of a stream on these
errors can be controlled using set_stream/2. Initially the terminal
stream writes the characters using Prolog escape sequences while other
streams generate an I/O exception.
22..1199..11..11 BBOOMM:: BByyttee OOrrddeerr MMaarrkk
From section ????, you may have got the impression that text files
are complicated. This section deals with a related topic, making
life often easier for the user, but providing another worry to the
programmer. BBOOMM or _B_y_t_e _O_r_d_e_r _M_a_r_k_e_r is a technique for identifying
Unicode text files as well as the encoding they use. Such files start
with the Unicode character 0xFEFF, a non-breaking, zero-width space
character. This is a pretty unique sequence that is not likely to be
the start of a non-Unicode file and uniquely distinguishes the various
Unicode file formats. As it is a zero-width blank, it even doesn't
produce any output. This solves all problems, or ...
Some formats start off as US-ASCII and may contain some encoding mark
to switch to UTF-8, such as the encoding="UTF-8" in an XML header.
Such formats often explicitly forbid the use of a UTF-8 BOM. In other
cases there is additional information revealing the encoding, making
the use of a BOM redundant or even illegal.
The BOM is handled by SWI-Prolog open/4 predicate. By default, text
files are probed for the BOM when opened for reading. If a BOM is
found, the encoding is set accordingly and the property bom(_t_r_u_e) is
available through stream_property/2. When opening a file for writing,
writing a BOM can be requested using the option bom(_t_r_u_e) with open/4.
22..2200 SSyysstteemm lliimmiittss
22..2200..11 LLiimmiittss oonn mmeemmoorryy aarreeaass
SWI-Prolog has a number of memory areas which are only enlarged to a
certain limit. The internal data representation limits the local,
global and trail stack to 128 MB on 32-bit processors, or more
generally to 2 to the power bits-per-pointer - 5 bytes. Considering
that almost all modern hardware can deal with this amount of memory
with ease, the default limits are set to their maximum on 32-bit
hardware. The representation limits can easily exceed physical memory
on 64-bit hardware. The default limits on 64-bit hardware are double
that of 32-bit hardware, which allows for storing the same amount of
(Prolog) data.
The limits can be changed from the command line as well as at runtime
using set_prolog_stack/2. The table below shows these areas. The first
column gives the option name to modify the size of the area. The
option character is immediately followed by a number and optionally by
a k or m. With k or no unit indicator, the value is interpreted
in Kbytes (1024 bytes); with m, the value is interpreted in Mbytes
(10241* 024 bytes).
The PrologScript facility described in section ???? provides a mechanism
for specifying options with the load file. On Windows the
default stack sizes are controlled using the Windows registry on the
key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default
stack size in Kbytes. A GUI for modifying these values is provided
using the XPCE package. To use this, start the XPCE manual tools using
manpce/0, after which you find _P_r_e_f_e_r_e_n_c_e_s in the _F_i_l_e menu.
Considering portability, applications that need to modify the default
limits are advised to do so using set_prolog_stack/2.
_________________________________________________________
|_Option_|Default_|Area_name____|Description____________|_||-L||128Mlloocc||aallTssttaacckkhe||||local|stack|is used
| | to store the execu- | | ||
| | tion environments of | | ||
| | procedure invocations. | | ||
| | The space for an en- | | ||
| | vironment is reclaimed | | ||
| | when it fails, exits | | ||
| | without leaving choice | | ||
| | points, the alterna- | | ||
| | tives are cut off with | | ||
| | | | ||
| | the !/0 predicate or | | ||
| | no choice points have | | ||
| | been created since the | | ||
| | invocation and the last | | ||
| | subclause is started | | ||
| | (last call optimisa- | | ||
|| || | ||tion). || | ||
| -G |128M |gglloobbaall ssttaacckk ||Theusglobaled stacktois store| terms
| | | ||created during Prolog's |
| | | ||execution. Terms on |
| | | || |
| | | ||this stack will be re- |
| | | ||claimed by backtracking |
| | | ||to a point before the |
| | | ||term was created or |
| | | ||by garbage collection |
| | | ||(provided the term is |
|| || || ||no||longer referenced). ||
| -T |128M |ttrraaiill ssttaacckk ||Theusetraild stackto isstore| as-
| | | ||signments during execu- |
| | | || |
| | | ||tion. Entries on this |
| | | ||stack remain alive un- |
| | | ||til backtracking before |
| | | ||the point of creation |
| | | ||or the garbage collec- |
| | | ||tor determines they are |
|________|_______|_____________||no_longer_needed._______|_
Table 2.2: Memory areas
22..2200..11..11 TThhee hheeaapp
With the heap, we refer to the memory area used by malloc() and
friends. SWI-Prolog uses the area to store atoms, functors, predicates
and their clauses, records and other dynamic data. No limits are
imposed on the addresses returned by malloc() and friends.
22..2200..22 OOtthheerr LLiimmiittss
CCllaauusseess The only limit on clauses is their arity (the number of
arguments to the head), which is limited to 1024. Raising this
limit is easy and relatively cheap; removing it is harder.
AAttoommss aanndd SSttrriinnggss SWI-Prolog has no limits on the length of atoms and
strings. The number of atoms is limited to 16777216 (16M) on
32-bit machines. On 64-bit machines this is virtually unlimited.
See also section ????.
MMeemmoorryy aarreeaass On 32-bit hardware, SWI-Prolog data is packed in a 32-bit
word, which contains both type and value information. The size
of the various memory areas is limited to 128 MB for each of the
areas, except for the program heap, which is not limited. On
64-bit hardware there are no meaningful limits.
NNeessttiinngg ooff tteerrmmss Most built-in predicates that process Prolog terms
create an explicitly managed stack and perform optimization for
processing the last argument of a term. This implies they can
process deeply nested terms at constant and low usage of the C
stack, and the system raises a resource error if no more stack
can be allocated. Currently only read/1 and write/1 (and all
variations thereof) still use the C stack and may cause the system
to crash in an uncontrolled way (i.e., not mapped to a Prolog
exception that can be caught).
IInntteeggeerrss On most systems SWI-Prolog is compiled with support for
unbounded integers by means of the GNU GMP library. In practice
this means that integers are bound by the global stack size. Too
large integers cause a resource_error. On systems that lack GMP,
integers are 64-bit on 32- as well as 64-bit machines.
Integers up to the value of the max_tagged_integerProlog flag are
represented more efficiently on the stack. For integers that
appear in clauses, the value (below max_tagged_integeror not) has
little impact on the size of the clause.
FFllooaattiinngg ppooiinntt nnuummbbeerrss Floating point numbers are represented as
C-native double precision floats, 64-bit IEEE on most machines.
22..2200..33 RReesseerrvveedd NNaammeess
The boot compiler (see -b option) does not support the module system.
As large parts of the system are written in Prolog itself we need some
way to avoid name clashes with the user's predicates, database keys,
etc. Like Edinburgh C-Prolog [??] all predicates, database keys, etc.,
that should be hidden from the user start with a dollar ($) sign.
22..2211 SSWWII--PPrroolloogg aanndd 6644--bbiitt mmaacchhiinneess
Most of today's 64-bit platforms are capable of running both 32-bit
and 64-bit applications. This asks for some clarifications on the
advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.
22..2211..11 SSuuppppoorrtteedd ppllaattffoorrmmss
SWI-Prolog can be compiled for a 32- or 64-bit address space on any
system with a suitable C compiler. Pointer arithmetic is based on the
type (u)intptr_t from stdint.h, with suitable emulation on MS-Windows.
22..2211..22 CCoommppaarriinngg 3322-- aanndd 6644--bbiittss PPrroolloogg
Most of Prolog's memory usage consists of pointers. This indicates the
primary drawback: Prolog memory usage almost doubles when using the
64-bit addressing model. Using more memory means copying more data
between CPU and main memory, slowing down the system.
What then are the advantages? First of all, SWI-Prolog's addressing
of the Prolog stacks does not cover the whole address space due to
the use of _t_y_p_e _t_a_g _b_i_t_s and _g_a_r_b_a_g_e _c_o_l_l_e_c_t_i_o_n _f_l_a_g_s. On 32-bit
hardware the stacks are limited to 128 MB each. This tends to be too
low for demanding applications on modern hardware. On 64-bit hardware
the limit is 232 times higher, exceeding the addressing capabilities of
today's CPUs and operating systems. This implies Prolog can be started
with stack sizes that use the full capabilities of your hardware.
Multi-threaded applications profit much more because every thread has
its own set of stacks. The Prolog stacks start small and are
dynamically expanded (see section ????). The C stack is also dynamically
expanded, but the maximum size is _r_e_s_e_r_v_e_d when a thread is started.
Using 100 threads at the maximum default C stack of 8Mb (Linux) costs
800Mb virtual memory!
The implications of theoretical performance loss due to increased
memory bandwidth implied by exchanging wider pointers depend on the
design of the hardware. We only have data for the popular IA32 vs.
AMD64 architectures. Here, it appears that the loss is compensated for
by an instruction set that has been optimized for modern programming.
In particular, the AMD64 has more registers and the relative addressing
capabilities have been improved. Where we see a 10% performance
degradation when placing the SWI-Prolog kernel in a Unix shared object,
we cannot find a measurable difference on AMD64.
22..2211..33 CChhoooossiinngg bbeettwweeeenn 3322-- aanndd 6644--bbiitt PPrroolloogg
For those cases where we can choose between 32 and 64 bits, either
because the hardware and OS support both or because we can still choose
the hardware and OS, we give guidelines for this decision.
First of all, if SWI-Prolog needs to be linked against 32- or 64-bit
native libraries, there is no choice as it is not possible to link
32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to
use either do the different characteristics of Prolog become important.
Prolog applications that require more than the 128 MB stack limit
provided in 32-bit addressing mode must use the 64-bit edition. Note
however that the limits must be doubled to accommodate the same Prolog
application.
If the system is tight on physical memory, 32-bit Prolog has the clear
advantage of using only slightly more than half of the memory of 64-bit
Prolog. This argument applies as long as the application fits in the
_v_i_r_t_u_a_l _a_d_d_r_e_s_s _s_p_a_c_e of the machine. The virtual address space of
32-bit hardware is 4GB, but in many cases the operating system provides
less to user applications.
The only standard SWI-Prolog library adding significantly to this
calculation is the RDF database provided by the _s_e_m_w_e_b package. It
uses approximately 80 bytes per triple on 32-bit hardware and 150 bytes
on 64-bit hardware. Details depend on how many different resources and
literals appear in the dataset as well as desired additional literal
indexes.
Summarizing, if applications are small enough to fit comfortably in
virtual and physical memory, simply take the model used by most of
the applications on the OS. If applications require more than 128 MB
per stack, use the 64-bit edition. If applications approach the
size of physical memory, fit in the 128 MB stack limit and fit in
virtual memory, the 32-bit version has clear advantages. For demanding
applications on 64-bit hardware with more than about 6GB physical
memory the 64-bit model is the model of choice.
CChhaapptteerr 33.. IINNIITTIIAALLIISSIINNGG AANNDD MMAANNAAGGIINNGG AA PPRROOLLOOGG PPRROOJJEECCTT
Prolog text-books give you an overview of the Prolog language. The
manual tells you what predicates are provided in the system and what
they do. This chapter explains how to run a project. There is no
ultimate `right' way to do this. Over the years we developed some
practice in this area and SWI-Prolog's commands are there to support
this practice. This chapter describes the conventions and supporting
commands.
The first two sections (section ???? and section ????) only require plain
Prolog. The remainder discusses the use of the built-in graphical
tools that require the XPCE graphical library installed on your system.
33..11 TThhee pprroojjeecctt ssoouurrccee ffiilleess
Organisation of source files depends largely on the size of your
project. If you are doing exercises for a Prolog course you'll
normally use one file for each exercise. If you have a small project
you'll work with one directory holding a couple of files and some files
to link it all together. Even bigger projects will be organised in
sub-projects, each using its own directory.
33..11..11 FFiillee NNaammeess aanndd LLooccaattiioonnss
33..11..11..11 FFiillee NNaammee EExxtteennssiioonnss
The first consideration is what extension to use for the source
files. Tradition calls for .pl, but conflicts with Perl force the
use of another extension on systems where extensions have global
meaning, such as MS-Windows. On such systems .pro is the common
alternative. On MS-Windows, the alternative extension is stored
in the registry key HKEY_CURRENT_USER/Software/SWI/Prolog/fileExtension
or HKEY_LOCAL_MACHINE/Software/SWI/Prolog/fileExtension. All versions
of SWI-Prolog load files with the extension .pl as well as with
the registered alternative extension without explicitly specifying
the extension. For portability reasons we propose the following
convention:
IIff tthheerree iiss nnoo ccoonnfflliicctt because you do not use a conflicting
application or the system does not force a unique relation between
extension and application, use .pl.
WWiitthh aa ccoonnfflliicctt choose .pro and use this extension for the files you
want to load through your file manager. Use .pl for all other
files for maximal portability.
33..11..11..22 PPrroojjeecctt DDiirreeccttoorriieess
Large projects are generally composed of sub-projects, each using its
own directory or directory structure. If nobody else will ever touch
your files and you use only one computer, there is little to worry
about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation
for filenames, which uses the forward slash (/) to separate
directories. Just before reaching the file system, SWI-Prolog uses
prolog_to_os_filename/2to convert the filename to the conventions used
by the hosting operating system. It is _s_t_r_o_n_g_l_y advised to write
paths using the /, especially on systems using the \ for this purpose
(MS-Windows). Using \ violates the portability rules and requires you
to _d_o_u_b_l_e the \ due to the Prolog quoted-atom escape rules.
Portable code should use prolog_to_os_filename/2to convert computed
paths into system paths when constructing commands for shell/1 and
friends.
33..11..11..33 SSuubb--pprroojjeeccttss uussiinngg sseeaarrcchh ppaatthhss
Thanks to Quintus, Prolog adapted an extensible mechanism for searching
files using file_search_path/2. This mechanism allows for comfortable
and readable specifications.
Suppose you have extensive library packages on graph algorithms,
set operations and GUI primitives. These sub-projects are likely
candidates for re-use in future projects. A good choice is to create a
directory with sub-directories for each of these sub-projects.
Next, there are three options. One is to add the sub-projects to
the directory hierarchy of the current project. Another is to use a
completely dislocated directory. Third, the sub-project can be added
to the SWI-Prolog hierarchy. Using local installation, a typical
file_search_path/2is:
________________________________________________________________________| |
|:- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(myapp, Dir)). |
| |
|user:file_search_path(graph, myapp(graph)). |
|user:file_search_path(ui,|___myapp(ui))._______________________________ | |
When using sub-projects in the SWI-Prolog hierarchy, one should use
the path alias swi as basis. For a system-wide installation, use an
absolute path.
Extensive sub-projects with a small well-defined API should define a
load file with calls to use_module/1 to import the various library
components and export the API.
33..11..22 PPrroojjeecctt SSppeecciiaall FFiilleess
There are a number of tasks you typically carry out on your project,
such as loading it, creating a saved state, debugging it, etc. Good
practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give
it a file extension that makes starting easy (see section ????). The
task _l_o_a_d is generally central to these tasks. Here is a tentative
list:
o load.pl
Use this file to set up the environment (Prolog flags and file
search paths) and load the sources. Quite commonly this file also
provides convenient predicates to parse command line options and
start the application.
o run.pl
Use this file to start the application. Normally it loads load.pl
in silent-mode, and calls one of the starting predicates from
load.pl.
o save.pl
Use this file to create a saved state of the application by loading
load.pl and calling qsave_program/2 to generate a saved state with
the proper options.
o debug.pl
Loads the program for debugging. In addition to loading load.pl
this file defines rules for portray/1 to modify printing rules for
complex terms and customisation rules for the debugger and editing
environment. It may start some of these tools.
33..11..33 IInntteerrnnaattiioonnaall ssoouurrccee ffiilleess
As discussed in section ????, SWI-Prolog supports international character
handling. Its internal encoding is UNICODE. I/O streams convert
to/from this internal format. This section discusses the options for
source files not in US-ASCII.
SWI-Prolog can read files in any of the encodings described in
section ????. Two encodings are of particular interest. The text
encoding deals with the current _l_o_c_a_l_e, the default used by this
computer for representing text files. The encodings utf8, unicode_le
and unicode_be are _U_N_I_C_O_D_E encodings: they can represent---in the same
file---characters of virtually any known language. In addition, they
do so unambiguously.
If one wants to represent non US-ASCII text as Prolog terms in a source
file, there are several options:
o _U_s_e _e_s_c_a_p_e _s_e_q_u_e_n_c_e_s
This approach describes NON-ASCII as sequences of the form \_o_c_t_a_l\.
The numerical argument is interpreted as a UNICODE character. The
resulting Prolog file is strict 7-bit US-ASCII, but if there are
many NON-ASCII characters it becomes very unreadable.
o _U_s_e _l_o_c_a_l _c_o_n_v_e_n_t_i_o_n_s
Alternatively the file may be specified using local conventions,
such as the EUC encoding for Japanese text. The disadvantage is
portability. If the file is moved to another machine, this machine
must use the same _l_o_c_a_l_e or the file is unreadable. There is no
elegant way if files from multiple locales must be united in one
application using this technique. In other words, it is fine for
local projects in countries with uniform locale conventions.
o _U_s_i_n_g _U_T_F_-_8 _f_i_l_e_s
The best way to specify source files with many NON-ASCII characters
is definitely the use of UTF-8 encoding. Prolog can be notified
of this encoding in two ways, using a UTF-8 _B_O_M (see section ????)
or using the directive :- encoding(utf8). Many of today's text
editors, including PceEmacs, are capable of editing UTF-8 files.
Projects that were started using local conventions can be re-coded
using the Unix iconv tool or often using commands offered by the
editor.
33..22 UUssiinngg mmoodduulleess
Modules have been debated fiercely in the Prolog world. Despite all
counter-arguments we feel they are extremely useful because:
o _T_h_e_y _h_i_d_e _l_o_c_a_l _p_r_e_d_i_c_a_t_e_s
This is the reason they were invented in the first place. Hiding
provides two features. They allow for short predicate names
without worrying about conflicts. Given the flat name-space
introduced by modules, they still require meaningful module names
as well as meaningful names for exported predicates.
o _T_h_e_y _d_o_c_u_m_e_n_t _t_h_e _i_n_t_e_r_f_a_c_e
Possibly more important than avoiding name conflicts is their role
in documenting which part of the file is for public usage and
which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the
exported predicates without worrying.
o _T_h_e_y _h_e_l_p _t_h_e _e_d_i_t_o_r
The PceEmacs built-in editor does on-the-fly cross-referencing of
the current module, colouring predicates based on their origin and
usage. Using modules, the editor can quickly find out what is
provided by the imported modules by reading just the first term.
This allows it to indicate in real-time which predicates are not
used or not defined.
Using modules is generally easy. Only if you write meta-predicates
(predicates reasoning about other predicates) that are exported from a
module is a good understanding required of the resolution of terms to
predicates inside a module. Here is a typical example from readutil.
________________________________________________________________________| |
|:- module(read_util, |
| [ read_line_to_codes/2, % +Fd, -Codes |
| read_line_to_codes/3, % +Fd, -Codes, ?Tail |
| read_stream_to_codes/2, % +Fd, -Codes |
| read_stream_to_codes/3, % +Fd, -Codes, ?Tail |
| read_file_to_codes/3, % +File, -Codes, +Options |
| read_file_to_terms/3 % +File, -Terms, +Options |
||_________]).__________________________________________________________ ||
33..33 TThhee tteesstt--eeddiitt--rreellooaadd ccyyccllee
SWI-Prolog does not enforce the use of a particular editor for
writing Prolog source code. Editors are complicated programs that
must be mastered in detail for real productive programming. If
you are familiar with a specific editor you should not be forced
to change. You may specify your favourite editor using the Prolog
flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1.
The use of a built-in editor, which is selected by setting the Prolog
flag editor to pce_emacs, has advantages. The XPCE _e_d_i_t_o_r object,
around which the built-in PceEmacs is built, can be opened as a Prolog
stream allowing analysis of your source by the real Prolog system.
33..33..11 LLooccaattiinngg tthhiinnggss ttoo eeddiitt
The central predicate for editing something is edit/1, an extensible
front-end that searches for objects (files, predicates, modules, as
well as XPCE classes and methods) in the Prolog database. If multiple
matches are found it provides a choice. Together with the built-in
completion on atoms bound to the TAB key this provides a quick way to
edit objects:
________________________________________________________________________| |
|?- edit(country). |
|Please select item to edit: |
| |
| 1 chat:country/10 '/staff/jan/lib/prolog/chat/countr.pl':16 |
| 2 chat:country/1 '/staff/jan/lib/prolog/chat/world0.pl':72 |
| |
|Your|choice?___________________________________________________________ | |
33..33..22 EEddiittiinngg aanndd iinnccrreemmeennttaall ccoommppiillaattiioonn
One of the nice features of Prolog is that the code can be modified
while the program is running. Using pure Prolog you can trace a
program, find it is misbehaving, enter a _b_r_e_a_k _e_n_v_i_r_o_n_m_e_n_t, modify
the source code, reload it and finally do _r_e_t_r_y on the misbehaving
predicate and try again. This sequence is not uncommon for
long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and
try again.
One of the nice features of SWI-Prolog is the availability of make/0, a
simple predicate that checks all loaded source files to see which ones
you have modified. It then reloads these files, considering the module
from which the file was loaded originally. This greatly simplifies
the trace-edit-verify development cycle. For example, after the tracer
reveals there is something wrong with prove/3, you do:
________________________________________________________________________| |
|?-|edit(prove).________________________________________________________ | |
Now edit the source, possibly switching to other files and making
multiple changes. After finishing, invoke make/0, either through the
editor UI (Compile/Make (Control-C Control-M)) or on the top level, and
watch the files being reloaded.
________________________________________________________________________| |
|?- make. |
|%|show_compiled_into_photo_gallery_0.03_sec,_3,360_bytes_______________ | |
33..44 UUssiinngg tthhee PPcceeEEmmaaccss bbuuiilltt--iinn eeddiittoorr
33..44..11 AAccttiivvaattiinngg PPcceeEEmmaaccss
Initially edit/1 uses the editor specified in the EDITOR environment
variable. There are two ways to force it to use the built-in editor.
One is to set the Prolog flag editor to pce_emacs and the other is by
starting the editor explicitly using the emacs/[0,1] predicates.
33..44..22 BBlluuffffiinngg tthhrroouugghh PPcceeEEmmaaccss
PceEmacs closely mimics Richard Stallman's GNU-Emacs commands, adding
features from modern window-based editors to make it more acceptable
for beginners.
At the basis, PceEmacs maps keyboard sequences to methods defined on
the extended _e_d_i_t_o_r object. Some frequently used commands are, with
their key-binding, presented in the menu bar above each editor window.
A complete overview of the bindings for the current _m_o_d_e is provided
through Help/Show key bindings (Control-h Control-b).
33..44..22..11 EEddiitt mmooddeess
Modes are the heart of (Pce)Emacs. Modes define dedicated editing
support for a particular kind of (source) text. For our purpose we
want _P_r_o_l_o_g _m_o_d_e. There are various ways to make PceEmacs use Prolog
mode for a file.
o _U_s_i_n_g _t_h_e _p_r_o_p_e_r _e_x_t_e_n_s_i_o_n
If the file ends in .pl or the selected alternative (e.g. .pro)
extension, Prolog mode is selected.
o _U_s_i_n_g #!/path/to/.../swipl
If the file is a _P_r_o_l_o_g _S_c_r_i_p_t file, starting with the line
#!/path/to/swipl _o_p_t_i_o_n_s, Prolog mode is selected regardless of the
extension.
o _U_s_i_n_g -*- Prolog -*-
If the above sequence appears in the first line of the file (inside
a Prolog comment) Prolog mode is selected.
o _E_x_p_l_i_c_i_t _s_e_l_e_c_t_i_o_n
Finally, using File/Mode/Prolog you can switch to Prolog mode
explicitly.
33..44..22..22 FFrreeqquueennttllyy uusseedd eeddiittoorr ccoommmmaannddss
Below we list a few important commands and how to activate them.
o _C_u_t_/_C_o_p_y_/_P_a_s_t_e
These commands follow Unix/X11 traditions. You're best suited
with a three-button mouse. After selecting using the left-mouse
(double-click uses word-mode and triple line-mode), the selected
text is _a_u_t_o_m_a_t_i_c_a_l_l_y copied to the clipboard (X11 primary
selection on Unix). _C_u_t is achieved using the DEL key or by
typing something else at the location. _P_a_s_t_e is achieved using the
middle-mouse (or wheel) button. If you don't have a middle-mouse
button, pressing the left- and right-button at the same time is
interpreted as a middle-button click. If nothing helps, there is
the Edit/Paste menu entry. Text is pasted at the caret location.
o _U_n_d_o
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows
Control-Z sequence.
o _A_b_o_r_t
Multi-key sequences can be aborted at any stage using Control-G.
o _F_i_n_d
Find (Search) is started using Control-S (forward) or Control-R
(backward). PceEmacs implements _i_n_c_r_e_m_e_n_t_a_l _s_e_a_r_c_h. This is
difficult to use for novices, but very powerful once you get the
clue. After one of the above start keys, the system indicates
search mode in the status line. As you are typing the search
string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green
background.
If the target cannot be found, PceEmacs warns you and no longer
extends the search string. During search, some characters have
special meaning. Typing anything but these characters commits the
search, re-starting normal edit mode. Special commands are:
Control-S
Search forwards for next.
Control-R
Search backwards for next.
Control-W
Extend search to next word boundary.
Control-G
Cancel search, go back to where it started.
ESC
Commit search, leaving caret at found location.
Backspace
Remove a character from the search string.
o _D_y_n_a_m_i_c _A_b_b_r_e_v_i_a_t_i_o_n
Also called _d_a_b_b_r_e_v, dynamic abbreviation is an important feature
of Emacs clones to support programming. After typing the first few
letters of an identifier, you may press Alt-/, causing PceEmacs to
search backwards for identifiers that start the same and use it
to complete the text you typed. A second Alt-/ searches further
backwards. If there are no hits before the caret, it starts
searching forwards. With some practice, this system allows for
entering code very fast with nice and readable identifiers (or
other difficult long words).
o _O_p_e_n _(_a _f_i_l_e_)
Is called File/Find file (Control-x Control-f). By default the
file is loaded into the current window. If you want to keep this
window, press Alt-s or click the little icon at the bottom left to
make the window _s_t_i_c_k_y.
o _S_p_l_i_t _v_i_e_w
Sometimes you want to look at two places in the same file. To do
this, use Control-x 2 to create a new window pointing to the same
file. Do not worry, you can edit as well as move around in both.
Control-x 1 kills all other windows running on the same file.
These are the most commonly used commands. In section ???? we discuss
specific support for dealing with Prolog source code.
33..44..33 PPrroolloogg MMooddee
In the previous section (section ????) we explained the basics of
PceEmacs. Here we continue with Prolog-specific functionality.
Possibly the most interesting is _S_y_n_t_a_x _h_i_g_h_l_i_g_h_t_i_n_g. Unlike most
editors where this is based on simple patterns, PceEmacs syntax
highlighting is achieved by Prolog itself actually reading and
interpreting the source as you type it. There are three moments at
which PceEmacs checks (part of) the syntax.
o _A_f_t_e_r _t_y_p_i_n_g _a .
After typing a . that is not preceded by a _s_y_m_b_o_l character, the
system assumes you completed a clause, tries to find the start of
this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given
below. Colouring is done using information from the last full
check on this file. If it fails, the syntax error is displayed in
the status line and the clause is not coloured.
o _A_f_t_e_r _t_h_e _c_o_m_m_a_n_d Control-c Control-s
Acronym for CCheck SSyntax, it performs the same checks as above for
the clause surrounding the caret. On a syntax error, however, the
caret is moved to the expected location of the error.
o _A_f_t_e_r _p_a_u_s_i_n_g _f_o_r _t_w_o _s_e_c_o_n_d_s
After a short pause (2 seconds), PceEmacs opens the edit buffer
and reads it as a whole, creating an index of defined, called,
dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid
syntax.
o _A_f_t_e_r _t_y_p_i_n_g Control-l Control-l
The Control-l command re-centers the window (scrolls the window to
make the caret the center of the window). Typing this command
twice starts the same process as above.
TThhee ccoolloouurr sscchheemmaa
itself is defined in emacs/prolog_colour. The colouring can be
extended and modified using multifile predicates. Please check this
source file for details. In general, underlined objects have a popup
(right-mouse button) associated with common commands such as viewing
the documentation or source. BBoolldd text is used to indicate the
definition of objects (typically predicates when using plain Prolog).
Other colours follow intuitive conventions. See table ????.
_____________________________________________________
|______________________Clauses_______________________|
| Blue bold |Head of an exported predicate |
| Red bold |Head of a predicate that is not called |
|_Black_bold_|Head_of_remaining_predicates___________|
|______________Calls_in_the_clause_body______________|
| Blue |Call to built-in or imported predicate |
| Red |Call to undefined predicate |
|_Purple_____|Call_to_dynamic_predicate______________|
|___________________Other_entities___________________|
| Dark green |Comment |
| Dark blue |Quoted atom or string |
|_Brown______|Variable_______________________________|
Table 3.1: Colour conventions
LLaayyoouutt ssuuppppoorrtt Layout is not `just nice', it is _e_s_s_e_n_t_i_a_l for writing
readable code. There is much debate on the proper layout of Prolog.
PceEmacs, being a rather small project, supports only one particular
style for layout. Below are examples of typical constructs.
________________________________________________________________________| |
|head(arg1, arg2). |
| |
|head(arg1, arg2) :- !. |
| |
|head(Arg1, arg2) :- !, |
| call1(Arg1). |
| |
|head(Arg1, arg2) :- |
| ( if(Arg1) |
| -> then |
| ; else |
| ). |
| |
|head(Arg1) :- |
| ( a |
| ; b |
| ). |
| |
|head :- |
| a(many, |
| long, |
| arguments(with, |
| many, |
| more), |
| and([ a, |
| long, |
| list, |
| with, |
| a, |
| | tail |
||_____________]))._____________________________________________________ ||
PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents
the current line according to the syntax rules. Alt-q indents all
lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken
across multiple lines as illustrated above.
33..44..33..11 FFiinnddiinngg yyoouurr wwaayy aarroouunndd
The command Alt-. extracts name and arity from the caret location and
jumps (after conformation or edit) to the definition of the predicate.
It does so based on the source-location database of loaded predicates
also used by edit/1. This makes locating predicates reliable if all
sources are loaded and up-to-date (see make/0).
In addition, references to files in use_module/[1,2], consult/1, etc.
are red if the file cannot be found and underlined blue if the file can
be loaded. A popup allows for opening the referenced file.
33..55 TThhee GGrraapphhiiccaall DDeebbuuggggeerr
SWI-Prolog offers two debuggers. One is the traditional text
console-based 4-port Prolog tracer and the other is a window-based
source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog_trace_interception/4 hook
and other low-level functionality described in chapter ????.
Window-based tracing provides a much better overview due to the eminent
relation to your source code, a clear list of named variables and their
bindings as well as a graphical overview of the call and choice point
stack. There are some drawbacks though. Using a textual trace on the
console, one can scroll back and examine the past, while the graphical
debugger just presents a (much better) overview of the current state.
33..55..11 IInnvvookkiinngg tthhee wwiinnddooww--bbaasseedd ddeebbuuggggeerr
Whether the text-based or window-based debugger is used is controlled
using the predicates guitracer/0 and noguitracer/0. Entering debug
mode is controlled using the normal predicates for this: trace/0
and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific
location in the source code.
The graphical tracer is particulary useful for debugging threads. The
tracer must be loaded from the main thread before it can be used from a
background thread.
gguuiittrraacceerr
This predicate installs the above-mentioned hooks that redirect
tracing to the window-based environment. No window appears.
The debugger window appears as actual tracing is started through
trace/0, by hitting a spy point defined by spy/1 or a break point
defined using the PceEmacs command Prolog/Break at (Control-c b).
nnoogguuiittrraacceerr
Disable the hooks installed by guitracer/0, reverting to normal
text console-based tracing.
ggttrraaccee
Utility defined as guitracer,trace.
ggddeebbuugg
Utility defined as guitracer,debug.
ggssppyy((_+_P_r_e_d_i_c_a_t_e))
Utility defined as guitracer,spy(Predicate).
33..66 TThhee PPrroolloogg NNaavviiggaattoorr
Another tool is the _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r. This tool can be started
from PceEmacs using the command Browse/Prolog navigator, from the
GUI debugger or using the programmatic IDE interface described in
section ????.
33..77 CCrroossss--rreeffeerreenncceerr
A cross-referencer is a tool that examines the caller-callee relation
between predicates, and, using this information to explicate dependency
relations between source files, finds calls to non-existing predicates
and predicates for which no callers can be found. Cross-referencing
is useful during program development, reorganisation, clean-up, porting
and other program maintenance tasks. The dynamic nature of Prolog
makes the task non-trivial. Goals can be created dynamically using
call/1 after construction of a goal term. Abstract interpretation
can find some of these calls, but they can also come from external
communication, making it impossible to predict the callee. In
other words, the cross-referencer has only partial understanding of
the program, and its results are necessarily incomplete. Still, it
provides valuable information to the developer.
SWI-Prolog's cross-referencer is split into two parts. The standard
Prolog library prolog_xref is an extensible library for information
gathering described in section ????, and the XPCE library pce_xref
provides a graphical front-end for the cross-referencer described here.
We demonstrate the tool on CHAT80, a natural language question and
answer system by Fernando C.N. Pereira and David H.D. Warren.
ggxxrreeff
Run cross-referencer on all currently loaded files and present a
graphical overview of the result. As the predicate operates on
the currently loaded application it must be run after loading the
application.
The lleefftt wwiinnddooww (see figure ????) provides browsers for loaded files and
predicates. To avoid long file paths, the file hierarchy has three
main branches. The first is the current directory holding the sources.
The second is marked alias, and below it are the file-search-path
aliases (see file_search_path/2 and absolute_file_name/3). Here you
find files loaded from the system as well as modules of the program
loaded from other locations using the file search path. All loaded
files that fall outside these categories are below the last branch
called /. Files where the system found suspicious dependencies are
marked with an exclamation mark. This also holds for directories
holding such files. Clicking on a file opens a _F_i_l_e _i_n_f_o window in the
right pane.
The FFiillee iinnffoo window shows a file, its main properties, its undefined
and not-called predicates and its import and export relations to other
files in the project. Both predicates and files can be opened by
clicking on them. The number of callers in a file for a certain
predicate is indicated with a blue underlined number. A left-click
will open a list and allow editing the calling predicate.
The DDeeppeennddeenncciieess (see figure ????) window displays a graphical overview
of dependencies between files. Using the background menu a complete
graph of the project can be created. It is also possible to drag files
onto the graph window and use the menu on the nodes to incrementally
expand the graph. The underlined blue text indicates the number of
predicates used in the destination file. Left-clicking opens a menu to
open the definition or select one of the callers.
MMoodduullee aanndd nnoonn--mmoodduullee ffiilleess The cross-referencer threads module and
non-module project files differently. Module files have explicit
import and export relations and the tool shows the usage and
consistency of the relations. Using the Header menu command, the tool
creates a consistent import list for the module that can be included
in the file. The tool computes the dependency relations between the
non-module files. If the user wishes to convert the project into a
module-based one, the Header command generates an appropriate module
header and import list. Note that the cross-referencer may have missed
dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.
SSeettttiinnggss The following settings can be controlled from the settings
menu:
WWaarrnn aauuttoollooaadd
By default disabled. If enabled, modules that require predicates
to be autoloaded are flagged with a warning and the file info
window of a module shows the required autoload predicates.
WWaarrnn nnoott ccaalllleedd
If enabled (default), the file overview shows an alert icon for
files that have predicates that are not called.
33..88 AAcccceessssiinngg tthhee IIDDEE ffrroomm yyoouurr pprrooggrraamm
Over the years a collection of IDE components have been developed, each
with its own interface. In addition, some of these components require
each other, and loading IDE components must be on demand to avoid
the IDE being part of a saved state (see qsave_program/2). For this
reason, access to the IDE is concentrated on a single interface called
prolog_ide/1:
pprroolloogg__iiddee((_+_A_c_t_i_o_n))
This predicate ensures the IDE-enabling XPCE component is loaded,
creates the XPCE class _p_r_o_l_o_g___i_d_e and sends _A_c_t_i_o_n to its one and
only instance @prolog_ide. _A_c_t_i_o_n is one of the following:
ooppeenn__nnaavviiggaattoorr((_+_D_i_r_e_c_t_o_r_y))
Open the Prolog Navigator (see section ????) in the given
_D_i_r_e_c_t_o_r_y.
ooppeenn__ddeebbuugg__ssttaattuuss
Open a window to edit spy and trace points.
ooppeenn__qquueerryy__wwiinnddooww
Open a little window to run Prolog queries from a GUI
component.
tthhrreeaadd__mmoonniittoorr
Open a graphical window indicating existing threads and their
status.
ddeebbuugg__mmoonniittoorr
Open a graphical front-end for the debug library that provides
an overview of the topics and catches messages.
xxrreeff
Open a graphical front-end for the cross-referencer that
provides an overview of predicates and their callers.
33..99 SSuummmmaarryy ooff tthhee IIDDEE
The SWI-Prolog development environment consists of a number of
interrelated but not (yet) integrated tools. Here is a list of the
most important features and tips.
o _A_t_o_m _c_o_m_p_l_e_t_i_o_n
The console completes a partial atom on the TAB key and shows
alternatives on the command Alt-?.
o _U_s_e edit/1 _f_o_r _f_i_n_d_i_n_g _l_o_c_a_t_i_o_n_s
The command edit/1 takes the name of a file, module, predicate or
other entity registered through extensions and starts the user's
preferred editor at the right location.
o _S_e_l_e_c_t _e_d_i_t_o_r
External editors are selected using the EDITOR environment
variable, by setting the Prolog flag editor, or by defining the
hook qpredrefprolog_editedit_source1.
o _U_p_d_a_t_e _P_r_o_l_o_g _a_f_t_e_r _e_d_i_t_i_n_g
Using make/0, all files you have edited are re-loaded.
o _P_c_e_E_m_a_c_s
Offers syntax highlighting and checking based on real-time parsing
of the editor's buffer, layout support and navigation support.
o _U_s_i_n_g _t_h_e _g_r_a_p_h_i_c_a_l _d_e_b_u_g_g_e_r
The predicates guitracer/0 and noguitracer/0 switch between
traditional text-based and window-based debugging. The tracer is
activated using the trace/0, spy/1 or menu items from PceEmacs or
the Prolog Navigator.
o _T_h_e _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r
Shows the file structure and structure inside the file. It allows
for loading files, editing, setting spy points, etc.
CChhaapptteerr 44.. BBUUIILLTT--IINN PPRREEDDIICCAATTEESS
44..11 NNoottaattiioonn ooff PPrreeddiiccaattee DDeessccrriippttiioonnss
We have tried to keep the predicate descriptions clear and concise.
First, the predicate name is printed in bold face, followed by the
arguments in italics. Arguments are preceded by a mode indicator.
There is no complete agreement on mode indicators in the Prolog
community. We use the following definitions:
_________________________________________________________++Argument must be ground, i.e., the argument may
not contain a variable anywhere.
+ Argument must be fully instantiated to a term
that satisfies the type. This is not necessarily
_g_r_o_u_n_d, e.g., the term [_] is a _l_i_s_t, although its
only member is unbound.
- Argument is an _o_u_t_p_u_t argument. Unless
specified otherwise, output arguments need not
to be unbound. For example, the goal
findall(X, Goal, [T]) is good style and equivalent
to findall(X, Goal, Xs), Xs = [T] Note that the
_d_e_t_e_r_m_i_n_i_s_m specification, e.g., ``det'' only
applies if this argument is unbound.
-- Argument must be unbound. Typically used by
predicates that create `something' and return a
handle to the created object, such as open/3 which
creates a _s_t_r_e_a_m.
? Argument must be bound to a _p_a_r_t_i_a_l _t_e_r_m
of the indicated type. Note that a
variable is a partial term for any type.
Think of the argument as either _i_n_p_u_t or
_o_u_t_p_u_t or _b_o_t_h input and output. For
example, in stream_property(S, reposition(Bool)),
the reposition part of the term is input and the
uninstantiated _B_o_o_l is output.
: Argument is a meta-argument. Implies +.
See chapter ???? for more information on module
handling.
@ Argument is not further instantiated. Typically
used for type tests.
! Argument contains a mutable structure that may be
_____modified_using_setarg/3_or_nb_setarg/3._____________
Referring to a predicate in running text is done using a _p_r_e_d_i_c_a_t_e
_i_n_d_i_c_a_t_o_r. The canonical and most generic form of a predicate
indicator is a term <_m_o_d_u_l_e>:<_n_a_m_e>/<_a_r_i_t_y>. If the module is irrelevant
(built-in predicate) or can be inferred from the context it is often
omitted. Compliant to the ISO standard draft on DCG (see section ????),
SWI-Prolog also allows for [<_m_o_d_u_l_e>]:<_n_a_m_e>//<_a_r_i_t_y> to refer to a
grammar rule. For all non-negative arity, <_n_a_m_e>//<_a_r_i_t_y> is the
same as <_n_a_m_e>/<_a_r_i_t_y>+2, regardless of whether or not the referenced
predicate is defined or can be used as a grammar rule. The //-notation
can be used in all places that traditionally allow for a predicate
indicator, e.g., the module declaration, spy/1, and dynamic/1.
44..22 CChhaarraacctteerr rreepprreesseennttaattiioonn
In traditional (Edinburgh) Prolog, characters are represented using
_c_h_a_r_a_c_t_e_r _c_o_d_e_s. Character codes are integer indices into a specific
character set. Traditionally the character set was 7-bit US-ASCII.
8-bit character sets have been allowed for a long time, providing
support for national character sets, of which iso-latin-1 (ISO 8859-1)
is applicable to many Western languages.
ISO Prolog introduces three types, two of which are used for characters
and one for accessing binary streams (see open/4). These types are:
o _c_o_d_e
A _c_h_a_r_a_c_t_e_r _c_o_d_e is an integer representing a single character.
As files may use multi-byte encoding for supporting different
character sets (utf-8 encoding for example), reading a code from a
text file is in general not the same as reading a byte.
o _c_h_a_r
Alternatively, characters may be represented as _o_n_e_-_c_h_a_r_a_c_t_e_r
_a_t_o_m_s. This is a natural representation, hiding encoding problems
from the programmer as well as providing much easier debugging.
o _b_y_t_e
Bytes are used for accessing binary streams.
In SWI-Prolog, character codes are _a_l_w_a_y_s the Unicode equivalent of the
encoding. That is, if get_code/1 reads from a stream encoded as KOI8-R
(used for the Cyrillic alphabet), it returns the corresponding Unicode
code points. Similarly, assembling or disassembling atoms using
atom_codes/2 interprets the codes as Unicode points. See section ????
for details.
To ease the pain of the two character representations (code and char),
SWI-Prolog's built-in predicates dealing with character data work as
flexible as possible: they accept data in any of these formats as
long as the interpretation is unambiguous. In addition, for output
arguments that are instantiated, the character is extracted before
unification. This implies that the following two calls are identical,
both testing whether the next input character is an a.
________________________________________________________________________| |
|peek_code(Stream, a). |
|peek_code(Stream,|97)._________________________________________________ | |
The two character representations are handled by a large number of
built-in predicates, all of which are ISO-compatible. For converting
between code and character there is char_code/2. For breaking
atoms and numbers into characters there are atom_chars/2, atom_codes/2,
number_chars/2 and number_codes/2. For character I/O on streams there
are get_char/[1,2], get_code/[1,2], get_byte/[1,2], peek_char/[1,2],
peek_code/[1,2], peek_byte/[1,2], put_code/[1,2], put_char/[1,2] and
put_byte/[1,2]. The Prolog flag double_quotes controls how text between
double quotes is interpreted.
44..33 LLooaaddiinngg PPrroolloogg ssoouurrccee ffiilleess
This section deals with loading Prolog source files. A Prolog source
file is a plain text file containing a Prolog program or part thereof.
Prolog source files come in three flavours:
AA ttrraaddiittiioonnaall Prolog source file contains Prolog clauses and
directives, but no _m_o_d_u_l_e _d_e_c_l_a_r_a_t_i_o_n (see module/1). They are
normally loaded using consult/1 or ensure_loaded/1. Currently, a
non-module file can only be loaded into a single module.
AA mmoodduullee Prolog source file starts with a module declaration. The
subsequent Prolog code is loaded into the specified module, and
only the _e_x_p_o_r_t_e_d predicates are made available to the context
loading the module. Module files are normally loaded with
use_module/[1,2]. See chapter ???? for details.
AAnn iinncclluuddee Prolog source file is loaded using the include/1
directive, textually including Prolog text into another Prolog
source. A file may be included into multiple source files and is
typically used to share _d_e_c_l_a_r_a_t_i_o_n_s such as multifile or dynamic
between source files.
Prolog source files are located using absolute_file_name/3 with the
following options:
________________________________________________________________________| |
|locate_prolog_file(Spec, Path) :- |
| absolute_file_name(Spec, |
| [ file_type(prolog), |
| access(read) |
| ], |
||__________________________Path).______________________________________ ||
The file_type(_p_r_o_l_o_g) option is used to determine the extension of the
file using prolog_file_type/2. The default extension is .pl. _S_p_e_c
allows for the _p_a_t_h _a_l_i_a_s construct defined by absolute_file_name/3.
The most commonly used path alias is library(_L_i_b_r_a_r_y_F_i_l_e). The example
below loads the library file ordsets.pl (containing predicates for
manipulating ordered sets).
________________________________________________________________________| |
|:-|use_module(library(ordsets))._______________________________________ | |
SWI-Prolog recognises grammar rules (DCG) as defined in [??]. The
user may define additional compilation of the source file by defining
the dynamic multifile predicates term_expansion/2, term_expansion/4,
goal_expansion/2 and goal_expansion/4. It is not allowed to use
assert/1, retract/1 or any other database predicate in term_expansion/2
other than for local computational purposes. Code that needs
to create additional clauses must use compile_aux_clauses/1. See
library(apply_macros) for an example.
A _d_i_r_e_c_t_i_v_e is an instruction to the compiler. Directives are
used to set (predicate) properties (see section ????), set flags (see
set_prolog_flag/2) and load files (this section). Directives are terms
of the form :- <_t_e_r_m>.. Here are some examples:
________________________________________________________________________| |
|:- use_module(library(lists)). |
|:- dynamic |
||_______store/2.________________%_Name,_Value__________________________ ||
The directive initialization/1 can be used to run arbitrary Prolog
goals. The specified goal is started _a_f_t_e_r loading the file in which
it appears has completed.
SWI-Prolog compiles code as it is read from the file, and directives
are executed as _g_o_a_l_s. This implies that directives may call any
predicate that has been defined before the point where the directive
appears. It also accepts ?- <_t_e_r_m>.as a synonym.
SWI-Prolog does not have a separate reconsult/1 predicate.
Reconsulting is implied automatically by the fact that a file is
consulted which is already loaded.
Advanced topics are handled in subsequent sections: mutually dependent
files (section ????), multithreaded loading (section ????) and reloading
running code (section ????).
The core of the family of loading predicates is load_files/2. The
predicates consult/1, ensure_loaded/1, use_module/1, use_module/2 and
reexport/1 pass the file argument directly to load_files/2 and pass
additional options as expressed in the table ????:
_______________________________________________________PPrreeddiiccaatteeiiffmmuusstt__bbee__mmoodduulleeiimmppoorrtt
______________________________________________________________________________________________________________consult/1truefalseall
ensure_loaded/1 not_loaded false all
use_module/1 not_loaded true all
use_module/2 not_loaded true specified
reexport/1 not_loaded true all
_reexport/2______not_loaded_______true______specified__
Table 4.1: Properties of the file-loading predicates. The _i_m_p_o_r_t
column specifies what is imported if the loaded file is a module file.
llooaadd__ffiilleess((_:_F_i_l_e_s))
Equivalent to load_files(_F_i_l_e_s_, _[_]). Same as consult/1, See
load_files/2 for supported options.
llooaadd__ffiilleess((_:_F_i_l_e_s_, _+_O_p_t_i_o_n_s))
The predicate load_files/2 is the parent of all the other loading
predicates except for include/1. It currently supports a subset
of the options of Quintus load_files/2. _F_i_l_e_s is either a single
source file or a list of source files. The specification for a
source file is handed to absolute_file_name/2. See this predicate
for the supported expansions. _O_p_t_i_o_n_s is a list of options using
the format _O_p_t_i_o_n_N_a_m_e(_O_p_t_i_o_n_V_a_l_u_e).
The following options are currently supported:
aauuttoollooaadd((_B_o_o_l))
If true (default false), indicate that this load is a _d_e_m_a_n_d
load. This implies that, depending on the setting of the
Prolog flag verbose_autoload, the load action is printed at
level informational or silent. See also print_message/2 and
current_prolog_flag/2.
cchheecckk__ssccrriipptt((_B_o_o_l))
If false (default true), do not check the first character to
be # and skip the first line when found.
ddeerriivveedd__ffrroomm((_F_i_l_e))
Indicate that the loaded file is derived from _F_i_l_e. Used by
make/0 to time-check and load the original file rather than
the derived file.
ddiiaalleecctt((_+_D_i_a_l_e_c_t))
Load _F_i_l_e_s with enhanced compatibility with the target Prolog
system identified by _D_i_a_l_e_c_t. See expects_dialect/1 and
section ???? for details.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Specify the way characters are encoded in the file. Default
is taken from the Prolog flag encoding. See section ???? for
details.
eexxppaanndd((_B_o_o_l))
If true, run the filenames through expand_file_name/2 and load
the returned files. Default is false, except for consult/1
which is intended for interactive use. Flexible location of
files is defined by file_search_path/2.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Used to specify the file format if data is loaded from a
stream using the stream(_S_t_r_e_a_m) option. Default is source,
loading Prolog source text. If qlf, load QLF data (see
qcompile/1).
iiff((_C_o_n_d_i_t_i_o_n))
Load the file only if the specified condition is satisfied.
The value true loads the file unconditionally, changed loads
the file if it was not loaded before or has been modified
since it was loaded the last time, and not_loaded loads the
file if it was not loaded before.
iimmppoorrttss((_I_m_p_o_r_t))
Specify what to import from the loaded module. The default
for use_module/1 is all. _I_m_p_o_r_t is passed from the second
argument of use_module/2. Traditionally it is a list of
predicate indicators to import. As part of the SWI-Prolog/YAP
integration, we also support _P_r_e_d as _N_a_m_e to import a
predicate under another name. Finally, _I_m_p_o_r_t can be the term
except(_E_x_c_e_p_t_i_o_n_s), where _E_x_c_e_p_t_i_o_n_s is a list of predicate
indicators that specify predicates that are _n_o_t imported or
_P_r_e_d as _N_a_m_e terms to denote renamed predicates. See also
reexport/2 and use_module/2.
If _I_m_p_o_r_t equals all, all operators are imported as well.
Otherwise, operators are _n_o_t imported. Operators can be
imported selectively by adding terms op(_P_r_i_,_A_s_s_o_c_,_N_a_m_e) to the
_I_m_p_o_r_t list. If such a term is encountered, all exported
operators that unify with this term are imported. Typically,
this construct will be used with all arguments unbound to
import all operators or with only _N_a_m_e bound to import a
particular operator.
mmooddiiffiieedd((_T_i_m_e_S_t_a_m_p))
Claim that the source was loaded at _T_i_m_e_S_t_a_m_p without checking
the source. This option is intended to be used together with
the stream(_I_n_p_u_t) option, for example after extracting the
time from an HTTP server or database.
mmoodduullee((_+_M_o_d_u_l_e))
Load the indicated file into the given module, overruling the
module name specified in the :- module(Name, ...) directive.
This currently serves two purposes: (1) allow loading two
module files that specify the same module into the same
process and force and (2): force loading source code in a
specific module, even if the code provides its own module
name. Experimental.
mmuusstt__bbee__mmoodduullee((_B_o_o_l))
If true, raise an error if the file is not a module file.
Used by use_module/[1,2].
qqccoommppiillee((_A_t_o_m))
How to deal with quick-load-file compilation by qcompile/1.
Values are:
nneevveerr
Default. Do not use qcompile unless called explicitly.
aauuttoo
Use qcompile for all writeable files. See comment below.
llaarrggee
Use qcompile if the file is `large'. Currently, files
larger than 100 Kbytes are considered large.
ppaarrtt
If load_files/2 appears in a directive of a file that
is compiled into Quick Load Format using qcompile/1, the
contents of the argument files are included in the .qlf
file instead of the loading directive.
If this option is not present, it uses the value of the Prolog
flag qcompile as default.
rreeddeeffiinnee__mmoodduullee((_+_A_c_t_i_o_n))
Defines what to do if a file is loaded that provides a module
that is already loaded from another file. _A_c_t_i_o_n is one of
false (default), which prints an error and refuses to load the
file, or true, which uses unload_file/1 on the old file and
then proceeds loading the new file. Finally, there is ask,
which starts interaction with the user. ask is only provided
if the stream user_input is associated with a terminal.
rreeeexxppoorrtt((_B_o_o_l))
If true re-export the imported predicate. Used by reexport/1
and reexport/2.
rreeggiisstteerr((_B_o_o_l))
If false, do not register the load location and options. This
option is used by make/0 and load_hotfixes/1 to avoid polluting
the load-context database. See source_file_property/2.
ssaannddbbooxxeedd((_B_o_o_l))
Load the file in _s_a_n_d_b_o_x_e_d mode. This option controls the
flag sandboxed_load. The only meaningful value for _B_o_o_l is
true. Using false while the Prolog flag is set to true raises
a permission error.
ssccooppee__sseettttiinnggss((_B_o_o_l))
Scope style_check/1 and expects_dialect/1to the file and files
loaded from the file after the directive. Default is true.
The system and user initialization files (see -f and -F) are
loading with scope_settings(_f_a_l_s_e).
ssiilleenntt((_B_o_o_l))
If true, load the file without printing a message. The
specified value is the default for all files loaded as a
result of loading the specified files. This option writes the
Prolog flag verbose_load with the negation of _B_o_o_l.
ssttrreeaamm((_I_n_p_u_t))
This SWI-Prolog extension compiles the data from the stream
_I_n_p_u_t. If this option is used, _F_i_l_e_s must be a single atom
which is used to identify the source location of the loaded
clauses as well as to remove all clauses if the data is
reconsulted.
This option is added to allow compiling from non-file
locations such as databases, the web, the _u_s_e_r (see consult/1)
or other servers. It can be combined with format(_q_l_f) to load
QLF data from a stream.
The load_files/2 predicate can be hooked to load other data or
data from objects other than files. See prolog_load_file/2 for
a description and http/http_load for an example. All hooks for
load_files/2 are documented in section ????.
ccoonnssuulltt((_:_F_i_l_e))
Read _F_i_l_e as a Prolog source file. Calls to consult/1 may
be abbreviated by just typing a number of filenames in a list.
Examples:
?- consult(load). % consult load or load.pl
?- [library(lists)]. % load library lists
?- [user]. % Type program on the terminal
The predicate consult/1 is equivalent to load_files(File, []),
except for handling the special file user, which reads clauses from
the terminal. See also the stream(_I_n_p_u_t) option of load_files/2.
Abbreviation using ?- [file1,file2]. does _n_o_t work for the empty
list ([]). This facility is implemented by defining the list
as a predicate. Applications may only rely on using the list
abbreviation at the Prolog toplevel and in directives.
eennssuurree__llooaaddeedd((_:_F_i_l_e))
If the file is not already loaded, this is equivalent to consult/1.
Otherwise, if the file defines a module, import all public
predicates. Finally, if the file is already loaded, is not a
module file, and the context module is not the global user module,
ensure_loaded/1 will call consult/1.
With this semantics, we hope to get as close as possible to
the clear semantics without the presence of a module system.
Applications using modules should consider using use_module/[1,2].
Equivalent to load_files(Files, [if(not_loaded)]).
iinncclluuddee((_+_F_i_l_e)) _[_I_S_O_]
Textually include the content of _F_i_l_e at the position where the
_d_i_r_e_c_t_i_v_e :- include(File). appears. The include construct is only
honoured if it appears as a directive in a source file. _T_e_x_t_u_a_l
include (similar to C/C++ #include) is obviously useful for sharing
declarations such as dynamic/1 or multifile/1 by including a file
with directives from multiple files that use these predicates.
Textually including files that contain _c_l_a_u_s_e_s is less obvious.
Normally, in SWI-Prolog, clauses are _o_w_n_e_d by the file in which
they are defined. This information is used to _r_e_p_l_a_c_e the old
definition after the file has been modified and is reloaded by,
e.g., make/0. As we understand it, include/1 is intended to
include the same file multiple times. Including a file holding
clauses multiple times into the same module is rather meaningless
as it just duplicates the same clauses. Including a file
holding clauses in multiple modules does not suffer from this
problem, but leads to multiple equivalent _c_o_p_i_e_s of predicates.
Using use_module/1 can achieve the same result while _s_h_a_r_i_n_g the
predicates.
If include/1 is used to load files holding clauses, and if these
files are loaded only once, then these include/1 directives can be
replaced by other predicates (such as consult/1). However, there
are several cases where either include/1 has no alternative, or
using any alternative also requires other changes. An example of
the former is using include/1 to share directives. An example
of the latter are cases where clauses of different predicates are
distributed over multiple files: If these files are loaded with
include/1, the directive discontiguous/1 is appropriate, whereas if
they are consulted, one must use the directive multifile/1.
To accommodate included files holding clauses, SWI-Prolog
distinguishes between the source location of a clause (in this
case the included file) and the _o_w_n_e_r of a clause (the file that
includes the file holding the clause). The source location is
used by, e.g., edit/1, the graphical tracer, etc., while the
owner is used to determine which clauses are removed if the file
is modified. Relevant information is found with the following
predicates:
o source_file/2 describes the owner relation.
o predicate_property/2 describes the source location (of the
first clause).
o clause_property/2 provides access to both source and ownership.
o source_file_property/2 can be used to query include relation-
ships between files.
rreeqquuiirree((_+_L_i_s_t_O_f_N_a_m_e_A_n_d_A_r_i_t_y))
Declare that this file/module requires the specified predicates
to be defined ``with their commonly accepted definition''. This
predicate originates from the Prolog portability layer for XPCE.
It is intended to provide a portable mechanism for specifying that
this module requires the specified predicates.
The implementation normally first verifies whether the predicate is
already defined. If not, it will search the libraries and load the
required library.
SWI-Prolog, having autoloading, does nnoott load the library. Instead
it creates a procedure header for the predicate if it does not
exist. This will flag the predicate as `undefined'. See also
check/0 and autoload/0.
eennccooddiinngg((_+_E_n_c_o_d_i_n_g))
This directive can appear anywhere in a source file to define how
characters are encoded in the remainder of the file. It can
be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section ????.
mmaakkee
Consult all source files that have been changed since they were
consulted. It checks _a_l_l loaded source files: files loaded into
a compiled state using pl -c ... and files loaded using consult/1
or one of its derivatives. The predicate make/0 is called
after edit/1, automatically reloading all modified files. If the
user uses an external editor (in a separate window), make/0 is
normally used to update the program after editing. In addition,
make/0 updates the autoload indices (see section ????) and runs
list_undefined/0 from the check library to report on undefined
predicates.
lliibbrraarryy__ddiirreeccttoorryy((_?_A_t_o_m))
Dynamic predicate used to specify library directories. Default
./lib, ~/lib/prolog and the system's library (in this order) are
defined. The user may add library directories using assertz/1,
asserta/1 or remove system defaults using retract/1. Deprecated.
New code should use file_search_path/2.
ffiillee__sseeaarrcchh__ppaatthh((_+_A_l_i_a_s_, _-_P_a_t_h))
Dynamic multifile hook predicate used to specify `path aliases'.
This hook is called by absolute_file_name/3 to search files
specified as Alias(_N_a_m_e), e.g., library(_l_i_s_t_s). This feature is
best described using an example. Given the definition:
____________________________________________________________________| |
||file_search_path(demo,_'/usr/lib/prolog/demo').___________________ ||
the file specification demo(myfile) will be expanded to /usr/lib/
prolog/demo/myfile. The second argument of file_search_path/2 may
be another alias.
Below is the initial definition of the file search path. This
path implies swi(<_P_a_t_h>) and refers to a file in the SWI-Prolog
home directory. The alias foreign(<_P_a_t_h>) is intended for
storing shared libraries (.so or .DLL files). See also
use_foreign_library/1.
____________________________________________________________________| |
| user:file_search_path(library, X) :- |
| library_directory(X). |
| user:file_search_path(swi, Home) :- |
| current_prolog_flag(home, Home). |
| user:file_search_path(foreign, swi(ArchLib)) :- |
| current_prolog_flag(arch, Arch), |
| atom_concat('lib/', Arch, ArchLib). |
| user:file_search_path(foreign, swi(lib)). |
| user:file_search_path(path, Dir) :- |
| getenv('PATH', Path), |
| ( current_prolog_flag(windows, true) |
| -> atomic_list_concat(Dirs, (;), Path) |
| ; atomic_list_concat(Dirs, :, Path) |
| ), |
||________member(Dir,_Dirs).________________________________________ ||
The file_search_path/2expansion is used by all loading predicates
as well as by absolute_file_name/[2,3].
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
eexxppaanndd__ffiillee__sseeaarrcchh__ppaatthh((_+_S_p_e_c_, _-_P_a_t_h)) _[_n_o_n_d_e_t_]
Unifies _P_a_t_h with all possible expansions of the filename specifi-
cation _S_p_e_c. See also absolute_file_name/3.
pprroolloogg__ffiillee__ttyyppee((_?_E_x_t_e_n_s_i_o_n_, _?_T_y_p_e))
This dynamic multifile predicate defined in module user determines
the extensions considered by file_search_path/2. _E_x_t_e_n_s_i_o_n is the
filename extension without the leading dot, and _T_y_p_e denotes the
type as used by the file_type(_T_y_p_e) option of file_search_path/2.
Here is the initial definition of prolog_file_type/2:
____________________________________________________________________| |
| user:prolog_file_type(pl, prolog). |
| user:prolog_file_type(Ext, prolog) :- |
| current_prolog_flag(associate, Ext), |
| Ext \== pl. |
| user:prolog_file_type(qlf, qlf). |
| user:prolog_file_type(Ext, executable) :- |
||________current_prolog_flag(shared_object_extension,_Ext).________ ||
Users can add extensions for Prolog source files to avoid conflicts
(for example with perl) as well as to be compatible with another
Prolog implementation. We suggest using .pro for avoiding
conflicts with perl. Overriding the system definitions can stop
the system from finding libraries.
ssoouurrccee__ffiillee((_?_F_i_l_e))
True if _F_i_l_e is a loaded Prolog source file. _F_i_l_e is the absolute
and canonical path to the source file.
ssoouurrccee__ffiillee((_:_P_r_e_d_, _?_F_i_l_e))
True if the predicate specified by _P_r_e_d is owned by file _F_i_l_e,
where _F_i_l_e is an absolute path name (see absolute_file_name/2).
Can be used with any instantiation pattern, but the database only
maintains the source file for each predicate. If _P_r_e_d is a
_m_u_l_t_i_f_i_l_e predicate this predicate succeeds for all files that
contribute clauses to _P_r_e_d. See also clause_property/2. Note
that the relation between files and predicates is more complicated
if include/1 is used. The predicate describes the _o_w_n_e_r of the
predicate. See include/1 for details.
ssoouurrccee__ffiillee__pprrooppeerrttyy((_?_F_i_l_e_, _?_P_r_o_p_e_r_t_y))
True when _P_r_o_p_e_r_t_y is a property of the loaded file _F_i_l_e. If
_F_i_l_e is non-var, it can be a file specification that is valid for
load_files/2. Defined properties are:
ddeerriivveedd__ffrroomm((_O_r_i_g_i_n_a_l_, _O_r_i_g_i_n_a_l_M_o_d_i_f_i_e_d))
_F_i_l_e was generated from the file _O_r_i_g_i_n_a_l, which was last
modified at time _O_r_i_g_i_n_a_l_M_o_d_i_f_i_e_d at the time it was loaded.
This property is available if _F_i_l_e was loaded using the
derived_from(_O_r_i_g_i_n_a_l) option to load_files/2.
iinncclluuddeess((_I_n_c_l_u_d_e_d_F_i_l_e_, _I_n_c_l_u_d_e_d_F_i_l_e_M_o_d_i_f_i_e_d))
_F_i_l_e used include/1 to include _I_n_c_l_u_d_e_d_F_i_l_e. The last
modified time of _I_n_c_l_u_d_e_d_F_i_l_e was _I_n_c_l_u_d_e_d_F_i_l_e_M_o_d_i_f_i_e_d at the
time it was included.
iinncclluuddeedd__iinn((_M_a_s_t_e_r_F_i_l_e_, _L_i_n_e))
_F_i_l_e was included into _M_a_s_t_e_r_F_i_l_e from line _L_i_n_e. This is the
inverse of the includes property.
llooaadd__ccoonntteexxtt((_M_o_d_u_l_e_, _L_o_c_a_t_i_o_n_, _O_p_t_i_o_n_s))
_M_o_d_u_l_e is the module into which the file was loaded. If _F_i_l_e
is a module, this is the module into which the exports are
imported. Otherwise it is the module into which the clauses
of the non-module file are loaded. _L_o_c_a_t_i_o_n describes the
file location from which the file was loaded. It is either
a term <_f_i_l_e>:<_l_i_n_e> or the atom user if the file was loaded
from the terminal or another unknown source. _O_p_t_i_o_n_s are the
options passed to load_files/2. Note that all predicates
to load files are mapped to load_files/2, using the option
argument to specify the exact behaviour.
llooaadd__ccoouunntt((_-_C_o_u_n_t))
_C_o_u_n_t is the number of times the file have been loaded, i.e.,
1 (one) if the file has been loaded once.
mmooddiiffiieedd((_S_t_a_m_p))
File modification time when _F_i_l_e was loaded. This is used by
make/0 to find files whose modification time is different from
when it was loaded.
mmoodduullee((_M_o_d_u_l_e))
_F_i_l_e is a module file that declares the module _M_o_d_u_l_e.
nnuummbbeerr__ooff__ccllaauusseess((_C_o_u_n_t))
_C_o_u_n_t is the number of clauses associated with _F_i_l_e. Note
that clauses loaded from included files are counted as part of
the main file.
rreellooaaddiinngg
Present if the file is currently being rreeloaded.
uunnllooaadd__ffiillee((_+_F_i_l_e))
Remove all clauses loaded from _F_i_l_e. If _F_i_l_e loaded a module,
clear the module's export list and disassociate it from the file.
_F_i_l_e is a canonical filename or a file indicator that is valid for
load_files/2.
This predicate should be used with care. The multithreaded nature
of SWI-Prolog makes removing static code unsafe. Attempts to do
this should be reserved for development or situations where the
application can guarantee that none of the clauses associated to
_F_i_l_e are active.
pprroolloogg__llooaadd__ccoonntteexxtt((_?_K_e_y_, _?_V_a_l_u_e))
Obtain context information during compilation. This predicate
can be used from directives appearing in a source file to
get information about the file being loaded as well as by
the term_expansion/2 and goal_expansion/2 hooks. See also
source_location/2 and if/1. The following keys are defined:
______________________________________________________________________
|__KKeeyy________________________||DDeessccrriippttiioonn________________________________________________________________________________||__
|| directory |Directory in which source lives |
| dialect |Compatibility mode. See expects_dialect/1. |
| file |Similar to source, but returns the file being|
| |included when called while an include file is being|
| |processed |
| module |Module into which file is loaded |
| reload |true if the file is being rreeloaded. Not present on|
| |first load |
| script |Boolean that indicates whether the file is loaded|
| |as a script file (see -s) |
| source |File being loaded. If the system is processing an|
| |included file, the value is the _m_a_i_n file. Returns|
| |the original Prolog file when loading a .qlf file. |
| stream |Stream identifier (see current_input/1) |
| term_position |Start position of last term read. See|
| |also stream_property/2 (position property and|
| |stream_position_data/3. |
| term |Term being expanded by expand_term/2. |
| variable_names |A list of `_N_a_m_e = _V_a_r' of the last term read. See|
|________________|read_term/2for_details.____________________________|_
The directory is commonly used to add rules to file_search_path/2,
setting up a search path for finding files with
absolute_file_name/3. For example:
____________________________________________________________________| |
| :- dynamic user:file_search_path/2. |
| :- multifile user:file_search_path/2. |
| |
| :- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(my_program_home, Dir)). |
| |
| ... |
| absolute_file_name(my_program_home('README.TXT'), ReadMe, |
| [ access(read) ]), |
||____...___________________________________________________________ ||
ssoouurrccee__llooccaattiioonn((_-_F_i_l_e_, _-_L_i_n_e))
If the last term has been read from a physical file (i.e., not from
the file user or a string), unify _F_i_l_e with an absolute path to the
file and _L_i_n_e with the line number in the file. New code should
use prolog_load_context/2.
aatt__hhaalltt((_:_G_o_a_l))
Register _G_o_a_l to be run from PL_cleanup(), which is called when
the system halts. The hooks are run in the reverse order
they were registered (FIFO). Success or failure executing a hook
is ignored. If the hook raises an exception this is printed
using print_message/2. An attempt to call halt/[0,1] from a hook
is ignored. Hooks may call cancel_halt/1, causing halt/0 and
PL_halt(_0) to print a message indicating that halting the system
has been cancelled.
ccaanncceell__hhaalltt((_+_R_e_a_s_o_n))
If this predicate is called from a hook registered with at_halt/1,
halting Prolog is cancelled and an informational message is printed
that includes _R_e_a_s_o_n. This is used by the development tools to
cancel halting the system if the editor has unsafed data and the
user decides to cancel.
::-- iinniittiiaalliizzaattiioonn((_:_G_o_a_l)) _[_I_S_O_]
Call _G_o_a_l _a_f_t_e_r loading the source file in which this directive
appears has been completed. In addition, _G_o_a_l is executed if a
saved state created using qsave_program/1 is restored.
The ISO standard only allows for using :- Term if _T_e_r_m is a
_d_i_r_e_c_t_i_v_e. This means that arbitrary goals can only be called from
a directive by means of the initialization/1 directive. SWI-Prolog
does not enforce this rule.
The initialization/1 directive must be used to do program
initialization in saved states (see qsave_program/1). A saved
state contains the predicates, Prolog flags and operators present
at the moment the state was created. Other resources (records,
foreign resources, etc.) must be recreated using initialization/1
directives or from the entry goal of the saved state.
Up to SWI-Prolog 5.7.11, _G_o_a_l was executed immediately rather than
after loading the program text in which the directive appears
as dictated by the ISO standard. In many cases the exact
moment of execution is irrelevant, but there are exceptions.
For example, load_foreign_library/1 must be executed immediately
to make the loaded foreign predicates available for exporting.
SWI-Prolog now provides the directive use_foreign_library/1 to
ensure immediate loading as well as loading after restoring
a saved state. If the system encounters a directive
:- initialization(load_foreign_library(...)), it will load the
foreign library immediately and issue a warning to update your
code. This behaviour can be extended by providing clauses for
the multifile hook predicate prolog:initialize_now(_T_e_r_m_, _A_d_v_i_c_e),
where _A_d_v_i_c_e is an atom that gives advice on how to resolve the
compatibility issue.
iinniittiiaalliizzaattiioonn((_:_G_o_a_l_, _+_W_h_e_n))
Similar to initialization/1, but allows for specifying when _G_o_a_l is
executed while loading the program text:
nnooww
Execute _G_o_a_l immediately.
aafftteerr__llooaadd
Execute _G_o_a_l after loading the program text in which the
directive appears. This is the same as initialization/1.
rreessttoorree
Do not execute _G_o_a_l while loading the program, but _o_n_l_y when
restoring a saved state.
pprrooggrraamm
Execute _G_o_a_l once after executing the -g goals at program
startup. Registered goals are executed in the order
encountered and a failure or exception causes the Prolog to
exit with non-zero exit status. These goals are _n_o_t executed
if the -l is given to merely _l_o_a_d files. In that case they
may be executed explicitly using initialize/0. See also
section ????.
mmaaiinn
When Prolog starts, the last goal registered using initializa-
tion(_G_o_a_l_, _m_a_i_n) is executed as main goal. If _G_o_a_l fails or
raises an exception, the process terminates with non-zero exit
code. If not explicitly specified using the -t the _t_o_p_l_e_v_e_l
_g_o_a_l is set to halt/0, causing the process to exit with status
0. An explicitly specified toplevel is executed normally.
This implies that -t prolog causes the application to start
the normal interactive toplevel after completing _G_o_a_l. See
also the Prolog flag toplevel_goal and section ????.
iinniittiiaalliizzaattiioonn _[_d_e_t_]
Run all initialization goals registered using initialization(_G_o_a_l_,
_p_r_o_g_r_a_m). Raises an error initialization_error(_R_e_a_s_o_n_, _G_o_a_l_,
_F_i_l_e_:_L_i_n_e) if _G_o_a_l fails or raises an exception. _R_e_a_s_o_n is failed
or the exception raised.
ccoommppiilliinngg
True if the system is compiling source files with the -c option or
qcompile/1 into an intermediate code file. Can be used to perform
conditional code optimisations in term_expansion/2(see also the -O
option) or to omit execution of directives during compilation.
44..33..11 CCoonnddiittiioonnaall ccoommppiillaattiioonn aanndd pprrooggrraamm ttrraannssffoorrmmaattiioonn
ISO Prolog defines no way for program transformations such as
macro expansion or conditional compilation. Expansion through
term_expansion/2 and expand_term/2 can be seen as part of the de-facto
standard. This mechanism can do arbitrary translation between valid
Prolog terms read from the source file to Prolog terms handed to the
compiler. As term_expansion/2 can return a list, the transformation
does not need to be term-to-term.
Various Prolog dialects provide the analogous goal_expansion/2 and
expand_goal/2 that allow for translation of individual body terms,
freeing the user of the task to disassemble each clause.
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _-_T_e_r_m_2))
Dynamic and multifile predicate, normally not defined. When
defined by the user all terms read during consulting are given to
this predicate. If the predicate succeeds Prolog will assert _T_e_r_m_2
in the database rather than the read term (_T_e_r_m_1). _T_e_r_m_2 may be a
term of the form ?- Goal. or :- Goal. _G_o_a_l is then treated as a
directive. If _T_e_r_m_2 is a list, all terms of the list are stored
in the database or called (for directives). If _T_e_r_m_2 is of the
form below, the system will assert _C_l_a_u_s_e and record the indicated
source location with it:
'$source_location'(<_F_i_l_e>, <_L_i_n_e>):<_C_l_a_u_s_e>
When compiling a module (see chapter ???? and the directive
module/2), expand_term/2 will first try term_expansion/2 in the
module being compiled to allow for term expansion rules that are
local to a module. If there is no local definition, or the local
definition fails to translate the term, expand_term/2 will try
term_expansion/2 in module user. For compatibility with SICStus
and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _-_T_e_r_m_2))
This predicate is normally called by the compiler on terms read
from the input to perform preprocessing. It consists of four
steps, where each step processes the output of the previous step.
1. Test conditional compilation directives and translate all
input to [] if we are in a `false branch' of the conditional
compilation. See section ????.
2. Call term_expansion/2. This predicate is first tried in the
module that is being compiled and then in the module user.
3. Call DCG expansion (dcg_translate_rule/2).
4. Call expand_goal/2 on each body term that appears in the output
of the previous steps.
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _-_G_o_a_l_2))
Like term_expansion/2, goal_expansion/2 provides for macro ex-
pansion of Prolog source code. Between expand_term/2 and the
actual compilation, the body of clauses analysed and the goals are
handed to expand_goal/2, which uses the goal_expansion/2 hook to do
user-defined expansion.
The predicate goal_expansion/2 is first called in the module that
is being compiled, and then follows the module inheritance path
as defined by default_module/2, i.e., by default user and system.
If _G_o_a_l is of the form _M_o_d_u_l_e:_G_o_a_l where _M_o_d_u_l_e is instantiated,
goal_expansion/2 is called on _G_o_a_l using rules from module _M_o_d_u_l_e
followed by default modules for _M_o_d_u_l_e.
Only goals appearing in the body of clauses when reading a
source file are expanded using this mechanism, and only if they
appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using `0' (see meta_predicate/1).
Other cases need a real predicate definition.
The expansion hook can use prolog_load_context/2 to obtain
information about the context in which the goal is exanded such as
the module, variable names or the encapsulating term.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _-_G_o_a_l_2))
This predicate is normally called by the compiler to perform
preprocessing using goal_expansion/2. The predicate computes a
fixed-point by applying transformations until there are no more
changes. If optimisation is enabled (see -O and optimise),
expand_goal/2 simplifies the result by removing unneeded calls to
true/0 and fail/0 as well as unreachable branches.
ccoommppiillee__aauuxx__ccllaauusseess((_+_C_l_a_u_s_e_s))
Compile clauses on behalf of goal_expansion/2. This predicate
compiles the argument clauses into static predicates, associating
the predicates with the current file but avoids changing the notion
of current predicate and therefore discontiguous warnings.
Note that in some cases multiple expansions of similar goals can
share the same compiled auxiliary predicate. In such cases,
the implementation of goal_expansion/2 can use predicate_property/2
using the property defined to test whether the predicate is already
defined in the current context.
ddccgg__ttrraannssllaattee__rruullee((_+_I_n_, _-_O_u_t))
This predicate performs the translation of a term Head-->Body into
a normal Prolog clause. Normally this functionality should be
accessed using expand_term/2.
vvaarr__pprrooppeerrttyy((_+_V_a_r_, _?_P_r_o_p_e_r_t_y))
True when _P_r_o_p_e_r_t_y is a property of _V_a_r. These properties are
available during goal- and term-expansion. Defined properties are
below. Future versions are likely to provide more properties,
such as whether the variable is a singleton or whether the
variable is referenced in the remainder of the term. See also
goal_expansion/2.
ffrreesshh((_B_o_o_l))
Bool has the value _t_r_u_e if the variable is guaranteed to be
unbound at entry of the goal, otherwise its value is _f_a_l_s_e.
This implies that the variable first appears in this goal or
a previous appearance was in a negation (\+/1) or a different
branch of a disjunction.
nnaammee((_N_a_m_e))
True when variable appears with the given name in the source.
44..33..11..11 PPrrooggrraamm ttrraannssffoorrmmaattiioonn wwiitthh ssoouurrccee llaayyoouutt iinnffoo
This sections documents extended versions of the program transformation
predicates that also transform the source layout information. Extended
layout information is currently processed, but unused. Future versions
will use for the following enhancements:
o More precise locations of warnings and errors
o More reliable setting of breakpoints
o More reliable source layout information in the graphical debugger.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _?_L_a_y_o_u_t_1_, _-_G_o_a_l_2_, _-_L_a_y_o_u_t_2))
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _?_L_a_y_o_u_t_1_, _-_G_o_a_l_2_, _-_L_a_y_o_u_t_2))
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _?_L_a_y_o_u_t_1_, _-_T_e_r_m_2_, _-_L_a_y_o_u_t_2))
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _?_L_a_y_o_u_t_1_, _-_T_e_r_m_2_, _-_L_a_y_o_u_t_2))
ddccgg__ttrraannssllaattee__rruullee((_+_I_n_, _?_L_a_y_o_u_t_I_n_, _-_O_u_t_, _-_L_a_y_o_u_t_O_u_t))
These versions are called _b_e_f_o_r_e their 2-argument counterparts.
The input layout term is either a variable (if no layout
information is available) or a term carrying detailed layout
information as returned by the subterm_positions of read_term/2.
44..33..11..22 CCoonnddiittiioonnaall ccoommppiillaattiioonn
Conditional compilation builds on the same principle as
term_expansion/2, goal_expansion/2 and the expansion of grammar
rules to compile sections of the source code conditionally. One of the
reasons for introducing conditional compilation is to simplify writing
portable code. See section ???? for more information. Here is a simple
example:
________________________________________________________________________| |
|:- if(\+source_exports(library(lists), suffix/2)). |
| |
|suffix(Suffix, List) :- |
| append(_, Suffix, List). |
| |
|:-|endif.______________________________________________________________ | |
Note that these directives can only appear as separate terms in the
input. Typical usage scenarios include:
o Load different libraries on different dialects.
o Define a predicate if it is missing as a system predicate.
o Realise totally different implementations for a particular part of
the code due to different capabilities.
o Realise different configuration options for your software.
::-- iiff((_:_G_o_a_l))
Compile subsequent code only if _G_o_a_l succeeds. For enhanced
portability, _G_o_a_l is processed by expand_goal/2 before execution.
If an error occurs, the error is printed and processing proceeds as
if _G_o_a_l has failed.
::-- eelliiff((_:_G_o_a_l))
Equivalent to :- else. :-if(Goal). ... :- endif. In a sequence as
below, the section below the first matching elif is processed. If
no test succeeds, the else branch is processed.
____________________________________________________________________| |
| :- if(test1). |
| section_1. |
| :- elif(test2). |
| section_2. |
| :- elif(test3). |
| section_3. |
| :- else. |
| section_else. |
||:-_endif._________________________________________________________ ||
::-- eellssee
Start `else' branch.
::-- eennddiiff
End of conditional compilation.
44..33..22 RReellooaaddiinngg ffiilleess,, aaccttiivvee ccooddee aanndd tthhrreeaaddss
Traditionally, Prolog environments allow for reloading files holding
currently active code. In particular, the following sequence is a
valid use of the development environment:
o Trace a goal
o Find unexpected behaviour of a predicate
o Enter a _b_r_e_a_k using the bb command
o Fix the sources and reload them using make/0
o Exit the break, _r_e_t_r_y executing the now fixed predicate using the rr
command
_R_e_l_o_a_d_i_n_g a previously loaded file is safe, both in the debug scenario
above and when the code is being executed by another _t_h_r_e_a_d. Executing
threads switch atomically to the new definition of modified predicates,
while clauses that belong to the old definition are (eventually)
reclaimed by garbage_collect_clauses/0. Below we describe the steps
taken for _r_e_l_o_a_d_i_n_g a file to help understanding the limitations of the
process.
1. If a file is being reloaded, a _r_e_l_o_a_d _c_o_n_t_e_x_t is associated to the
file administration. This context includes a table keeping track
of predicates and a table keeping track of the module(s) associated
with this source.
2. If a new predicate is found, an entry is added to the context
predicate table. Three options are considered:
(a) The predicate is new. It is handled the same as if the file
was loaded for the first time.
(b) The predicate is foreign or thread local. These too are
treated as if the file was loaded for the first time.
(c) Normal predicates. Here we initialise a pointer to the
_c_u_r_r_e_n_t _c_l_a_u_s_e.
3. New clauses for `normal predicates' are considered as follows:
(a) If the clause's byte-code is the same as the predicates
current clause, discard the clause and advance the current
clause pointer.
(b) If the clause's byte-code is the same as some clause further
into the clause list of the predicate, discard the new clause,
mark all intermediate clauses for future deletion, and advance
the current clause pointer to the first clause after the
matched one.
(c) If the clause's byte-code matches no clause, insert it for
_f_u_t_u_r_e _a_c_t_i_v_a_t_i_o_n before the current clause and keep the
current clause.
4. _P_r_o_p_e_r_t_i_e_s such as dynamic or meta_predicate are in part applied
immediately and in part during the fixup process after the file
completes loading. Currently, dynamic and thread_local are applied
immediately.
5. New modules are recorded in the reload context. Export
declarations (the module's public list and export/1 calls) are both
applied and recorded.
6. When the end-of-file is reached, the following fixup steps are
taken
(a) For each predicate
i. The current clause and subsequent clauses are marked for
future deletion.
ii. All clauses marked for future deletion or creation
are (in)activated by changing their `erased' or
`created' _g_e_n_e_r_a_t_i_o_n. Erased clauses are (eventually)
reclaimed by the _c_l_a_u_s_e _g_a_r_b_a_g_e _c_o_l_l_e_c_t_o_r, see
garbage_collect_clauses/0.
iii. Pending predicate property changes are applied.
(b) For each module
i. Exported predicates that are not encountered in the reload
context are removed from the export list.
The above generally ensures that changes to the _c_o_n_t_e_n_t of source files
can typically be activated safely using make/0. Global changes such
as operator changes, changes of module names, changes to multi-file
predicates, etc. sometimes require a restart. In almost all cases, the
need for restart is indicated by permission or syntax errors during the
reload or existence errors while running the program.
In some cases the content of a source file refers `to itself'. This is
notably the case if local rules for goal_expansion/2 or term_expansion/2
are defined or goals are executed using _d_i_r_e_c_t_i_v_e_s.. Up to version
7.5.12 it was typically needed to reload the file _t_w_i_c_e, once for
updating the code that was used for compiling the remainder of the
file and once to effectuate this. As of version 7.5.13, conventional
_t_r_a_n_s_a_c_t_i_o_n _s_e_m_a_n_t_i_c_s apply. This implies that for the thread
performing the reload the file's content is first wiped and gradually
rebuilt, while other threads see an _a_t_o_m_i_c update from the old file
content to the new.
44..33..22..11 CCoommppiillaattiioonn ooff mmuuttuuaallllyy ddeeppeennddeenntt ccooddee
Large programs are generally split into multiple files. If file
A accesses predicates from file B which accesses predicates from
file A, we consider this a mutual or circular dependency. If
traditional load predicates (e.g., consult/1) are used to include file
B from A and A from B, loading either file results in a loop.
This is because consult/1 is mapped to load_files/2 using the option
if(true)(_.) Such programs are typically loaded using a _l_o_a_d _f_i_l_e
that consults all required (non-module) files. If modules are used,
the dependencies are made explicit using use_module/1 statements. The
use_module/1 predicate, however, maps to load_files/2 with the option
if(not_loaded)(_.) A use_module/1 on an already loaded file merely makes
the public predicates of the used module available.
Summarizing, mutual dependency of source files is fully supported
with no precautions when using modules. Modules can use each other
in an arbitrary dependency graph. When using consult/1, predicate
dependencies between loaded files can still be arbitrary, but the
consult relations between files must be a proper tree.
44..33..22..22 CCoommppiillaattiioonn wwiitthh mmuullttiippllee tthhrreeaaddss
This section discusses compiling files for the first time. For
reloading, see section ????.
In older versions, compilation was thread-safe due to a global _l_o_c_k in
load_files/2 and the code dealing with _a_u_t_o_l_o_a_d_i_n_g (see section ????).
Besides unnecessary stalling when multiple threads trap unrelated
undefined predicates, this easily leads to deadlocks, notably if
threads are started from an initialization/1 directive.
Starting with version 5.11.27, the autoloader is no longer locked and
multiple threads can compile files concurrently. This requires special
precautions only if multiple threads wish to load the same file at
the same time. Therefore, load_files/2 checks automatically whether
some other thread is already loading the file. If not, it starts
loading the file. If another thread is already loading the file, the
thread blocks until the other thread finishes loading the file. After
waiting, and if the file is a module file, it will make the public
predicates available.
Note that this schema does not prevent deadlocks under all situations.
Consider two mutually dependent (see section ????) module files A and B,
where thread 1 starts loading A and thread 2 starts loading B at the
same time. Both threads will deadlock when trying to load the used
module.
The current implementation does not detect such cases and the involved
threads will freeze. This problem can be avoided if a mutually
dependent collection of files is always loaded from the same start
file.
44..33..33 QQuuiicckk llooaadd ffiilleess
SWI-Prolog supports compilation of individual or multiple Prolog source
files into `Quick Load Files'. A `Quick Load File' (.qlf file) stores
the contents of the file in a precompiled format.
These files load considerably faster than source files and are normally
more compact. They are machine-independent and may thus be loaded on
any implementation of SWI-Prolog. Note, however, that clauses are
stored as virtual machine instructions. Changes to the compiler will
generally make old compiled files unusable.
Quick Load Files are created using qcompile/1. They are loaded using
consult/1 or one of the other file-loading predicates described in
section ????. If consult/1 is given an explicit .pl file, it will load
the Prolog source. When given a .qlf file, it will load the file.
When no extension is specified, it will load the .qlf file when present
and the .pl file otherwise.
qqccoommppiillee((_:_F_i_l_e))
Takes a file specification as consult/1, etc., and, in addition to
the normal compilation, creates a _Q_u_i_c_k _L_o_a_d _F_i_l_e from _F_i_l_e. The
file extension of this file is .qlf. The basename of the Quick
Load File is the same as the input file.
If the file contains `:- consult(_+_F_i_l_e)', `:- [_+_F_i_l_e]' or
`:- load_files(_+_F_i_l_e, [qcompile(part), ...])' statements, the re-
ferred files are compiled into the same .qlf file. Other
directives will be stored in the .qlf file and executed in the same
fashion as when loading the .pl file.
For term_expansion/2, the same rules as described in section ????
apply.
Conditional execution or optimisation may test the predicate
compiling/0.
Source references (source_file/2) in the Quick Load File refer to
the Prolog source file from which the compiled code originates.
qqccoommppiillee((_:_F_i_l_e_, _+_O_p_t_i_o_n_s))
As qcompile/1, but processes additional options as defined by
load_files/2.
44..44 EEddiittoorr IInntteerrffaaccee
SWI-Prolog offers an extensible interface which allows the user to
edit objects of the program: predicates, modules, files, etc. The
editor interface is implemented by edit/1 and consists of three parts:
_l_o_c_a_t_i_n_g, _s_e_l_e_c_t_i_n_g and _s_t_a_r_t_i_n_g the editor. Any of these parts may be
customized. See section ????.
The built-in edit specifications for edit/1 (see prolog_edit:locate/3)
are described in the table below:
___________________________________________________________________
|__________________________________________FFuullllyy__ssppeecciiffiieedd__oobbjjeeccttss____________________________________________||
|| <_M_o_d_u_l_e>:<_N_a_m_e>/<_A_r_i_t_y>R|efers to a predicate |
| module(<_M_o_d_u_l_e>) |Refers to a module |
| file(<_P_a_t_h>) |Refers to a file |
|_source_file(<_P_a_t_h>)___R|efers_to_a_loaded_source_file___________|_
|__________________________________________AAmmbbiigguuoouuss__ssppeecciiffiiccaattiioonnss__________________________________________||
|| <_N_a_m_e>/<_A_r_i_t_y> R|efers to this predicate in any module |
| <_N_a_m_e> |Refers to (1) the named predicate in any|
| |module with any arity, (2) a (source)|
|_______________________|file,_or_(3)_a_module.___________________|_
eeddiitt((_+_S_p_e_c_i_f_i_c_a_t_i_o_n))
First, exploit prolog_edit:locate/3to translate _S_p_e_c_i_f_i_c_a_t_i_o_n into
a list of _L_o_c_a_t_i_o_n_s. If there is more than one `hit', the
user is asked to select from the locations found. Finally,
prolog_edit:edit_source/1 is used to invoke the user's preferred
editor. Typically, edit/1 can be handed the name of a predicate,
module, basename of a file, XPCE class, XPCE method, etc.
eeddiitt
Edit the `default' file using edit/1. The default file is the file
loaded with the command line option -s or, in Windows, the file
loaded by double-clicking from the Windows shell.
44..44..11 CCuussttoommiizziinngg tthhee eeddiittoorr iinntteerrffaaccee
The predicates described in this section are _h_o_o_k_s that can be defined
to disambiguate specifications given to edit/1, find the related
source, and open an editor at the given source location.
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_F_u_l_l_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Where _S_p_e_c is the specification provided through edit/1. This
multifile predicate is used to enumerate locations where an object
satisfying the given _S_p_e_c can be found. _F_u_l_l_S_p_e_c is unified with
the complete specification for the object. This distinction is
used to allow for ambiguous specifications. For example, if _S_p_e_c
is an atom, which appears as the basename of a loaded file and as
the name of a predicate, _F_u_l_l_S_p_e_c will be bound to file(_P_a_t_h) or
_N_a_m_e/_A_r_i_t_y.
_L_o_c_a_t_i_o_n is a list of attributes of the location. Normally, this
list will contain the term file(_F_i_l_e) and, if available, the term
line(_L_i_n_e).
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Same as prolog_edit:locate/3, but only deals with fully specified
objects.
pprroolloogg__eeddiitt::eeddiitt__ssoouurrccee((_+_L_o_c_a_t_i_o_n))
Start editor on _L_o_c_a_t_i_o_n. See prolog_edit:locate/3 for the format
of a location term. This multifile predicate is normally not
defined. If it succeeds, edit/1 assumes the editor is started.
If it fails, edit/1 uses its internal defaults, which are defined
by the Prolog flag editor and/or the environment variable EDITOR.
The following rules apply. If the Prolog flag editor is of
the format $<_n_a_m_e>, the editor is determined by the environment
variable <_n_a_m_e>. Else, if this flag is pce_emacs or built_in _a_n_d
XPCE is loaded or can be loaded, the built-in Emacs clone is
used. Else, if the environment EDITOR is set, this editor is used.
Finally, vi is used as default on Unix systems and notepad on
Windows.
See the default user preferences file dotfiles/dotswiplrc for
examples.
pprroolloogg__eeddiitt::eeddiitt__ccoommmmaanndd((_+_E_d_i_t_o_r_, _-_C_o_m_m_a_n_d))
Determines how _E_d_i_t_o_r is to be invoked using shell/1. _E_d_i_t_o_r
is the determined editor (see qpredrefprolog_editedit_source1),
without the full path specification, and without a possible (.exe)
extension. _C_o_m_m_a_n_d is an atom describing the command. The
following %-sequences are replaced in _C_o_m_m_a_n_d before the result is
handed to shell/1:
________________________________________________
| %e |Replaced by the (OS) command name of the |
| |editor |
| %f |Replaced by the (OS) full path name of |
| |the file |
|_%d_|Replaced_by_the_line_number_______________|
If the editor can deal with starting at a specified line, two
clauses should be provided. The first pattern invokes the editor
with a line number, while the second is used if the line number is
unknown.
The default contains definitions for vi, emacs, emacsclient, vim,
notepad* and wordpad*. Starred editors do not provide starting at
a given line number.
Please contribute your specifications to bugs@swi-prolog.org.
pprroolloogg__eeddiitt::llooaadd
Normally an undefined multifile predicate. This predicate may
be defined to provide loading hooks for user extensions to the
edit module. For example, XPCE provides the code below to load
swi_edit, containing definitions to locate classes and methods as
well as to bind this package to the PceEmacs built-in editor.
____________________________________________________________________| |
| :- multifile prolog_edit:load/0. |
| |
| prolog_edit:load :- |
||________ensure_loaded(library(swi_edit))._________________________ ||
44..55 LLiisstt tthhee pprrooggrraamm,, pprreeddiiccaatteess oorr ccllaauusseess
lliissttiinngg((_:_P_r_e_d))
List predicates specified by _P_r_e_d. _P_r_e_d may be a predicate name
(atom), which lists all predicates with this name, regardless of
their arity. It can also be a predicate indicator (<_n_a_m_e>/<_a_r_i_t_y>
or <_n_a_m_e>//<_a_r_i_t_y>), possibly qualified with a module. For example:
?- listing(lists:member/2)..
A listing is produced by enumerating the clauses of the predicate
using clause/2 and printing each clause using portray_clause/1.
This implies that the variable names are generated (_A, _B, ...) and
the layout is defined by rules in portray_clause/1.
lliissttiinngg
List all predicates from the calling module using listing/1. For
example, ?- listing. lists clauses in the default user module and
?- lists:listing. lists the clauses in the module lists.
ppoorrttrraayy__ccllaauussee((_+_C_l_a_u_s_e))
Pretty print a clause. A clause should be specified as a term
`<_H_e_a_d> :- <_B_o_d_y>'. Facts are represented as `<_H_e_a_d> :- true' or
simply <_H_e_a_d>. Variables in the clause are written as A, B, ....
Singleton variables are written as _. See also portray_clause/2.
ppoorrttrraayy__ccllaauussee((_+_S_t_r_e_a_m_, _+_C_l_a_u_s_e))
Pretty print a clause to _S_t_r_e_a_m. See portray_clause/1 for details.
44..66 VVeerriiffyy TTyyppee ooff aa TTeerrmm
Type tests are semi-deterministic predicates that succeed if the
argument satisfies the requested type. Type-test predicates have no
error condition and do not instantiate their argument. See also
library error.
vvaarr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is a free variable.
nnoonnvvaarr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is not a free variable.
iinntteeggeerr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer.
ffllooaatt((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a floating point number.
rraattiioonnaall((_@_T_e_r_m))
True if _T_e_r_m is bound to a rational number. Rational numbers
include integers.
rraattiioonnaall((_@_T_e_r_m_, _-_N_u_m_e_r_a_t_o_r_, _-_D_e_n_o_m_i_n_a_t_o_r))
True if _T_e_r_m is a rational number with given _N_u_m_e_r_a_t_o_r and
_D_e_n_o_m_i_n_a_t_o_r. The _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r are in canonical form,
which means _D_e_n_o_m_i_n_a_t_o_r is a positive integer and there are no
common divisors between _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r.
nnuummbbeerr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer or floating point number.
aattoomm((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom.
bblloobb((_@_T_e_r_m_, _?_T_y_p_e))
True if _T_e_r_m is a _b_l_o_b of type _T_y_p_e. See section ????.
ssttrriinngg((_@_T_e_r_m))
True if _T_e_r_m is bound to a string. Note that string here refers
to the built-in atomic type string as described in section ????.
Starting with version 7, the syntax for a string object is text
between double quotes, such as "hello". See also the Prolog flag
double_quotes.
aattoommiicc((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound (i.e., not a variable) and is not compound.
Thus, atomic acts as if defined by:
____________________________________________________________________| |
| atomic(Term) :- |
| nonvar(Term), |
||________\+_compound(Term).________________________________________ ||
SWI-Prolog defines the following atomic datatypes: atom (atom/1),
string (string/1), integer (integer/1), floating point number
(float/1) and blob (blob/2). In addition, the symbol [] (empty
list) is atomic, but not an atom. See section ????.
ccoommppoouunndd((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a compound term. See also functor/3
=../2, compound_name_arity/3 and compound_name_arguments/3.
ccaallllaabbllee((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom or a compound term. This was
intended as a type-test for arguments to call/1 and call/2.. Note
that callable only tests the _s_u_r_f_a_c_e _t_e_r_m. Terms such as (22,true)
are considered callable, but cause call/1 to raise a type error.
Module-qualification of meta-argument (see meta_predicate/1) using
:/2 causes callable to succeed on any meta-argument. Consider the
program and query below:
____________________________________________________________________| |
| :- meta_predicate p(0). |
| |
| p(G) :- callable(G), call(G). |
| |
| ?- p(22). |
| ERROR: Type error: `callable' expected, found `22' |
| ERROR: In: |
||ERROR:____[6]_p(user:22)__________________________________________ ||
ggrroouunndd((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m holds no free variables. See also nonground/2 and
term_variables/2.
ccyycclliicc__tteerrmm((_@_T_e_r_m))
True if _T_e_r_m contains cycles, i.e. is an infinite term. See also
acyclic_term/1 and section ????.
aaccyycclliicc__tteerrmm((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m does not contain cycles, i.e. can be processed
recursively in finite time. See also cyclic_term/1 and section ????.
44..77 CCoommppaarriissoonn aanndd UUnniiffiiccaattiioonn ooff TTeerrmmss
Although unification is mostly done implicitly while matching the head
of a predicate, it is also provided by the predicate =/2.
_?_T_e_r_m_1 = _?_T_e_r_m_2 _[_I_S_O_]
Unify _T_e_r_m_1 with _T_e_r_m_2. True if the unification succeeds. For
behaviour on cyclic terms see the Prolog flag occurs_check. It
acts as if defined by the following fact:
____________________________________________________________________| |
||=(Term,_Term).____________________________________________________ ||
_@_T_e_r_m_1 \= _@_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 = Term2.
This predicate is logically sound if its arguments are sufficiently
instantiated. In other cases, such as ?- X \= Y., the predicate
fails although there are solutions. This is due to the incomplete
nature of \+/1.
To make your programs work correctly also in situations where the
arguments are not yet sufficiently instantiated, use dif/2 instead.
44..77..11 SSttaannddaarrdd OOrrddeerr ooff TTeerrmmss
Comparison and unification of arbitrary terms. Terms are ordered in
the so-called ``standard order''. This order is defined as follows:
1. _V_a_r_i_a_b_l_e_s <_N_u_m_b_e_r_s <_S_t_r_i_n_g_s <_A_t_o_m_s <_C_o_m_p_o_u_n_d _T_e_r_m_s
2. Variables are sorted by address.
3. _N_u_m_b_e_r_s are compared by value. Mixed integer/float are compared as
floats. If the comparison is equal, the float is considered the
smaller value. If the Prolog flag iso is defined, all floating
point numbers precede all integers.
4. _S_t_r_i_n_g_s are compared alphabetically.
5. _A_t_o_m_s are compared alphabetically.
6. _C_o_m_p_o_u_n_d terms are first checked on their arity, then on their
functor name (alphabetically) and finally recursively on their
arguments, leftmost argument first.
Although variables are ordered, there are some unexpected properties
one should keep in mind when relying on variable ordering. This
applies to the predicates below as to predicate such as sort/2 as well
as libraries that reply on ordering such as library assoc and library
ordsets. Obviously, an established relation _A @< _B no longer holds if
_A is unified with e.g., a number. Also unifying _A with _B invalidates
the relation because they become equivalent (==/2) after unification.
As stated above, variables are sorted by address, which implies that
they are sorted by `age', where `older' variables are ordered before
`newer' variables. If two variables are unified their `shared' age
is the age of oldest variable. This implies we can examine a list
of sorted variables with `newer' (fresh) variables without invalidating
the order. Attaching an _a_t_t_r_i_b_u_t_e, see section ????, turns an `old'
variable into a `new' one as illustrated below. Note that the first
always succeeds as the first argument of a term is always the oldest.
This only applies for the _f_i_r_s_t attribute, i.e., further manipulation
of the attribute list does _n_o_t change the `age'.
________________________________________________________________________| |
|?- T = f(A,B), A @< B. |
|T = f(A, B). |
| |
|?- T = f(A,B), put_attr(A, name, value), A @< B. |
|false.|________________________________________________________________ | |
The above implies you _c_a_n use e.g., an assoc (from library assoc,
implemented as an AVL tree) to maintain information about a set of
variables. You must be careful about what you do with the attributes
though. In many cases it is more robust to use attributes to register
information about variables.
_@_T_e_r_m_1 == _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is equivalent to _T_e_r_m_2. A variable is only identical
to a sharing variable.
_@_T_e_r_m_1 \== _@_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 == Term2.
_@_T_e_r_m_1 @< _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is before _T_e_r_m_2 in the standard order of terms.
_@_T_e_r_m_1 @=< _@_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is before _T_e_r_m_2 in the
standard order of terms.
_@_T_e_r_m_1 @> _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is after _T_e_r_m_2 in the standard order of terms.
_@_T_e_r_m_1 @>= _@_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is after _T_e_r_m_2 in the
standard order of terms.
ccoommppaarree((_?_O_r_d_e_r_, _@_T_e_r_m_1_, _@_T_e_r_m_2)) _[_I_S_O_]
Determine or test the _O_r_d_e_r between two terms in the standard order
of terms. _O_r_d_e_r is one of <, > or =, with the obvious meaning.
44..77..22 SSppeecciiaall uunniiffiiccaattiioonn aanndd ccoommppaarriissoonn pprreeddiiccaatteess
This section describes special purpose variations on Prolog
unification. The predicate unify_with_occurs_check/2 provides sound
unification and is part of the ISO standard. The predicate
subsumes_term/2 defines `one-sided unification' and is part of the ISO
proposal established in Edinburgh (2010). Finally, unifiable/3 is a
`what-if' version of unification that is often used as a building block
in constraint reasoners.
uunniiffyy__wwiitthh__ooccccuurrss__cchheecckk((_+_T_e_r_m_1_, _+_T_e_r_m_2)) _[_I_S_O_]
As =/2, but using _s_o_u_n_d _u_n_i_f_i_c_a_t_i_o_n. That is, a variable only
unifies to a term if this term does not contain the variable
itself. To illustrate this, consider the two queries below.
____________________________________________________________________| |
| 1 ?- A = f(A). |
| A = f(A). |
| 2 ?- unify_with_occurs_check(A, f(A)). |
||false.____________________________________________________________ ||
The first statement creates a _c_y_c_l_i_c _t_e_r_m, also called a _r_a_t_i_o_n_a_l
_t_r_e_e. The second executes logically sound unification and thus
fails. Note that the behaviour of unification through =/2 as well
as implicit unification in the head can be changed using the Prolog
flag occurs_check.
The SWI-Prolog implementation of unify_with_occurs_check/2 is
cycle-safe and only guards against _c_r_e_a_t_i_n_g cycles, not against
cycles that may already be present in one of the arguments. This
is illustrated in the following two queries:
____________________________________________________________________| |
| ?- X = f(X), Y = X, unify_with_occurs_check(X, Y). |
| X = Y, Y = f(Y). |
| ?- X = f(X), Y = f(Y), unify_with_occurs_check(X, Y). |
||X_=_Y,_Y_=_f(Y).__________________________________________________ ||
Some other Prolog systems interpret unify_with_occurs_check/2 as
if defined by the clause below, causing failure on the above
two queries. Direct use of acyclic_term/1 is portable and more
appropriate for such applications.
____________________________________________________________________| |
||unify_with_occurs_check(X,X)_:-_acyclic_term(X).__________________ ||
_+_T_e_r_m_1 =@= _+_T_e_r_m_2
True if _T_e_r_m_1 is a _v_a_r_i_a_n_t of (or _s_t_r_u_c_t_u_r_a_l_l_y _e_q_u_i_v_a_l_e_n_t to)
_T_e_r_m_2. Testing for a variant is weaker than equivalence (==/2),
but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that
makes A equivalent (==) to B and vice versa. Examples:
1 a =@= A false
2 A =@= B true
3 x(A,A) =@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =@= x(A,B) false
6 x(A,B) =@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =@= x(C,A) true
A term is always a variant of a copy of itself. Term copying takes
place in, e.g., copy_term/2, findall/3 or proving a clause added
with asserta/1. In the pure Prolog world (i.e., without attributed
variables), =@=/2 behaves as if defined below. With attributed
variables, variant of the attributes is tested rather than trying
to satisfy the constraints.
____________________________________________________________________| |
| A =@= B :- |
| copy_term(A, Ac), |
| copy_term(B, Bc), |
| numbervars(Ac, 0, N), |
| numbervars(Bc, 0, N), |
||________Ac_==_Bc._________________________________________________ ||
The SWI-Prolog implementation is cycle-safe and can deal with
variables that are shared between the left and right argument. Its
performance is comparable to ==/2, both on success and (early)
failure.
This predicate is known by the name variant/2 in some other Prolog
systems. Be aware of possible differences in semantics if the
arguments contain attributed variables or share variables.
_+_T_e_r_m_1 \=@= _+_T_e_r_m_2
Equivalent to `\+Term1 =@= Term2'. See =@=/2 for details.
ssuubbssuummeess__tteerrmm((_@_G_e_n_e_r_i_c_, _@_S_p_e_c_i_f_i_c)) _[_I_S_O_]
True if _G_e_n_e_r_i_c can be made equivalent to _S_p_e_c_i_f_i_c by only binding
variables in _G_e_n_e_r_i_c. The current implementation performs the
unification and ensures that the variable set of _S_p_e_c_i_f_i_c is not
changed by the unification. On success, the bindings are undone.
This predicate respects constraints.
tteerrmm__ssuubbssuummeerr((_+_S_p_e_c_i_a_l_1_, _+_S_p_e_c_i_a_l_2_, _-_G_e_n_e_r_a_l))
_G_e_n_e_r_a_l is the most specific term that is a generalisation of
_S_p_e_c_i_a_l_1 and _S_p_e_c_i_a_l_2. The implementation can handle cyclic terms.
uunniiffiiaabbllee((_@_X_, _@_Y_, _-_U_n_i_f_i_e_r))
If _X and _Y can unify, unify _U_n_i_f_i_e_r with a list of _V_a_r = _V_a_l_u_e,
representing the bindings required to make _X and _Y equivalent.
This predicate can handle cyclic terms. Attributed variables are
handled as normal variables. Associated hooks are _n_o_t executed.
??==((_@_T_e_r_m_1_, _@_T_e_r_m_2))
Succeeds if the syntactic equality of _T_e_r_m_1 and _T_e_r_m_2 can be
decided safely, i.e. if the result of Term1 == Term2 will not
change due to further instantiation of either term. It behaves as
if defined by ?=(X,Y) :- \+ unifiable(X,Y,[_|_]).
44..88 CCoonnttrrooll PPrreeddiiccaatteess
The predicates of this section implement control structures. Normally
the constructs in this section, except for repeat/0, are translated by
the compiler. Please note that complex goals passed as arguments to
meta-predicates such as findall/3 below cause the goal to be compiled
to a temporary location before execution. It is faster to define a
sub-predicate (i.e. one_character_atoms/1 in the example below) and make
a call to this simple predicate.
________________________________________________________________________| |
|one_character_atoms(As) :- |
||_______findall(A,_(current_atom(A),_atom_length(A,_1)),_As).__________ ||
ffaaiill _[_I_S_O_]
Always fail. The predicate fail/0 is translated into a single
virtual machine instruction.
ffaallssee _[_I_S_O_]
Same as fail, but the name has a more declarative connotation.
ttrruuee _[_I_S_O_]
Always succeed. The predicate true/0 is translated into a single
virtual machine instruction.
rreeppeeaatt _[_I_S_O_]
Always succeed, provide an infinite number of choice points.
! _[_I_S_O_]
Cut. Discard all choice points created since entering the
predicate in which the cut appears. In other words, _c_o_m_m_i_t to the
clause in which the cut appears _a_n_d discard choice points that
have been created by goals to the left of the cut in the current
clause. Meta calling is opaque to the cut. This implies that
cuts that appear in a term that is subject to meta-calling (call/1)
only affect choice points created by the meta-called term. The
following control structures are transparent to the cut: ;/2, ->/2
and *->/2 . Cuts appearing in the _c_o_n_d_i_t_i_o_n part of ->/2 and *->/2
are opaque to the cut. The table below explains the scope of the
cut with examples. _P_r_u_n_e_s here means ``prunes X choice point
created by X''.
t0 :- (a, !, b). % prunes a/0 and t0/0
t1 :- (a, !, fail ; b). % prunes a/0 and t1/0
t2 :- (a -> b, ! ; c). % prunes b/0 and t2/0
t3 :- call((a, !, fail ; b)). % prunes a/0
t4 :- \+(a, !, fail). % prunes a/0
_:_G_o_a_l_1 , _:_G_o_a_l_2 _[_I_S_O_]
Conjunction. True if both `Goal1' and `Goal2' can be proved. It
is defined as follows (this definition does not lead to a loop as
the second comma is handled by the compiler):
____________________________________________________________________| |
||Goal1,_Goal2_:-_Goal1,_Goal2._____________________________________ ||
_:_G_o_a_l_1 ; _:_G_o_a_l_2 _[_I_S_O_]
The `or' predicate is defined as:
____________________________________________________________________| |
| Goal1 ; _Goal2 :- Goal1. |
||_Goal1_;_Goal2_:-_Goal2.__________________________________________ ||
_:_G_o_a_l_1 | _:_G_o_a_l_2
Equivalent to ;/2. Retained for compatibility only. New code
should use ;/2.
_:_C_o_n_d_i_t_i_o_n -> _:_A_c_t_i_o_n _[_I_S_O_]
If-then and If-Then-Else. The ->/2 construct commits to the
choices made at its left-hand side, destroying choice points
created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice point of the predicate as a whole
(due to multiple clauses) is nnoott destroyed. The combination ;/2
and ->/2 acts as if defined as:
____________________________________________________________________| |
| If -> Then; _Else :- If, !, Then. |
| If -> _Then; Else :- !, Else. |
||If_->_Then_:-_If,_!,_Then.________________________________________ ||
Please note that (If -> Then) acts as (If -> Then ; ffaaiill), making
the construct _f_a_i_l if the condition fails. This unusual semantics
is part of the ISO and all de-facto Prolog standards.
Please note that (if->then;else) is read as ((if->then);else) and
that the _c_o_m_b_i_n_e_d semantics of this syntactic construct as defined
above is _d_i_f_f_e_r_e_n_t from the simple nesting of the two individual
constructs, i.e., the semantics of ->/2 _c_h_a_n_g_e_s when embedded in
;/2. See also once/1.
_:_C_o_n_d_i_t_i_o_n *-> _:_A_c_t_i_o_n _; _:_E_l_s_e
This construct implements the so-called `soft-cut'. The control
is defined as follows: If _C_o_n_d_i_t_i_o_n succeeds at least once, the
semantics is the same as (_C_o_n_d_i_t_i_o_n, _A_c_t_i_o_n). If _C_o_n_d_i_t_i_o_n does
not succeed, the semantics is that of (\+ _C_o_n_d_i_t_i_o_n, _E_l_s_e). In
other words, if _C_o_n_d_i_t_i_o_n succeeds at least once, simply behave as
the conjunction of _C_o_n_d_i_t_i_o_n and _A_c_t_i_o_n, otherwise execute _E_l_s_e.
The construct is known under the name if/3 in some other Prolog
implementations.
The construct _A *-> _B, i.e., without an _E_l_s_e branch, is translated
as the normal conjunction _A, _B.
This construct is rarely used. An example use case is the
implementation of optional in sparql. The optional construct
should preserve all solutions if the argument succeeds as least
once but still succeed otherwise. This is implemented as below.
____________________________________________________________________| |
| optional(Goal) :- |
| ( Goal |
| *-> true |
| ; true |
||____).____________________________________________________________ ||
Now calling e.g., optional(member(X, [a,b])) has the solutions
X = a and X = b, while optional(member(X,[])) succeeds without
binding X.
\+ _:_G_o_a_l _[_I_S_O_]
True if `Goal' cannot be proven (mnemonic: + refers to _p_r_o_v_a_b_l_e
and the backslash (\) is normally used to indicate negation in
Prolog).
44..99 MMeettaa--CCaallll PPrreeddiiccaatteess
Meta-call predicates are used to call terms constructed at run time.
The basic meta-call mechanism offered by SWI-Prolog is to use variables
as a subclause (which should of course be bound to a valid goal at
runtime). A meta-call is slower than a normal call as it involves
actually searching the database at runtime for the predicate, while for
normal calls this search is done at compile time.
ccaallll((_:_G_o_a_l)) _[_I_S_O_]
Invoke _G_o_a_l as a goal. Note that clauses may have variables as
subclauses, which is identical to call/1.
ccaallll((_:_G_o_a_l_, _+_E_x_t_r_a_A_r_g_1_, _._._.)) _[_I_S_O_]
Append _E_x_t_r_a_A_r_g_1_, _E_x_t_r_a_A_r_g_2_, _._._. to the argument list of _G_o_a_l
and call the result. For example, call(plus(1), 2, X) will call
plus(1, 2, X), binding _X to 3.
The call/[2..] construct is handled by the compiler. The
predicates call/[2-8] are defined as real (meta-)predicates
and are available to inspection through current_predicate/1,
predicate_property/2, etc. Higher arities are handled by the
compiler and runtime system, but the predicates are not accessible
for inspection.
aappppllyy((_:_G_o_a_l_, _+_L_i_s_t))
Append the members of _L_i_s_t to the arguments of _G_o_a_l and call
the resulting term. For example: apply(plus(1), [2, X]) calls
plus(1, 2, X). New code should use call/[2..] if the length of
_L_i_s_t is fixed.
nnoott((_:_G_o_a_l))
True if _G_o_a_l cannot be proven. Retained for compatibility only.
New code should use \+/1.
oonnccee((_:_G_o_a_l)) _[_I_S_O_]
Make a possibly _n_o_n_d_e_t goal _s_e_m_i_d_e_t, i.e., succeed at most once.
Defined as:
____________________________________________________________________| |
| once(Goal) :- |
||____call(Goal),_!.________________________________________________ ||
once/1 can in many cases be replaced with ->/2. The only
difference is how the cut behaves (see !/0). The following two
clauses below are identical. Be careful about the interaction
with ;/2. The apply_macros library defines an inline expansion
of once/1, mapping it to (Goal\send{true};fail). Using the full
if-then-else constructs prevents its semantics from being changed
when embedded in a ;/2 disjunction.
____________________________________________________________________| |
| 1) a :- once((b, c)), d. |
||2)_a_:-_b,_c_->_d.________________________________________________ ||
iiggnnoorree((_:_G_o_a_l))
Calls _G_o_a_l as once/1, but succeeds, regardless of whether _G_o_a_l
succeeded or not. Defined as:
____________________________________________________________________| |
| ignore(Goal) :- |
| Goal, !. |
||ignore(_).________________________________________________________ ||
ccaallll__wwiitthh__ddeepptthh__lliimmiitt((_:_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
If _G_o_a_l can be proven without recursion deeper than _L_i_m_i_t levels,
call_with_depth_limit/3 succeeds, binding _R_e_s_u_l_t to the deepest
recursion level used during the proof. Otherwise, _R_e_s_u_l_t is
unified with depth_limit_exceeded if the limit was exceeded during
the proof, or the entire predicate fails if _G_o_a_l fails without
exceeding _L_i_m_i_t.
The depth limit is guarded by the internal machinery. This
may differ from the depth computed based on a theoretical model.
For example, true/0 is translated into an inline virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a
non-deterministic foreign predicate.
____________________________________________________________________| |
| repeat. |
| repeat :- |
||________repeat.___________________________________________________ ||
As a result, call_with_depth_limit/3may still loop infinitely on
programs that should theoretically finish in finite time. This
problem can be cured by using Prolog equivalents to such built-in
predicates.
This predicate may be used for theorem provers to re-
alise techniques like _i_t_e_r_a_t_i_v_e _d_e_e_p_e_n_i_n_g. See also
call_with_inference_limit/3. It was implemented after discussion
with Steve Moyle smoyle@ermine.ox.ac.uk.
ccaallll__wwiitthh__iinnffeerreennccee__lliimmiitt((_:_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
Equivalent to call(_G_o_a_l), but limits the number of inferences _f_o_r
_e_a_c_h _s_o_l_u_t_i_o_n _o_f _G_o_a_l.. Execution may terminate as follows:
o If _G_o_a_l does _n_o_t terminate before the inference limit is
exceeded, _G_o_a_l is aborted by injecting the exception infer-
ence_limit_exceeded into its execution. After termination of
_G_o_a_l, _R_e_s_u_l_t is unified with the atom inference_limit_exceeded.
_O_t_h_e_r_w_i_s_e,
o If _G_o_a_l fails, call_with_inference_limit/3fails.
o If _G_o_a_l succeeds _w_i_t_h_o_u_t _a _c_h_o_i_c_e _p_o_i_n_t, _R_e_s_u_l_t is unified
with !.
o If _G_o_a_l succeeds _w_i_t_h _a _c_h_o_i_c_e _p_o_i_n_t, _R_e_s_u_l_t is unified with
true.
o If _G_o_a_l throws an exception, call_with_inference_limit/3
re-throws the exception.
An inference is defined as a call or redo on a predicate. Please
note that some primitive built-in predicates are compiled to
virtual machine instructions for which inferences are not counted.
The execution of predicates defined in other languages (e.g., C,
C++) count as a single inference. This includes potentially
expensive built-in predicates such as sort/2.
Calls to this predicate may be nested. An inner call that sets
the limit below the current is honoured. An inner call that would
terminate after the current limit does not change the effective
limit. See also call_with_depth_limit/3 and call_with_time_limit/2.
sseettuupp__ccaallll__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Calls (once(Setup), Goal). If _S_e_t_u_p succeeds, _C_l_e_a_n_u_p will
be called exactly once after _G_o_a_l is finished: either on
failure, deterministic success, commit, or an exception. The
execution of _S_e_t_u_p is protected from asynchronous interrupts like
call_with_time_limit/2 (package clib) or thread_signal/2. In most
uses, _S_e_t_u_p will perform temporary side-effects required by _G_o_a_l
that are finally undone by _C_l_e_a_n_u_p.
Success or failure of _C_l_e_a_n_u_p is ignored, and choice points it
created are destroyed (as once/1). If _C_l_e_a_n_u_p throws an exception,
this is executed as normal while it was not triggered as the result
of an exception the exception is propagated as normal. If _C_l_e_a_n_u_p
was triggered by an exception the rules are described in section ????
Typically, this predicate is used to cleanup permanent data storage
required to execute _G_o_a_l, close file descriptors, etc. The example
below provides a non-deterministic search for a term in a file,
closing the stream as needed.
____________________________________________________________________| |
| term_in_file(Term, File) :- |
| setup_call_cleanup(open(File, read, In), |
| term_in_stream(Term, In), |
| close(In) ). |
| |
| term_in_stream(Term, In) :- |
| repeat, |
| read(In, T), |
| ( T == end_of_file |
| -> !, fail |
| ; T = Term |
||________).________________________________________________________ ||
Note that it is impossible to implement this predicate in Prolog.
The closest approximation would be to read all terms into a list,
close the file and call member/2. Without setup_call_cleanup/3
there is no way to gain control if the choice point left by
repeat/0 is removed by a cut or an exception.
setup_call_cleanup/3 can also be used to test determinism of a
goal, providing a portable alternative to deterministic/1:
____________________________________________________________________| |
| ?- setup_call_cleanup(true,(X=1;X=2), Det=yes). |
| |
| X = 1 ; |
| |
| X = 2, |
||Det_=_yes_;_______________________________________________________ ||
This predicate is under consideration for inclusion into the ISO
standard. For compatibility with other Prolog implementations see
call_cleanup/2.
sseettuupp__ccaallll__ccaattcchheerr__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Similar to setup_call_cleanup(_S_e_t_u_p_, _G_o_a_l_, _C_l_e_a_n_u_p) with additional
information on the reason for calling _C_l_e_a_n_u_p. Prior to calling
_C_l_e_a_n_u_p, _C_a_t_c_h_e_r unifies with the termination code (see below). If
this unification fails, _C_l_e_a_n_u_p is _n_o_t called.
eexxiitt
_G_o_a_l succeeded without leaving any choice points.
ffaaiill
_G_o_a_l failed.
!
_G_o_a_l succeeded with choice points and these are now discarded
by the execution of a cut (or other pruning of the search tree
such as if-then-else).
eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l raised the given _E_x_c_e_p_t_i_o_n.
eexxtteerrnnaall__eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l succeeded with choice points and these are now discarded
due to an exception. For example:
_______________________________________________________________| |
|?- setup_call_catcher_cleanup(true, (X=1;X=2), |
| Catcher, writeln(Catcher)), |
| throw(ball). |
|external_exception(ball) |
|ERROR:|Unhandled_exception:_Unknown_message:_ball_____________ | |
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Same as setup_call_cleanup(_t_r_u_e_, _G_o_a_l_, _C_l_e_a_n_u_p). This is provided
for compatibility with a number of other Prolog implementations
only. Do not use call_cleanup/2 if you perform side-effects
prior to calling that will be undone by _C_l_e_a_n_u_p. Instead, use
setup_call_cleanup/3 with an appropriate first argument to perform
those side-effects.
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Same as setup_call_catcher_cleanup(_t_r_u_e_, _G_o_a_l_, _C_a_t_c_h_e_r_, _C_l_e_a_n_u_p).
The same warning as for call_cleanup/2 applies.
44..1100 DDeelliimmiitteedd ccoonnttiinnuuaattiioonnss
The predicates reset/3 and shift/1 implement _d_e_l_i_m_i_t_e_d _c_o_n_t_i_n_u_a_t_i_o_n_s
for Prolog. Delimited continuation for Prolog is described in [??].
The mechanism allows for proper _c_o_r_o_u_t_i_n_e_s, two or more routines
whose execution is interleaved, while they exchange data. Note
that coroutines in this sense differ from coroutines realised using
attributed variables as described in chapter ????.
The suspension mechanism provided by delimited continuations is
suitable for the implementation of _t_a_b_l_i_n_g [??], see library tabling.
rreesseett((_:_G_o_a_l_, _?_B_a_l_l_, _-_C_o_n_t_i_n_u_a_t_i_o_n))
Call _G_o_a_l. If _G_o_a_l calls shift/1 and the argument of shift/1 can
be unified with _B_a_l_l, shift/1 causes reset/3 to return, unifying
_C_o_n_t_i_n_u_a_t_i_o_n with a goal that represents the _c_o_n_t_i_n_u_a_t_i_o_n after
shift/1. In other words, meta-calling _C_o_n_t_i_n_u_a_t_i_o_n completes the
execution where shift left it. If _G_o_a_l does not call shift/1,
_C_o_n_t_i_n_u_a_t_i_o_n are unified with the integer 0 (zero).
sshhiifftt((_+_B_a_l_l))
Abandon the execution of the current goal, returning control to
just _a_f_t_e_r the matching reset/3 call. This is similar to throw/1
except that (1) nothing is `undone' and (2) the 3th argument of
reset/3 is unified with the _c_o_n_t_i_n_u_a_t_i_o_n, which allows the code
calling reset/3 to _r_e_s_u_m_e the current goal.
44..1111 EExxcceeppttiioonn hhaannddlliinngg
The predicates catch/3 and throw/1 provide ISO compliant raising and
catching of exceptions.
ccaattcchh((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_R_e_c_o_v_e_r)) _[_I_S_O_]
Behaves as call/1 if no exception is raised when executing _G_o_a_l.
If an exception is raised using throw/1 while _G_o_a_l executes, and
the _G_o_a_l is the innermost goal for which _C_a_t_c_h_e_r unifies with the
argument of throw/1, all choice points generated by _G_o_a_l are cut,
the system backtracks to the start of catch/3 while preserving the
thrown exception term, and _R_e_c_o_v_e_r is called as in call/1.
The overhead of calling a goal through catch/3 is comparable to
call/1. Recovery from an exception is much slower, especially
if the exception term is large due to the copying thereof or is
decorated with a stack trace using, e.g., the library prolog_stack
based on the prolog_exception_hook/4 hook predicate to rewrite
exceptions.
tthhrrooww((_+_E_x_c_e_p_t_i_o_n)) _[_I_S_O_]
Raise an exception. The system looks for the innermost catch/3
ancestor for which _E_x_c_e_p_t_i_o_n unifies with the _C_a_t_c_h_e_r argument of
the catch/3 call. See catch/3 for details.
ISO demands that throw/1 make a copy of _E_x_c_e_p_t_i_o_n, walk up the
stack to a catch/3 call, backtrack and try to unify the copy of
_E_x_c_e_p_t_i_o_n with _C_a_t_c_h_e_r. SWI-Prolog delays backtracking until it
actually finds a matching catch/3 goal. The advantage is that
we can start the debugger at the first possible location while
preserving the entire exception context if there is no matching
catch/3 goal. This approach can lead to different behaviour if
_G_o_a_l and _C_a_t_c_h_e_r of catch/3 call shared variables. We assume this
to be highly unlikely and could not think of a scenario where this
is useful.
In addition to explicit calls to throw/1, many built-in predicates
throw exceptions directly from C. If the _E_x_c_e_p_t_i_o_n term cannot be
copied due to lack of stack space, the following actions are tried
in order:
1. If the exception is of the form error(_F_o_r_m_a_l_, _I_m_p_l_e_m_e_n_-
_t_a_t_i_o_n_D_e_f_i_n_e_d), try to raise the exception without the
_I_m_p_l_e_m_e_n_t_a_t_i_o_n_D_e_f_i_n_e_d part.
2. Try to raise error(resource_error_(_s_t_a_c_k_)_, _g_l_o_b_a_l).
3. Abort (see abort/0).
If an exception is raised in a call-back from C (see chapter ????)
and not caught in the same call-back, PL_next_solution()fails and
the exception context can be retrieved using PL_exception().
44..1111..11 UUrrggeennccyy ooff eexxcceeppttiioonnss
Under some conditions an exception may be raised as a result of
handling another exception. Below are some of the scenarios:
o The predicate setup_call_cleanup/3 calls the cleanup handler as a
result of an exception and the cleanup handler raises an exception
itself. In this case the most _u_r_g_e_n_t exception is propagated into
the environment.
o Raising an exception fails due to lack of resources, e.g., lack
of stack space to store the exception. In this case a resource
exception is raised. If that too fails the system tries to raise a
resource exception without (stack) context. If that fails it will
raise the exception '$aborted', also raised by abort/0. As no
stack space is required for processing this atomic exception, this
should always succeed.
o Certain _c_a_l_l_b_a_c_k operations raise an exception while processing
another exception or a previous callback already raised an
exception before there was an opportunity to process the
exception. The most notable _c_a_l_l_b_a_c_k subject to this issue
are prolog_event_hook/1(supporting e.g., the graphical debugger),
prolog_exception_hook/4 (rewriting exceptions, e.g., by adding
context) and print_message/2 when called from the core facilities
such as the internal debugger. As with setup_call_cleanup/3, the
most _u_r_g_e_n_t exception is preserved.
If the most urgent exceptions needs to be preserved, the following
exception ordering is respected, preserving the topmost matching error.
1. '$aborted' (abort/0)
2. time_limit_exceeded (call_with_time_limit/2)
3. error(resource_error_(_R_e_s_o_u_r_c_e_)_, _C_o_n_t_e_x_t)
4. error(_F_o_r_m_a_l_, _C_o_n_t_e_x_t)
5. All other exceptions
NNoottee
The above resolution is not described in the ISO standard. This is
not needed either because ISO does not specify setup_call_cleanup/3 and
does not deal with environment management issues such as (debugger)
callbacks. Neither does it define abort/0 or timeout handling.
Notably abort/0 and timeout are non-logical control structures. They
are implemented on top of exceptions as they need to unwind the stack,
destroy choice points and call cleanup handlers in the same way.
However, the pending exception should not be replaced by another one
before the intended handler is reached. The abort exception cannot be
caught, something which is achieved by wrapping the _c_l_e_a_n_u_p _h_a_n_d_l_e_r of
catch/3 into call_cleanup(_H_a_n_d_l_e_r_, _a_b_o_r_t).
44..1111..22 DDeebbuuggggiinngg aanndd eexxcceeppttiioonnss
Before the introduction of exceptions in SWI-Prolog a runtime error
was handled by printing an error message, after which the predicate
failed. If the Prolog flag debug_on_errorwas in effect (default), the
tracer was switched on. The combination of the error message and trace
information is generally sufficient to locate the error.
With exception handling, things are different. A programmer may wish
to trap an exception using catch/3 to avoid it reaching the user. If
the exception is not handled by user code, the interactive top level
will trap it to prevent termination.
If we do not take special precautions, the context information
associated with an unexpected exception (i.e., a programming error) is
lost. Therefore, if an exception is raised which is not caught using
catch/3 and the top level is running, the error will be printed, and
the system will enter trace mode.
If the system is in a non-interactive call-back from foreign code and
there is no catch/3 active in the current context, it cannot determine
whether or not the exception will be caught by the external routine
calling Prolog. It will then base its behaviour on the Prolog flag
debug_on_error:
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _f_a_l_s_e_)
The exception does not trap the debugger and is returned to the
foreign routine calling Prolog, where it can be accessed using
PL_exception(). This is the default.
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _t_r_u_e_)
If the exception is not caught by Prolog in the current context, it
will trap the tracer to help analyse the context of the error.
While looking for the context in which an exception takes place, it is
advised to switch on debug mode using the predicate debug/0. The hook
prolog_exception_hook/4 can be used to add more debugging facilities to
exceptions. An example is the library http/http_error, generating a
full stack trace on errors in the HTTP server library.
44..1111..33 TThhee eexxcceeppttiioonn tteerrmm
Built-in predicates generate exceptions using a term error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). The first argument is the `formal' description of the
error, specifying the class and generic defined context information.
When applicable, the ISO error term definition is used. The second
part describes some additional context to help the programmer while
debugging. In its most generic form this is a term of the form
context(_N_a_m_e_/_A_r_i_t_y_, _M_e_s_s_a_g_e), where _N_a_m_e/_A_r_i_t_y describes the built-in
predicate that raised the error, and _M_e_s_s_a_g_e provides an additional
description of the error. Any part of this structure may be a variable
if no information was present.
44..1111..44 PPrriinnttiinngg mmeessssaaggeess
The predicate print_message/2 is used to print a message term in a
human-readable format. The other predicates from this section allow
the user to refine and extend the message system. A common usage of
print_message/2 is to print error messages from exceptions. The code
below prints errors encountered during the execution of _G_o_a_l, without
further propagating the exception and without starting the debugger.
________________________________________________________________________| |
| ..., |
| catch(Goal, E, |
| ( print_message(error, E), |
| fail |
| )), |
||_______...____________________________________________________________ ||
Another common use is to define message_hook/3 for printing messages
that are normally _s_i_l_e_n_t, suppressing messages, redirecting messages or
make something happen in addition to printing the message.
pprriinntt__mmeessssaaggee((_+_K_i_n_d_, _+_T_e_r_m))
The predicate print_message/2 is used by the system and libraries
to print messages. _K_i_n_d describes the nature of the message,
while _T_e_r_m is a Prolog term that describes the content. Printing
messages through this indirection instead of using format/3 to
the stream user_error allows displaying the message appropriate to
the application (terminal, logfile, graphics), acting on messages
based on their content instead of a string (see message_hook/3) and
creating language specific versions of the messages. See also
section ????. The following message kinds are known:
bbaannnneerr
The system banner message. Banner messages can be suppressed
by setting the Prolog flag verbose to silent.
ddeebbuugg((_T_o_p_i_c))
Message from library(debug). See debug/3.
eerrrroorr
The message indicates an erroneous situation. This kind
is used to print uncaught exceptions of type error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). See section introduction (section ????).
hheellpp
User requested help message, for example after entering `h' or
`?' to a prompt.
iinnffoorrmmaattiioonn
Information that is requested by the user. An example is
statistics/0.
iinnffoorrmmaattiioonnaall
Typically messages of events are progres that are considered
useful to a developer. Such messages can be suppressed by
setting the Prolog flag verbose to silent.
ssiilleenntt
Message that is normally not printed. Applications may define
message_hook/3 to act upon such messages.
ttrraaccee
Messages from the (command line) tracer.
wwaarrnniinngg
The message indicates something dubious that is not considered
fatal. For example, discontiguous predicates (see
discontiguous/1).
The predicate print_message/2first translates the _T_e_r_m into a list
of `message lines' (see print_message_lines/3 for details). Next,
it calls the hook message_hook/3to allow the user to intercept the
message. If message_hook/3fails it prints the message unless _K_i_n_d
is silent.
The print_message/2 predicate and its rules are in the file
<_p_l_h_o_m_e>/boot/messages.pl, which may be inspected for more
information on the error messages and related error terms. If you
need to write messages from your own predicates, it is recommended
to reuse the existing message terms if applicable. If no existing
message term is applicable, invent a fairly unique term that
represents the event and define a rule for the multifile predicate
prolog:message//1. See section ???? for a deeper discussion and
examples.
See also message_to_string/2.
pprriinntt__mmeessssaaggee__lliinneess((_+_S_t_r_e_a_m_, _+_P_r_e_f_i_x_, _+_L_i_n_e_s))
Print a message (see print_message/2) that has been translated to a
list of message elements. The elements of this list are:
<_F_o_r_m_a_t>--<_A_r_g_s>
Where _F_o_r_m_a_t is an atom and _A_r_g_s is a list of format
arguments. Handed to format/3.
fflluusshh
If this appears as the last element, _S_t_r_e_a_m is flushed (see
flush_output/1) and no final newline is generated. This
is combined with a subsequent message that starts with
at_same_line to complete the line.
aatt__ssaammee__lliinnee
If this appears as first element, no prefix is printed for
the first line and the line position is not forced to 0 (see
format/1, ~N).
aannssii((_+_A_t_t_r_i_b_u_t_e_s_, _+_F_o_r_m_a_t_, _+_A_r_g_s))
This message may be intercepted by means of the hook pro-
log:message_line_element/2. The library ansi_term implements
this hook to achieve coloured output. If it is not
intercepted it invokes format(_S_t_r_e_a_m_, _F_o_r_m_a_t_, _A_r_g_s).
nnll
A new line is started. If the message is not complete, _P_r_e_f_i_x
is printed before the remainder of the message.
bbeeggiinn((_K_i_n_d_, _V_a_r))
eenndd((_V_a_r))
The entire message is headed by begin(_K_i_n_d_, _V_a_r) and ended by
end(_V_a_r). This feature is used by, e.g., library ansi_term to
colour entire messages.
<_F_o_r_m_a_t>
Handed to format/3 as format(_S_t_r_e_a_m_, _F_o_r_m_a_t_, _[_]). Deprecated
because it is ambiguous if _F_o_r_m_a_t collides with one of the
atomic commands.
See also print_message/2 and message_hook/3.
mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
Hook predicate that may be defined in the module user to intercept
messages from print_message/2. _T_e_r_m and _K_i_n_d are the same as
passed to print_message/2. _L_i_n_e_s is a list of format statements as
described with print_message_lines/3. See also message_to_string/2.
This predicate must be defined dynamic and multifile to allow other
modules defining clauses for it too.
tthhrreeaadd__mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
As message_hook/3, but this predicate is local to the calling
thread (see thread_local/1). This hook is called _b_e_f_o_r_e
message_hook/3. The `pre-hook' is indented to catch messages
they may be produced by calling some goal without affecting other
threads.
mmeessssaaggee__pprrooppeerrttyy((_+_K_i_n_d_, _?_P_r_o_p_e_r_t_y))
This hook can be used to define additional message kinds and the
way they are displayed. The following properties are defined:
ccoolloorr((_-_A_t_t_r_i_b_u_t_e_s))
Print message using ANSI terminal attributes. See
ansi_format/3 for details. Here is an example, printing help
messages in blue:
_______________________________________________________________| |
|:- multifile user:message_property/2. |
| |
|user:message_property(help,|color([fg(blue)]))._______________ | |
pprreeffiixx((_-_P_r_e_f_i_x))
Prefix printed before each line. This argument is handed to
format/3. The default is '~N'. For example, messages of kind
warning use '~NWarning: '.
llooccaattiioonn__pprreeffiixx((_+_L_o_c_a_t_i_o_n_, _-_F_i_r_s_t_P_r_e_f_i_x_, _-_C_o_n_t_i_n_u_e_P_r_e_f_i_x))
Used for printing messages that are related to a source loca-
tion. Currently, _L_o_c_a_t_i_o_n is a term _F_i_l_e:_L_i_n_e. _F_i_r_s_t_P_r_e_f_i_x
is the prefix for the first line and _-_C_o_n_t_i_n_u_e_P_r_e_f_i_x is the
prefix for continuation lines. For example, the default for
errors is
_______________________________________________________________| |
|location_prefix(File:Line, |
||_______________'~NERROR:_~w:~d:'-[File,Line],_'~N\t')).______ ||
ssttrreeaamm((_-_S_t_r_e_a_m))
Stream to which to print the message. Default is user_error.
wwaaiitt((_-_S_e_c_o_n_d_s))
Amount of time to wait after printing the message. Default is
not to wait.
pprroolloogg::mmeessssaaggee__lliinnee__eelleemmeenntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
This hook is called to print the individual elements of a message
from print_message_lines/3. This hook is used by e.g., library
ansi_term to colour messages on ANSI-capable terminals.
mmeessssaaggee__ttoo__ssttrriinngg((_+_T_e_r_m_, _-_S_t_r_i_n_g))
Translates a message term into a string object (see section ????).
vveerrssiioonn
Write the SWI-Prolog banner message as well as additional messages
registered using version/1. This is the default _i_n_i_t_i_a_l_i_z_a_t_i_o_n
_g_o_a_l which can be modified using -g.
vveerrssiioonn((_+_M_e_s_s_a_g_e))
Register additional messages to be printed by version/0. Each
registered message is handed to the message translation DCG and can
thus be defined using the hook prolog:message//1. If not defined,
it is simply printed.
44..1111..44..11 PPrriinnttiinngg ffrroomm lliibbrraarriieess
Libraries should _n_o_t use format/3 or other output predicates directly.
Libraries that print informational output directly to the console are
hard to use from code that depend on your textual output, such as a
CGI script. The predicates in section ???? define the API for dealing
with messages. The idea behind this is that a library that wants
to provide information about its status, progress, events or problems
calls print_message/2. The first argument is the _l_e_v_e_l. The supported
levels are described with print_message/2. Libraries typically use
informational and warning, while libraries should use exceptions for
errors (see throw/1, type_error/2, etc.).
The second argument is an arbitrary Prolog term that carries the
information of the message, but _n_o_t the precise text. The text
is defined by the grammar rule prolog:message//1. This distinction
is made to allow for translations and to allow hooks processing the
information in a different way (e.g., to translate progress messages
into a progress bar).
For example, suppose we have a library that must download data from
the Internet (e.g., based on http_open/3). The library wants to print
the progress after each downloaded file. The code below is a good
skeleton:
________________________________________________________________________| |
|download_urls(List) :- |
| length(List, Total), |
| forall(nth1(I, List, URL), |
| ( download_url(URL), |
| print_message(informational, |
||________________________________download_url(URL,_I,_Total))))._______ ||
The programmer can now specify the default textual output using the
rule below. Note that this rule may be in the same file or anywhere
else. Notably, the application may come with several rule sets for
different languages. This, and the user-hook example below are the
reason to represent the message as a compound term rather than a
string. This is similar to using message numbers in non-symbolic
languages. The documentation of print_message_lines/3 describes the
elements that may appear in the output list.
________________________________________________________________________| |
|:- multifile |
| prolog:message//1. |
| |
|prolog:message(download_url(URL, I, Total)) --> |
| { Perc is round(I*100/Total) }, |
||_______[_'Downloaded_~w;_~D_from_~D_(~d%)'-[URL,_I,_Total,_Perc]_].___ ||
A _u_s_e_r of the library may define rules for message_hook/3. The rule
below acts on the message content. Other applications can act on the
message level and, for example, popup a message box for warnings and
errors.
________________________________________________________________________| |
|:- multifile user:message_hook/3. |
| |
|message_hook(download_url(URL, I, Total), _Kind, _Lines) :- |
||_______<send_this_information_to_a_GUI_component>_____________________ ||
In addition, using the command line option -q, the user can disable all
_i_n_f_o_r_m_a_t_i_o_n_a_l messages.
44..1122 HHaannddlliinngg ssiiggnnaallss
As of version 3.1.0, SWI-Prolog is able to handle software interrupts
(signals) in Prolog as well as in foreign (C) code (see section ????).
Signals are used to handle internal errors (execution of a non-existing
CPU instruction, arithmetic domain errors, illegal memory access,
resource overflow, etc.), as well as for dealing with asynchronous
interprocess communication.
Signals are defined by the POSIX standard and part of all Unix
machines. The MS-Windows Win32 provides a subset of the signal
handling routines, lacking the vital functionality to raise a signal in
another thread for achieving asynchronous interprocess (or interthread)
communication (Unix kill() function).
oonn__ssiiggnnaall((_+_S_i_g_n_a_l_, _-_O_l_d_, _:_N_e_w))
Determines the reaction on _S_i_g_n_a_l. _O_l_d is unified with the old
behaviour, while the behaviour is switched to _N_e_w. As with similar
environment control predicates, the current value is retrieved
using on_signal(Signal, Current, Current).
The action description is an atom denoting the name of the
predicate that will be called if _S_i_g_n_a_l arrives. on_signal/3 is a
meta-predicate, which implies that <_M_o_d_u_l_e>:<_N_a_m_e> refers to <_N_a_m_e>/1
in module <_M_o_d_u_l_e>. The handler is called with a single argument:
the name of the signal as an atom. The Prolog names for signals
are explained below.
Two predicate names have special meaning. throw implies Prolog
will map the signal onto a Prolog exception as described in
section ????. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.
Signals bound to a foreign function through PL_signal() are
reported using the term $foreign_function(_A_d_d_r_e_s_s).
After receiving a signal mapped to throw, the exception raised has
the following structure:
error(signal(<SigName>, <SigNum>), <_C_o_n_t_e_x_t>)
The signal names are defined by the POSIX standard as symbols
of the form SIG<SIGNAME>. The Prolog name for a signal is the
lowercase version of <SIGNAME>. The predicate current_signal/3 may
be used to map between names and signals.
Initially, some signals are mapped to throw, while all other
signals are default. The following signals throw an exception:
fpe, alrm, xcpu, xfsz and vtalrm.
ccuurrrreenntt__ssiiggnnaall((_?_N_a_m_e_, _?_I_d_, _?_H_a_n_d_l_e_r))
Enumerate the currently defined signal handling. _N_a_m_e is the
signal name, _I_d is the numerical identifier and _H_a_n_d_l_e_r is the
currently defined handler (see on_signal/3).
pprroolloogg__aalleerrtt__ssiiggnnaall((_?_O_l_d_, _+_N_e_w))
Query or set the signal used to unblock blocking system calls on
Unix systems and process pending Prolog signals. The default is
SIGUSR2. See also --sigalert.
44..1122..11 NNootteess oonn ssiiggnnaall hhaannddlliinngg
Before deciding to deal with signals in your application, please
consider the following:
o _P_o_r_t_a_b_i_l_i_t_y
On MS-Windows, the signal interface is severely limited. Different
Unix brands support different sets of signals, and the relation
between signal name and number may vary. Currently, the system
only supports signals numbered 1 to 32. Installing a signal
outside the limited set of supported signals in MS-Windows crashes
the application.
o _S_a_f_e_t_y
Immediately delivered signals (see below) are unsafe. This implies
that foreign functions called from a handler cannot safely use
the SWI-Prolog API and cannot use C longjmp(). Handlers defined
as throw are unsafe. Handlers defined to call a predicate are
safe. Note that the predicate can call throw/1, but the delivery
is delayed until Prolog is in a safe state.
The C-interface described in section ???? provides the option
PL_SIGSYNC to select either safe synchronous or unsafe asynchronous
delivery.
o _T_i_m_e _o_f _d_e_l_i_v_e_r_y
Using throw or a foreign handler, signals are delivered immediately
(as defined by the OS). When using a Prolog predicate, delivery is
delayed to a safe moment. Blocking system calls or foreign loops
may cause long delays. Foreign code can improve on that by calling
PL_handle_signals().
Signals are blocked when the garbage collector is active.
44..1133 DDCCGG GGrraammmmaarr rruulleess
Grammar rules form a comfortable interface to _d_i_f_f_e_r_e_n_c_e _l_i_s_t_s. They
are designed both to support writing parsers that build a parse tree
from a list of characters or tokens and for generating a flat list from
a term.
Grammar rules look like ordinary clauses using -->/2 for separating
the head and body rather than :-/2. Expanding grammar rules is done
by expand_term/2, which adds two additional arguments to each term for
representing the difference list.
The body of a grammar rule can contain three types of terms. A
callable term is interpreted as a reference to a grammar rule. Code
between {...} is interpreted as plain Prolog code, and finally,
a list is interpreted as a sequence of _l_i_t_e_r_a_l_s. The Prolog
control-constructs (\+/1, ->/2 , ;//2, ,/2 and !/0) can be used in
grammar rules.
We illustrate the behaviour by defining a rule set for parsing an
integer.
________________________________________________________________________| |
|integer(I) --> |
| digit(D0), |
| digits(D), |
| { number_codes(I, [D0|D]) |
| }. |
| |
|digits([D|T]) --> |
| digit(D), !, |
| digits(T). |
|digits([]) --> |
| []. |
| |
|digit(D) --> |
| [D], |
| { code_type(D, digit) |
||_______}._____________________________________________________________ ||
Grammar rule sets are called using the built-in predicates phrase/2 and
phrase/3:
pphhrraassee((_:_D_C_G_B_o_d_y_, _?_L_i_s_t))
Equivalent to phrase(_D_C_G_B_o_d_y, _I_n_p_u_t_L_i_s_t, []).
pphhrraassee((_:_D_C_G_B_o_d_y_, _?_L_i_s_t_, _?_R_e_s_t))
True when _D_C_G_B_o_d_y applies to the difference _L_i_s_t/_R_e_s_t. Although
_D_C_G_B_o_d_y is typically a _c_a_l_l_a_b_l_e term that denotes a grammar rule,
it can be any term that is valid as the body of a DCG rule.
The example below calls the rule set integer//1 defined in
section ???? and available from library(dcg/basics), binding _R_e_s_t to
the remainder of the input after matching the integer.
____________________________________________________________________| |
| ?- [library(dcg/basics)]. |
| ?- atom_codes('42 times', Codes), |
| phrase(integer(X), Codes, Rest). |
| X = 42 |
||Rest_=_[32,_116,_105,_109,_101,_115]______________________________ ||
The next example exploits a complete body. Given the following
definition of digit_weight//1, we can pose the query below.
____________________________________________________________________| |
| digit_weight(W) --> |
| [D], |
||________{_code_type(D,_digit(W))_}._______________________________ ||
____________________________________________________________________| |
| ?- atom_codes('Version 3.4', Codes), |
| phrase(("Version ", |
| digit_weight(Major),".",digit_weight(Minor)), |
| Codes). |
| Major = 3, |
||Minor_=_4.________________________________________________________ ||
The SWI-Prolog implementation of phrase/3 verifies that the _L_i_s_t
and _R_e_s_t arguments are unbound, bound to the empty list or a list
_c_o_n_s _c_e_l_l. Other values raise a type error. The predicate
call_dcg/3 is provided to use grammar rules with terms that are not
lists.
Note that the syntax for lists of codes changed in SWI-Prolog
version 7 (see section ????). If a DCG body is translated, both
"text" and `text` is a valid code-list literal in version 7. A
version 7 string ("text") is nnoott acceptable for the second and
third arguments of phrase/3. This is typically not a problem for
applications as the input of a DCG rarely appears in the source
code. For testing in the toplevel, one must use double quoted text
in versions prior to 7 and back quoted text in version 7 or later.
See also portray_text/1, which can be used to print lists of
character codes as a string to the top level and debugger
to facilitate debugging DCGs that process character codes.
The library apply_macros compiles phrase/3 if the argument is
sufficiently instantiated, eliminating the runtime overhead of
translating _D_C_G_B_o_d_y and meta-calling.
ccaallll__ddccgg((_:_D_C_G_B_o_d_y_, _?_S_t_a_t_e_0_, _?_S_t_a_t_e))
As phrase/3, but without type checking _S_t_a_t_e_0 and _S_t_a_t_e. This
allows for using DCG rules for threading an arbitrary state
variable. This predicate was introduced after type checking was
added to phrase/3.
A portable solution for threading state through a DCG can be
implemented by wrapping the state in a list and use the DCG
semicontext facility. Subsequently, the following predicates may
be used to access and modify the state:
____________________________________________________________________| |
| state(S), [S] --> [S]. |
||state(S0,_S),_[S]_-->_[S0]._______________________________________ ||
As stated above, grammar rules are a general interface to difference
lists. To illustrate, we show a DCG-based implementation of reverse/2:
________________________________________________________________________| |
|reverse(List, Reversed) :- |
| phrase(reverse(List), Reversed). |
| |
|reverse([]) --> []. |
|reverse([H|T])|-->_reverse(T),_[H].____________________________________ | |
44..1144 DDaattaabbaassee
SWI-Prolog offers several ways to store data in globally accessible
memory, i.e., outside the Prolog _s_t_a_c_k_s. Data stored this way notably
does not change on _b_a_c_k_t_r_a_c_k_i_n_g. Typically it is a bad idea to use
any of the predicates in this section for realising global variables
that can be assigned to. Typically, first consider representing
data processed by your program as terms passed around as predicate
arguments. If you need to reason over multiple solutions to a goal,
consider findall/3, aggregate/3 and related predicates.
Nevertheless, there are scenarios where storing data outside the Prolog
stacks is a good option. Below are the main options for storing data:
UUssiinngg ddyynnaammiicc pprreeddiiccaatteess Dynamic predicates are predicates for which
the list of clauses is modified at runtime using asserta/1,
assertz/1, retract/1 or retractall/1. Following the ISO standard,
predicates that are modified this way need to be declared using
the dynamic/1 _d_i_r_e_c_t_i_v_e. These facilities are defined by the ISO
standard and widely supported. The mechanism is often considered
slow in the literature. Performance depends on the Prolog
implementation. In SWI-Prolog, querying dynamic predicates has the
same performance as static ones. The manipulation predicates are
fast. Using retract/1 or retractall/1 on a predicate registers
the predicate as `dirty'. Dirty predicates are cleaned by
garbage_collect_clauses/0, which is normally automatically invoked.
Some workloads may result in significant performance reduction due
to skipping retracted clauses and/or clause garbage collection.
Dynamic predicates can be wrapped using library persistency to
maintain a backup of the data on disk. Dynamic predicates come in
two flavours, _s_h_a_r_e_d between threads and _l_o_c_a_l to each thread. The
latter version is created using the directive thread_local/1.
TThhee rreeccoorrddeedd ddaattaabbaassee The `recorded database' registers a list of terms
with a _k_e_y, an atom or compound term. The list is managed
using recorda/3, recordz/3 and erase/1. It is queried using
recorded/3. The recorded database is not part of the ISO standard
but fairly widely supported, notably in implementations building
on the `Edinburgh tradition'. There are few reasons to use this
database in SWI-Prolog due to the good performance of dynamic
predicates. Advantages are (1) the handle provides a direct
reference to a term, (2) cyclic terms can be stored and (3)
attributes (section ????) are preserved. Disadvantages are (1) the
terms in a list associated with a key are not indexed, (2) the
poorly specified _i_m_m_e_d_i_a_t_e _u_p_d_a_t_e _s_e_m_a_n_t_i_c_s (see section ???? applies
to the recorded database and (3) reduced portability.
TThhee flag/3 pprreeddiiccaattee The predicate flag/3 associates one simple value
(number or atom) with a key (atom, integer or compound). It is
an old SWI-Prolog specific predicate that should be considered
deprecated, although there is no plan to remove it.
UUssiinngg gglloobbaall vvaarriiaabblleess The predicates b_setval/2 and nb_setval/2
associate a term living on the Prolog stack with a name,
either backtrackable or non-backtrackable. Backtrackable and
non-backtrackable assignment without using a global name can be
realised with setarg/3 and nb_setarg/3. Notably the latter are
used to realise aggregation as e.g., aggregate_all/3 performs.
TTrriieess As of version 7.3.21, SWI-Prolog provides _t_r_i_e_s (prefix trees) to
associate a term _v_a_r_i_a_n_t with a value. Tries have been introduced
to support _t_a_b_l_i_n_g and are described in section ????.
44..1144..11 MMaannaaggiinngg ((ddyynnaammiicc)) pprreeddiiccaatteess
aabboolliisshh((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
Removes all clauses of a predicate with functor _F_u_n_c_t_o_r and arity
_A_r_i_t_y from the database. All predicate attributes (dynamic,
multifile, index, etc.) are reset to their defaults. Abolishing
an imported predicate only removes the import link; the predicate
will keep its old definition in its definition module.
According to the ISO standard, abolish/1 can only be applied to
dynamic procedures. This is odd, as for dealing with dynamic
procedures there is already retract/1 and retractall/1. The
abolish/1 predicate was introduced in DEC-10 Prolog precisely for
dealing with static procedures. In SWI-Prolog, abolish/1 works on
static procedures, unless the Prolog flag iso is set to true.
It is advised to use retractall/1 for erasing all clauses of a
dynamic predicate.
aabboolliisshh((_+_N_a_m_e_, _+_A_r_i_t_y))
Same as abolish(_N_a_m_e_/_A_r_i_t_y). The predicate abolish/2 conforms to
the Edinburgh standard, while abolish/1 is ISO compliant.
ccooppyy__pprreeddiiccaattee__ccllaauusseess((_:_F_r_o_m_, _:_T_o))
Copy all clauses of predicate _F_r_o_m to _T_o. The predicate _T_o must
be dynamic or undefined. If _T_o is undefined, it is created as
a dynamic predicate holding a copy of the clauses of _F_r_o_m. If
_T_o is a dynamic predicate, the clauses of _F_r_o_m are added (as in
assertz/1) to the clauses of _T_o. _T_o and _F_r_o_m must have the same
arity. Acts as if defined by the program below, but at a much
better performance by avoiding decompilation and compilation.
____________________________________________________________________| |
| copy_predicate_clauses(From, To) :- |
| head(From, MF:FromHead), |
| head(To, MT:ToHead), |
| FromHead =.. [_|Args], |
| ToHead =.. [_|Args], |
| forall(clause(MF:FromHead, Body), |
| assertz(MT:ToHead, Body)). |
| |
| head(From, M:Head) :- |
| strip_module(From, M, Name/Arity), |
||________functor(Head,_Name,_Arity)._______________________________ ||
rreeddeeffiinnee__ssyysstteemm__pprreeddiiccaattee((_+_H_e_a_d))
This directive may be used both in module user and in normal
modules to redefine any system predicate. If the system definition
is redefined in module user, the new definition is the default
definition for all sub-modules. Otherwise the redefinition is
local to the module. The system definition remains in the module
system.
Redefining system predicate facilitates the definition of
compatibility packages. Use in other contexts is discouraged.
rreettrraacctt((_+_T_e_r_m)) _[_I_S_O_,_n_o_n_d_e_t_]
When _T_e_r_m is an atom or a term it is unified with the first
unifying fact or clause in the database. The fact or clause is
removed from the database. The retract/1 predicate respects the
_l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w. This implies that retract/1 succeeds for all
clauses that match _T_e_r_m when the predicate was _c_a_l_l_e_d. The example
below illustrates that the first call to retract/1 succeeds on bee
on backtracking despite the fact that bee is already retracted..
____________________________________________________________________| |
| :- dynamic insect/1. |
| insect(ant). |
| insect(bee). |
| |
| ?- ( retract(insect(I)), |
| writeln(I), |
| retract(insect(bee)), |
| fail |
| ; true |
| ). |
| ant ; |
||bee.______________________________________________________________ ||
If multiple threads start a retract on the same predicate at the
same time their notion of the _e_n_t_r_y _g_e_n_e_r_a_t_i_o_n is adjusted such
that they do not retract the same first clause. This implies
that, if multiple threads use once(retract(Term)), no two threads
will retract the same clause. Note that on backtracking over
retract/1, multiple threads may retract the same clause as both
threads respect the logical update view.
rreettrraaccttaallll((_+_H_e_a_d)) _[_I_S_O_,_d_e_t_]
All facts or clauses in the database for which the _h_e_a_d unifies
with _H_e_a_d are removed. If _H_e_a_d refers to a predicate that is not
defined, it is implicitly created as a dynamic predicate. See also
dynamic/1.
aasssseerrttaa((_+_T_e_r_m)) _[_I_S_O_]
aasssseerrttzz((_+_T_e_r_m)) _[_I_S_O_]
aasssseerrtt((_+_T_e_r_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Assert a clause (fact or rule) into the database. The predicate
asserta/1 asserts the clause as first clause of the predicate
while assertz/1 assert the clause as last clause. The deprecated
assert/1 is equivalent to assertz/1. If the program space for the
target module is limited (see set_module/1), asserta/1 can raise a
resource_error(_p_r_o_g_r_a_m___s_p_a_c_e) exception. The example below adds two
facts and a rule. Note the double parentheses around the rule.
____________________________________________________________________| |
| ?- assertz(parent('Bob', 'Jane')). |
| ?- assertz(female('Jane')). |
| ?- assertz((mother(Child, Mother) :- |
| parent(Child, Mother), |
||________________female(Mother)))._________________________________ ||
aasssseerrttaa((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
aasssseerrttzz((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
aasssseerrtt((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to asserta/1, assertz/1, assert/1, but in addition
unifies _R_e_f_e_r_e_n_c_e with a handle to the asserted clauses. The
handle can be used to access this clause with clause/3 and erase/1.
44..1144..22 TThhee rreeccoorrddeedd ddaattaabbaassee
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Assert _T_e_r_m in the recorded database under key _K_e_y. _K_e_y is a
small integer (range min_tagged_integer ...max_tagged_integer, atom
or compound term. If the key is a compound term, only the name and
arity define the key. _R_e_f_e_r_e_n_c_e is unified with an opaque handle
to the record (see erase/1).
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recorda(_K_e_y, _T_e_r_m, _).
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to recorda/3, but puts the _T_e_r_m at the tail of the terms
recorded under _K_e_y.
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recordz(_K_e_y, _T_e_r_m, _).
rreeccoorrddeedd((_?_K_e_y_, _?_V_a_l_u_e_, _?_R_e_f_e_r_e_n_c_e))
True if _V_a_l_u_e is recorded under _K_e_y and has the given database
_R_e_f_e_r_e_n_c_e. If _R_e_f_e_r_e_n_c_e is given, this predicate is semi-
deterministic. Otherwise, it must be considered non-deterministic.
If neither _R_e_f_e_r_e_n_c_e nor _K_e_y is given, the triples are generated as
in the code snippet below. See also current_key/1.
____________________________________________________________________| |
| current_key(Key), |
||________recorded(Key,_Value,_Reference)___________________________ ||
rreeccoorrddeedd((_+_K_e_y_, _-_V_a_l_u_e))
Equivalent to recorded(_K_e_y, _V_a_l_u_e, _).
eerraassee((_+_R_e_f_e_r_e_n_c_e))
Erase a record or clause from the database. _R_e_f_e_r_e_n_c_e is
a db-reference returned by recorda/3, recordz/3 or recorded/3,
clause/3, assert/2, asserta/2 or assertz/2. Fail silently if the
referenced object no longer exists. Notably, if multiple threads
attempt to erase the same clause one will succeed and the others
will fail.
iinnssttaannccee((_+_R_e_f_e_r_e_n_c_e_, _-_T_e_r_m))
Unify _T_e_r_m with the referenced clause or database record. Unit
clauses are represented as _H_e_a_d :- true.
44..1144..33 FFllaaggss
The predicate flag/3 is the oldest way to store global non-
backtrackable data in SWI-Prolog. Flags are global and shared by all
threads. Their value is limited to atoms, small (64-bit) integers and
floating point numbers. Flags are thread-safe. The flags described
in this section must not be confused with _P_r_o_l_o_g _f_l_a_g_s described in
section ????.
ggeett__ffllaagg((_+_K_e_y_, _-_V_a_l_u_e))
True when _V_a_l_u_e is the value currently associated with _K_e_y. If _K_e_y
does not exist, a new flag with value `0' (zero) is created.
sseett__ffllaagg((_+_K_e_y_, _V_a_l_u_e))
Set flag _K_e_y to _V_a_l_u_e. Value must be an atom, small (64-bit)
integer or float.
ffllaagg((_+_K_e_y_, _-_O_l_d_, _+_N_e_w))
True when _O_l_d is the current value of the flag _K_e_y and the flag has
been set to _N_e_w. _N_e_w can be an arithmetic expression. The update
is _a_t_o_m_i_c. This predicate can be used to create a _s_h_a_r_e_d global
counter as illustrated in the example below.
____________________________________________________________________| |
| next_id(Id) :- |
||____flag(my_id,_Id,_Id+1).________________________________________ ||
44..1144..44 TTrriieess
Tries (also called _d_i_g_i_t_a_l _t_r_e_e, _r_a_d_i_x _t_r_e_e or _p_r_e_f_i_x _t_r_e_e maintain a
mapping between a variant of a term (see =@=/2) and a value. They
have been introduced in SWI-Prolog 7.3.21 as part of the implementation
of _t_a_b_l_i_n_g. The current implementation is rather immature. In
particular, the following limitations currently apply:
o Tries are not thread-safe.
o Tries should not be modified while non-deterministic predicates
such as trie_gen/3 are running on the trie.
o Terms cannot have _a_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s.
o Terms cannot be _c_y_c_l_i_c. Possibly this will not change because
cyclic terms can only be supported after creating a canonical form
of the term.
WWee ggiivvee tthhee ddeeffiinniittiioonn ooff tthheessee pprreeddiiccaatteess ffoorr rreeffeerreennccee aanndd ddeebbuuggggiinngg
ttaabblleedd pprreeddiiccaatteess.. FFuuttuurree vveerrssiioonnss aarree lliikkeellyy ttoo ggeett aa mmoorree ssttaabbllee
aanndd ssaaffeerr iimmpplleemmeennttaattiioonn.. TThhee AAPPII ttoo ttrriieess sshhoouulldd nnoott bbee ccoonnssiiddeerreedd
ssttaabbllee..
ttrriiee__nneeww((_-_T_r_i_e))
Create a new trie and unify _T_r_i_e with a handle to the trie.
The trie handle is a _b_l_o_b. Tries are subject to atom garbage
collection.
ttrriiee__ddeessttrrooyy((_+_T_r_i_e))
Destroy _T_r_i_e. This removes all nodes from the trie and causes
further access to _T_r_i_e to raise an existence_error exception. The
handle itself is reclaimed by atom garbage collection.
iiss__ttrriiee((_@_T_r_i_e)) _[_s_e_m_i_d_e_t_]
True when _T_r_i_e is a trie object. See also current_trie/1.
ccuurrrreenntt__ttrriiee((_-_T_r_i_e)) _[_n_o_n_d_e_t_]
True if _T_r_i_e is a currently existing trie. As this enumerates and
then filters all known atoms this predicate is slow and should only
be used for debugging purposes. See also is_trie/1.
ttrriiee__iinnsseerrtt((_+_T_r_i_e_, _+_K_e_y_, _+_V_a_l_u_e))
Insert the term _K_e_y into _T_r_i_e and associate it with _V_a_l_u_e. _V_a_l_u_e
can be any term. If _K_e_y-_V_a_l_u_e is already part of _T_r_i_e, the
predicates _f_a_i_l_s silently. If _K_e_y is in _T_r_i_e associated with a
different value, a permission_error is raised.
ttrriiee__uuppddaattee((_+_T_r_i_e_, _+_K_e_y_, _+_V_a_l_u_e))
As trie_insert/3, but if _K_e_y is in _T_r_i_e, its associated value is
_u_p_d_a_t_e_d.
ttrriiee__iinnsseerrtt((_+_T_r_i_e_, _+_T_e_r_m_, _+_V_a_l_u_e_, _-_H_a_n_d_l_e))
As trie_insert/3, returning a handle to the trie node. This
predicate is currently unsafe as _H_a_n_d_l_e is an integer used to
encode a pointer. It was used to implement a pure Prolog version
of the tabling library.
ttrriiee__ddeelleettee((_+_T_r_i_e_, _+_K_e_y_, _?_V_a_l_u_e))
Delete _K_e_y from _T_r_i_e if the value associated with _K_e_y unifies with
_V_a_l_u_e.
ttrriiee__llooookkuupp((_+_T_r_i_e_, _+_K_e_y_, _-_V_a_l_u_e))
True if the term _K_e_y is in _T_r_i_e and associated with _V_a_l_u_e.
ttrriiee__tteerrmm((_+_H_a_n_d_l_e_, _-_T_e_r_m))
True when _T_e_r_m is a copy of the term associated with _H_a_n_d_l_e.
The result is undefined (including crashes) if _H_a_n_d_l_e is not a
handle returned by trie_insert_new/3 or the node has been removed
afterwards.
ttrriiee__ggeenn((_+_T_r_i_e_, _?_K_e_y_, _-_V_a_l_u_e)) _[_n_o_n_d_e_t_]
True when _K_e_y is associated with _V_a_l_u_e in _T_r_i_e. Backtracking
retrieves all pairs. Currently scans the entire trie, even if _K_e_y
is partly known. Currently unsafe if _T_r_i_e is modified while the
values are being enumerated.
ttrriiee__pprrooppeerrttyy((_?_T_r_i_e_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True if _T_r_i_e exists with _P_r_o_p_e_r_t_y. Intended for debugging and
statistical purposes. Retrieving some of these properties visit
all nodes of the trie. Defined properties are
vvaalluuee__ccoouunntt((_-_C_o_u_n_t))
Number of key-value pairs in the trie.
nnooddee__ccoouunntt((_-_C_o_u_n_t))
Number of nodes in the trie.
ssiizzee((_-_B_y_t_e_s))
Required storage space of the trie.
hhaasshheedd((_-_C_o_u_n_t))
Number of nodes that use a hashed index to its children.
44..1144..55 UUppddaattee vviieeww
Traditionally, Prolog systems used the _i_m_m_e_d_i_a_t_e _u_p_d_a_t_e _v_i_e_w: new
clauses became visible to predicates backtracking over dynamic
predicates immediately, and retracted clauses became invisible
immediately.
Starting with SWI-Prolog 3.3.0 we adhere to the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w,
where backtrackable predicates that enter the definition of a predicate
will not see any changes (either caused by assert/1 or retract/1) to
the predicate. This view is the ISO standard, the most commonly
used and the most `safe'. Logical updates are realised by keeping
reference counts on predicates and _g_e_n_e_r_a_t_i_o_n information on clauses.
Each change to the database causes an increment of the generation of
the database. Each goal is tagged with the generation in which it was
started. Each clause is flagged with the generation it was created
in as well as the generation it was erased from. Only clauses with
a `created' ...`erased' interval that encloses the generation of the
current goal are considered visible.
44..1144..66 IInnddeexxiinngg ddaattaabbaasseess
The indexing capabilities of SWI-Prolog are described in section ????.
Summarizing, SWI-Prolog creates indexes for any applicable argument,
but only on one argument, and does not index on arguments of compound
terms. The predicates below provide building blocks to circumvent the
limitations of the current indexing system.
Programs that aim at portability should consider using term_hash/2 and
term_hash/4 to design their database such that indexing on constant or
functor (name/arity reference) on the first argument is sufficient.
tteerrmm__hhaasshh((_+_T_e_r_m_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
If _T_e_r_m is a ground term (see ground/1), _H_a_s_h_K_e_y is unified with
a positive integer value that may be used as a hash key to the
value. If _T_e_r_m is not ground, the predicate leaves _H_a_s_h_K_e_y an
unbound variable. Hash keys are in the range 0:::16;777; 215, the
maximal integer that can be stored efficiently on both 32 and 64
bit platforms.
This predicate may be used to build hash tables as well as to
exploit argument indexing to find complex terms more quickly.
The hash key does not rely on temporary information like addresses
of atoms and may be assumed constant over different invocations
and versions of SWI-Prolog. Hashes differ between big and little
endian machines. The term_hash/2 predicate is cycle-safe.
tteerrmm__hhaasshh((_+_T_e_r_m_, _+_D_e_p_t_h_, _+_R_a_n_g_e_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
As term_hash/2, but only considers _T_e_r_m to the specified _D_e_p_t_h.
The top-level term has depth 1, its arguments have depth 2, etc.
That is, _D_e_p_t_h =0 hashes nothing; _D_e_p_t_h= 1 hashes atomic values
or the functor and arity of a compound term, not its arguments;
_D_e_p_t_h =2 also indexes the immediate arguments, etc.
_H_a_s_h_K_e_y is in the range [0:::_R_a_n_g_e-1]. _R_a_n_g_e must be in the range
[1:::2147483647]
vvaarriiaanntt__sshhaa11((_+_T_e_r_m_, _-_S_H_A_1)) _[_d_e_t_]
Compute a SHA1-hash from _T_e_r_m. The hash is represented as a
40-byte hexadecimal atom. Unlike term_hash/2 and friends, this
predicate produces a hash key for non-ground terms. The hash is
invariant over variable-renaming (see =@=/2) and constants over
different invocations of Prolog.
This predicate raises an exception when trying to compute the hash
on a cyclic term or attributed term. Attributed terms are not
handled because subsumes_chk/2 is not considered well defined for
attributed terms. Cyclic terms are not supported because this
would require establishing a canonical cycle. That is, given
A=[a_A] and B=[a,a_B], _A and _B should produce the same hash. This
is not (yet) implemented.
This hash was developed for lookup of solutions to a goal stored
in a table. By using a cryptographic hash, heuristic algorithms
can often ignore the possibility of hash collisions and thus avoid
storing the goal term itself as well as testing using =@=/2.
vvaarriiaanntt__hhaasshh((_+_T_e_r_m_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
Similar to variant_sha1/2, but using a non-cryptographic hash
and produces an integer result like term_hash/2. This version
does deal with attributed variables, processing them as normal
variables. This hash is primarily intended to speedup finding
variant terms in a set of terms.
44..1155 DDeeccllaarriinngg pprreeddiiccaattee pprrooppeerrttiieess
This section describes directives which manipulate attributes of
predicate definitions. The functors dynamic/1, multifile/1,
discontiguous/1 and public/1 are operators of priority 1150 (see op/3),
which implies that the list of predicates they involve can just be a
comma-separated list:
________________________________________________________________________| |
|:- dynamic |
| foo/0, |
||_______baz/2._________________________________________________________ ||
In SWI-Prolog all these directives are just predicates. This implies
they can also be called by a program. Do not rely on this feature if
you want to maintain portability to other Prolog implementations.
ddyynnaammiicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the interpreter that the definition of the predicate(s)
may change during execution (using assert/1 and/or retract/1). In
the multithreaded version, the clauses of dynamic predicates are
shared between the threads. The directive thread_local/1 provides
an alternative where each thread has its own clause list for the
predicate. Dynamic predicates can be turned into static ones using
compile_predicates/1.
ccoommppiillee__pprreeddiiccaatteess((_:_L_i_s_t_O_f_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s))
Compile a list of specified dynamic predicates (see dynamic/1 and
assert/1) into normal static predicates. This call tells the
Prolog environment the definition will not change anymore and
further calls to assert/1 or retract/1 on the named predicates
raise a permission error. This predicate is designed to deal with
parts of the program that are generated at runtime but do not
change during the remainder of the program execution.
mmuullttiiffiillee _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the specified predicate(s) may be defined
over more than one file. This stops consult/1 from redefining a
predicate when a new definition is found.
ddiissccoonnttiigguuoouuss _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the clauses of the specified predicate(s)
might not be together in the source file. See also style_check/1.
ppuubblliicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.
Instructs the cross-referencer that the predicate can be called.
It has no semantics. The public declaration can be queried using
predicate_property/2. The public/1 directive does _n_o_t export the
predicate (see module/1 and export/1). The public directive is
used for (1) direct calls into the module from, e.g., foreign code,
(2) direct calls into the module from other modules, or (3) flag a
predicate as being called if the call is generated by meta-calling
constructs that are not analysed by the cross-referencer.
44..1166 EExxaammiinniinngg tthhee pprrooggrraamm
ccuurrrreenntt__aattoomm((_-_A_t_o_m))
Successively unifies _A_t_o_m with all atoms known to the system. Note
that current_atom/1 always succeeds if _A_t_o_m is instantiated to an
atom.
ccuurrrreenntt__bblloobb((_?_B_l_o_b_, _?_T_y_p_e))
Examine the type or enumerate blobs of the given _T_y_p_e. Typed blobs
are supported through the foreign language interface for storing
arbitrary BLOBs (Binary Large Object) or handles to external
entities. See section ???? for details.
ccuurrrreenntt__ffuunnccttoorr((_?_N_a_m_e_, _?_A_r_i_t_y))
True when _N_a_m_e/_A_r_i_t_y is a known functor. This means that at
some point in time a term with name _N_a_m_e and _A_r_i_t_y arguments was
created. Functor objects are currently not subject to garbage
collection. Due to timing, t/2 below with instantiated _N_a_m_e and
_A_r_i_t_y can theoretically fail, i.e., a functor may be visible in
instantiated mode while it is not yet visible in unbound mode.
Considering that the only practical value of current_functor/2 we
are aware of is to analyse resource usage we accept this impure
behaviour.
____________________________________________________________________| |
| t(Name, Arity) :- |
| ( current_functor(Name, Arity) |
| -> current_functor(N, A), N == Name, A == Arity |
| ; true |
||____).____________________________________________________________ ||
ccuurrrreenntt__ffllaagg((_-_F_l_a_g_K_e_y))
Successively unifies _F_l_a_g_K_e_y with all keys used for flags (see
flag/3).
ccuurrrreenntt__kkeeyy((_-_K_e_y))
Successively unifies _K_e_y with all keys used for records (see
recorda/3, etc.).
ccuurrrreenntt__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
True if _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is a currently defined predicate. A
predicate is considered defined if it exists in the specified
module, is imported into the module or is defined in one of
the modules from which the predicate will be imported if it is
called (see section ????). Note that current_predicate/1 does
_n_o_t succeed for predicates that can be _a_u_t_o_l_o_a_d_e_d. See also
current_predicate/2 and predicate_property/2.
If _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is not fully specified, the predicate only
generates values that are defined in or already imported into
the target module. Generating all callable predicates therefore
requires enumerating modules using current_module/1. Generating
predicates callable in a given module requires enumerating
the import modules using import_module/2 and the autoloadable
predicates using the predicate_property/2 autoload.
ccuurrrreenntt__pprreeddiiccaattee((_?_N_a_m_e_, _:_H_e_a_d))
Classical pre-ISO implementation of current_predicate/1, where the
predicate is represented by the head term. The advantage is that
this can be used for checking the existence of a predicate before
calling it without the need for functor/3:
____________________________________________________________________| |
| call_if_exists(G) :- |
| current_predicate(_, G), |
||________call(G).__________________________________________________ ||
Because of this intended usage, current_predicate/2 also succeeds
if the predicate can be autoloaded. Unfortunately, checking the
autoloader makes this predicate relatively slow, in particular
because a failed lookup of the autoloader will cause the autoloader
to verify that its index is up-to-date.
pprreeddiiccaattee__pprrooppeerrttyy((_:_H_e_a_d_, _?_P_r_o_p_e_r_t_y))
True when _H_e_a_d refers to a predicate that has property _P_r_o_p_e_r_t_y.
With sufficiently instantiated _H_e_a_d, predicate_property/2 tries
to resolve the predicate the same way as calling it would
do: if the predicate is not defined it scans the default
modules (see default_module/2) and finally tries the autoloader.
Unlike calling, failure to find the target predicate causes
predicate_property/2 to fail silently. If _H_e_a_d is not sufficiently
bound, only currently locally defined and already imported
predicates are enumerated. See current_predicate/1 for enumerating
all predicates. A common issue concerns _g_e_n_e_r_a_t_i_n_g all built-in
predicates. This can be achieved using the code below:
____________________________________________________________________| |
| generate_built_in(Name/Arity) :- |
| predicate_property(system:Head, built_in), |
| functor(Head, Name, Arity), |
||____\+_sub_atom(Name,_0,__,__,_$).___%_discard_reserved_names_____ ||
_P_r_o_p_e_r_t_y is one of:
aauuttoollooaadd((_F_i_l_e))
True if the predicate can be autoloaded from the file _F_i_l_e.
Like undefined, this property is _n_o_t generated.
bbuuiilltt__iinn
True if the predicate is locked as a built-in predicate. This
implies it cannot be redefined in its definition module and it
can normally not be seen in the tracer.
ddeeffiinneedd
True if the predicate is defined. This property is aware of
sources being _r_e_l_o_a_d_e_d, in which case it claims the predicate
defined only if it is defined in another source or it has seen
a definition in the current source. See compile_aux_clauses/1.
ddyynnaammiicc
True if assert/1 and retract/1 may be used to modify the
predicate. This property is set using dynamic/1.
eexxppoorrtteedd
True if the predicate is in the public list of the context
module.
iimmppoorrtteedd__ffrroomm((_M_o_d_u_l_e))
Is true if the predicate is imported into the context module
from module _M_o_d_u_l_e.
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which
the predicate is defined. See also source_file/2 and the
property line_count. Note that this reports the file of the
first clause of a predicate. A more robust interface can be
achieved using nth_clause/3 and clause_property/2.
ffoorreeiiggnn
True if the predicate is defined in the C language.
iimmpplleemmeennttaattiioonn__mmoodduullee((_-_M_o_d_u_l_e))
True when _M_o_d_u_l_e is the module in which _H_e_a_d is or will be
defined. Resolving this property goes through the same search
mechanism as when the an undefined predicate is encountered,
but does not perform any loading. It searches (1) the
module inheritence hierarchy (see default_module/2) and (2) the
autoload index if the unknown flag is not set to fail in the
target module.
iinnddeexxeedd((_I_n_d_e_x_e_s))
_I_n_d_e_x_e_s is a list of additional (hash) indexes on the
predicate. Each element of the list is a term _A_r_g_S_p_e_c-_I_n_d_e_x.
Currently _A_r_g_S_p_e_c is an integer denoting the argument position
and _I_n_d_e_x is a term hash(_B_u_c_k_e_t_s_, _S_p_e_e_d_u_p_, _I_s_L_i_s_t). Here
_B_u_c_k_e_t_s is the number of buckets in the hash and _S_p_e_e_d_u_p is
the expected speedup relative to trying all clauses linearly.
_I_s_L_i_s_t indicates that a list is created for all clauses with
the same key. This is currently not used.
iinntteerrpprreetteedd
True if the predicate is defined in Prolog. We return true
on this because, although the code is actually compiled, it is
completely transparent, just like interpreted code.
iissoo
True if the predicate is covered by the ISO standard (ISO/IEC
13211-1).
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the first clause of
the predicate. Fails if the predicate is not associated with
a file. See also source_file/2. See also the file property
above, notably the reference to clause_property/2.
mmuullttiiffiillee
True if there may be multiple (or no) files providing clauses
for the predicate. This property is set using multifile/1.
mmeettaa__pprreeddiiccaattee((_H_e_a_d))
If the predicate is declared as a meta-predicate using
meta_predicate/1, unify _H_e_a_d with the head-pattern. The
head-pattern is a compound term with the same name and
arity as the predicate where each argument of the term is a
meta-predicate specifier. See meta_predicate/1 for details.
nnooddeebbuugg
Details of the predicate are not shown by the debugger. This
is the default for built-in predicates. User predicates can
be compiled this way using the Prolog flag generate_debug_info.
nnoottrraaccee
Do not show ports of this predicate in the debugger.
nnuummbbeerr__ooff__ccllaauusseess((_C_l_a_u_s_e_C_o_u_n_t))
Unify _C_l_a_u_s_e_C_o_u_n_t to the number of clauses associated with the
predicate. Fails for foreign predicates.
nnuummbbeerr__ooff__rruulleess((_R_u_l_e_C_o_u_n_t))
Unify _R_u_l_e_C_o_u_n_t to the number of clauses associated with
the predicate. A _r_u_l_e is defined as a clauses that has
a body that is not just true (i.e., a _f_a_c_t). Fails for
foreign predicates. This property is used to avoid analysing
predicates with only facts in prolog_codewalk.
llaasstt__mmooddiiffiieedd__ggeenneerraattiioonn((_G_e_n_e_r_a_t_i_o_n))
Database generation at which the predicate was modified for
the last time. Intended to quickly assesses the validity of
caches.
ppuubblliicc
Predicate is declared public using public/1. Note that
without further definition, public predicates are considered
undefined and this property is _n_o_t reported.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx
The predicate (with arity 4) is declared to provide quasi
quotation syntax with quasi_quotation_syntax/1.
ssttaattiicc
The definition can _n_o_t be modified using assertz/1 and
friends. This property is the opposite from dynamic, i.e.,
for each defined predicate, either static or dynamic is true
but never both.
tthhrreeaadd__llooccaall
If true (only possible on the multithreaded version) each
thread has its own clauses for the predicate. This property
is set using thread_local/1.
ttrraannssppaarreenntt
True if the predicate is declared transparent using the
module_transparent/1 or meta_predicate/1 declaration. In the
latter case the property meta_predicate(_H_e_a_d) is also provided.
See chapter ???? for details.
uunnddeeffiinneedd
True if a procedure definition block for the predicate exists,
but there are no clauses for it and it is not declared
dynamic or multifile. This is true if the predicate occurs
in the body of a loaded predicate, an attempt to call it has
been made via one of the meta-call predicates, the predicate
has been declared as e.g., a meta-predicate or the predicate
had a definition in the past. Originally used to find
missing predicate definitions. The current implementation of
list_undefined/0 used cross-referencing. Deprecated.
vviissiibbllee
True when predicate can be called without raising a predicate
existence error. This means that the predicate is (1)
defined, (2) can be inherited from one of the default modules
(see default_module/2) or (3) can be autoloaded. The behaviour
is logically consistent iff the property visible is provided
explicitly. If the property is left unbound, only defined
predicates are enumerated.
vvoollaattiillee
If true, the clauses are not saved into a saved state by
qsave_program/[1,2]. This property is set using volatile/1.
ddwwiimm__pprreeddiiccaattee((_+_T_e_r_m_, _-_D_w_i_m))
`Do What I Mean' (`dwim') support predicate. _T_e_r_m is a term,
whose name and arity are used as a predicate specification. _D_w_i_m
is instantiated with the most general term built from _N_a_m_e and the
arity of a defined predicate that matches the predicate specified
by _T_e_r_m in the `Do What I Mean' sense. See dwim_match/2 for `Do
What I Mean' string matching. Internal system predicates are not
generated, unless the access level is system (see access_level).
Backtracking provides all alternative matches.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y)) _[_I_S_O_]
True if _H_e_a_d can be unified with a clause head and _B_o_d_y with
the corresponding clause body. Gives alternative clauses on
backtracking. For facts, _B_o_d_y is unified with the atom _t_r_u_e.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y_, _?_R_e_f_e_r_e_n_c_e))
Equivalent to clause/2, but unifies _R_e_f_e_r_e_n_c_e with a unique
reference to the clause (see also assert/2, erase/1). If _R_e_f_e_r_e_n_c_e
is instantiated to a reference the clause's head and body will be
unified with _H_e_a_d and _B_o_d_y.
nntthh__ccllaauussee((_?_P_r_e_d_, _?_I_n_d_e_x_, _?_R_e_f_e_r_e_n_c_e))
Provides access to the clauses of a predicate using their index
number. Counting starts at 1. If _R_e_f_e_r_e_n_c_e is specified it
unifies _P_r_e_d with the most general term with the same name/arity
as the predicate and _I_n_d_e_x with the index number of the clause.
Otherwise the name and arity of _P_r_e_d are used to determine the
predicate. If _I_n_d_e_x is provided, _R_e_f_e_r_e_n_c_e will be unified with
the clause reference. If _I_n_d_e_x is unbound, backtracking will
yield both the indexes and the references of all clauses of the
predicate. The following example finds the 2nd clause of append/3:
____________________________________________________________________| |
| ?- use_module(library(lists)). |
| ... |
| ?- nth_clause(append(_,_,_), 2, Ref), clause(Head, Body, Ref). |
| Ref = <clause>(0x994290), |
| Head = lists:append([_G23|_G24], _G21, [_G23|_G27]), |
||Body_=_append(_G24,__G21,__G27).__________________________________ ||
ccllaauussee__pprrooppeerrttyy((_+_C_l_a_u_s_e_R_e_f_, _-_P_r_o_p_e_r_t_y))
Queries properties of a clause. _C_l_a_u_s_e_R_e_f is a reference
to a clause as produced by clause/3, nth_clause/3 or
prolog_frame_attribute/3. Unlike most other predicates that access
clause references, clause_property/2may be used to get information
about erased clauses that have not yet been reclaimed. _P_r_o_p_e_r_t_y is
one of the following:
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the file from which the clause
is loaded. Fails if the clause was not created by loading a
file (e.g., clauses added using assertz/1). See also source.
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the clause. Fails if
the clause is not associated to a file.
ssiizzee((_S_i_z_e_I_n_B_y_t_e_s))
True when _S_i_z_e_I_n_B_y_t_e_s is the size that the clause uses in
memory in bytes. The size required by a predicate also
includes the predicate data record, a linked list of clauses,
clause selection instructions and optionally one or more
clause indexes.
ssoouurrccee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file that created
the clause. This is the same as the file property, unless
the file is loaded from a file that is textually included
into source using include/1. In this scenario, file is the
included file, while the source property refers to the _m_a_i_n
file.
ffaacctt
True if the clause has no body.
eerraasseedd
True if the clause has been erased, but not yet reclaimed
because it is referenced.
pprreeddiiccaattee((_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r))
_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r denotes the predicate to which this clause
belongs. This is needed to obtain information on erased
clauses because the usual way to obtain this information using
clause/3 fails for erased clauses.
mmoodduullee((_M_o_d_u_l_e))
_M_o_d_u_l_e is the context module used to execute the body of the
clause. For normal clauses, this is the same as the module
in which the predicate is defined. However, if a clause
is compiled with a module qualified _h_e_a_d, the clause belongs
to the predicate with the qualified head, while the body is
executed in the context of the module in which the clause was
defined.
44..1177 IInnppuutt aanndd oouuttppuutt
SWI-Prolog provides two different packages for input and output. The
native I/O system is based on the ISO standard predicates open/3,
close/1 and friends. Being more widely portable and equipped with a
clearer and more robust specification, new code is encouraged to use
these predicates for manipulation of I/O streams.
Section ???? describes tell/1, see/1 and friends, providing I/O in the
spirit of the traditional Edinburgh standard. These predicates are
layered on top of the ISO predicates. Both packages are fully
integrated; the user may switch freely between them.
44..1177..11 PPrreeddeeffiinneedd ssttrreeaamm aalliiaasseess
Each thread has five stream aliases: user_input, user_output,
user_error, current_input, and current_output. Newly created threads
inherit these stream aliases from their parent. The user_input,
user_output and user_error aliases of the main thread are initially
bound to the standard operating system I/O streams (_s_t_d_i_n, _s_t_d_o_u_t and
_s_t_d_e_r_r, normally bound to the POSIX file handles 0, 1 and 2). These
aliases may be re-bound, for example if standard I/O refers to a window
such as in the swipl-win.exe GUI executable for Windows. They can be
re-bound by the user using set_prolog_IO/3 and set_stream/2 by setting
the alias of a stream (e.g, set_stream(S, alias(user_output))). An
example of rebinding can be found in library prolog_server, providing
a telnet service. The aliases current_input and current_output define
the source and destination for predicates that do not take a stream
argument (e.g., read/1, write/1, get_code/1, ...). Initially, these
are bound to the same stream as user_input and user_error. They
are re-bound by see/1, tell/1, set_input/1 and set_output/1. The
current_output stream is also temporary re-bound by with_output_to/2
or format/3 using e.g., format(atom(A), .... Note that code which
explicitly writes to the streams user_output and user_error will not be
redirected by with_output_to/2.
CCoommppaattiibbiilliittyy Note that the ISO standard only defines the user_*
streams. The `current' streams can be accessed using current_input/1
and current_output/1. For example, an ISO compatible implementation of
write/1 is
________________________________________________________________________| |
|write(Term)|:-_current_output(Out),_write_term(Out,_Term)._____________ | |
while SWI-Prolog additionally allows for
________________________________________________________________________| |
|write(Term)|:-_write(current_output,_Term).____________________________ | |
44..1177..22 IISSOO IInnppuutt aanndd OOuuttppuutt SSttrreeaammss
The predicates described in this section provide ISO compliant I/O,
where streams are explicitly created using the predicate open/3. The
resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of
the data.
This schema is not vulnerable to filename and stream ambiguities as
well as changes to the working directory. On the other hand, using the
notion of current-I/O simplifies reusability of code without the need
to pass arguments around. E.g., see with_output_to/2.
SWI-Prolog streams are, compatible with the ISO standard, either input
or output streams. To accommodate portability to other systems, a pair
of streams can be packed into a _s_t_r_e_a_m_-_p_a_i_r. See stream_pair/3 for
details.
SWI-Prolog stream handles are unique symbols that have no syntactical
representation. They are written as <stream>(hex-number), which is not
valid input for read/1. They are realised using a _b_l_o_b of type stream
(see blob/2 and section ????).
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_-_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
True when _S_r_c_D_e_s_t can be opened in _M_o_d_e and _S_t_r_e_a_m is an I/O
stream to/from the object. _S_r_c_D_e_s_t is normally the name of a
file, represented as an atom or string. _M_o_d_e is one of read,
write, append or update. Mode append opens the file for writing,
positioning the file pointer at the end. Mode update opens the
file for writing, positioning the file pointer at the beginning of
the file without truncating the file. _S_t_r_e_a_m is either a variable,
in which case it is bound to an integer identifying the stream, or
an atom, in which case this atom will be the stream identifier.
SWI-Prolog also allows _S_r_c_D_e_s_t to be a term pipe(_C_o_m_m_a_n_d). In
this form, _C_o_m_m_a_n_d is started as a child process and if _M_o_d_e is
write, output written to _S_t_r_e_a_m is sent to the standard input of
_C_o_m_m_a_n_d. Viso versa, if _M_o_d_e is read, data written by _C_o_m_m_a_n_d to
the standard output may be read from _S_t_r_e_a_m. On Unix systems,
_C_o_m_m_a_n_d is handed to popen() which hands it to the Unix shell. On
Windows, _C_o_m_m_a_n_d is executed directly. See also process_create/3
from process.
The following _O_p_t_i_o_n_s are recognised by open/4:
aalliiaass((_A_t_o_m))
Gives the stream a name. Below is an example. Be careful
with this option as stream names are global. See also
set_stream/2.
_______________________________________________________________| |
|?- open(data, read, Fd, [alias(input)]). |
| |
| ..., |
| read(input, Term), |
||_______...___________________________________________________ ||
bboomm((_B_o_o_l))
Check for a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k_e_r) or write one. If omitted,
the default is true for mode read and false for mode write.
See also stream_property/2 and especially section ???? for a
discussion of this feature.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Defines output buffering. The atom full (default) defines
full buffering, line buffering by line, and false implies the
stream is fully unbuffered. Smaller buffering is useful if
another process or the user is waiting for the output as it is
being produced. See also flush_output/[0,1]. This option is
not an ISO option.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
If true (default), the stream is closed on an abort (see
abort/0). If false, the stream is not closed. If it is
an output stream, however, it will be flushed. Useful for
logfiles and if the stream is associated to a process (using
the pipe/1 construct).
ccrreeaattee((_+_L_i_s_t))
Specifies how a new file is created when opening in write,
append or update mode. Currently, _L_i_s_t is a list of atoms
that describe the permissions of the created file. Defined
values are below. Not recognised values are silently ignored,
allowing for adding platform specific extensions to this set.
rreeaadd
Allow read access to the file.
wwrriittee
Allow write access to the file.
eexxeeccuuttee
Allow execution access to the file.
ddeeffaauulltt
Allow read and write access to the file.
aallll
Allow any access provided by the OS.
Note that if _L_i_s_t is empty, the created file has no associated
access permissions. The create options map to the POSIX _m_o_d_e
option of open(), where read map to 0444, write to 0222 and
execute to 0111. On POSIX systems, the final permission is
defined as (mode & ~umask).
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Define the encoding used for reading and writing text to this
stream. The default encoding for type text is derived from
the Prolog flag encoding. For binary streams the default
encoding is octet. For details on encoding issues, see
section ????.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Defines what happens if the end of the input stream is
reached. The default value for Action is eof_code, which makes
get0/1 and friends return -1, and read/1 and friends return
the atom end_of_file. Repetitive reading keeps yielding the
same result. Action error is like eof_code, but repetitive
reading will raise an error. With action reset, Prolog will
examine the file again and return more data if the file has
grown.
llooccaallee((_+_L_o_c_a_l_e))
Set the locale that is used by notably format/2 for output on
this stream. See section ????.
lloocckk((_L_o_c_k_i_n_g_M_o_d_e))
Try to obtain a lock on the open file. Default is none, which
does not lock the file. The value read or shared means other
processes may read the file, but not write it. The value
write or exclusive means no other process may read or write
the file.
Locks are acquired through the POSIX function fcntl() using
the command F_SETLKW, which makes a blocked call wait for the
lock to be released. Please note that fcntl() locks are
_a_d_v_i_s_o_r_y and therefore only other applications using the same
advisory locks honour your lock. As there are many issues
around locking in Unix, especially related to NFS (network
file system), please study the fcntl() manual page before
trusting your locks!
The lock option is a SWI-Prolog extension.
ttyyppee((_T_y_p_e))
Using type text (default), Prolog will write a text file in an
operating system compatible way. Using type binary the bytes
will be read or written without any translation. See also the
option encoding.
wwaaiitt((_B_o_o_l))
This option can be combined with the lock option. If false
(default true), the open call returns immediately with an
exception if the file is locked. The exception has the format
permission_error(_l_o_c_k_, _s_o_u_r_c_e___s_i_n_k_, _S_r_c_D_e_s_t).
The option reposition is not supported in SWI-Prolog. All streams
connected to a file may be repositioned.
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_-_S_t_r_e_a_m)) _[_I_S_O_]
Equivalent to open/4 with an empty option list.
ooppeenn__nnuullll__ssttrreeaamm((_-_-_S_t_r_e_a_m))
Open an output stream that produces no output. All counting
functions are enabled on such a stream. It can be used to discard
output (like Unix /dev/null) or exploit the counting properties.
The initial encoding of _S_t_r_e_a_m is utf8, enabling arbitrary Unicode
output. The encoding can be changed to determine byte counts
of the output in a particular encoding or validate if output is
possible in a particular encoding. For example, the code below
determines the number of characters emitted when writing _T_e_r_m.
____________________________________________________________________| |
| write_length(Term, Len) :- |
| open_null_stream(Out), |
| write(Out, Term), |
| character_count(Out, Len0), |
| close(Out), |
||________Len_=_Len0._______________________________________________ ||
cclloossee((_+_S_t_r_e_a_m)) _[_I_S_O_]
Close the specified stream. If _S_t_r_e_a_m is not open, an existence
error is raised. See stream_pair/3for the implications of closing
a _s_t_r_e_a_m _p_a_i_r.
If the closed stream is the current input, output or error stream,
the stream alias is bound to the initial standard I/O streams of
the process. Calling close/1 on the initial standard I/O streams
of the process is a no-op for an input stream and flushes an output
stream without closing it.
cclloossee((_+_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Provides close(_S_t_r_e_a_m_, _[_f_o_r_c_e_(_t_r_u_e_)_]) as the only option. Called
this way, any resource errors (such as write errors while flushing
the output buffer) are ignored.
ssttrreeaamm__pprrooppeerrttyy((_?_S_t_r_e_a_m_, _?_S_t_r_e_a_m_P_r_o_p_e_r_t_y)) _[_I_S_O_]
True when _S_t_r_e_a_m_P_r_o_p_e_r_t_y is a property of _S_t_r_e_a_m. If enumeration
of streams or properties is demanded because either _S_t_r_e_a_m
or _S_t_r_e_a_m_P_r_o_p_e_r_t_y are unbound, the implementation enumerates
all candidate streams and properties while locking the stream
database. Properties are fetched without locking the stream and
may be outdated before this predicate returns due to asynchronous
activity.
aalliiaass((_A_t_o_m))
If _A_t_o_m is bound, test if the stream has the specified alias.
Otherwise unify _A_t_o_m with the first alias of the stream.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
SWI-Prolog extension to query the buffering mode of this
stream. _B_u_f_f_e_r_i_n_g is one of full, line or false. See also
open/4.
bbuuffffeerr__ssiizzee((_I_n_t_e_g_e_r))
SWI-Prolog extension to query the size of the I/O buffer
associated to a stream in bytes. Fails if the stream is not
buffered.
bboomm((_B_o_o_l))
If present and true, a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k) was detected
while opening the file for reading, or a BOM was written while
opening the stream. See section ???? for details.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not abort/0 closes the stream. By
default streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Determine whether or not the stream is closed when executing
a new process (exec() in Unix, CreateProcess() in Windows).
Default is to close streams. This maps to fcntl()
F_SETFD using the flag FD_CLOEXEC on Unix and (negated)
HANDLE_FLAG_INHERIT on Windows.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Query the encoding used for text. See section ???? for an
overview of wide character and encoding issues in SWI-Prolog.
eenndd__ooff__ssttrreeaamm((_E))
If _S_t_r_e_a_m is an input stream, unify _E with one of the atoms
not, at or past. See also at_end_of_stream/[0,1].
eeooff__aaccttiioonn((_A))
Unify _A with one of eof_code, reset or error. See open/4 for
details.
ffiillee__nnaammee((_A_t_o_m))
If _S_t_r_e_a_m is associated to a file, unify _A_t_o_m to the name of
this file.
ffiillee__nnoo((_I_n_t_e_g_e_r))
If the stream is associated with a POSIX file descriptor,
unify _I_n_t_e_g_e_r with the descriptor number. SWI-Prolog
extension used primarily for integration with foreign code.
See also Sfileno() from SWI-Stream.h.
iinnppuutt
True if _S_t_r_e_a_m has mode read.
llooccaallee((_L_o_c_a_l_e))
True when _L_o_c_a_l_e is the current locale associated with the
stream. See section ????.
mmooddee((_I_O_M_o_d_e))
Unify _I_O_M_o_d_e to the mode given to open/4 for opening the
stream. Values are: read, write, append and the SWI-Prolog
extension update.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
One of posix or dos. If dos, text streams will emit \r\n for
\n and discard \r from input streams. Default depends on the
operating system.
nnlliinnkk((_-_C_o_u_n_t))
Number of hard links to the file. This expresses the number
of `names' the file has. Not supported on all operating
systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st_nlink.
oouuttppuutt
True if _S_t_r_e_a_m has mode write, append or update.
ppoossiittiioonn((_P_o_s))
Unify _P_o_s with the current stream position. A stream
position is an opaque term whose fields can be extracted using
stream_position_data/3. See also set_stream_position/2.
rreeppoossiittiioonn((_B_o_o_l))
Unify _B_o_o_l with _t_r_u_e if the position of the stream can be set
(see seek/4). It is assumed the position can be set if the
stream has a _s_e_e_k_-_f_u_n_c_t_i_o_n and is not based on a POSIX file
descriptor that is not associated to a regular file.
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Determines behaviour of character output if the stream cannot
represent a character. For example, an ISO Latin-1 stream
cannot represent Cyrillic characters. The behaviour is one
of error (throw an I/O error exception), prolog (write \...\
escape code) or xml (write &#...; XML character entity). The
initial mode is prolog for the user streams and error for all
other streams. See also section ???? and set_stream/2.
ttiimmeeoouutt((_-_T_i_m_e))
_T_i_m_e is the timeout currently associated with the stream. See
set_stream/2 with the same option. If no timeout is specified,
_T_i_m_e is unified to the atom infinite.
ttyyppee((_T_y_p_e))
Unify _T_y_p_e with text or binary.
ttttyy((_B_o_o_l))
This property is reported with _B_o_o_l equal to true if the
stream is associated with a terminal. See also set_stream/2.
wwrriittee__eerrrroorrss((_A_t_o_m))
_A_t_o_m is one of error (default) or ignore. The latter is
intended to deal with service processes for which the standard
output handles are not connected to valid streams. In these
cases write errors may be ignored on user_error.
ccuurrrreenntt__ssttrreeaamm((_?_O_b_j_e_c_t_, _?_M_o_d_e_, _?_S_t_r_e_a_m))
The predicate current_stream/3 is used to access the status of a
stream as well as to generate all open streams. _O_b_j_e_c_t is the
name of the file opened if the stream refers to an open file, an
integer file descriptor if the stream encapsulates an operating
system stream, or the atom [] if the stream refers to some other
object. _M_o_d_e is one of read or write.
iiss__ssttrreeaamm((_+_T_e_r_m))
True if _T_e_r_m is a stream name or valid stream handle. This
predicate realises a safe test for the existence of a stream alias
or handle.
ssttrreeaamm__ppaaiirr((_?_S_t_r_e_a_m_P_a_i_r_, _?_R_e_a_d_, _?_W_r_i_t_e))
This predicate can be used in mode (-,+,+) to create a _s_t_r_e_a_m_-_p_a_i_r
from an input stream and an output stream. Mode (+,-,-) can be
used to get access to the underlying streams. If a stream has
already been closed, the corresponding argument is left unbound.
If mode (+,-,-) is used on a single stream, either _R_e_a_d or _W_r_i_t_e is
unified with the stream while the other argument is left unbound.
This behaviour simplifies writing code that must operate both on
streams and stream pairs.
Stream-pairs can be used by all I/O operations on streams, where
the operation selects the appropriate member of the pair. The
predicate close/1 closes the still open streams of the pair. The
output stream is closed before the input stream. If closing
the output stream results in an error, the input stream is still
closed. Success is only returned if both streams were closed
successfully.
sseett__ssttrreeaamm__ppoossiittiioonn((_+_S_t_r_e_a_m_, _+_P_o_s)) _[_I_S_O_]
Set the current position of _S_t_r_e_a_m to _P_o_s. _P_o_s is a term as
returned by stream_property/2 using the position(_P_o_s) property.
See also seek/4.
ssttrreeaamm__ppoossiittiioonn__ddaattaa((_?_F_i_e_l_d_, _+_P_o_s_, _-_D_a_t_a))
Extracts information from the opaque stream position term as re-
turned by stream_property/2 requesting the position(_P_o_s) property.
_F_i_e_l_d is one of line_count, line_position, char_count or byte_count.
See also line_count/2, line_position/2, character_count/2 and
byte_count/2.
sseeeekk((_+_S_t_r_e_a_m_, _+_O_f_f_s_e_t_, _+_M_e_t_h_o_d_, _-_N_e_w_L_o_c_a_t_i_o_n))
Reposition the current point of the given _S_t_r_e_a_m. _M_e_t_h_o_d is one of
bof, current or eof, indicating positioning relative to the start,
current point or end of the underlying object. _N_e_w_L_o_c_a_t_i_o_n is
unified with the new offset, relative to the start of the stream.
Positions are counted in `units'. A unit is 1 byte, except
for text files using 2-byte Unicode encoding (2 bytes) or _w_c_h_a_r
encoding (sizeof(wchar_t)). The latter guarantees comfortable
interaction with wide-character text objects. Otherwise, the
use of seek/4 on non-binary files (see open/4) is of limited
use, especially when using multi-byte text encodings (e.g. UTF-8)
or multi-byte newline files (e.g. DOS/Windows). On text
files, SWI-Prolog offers reliable backup to an old position
using stream_property/2 and set_stream_position/2. Skipping N
character codes is achieved calling get_code/2 N times or using
copy_stream_data/3, directing the output to a null stream (see
open_null_stream/1). If the seek modifies the current location,
the line number and character position in the line are set to 0.
If the stream cannot be repositioned, a permission_error is raised.
If applying the offset would result in a file position less
than zero, a domain_error is raised. Behaviour when seeking to
positions beyond the size of the underlying object depend on the
object and possibly the operating system. The predicate seek/4
is compatible with Quintus Prolog, though the error conditions
and signalling is ISO compliant. See also stream_property/2 and
set_stream_position/2.
sseett__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_A_t_t_r_i_b_u_t_e))
Modify an attribute of an existing stream. _A_t_t_r_i_b_u_t_e specifies
the stream property to set. If stream is a _p_a_i_r (see
stream_pair/3) both streams are modified, unless the property is
only meaningful on one of the streams or setting both is not
meaningful. In particular, eof_action only applies to the _r_e_a_d
stream, representation_errors only applies to the _w_r_i_t_e stream
and trying to set alias or line_position on a pair results in a
permission_error exception. See also stream_property/2 and open/4.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Set the alias of an already created stream. If _A_l_i_a_s_N_a_m_e
is the name of one of the standard streams, this stream
is rebound. Thus, set_stream(S, current_input) is the same
as set_input/1, and by setting the alias of a stream to
user_input, etc., all user terminal input is read from this
stream. See also interactor/0.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Set the buffering mode of an already created stream. Buffer-
ing is one of full, line or false.
bbuuffffeerr__ssiizzee((_+_S_i_z_e))
Set the size of the I/O buffer of the underlying stream to
_S_i_z_e bytes.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not the stream is closed by abort/0. By
default, streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Set the close_on_exec property. See stream_property/2.
eennccooddiinngg((_A_t_o_m))
Defines the mapping between bytes and character codes used for
the stream. See section ???? for supported encodings. The
value bom causes the stream to check whether the current
character is a Unicode BOM marker. If a BOM marker is
found, the encoding is set accordingly and the call succeeds.
Otherwise the call fails.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Set end-of-file handling to one of eof_code, reset or error.
ffiillee__nnaammee((_F_i_l_e_N_a_m_e))
Set the filename associated to this stream. This call can be
used to set the file for error locations if _S_t_r_e_a_m corresponds
to _F_i_l_e_N_a_m_e and is not obtained by opening the file directly
but, for example, through a network service.
lliinnee__ppoossiittiioonn((_L_i_n_e_P_o_s))
Set the line position attribute of the stream. This feature
is intended to correct position management of the stream
after sending a terminal escape sequence (e.g., setting ANSI
character attributes). Setting this attribute raises a
permission error if the stream does not record positions. See
line_position/2 and stream_property/2(property position).
llooccaallee((_+_L_o_c_a_l_e))
Change the locale of the stream. See section ????.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
Set input or output translation for newlines. See correspond-
ing stream_property/2 for details. In addition to the detected
modes, an input stream can be set in mode detect. It will be
set to dos if a \r character was removed.
ttiimmeeoouutt((_S_e_c_o_n_d_s))
This option can be used to make streams generate an exception
if it takes longer than _S_e_c_o_n_d_s before any new data arrives
at the stream. The value _i_n_f_i_n_i_t_e (default) makes the
stream block indefinitely. Like wait_for_input/3, this call
only applies to streams that support the select() system
call. For further information about timeout handling, see
wait_for_input/3. The exception is of the form
error(timeout_error_(_r_e_a_d_, _S_t_r_e_a_m_)_, __)
ttyyppee((_T_y_p_e))
Set the type of the stream to one of text or binary. See also
open/4 and the encoding property of streams. Switching to
binary sets the encoding to octet. Switching to text sets the
encoding to the default text encoding.
rreeccoorrdd__ppoossiittiioonn((_B_o_o_l))
Do/do not record the line count and line posi-
tion (see line_count/2 and line_position/2). Calling
set_stream(S, record_position(true)) resets the position the
start of line 1.
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Change the behaviour when writing characters to the stream
that cannot be represented by the encoding. See also
stream_property/2 and section ????.
ttttyy((_B_o_o_l))
Modify whether Prolog thinks there is a terminal (i.e. human
interaction) connected to this stream. On Unix systems the
initial value comes from isatty(). On Windows, the initial
user streams are supposed to be associated to a terminal. See
also stream_property/2.
sseett__pprroolloogg__IIOO((_+_I_n_, _+_O_u_t_, _+_E_r_r_o_r))
Prepare the given streams for interactive behaviour normally
associated to the terminal. _I_n becomes the user_input and
current_input of the calling thread. _O_u_t becomes user_output
and current_output. If _E_r_r_o_r equals _O_u_t an unbuffered stream
is associated to the same destination and linked to user_error.
Otherwise _E_r_r_o_r is used for user_error. Output buffering for _O_u_t
is set to line and buffering on _E_r_r_o_r is disabled. See also
prolog/0 and set_stream/2. The _c_l_i_b package provides the library
prolog_server, creating a TCP/IP server for creating an interactive
session to Prolog.
44..1177..33 EEddiinnbbuurrgghh--ssttyyllee II//OO
The package for implicit input and output destinations is (almost)
compatible with Edinburgh DEC-10 and C-Prolog. The reading and writing
predicates refer to, resp., the _c_u_r_r_e_n_t input and output streams.
Initially these streams are connected to the terminal. The current
output stream is changed using tell/1 or append/1. The current input
stream is changed using see/1. The stream's current value can be
obtained using telling/1 for output and seeing/1 for input.
Source and destination are either a file, user, or a term
`pipe(_C_o_m_m_a_n_d)'. The reserved stream name user refers to the terminal.
In the predicate descriptions below we will call the source/destination
argument `_S_r_c_D_e_s_t'. Below are some examples of source/destination
specifications.
?- see(data). % Start reading from file `data'.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.
Another example of using the pipe/1 construct is shown below. Note
that the pipe/1 construct is not part of Prolog's standard I/O
repertoire.
________________________________________________________________________| |
|getwd(Wd) :- |
| seeing(Old), see(pipe(pwd)), |
| collect_wd(String), |
| seen, see(Old), |
| atom_codes(Wd, String). |
| |
|collect_wd([C|R]) :- |
| get0(C), C \== -1, !, |
| collect_wd(R). |
|collect_wd([]).|_______________________________________________________ | |
The effect of tell/1 is not undone on backtracking, and since the
stream handle is not specified explicitly in further I/O operations
when using Edinburgh-style I/O, you may write to unintended streams
more easily than when using ISO compliant I/O. For example, the
following query writes both "a" and "b" into the file `out' :
________________________________________________________________________| |
|?-|(tell(out),_write(a),_false_;_write(b)),_told.______________________ | |
CCoommppaattiibbiilliittyy nnootteess
Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return
the filename of the current input/output but rather the stream
identifier, to ensure the design pattern below works under all
circumstances:
________________________________________________________________________| |
| ..., |
| telling(Old), tell(x), |
| ..., |
| told, tell(Old), |
||_______...,___________________________________________________________ ||
The predicates tell/1 and see/1 first check for user, the pipe(_c_o_m_m_a_n_d)
and a stream handle. Otherwise, if the argument is an atom it is first
compared to open streams associated to a file with _e_x_a_c_t_l_y the same
name. If such a stream exists, created using tell/1 or see/1, output
(input) is switched to the open stream. Otherwise a file with the
specified name is opened.
The behaviour is compatible with Edinburgh Prolog. This is not without
problems. Changing directory, non-file streams, and multiple names
referring to the same file easily lead to unexpected behaviour. New
code, especially when managing multiple I/O channels, should consider
using the ISO I/O predicates defined in section ????.
sseeee((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for reading and make it the current input (see
set_input/1). If _S_r_c_D_e_s_t is a stream handle, just make this stream
the current input. See the introduction of section ???? for details.
tteellll((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for writing and make it the current output (see
set_output/1). If _S_r_c_D_e_s_t is a stream handle, just make this
stream the current output. See the introduction of section ???? for
details.
aappppeenndd((_+_F_i_l_e))
Similar to tell/1, but positions the file pointer at the end of
_F_i_l_e rather than truncating an existing file. The pipe construct
is not accepted by this predicate.
sseeeeiinngg((_?_S_r_c_D_e_s_t))
Same as current_input/1, except that user is returned if the
current input is the stream user_input to improve compatibility
with traditional Edinburgh I/O. See the introduction of section ????
for details.
tteelllliinngg((_?_S_r_c_D_e_s_t))
Same as current_output/1, except that user is returned if the
current output is the stream user_output to improve compatibility
with traditional Edinburgh I/O. See the introduction of section ????
for details.
sseeeenn
Close the current input stream. The new input stream becomes
user_input.
ttoolldd
Close the current output stream. The new output stream becomes
user_output.
44..1177..44 SSwwiittcchhiinngg bbeettwweeeenn EEddiinnbbuurrgghh aanndd IISSOO II//OO
The predicates below can be used for switching between the implicit and
the explicit stream-based I/O predicates.
sseett__iinnppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current input stream to become _S_t_r_e_a_m. Thus,
open(file, read, Stream), set_input(Stream) is equivalent to
see(file).
sseett__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current output stream to become _S_t_r_e_a_m. See also
with_output_to/2.
ccuurrrreenntt__iinnppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current input stream. Useful for getting access to the
status predicates associated with streams.
ccuurrrreenntt__oouuttppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current output stream.
44..1177..55 WWrriittee oonnttoo aattoommss,, ccooddee--lliissttss,, eettcc..
wwiitthh__oouuttppuutt__ttoo((_+_O_u_t_p_u_t_, _:_G_o_a_l))
Run _G_o_a_l as once/1, while characters written to the current
output are sent to _O_u_t_p_u_t. The predicate is SWI-Prolog-specific,
inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3,
term_to_atom/2, atom_number/2 converting numbers to atoms, etc. The
predicate format/3 accepts the same terms as output argument.
Applications should generally avoid creating atoms by breaking and
concatenating other atoms, as the creation of large numbers of
intermediate atoms generally leads to poor performance, even more
so in multithreaded applications. This predicate supports creating
difference lists from character data efficiently. The example
below defines the DCG rule term//1 to insert a term in the output:
____________________________________________________________________| |
| term(Term, In, Tail) :- |
| with_output_to(codes(In, Tail), write(Term)). |
| |
| ?- phrase(term(hello), X). |
| |
||X_=_[104,_101,_108,_108,_111]_____________________________________ ||
AA SSttrreeaamm hhaannddllee oorr aalliiaass
Temporarily switch current output to the given stream. Redi-
rection using with_output_to/2guarantees the original output
is restored, also if _G_o_a_l fails or raises an exception. See
also call_cleanup/2.
aattoomm((_-_A_t_o_m))
Create an atom from the emitted characters. Please note the
remark above.
ssttrriinngg((_-_S_t_r_i_n_g))
Create a string object as defined in section ????.
ccooddeess((_-_C_o_d_e_s))
Create a list of character codes from the emitted characters,
similar to atom_codes/2.
ccooddeess((_-_C_o_d_e_s_, _-_T_a_i_l))
Create a list of character codes as a difference list.
cchhaarrss((_-_C_h_a_r_s))
Create a list of one-character atoms from the emitted charac-
ters, similar to atom_chars/2.
cchhaarrss((_-_C_h_a_r_s_, _-_T_a_i_l))
Create a list of one-character atoms as a difference list.
44..1177..66 FFaasstt bbiinnaarryy tteerrmm II//OO
The predicates in this section provide fast binary I/O of arbitrary
Prolog terms, including cyclic terms and terms holding attributed
variables. Library fastrw is a SICSTus/Ciao compatible library that
extends the core primitives described below.
The binary representation the same as used by PL_record_external().
The use of these primitives instead of using write_canonical/2 has
advantages and disadvantages. Below are the main considerations:
o Using write_canonical/2 allows or exchange of terms with other
Prolog systems. The format is stable and, as it is text based, it
can be inspected and corrected.
o Using the binary format improves the performance roughly 3 times.
o The size of both representations is comparable.
o The binary format can deal with cycles, sharing and attributes.
Special precautions are needed to transfer such terms using
write_canonical/2. See term_factorized/3 and copy_term/3.
o In the current version, reading the binary format has only
incomplete consistency checks. This implies a user must be able
to ttrruusstt tthhee ssoouurrccee as crafted messages may compromise the reading
Prolog system.
ffaasstt__tteerrmm__sseerriiaalliizzeedd((_?_T_e_r_m_, _?_S_t_r_i_n_g))
(De-)serialize _T_e_r_m to/from _S_t_r_i_n_g.
ffaasstt__wwrriittee((_+_O_u_t_p_u_t_, _+_T_e_r_m))
Write _T_e_r_m using the fast serialization format to the _O_u_t_p_u_t
stream. _O_u_t_p_u_t _m_u_s_t be a binary stream.
ffaasstt__rreeaadd((_+_I_n_p_u_t_, _-_T_e_r_m))
Read _T_e_r_m using the fast serialization format from the _I_n_p_u_t
stream. _I_n_p_u_t _m_u_s_t be a binary stream.
44..1188 SSttaattuuss ooff ssttrreeaammss
wwaaiitt__ffoorr__iinnppuutt((_+_L_i_s_t_O_f_S_t_r_e_a_m_s_, _-_R_e_a_d_y_L_i_s_t_, _+_T_i_m_e_O_u_t)) _[_d_e_t_]
Wait for input on one of the streams in _L_i_s_t_O_f_S_t_r_e_a_m_s and return
a list of streams on which input is available in _R_e_a_d_y_L_i_s_t.
wait_for_input/3 waits for at most _T_i_m_e_O_u_t seconds. _T_i_m_e_O_u_t may
be specified as a floating point number to specify fractions of
a second. If _T_i_m_e_O_u_t equals infinite, wait_for_input/3 waits
indefinitely. If _T_i_m_e_o_u_t is 0 or 0.0 this predicate returns
without waiting.
This predicate can be used to implement timeout while reading and
to handle input from multiple sources and is typically used to wait
for multiple (network) sockets. On Unix systems it may be used
on any stream that is associated with a system file descriptor.
On Windows it can only be used on sockets. If _L_i_s_t_O_f_S_t_r_e_a_m_s
contains a stream that is not associated with a supported device, a
domain_error(_w_a_i_t_a_b_l_e___s_t_r_e_a_m_, _S_t_r_e_a_m) is raised.
The example below waits for input from the user and an explicitly
opened secondary terminal stream. On return, _I_n_p_u_t_s may hold
user_input or _P_4 or both.
____________________________________________________________________| |
| ?- open('/dev/ttyp4', read, P4), |
||___wait_for_input([user_input,_P4],_Inputs,_0).___________________ ||
When available, the implementation is based on the poll() system
call. The poll() puts no additional restriction on the number
of open files the process may have. It does limit the time
to 231-1 milliseconds (a bit less than 25 days). Specifying a
too large timeout raises a representation_error(_t_i_m_e_o_u_t) exception.
If poll() is not supported by the OS, select() is used. The
select() call can only handle file descriptors up to FD_SETSIZE.
If the set contains a descriptor that exceeds this limit a
representation_error(_'_F_D___S_E_T_S_I_Z_E_') is raised.
Note that wait_for_input/3 returns streams that have data waiting.
This does not mean you can, for example, call read/2 on the
stream without blocking as the stream might hold an incomplete
term. The predicate set_stream/2 using the option timeout(_S_e_c_o_n_d_s)
can be used to make the stream generate an exception if no new
data arrives within the timeout period. Suppose two processes
communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:
____________________________________________________________________| |
| ..., |
| tcp_accept(Server, Socket, _Peer), |
| tcp_open(Socket, In, Out), |
| set_stream(In, timeout(10)), |
| catch(read(In, Term), _, (close(Out), close(In), fail)), |
||____...,__________________________________________________________ ||
bbyyttee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Byte position in _S_t_r_e_a_m. For binary streams this is the same as
character_count/2. For text files the number may be different due
to multi-byte encodings or additional record separators (such as
Control-M in Windows).
cchhaarraacctteerr__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the current character index. For input streams
this is the number of characters read since the open; for output
streams this is the number of characters written. Counting starts
at 0.
lliinnee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the number of lines read or written. Counting
starts at 1.
lliinnee__ppoossiittiioonn((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the position on the current line. Note that this
assumes the position is 0 after the open. Tabs are assumed to
be defined on each 8-th character, and backspaces are assumed to
reduce the count by one, provided it is positive.
44..1199 PPrriimmiittiivvee cchhaarraacctteerr II//OO
See section ???? for an overview of supported character representations.
nnll _[_I_S_O_]
Write a newline character to the current output stream. On Unix
systems nl/0 is equivalent to put(10).
nnll((_+_S_t_r_e_a_m)) _[_I_S_O_]
Write a newline to _S_t_r_e_a_m.
ppuutt((_+_C_h_a_r))
Write _C_h_a_r to the current output stream. _C_h_a_r is either an
integer expression evaluating to a character code or an atom of
one character. Deprecated. New code should use put_char/1 or
put_code/1.
ppuutt((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Write _C_h_a_r to _S_t_r_e_a_m. See put/1 for details.
ppuutt__bbyyttee((_+_B_y_t_e)) _[_I_S_O_]
Write a single byte to the output. _B_y_t_e must be an integer between
0 and 255.
ppuutt__bbyyttee((_+_S_t_r_e_a_m_, _+_B_y_t_e)) _[_I_S_O_]
Write a single byte to _S_t_r_e_a_m. _B_y_t_e must be an integer between 0
and 255.
ppuutt__cchhaarr((_+_C_h_a_r)) _[_I_S_O_]
Write a character to the current output, obeying the encoding
defined for the current output stream. Note that this may raise
an exception if the encoding of the output stream cannot represent
_C_h_a_r.
ppuutt__cchhaarr((_+_S_t_r_e_a_m_, _+_C_h_a_r)) _[_I_S_O_]
Write a character to _S_t_r_e_a_m, obeying the encoding defined for
_S_t_r_e_a_m. Note that this may raise an exception if the encoding of
_S_t_r_e_a_m cannot represent _C_h_a_r.
ppuutt__ccooddee((_+_C_o_d_e)) _[_I_S_O_]
Similar to put_char/1, but using a _c_h_a_r_a_c_t_e_r _c_o_d_e. _C_o_d_e is a
non-negative integer. Note that this may raise an exception if the
encoding of the output stream cannot represent _C_o_d_e.
ppuutt__ccooddee((_+_S_t_r_e_a_m_, _+_C_o_d_e)) _[_I_S_O_]
Same as put_code/1 but directing _C_o_d_e to _S_t_r_e_a_m.
ttaabb((_+_A_m_o_u_n_t))
Write _A_m_o_u_n_t spaces on the current output stream. _A_m_o_u_n_t should
be an expression that evaluates to a positive integer (see
section ????).
ttaabb((_+_S_t_r_e_a_m_, _+_A_m_o_u_n_t))
Write _A_m_o_u_n_t spaces to _S_t_r_e_a_m.
fflluusshh__oouuttppuutt _[_I_S_O_]
Flush pending output on current output stream. flush_output/0 is
automatically generated by read/1 and derivatives if the current
input stream is user and the cursor is not at the left margin.
fflluusshh__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Flush output on the specified stream. The stream must be open for
writing.
ttttyyfflluusshh
Flush pending output on stream user. See also flush_output/[0,1].
ggeett__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
Read the current input stream and unify the next byte with _B_y_t_e (an
integer between 0 and 255). _B_y_t_e is unified with -1 on end of
file.
ggeett__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
Read the next byte from _S_t_r_e_a_m and unify _B_y_t_e with an integer
between 0 and 255.
ggeett__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
Read the current input stream and unify _C_o_d_e with the character
code of the next character. _C_o_d_e is unified with -1 on end of
file. See also get_char/1.
ggeett__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
Read the next character code from _S_t_r_e_a_m.
ggeett__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
Read the current input stream and unify _C_h_a_r with the next
character as a one-character atom. See also atom_chars/2. On
end-of-file, _C_h_a_r is unified to the atom end_of_file.
ggeett__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Unify _C_h_a_r with the next character from _S_t_r_e_a_m as a one-character
atom. See also get_char/2, get_byte/2 and get_code/2.
ggeett00((_-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Edinburgh version of the ISO get_code/1 predicate. Note that
Edinburgh Prolog didn't support wide characters and therefore
technically speaking get0/1 should have been mapped to get_byte/1.
The intention of get0/1, however, is to read character codes.
ggeett00((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Edinburgh version of the ISO get_code/2 predicate. See also
get0/1.
ggeett((_-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Read the current input stream and unify the next non-blank
character with _C_h_a_r. _C_h_a_r is unified with -1 on end of file. The
predicate get/1 operates on character _c_o_d_e_s. See also get0/1.
ggeett((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Read the next non-blank character from _S_t_r_e_a_m. See also get/1,
get0/1 and get0/2.
ppeeeekk__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
ppeeeekk__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Read the next byte/code/char from the input without removing
it. These predicates do not modify the stream's position or
end-of-file status. These predicates require a buffered stream
(see set_stream/2) and raise a permission error if the stream
is unbuffered or the buffer is too small to hold the longest
multi-byte sequence that might need to be buffered.
ppeeeekk__ssttrriinngg((_+_S_t_r_e_a_m_, _+_L_e_n_, _-_S_t_r_i_n_g))
Read the next _L_e_n characters (if the stream is a text stream) or
bytes (if the stream is binary) from Stream without removing the
data. If _L_e_n is larger that the stream buffer size, the buffer
size is increased to _L_e_n. _S_t_r_i_n_g can be shorter than _L_e_n if the
stream contains less data. This predicate is intended to guess the
content type of data read from non-repositionable streams.
sskkiipp((_+_C_o_d_e))
Read the input until _C_o_d_e or the end of the file is encountered. A
subsequent call to get_code/1 will read the first character after
_C_o_d_e.
sskkiipp((_+_S_t_r_e_a_m_, _+_C_o_d_e))
Skip input (as skip/1) on _S_t_r_e_a_m.
ggeett__ssiinnggllee__cchhaarr((_-_C_o_d_e))
Get a single character from input stream `user' (regardless of the
current input stream). Unlike get_code/1, this predicate does not
wait for a return. The character is not echoed to the user's
terminal. This predicate is meant for keyboard menu selection,
etc. If SWI-Prolog was started with the -tty option this predicate
reads an entire line of input and returns the first non-blank
character on this line, or the character code of the newline (10)
if the entire line consisted of blank characters.
aatt__eenndd__ooff__ssttrreeaamm _[_I_S_O_]
Succeeds after the last character of the current input stream has
been read. Also succeeds if there is no valid current input
stream.
aatt__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m)) _[_I_S_O_]
Succeeds after the last character of the named stream is read, or
_S_t_r_e_a_m is not a valid input stream. The end-of-stream test is only
available on buffered input streams (unbuffered input streams are
rarely used; see open/4).
sseett__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m))
Set the size of the file opened as _S_t_r_e_a_m to the current file
position. This is typically used in combination with the open-mode
update.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t_, _+_L_e_n))
Copy _L_e_n codes from _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t. Note that the copy is
done using the semantics of get_code/2 and put_code/2, taking care
of possibly recoding that needs to take place between two text
files. See section ????.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t))
Copy all (remaining) data from _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t.
ffiillll__bbuuffffeerr((_+_S_t_r_e_a_m)) _[_d_e_t_]
Fill the _S_t_r_e_a_m's input buffer. Subsequent calls try to read
more input until the buffer is completely filled. This predicate
is used together with read_pending_codes/3 to process input with
minimal buffering.
rreeaadd__ppeennddiinngg__ccooddeess((_+_S_t_r_e_a_m_I_n_, _-_C_o_d_e_s_, _?_T_a_i_l))
Read input pending in the input buffer of _S_t_r_e_a_m_I_n and return it in
the difference list _C_o_d_e_s-_T_a_i_l. That is, the available characters
codes are used to create the list _C_o_d_e_s ending in the tail _T_a_i_l.
On encountering end-of-file, both _C_o_d_e_s and _T_a_i_l are unified with
the empty list ([]).
This predicate is intended for efficient unbuffered copying and
filtering of input coming from network connections or devices. It
also enables the library pure_input, which processes input from
files and streams using a DCG.
The following code fragment realises efficient non-blocking copying
of data from an input to an output stream. The at_end_of_stream/1
call checks for end-of-stream and fills the input buffer. Note
that the use of a get_code/2 and put_code/2 based loop requires a
flush_output/1 call after _e_a_c_h put_code/2. The copy_stream_data/2
does not allow for inspection of the copied data and suffers from
the same buffering issues.
____________________________________________________________________| |
| copy(In, Out) :- |
| repeat, |
| fill_buffer(In), |
| read_pending_codes(In, Chars, Tail), |
| \+ \+ ( Tail = [], |
| format(Out, '~s', [Chars]), |
| flush_output(Out) |
| ), |
| ( Tail == [] |
| -> ! |
| ; fail |
||____________).____________________________________________________ ||
rreeaadd__ppeennddiinngg__cchhaarrss((_+_S_t_r_e_a_m_I_n_, _-_C_h_a_r_s_, _?_T_a_i_l))
As read_pending_codes/3, but returns a difference list of one-
character atoms.
44..2200 TTeerrmm rreeaaddiinngg aanndd wwrriittiinngg
This section describes the basic term reading and writing predicates.
The predicates format/[1,2] and writef/2 provide formatted output.
Writing to Prolog data structures such as atoms or code-lists is
supported by with_output_to/2and format/3.
Reading is sensitive to the Prolog flag character_escapes, which
controls the interpretation of the \ character in quoted atoms and
strings.
wwrriittee__tteerrmm((_+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
The predicate write_term/2 is the generic form of all Prolog
term-write predicates. Valid options are:
aattttrriibbuutteess((_A_t_o_m))
Define how attributed variables (see section ????) are written.
The default is determined by the Prolog flag write_attributes.
Defined values are ignore (ignore the attribute), dots (write
the attributes as {...}), write (simply hand the attributes
recursively to write_term/2) and portray (hand the attributes
to attr_portray_hook/2).
bbaacckk__qquuootteess((_A_t_o_m))
Fulfills the same role as the back_quotes prolog flag.
Notably, the value string causes string objects to be printed
between back quotes and symbol_char causes the backquote to be
printed unquoted. In all other cases the backquote is printed
as a quoted atom.
bbrraaccee__tteerrmmss((_B_o_o_l))
If true (default), write {}(X) as {X}. See also dotlists and
ignore_ops.
bblloobbss((_A_t_o_m))
Define how non-text blobs are handled. By default, this is
left to the write handler specified with the blob type. Using
portray, portray/1 is called for each blob encountered. See
section ????.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
If true and quoted(_t_r_u_e) is active, special characters in
quoted atoms and strings are emitted as ISO escape sequences.
Default is taken from the reference module (see below).
ccyycclleess((_B_o_o_l))
If true (default), cyclic terms are written as @(_T_e_m_p_l_a_t_e_,
_S_u_b_s_t_i_t_u_t_i_o_n_s), where _S_u_b_s_t_i_t_u_t_i_o_n_s is a list _V_a_r = _V_a_l_u_e. If
cycles is false, max_depth is not given, and _T_e_r_m is cyclic,
write_term/2 raises a domain_error. See also the cycles option
in read_term/2.
ddoottlliissttss((_B_o_o_l))
If true (default false), write lists using the dotted term
notation rather than the list notation. Note that as
of version 7, the list constructor is '[|]'. Using
dotlists(_t_r_u_e), write_term/2 writes a list using `.' as
constructor. This is intended for communication with programs
such as other Prolog systems, that rely on this notation.
ffuullllssttoopp((_B_o_o_l))
If true (default false), add a fullstop token to the output.
The dot is preceeded by a space if needed and followed by
a space (default) or newline if the nl(_t_r_u_e) option is also
given.
iiggnnoorree__ooppss((_B_o_o_l))
If true, the generic term representation (<_f_u_n_c_t_o_r>(<_a_r_g_s> ...))
will be used for all terms. Otherwise (default), operators
will be used where appropriate..
mmaaxx__ddeepptthh((_I_n_t_e_g_e_r))
If the term is nested deeper than _I_n_t_e_g_e_r, print the remainder
as ellipses (...). A 0 (zero) value (default) imposes no
depth limit. This option also delimits the number of printed
items in a list. Example:
_______________________________________________________________| |
|?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), |
| [max_depth(3)]). |
|a(s(s(...)), [a, b|...]) |
|true.|________________________________________________________ | |
Used by the top level and debugger to limit screen
output. See also the Prolog flags answer_write_options and
debugger_write_options.
mmoodduullee((_M_o_d_u_l_e))
Define the reference module (default user). This defines the
default value for the character_escapes option as well as the
operator definitions to use. See also op/3.
nnll((_B_o_o_l))
Add a newline to the output. See also the fullstop option.
nnuummbbeerrvvaarrss((_B_o_o_l))
If true, terms of the format $VAR(N), where _N is a non-
negative integer, will be written as a variable name. If _N is
an atom it is written without quotes. This extension allows
for writing variables with user-provided names. The default
is false. See also numbervars/3 and the option variable_names.
ppaarrttiiaall((_B_o_o_l))
If true (default false), do not reset the logic that inserts
extra spaces that separate tokens where needed. This is
intended to solve the problems with the code below. Calling
write_value(.) writes .., which cannot be read. By adding
partial(_t_r_u_e) to the option list, it correctly emits . ..
Similar problems appear when emitting operators using multiple
calls to write_term/3.
_______________________________________________________________| |
|write_value(Value) :- |
| write_term(Value, [partial(true)]), |
||_______write('.'),_nl._______________________________________ ||
ppoorrttrraayy((_B_o_o_l))
Same as portrayed(_B_o_o_l). Deprecated.
ppoorrttrraayy__ggooaall((_:_G_o_a_l))
Implies portray(_t_r_u_e), but calls _G_o_a_l rather than the prede-
fined hook portray/1. _G_o_a_l is called through call/3, where
the first argument is _G_o_a_l, the second is the term to be
printed and the 3rd argument is the current write option list.
The write option list is copied from the write_term call,
but the list is guaranteed to hold an option priority that
reflects the current priority.
ppoorrttrraayyeedd((_B_o_o_l))
If true, the hook portray/1 is called before printing a term
that is not a variable. If portray/1 succeeds, the term is
considered printed. See also print/1. The default is false.
This option is an extension to the ISO write_term options.
pprriioorriittyy((_I_n_t_e_g_e_r))
An integer between 0 and 1200 representing the `context
priority'. Default is 1200. Can be used to write partial
terms appearing as the argument to an operator. For example:
_______________________________________________________________| |
| format('~w = ', [VarName]), |
||_______write_term(Value,_[quoted(true),_priority(699)])______ ||
qquuootteedd((_B_o_o_l))
If true, atoms and functors that need quotes will be quoted.
The default is false.
ssppaacciinngg((_+_S_p_a_c_i_n_g))
Determines whether and where extra white space is added to
enhance readability. The default is standard, adding only
space where needed for proper tokenization by read_term/3.
Currently, the only other value is next_argument, adding a
space after a comma used to separate arguments in a term or
list.
vvaarriiaabbllee__nnaammeess((_+_L_i_s_t))
Assign names to variables in _T_e_r_m. _L_i_s_t is a list of terms
_N_a_m_e = _V_a_r, where _N_a_m_e is an atom that represents a valid
Prolog variable name. Terms where _V_a_r is bound or is a
variable that does not appear in _T_e_r_m are ignored. Raises an
error if _L_i_s_t is not a list, one of the members is not a term
_N_a_m_e = _V_a_r, _N_a_m_e is not an atom or _N_a_m_e does not represent a
valid Prolog variable name.
The implementation binds the variables from _L_i_s_t to a term
'$VAR'(_N_a_m_e). Like write_canonical/1, terms that where already
bound to '$VAR'(_X) before write_term/2 are printed normally,
unless the option numbervars(_t_r_u_e) is also provided. If the
option numbervars(_t_r_u_e) is used, the user is responsible for
avoiding collisions between assigned names and numbered names.
See also the variable_names option of read_term/2.
Possible variable attributes (see section ????) are ignored. In
most cases one should use copy_term/3 to obtain a copy that
is free of attributed variables and handle the associated
constraints as appropriate for the use-case.
wwrriittee__tteerrmm((_+_S_t_r_e_a_m_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
As write_term/2, but output is sent to _S_t_r_e_a_m rather than the
current output.
wwrriittee__lleennggtthh((_+_T_e_r_m_, _-_L_e_n_g_t_h_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
True when _L_e_n_g_t_h is the number of characters emitted for
_w_r_i_t_e___t_e_r_mTerm, Options. In addition to valid options for
write_term/2, it processes the option:
mmaaxx__lleennggtthh((_+_M_a_x_L_e_n_g_t_h))
If provided, fail if _L_e_n_g_t_h would be larger than _M_a_x_L_e_n_g_t_h.
The implementation ensures that the runtime is limited when
computing the length of a huge term with a bounded maximum.
wwrriittee__ccaannoonniiccaall((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m on the current output stream using standard paren-
thesised prefix notation (i.e., ignoring operator declarations).
Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator
declarations. Equivalent to write_term/2 using the options
ignore_ops, quoted and numbervars after numbervars/4 using the
singletons option.
Note that due to the use of numbervars/4, non-ground terms must be
written using a _s_i_n_g_l_e write_canonical/1 call. This used to be
the case anyhow, as garbage collection between multiple calls to
one of the write predicates can change the _G<NNN> identity of the
variables.
wwrriittee__ccaannoonniiccaall((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m in canonical form on _S_t_r_e_a_m.
wwrriittee((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate.
wwrriittee((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m.
wwrriitteeqq((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate. Atoms that need quotes are quoted. Terms
written with this predicate can be read back with read/1 provided
the currently active operator declarations are identical.
wwrriitteeqq((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m, inserting quotes.
wwrriitteellnn((_+_T_e_r_m))
Equivalent to write(Term), nl.. The output stream is locked, which
implies no output from other threads can appear between the term
and newline.
wwrriitteellnn((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Equivalent to write(Stream, Term), nl(Stream).. The output stream
is locked, which implies no output from other threads can appear
between the term and newline.
pprriinntt((_+_T_e_r_m))
Print a term for debugging purposes. The predicate print/1 acts as
if defined as below.
____________________________________________________________________| |
| print(Term) :- |
| current_prolog_flag(print_write_options, Options), !, |
| write_term(Term, Options). |
| print(Term) :- |
| write_term(Term, [ portray(true), |
| numbervars(true), |
| quoted(true) |
||_____________________]).__________________________________________ ||
The print/1 predicate is used primarily through the ~p escape
sequence of format/2, which is commonly used in the recipies used
by print_message/2 to emit messages.
The classical definition of this predicate is equivalent to the
ISO predicate write_term/2 using the options portray(_t_r_u_e) and
numbervars(_t_r_u_e). The portray(_t_r_u_e) option allows the user to
implement application-specific printing of terms printed during
debugging to facilitate easy understanding of the output. See also
portray/1 and portray_text. SWI-Prolog adds quoted(_t_r_u_e) to (1)
facilitate the copying/pasting of terms that are not affected by
portray/1 and to (2) allow numbers, atoms and strings to be more
easily distinguished, e.g., 42, '42' and "42".
pprriinntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Print _T_e_r_m to _S_t_r_e_a_m.
ppoorrttrraayy((_+_T_e_r_m))
A dynamic predicate, which can be defined by the user to change the
behaviour of print/1 on (sub)terms. For each subterm encountered
that is not a variable print/1 first calls portray/1 using the term
as argument. For lists, only the list as a whole is given to
portray/1. If portray/1 succeeds print/1 assumes the term has been
written.
rreeaadd((_-_T_e_r_m)) _[_I_S_O_]
Read the next Prolog term from the current input stream and unify
it with _T_e_r_m. On a syntax error read/1 displays an error message,
attempts to skip the erroneous term and fails. On reaching
end-of-file _T_e_r_m is unified with the atom end_of_file.
rreeaadd((_+_S_t_r_e_a_m_, _-_T_e_r_m)) _[_I_S_O_]
Read _T_e_r_m from _S_t_r_e_a_m.
rreeaadd__ccllaauussee((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Equivalent to read_term/3, but sets options according to the
current compilation context and optionally processes comments.
Defined options:
ssyynnttaaxx__eerrrroorrss((_+_A_t_o_m))
See read_term/3, but the default is dec10 (report and restart).
tteerrmm__ppoossiittiioonn((_-_T_e_r_m_P_o_s))
Same as for read_term/3.
ssuubbtteerrmm__ppoossiittiioonnss((_-_T_e_r_m_P_o_s))
Same as for read_term/3.
vvaarriiaabbllee__nnaammeess((_-_B_i_n_d_i_n_g_s))
Same as for read_term/3.
pprroocceessss__ccoommmmeenntt((_+_B_o_o_l_e_a_n))
If true (default), call prolog:comment_hook(_C_o_m_m_e_n_t_s_, _T_e_r_m_P_o_s_,
_T_e_r_m) if this multifile hook is defined (see pro-
log:comment_hook/3). This is used to drive PlDoc.
ccoommmmeennttss((_-_C_o_m_m_e_n_t_s))
If provided, unify _C_o_m_m_e_n_t_s with the comments encountered
while reading _T_e_r_m. This option implies pro-
cess_comment(_f_a_l_s_e).
The singletons option of read_term/3is initialised from the active
style-checking mode. The module option is initialised to the
current compilation module (see prolog_load_context/2).
rreeaadd__tteerrmm((_-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read a term from the current input stream and unify the term with
_T_e_r_m. The reading is controlled by options from the list of
_O_p_t_i_o_n_s. If this list is empty, the behaviour is the same as for
read/1. The options are upward compatible with Quintus Prolog.
The argument order is according to the ISO standard. Syntax
errors are always reported using exception-handling (see catch/3).
Options:
bbaacckkqquuootteedd__ssttrriinngg((_B_o_o_l))
If true, read `...` to a string object (see section ????). The
default depends on the Prolog flag back_quotes.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
Defines how to read \ escape sequences in quoted atoms. See
the Prolog flag character_escapes in current_prolog_flag/2.
(SWI-Prolog).
ccoommmmeennttss((_-_C_o_m_m_e_n_t_s))
Unify _C_o_m_m_e_n_t_s with a list of _P_o_s_i_t_i_o_n-_C_o_m_m_e_n_t, where _P_o_s_i_t_i_o_n
is a stream position object (see stream_position_data/3)
indicating the start of a comment and _C_o_m_m_e_n_t is a string
object containing the text including delimiters of a comment.
It returns all comments from where the read_term/2 call started
up to the end of the term read.
ccyycclleess((_B_o_o_l))
If true (default false), re-instantiate templates as produced
by the corresponding write_term/2 option. Note that the
default is false to avoid misinterpretation of @(_T_e_m_p_l_a_t_e_,
_S_u_b_s_t_u_t_i_o_n_s), while the default of write_term/2 is true because
emitting cyclic terms without using the template construct
produces an infinitely large term (read: it will generate an
error after producing a huge amount of output).
ddoottlliissttss((_B_o_o_l))
If true (default false), read .(a,[]) as a list, even if lists
are internally nor constructed using the dot as functor. This
is primarily intended to read the output from write_canonical/1
from other Prolog systems. See section ????.
ddoouubbllee__qquuootteess((_A_t_o_m))
Defines how to read "..." strings. See the Prolog flag
double_quotes. (SWI-Prolog).
mmoodduullee((_M_o_d_u_l_e))
Specify _M_o_d_u_l_e for operators, character_escapes flag and
double_quotes flag. The value of the latter two is overruled
if the corresponding read_term/3 option is provided. If no
module is specified, the current `source module' is used.
(SWI-Prolog).
qquuaassii__qquuoottaattiioonnss((_-_L_i_s_t))
If present, unify _L_i_s_t with the quasi quotations (see sec-
tion ????) instead of evaluating quasi quotations. Each quasi
quotation is a term quasi_quotation(_+_S_y_n_t_a_x_, _+_Q_u_o_t_a_t_i_o_n_, _+_V_a_r_-
_D_i_c_t_, _-_R_e_s_u_l_t), where _S_y_n_t_a_x is the term in {|Syntax||..|},
_Q_u_o_t_a_t_i_o_n is a list of character codes that represent the
quotation, _V_a_r_D_i_c_t is a list of _N_a_m_e=_V_a_r_i_a_b_l_e and _R_e_s_u_l_t is a
variable that shares with the place where the quotation must
be inserted. This option is intended to support tools that
manipulate Prolog source text.
ssiinngglleettoonnss((_V_a_r_s))
As variable_names, but only reports the variables occurring
only once in the _T_e_r_m read. Variables starting with an
underscore (`_') are not included in this list. (ISO). If
_V_a_r_s is the constant warning, singleton variables are reported
using print_message/2. The variables appear in the order they
have been read.
ssyynnttaaxx__eerrrroorrss((_A_t_o_m))
If error (default), throw an exception on a syntax error.
Other values are fail, which causes a message to be printed
using print_message/2, after which the predicate fails, quiet
which causes the predicate to fail silently, and dec10 which
causes syntax errors to be printed, after which read_term/[2,3]
continues reading the next term. Using dec10, read_term/[2,3]
never fails. (Quintus, SICStus).
ssuubbtteerrmm__ppoossiittiioonnss((_T_e_r_m_P_o_s))
Describes the detailed layout of the term. The formats for
the various types of terms are given below. All positions are
character positions. If the input is related to a normal
stream, these positions are relative to the start of the
input; when reading from the terminal, they are relative to
the start of the term.
_F_r_o_m--_T_o
Used for primitive types (atoms, numbers, variables).
ssttrriinngg__ppoossiittiioonn((_F_r_o_m_, _T_o))
Used to indicate the position of a string enclosed in
double quotes (").
bbrraaccee__tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _A_r_g))
Term of the form {...}, as used in DCG rules. _A_r_g
describes the argument.
lliisstt__ppoossiittiioonn((_F_r_o_m_, _T_o_, _E_l_m_s_, _T_a_i_l))
A list. _E_l_m_s describes the positions of the elements.
If the list specifies the tail as |<TailTerm>, _T_a_i_l is
unified with the term position of the tail, otherwise with
the atom none.
tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _F_F_r_o_m_, _F_T_o_, _S_u_b_P_o_s))
Used for a compound term not matching one of the above.
_F_F_r_o_m and _F_T_o describe the position of the functor.
_S_u_b_P_o_s is a list, each element of which describes the term
position of the corresponding subterm.
ddiicctt__ppoossiittiioonn((_F_r_o_m_, _T_o_, _T_a_g_F_r_o_m_, _T_a_g_T_o_, _K_e_y_V_a_l_u_e_P_o_s_L_i_s_t))
Used for a dict (see section ????). The position of
the key-value pairs is described by _K_e_y_V_a_l_u_e_P_o_s_L_i_s_t,
which is a list of key_value_position/7 terms. The
key_value_position/7 terms appear in the order of the
input. Because maps to not preserve ordering, the key is
provided in the position description.
kkeeyy__vvaalluuee__ppoossiittiioonn((_F_r_o_m_, _T_o_, _S_e_p_F_r_o_m_, _S_e_p_T_o_, _K_e_y_, _K_e_y_P_o_s_, _V_a_l_u_e_P_o_s))
Used for key-value pairs in a map (see section ????). It
is similar to the term_position/5 that would be created,
except that the key and value positions do not need an
intermediate list and the key is provided in _K_e_y to enable
synchronisation of the file position data with the data
structure.
ppaarreenntthheesseess__tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _C_o_n_t_e_n_t_P_o_s))
Used for terms between parentheses. This is an extension
compared to the original Quintus specification that was
considered necessary for secure refactoring of terms.
qquuaassii__qquuoottaattiioonn__ppoossiittiioonn((_F_r_o_m_, _T_o_, _S_y_n_t_a_x_F_r_o_m_, _S_y_n_t_a_x_T_o_, _C_o_n_t_e_n_t_P_o_s))
Used for quasi quotations.
tteerrmm__ppoossiittiioonn((_P_o_s))
Unifies _P_o_s with the starting position of the term read. _P_o_s
is of the same format as used by stream_property/2.
vvaarr__pprreeffiixx((_B_o_o_l))
If true, demand variables to start with an underscore. See
section ????.
vvaarriiaabblleess((_V_a_r_s))
Unify _V_a_r_s with a list of variables in the term. The
variables appear in the order they have been read. See also
term_variables/2. (ISO).
vvaarriiaabbllee__nnaammeess((_V_a_r_s))
Unify _V_a_r_s with a list of `_N_a_m_e = _V_a_r', where _N_a_m_e is an atom
describing the variable name and _V_a_r is a variable that shares
with the corresponding variable in _T_e_r_m. (ISO). The variables
appear in the order they have been read.
rreeaadd__tteerrmm((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read term with options from _S_t_r_e_a_m. See read_term/2.
rreeaadd__tteerrmm__ffrroomm__aattoomm((_+_A_t_o_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Use read_term/3 to read the next term from _A_t_o_m. _A_t_o_m is either
an atom or a string object (see section ????). It is not required
for _A_t_o_m to end with a full-stop. This predicate supersedes
atom_to_term/3.
rreeaadd__hhiissttoorryy((_+_S_h_o_w_, _+_H_e_l_p_, _+_S_p_e_c_i_a_l_, _+_P_r_o_m_p_t_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Similar to read_term/2 using the option variable_names, but allows
for history substitutions. read_history/6is used by the top level
to read the user's actions. _S_h_o_w is the command the user should
type to show the saved events. _H_e_l_p is the command to get an
overview of the capabilities. _S_p_e_c_i_a_l is a list of commands that
are not saved in the history. _P_r_o_m_p_t is the first prompt given.
Continuation prompts for more lines are determined by prompt/2.
A %w in the prompt is substituted by the event number. See
section ???? for available substitutions.
SWI-Prolog calls read_history/6 as follows:
____________________________________________________________________| |
||read_history(h,_'!h',_[trace],_'%w_?-_',_Goal,_Bindings)__________ ||
pprroommpptt((_-_O_l_d_, _+_N_e_w))
Set prompt associated with read/1 and its derivatives. _O_l_d is
first unified with the current prompt. On success the prompt will
be set to _N_e_w if this is an atom. Otherwise an error message is
displayed. A prompt is printed if one of the read predicates is
called and the cursor is at the left margin. It is also printed
whenever a newline is given and the term has not been terminated.
Prompts are only printed when the current input stream is _u_s_e_r.
pprroommpptt11((_+_P_r_o_m_p_t))
Sets the prompt for the next line to be read. Continuation lines
will be read using the prompt defined by prompt/2.
44..2211 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg TTeerrmmss
ffuunnccttoorr((_?_T_e_r_m_, _?_N_a_m_e_, _?_A_r_i_t_y)) _[_I_S_O_]
True when _T_e_r_m is a term with functor _N_a_m_e/_A_r_i_t_y. If _T_e_r_m is a
variable it is unified with a new term whose arguments are all
different variables (such a term is called a skeleton). If _T_e_r_m is
atomic, _A_r_i_t_y will be unified with the integer 0, and _N_a_m_e will be
unified with _T_e_r_m. Raises instantiation_error if _T_e_r_m is unbound
and _N_a_m_e/_A_r_i_t_y is insufficiently instantiated.
SWI-Prolog also supports terms with arity 0, as in a()
(see section ????. Such terms must be processed using
compound_name_arity/3. The predicate functor/3 and =../2 raise a
domain_error when faced with these terms. Without this precaution,
the inconsistency demonstrated below could happen silently.
____________________________________________________________________| |
| ?- functor(a(), N, A). |
| N = a, A = 0. |
| ?- functor(T, a, 0). |
||T_=_a.____________________________________________________________ ||
aarrgg((_?_A_r_g_, _+_T_e_r_m_, _?_V_a_l_u_e)) _[_I_S_O_]
_T_e_r_m should be instantiated to a term, _A_r_g to an integer between
1 and the arity of _T_e_r_m. _V_a_l_u_e is unified with the _A_r_g-th
argument of _T_e_r_m. _A_r_g may also be unbound. In this case _V_a_l_u_e
will be unified with the successive arguments of the term. On
successful unification, _A_r_g is unified with the argument number.
Backtracking yields alternative solutions. The predicate arg/3
fails silently if _A_r_g= 0 or _A_r_g > _a_r_i_t_y and raises the exception
domain_error(not_less_than_zero, _A_r_g)if _A_r_g <0.
_?_T_e_r_m =.. _?_L_i_s_t _[_I_S_O_]
_L_i_s_t is a list whose head is the functor of _T_e_r_m and the remaining
arguments are the arguments of the term. Either side of the
predicate may be a variable, but not both. This predicate is
called `Univ'.
____________________________________________________________________| |
| ?- foo(hello, X) =.. List. |
| List = [foo, hello, X] |
| |
| ?- Term =.. [baz, foo(1)]. |
||Term_=_baz(foo(1))________________________________________________ ||
SWI-Prolog also supports terms with arity 0, as in a()
(see section ????. Such terms must be processed using
compound_name_arguments/3. This predicate raises a domain error as
shown below. See also functor/3.
____________________________________________________________________| |
| ?- a() =.. L. |
||ERROR:_Domain_error:_`compound_non_zero_arity'_expected,_found_`a()'||_
ccoommppoouunndd__nnaammee__aarriittyy((_?_C_o_m_p_o_u_n_d_, _?_N_a_m_e_, _?_A_r_i_t_y))
Rationalized version of functor/3 that only works for compound
terms and can examine and create compound terms with zero arguments
(e.g, name(). See also compound_name_arguments/3.
ccoommppoouunndd__nnaammee__aarrgguummeennttss((_?_C_o_m_p_o_u_n_d_, _?_N_a_m_e_, _?_A_r_g_u_m_e_n_t_s))
Rationalized version of =../2 that can compose and decompose com-
pound terms with zero arguments. See also compound_name_arity/3.
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d))
Unify the free variables in _T_e_r_m with a term $VAR(_N), where _N is
the number of the variable. Counting starts at _S_t_a_r_t. _E_n_d is
unified with the number that should be given to the next variable.
The example below illustrates this. Note that the toplevel prints
'$VAR'(0) as _A due to the numbervars(_t_r_u_e) option used to print
answers.
____________________________________________________________________| |
| ?- Term = f(X,Y,X), |
| numbervars(Term, 0, End), |
| write_canonical(Term), nl. |
| f('$VAR'(0),'$VAR'(1),'$VAR'(0)) |
| Term = f(A, B, A), |
| X = A, |
| Y = B, |
||End_=_2.__________________________________________________________ ||
See also the numbervars option to write_term/3 and numbervars/4.
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d_, _+_O_p_t_i_o_n_s))
As numbervars/3, providing the following options:
ffuunnccttoorr__nnaammee((_+_A_t_o_m))
Name of the functor to use instead of $VAR.
aattttvvaarr((_+_A_c_t_i_o_n))
What to do if an attributed variable is encountered. Options
are skip, which causes numbervars/3 to ignore the attributed
variable, bind which causes it to treat it as a normal
variable and assign the next '$VAR'(N) term to it, or
(default) error which raises a type_error exception.
ssiinngglleettoonnss((_+_B_o_o_l))
If true (default false), numbervars/4 does singleton detec-
tion. Singleton variables are unified with '$VAR'('_'),
causing them to be printed as _ by write_term/2 using
the numbervars option. This option is exploited by
portray_clause/2 and write_canonical/2.
vvaarr__nnuummbbeerr((_@_T_e_r_m_, _-_V_a_r_N_u_m_b_e_r))
True if _T_e_r_m is numbered by numbervars/3 and _V_a_r_N_u_m_b_e_r is the
number given to this variable. This predicate avoids the need for
unification with '$VAR'(X) and opens the path for replacing this
valid Prolog term by an internal representation that has no textual
equivalent.
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t)) _[_I_S_O_]
Unify _L_i_s_t with a list of variables, each sharing with a unique
variable of _T_e_r_m. The variables in _L_i_s_t are ordered in order of
appearance traversing _T_e_r_m depth-first and left-to-right. See also
term_variables/3 and nonground/2. For example:
____________________________________________________________________| |
| ?- term_variables(a(X, b(Y, X), Z), L). |
||L_=_[X,_Y,_Z].____________________________________________________ ||
nnoonnggrroouunndd((_+_T_e_r_m_, _-_V_a_r)) _[_s_e_m_i_d_e_t_]
True when _V_a_r is a variable in _T_e_r_m. Fails if _T_e_r_m is _g_r_o_u_n_d (see
ground/1). This predicate is intended for coroutining to trigger a
wakeup if _T_e_r_m becomes ground, e.g., using when/2. The current
implemention always returns the first variable in depth-first
left-right search. Ideally it should return a random member of the
set of variables (see term_variables/2) to realise logarithmetic
complexity for the ground trigger. Compatible with ECLiPSe and
hProlog.
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t_, _?_T_a_i_l))
Difference list version of term_variables/2. That is, _T_a_i_l is the
tail of the variable list _L_i_s_t.
tteerrmm__ssiinngglleettoonnss((_+_T_e_r_m_, _-_L_i_s_t))
Unify _L_i_s_t with a list of variables, each sharing with a variable
that appears only once in _T_e_r_m. Note that, if a variable appears
in a shared subterm, it is _n_o_t considered singleton. Thus, _A is
_n_o_t a singleton in the example below. See also the singleton
option of numbervars/4.
____________________________________________________________________| |
| |
| ?- S = a(A), term_singletons(t(S,S), L). |
||L_=_[].___________________________________________________________ ||
ccooppyy__tteerrmm((_+_I_n_, _-_O_u_t)) _[_I_S_O_]
Create a version of _I_n with renamed (fresh) variables and unify
it to _O_u_t. Attributed variables (see section ????) have their
attributes copied. The implementation of copy_term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot
distinguish a ground term from another ground term with exactly the
same structure, ground sub-terms are _s_h_a_r_e_d between _I_n and _O_u_t.
Sharing ground terms does affect setarg/3. SWI-Prolog provides
duplicate_term/2 to create a true copy of a term.
44..2211..11 NNoonn--llooggiiccaall ooppeerraattiioonnss oonn tteerrmmss
Prolog is not able to _m_o_d_i_f_y instantiated parts of a term. Lacking
that capability makes the language much safer, but unfortunately there
are problems that suffer severely in terms of time and/or memory usage.
Always try hard to avoid the use of these primitives, but they can be
a good alternative to using dynamic predicates. See also section ????,
discussing the use of global variables.
sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Extra-logical predicate. Assigns the _A_r_g-th argument of the
compound term _T_e_r_m with the given _V_a_l_u_e. The assignment is undone
if backtracking brings the state back into a position before the
setarg/3 call. See also nb_setarg/3.
This predicate may be used for destructive assignment to terms,
using them as an extra-logical storage bin. Always try hard to
avoid the use of setarg/3 as it is not supported by many Prolog
systems and one has to be very careful about unexpected copying
as well as unexpected noncopying of terms. A good practice to
improve somewhat on this situation is to make sure that terms whose
arguments are subject to setarg/3 have one unused and unshared
variable in addition to the used arguments. This variable avoids
unwanted sharing in, e.g., copy_term/2, and causes the term to be
considered as non-ground. An alternative is to use put_attr/3 to
attach information to attributed variables (see section ????).
nnbb__sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Assigns the _A_r_g-th argument of the compound term _T_e_r_m with the
given _V_a_l_u_e as setarg/3, but on backtracking the assignment
is _n_o_t reversed. If _V_a_l_u_e is not atomic, it is duplicated
using duplicate_term/2. This predicate uses the same technique
as nb_setval/2. We therefore refer to the description of
nb_setval/2 for details on non-backtrackable assignment of terms.
This predicate is compatible with GNU-Prolog setarg(_A_,_T_,_V_,_f_a_l_s_e),
removing the type restriction on _V_a_l_u_e. See also nb_linkarg/3.
Below is an example for counting the number of solutions of a
goal. Note that this implementation is thread-safe, reentrant
and capable of handling exceptions. Realising these features with
a traditional implementation based on assert/retract or flag/3 is
much more complicated.
____________________________________________________________________| |
| :- meta_predicate |
| succeeds_n_times(0, -). |
| |
| succeeds_n_times(Goal, Times) :- |
| Counter = counter(0), |
| ( Goal, |
| arg(1, Counter, N0), |
| N is N0 + 1, |
| nb_setarg(1, Counter, N), |
| fail |
| ; arg(1, Counter, Times) |
||________).________________________________________________________ ||
nnbb__lliinnkkaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
As nb_setarg/3, but like nb_linkval/2 it does _n_o_t duplicate _V_a_l_u_e.
Use with extreme care and consult the documentation of nb_linkval/2
before use.
dduupplliiccaattee__tteerrmm((_+_I_n_, _-_O_u_t))
Version of copy_term/2 that also copies ground terms and therefore
ensures that destructive modification using setarg/3 does not
affect the copy. See also nb_setval/2, nb_linkval/2, nb_setarg/3
and nb_linkarg/3.
ssaammee__tteerrmm((_@_T_1_, _@_T_2)) _[_s_e_m_i_d_e_t_]
True if _T_1 and _T_2 are equivalent and will remain equivalent, even
if setarg/3 is used on either of them. This means _T_1 and _T_2
are the same variable, equivalent atomic data or a compound term
allocated at the same address.
44..2222 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg AAttoommss
These predicates convert between Prolog constants and lists of
character codes. The predicates atom_codes/2, number_codes/2 and name/2
behave the same when converting from a constant to a list of character
codes. When converting the other way around, atom_codes/2 will
generate an atom, number_codes/2 will generate a number or exception
and name/2 will return a number if possible and an atom otherwise.
The ISO standard defines atom_chars/2 to describe the `broken-up' atom
as a list of one-character atoms instead of a list of codes. Up
to version 3.2.x, SWI-Prolog's atom_chars/2 behaved like atom_codes,
compatible with Quintus and SICStus Prolog. As of 3.3.x, SWI-Prolog
atom_codes/2 and atom_chars/2are compliant to the ISO standard.
To ease the pain of all variations in the Prolog community, all
SWI-Prolog predicates behave as flexible as possible. This implies
the `list-side' accepts either a code-list or a char-list and the
`atom-side' accepts all atomic types (atom, number and string).
aattoomm__ccooddeess((_?_A_t_o_m_, _?_S_t_r_i_n_g)) _[_I_S_O_]
Convert between an atom and a list of character codes. If _A_t_o_m is
instantiated, it will be translated into a list of character codes
and the result is unified with _S_t_r_i_n_g. If _A_t_o_m is unbound and
_S_t_r_i_n_g is a list of character codes, _A_t_o_m will be unified with an
atom constructed from this list.
aattoomm__cchhaarrss((_?_A_t_o_m_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
As atom_codes/2, but _C_h_a_r_L_i_s_t is a list of one-character atoms
rather than a list of character codes.
____________________________________________________________________| |
| ?- atom_chars(hello, X). |
| |
||X_=_[h,_e,_l,_l,_o]_______________________________________________ ||
cchhaarr__ccooddee((_?_A_t_o_m_, _?_C_o_d_e)) _[_I_S_O_]
Convert between character and character code for a single charac-
ter.
nnuummbbeerr__cchhaarrss((_?_N_u_m_b_e_r_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
Similar to atom_chars/2, but converts between a number and its
representation as a list of one-character atoms. If _C_h_a_r_L_i_s_t is
a _p_r_o_p_e_r _l_i_s_t, i.e., not unbound or a _p_a_r_t_i_a_l _l_i_s_t, _C_h_a_r_L_i_s_t is
parsed according to the Prolog syntax for numbers and the resulting
number is unified with _N_u_m_b_e_r. Otherwise, if _N_u_m_b_e_r is a number,
_N_u_m_b_e_r is serialized and the result is unified with _C_h_a_r_L_i_s_t.
If _C_h_a_r_L_i_s_t is parsed, it is parsed using the Prolog syntax for
numbers. Following the ISO standard, it allows for _l_e_a_d_i_n_g white
space (including newlines) and does not allow for _t_r_a_i_l_i_n_g white
space. A syntax_error exception is raised if _C_h_a_r_L_i_s_t does not
represent a valid Prolog number.
nnuummbbeerr__ccooddeess((_?_N_u_m_b_e_r_, _?_C_o_d_e_L_i_s_t)) _[_I_S_O_]
As number_chars/2, but converts to a list of character codes rather
than one-character atoms. In the mode (-,+), both predicates
behave identically to improve handling of non-ISO source.
aattoomm__nnuummbbeerr((_?_A_t_o_m_, _?_N_u_m_b_e_r))
Realises the popular combination of atom_codes/2 and number_codes/2
to convert between atom and number (integer or float) in
one predicate, avoiding the intermediate list. Unlike the
ISO number_codes/2 predicates, atom_number/2 fails silently in
mode (+,-) if _A_t_o_m does not represent a number. See also
atomic_list_concat/2 for assembling an atom from atoms and numbers.
nnaammee((_?_A_t_o_m_i_c_, _?_C_o_d_e_L_i_s_t))
_C_o_d_e_L_i_s_t is a list of character codes representing the same text
as _A_t_o_m_i_c. Each of the arguments may be a variable, but not
both. When _C_o_d_e_L_i_s_t describes an integer or floating point number
and _A_t_o_m_i_c is a variable, _A_t_o_m_i_c will be unified with the numeric
value described by _C_o_d_e_L_i_s_t (e.g., name(N, "300"), 400 is N + 100
succeeds). If _C_o_d_e_L_i_s_t is not a representation of a number,
_A_t_o_m_i_c will be unified with the atom with the name given by the
character code list. If _A_t_o_m_i_c is an atom or number, the unquoted
print representation of it as a character code list is unified with
_C_o_d_e_L_i_s_t.
This predicate is part of the Edinburgh tradition. It should
be considered _d_e_p_r_e_c_a_t_e_d although, given its long tradition, it
is unlikely to be removed from the system. It still has some
value for converting input to, depending on the syntax, a number
or atom. New code should consider the ISO predicates atom_codes/2,
number_codes/2 or the SWI-Prolog predicate atom_number/2.
tteerrmm__ttoo__aattoomm((_?_T_e_r_m_, _?_A_t_o_m))
True if _A_t_o_m describes a term that unifies with _T_e_r_m. When
_A_t_o_m is instantiated, _A_t_o_m is parsed and the result unified with
_T_e_r_m. If _A_t_o_m has no valid syntax, a syntax_error exception is
raised. Otherwise _T_e_r_m is ``written'' on _A_t_o_m using write_term/2
with the option quoted(_t_r_u_e). See also format/3, with_output_to/2
and term_string/2.
aattoomm__ttoo__tteerrmm((_+_A_t_o_m_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Use _A_t_o_m as input to read_term/2 using the option variable_names
and return the read term in _T_e_r_m and the variable bindings in
_B_i_n_d_i_n_g_s. _B_i_n_d_i_n_g_s is a list of _N_a_m_e =_V_a_r couples, thus providing
access to the actual variable names. See also read_term/2. If
_A_t_o_m has no valid syntax, a syntax_error exception is raised. New
code should use read_term_from_atom/3.
aattoomm__ccoonnccaatt((_?_A_t_o_m_1_, _?_A_t_o_m_2_, _?_A_t_o_m_3)) _[_I_S_O_]
_A_t_o_m_3 forms the concatenation of _A_t_o_m_1 and _A_t_o_m_2. At least two
of the arguments must be instantiated to atoms. This predicate
also allows for the mode (-,-,+), non-deterministically splitting
the 3rd argument into two parts (as append/3 does for lists).
SWI-Prolog allows for atomic arguments. Portable code must use
atomic_concat/3 if non-atom arguments are involved.
aattoommiicc__ccoonnccaatt((_+_A_t_o_m_i_c_1_, _+_A_t_o_m_i_c_2_, _-_A_t_o_m))
_A_t_o_m represents the text after converting _A_t_o_m_i_c_1 and _A_t_o_m_i_c_2 to
text and concatenating the result:
____________________________________________________________________| |
| ?- atomic_concat(name, 42, X). |
||X_=_name42._______________________________________________________ ||
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _-_A_t_o_m)) _[_c_o_m_m_o_n_s_]
_L_i_s_t is a list of strings, atoms, integers or floating point
numbers. Succeeds if _A_t_o_m can be unified with the concatenated
elements of _L_i_s_t. Equivalent to atomic_list_concat(_L_i_s_t_, _'_'_,
_A_t_o_m).
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _-_A_t_o_m)) _[_c_o_m_m_o_n_s_]
Creates an atom just like atomic_list_concat/2, but inserts _S_e_p_a_r_a_-
_t_o_r between each pair of inputs. For example:
____________________________________________________________________| |
| ?- atomic_list_concat([gnu, gnat], ', ', A). |
| |
||A_=_'gnu,_gnat'___________________________________________________ ||
The SWI-Prolog version of this predicate can also be used to split
atoms by instantiating _S_e_p_a_r_a_t_o_r and _A_t_o_m as shown below. We
kept this functionality to simplify porting old SWI-Prolog code
where this predicate was called concat_atom/3. When used in
mode (-,+,+), _S_e_p_a_r_a_t_o_r must be a non-empty atom. See also
split_string/4.
____________________________________________________________________| |
| ?- atomic_list_concat(L, -, 'gnu-gnat'). |
| |
||L_=_[gnu,_gnat]___________________________________________________ ||
aattoomm__lleennggtthh((_+_A_t_o_m_, _-_L_e_n_g_t_h)) _[_I_S_O_]
True if _A_t_o_m is an atom of _L_e_n_g_t_h characters. The SWI-Prolog
version accepts all atomic types, as well as code-lists and
character-lists. New code should avoid this feature and use
write_length/3 to get the number of characters that would be
written if the argument was handed to write_term/3.
aattoomm__pprreeffiixx((_+_A_t_o_m_, _+_P_r_e_f_i_x)) _[_d_e_p_r_e_c_a_t_e_d_]
True if _A_t_o_m starts with the characters from _P_r_e_f_i_x. Its behaviour
is equivalent to ?- sub_atom(_A_t_o_m, 0, _, _, _P_r_e_f_i_x). Deprecated.
ssuubb__aattoomm((_+_A_t_o_m_, _?_B_e_f_o_r_e_, _?_L_e_n_, _?_A_f_t_e_r_, _?_S_u_b)) _[_I_S_O_]
ISO predicate for breaking atoms. It maintains the following
relation: _S_u_b is a sub-atom of _A_t_o_m that starts at _B_e_f_o_r_e, has _L_e_n
characters, and _A_t_o_m contains _A_f_t_e_r characters after the match.
____________________________________________________________________| |
| ?- sub_atom(abc, 1, 1, A, S). |
| |
||A_=_1,_S_=_b______________________________________________________ ||
The implementation minimises non-determinism and creation of atoms.
This is a flexible predicate that can do search, prefix- and
suffix-matching, etc.
ssuubb__aattoomm__iiccaasseecchhkk((_+_H_a_y_s_t_a_c_k_, _?_S_t_a_r_t_, _+_N_e_e_d_l_e)) _[_s_e_m_i_d_e_t_]
True when _N_e_e_d_l_e is a sub atom of _H_a_y_s_t_a_c_k starting at _S_t_a_r_t. The
match is `half case insensitive', i.e., uppercase letters in _N_e_e_d_l_e
only match themselves, while lowercase letters in _N_e_e_d_l_e match case
insensitively. _S_t_a_r_t is the first 0-based offset inside _H_a_y_s_t_a_c_k
where _N_e_e_d_l_e matches.
44..2233 LLooccaalliizzaattiioonn ((llooccaallee)) ssuuppppoorrtt
SWI-Prolog provides (currently limited) support for localized
applications.
o The predicates char_type/2 and code_type/2 query character classes
depending on the locale.
o The predicates collation_key/2 and locale_sort/2 can be used for
locale dependent sorting of atoms.
o The predicate format_time/3 can be used to format time and date
representations, where some of the specifiers are locale dependent.
o The predicate format/2 provides locale-specific formating of
numbers. This functionality is based on a more fine-grained
localization model that is the subject of this section.
A locale is a (optionally named) read-only object that provides
information to locale specific functions. The system creates a default
locale object named default from the system locale. This locale is
used as the initial locale for the three standard streams as well as
the main thread. Locale sensitive output predicates such as format/3
get their locale from the stream to which they deliver their output.
New streams get their locale from the thread that created the stream.
Threads get their locale from the thread that created them.
llooccaallee__ccrreeaattee((_-_L_o_c_a_l_e_, _+_D_e_f_a_u_l_t_, _+_O_p_t_i_o_n_s))
Create a new locale object. _D_e_f_a_u_l_t is either an existing locale
or a string that denotes the name of a locale provided by the
system, such as "en_EN.UTF-8". The values read from the default
locale can be modified using _O_p_t_i_o_n_s. _O_p_t_i_o_n_s provided are:
aalliiaass((_+_A_t_o_m))
Give the locale a name.
ddeecciimmaall__ppooiinntt((_+_A_t_o_m))
Specify the decimal point to use.
tthhoouussaannddss__sseepp((_+_A_t_o_m))
Specify the string that delimits digit groups. Only effective
is grouping is also specified.
ggrroouuppiinngg((_+_L_i_s_t))
Specify the grouping of digits. Groups are created from the
right (least significant) digits, left of the decimal point.
_L_i_s_t is a list of integers, specifying the number of digits in
each group, counting from the right. If the last element is
repeat(_C_o_u_n_t), the remaining digits are grouped in groups of
size _C_o_u_n_t. If the last element is a normal integer, digits
further to the left are not grouped.
For example, the English locale uses
____________________________________________________________________| |
||[_decimal_point('.'),_thousands_sep(','),_grouping([repeat(3)])_]_ ||
Named locales exists until they are destroyed using
locale_destroy/1 and they are no longer referenced. Un-
named locales are subject to (atom) garbage collection.
llooccaallee__ddeessttrrooyy((_+_L_o_c_a_l_e))
Destroy a locale. If the locale is named, this removes the name
association from the locale, after which the locale is left to be
reclaimed by garbage collection.
llooccaallee__pprrooppeerrttyy((_?_L_o_c_a_l_e_, _?_P_r_o_p_e_r_t_y))
True when _L_o_c_a_l_e has _P_r_o_p_e_r_t_y. Properties are the same as the
_O_p_t_i_o_n_s described with locale_create/3.
sseett__llooccaallee((_+_L_o_c_a_l_e))
Set the default locale for the current thread, as well as
the locale for the standard streams (user_input, user_output,
user_error, current_output and current_input. This locale is used
for new streams, unless overruled using the locale(_L_o_c_a_l_e) option
of open/4 or set_stream/2.
ccuurrrreenntt__llooccaallee((_-_L_o_c_a_l_e))
True when _L_o_c_a_l_e is the locale of the calling thread.
44..2244 CChhaarraacctteerr pprrooppeerrttiieess
SWI-Prolog offers two comprehensive predicates for classifying
characters and character codes. These predicates are defined
as built-in predicates to exploit the C-character classification's
handling of _l_o_c_a_l_e (handling of local character sets). These
predicates are fast, logical and deterministic if applicable.
In addition, there is the library ctypes providing compatibility with
some other Prolog systems. The predicates of this library are defined
in terms of code_type/2.
cchhaarr__ttyyppee((_?_C_h_a_r_, _?_T_y_p_e))
Tests or generates alternative _T_y_p_es or _C_h_a_rs. The character types
are inspired by the standard C <ctype.h> primitives. Note that the
mode (-,+) is only efficient if the _T_y_p_e has a parameter, e.g.,
char_type(_C_, _d_i_g_i_t_(_8_)). With an atomic _T_y_p_e the whole unicode
range (0..0x1ffff) is generated and tested against the C character
classification function.
aallnnuumm
_C_h_a_r is a letter (upper- or lowercase) or digit.
aallpphhaa
_C_h_a_r is a letter (upper- or lowercase).
ccssyymm
_C_h_a_r is a letter (upper- or lowercase), digit or the un-
derscore (_). These are valid C and Prolog symbol
characters.
ccssyymmff
_C_h_a_r is a letter (upper- or lowercase) or the underscore (_).
These are valid first characters for C and Prolog symbols.
aasscciiii
_C_h_a_r is a 7-bit ASCII character (0..127).
wwhhiittee
_C_h_a_r is a space or tab, i.e. white space inside a line.
ccnnttrrll
_C_h_a_r is an ASCII control character (0..31), ASCII DEL charac-
ter (127), or non-ASCII character in the range 128..159 or
8232..8233.
ddiiggiitt
_C_h_a_r is a digit.
ddiiggiitt((_W_e_i_g_h_t))
_C_h_a_r is a digit with value _W_e_i_g_h_t. I.e. char_type(X, digit(6))
yields _X = '6'. Useful for parsing numbers.
xxddiiggiitt((_W_e_i_g_h_t))
_C_h_a_r is a hexadecimal digit with value _W_e_i_g_h_t. I.e.
char_type(a, xdigit(X)) yields _X = '10'. Useful for parsing
numbers.
ggrraapphh
_C_h_a_r produces a visible mark on a page when printed. Note
that the space is not included!
lloowweerr
_C_h_a_r is a lowercase letter.
lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lowercase version of _U_p_p_e_r. Only true if _C_h_a_r is
lowercase and _U_p_p_e_r uppercase.
ttoo__lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lowercase version of _U_p_p_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
uuppppeerr
_C_h_a_r is an uppercase letter.
uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an uppercase version of _L_o_w_e_r. Only true if _C_h_a_r is
uppercase and _L_o_w_e_r lowercase.
ttoo__uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an uppercase version of _L_o_w_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
ppuunncctt
_C_h_a_r is a punctuation character. This is a graph character
that is not a letter or digit.
ssppaaccee
_C_h_a_r is some form of layout character (tab, vertical tab,
newline, etc.).
eenndd__ooff__ffiillee
_C_h_a_r is -1.
eenndd__ooff__lliinnee
_C_h_a_r ends a line (ASCII: 10..13).
nneewwlliinnee
_C_h_a_r is a newline character (10).
ppeerriioodd
_C_h_a_r counts as the end of a sentence (.,!,?).
qquuoottee
_C_h_a_r is a quote character (", ', `).
ppaarreenn((_C_l_o_s_e))
_C_h_a_r is an open parenthesis and _C_l_o_s_e is the corresponding
close parenthesis.
pprroolloogg__vvaarr__ssttaarrtt
_C_h_a_r can start a Prolog variable name.
pprroolloogg__aattoomm__ssttaarrtt
_C_h_a_r can start a unquoted Prolog atom that is not a symbol.
pprroolloogg__iiddeennttiiffiieerr__ccoonnttiinnuuee
_C_h_a_r can continue a Prolog variable name or atom.
pprroolloogg__ssyymmbbooll
_C_h_a_r is a Prolog symbol character. Sequences of Prolog symbol
characters glue together to form an unquoted atom. Examples
are =.., \=, etc.
ccooddee__ttyyppee((_?_C_o_d_e_, _?_T_y_p_e))
As char_type/2, but uses character codes rather than one-character
atoms. Please note that both predicates are as flexible as
possible. They handle either representation if the argument is
instantiated and will instantiate only with an integer code or a
one-character atom, depending of the version used. See also the
Prolog flag double_quotes, atom_chars/2 and atom_codes/2.
44..2244..11 CCaassee ccoonnvveerrssiioonn
There is nothing in the Prolog standard for converting case in textual
data. The SWI-Prolog predicates code_type/2 and char_type/2 can be
used to test and convert individual characters. We have started some
additional support:
ddoowwnnccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_L_o_w_e_r_C_a_s_e))
Converts the characters of _A_n_y_C_a_s_e into lowercase as char_type/2
does (i.e. based on the defined _l_o_c_a_l_e if Prolog provides locale
support on the hosting platform) and unifies the lowercase atom
with _L_o_w_e_r_C_a_s_e.
uuppccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_U_p_p_e_r_C_a_s_e))
Converts, similar to downcase_atom/2, an atom to uppercase.
44..2244..22 WWhhiittee ssppaaccee nnoorrmmaalliizzaattiioonn
nnoorrmmaalliizzee__ssppaaccee((_-_O_u_t_, _+_I_n))
Normalize white space in _I_n. All leading and trailing white
space is removed. All non-empty sequences for Unicode white space
characters are replaced by a single space (\u0020) character. _O_u_t
uses the same conventions as with_output_to/2 and format/3.
44..2244..33 LLaanngguuaaggee--ssppeecciiffiicc ccoommppaarriissoonn
This section deals with predicates for language-specific string
comparison operations.
ccoollllaattiioonn__kkeeyy((_+_A_t_o_m_, _-_K_e_y))
Create a _K_e_y from _A_t_o_m for locale-specific comparison. The key is
defined such that if the key of atom A precedes the key of atom B
in the standard order of terms, A is alphabetically smaller than B
using the sort order of the current locale.
The predicate collation_key/2 is used by locale_sort/2 from
library(sort). Please examine the implementation of locale_sort/2
as an example of using this call.
The _K_e_y is an implementation-defined and generally unreadable
string. On systems that do not support locale handling, _K_e_y is
simply unified with _A_t_o_m.
llooccaallee__ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Sort a list of atoms using the current locale. _L_i_s_t is a list of
atoms or string objects (see section ????). _S_o_r_t_e_d is unified with
a list containing all atoms of _L_i_s_t, sorted to the rules of the
current locale. See also collation_key/2 and setlocale/3.
44..2255 OOppeerraattoorrss
Operators are defined to improve the readability of source code.
For example, without operators, to write 2*3+4*5 one would have to
write +(*(2,3),*(4,5)). In Prolog, a number of operators have been
predefined. All operators, except for the comma (,) can be redefined
by the user.
Some care has to be taken before defining new operators. Defining
too many operators might make your source `natural' looking, but at
the same time make it hard to understand the limits of your syntax.
To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the
module in which they are defined. Operators can be exported from
modules using a term op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_, _N_a_m_e) in the export list
as specified by module/2. Many modern Prolog systems have module
specific operators. Unfortunately, there is no established interface
for exporting and importing operators. SWI-Prolog's convention has
been addopted by YAP.
The module table of the module user acts as default table for all
modules and can be modified explicitly from inside a module to
achieve compatibility with other Prolog that do not have module-local
operators:
________________________________________________________________________| |
|:- module(prove, |
| [ prove/1 |
| ]). |
| |
|:-|op(900,_xfx,_user:(=>)).____________________________________________ | |
In SWI-Prolog, a _q_u_o_t_e_d _a_t_o_m never acts as an operator. Note that the
portable way to stop an atom acting as an operator is to enclose it in
parentheses like this: (myop). See also section ????.
oopp((_+_P_r_e_c_e_d_e_n_c_e_, _+_T_y_p_e_, _:_N_a_m_e)) _[_I_S_O_]
Declare _N_a_m_e to be an operator of type _T_y_p_e with precedence
_P_r_e_c_e_d_e_n_c_e. _N_a_m_e can also be a list of names, in which case
all elements of the list are declared to be identical operators.
_P_r_e_c_e_d_e_n_c_e is an integer between 0 and 1200. Precedence 0 removes
the declaration. _T_y_p_e is one of: xf, yf, xfx, xfy, yfx, fy or
fx. The `f' indicates the position of the functor, while x and y
indicate the position of the arguments. `y' should be interpreted
as ``on this position a term with precedence lower or equal to the
precedence of the functor should occur''. For `x' the precedence
of the argument must be strictly lower. The precedence of a term
is 0, unless its principal functor is an operator, in which case
the precedence is the precedence of this operator. A term enclosed
in parentheses (...) has precedence 0.
The predefined operators are shown in table ????. Operators can
be redefined, unless prohibited by one of the limitations below.
Applications must be careful with (re-)defining operators because
changing operators may cause (other) files to be interpreted
ddiiffffeerreennttllyy. Often this will lead to a syntax error. In other
cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.
o It is not allowed to redefine the comma (',').
o The bar (|) can only be (re-)defined as infix operator with
priority not less than 1001.
o It is not allowed to define the empty list ([]) or the
curly-bracket pair ({}) as operators.
In SWI-Prolog, operators are _l_o_c_a_l to a module (see also
section ????). Keeping operators in modules and using controlled
import/export of operators as described with the module/2 directive
keep the issues manageable. The module system provides the
operators from table ???? and these operators cannot be modified.
Files that are loaded from the SWI-Prolog directories resolve
operators and predicates from this system module rather than user,
which makes the semantics of the library and development system
modules independent of operator changes to the user module.
______________________________________________________________
| 1200 |xfx |-->, :- |
| 1200 | fx |:-, ?- |
| 1150 | fx |dynamic, discontiguous, initialization, |
| | |meta_predicate, module_transparent, multifile,|
| | |public, thread_local, thread_initialization,|
| | |volatile |
| 1100 |xfy |;, | |
| 1050 |xfy |->, *-> |
| 1000 |xfy |, |
| 990 |xfx |:= |
| 900 | fy |\+ |
| 700 |xfx |<, =, =.., =@=, \=@=, =:=, =<, ==, =\=, >, >=, |
| | |@<, @=<, @>, @>=, \=, \==, as, is, >:<, :< |
| 600 |xfy |: |
| 500 | yfx |+, -, /\, \/, xor |
| 500 | fx |? |
| 400 | yfx |*, /, //, div, rdiv, <<, >>, mod, rem |
| 200 |xfx |** |
| 200 |xfy |^ |
| 200 | fy |+, -, \ |
| 100 | yfx |. |
|____1_|_fx__|$______________________________________________|_
Table 4.2: System operators
ccuurrrreenntt__oopp((_?_P_r_e_c_e_d_e_n_c_e_, _?_T_y_p_e_, _?_:_N_a_m_e)) _[_I_S_O_]
True if _N_a_m_e is currently defined as an operator of type _T_y_p_e with
precedence _P_r_e_c_e_d_e_n_c_e. See also op/3.
44..2266 CChhaarraacctteerr CCoonnvveerrssiioonn
Although I wouldn't really know why you would like to use these
features, they are provided for ISO compliance.
cchhaarr__ccoonnvveerrssiioonn((_+_C_h_a_r_I_n_, _+_C_h_a_r_O_u_t)) _[_I_S_O_]
Define that term input (see read_term/3) maps each character read
as _C_h_a_r_I_n to the character _C_h_a_r_O_u_t. Character conversion is only
executed if the Prolog flag char_conversion is set to true and
not inside quoted atoms or strings. The initial table maps each
character onto itself. See also current_char_conversion/2.
ccuurrrreenntt__cchhaarr__ccoonnvveerrssiioonn((_?_C_h_a_r_I_n_, _?_C_h_a_r_O_u_t)) _[_I_S_O_]
Queries the current character conversion table. See
char_conversion/2 for details.
44..2277 AArriitthhmmeettiicc
Arithmetic can be divided into some special purpose integer predicates
and a series of general predicates for integer, floating point and
rational arithmetic as appropriate. The general arithmetic predicates
all handle _e_x_p_r_e_s_s_i_o_n_s. An expression is either a simple number or a
_f_u_n_c_t_i_o_n. The arguments of a function are expressions. The functions
are described in section ????.
44..2277..11 SSppeecciiaall ppuurrppoossee iinntteeggeerr aarriitthhmmeettiicc
The predicates in this section provide more logical operations between
integers. They are not covered by the ISO standard, although they are
`part of the community' and found as either library or built-in in many
other Prolog systems.
bbeettwweeeenn((_+_L_o_w_, _+_H_i_g_h_, _?_V_a_l_u_e))
_L_o_w and _H_i_g_h are integers, _H_i_g_h >=_L_o_w. If _V_a_l_u_e is an integer,
_L_o_w=< _V_a_l_u_e=< _H_i_g_h. When _V_a_l_u_e is a variable it is successively
bound to all integers between _L_o_w and _H_i_g_h. If _H_i_g_h is inf
or infinite between/3 is true iff _V_a_l_u_e>= _L_o_w, a feature that is
particularly interesting for generating integers from a certain
value.
ssuucccc((_?_I_n_t_1_, _?_I_n_t_2))
True if _I_n_t_2= _I_n_t_1+1 and _I_n_t_1>=0. At least one of the arguments
must be instantiated to a natural number. This predicate raises
the domain error not_less_than_zero if called with a negative
integer. E.g. succ(_X_, _0) fails silently and succ(_X_, _-_1) raises a
domain error.
pplluuss((_?_I_n_t_1_, _?_I_n_t_2_, _?_I_n_t_3))
True if _I_n_t_3 =_I_n_t_1 +_I_n_t_2. At least two of the three arguments
must be instantiated to integers.
ddiivvmmoodd((_+_D_i_v_i_d_e_n_d_, _+_D_i_v_i_s_o_r_, _-_Q_u_o_t_i_e_n_t_, _-_R_e_m_a_i_n_d_e_r))
This predicate is a shorthand for computing both the _Q_u_o_t_i_e_n_t and
_R_e_m_a_i_n_d_e_r of two integers in a single operation. This allows for
exploiting the fact that the low level implementation for computing
the quotient also produces the remainder. Timing confirms that
this predicate is almost twice as fast as performing the steps
independently. Semantically, divmod/4 is defined as below.
____________________________________________________________________| |
| divmod(Dividend, Divisor, Quotient, Remainder) :- |
| Quotient is Dividend div Divisor, |
||________Remainder_is_Dividend_mod_Divisor.________________________ ||
Note that this predicate is only available if SWI-Prolog is
compiled with unbounded integer support. This is the case for all
packaged versions.
nntthh__iinntteeggeerr__rroooott__aanndd__rreemmaaiinnddeerr((_+_N_, _+_I_, _-_R_o_o_t_, _-_R_e_m_a_i_n_d_e_r))
True when Root to the power N+ Remainder= I. _N and _I must be
integers. _N must be one or more. If _I is negative and _N is _o_d_d,
_R_o_o_t and _R_e_m_a_i_n_d_e_r are negative, i.e., the following holds for
_I <0:
____________________________________________________________________| |
| % I < 0, |
| % N mod 2 =\= 0, |
| nth_integer_root_and_remainder( |
| N, I, Root, Remainder), |
| IPos is -I, |
| nth_integer_root_and_remainder( |
| N, IPos, RootPos, RemainderPos), |
| Root =:= -RootPos, |
||____Remainder_=:=_-RemainderPos.__________________________________ ||
44..2277..22 GGeenneerraall ppuurrppoossee aarriitthhmmeettiicc
The general arithmetic predicates are optionally compiled (see
set_prolog_flag/2 and the -O command line option). Compiled
arithmetic reduces global stack requirements and improves performance.
Unfortunately compiled arithmetic cannot be traced, which is why it is
optional.
_+_E_x_p_r_1 > _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger number than _E_x_p_r_2.
_+_E_x_p_r_1 < _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller number than _E_x_p_r_2.
_+_E_x_p_r_1 =< _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 >= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 =\= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number non-equal to _E_x_p_r_2.
_+_E_x_p_r_1 =:= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number equal to _E_x_p_r_2.
_-_N_u_m_b_e_r iiss _+_E_x_p_r _[_I_S_O_]
True when _N_u_m_b_e_r is the value to which _E_x_p_r evaluates. Typically,
is/2 should be used with unbound left operand. If equality is to
be tested, =:=/2 should be used. For example:
?- 1 is sin(pi/2). Fails! sin(pi/2) evaluates
to the float 1.0, which does
not unify with the integer 1.
?- 1 =:= sin(pi/2). Succeeds as expected.
44..2277..22..11 AArriitthhmmeettiicc ttyyppeess
SWI-Prolog defines the following numeric types:
o _i_n_t_e_g_e_r
If SWI-Prolog is built using the _G_N_U _m_u_l_t_i_p_l_e _p_r_e_c_i_s_i_o_n _a_r_i_t_h_m_e_t_i_c
_l_i_b_r_a_r_y (GMP), integer arithmetic is _u_n_b_o_u_n_d_e_d, which means that
the size of integers is limited by available memory only. Without
GMP, SWI-Prolog integers are 64-bits, regardless of the native
integer size of the platform. The type of integer support
can be detected using the Prolog flags bounded, min_integer and
max_integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.
Internally, SWI-Prolog has three integer representations. Small
integers (defined by the Prolog flag max_tagged_integer) are
encoded directly. Larger integers are represented as 64-bit values
on the global stack. Integers that do not fit in 64 bits are
represented as serialised GNU MPZ structures on the global stack.
o _r_a_t_i_o_n_a_l _n_u_m_b_e_r
Rational numbers (Q) are quotients of two integers. Rational
arithmetic is only provided if GMP is used (see above). Rational
numbers are currently not supported by a Prolog type. They are
represented by the compound term rdiv(_N_,_M). Rational numbers that
are returned from is/2 are _c_a_n_o_n_i_c_a_l, which means M is positive
and N and M have no common divisors. Rational numbers are
introduced in the computation using the rational/1, rationalize/1
or the rdiv/2 (rational division) function. Using the same functor
for rational division and for representing rational numbers allows
for passing rational numbers between computations as well as for
using format/3 for printing.
In the long term, it is likely that rational numbers will become
_a_t_o_m_i_c as well as a subtype of _n_u_m_b_e_r. User code that creates
or inspects the rdiv(_M_,_N) terms will not be portable to future
versions. Rationals are created using one of the functions
mentioned above and inspected using rational/3.
o _f_l_o_a_t
Floating point numbers are represented using the C type double.
On most of today's platforms these are 64-bit IEEE floating point
numbers.
Arithmetic functions that require integer arguments accept, in addition
to integers, rational numbers with (canonical) denominator `1'. If
the required argument is a float the argument is converted to float.
Note that conversion of integers to floating point numbers may raise an
overflow exception. In all other cases, arguments are converted to the
same type using the order below.
integer ! rational number ! floating point number
44..2277..22..22 RRaattiioonnaall nnuummbbeerr eexxaammpplleess
The use of rational numbers with unbounded integers allows for
exact integer or _f_i_x_e_d _p_o_i_n_t arithmetic under addition, subtraction,
multiplication and division. To exploit rational arithmetic rdiv/2
should be used instead of `/' and floating point numbers must be
converted to rational using rational/1. Omitting the rational/1 on
floats will convert a rational operand to float and continue the
arithmetic using floating point numbers. Here are some examples.
A is 2 rdiv 6 A = 1 rdiv 3
A is 4 rdiv 3 + 1 A = 7 rdiv 3
A is 4 rdiv 3 + 1.5 A = 2.83333
A is 4 rdiv 3 + rational(1.5) A = 17 rdiv 6
Note that floats cannot represent all decimal numbers exactly. The
function rational/1 creates an _e_x_a_c_t equivalent of the float, while
rationalize/1 creates a rational number that is within the float
rounding error from the original float. Please check the documentation
of these functions for details and examples.
Rational numbers can be printed as decimal numbers with arbitrary
precision using the format/3 floating point conversion:
________________________________________________________________________| |
|?- A is 4 rdiv 3 + rational(1.5), |
| format('~50f~n', [A]). |
|2.83333333333333333333333333333333333333333333333333 |
| |
|A|=_17_rdiv_6__________________________________________________________ | |
44..2277..22..33 AArriitthhmmeettiicc FFuunnccttiioonnss
Arithmetic functions are terms which are evaluated by the arithmetic
predicates described in section ????. There are four types of arguments
to functions:
_E_x_p_r Arbitrary expression, returning either a
floating point value or an integer.
_I_n_t_E_x_p_r Arbitrary expression that must evaluate to an
integer.
_R_a_t_E_x_p_r Arbitrary expression that must evaluate to a
rational number.
_F_l_o_a_t_E_x_p_r Arbitrary expression that must evaluate to a
floating point.
For systems using bounded integer arithmetic (default is unbounded, see
section ???? for details), integer operations that would cause overflow
automatically convert to floating point arithmetic.
SWI-Prolog provides many extensions to the set of floating point
functions defined by the ISO standard. The current policy is
to provide such functions on `as-needed' basis if the function
is widely supported elsewhere and notably if it is part of the
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdfC99 mathemati-
cal library. In addition, we try to maintain compatibility with
http://www.dcc.fc.up.pt/ vsc/Yap/YAP.
- _+_E_x_p_r _[_I_S_O_]
_R_e_s_u_l_t =-_E_x_p_r
+ _+_E_x_p_r _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r. Note that if + is followed by a number, the parser
discards the +. I.e. ?- integer(+1) succeeds.
_+_E_x_p_r_1 + _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 +_E_x_p_r_2
_+_E_x_p_r_1 - _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 -_E_x_p_r_2
_+_E_x_p_r_1 * _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1_*Expr2
_+_E_x_p_r_1 / _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t = _E_x_p_r_1=_E_x_p_r_2. If the flag iso is true, both arguments are
converted to float and the return value is a float. Otherwise
(default), if both arguments are integers the operation returns an
integer if the division is exact. If at least one of the arguments
is rational and the other argument is integer, the operation
returns a rational number. In all other cases the return value is
a float. See also ///2 and rdiv/2.
_+_I_n_t_E_x_p_r_1 mmoodd _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Modulo, defined as _R_e_s_u_l_t = _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 div _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2,
where div is _f_l_o_o_r_e_d division.
_+_I_n_t_E_x_p_r_1 rreemm _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Remainder of integer division. Behaves as if defined by
_R_e_s_u_l_t is _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 // _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2
_+_I_n_t_E_x_p_r_1 // _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Integer division, defined as _R_e_s_u_l_t is rndI(_E_x_p_r_1/_E_x_p_r_2). The
function rndI is the default rounding used by the C compiler and
available through the Prolog flag integer_rounding_function. In
the C99 standard, C-rounding is defined as towards_zero.
ddiivv((_+_I_n_t_E_x_p_r_1_, _+_I_n_t_E_x_p_r_2)) _[_I_S_O_]
Integer division, defined as
_R_e_s_u_l_t is (_I_n_t_E_x_p_r_1 - _I_n_t_E_x_p_r_1 mod _I_n_t_E_x_p_r_2) // _I_n_t_E_x_p_r_2 . In
other words, this is integer division that rounds towards
-infinity. This function guarantees behaviour that is consistent
with mod/2, i.e., the following holds for every pair of integers
X; Y where Y =\= 0.
____________________________________________________________________| |
| Q is div(X, Y), |
| M is mod(X, Y), |
||________X_=:=_Y*Q+M.______________________________________________ ||
_+_R_a_t_E_x_p_r rrddiivv _+_R_a_t_E_x_p_r
Rational number division. This function is only available if
SWI-Prolog has been compiled with rational number support. See
section ???? for details.
_+_I_n_t_E_x_p_r_1 ggccdd _+_I_n_t_E_x_p_r_2
Result is the greatest common divisor of _I_n_t_E_x_p_r_1, _I_n_t_E_x_p_r_2.
aabbss((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the absolute value of it.
ssiiggnn((_+_E_x_p_r)) _[_I_S_O_]
Evaluate to -1 if _E_x_p_r< 0, 1 if _E_x_p_r> 0 and 0 if _E_x_p_r= 0. If _E_x_p_r
evaluates to a float, the return value is a float (e.g., -1.0, 0.0
or 1.0). In particular, note that sign(-0.0) evaluates to 0.0.
See also copysign/2
ccooppyyssiiggnn((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to _X, where the absolute value of _X equals the absolute
value of _E_x_p_r_1 and the sign of _X matches the sign of _E_x_p_r_2.
This function is based on copysign() from C99, which works on
double precision floats and deals with handling the sign of special
floating point values such as -0.0. Our implementation follows C99
if both arguments are floats. Otherwise, copysign/2 evaluates to
_E_x_p_r_1 if the sign of both expressions matches or -_E_x_p_r_1 if the
signs do not match. Here, we use the extended notion of signs for
floating point numbers, where the sign of -0.0 and other special
floats is negative.
mmaaxx((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to the larger of _E_x_p_r_1 and _E_x_p_r_2. Both arguments are
compared after converting to the same type, but the return value is
in the original type. For example, max(2.5, 3) compares the two
values after converting to float, but returns the integer 3.
mmiinn((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to the smaller of _E_x_p_r_1 and _E_x_p_r_2. See max/2 for a
description of type handling.
.((_+_I_n_t_, _[_]))
A list of one element evaluates to the element. This implies "a"
evaluates to the character code of the letter `a' (97) using the
traditional mapping of double quoted string to a list of character
codes. Arithmetic evaluation also translates a string object (see
section ????) of one character length into the character code for
that character. This implies that expression "a" also works of the
Prolog flag double_quotesis set to string. The recommended way to
specify the character code of the letter `a' is 0'a.
rraannddoomm((_+_I_n_t_E_x_p_r))
Evaluate to a random integer _i for which 0=< i< _I_n_t_E_x_p_r. The
system has two implementations. If it is compiled with support
for unbounded arithmetic (default) it uses the GMP library random
functions. In this case, each thread keeps its own random state.
The default algorithm is the _M_e_r_s_e_n_n_e _T_w_i_s_t_e_r algorithm. The seed
is set when the first random number in a thread is generated. If
available, it is set from /dev/random. Otherwise it is set from
the system clock. If unbounded arithmetic is not supported, random
numbers are shared between threads and the seed is initialised from
the clock when SWI-Prolog was started. The predicate set_random/1
can be used to control the random number generator.
WWaarrnniinngg!! Although properly seeded (if supported on the OS),
the Mersenne Twister algorithm does _n_o_t produce cryptographically
secure random numbers. To generate cryptographically secure random
numbers, use crypto_n_random_bytes/2 from library crypto provided by
the ssl package.
rraannddoomm__ffllooaatt
Evaluate to a random float I for which 0:0 <i <1:0. This function
shares the random state with random/1. All remarks with the
function random/1 also apply for random_float/0. Note that both
sides of the domain are _o_p_e_n. This avoids evaluation errors on,
e.g., log/1 or //2 while no practical application can expect 0.0.
rroouunndd((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and round the result to the nearest integer.
According to ISO, round/1 is defined as floor(_E_x_p_r_+_1_/_2), i.e.,
rounding _d_o_w_n. This is an unconventional choice and under
which the relation round(Expr) == -round(-Expr) does not hold.
SWI-Prolog rounds _o_u_t_w_a_r_d, e.g., round(1.5) =:= 2 and round
round(-1.5) =:= -2.
iinntteeggeerr((_+_E_x_p_r))
Same as round/1 (backward compatibility).
ffllooaatt((_+_E_x_p_r)) _[_I_S_O_]
Translate the result to a floating point number. Normally, Prolog
will use integers whenever possible. When used around the 2nd
argument of is/2, the result will be returned as a floating point
number. In other contexts, the operation has no effect.
rraattiioonnaall((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
returns the input on integers and rational numbers. For floating
point numbers, the returned rational number _e_x_a_c_t_l_y represents the
float. As floats cannot exactly represent all decimal numbers the
results may be surprising. In the examples below, doubles can
represent 0.25 and the result is as expected, in contrast to the
result of rational(_0_._1). The function rationalize/1 remedies this.
See section ???? for more information on rational number support.
____________________________________________________________________| |
| ?- A is rational(0.25). |
| |
| A is 1 rdiv 4 |
| ?- A is rational(0.1). |
||A_=_3602879701896397_rdiv_36028797018963968_______________________ ||
rraattiioonnaalliizzee((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
is similar to rational/1, but the result is only accurate within
the rounding error of floating point numbers, generally producing a
much smaller denominator.
____________________________________________________________________| |
| ?- A is rationalize(0.25). |
| |
| A = 1 rdiv 4 |
| ?- A is rationalize(0.1). |
| |
||A_=_1_rdiv_10_____________________________________________________ ||
ffllooaatt__ffrraaccttiioonnaall__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Fractional part of a floating point number. Negative if
_E_x_p_r is negative, rational if _E_x_p_r is rational and 0 if
_E_x_p_r is integer. The following relation is always true:
Xisfloatfractionalpart(X)+ floatintegerpart(X).
ffllooaatt__iinntteeggeerr__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Integer part of floating point number. Negative if _E_x_p_r is
negative, _E_x_p_r if _E_x_p_r is integer.
ttrruunnccaattee((_+_E_x_p_r)) _[_I_S_O_]
Truncate _E_x_p_r to an integer. If _E_x_p_r>= 0 this is the same as
floor(_E_x_p_r). For _E_x_p_r <0 this is the same as ceil(_E_x_p_r). That is,
truncate/1 rounds towards zero.
fflloooorr((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the largest integer smaller or equal to
the result of the evaluation.
cceeiilliinngg((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the smallest integer larger or equal to
the result of the evaluation.
cceeiill((_+_E_x_p_r))
Same as ceiling/1 (backward compatibility).
_+_I_n_t_E_x_p_r_1 >> _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the right. The
operation performs _a_r_i_t_h_m_e_t_i_c _s_h_i_f_t, which implies that the
inserted most significant bits are copies of the original most
significant bits.
_+_I_n_t_E_x_p_r_1 << _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the left.
_+_I_n_t_E_x_p_r_1 \/ _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r_1 /\ _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `and' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r_1 xxoorr _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `exclusive or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
\ _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise negation. The returned value is the one's complement of
_I_n_t_E_x_p_r.
ssqqrrtt((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =square root of _E_x_p_r
ssiinn((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =sine of _E_x_p_r. _E_x_p_r is the angle in radians.
ccooss((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =cosine of _E_x_p_r. _E_x_p_r is the angle in radians.
ttaann((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =tangus of _E_x_p_r. _E_x_p_r is the angle in radians.
aassiinn((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse sine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aaccooss((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse cosine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse tangus of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann22((_+_Y_E_x_p_r_, _+_X_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t = inverse tangus of _Y_E_x_p_r / _X_E_x_p_r. _R_e_s_u_l_t is the angle in
radians. The return value is in the range [-pi:::pi]. Used to
convert between rectangular and polar coordinate system.
Note that the ISO Prolog standard demands atan2(_0_._0_,_0_._0) to raise
an evaluation error, whereas the C99 and POSIX standards demand
this to evaluate to 0.0. SWI-Prolog follows C99 and POSIX.
aattaann((_+_Y_E_x_p_r_, _+_X_E_x_p_r))
Same as atan2/2 (backward compatibility).
ssiinnhh((_+_E_x_p_r))
_R_e_s_u_l_t = sinh_E_x_p_r. The hyperbolic sine of X is defined as
e to the power X -e to the power -X=2.
ccoosshh((_+_E_x_p_r))
_R_e_s_u_l_t = cosh_E_x_p_r. The hyperbolic cosine of X is defined as
e to the power X +e to the power -X=2.
ttaannhh((_+_E_x_p_r))
_R_e_s_u_l_t = tanh_E_x_p_r. The hyperbolic tangent of X is defined as
sinhX=coshX.
aassiinnhh((_+_E_x_p_r))
_R_e_s_u_l_t =arcsinh(_E_x_p_r) (inverse hyperbolic sine).
aaccoosshh((_+_E_x_p_r))
_R_e_s_u_l_t =arccosh(_E_x_p_r) (inverse hyperbolic cosine).
aattaannhh((_+_E_x_p_r))
_R_e_s_u_l_t =arctanh(_E_x_p_r). (inverse hyperbolic tangent).
lloogg((_+_E_x_p_r)) _[_I_S_O_]
Natural logarithm. _R_e_s_u_l_t =natural logarithm of _E_x_p_r
lloogg1100((_+_E_x_p_r))
Base-10 logarithm. _R_e_s_u_l_t =10 base logarithm of _E_x_p_r
eexxpp((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =e to the power _E_x_p_r
_+_E_x_p_r_1 ** _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t = _E_x_p_r_1 to the power _E_x_p_r_2. The result is a float, unless
SWI-Prolog is compiled with unbounded integer support and the
inputs are integers and produce an integer result. The integer ex-
pressions 0 to the power I, 1 to the power I and -1 to the power I
are guaranteed to work for any integer I. Other integer base
values generate a resource error if the result does not fit in
memory.
The ISO standard demands a float result for all inputs and
introduces ^/2 for integer exponentiation. The function float/1
can be used on one or both arguments to force a floating point
result. Note that casting the _i_n_p_u_t result in a floating
point computation, while casting the _o_u_t_p_u_t performs integer
exponentiation followed by a conversion to float.
_+_E_x_p_r_1 ^ _+_E_x_p_r_2 _[_I_S_O_]
In SWI-Prolog, ^/2 is equivalent to **/2. The ISO version is
similar, except that it produces a evaluation error if both _E_x_p_r_1
and _E_x_p_r_2 are integers and the result is not an integer. The table
below illustrates the behaviour of the exponentiation functions in
ISO and SWI.
________________________________________________________
|__E_x_p_r_1_____E_x_p_r_2__|_Function_|SWI__________|ISO__________|
| Int Int | **/2 |Int or Float |Float |
| Int Float | **/2 |Float |Float |
| Rational Int | **/2 |Rational |- |
| Float Int | **/2 |Float |Float |
|_Float____Float_|_**/2_____|Float________|Float________|
| Int Int | ^/2 |Int or Float |Int or error |
| Int Float | ^/2 |Float |Float |
| Rational Int | ^/2 |Rational |- |
| Float Int | ^/2 |Float |Float |
|_Float____Float_|_^/2______|Float________|Float________|
ppoowwmm((_+_I_n_t_E_x_p_r_B_a_s_e_, _+_I_n_t_E_x_p_r_E_x_p_, _+_I_n_t_E_x_p_r_M_o_d))
_R_e_s_u_l_t = (_I_n_t_E_x_p_r_B_a_s_e to the power _I_n_t_E_x_p_r_E_x_p) modulo _I_n_t_E_x_p_r_M_o_d.
Only available when compiled with unbounded integer support. This
formula is required for Diffie-Hellman key-exchange, a technique
where two parties can establish a secret key over a public network.
_I_n_t_E_x_p_r_B_a_s_e and _I_n_t_E_x_p_r_E_x_p must be non-negative (>= 0), _I_n_t_E_x_p_r_M_o_d
must be positive (> 0).
llggaammmmaa((_+_E_x_p_r))
Return the natural logarithm of the absolute value of the Gamma
function.
eerrff((_+_E_x_p_r))
https://en.wikipedia.org/wiki/Error_functionWikipedia: ``In math-
ematics, the error function (also called the Gauss error
function) is a special function (non-elementary) of sigmoid shape
which occurs in probability, statistics and partial differential
equations.''
eerrffcc((_+_E_x_p_r))
https://en.wikipedia.org/wiki/Error_functionWikipedia: ``The com-
plementary error function.''
ppii _[_I_S_O_]
Evaluate to the mathematical constant pi (3.14159...).
ee
Evaluate to the mathematical constant e (2.71828...).
eeppssiilloonn
Evaluate to the difference between the float 1.0 and the first
larger floating point number.
iinnff
Evaluate to positive infinity. See section ????. This value can be
negated using -/1 .
nnaann
Evaluate to _N_o_t _a _N_u_m_b_e_r. See section ????.
ccppuuttiimmee
Evaluate to a floating point number expressing the cpu time (in
seconds) used by Prolog up till now. See also statistics/2 and
time/1.
eevvaall((_+_E_x_p_r))
Evaluate _E_x_p_r. Although ISO standard dictates that `A=1+2, B is
A' works and unifies B to 3, it is widely felt that source level
variables in arithmetic expressions should have been limited to
numbers. In this view the eval function can be used to evaluate
arbitrary expressions.
BBiittvveeccttoorr ffuunnccttiioonnss
The functions below are not covered by the standard. The
msb/1 function also appears in hProlog and SICStus Prolog. The
getbit/2 function also appears in ECLiPSe, which also provides
setbit(_V_e_c_t_o_r_,_I_n_d_e_x) and clrbit(_V_e_c_t_o_r_,_I_n_d_e_x). The others are
SWI-Prolog extensions that improve handling of ---unbounded--- integers
as bit-vectors.
mmssbb((_+_I_n_t_E_x_p_r))
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the most significant 1 bit in
the value of _I_n_t_E_x_p_r, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
llssbb((_+_I_n_t_E_x_p_r))
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the least significant 1 bit in
the value of _I_n_t_E_x_p_r, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
ppooppccoouunntt((_+_I_n_t_E_x_p_r))
Return the number of 1s in the binary representation of the
non-negative integer _I_n_t_E_x_p_r.
ggeettbbiitt((_+_I_n_t_E_x_p_r_V_, _+_I_n_t_E_x_p_r_I))
Evaluates to the bit value (0 or 1) of the _I_n_t_E_x_p_r_I-th bit of
_I_n_t_E_x_p_r_V. Both arguments must evaluate to non-negative integers.
The result is equivalent to (IntExprV >> IntExprI)/\1, but more
efficient because materialization of the shifted value is avoided.
Future versions will optimise (IntExprV >> IntExprI)/\1 to a call
to getbit/2, providing both portability and performance.
44..2288 MMiisscc aarriitthhmmeettiicc ssuuppppoorrtt pprreeddiiccaatteess
sseett__rraannddoomm((_+_O_p_t_i_o_n))
Controls the random number generator accessible through the
_f_u_n_c_t_i_o_n_s random/1 and random_float/0. Note that the library
random provides an alternative API to the same random primitives.
sseeeedd((_+_S_e_e_d))
Set the seed of the random generator for this thread. _S_e_e_d
is an integer or the atom random. If random, repeat the
initialization procedure described with the function random/1.
Here is an example:
_______________________________________________________________| |
|?- set_random(seed(111)), A is random(6). |
|A = 5. |
|?- set_random(seed(111)), A is random(6). |
|A|=_5.________________________________________________________ | |
ssttaattee((_+_S_t_a_t_e))
Set the generator to a state fetched using the state property
of random_property/1. Using other values may lead to undefined
behaviour.
rraannddoomm__pprrooppeerrttyy((_?_O_p_t_i_o_n))
True when _O_p_t_i_o_n is a current property of the random generator.
Currently, this predicate provides access to the state. This
predicate is not present on systems where the state is
inaccessible.
ssttaattee((_-_S_t_a_t_e))
Describes the current state of the random generator. State
is a normal Prolog term that can be asserted or written to a
file. Applications should make no other assumptions about its
representation. The only meaningful operation is to use as
argument to set_random/1 using the state(_S_t_a_t_e) option.
ccuurrrreenntt__aarriitthhmmeettiicc__ffuunnccttiioonn((_?_H_e_a_d))
True when _H_e_a_d is an evaluable function. For example:
____________________________________________________________________| |
| ?- current_arithmetic_function(sin(_)). |
||true._____________________________________________________________ ||
44..2299 BBuuiilltt--iinn lliisstt ooppeerraattiioonnss
Most list operations are defined in the library lists described in
section ????. Some that are implemented with more low-level primitives
are built-in and described here.
iiss__lliisstt((_+_T_e_r_m))
True if _T_e_r_m is bound to the empty list ([]) or a term with functor
`'[|]'' and arity 2 and the second argument is a list. This
predicate acts as if defined by the definition below on _a_c_y_c_l_i_c
terms. The implementation _f_a_i_l_s safely if _T_e_r_m represents a cyclic
list.
____________________________________________________________________| |
| is_list(X) :- |
| var(X), !, |
| fail. |
| is_list([]). |
| is_list([_|T]) :- |
||________is_list(T)._______________________________________________ ||
mmeemmbbeerrcchhkk((_?_E_l_e_m_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _E_l_e_m is an element of _L_i_s_t. This `chk' variant
of member/2 is semi deterministic and typically used to test
membership of a list. Raises a type error if scanning _L_i_s_t
encounters a non-list. Note that memberchk/2 does _n_o_t perform a
full list typecheck. For example, memberchk(a, [a|b]) succeeds
without error. If _L_i_s_t is cyclic and _E_l_e_m is not a member of _L_i_s_t,
memberchk/2 eventually raises a type error.
lleennggtthh((_?_L_i_s_t_, _?_I_n_t)) _[_I_S_O_]
True if _I_n_t represents the number of elements in _L_i_s_t. This
predicate is a true relation and can be used to find the length
of a list or produce a list (holding variables) of length _I_n_t.
The predicate is non-deterministic, producing lists of increasing
length if _L_i_s_t is a _p_a_r_t_i_a_l _l_i_s_t and _I_n_t is unbound. It raises
errors if
o _I_n_t is bound to a non-integer.
o _I_n_t is a negative integer.
o _L_i_s_t is neither a list nor a partial list. This error
condition includes cyclic lists.
This predicate fails if the tail of _L_i_s_t is equivalent to _I_n_t
(e.g., length(L,L)).
ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d)) _[_I_S_O_]
True if _S_o_r_t_e_d can be unified with a list holding the elements
of _L_i_s_t, sorted to the standard order of terms (see section ????).
Duplicates are removed. The implementation is in C, using _n_a_t_u_r_a_l
_m_e_r_g_e _s_o_r_t. The sort/2 predicate can sort a cyclic list, returning
a non-cyclic version with the same elements.
Note that _L_i_s_t may contain non-ground terms. If _S_o_r_t_e_d is unbound
at call-time, for each consequtive pair of elements in _S_o_r_t_e_d,
the relation E1 @< E2 will hold. However, unifying a variable in
_S_o_r_t_e_d may cause this relation to become invalid, _e_v_e_n unifying
a variable in _S_o_r_t_e_d with another (older) variable. See also
section ????.
ssoorrtt((_+_K_e_y_, _+_O_r_d_e_r_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
True when _S_o_r_t_e_d can be unified with a list holding the element of
_L_i_s_t. _K_e_y determines which part of each element in _L_i_s_t is used
for comparing two term and _O_r_d_e_r describes the relation between
each set of consecutive elements in _S_o_r_t_e_d.
If _K_e_y is the integer zero (0), the entire term is used to compare
two elements. Using _K_e_y=0 can be used to sort arbitrary Prolog
terms. Other values for _K_e_y can only be used with compound terms
or dicts (see section ????). An integer key extracts the _K_e_y-th
argument from a compound term. An integer or atom key extracts
the value from a dict that is associated with the given key. A
type_error is raised if the list element is of the wrong type
and an existence_error is raised if the compound has not enough
argument or the dict does not contain the requested key.
Deeper nested elements of structures can be selected by using a
list of keys for the _K_e_y argument.
The _O_r_d_e_r argument is described in the table below
_Order__Ordering____Duplicate_handling__
@< ascending remove
@=< ascending keep
@> descending remove
@>= descending keep
The sort is _s_t_a_b_l_e, which implies that, if duplicates are kept, the
order of duplicates is not changed. If duplicates are removed,
only the first element of a sequence of duplicates appears in
_S_o_r_t_e_d.
This predicate supersedes most of the other sorting primitives, for
example:
____________________________________________________________________| |
| sort(List, Sorted) :- sort(0, @<, List, Sorted). |
| msort(List, Sorted) :- sort(0, @=<, List, Sorted). |
||keysort(Pairs,_Sorted)_:-_sort(1,_@=<,_Pairs,_Sorted).____________ ||
The following example sorts a list of rows, for example resulting
from csv_read_file/2) ascending on the 3th column and descending on
the 4th column:
____________________________________________________________________| |
| sort(4, @>=, Rows0, Rows1), |
||____sort(3,_@=<,_Rows1,_Sorted).__________________________________ ||
See also sort/2 (ISO), msort/2, keysort/2, predsort/3 and
order_by/2.
mmssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Equivalent to sort/2, but does not remove duplicates. Raises a
type_error if _L_i_s_t is a cyclic list or not a list.
kkeeyyssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d)) _[_I_S_O_]
Sort a list of _p_a_i_r_s. _L_i_s_t must be a list of _K_e_y-_V_a_l_u_e pairs,
terms whose principal functor is (-)/2. _L_i_s_t is sorted on
_K_e_y according to the standard order of terms (see section ????).
Duplicates are _n_o_t removed. Sorting is _s_t_a_b_l_e with regard to the
order of the _V_a_l_u_e_s, i.e., the order of multiple elements that have
the same _K_e_y is not changed.
The keysort/2 predicate is often used together with library pairs.
It can be used to sort lists on different or multiple criteria.
For example, the following predicates sorts a list of atoms
according to their length, maintaining the initial order for atoms
that have the same length.
____________________________________________________________________| |
| :- use_module(library(pairs)). |
| |
| sort_atoms_by_length(Atoms, ByLength) :- |
| map_list_to_pairs(atom_length, Atoms, Pairs), |
| keysort(Pairs, Sorted), |
||________pairs_values(Sorted,_ByLength).___________________________ ||
pprreeddssoorrtt((_+_P_r_e_d_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
Sorts similar to sort/2, but determines the order of two terms by
calling _P_r_e_d(-_D_e_l_t_a, +_E_1, +_E_2). This call must unify _D_e_l_t_a with
one of <, > or =. If the built-in predicate compare/3 is used, the
result is the same as sort/2. See also keysort/2.
44..3300 FFiinnddiinngg aallll SSoolluuttiioonnss ttoo aa GGooaall
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Create a list of the instantiations _T_e_m_p_l_a_t_e gets successively on
backtracking over _G_o_a_l and unify the result with _B_a_g. Succeeds
with an empty list if _G_o_a_l has no solutions. findall/3 is
equivalent to bagof/3 with all free variables bound with the
existential operator (^), except that bagof/3 fails when _G_o_a_l has
no solutions.
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g_, _+_T_a_i_l))
As findall/3, but returns the result as the difference list
_B_a_g-_T_a_i_l. The 3-argument version is defined as
____________________________________________________________________| |
| findall(Templ, Goal, Bag) :- |
||________findall(Templ,_Goal,_Bag,_[])_____________________________ ||
ffiinnddnnssoollss((_+_N_, _@_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_L_i_s_t)) _[_n_o_n_d_e_t_]
ffiinnddnnssoollss((_+_N_, _@_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_L_i_s_t_, _?_T_a_i_l)) _[_n_o_n_d_e_t_]
As findall/3 and findall/4, but generates at most _N solutions. If
_N solutions are returned, this predicate succeeds with a choice
point if _G_o_a_l has a choice point. Backtracking returns the next
chunk of (at most) _N solutions. In addition to passing a plain
integer for _N, a term of the form count(_N) is accepted. Using
count(_N), the size of the next chunk can be controlled using
nb_setarg/3. The non-deterministic behaviour used to implement the
_c_h_u_n_k option in pengines. Based on Ciao, but the Ciao version
is deterministic. Portability can be achieved by wrapping the
goal in once/1. Below are three examples. The first illustrates
standard chunking of answers. The second illustrates that the
chunk size can be adjusted dynamically and the last illustrates
that no choice point is left if _G_o_a_l leaves no choice-point after
the last solution.
____________________________________________________________________| |
| ?- findnsols(5, I, between(1, 12, I), L). |
| L = [1, 2, 3, 4, 5] ; |
| L = [6, 7, 8, 9, 10] ; |
| L = [11, 12]. |
| |
| ?- State = count(2), |
| findnsols(State, I, between(1, 12, I), L), |
| nb_setarg(1, State, 5). |
| State = count(5), L = [1, 2] ; |
| State = count(5), L = [3, 4, 5, 6, 7] ; |
| State = count(5), L = [8, 9, 10, 11, 12]. |
| |
| ?- findnsols(4, I, between(1, 4, I), L). |
||L_=_[1,_2,_3,_4]._________________________________________________ ||
bbaaggooff((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Unify _B_a_g with the alternatives of _T_e_m_p_l_a_t_e. If _G_o_a_l has free
variables besides the one sharing with _T_e_m_p_l_a_t_e, bagof/3 will
backtrack over the alternatives of these free variables, unifying
_B_a_g with the corresponding alternatives of _T_e_m_p_l_a_t_e. The construct
+_V_a_r^_G_o_a_l tells bagof/3 not to bind _V_a_r in _G_o_a_l. bagof/3 fails if
_G_o_a_l has no solutions.
The example below illustrates bagof/3 and the ^ operator. The
variable bindings are printed together on one line to save paper.
____________________________________________________________________| |
| 2 ?- listing(foo). |
| foo(a, b, c). |
| foo(a, b, d). |
| foo(b, c, e). |
| foo(b, c, f). |
| foo(c, c, g). |
| true. |
| |
| 3 ?- bagof(C, foo(A, B, C), Cs). |
| A = a, B = b, C = G308, Cs = [c, d] ; |
| A = b, B = c, C = G308, Cs = [e, f] ; |
| A = c, B = c, C = G308, Cs = [g]. |
| |
| 4 ?- bagof(C, A^foo(A, B, C), Cs). |
| A = G324, B = b, C = G326, Cs = [c, d] ; |
| A = G324, B = c, C = G326, Cs = [e, f, g]. |
| |
||5_?-______________________________________________________________ ||
sseettooff((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l_, _-_S_e_t)) _[_I_S_O_]
Equivalent to bagof/3, but sorts the result using sort/2 to get a
sorted list of alternatives without duplicates.
44..3311 FFoorraallll
ffoorraallll((_:_C_o_n_d_, _:_A_c_t_i_o_n)) _[_s_e_m_i_d_e_t_]
For all alternative bindings of _C_o_n_d, _A_c_t_i_o_n can be proven. The
example verifies that all arithmetic statements in the given list
are correct. It does not say which is wrong if one proves wrong.
____________________________________________________________________| |
| ?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]), |
||_________________Result_=:=_Formula)._____________________________ ||
The predicate forall/2 is implemented as \+ ( Cond, \+ Action),
i.e., _T_h_e_r_e _i_s _n_o _i_n_s_t_a_n_t_i_a_t_i_o_n _o_f _C_o_n_d _f_o_r _w_h_i_c_h _A_c_t_i_o_n _i_s _f_a_l_s_e_..
The use of double negation implies that forall/2 _d_o_e_s _n_o_t _c_h_a_n_g_e
_a_n_y _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g_s. It proves a relation. The forall/2 control
structure can be used for its side-effects. E.g., the following
asserts relations in a list into the dynamic database:
____________________________________________________________________| |
| ?- forall(member(Child-Parent, ChildPairs), |
||__________assertz(child_of(Child,_Parent))).______________________ ||
Using forall/2 as forall(_G_e_n_e_r_a_t_o_r_, _S_i_d_e_E_f_f_e_c_t) is preferred over
the classical _f_a_i_l_u_r_e _d_r_i_v_e_n _l_o_o_p as shown below because it makes
it explicit which part of the construct is the generator and which
part creates the side effects. Also, unexpected failure of the
side effect causes the construct to fail. Failure makes it evident
that there is an issue with the code, while a failure driven loop
would succeed with an erroneous result.
____________________________________________________________________| |
| ..., |
| ( Generator, |
| SideEffect, |
| fail |
| ; true |
||________)_________________________________________________________ ||
If your intent is to create variable bindings, the forall/2 control
structure is inadequate. Possibly you are looking for maplist/2,
findall/3 or foreach/2.
44..3322 FFoorrmmaatttteedd WWrriittee
The current version of SWI-Prolog provides two formatted write
predicates. The `writef' family (writef/1, writef/2, swritef/3), is
compatible with Edinburgh C-Prolog and should be considered _d_e_p_r_e_c_a_t_e_d.
The `format' family (format/1, format/2, format/3), was defined by
Quintus Prolog and currently available in many Prolog systems, although
the details vary.
44..3322..11 WWrriitteeff
wwrriitteeff((_+_A_t_o_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to writef(Atom, []). See writef/2 for details.
wwrriitteeff((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Formatted write. _F_o_r_m_a_t is an atom whose characters will be
printed. _F_o_r_m_a_t may contain certain special character sequences
which specify certain formatting and substitution actions.
_A_r_g_u_m_e_n_t_s provides all the terms required to be output.
Escape sequences to generate a single special character:
__________________________________________________
| \n |Output a newline character (see also |
| |nl/[0,1]) |
| \l |Output a line separator (same as \n) |
| \r |Output a carriage return character |
| |(ASCII 13) |
| \t |Output the ASCII character TAB (9) |
| \\ |The character \ is output |
| \% |The character % is output |
| \nnn |where <_n_n_n> is an integer (1-3 digits); |
| |the character with code <_n_n_n> is output |
|______|(NB_:_<_n_n_n>_is_read_as_ddeecciimmaall)___________|
Note that \l, \nnn and \\ are interpreted differently when
character escapes are in effect. See section ????.
Escape sequences to include arguments from _A_r_g_u_m_e_n_t_s. Each time
a % escape sequence is found in _F_o_r_m_a_t the next argument from
_A_r_g_u_m_e_n_t_s is formatted according to the specification.
_________________________________________________%t
| %w print/1 the next item (mnemonic: term) | |
| %q |write/1the next item |
| |writeq/1the next item |
| %d |Write the term, ignoring operators. See|
| |also write_term/2. Mnemonic: old|
| %p |Edinburgh display/1 |
| |print/1the next item (identical to %t) |
| %n |Put the next item as a character (i.e.,|
| |it is a character code) |
| %r |Write the next item N times where N is|
| |the second item (an integer) |
| %s |Write the next item as a String (so it|
| |must be a list of characters) |
| %f |Perform a ttyflush/0 (no items used) |
| %Nc |Write the next item Centered in N |
| |columns |
| %Nl |Write the next item Left justified in N |
| |columns |
| %Nr |Write the next item Right justified in N |
| |columns. N is a decimal number with at|
| |least one digit. The item must be an|
|_____|atom,_integer,_float_or_string.__________|_
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to writef/2, but ``writes'' the result on _S_t_r_i_n_g instead
of the current output stream. Example:
____________________________________________________________________| |
| ?- swritef(S, '%15L%w', ['Hello', 'World']). |
| |
||S_=_"Hello__________World"________________________________________ ||
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to swritef(String, Format, []).
44..3322..22 FFoorrmmaatt
The format family of predicates is the most versatile and portable way
to produce textual output.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Defined as `format(Format) :- format(Format, []).'. See format/2
for details.
ffoorrmmaatt((_+_F_o_r_m_a_t_, _:_A_r_g_u_m_e_n_t_s))
_F_o_r_m_a_t is an atom, list of character codes, or a Prolog string.
_A_r_g_u_m_e_n_t_s provides the arguments required by the format
specification. If only one argument is required and this single
argument is not a list, the argument need not be put in a list.
Otherwise the arguments are put in a list.
Special sequences start with the tilde (~), followed by an optional
numeric argument, optionally followed by a colon modifier (:),
followed by a character describing the action to be undertaken. A
numeric argument is either a sequence of digits, representing a
positive decimal number, a sequence `<_c_h_a_r_a_c_t_e_r>, representing the
character code value of the character (only useful for ~t) or a
asterisk (*), in which case the numeric argument is taken from the
next argument of the argument list, which should be a positive
integer. E.g., the following three examples all pass 46 (.) to ~t:
____________________________________________________________________| |
| ?- format('~w ~46t ~w~72|~n', ['Title', 'Page']). |
| ?- format('~w ~`.t ~w~72|~n', ['Title', 'Page']). |
||?-_format('~w_~*t_~w~72|~n',_['Title',_46,_'Page']).______________ ||
Numeric conversion (d, D, e, E, f, g and G) accept an arithmetic
expression as argument. This is introduced to handle rational
numbers transparently (see section ????). The floating point
conversions allow for unlimited precision for printing rational
numbers in decimal form. E.g., the following will write as many
3's as you want by changing the `50'.
____________________________________________________________________| |
| ?- format('~50f', [10 rdiv 3]). |
||3.33333333333333333333333333333333333333333333333333______________ ||
~ Output the tilde itself.
a Output the next argument, which must be an atom. This option
is equivalent to ww, except that it requires the argument to be
an atom.
c Interpret the next argument as a character code and add it to
the output. This argument must be a valid Unicode character
code. Note that the actually emitted bytes are defined by the
character encoding of the output stream and an exception may
be raised if the output stream is not capable of representing
the requested Unicode character. See section ???? for details.
d Output next argument as a decimal number. It should be
an integer. If a numeric argument is specified, a dot is
inserted _a_r_g_u_m_e_n_t positions from the right (useful for doing
fixed point arithmetic with integers, such as handling amounts
of money).
The colon modifier (e.g., ~:d) causes the number to be printed
according to the locale of the output stream. See section ????.
D Same as dd, but makes large values easier to read by inserting
a comma every three digits left or right of the dot. This is
the same as ~:d, but using the fixed English locale.
e Output next argument as a floating point number in exponential
notation. The numeric argument specifies the precision.
Default is 6 digits. Exact representation depends on the C
library function printf(). This function is invoked with the
format %.<_p_r_e_c_i_s_i_o_n>e.
E Equivalent to ee, but outputs a capital E to indicate the
exponent.
f Floating point in non-exponential notation. The numeric
argument defines the number of digits right of the decimal
point. If the colon modifier (:) is used, the float is
formatted using conventions from the current locale, which may
define the decimal point as well as grouping of digits left of
the decimal point.
g Floating point in ee or ff notation, whichever is shorter.
G Floating point in EE or ff notation, whichever is shorter.
i Ignore next argument of the argument list. Produces no
output.
I Emit a decimal number using Prolog digit grouping (the
underscore, _). The argument describes the size of each digit
group. The default is 3. See also section ????. For example:
_______________________________________________________________| |
|?- A is 1<<100, format('~10I', [A]). |
|1_2676506002_2822940149_6703205376|___________________________ | |
k Give the next argument to write_canonical/1.
n Output a newline character.
N Only output a newline if the last character output on this
stream was not a newline. Not properly implemented yet.
p Give the next argument to print/1.
q Give the next argument to writeq/1.
r Print integer in radix numeric argument notation. Thus ~16r
prints its argument hexadecimal. The argument should be in
the range [2;:::;36]. Lowercase letters are used for digits above
9. The colon modifier may be used to form locale-specific
digit groups.
R Same as rr, but uses uppercase letters for digits above 9.
s Output text from a list of character codes or a string (see
string/1 and section ????) from the next argument.
@ Interpret the next argument as a goal and execute it. Output
written to the current_output stream is inserted at this place.
Goal is called in the module calling format/3. This option
is not present in the original definition by Quintus, but
supported by some other Prolog systems.
t All remaining space between 2 tab stops is distributed equally
over ~t statements between the tab stops. This space is
padded with spaces by default. If an argument is supplied, it
is taken to be the character code of the character used for
padding. This can be used to do left or right alignment,
centering, distributing, etc. See also ~| and ~+ to set tab
stops. A tab stop is assumed at the start of each line.
| Set a tab stop on the current position. If an argument is
supplied set a tab stop on the position of that argument.
This will cause all ~t's to be distributed between the
previous and this tab stop.
+ Set a tab stop (as ~|) relative to the last tab stop or
the beginning of the line if no tab stops are set before
the ~+. This constructs can be used to fill fields. The
partial format sequence below prints an integer right-aligned
and padded with zeros in 6 columns. The ... sequences in the
example illustrate that the integer is aligned in 6 columns
regardless of the remainder of the format specification.
_______________________________________________________________| |
||_______format('...~|~`0t~d~6+...',_[...,_Integer,_...])______ ||
w Give the next argument to write/1.
W Give the next two arguments to write_term/2. For example,
format('~W', [Term, [numbervars(true)]]). This option is
SWI-Prolog specific.
Example:
____________________________________________________________________| |
| simple_statistics :- |
| <obtain statistics> % left to the user |
| format('~tStatistics~t~72|~n~n'), |
| format('Runtime: ~`.t ~2f~34| Inferences: ~`.t ~D~72|~n', |
| [RunT, Inf]), |
||____....__________________________________________________________ ||
will output
____________________________________________________________________| |
| Statistics |
| |
||Runtime:_.................._3.45__Inferences:_.........._60,345___ ||
ffoorrmmaatt((_+_O_u_t_p_u_t_, _+_F_o_r_m_a_t_, _:_A_r_g_u_m_e_n_t_s))
As format/2, but write the output on the given _O_u_t_p_u_t. The de-
facto standard only allows _O_u_t_p_u_t to be a stream. The SWI-Prolog
implementation allows all valid arguments for with_output_to/2.
For example:
____________________________________________________________________| |
| ?- format(atom(A), '~D', [1000000]). |
||A_=_'1,000,000'___________________________________________________ ||
44..3322..33 PPrrooggrraammmmiinngg FFoorrmmaatt
ffoorrmmaatt__pprreeddiiccaattee((_+_C_h_a_r_, _+_H_e_a_d))
If a sequence ~c (tilde, followed by some character) is found, the
format/3 and friends first check whether the user has defined a
predicate to handle the format. If not, the built-in formatting
rules described above are used. _C_h_a_r is either a character code
or a one-character atom, specifying the letter to be (re)defined.
_H_e_a_d is a term, whose name and arity are used to determine the
predicate to call for the redefined formatting character. The
first argument to the predicate is the numeric argument of the
format command, or the atom default if no argument is specified.
The remaining arguments are filled from the argument list. The
example below defines ~T to print a timestamp in ISO8601 format
(see format_time/3). The subsequent block illustrates a possible
call.
____________________________________________________________________| |
| :- format_predicate('T', format_time(_Arg,_Time)). |
| |
| format_time(_Arg, Stamp) :- |
| must_be(number, Stamp), |
||________format_time(current_output,_'%FT%T%z',_Stamp).____________ ||
____________________________________________________________________| |
| ?- get_time(Now), |
| format('Now, it is ~T~n', [Now]). |
| Now, it is 2012-06-04T19:02:01+0200 |
||Now_=_1338829321.6620328._________________________________________ ||
ccuurrrreenntt__ffoorrmmaatt__pprreeddiiccaattee((_?_C_o_d_e_, _?_:_H_e_a_d))
True when ~_C_o_d_e is handled by the user-defined predicate specified
by _H_e_a_d.
44..3333 GGlloobbaall vvaarriiaabblleess
Global variables are associations between names (atoms) and terms.
They differ in various ways from storing information using assert/1 or
recorda/3.
o The value lives on the Prolog (global) stack. This implies that
lookup time is independent of the size of the term. This is
particularly interesting for large data structures such as parsed
XML documents or the CHR global constraint store.
o They support both global assignment using nb_setval/2 and
backtrackable assignment using b_setval/2.
o Only one value (which can be an arbitrary complex Prolog term) can
be associated to a variable at a time.
o Their value cannot be shared among threads. Each thread has its
own namespace and values for global variables.
o Currently global variables are scoped globally. We may consider
module scoping in future versions.
Both b_setval/2 and nb_setval/2 implicitly create a variable if the
referenced name does not already refer to a variable.
Global variables may be initialised from directives to make them
available during the program lifetime, but some considerations are
necessary for saved states and threads. Saved states do not
store global variables, which implies they have to be declared with
initialization/1 to recreate them after loading the saved state. Each
thread has its own set of global variables, starting with an empty
set. Using thread_initialization/1 to define a global variable it will
be defined, restored after reloading a saved state and created in all
threads that are created _a_f_t_e_r the registration. Finally, global
variables can be initialised using the exception hook exception/3. The
latter technique is used by CHR (see chapter ????).
bb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associate the term _V_a_l_u_e with the atom _N_a_m_e or replace the
currently associated value with _V_a_l_u_e. If _N_a_m_e does not refer
to an existing global variable, a variable with initial value []
is created (the empty list). On backtracking the assignment is
reversed.
bb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
Get the value associated with the global variable _N_a_m_e and unify it
with _V_a_l_u_e. Note that this unification may further instantiate the
value of the global variable. If this is undesirable the normal
precautions (double negation or copy_term/2) must be taken. The
b_getval/2 predicate generates errors if _N_a_m_e is not an atom or the
requested variable does not exist.
nnbb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates a copy of _V_a_l_u_e created with duplicate_term/2 with the
atom _N_a_m_e. Note that this can be used to set an initial value
other than [] prior to backtrackable assignment.
nnbb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
The nb_getval/2 predicate is a synonym for b_getval/2, introduced
for compatibility and symmetry. As most scenarios will use
a particular global variable using either non-backtrackable
or backtrackable assignment, using nb_getval/2 can be used
to document that the variable is non-backtrackable. Raises
existence_error(_v_a_r_i_a_b_l_e_, _N_a_m_e) if the variable does not exist.
Alternatively, nb_current/2 can used to query a global variable.
This version _f_a_i_l_s if the variable does not exist rather than
raising an exception.
nnbb__lliinnkkvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates the term _V_a_l_u_e with the atom _N_a_m_e without copying it.
This is a fast special-purpose variation of nb_setval/2 intended
for expert users only because the semantics on backtracking
to a point before creating the link are poorly defined for
compound terms. The principal term is always left untouched,
but backtracking behaviour on arguments is undone if the original
assignment was _t_r_a_i_l_e_d and left alone otherwise, which implies
that the history that created the term affects the behaviour on
backtracking. Consider the following example:
____________________________________________________________________| |
| demo_nb_linkval :- |
| T = nice(N), |
| ( N = world, |
| nb_linkval(myvar, T), |
| fail |
| ; nb_getval(myvar, V), |
| writeln(V) |
||________).________________________________________________________ ||
nnbb__ccuurrrreenntt((_?_N_a_m_e_, _?_V_a_l_u_e))
Enumerate all defined variables with their value. The order of
enumeration is undefined. Note that nb_current/2 can be used as an
alternative for nb_getval/2 to request the value of a variable and
fail silently if the variable does not exists.
nnbb__ddeelleettee((_+_N_a_m_e))
Delete the named global variable. Succeeds also if the named
variable does not exist.
44..3333..11 CCoommppaattiibbiilliittyy ooff SSWWII--PPrroolloogg GGlloobbaall VVaarriiaabblleess
Global variables have been introduced by various Prolog implementations
recently. The implementation of them in SWI-Prolog is based on hProlog
by Bart Demoen. In discussion with Bart it was decided that the
semantics of hProlog nb_setval/2, which is equivalent to nb_linkval/2,
is not acceptable for normal Prolog users as the behaviour is
influenced by how built-in predicates that construct terms (read/1,
=../2, etc.) are implemented.
GNU-Prolog provides a rich set of global variables, including arrays.
Arrays can be implemented easily in SWI-Prolog using functor/3 and
setarg/3 due to the unrestricted arity of compound terms.
44..3344 TTeerrmmiinnaall CCoonnttrrooll
The following predicates form a simple access mechanism to the
Unix termcap library to provide terminal-independent I/O for screen
terminals. These predicates are only available on Unix machines. The
SWI-Prolog Windows console accepts the ANSI escape sequences.
ttttyy__ggeett__ccaappaabbiilliittyy((_+_N_a_m_e_, _+_T_y_p_e_, _-_R_e_s_u_l_t))
Get the capability named _N_a_m_e from the termcap library. See
termcap(5) for the capability names. _T_y_p_e specifies the type of
the expected result, and is one of string, number or bool. String
results are returned as an atom, number results as an integer, and
bool results as the atom on or off. If an option cannot be found,
this predicate fails silently. The results are only computed once.
Successive queries on the same capability are fast.
ttttyy__ggoottoo((_+_X_, _+_Y))
Goto position (_X, _Y) on the screen. Note that the predicates
line_count/2 and line_position/2 will not have a well-defined
behaviour while using this predicate.
ttttyy__ppuutt((_+_A_t_o_m_, _+_L_i_n_e_s))
Put an atom via the termcap library function tputs(). This
function decodes padding information in the strings returned by
tty_get_capability/3 and should be used to output these strings.
_L_i_n_e_s is the number of lines affected by the operation, or 1 if not
applicable (as in almost all cases).
ttttyy__ssiizzee((_-_R_o_w_s_, _-_C_o_l_u_m_n_s))
Determine the size of the terminal. Platforms:
UUnniixx If the system provides _i_o_c_t_l calls for this, these are
used and tty_size/2 properly reflects the actual size after
a user resize of the window. The _i_o_c_t_l is issued on teh
file descriptor associated with the user_input stream. As
a fallback, the system uses tty_get_capability/3 using li and
co capabilities. In this case the reported size reflects
the size at the first call and is not updated after a
user-initiated resize of the terminal.
WWiinnddoowwss Getting the size of the terminal is provided for
swipl-win.exe. The requested value reflects the current size.
For the multithreaded version the console that is associated
with the user_input stream is used.
44..3355 OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
The predicates in this section provide basic access to the operating
system that has been part of the Prolog legacy tradition. Note that
more advanced access to low-level OS features is provided by several
libaries from the clib package, notably library process, socket, unix
and filesex.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to `shell(Command, 0)'. See shell/2 for details.
sshheellll((_+_C_o_m_m_a_n_d_, _-_S_t_a_t_u_s))
Execute _C_o_m_m_a_n_d on the operating system. _C_o_m_m_a_n_d is given to the
Bourne shell (/bin/sh). _S_t_a_t_u_s is unified with the exit status of
the command.
On Windows, shell/[1,2] executes the command using the
CreateProcess() API and waits for the command to terminate. If the
command ends with a & sign, the command is handed to the WinExec()
API, which does not wait for the new task to terminate. See also
win_exec/2 and win_shell/2. Please note that the CreateProcess()
API does nnoott imply the Windows command interpreter (cmd.exe and
therefore commands that are built in the command interpreter can
only be activated using the command interpreter. For example, a
file can be compied using the command below.
____________________________________________________________________| |
||?-_shell('cmd.exe_/C_copy_file1.txt_file2.txt').__________________ ||
Note that many of the operations that can be achieved using
the shell built-in commands can easily be achieved using Prolog
primitives. See make_directory/1, delete_file/1, rename_file/2,
etc. The clib package provides filesex, implementing various high
level file operations such as copy_file/2. Using Prolog primitives
instead of shell commands improves the portability of your program.
The library process provides process_create/3 and several related
primitives that support more fine-grained interaction with
processes, including I/O redirection and management of asynchronous
processes.
ggeetteennvv((_+_N_a_m_e_, _-_V_a_l_u_e))
Get environment variable. Fails silently if the variable does
not exist. Please note that environment variable names are
case-sensitive on Unix systems and case-insensitive on Windows.
sseetteennvv((_+_N_a_m_e_, _+_V_a_l_u_e))
Set an environment variable. _N_a_m_e and _V_a_l_u_e must be instantiated
to atoms or integers. The environment variable will be passed
to shell/[0-2] and can be requested using getenv/2. They also
influence expand_file_name/2. Environment variables are shared
between threads. Depending on the underlying C library, setenv/2
and unsetenv/1 may not be thread-safe and may cause memory leaks.
Only changing the environment once and before starting threads is
safe in all versions of SWI-Prolog.
uunnsseetteennvv((_+_N_a_m_e))
Remove an environment variable from the environment. Some systems
lack the underlying unsetenv() library function. On these systems
unsetenv/1 sets the variable to the empty string.
sseettllooccaallee((_+_C_a_t_e_g_o_r_y_, _-_O_l_d_, _+_N_e_w))
Set/Query the _l_o_c_a_l_e setting which tells the C library how to
interpret text files, write numbers, dates, etc. Category is
one of all, collate, ctype, messages, monetary, numeric or time.
For details, please consult the C library locale documentation.
See also section ????. Please note that the locale is shared
between all threads and thread-safe usage of setlocale/3 is in
general not possible. Do locale operations before starting
threads or thoroughly study threading aspects of locale support
in your environment before using in multithreaded environments.
Locale settings are used by format_time/3, collation_key/2 and
locale_sort/2.
uunniixx((_+_C_o_m_m_a_n_d))
This predicate comes from the Quintus compatibility library and
provides a partial implementation thereof. It provides access to
some operating system features and unlike the name suggests, is not
operating system specific. Defined _C_o_m_m_a_n_d's are below.
ssyysstteemm((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll
Equivalent to calling shell/0. Use for compatibility only.
ccdd
Equivalent to calling working_directory/2 to the expansion (see
expand_file_name/2) of ~. For compatibility only.
ccdd((_+_D_i_r_e_c_t_o_r_y))
Equivalent to calling working_directory/2. Use for compatibil-
ity only.
aarrggvv((_-_A_r_g_v))
Unify _A_r_g_v with the list of command line arguments provided to
this Prolog run. Please note that Prolog system arguments and
application arguments are separated by --. Integer arguments
are passed as Prolog integers, float arguments and Prolog
floating point numbers and all other arguments as Prolog
atoms. New applications should use the Prolog flag argv. See
also the Prolog flag argv.
44..3355..11 WWiinnddoowwss--ssppeecciiffiicc OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
The predicates in this section are only available on the Windows
version of SWI-Prolog. Their use is discouraged if there are
portably alternatives. For example, win_exec/2 and win_shell/2 can
often be replaced by the more portable shell/2 or the more powerful
process_create/3.
wwiinn__eexxeecc((_+_C_o_m_m_a_n_d_, _+_S_h_o_w))
Windows only. Spawns a Windows task without waiting for its
completion. _S_h_o_w is one of the Win32 SW_* constants written
in lowercase without the SW_*: hide maximize minimize restore
show showdefault showmaximized showminimized showminnoactive showna
shownoactive shownormal. In addition, iconic is a synonym for
minimize and normal for shownormal.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e_, _+_S_h_o_w))
Windows only. Opens the document _F_i_l_e using the Windows shell
rules for doing so. _O_p_e_r_a_t_i_o_n is one of open, print or explore or
another operation registered with the shell for the given document
type. On modern systems it is also possible to pass a URL as _F_i_l_e,
opening the URL in Windows default browser. This call interfaces
to the Win32 API ShellExecute(). The _S_h_o_w argument determines the
initial state of the opened window (if any). See win_exec/2 for
defined values.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e))
Same as win_shell(_O_p_e_r_a_t_i_o_n_, _F_i_l_e_, _n_o_r_m_a_l)
wwiinn__rreeggiissttrryy__ggeett__vvaalluuee((_+_K_e_y_, _+_N_a_m_e_, _-_V_a_l_u_e))
Windows only. Fetches the value of a Windows registry key. _K_e_y
is an atom formed as a path name describing the desired registry
key. _N_a_m_e is the desired attribute name of the key. _V_a_l_u_e is
unified with the value. If the value is of type DWORD, the
value is returned as an integer. If the value is a string, it
is returned as a Prolog atom. Other types are currently not
supported. The default `root' is HKEY_CURRENT_USER. Other roots
can be specified explicitly as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE or HKEY_USERS. The example below fetches the
extension to use for Prolog files (see README.TXT on the Windows
version):
____________________________________________________________________| |
| ?- win_registry_get_value( |
| 'HKEY_LOCAL_MACHINE/Software/SWI/Prolog', |
| fileExtension, |
| Ext). |
| |
||Ext_=_pl__________________________________________________________ ||
wwiinn__ffoollddeerr((_?_N_a_m_e_, _-_D_i_r_e_c_t_o_r_y))
True if _N_a_m_e is the Windows `CSIDL' of _D_i_r_e_c_t_o_r_y. If _N_a_m_e is
unbound, all known Windows special paths are generated. _N_a_m_e
is the CSIDL after deleting the leading CSIDL_ and mapping the
constant to lowercase. Check the Windows documentation for the
function SHGetSpecialFolderPath() for a description of the defined
constants. This example extracts the `My Documents' folder:
____________________________________________________________________| |
| ?- win_folder(personal, MyDocuments). |
| |
||MyDocuments_=_'C:/Documents_and_Settings/jan/My_Documents'________ ||
wwiinn__aadddd__ddllll__ddiirreeccttoorryy((_+_A_b_s_D_i_r))
This predicate adds a directory to the search path for de-
pendent DLL files. If possible, this is achieved with
win_add_dll_directory/2. Otherwise, %PATH% is extended with the
provided directory. _A_b_s_D_i_r may be specified in the Prolog
canonical syntax. See prolog_to_os_filename/2. Note that
use_foreign_library/1 passes an absolute path to the DLL if the
destination DLL can be located from the specification using
absolute_file_name/3.
wwiinn__aadddd__ddllll__ddiirreeccttoorryy((_+_A_b_s_D_i_r_, _-_C_o_o_k_i_e))
This predicate adds a directory to the search path for dependent
DLL files. If the call is successful it unifies _C_o_o_k_i_e with a
handle that must be passed to win_remove_dll_directory/1to remove
the directory from the search path. Error conditions:
o This predicate is available in the Windows port of SWI-Prolog
starting from 6.3.8/6.2.6.
o This predicate _f_a_i_l_s if Windows does not yet support the
underlying primitives. These are available in recently
patched Windows 7 systems and later.
o This predicate throws an acception if the provided path is
invalid or the underlying Windows API returns an error.
If open_shared_object/2 is passed an _a_b_s_o_l_u_t_e path to
a DLL on a Windows installation that supports Ad-
dDllDirectory() and friends, SWI-Prolog uses LoadLi-
braryEx() with the flags LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR and
LOAD_LIBRARY_SEARCH_DEFAULT_DIRS. In this scenario, directories from
%PATH% and _n_o_t searched. Additional directories can be added using
win_add_dll_directory/2.
wwiinn__rreemmoovvee__ddllll__ddiirreeccttoorryy((_-_C_o_o_k_i_e))
Remove a DLL search directory installed using
win_add_dll_directory/2.
44..3355..22 DDeeaalliinngg wwiitthh ttiimmee aanndd ddaattee
Representing time in a computer system is surprisingly complicated.
There are a large number of time representations in use, and the
correct choice depends on factors such as compactness, resolution and
desired operations. Humans tend to think about time in hours, days,
months, years or centuries. Physicists think about time in seconds.
But, a month does not have a defined number of seconds. Even a day
does not have a defined number of seconds as sometimes a leap-second
is introduced to synchronise properly with our earth's rotation. At
the same time, resolution demands a range from better than pico-seconds
to millions of years. Finally, civilizations have a wide range of
calendars. Although there exist libraries dealing with most if this
complexity, our desire to keep Prolog clean and lean stops us from
fully supporting these.
For human-oriented tasks, time can be broken into years, months, days,
hours, minutes, seconds and a timezone. Physicists prefer to have
time in an arithmetic type representing seconds or fraction thereof, so
basic arithmetic deals with comparison and durations. An additional
advantage of the physicist's approach is that it requires much less
space. For these reasons, SWI-Prolog uses an arithmetic type as its
prime time representation.
Many C libraries deal with time using fixed-point arithmetic, dealing
with a large but finite time interval at constant resolution. In our
opinion, using a floating point number is a more natural choice as we
can use a natural unit and the interface does not need to be changed if
a higher resolution is required in the future. Our unit of choice is
the second as it is the scientific unit. We have placed our origin at
1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well
as with older time support provided by SWI-Prolog.
Where older versions of SWI-Prolog relied on the
POSIX conversion functions, the current implementation uses
http://cr.yp.to/libtai.htmllibtai to realise conversion between time-
stamps and calendar dates for a period of 10 million years.
44..3355..22..11 TTiimmee aanndd ddaattee ddaattaa ssttrruuccttuurreess
We use the following time representations
TTiimmeeSSttaammpp
A TimeStamp is a floating point number expressing the time in
seconds since the Epoch at 1970-1-1.
ddaattee((_Y_,_M_,_D_,_H_,_M_n_,_S_,_O_f_f_,_T_Z_,_D_S_T))
We call this term a _d_a_t_e_-_t_i_m_e structure. The first 5 fields are
integers expressing the year, month (1..12), day (1..31), hour
(0..23) and minute (0..59). The _S field holds the seconds as a
floating point number between 0.0 and 60.0. _O_f_f is an integer
representing the offset relative to UTC in seconds, where positive
values are west of Greenwich. If converted from local time (see
stamp_date_time/3), _T_Z holds the name of the local timezone. If
the timezone is not known, _T_Z is the atom -. _D_S_T is true if
daylight saving time applies to the current time, false if daylight
saving time is relevant but not effective, and - if unknown or the
timezone has no daylight saving time.
ddaattee((_Y_,_M_,_D))
Date using the same values as described above. Extracted using
date_time_value/3.
ttiimmee((_H_,_M_n_,_S))
Time using the same values as described above. Extracted using
date_time_value/3.
44..3355..22..22 TTiimmee aanndd ddaattee pprreeddiiccaatteess
ggeett__ttiimmee((_-_T_i_m_e_S_t_a_m_p))
Return the current time as a _T_i_m_e_S_t_a_m_p. The granularity is
system-dependent. See section ????.
ssttaammpp__ddaattee__ttiimmee((_+_T_i_m_e_S_t_a_m_p_, _-_D_a_t_e_T_i_m_e_, _+_T_i_m_e_Z_o_n_e))
Convert a _T_i_m_e_S_t_a_m_p to a _D_a_t_e_T_i_m_e in the given timezone. See
section ???? for details on the data types. _T_i_m_e_Z_o_n_e describes the
timezone for the conversion. It is one of local to extract the
local time, 'UTC' to extract a UTC time or an integer describing
the seconds west of Greenwich.
ddaattee__ttiimmee__ssttaammpp((_+_D_a_t_e_T_i_m_e_, _-_T_i_m_e_S_t_a_m_p))
Compute the timestamp from a date/9 term. Values for month, day,
hour, minute or second need not be normalized. This flexibility
allows for easy computation of the time at any given number of
these units from a given timestamp. Normalization can be achieved
following this call with stamp_date_time/3. This example computes
the date 200 days after 2006-7-14:
____________________________________________________________________| |
| ?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp), |
| stamp_date_time(Stamp, D, 0), |
| date_time_value(date, D, Date). |
||Date_=_date(2007,_1,_30)__________________________________________ ||
When computing a time stamp from a local time specification, the
UTC offset (arg 7), TZ (arg 8) and DST (arg 9) argument may be left
unbound and are unified with the proper information. The example
below, executed in Amsterdam, illustrates this behaviour. On the
25th of March at 01:00, DST does not apply. At 02.00, the clock is
advanced by one hour and thus both 02:00 and 03:00 represent the
same time stamp.
____________________________________________________________________| |
| 1 ?- date_time_stamp(date(2012,3,25,1,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -3600, |
| TZ = 'CET', |
| DST = false, |
| Stamp = 1332633600.0. |
| |
| 2 ?- date_time_stamp(date(2012,3,25,2,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -7200, |
| TZ = 'CEST', |
| DST = true, |
| Stamp = 1332637200.0. |
| |
| 3 ?- date_time_stamp(date(2012,3,25,3,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -7200, |
| TZ = 'CEST', |
| DST = true, |
||Stamp_=_1332637200.0._____________________________________________ ||
Note that DST and offset calculation are based on the
POSIX function mktime(). If mktime() returns an error, a
representation_error dst is generated.
ddaattee__ttiimmee__vvaalluuee((_?_K_e_y_, _+_D_a_t_e_T_i_m_e_, _?_V_a_l_u_e))
Extract values from a date/9 term. Provided keys are:
______________________________________________________________kkeeyyvvaalluuee
____________________________________________________________________________________________________________________________yearCalendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc_offset Offset to UTC in seconds (positive is west)
time_zone Name of timezone; fails if unknown
daylight_saving Bool (true) if dst is in effect
date Term date(_Y_,_M_,_D)
_time_____________Term_time(_H_,_M_,_S)____________________________
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e))
Modelled after POSIX strftime(), using GNU extensions. _O_u_t is
a destination as specified with with_output_to/2. _F_o_r_m_a_t is
an atom or string with the following conversions. Conversions
start with a percent (%) character. _S_t_a_m_p_O_r_D_a_t_e_T_i_m_e is either a
numeric time-stamp, a term date(_Y_,_M_,_D_,_H_,_M_,_S_,_O_,_T_Z_,_D_S_T) or a term
date(_Y_,_M_,_D).
a The abbreviated weekday name according to the current locale.
Use format_time/4 for POSIX locale.
A The full weekday name according to the current locale. Use
format_time/4 for POSIX locale.
b The abbreviated month name according to the current locale.
Use format_time/4 for POSIX locale.
B The full month name according to the current locale. Use
format_time/4 for POSIX locale.
c The preferred date and time representation for the current
locale.
C The century number (year/100) as a 2-digit integer.
d The day of the month as a decimal number (range 01 to 31).
D Equivalent to %m/%d/%y. (For Americans only. Americans
should note that in other countries %d/%m/%y is rather common.
This means that in an international context this format is
ambiguous and should not be used.)
e Like %d, the day of the month as a decimal number, but a
leading zero is replaced by a space.
E Modifier. Not implemented.
f Number of microseconds. The f can be prefixed by an integer
to print the desired number of digits. E.g., %3f prints
milliseconds. This format is not covered by any standard,
but available with different format specifiers in various
incarnations of the strftime() function.
F Equivalent to %Y-%m-%d (the ISO 8601 date format).
g Like %G, but without century, i.e., with a 2-digit year
(00-99).
G The ISO 8601 year with century as a decimal number. The
4-digit year corresponding to the ISO week number (see %V).
This has the same format and value as %y, except that if the
ISO week number belongs to the previous or next year, that
year is used instead.
V The ISO 8601:1988 week number of the current year as a decimal
number, range 01 to 53, where week 1 is the first week that
has at least 4 days in the current year, and with Monday as
the first day of the week. See also %U and %W.
h Equivalent to %b.
H The hour as a decimal number using a 24-hour clock (range 00
to 23).
I The hour as a decimal number using a 12-hour clock (range 01
to 12).
j The day of the year as a decimal number (range 001 to 366).
k The hour (24-hour clock) as a decimal number (range 0 to 23);
single digits are preceded by a blank. (See also %H.)
l The hour (12-hour clock) as a decimal number (range 1 to 12);
single digits are preceded by a blank. (See also %I.)
m The month as a decimal number (range 01 to 12).
M The minute as a decimal number (range 00 to 59).
n A newline character.
O Modifier to select locale-specific output. Not implemented.
p Either `AM' or `PM' according to the given time value, or the
corresponding strings for the current locale. Noon is treated
as `pm' and midnight as `am'.
P Like %p but in lowercase: `am' or `pm' or a corresponding
string for the current locale.
r The time in a.m. or p.m. notation. In the POSIX locale this
is equivalent to `%I:%M:%S %p'.
R The time in 24-hour notation (%H:%M). For a version including
the seconds, see %T below.
s The number of seconds since the Epoch, i.e., since 1970-01-01
00:00:00 UTC.
S The second as a decimal number (range 00 to 60). (The range
is up to 60 to allow for occasional leap seconds.)
t A tab character.
T The time in 24-hour notation (%H:%M:%S).
u The day of the week as a decimal, range 1 to 7, Monday being
1. See also %w.
U The week number of the current year as a decimal number, range
00 to 53, starting with the first Sunday as the first day of
week 01. See also %V and %W.
w The day of the week as a decimal, range 0 to 6, Sunday being
0. See also %u.
W The week number of the current year as a decimal number, range
00 to 53, starting with the first Monday as the first day of
week 01.
x The preferred date representation for the current locale
without the time.
X The preferred time representation for the current locale
without the date.
y The year as a decimal number without a century (range 00 to
99).
Y The year as a decimal number including the century.
z The timezone as hour offset from GMT using the format
HHmm. Required to emit RFC822-conforming dates (using
'%a, %d %b %Y %T %z'). Our implementation supports %:z, which
modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO 8601. The sequence %:z
is compatible to the GNU date(1) command.
Z The timezone or name or abbreviation.
+ The date and time in date(1) format.
% A literal `%' character.
The table below gives some format strings for popular time
representations. RFC1123 is used by HTTP. The full implementation
of http_timestamp/2 as available from http/http_header is here.
____________________________________________________________________| |
| http_timestamp(Time, Atom) :- |
| stamp_date_time(Time, Date, 'UTC'), |
| format_time(atom(Atom), |
| '%a, %d %b %Y %T GMT', |
||____________________Date,_posix)._________________________________ ||
__________________________________SSttaannddaarrddFFoorrmmaatt ssttrriinngg
____________________________________________________________________xxssdd'%FT%T%:z'
IISSOO88660011 '%FT%T%z'
RRFFCC882222 '%a, %d %b %Y %T %z'
_RRFFCC11112233___'%a,_%d_%b_%Y_%T_GMT'__
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e_, _+_L_o_c_a_l_e))
Format time given a specified _L_o_c_a_l_e. This predicate is a
work-around for lacking proper portable and thread-safe time
and locale handling in current C libraries. In its current
implementation the only value allowed for _L_o_c_a_l_e is posix, which
currently only modifies the behaviour of the a, A, b and B format
specifiers. The predicate is used to be able to emit POSIX locale
week and month names for emitting standardised time-stamps such as
RFC1123.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _-_S_t_a_m_p))
Same as parse_time(_T_e_x_t_, ___F_o_r_m_a_t_, _S_t_a_m_p). See parse_time/3.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _?_F_o_r_m_a_t_, _-_S_t_a_m_p))
Parse a textual time representation, producing a time-stamp.
Supported formats for _T_e_x_t are in the table below. If the
format is known, it may be given to reduce parse time and
avoid ambiguities. Otherwise, _F_o_r_m_a_t is unified with the format
encountered.
___________________________________________
|__NNaammee________||EExxaammppllee__________________________________________________||
|| rfc_1123F|ri, 08 Dec 2006 15:29:44 GMT |
|_________|Fri,_08_Dec_2006_15:29:44_+0000_|
| iso_86012|006-12-08T17:29:44+02:00 |
| |20061208T172944+0200 |
| |2006-12-08T15:29Z |
| |2006-12-08 |
| |20061208 |
| |2006-12 |
| |2006-W49-5 |
|_________|2006-342________________________|
ddaayy__ooff__tthhee__wweeeekk((_+_D_a_t_e_,_-_D_a_y_O_f_T_h_e_W_e_e_k))
Computes the day of the week for a given date.
_D_a_t_e = date(_Y_e_a_r,_M_o_n_t_h,_D_a_y). Days of the week are num-
bered from one to seven: Monday = 1, Tuesday = 2, ..., Sunday =
7.
44..3355..33 CCoonnttrroolllliinngg tthhee swipl-win.exe ccoonnssoollee wwiinnddooww
The Windows executable swipl-win.exe console has a number of predicates
to control the appearance of the console. Being totally non-portable,
we do not advise using it for your own application, but use XPCE or
another portable GUI platform instead. We give the predicates for
reference here.
wwiinnddooww__ttiittllee((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the title displayed in the console and change the
title to _N_e_w.
wwiinn__wwiinnddooww__ppooss((_+_L_i_s_t_O_f_O_p_t_i_o_n_s))
Interface to the MS-Windows SetWindowPos() function, controlling
size, position and stacking order of the window. _L_i_s_t_O_f_O_p_t_i_o_n_s is
a list that may hold any number of the terms below:
ssiizzee((_W_, _H))
Change the size of the window. _W and _H are expressed in
character units.
ppoossiittiioonn((_X_, _Y))
Change the top-left corner of the window. The values are
expressed in pixel units.
zzoorrddeerr((_Z_O_r_d_e_r))
Change the location in the window stacking order. Values
are bottom, top, topmost and notopmost. _T_o_p_m_o_s_t windows are
displayed above all other windows.
sshhooww((_B_o_o_l))
If true, show the window, if false hide the window.
aaccttiivvaattee
If present, activate the window.
wwiinn__hhaass__mmeennuu
True if win_insert_menu/2 and win_insert_menu_item/4are present.
wwiinn__iinnsseerrtt__mmeennuu((_+_L_a_b_e_l_, _+_B_e_f_o_r_e))
Insert a new entry (pulldown) in the menu. If the menu already
contains this entry, nothing is done. The _L_a_b_e_l is the label
and, using the Windows convention, a letter prefixed with & is
underlined and defines the associated accelerator key. _B_e_f_o_r_e is
the label before which this one must be inserted. Using - adds the
new entry at the end (right). For example, the call below adds an
Application entry just before the Help menu.
____________________________________________________________________| |
||win_insert_menu('&Application',_'&Help')__________________________ ||
wwiinn__iinnsseerrtt__mmeennuu__iitteemm((_+_P_u_l_l_d_o_w_n_, _+_L_a_b_e_l_, _+_B_e_f_o_r_e_, _:_G_o_a_l))
Add an item to the named _P_u_l_l_d_o_w_n menu. _L_a_b_e_l and _B_e_f_o_r_e
are handled as in win_insert_menu/2, but the label - inserts a
_s_e_p_a_r_a_t_o_r. _G_o_a_l is called if the user selects the item.
44..3366 FFiillee SSyysstteemm IInntteerraaccttiioonn
aacccceessss__ffiillee((_+_F_i_l_e_, _+_M_o_d_e))
True if _F_i_l_e exists and can be accessed by this Prolog process
under mode _M_o_d_e. _M_o_d_e is one of the atoms read, write, append,
exist, none or execute. _F_i_l_e may also be the name of a directory.
Fails silently otherwise. access_file(File, none)simply succeeds
without testing anything.
If _M_o_d_e is write or append, this predicate also succeeds if the
file does not exist and the user has write access to the directory
of the specified location.
The bahaviour is backed up by the POSIX access() API. The
Windows replacement (_waccess()) returns incorrect results because
it does not consider ACLs (Access Control Lists). The Prolog
flag win_file_access_check may be used to control the level of
checking performed by Prolog. Please note that checking access
never provides a guarantee that a subsequent open succeeds without
errors due to inherent concurrency in file operations. It is
generally more robust to try and open the file and handle possible
exceptions. See open/4 and catch/3.
eexxiissttss__ffiillee((_+_F_i_l_e))
True if _F_i_l_e exists and is a regular file. This does not imply the
user has read and/or write permission for the file. This is the
same as access_file(_F_i_l_e_, _e_x_i_s_t).
ffiillee__ddiirreeccttoorryy__nnaammee((_+_F_i_l_e_, _-_D_i_r_e_c_t_o_r_y))
Extracts the directory part of _F_i_l_e. The returned _D_i_r_e_c_t_o_r_y name
does not end in /. There are two special cases. The directory
name of / is / itself, and the directory name is . if _F_i_l_e does
not contain any / characters. If the _F_i_l_e argument ends with a /,
e.g., '/hello/', it is not a valid file name. In this case the
final / is removed from _F_i_l_e, e.g., '/hello'.
See also directory_file_path/3 from filesex. The system
ensures that for every valid _P_a_t_h using the Prolog (POSIX)
directory separators, following is true on systems with a sound
implementation of same_file/2. See also prolog_to_os_filename/2.
____________________________________________________________________| |
| ..., |
| file_directory_name(Path, Dir), |
| file_base_name(Path, File), |
| directory_file_path(Dir, File, Path2), |
||________same_file(Path,_Path2).___________________________________ ||
ffiillee__bbaassee__nnaammee((_+_F_i_l_e_, _-_B_a_s_e_N_a_m_e))
Extracts the filename part from a path specification. If _F_i_l_e does
not contain any directory separators, _F_i_l_e is returned in _B_a_s_e_N_a_m_e.
See also file_directory_name/2. If the _F_i_l_e arguments ends with a
/, e.g., '/hello/', _B_a_s_e_N_a_m_e is unified with the empty atom ('').
ssaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
True if both filenames refer to the same physical file. That
is, if _F_i_l_e_1 and _F_i_l_e_2 are the same string or both names exist
and point to the same file (due to hard or symbolic links
and/or relative vs. absolute paths). On systems that provide
stat() with meaningful values for st_dev and st_inode, same_file/2
is implemented by comparing the device and inode identifiers.
On Windows, same_file/2 compares the strings returned by the
GetFullPathName() system call.
eexxiissttss__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
True if _D_i_r_e_c_t_o_r_y exists and is a directory. This does not imply
the user has read, search or write permission for the directory.
ddeelleettee__ffiillee((_+_F_i_l_e))
Remove _F_i_l_e from the file system.
rreennaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
Rename _F_i_l_e_1 as _F_i_l_e_2. The semantics is compatible to the POSIX
semantics of the rename() system call as far as the operating
system allows. Notably, if _F_i_l_e_2 exists, the operation succeeds
(except for possible permission errors) and is _a_t_o_m_i_c (meaning
there is no window where _F_i_l_e_2 does not exist).
ssiizzee__ffiillee((_+_F_i_l_e_, _-_S_i_z_e))
Unify _S_i_z_e with the size of _F_i_l_e in bytes.
ttiimmee__ffiillee((_+_F_i_l_e_, _-_T_i_m_e))
Unify the last modification time of _F_i_l_e with _T_i_m_e. _T_i_m_e is a
floating point number expressing the seconds elapsed since Jan 1,
1970. See also convert_time/[2,8] and get_time/1.
aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e_, _-_A_b_s_o_l_u_t_e))
Expand a local filename into an absolute path. The absolute
path is canonicalised: references to . and .. are deleted.
This predicate ensures that expanding a filename returns the same
absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute filenames to register source files independent of
the current working directory. See also absolute_file_name/3 and
expand_file_name/2.
aabbssoolluuttee__ffiillee__nnaammee((_+_S_p_e_c_, _-_A_b_s_o_l_u_t_e_, _+_O_p_t_i_o_n_s))
Convert the given file specification into an absolute path. _S_p_e_c
is a term Alias(Relative) (e.g., (library(lists)), a relative
filename or an absolute filename. The primary intention of this
predicate is to resolve files specified as Alias(Relative). _O_p_t_i_o_n
is a list of options to guide the conversion:
eexxtteennssiioonnss((_L_i_s_t_O_f_E_x_t_e_n_s_i_o_n_s))
List of file extensions to try. Default is ''. For each
extension, absolute_file_name/3 will first add the extension
and then verify the conditions imposed by the other options.
If the condition fails, the next extension on the list is
tried. Extensions may be specified both as .ext or plain ext.
rreellaattiivvee__ttoo((_+_F_i_l_e_O_r_D_i_r))
Resolve the path relative to the given directory or the
directory holding the given file. Without this option,
paths are resolved relative to the working directory
(see working_directory/2) or, if _S_p_e_c is atomic and
absolute_file_name/[2,3] is executed in a directive, it uses
the current source file as reference.
aacccceessss((_M_o_d_e))
Imposes the condition access_file(_F_i_l_e, _M_o_d_e). _M_o_d_e is one
of read, write, append, execute, exist or none. See also
access_file/2.
ffiillee__ttyyppee((_T_y_p_e))
Defines extensions. Current mapping: txt implies [''],
prolog implies ['.pl', ''], executable implies ['.so', ''],
qlf implies ['.qlf', ''] and directory implies ['']. The
file type source is an alias for prolog for compatibility
with SICStus Prolog. See also prolog_file_type/2. This
predicate only returns non-directories, unless the option
file_type(_d_i_r_e_c_t_o_r_y) is specified.
ffiillee__eerrrroorrss((_f_a_i_l_/_e_r_r_o_r))
If error (default), throw an existence_error exception if the
file cannot be found. If fail, stay silent.
ssoolluuttiioonnss((_f_i_r_s_t_/_a_l_l))
If first (default), the predicate leaves no choice point.
Otherwise a choice point will be left and backtracking may
yield more solutions.
eexxppaanndd((_B_o_o_l_e_a_n))
If true (default is false) and _S_p_e_c is atomic, call
expand_file_name/2 followed by member/2 on _S_p_e_c before
proceeding. This is a SWI-Prolog extension intended to
minimise porting effort after SWI-Prolog stopped expanding
environment variables and the ~ by default. This option
should be considered deprecated. In particular the use of
_w_i_l_d_c_h_a_r_t patterns such as * should be avoided.
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
This predicate is derived from Quintus Prolog. In Quintus Prolog,
the argument order was absolute_file_name(_+_S_p_e_c_, _+_O_p_t_i_o_n_s_, _-_P_a_t_h).
The argument order has been changed for compatibility with ISO and
SICStus. The Quintus argument order is still accepted.
iiss__aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e))
True if _F_i_l_e specifies an absolute path name. On Unix systems,
this implies the path starts with a `/'. For Microsoft-based sys-
tems this implies the path starts with <_l_e_t_t_e_r>:. This predicate
is intended to provide platform-independent checking for absolute
paths. See also absolute_file_name/2 and prolog_to_os_filename/2.
ffiillee__nnaammee__eexxtteennssiioonn((_?_B_a_s_e_, _?_E_x_t_e_n_s_i_o_n_, _?_N_a_m_e))
This predicate is used to add, remove or test filename extensions.
The main reason for its introduction is to deal with different
filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will also be done
case-insensitive. _E_x_t_e_n_s_i_o_n may be specified with or without a
leading dot (.). If an _E_x_t_e_n_s_i_o_n is generated, it will not have a
leading dot.
ddiirreeccttoorryy__ffiilleess((_+_D_i_r_e_c_t_o_r_y_, _-_E_n_t_r_i_e_s))
Unify _E_n_t_r_i_e_s with a list of entries in _D_i_r_e_c_t_o_r_y. Each member
of _E_n_t_r_i_e_s is an atom denoting an entry relative to _D_i_r_e_c_t_o_r_y.
_E_n_t_r_i_e_s contains all entries, including hidden files and, if
supplied by the OS, the special entries . and ... See also
expand_file_name/2.
eexxppaanndd__ffiillee__nnaammee((_+_W_i_l_d_C_a_r_d_, _-_L_i_s_t))
Unify _L_i_s_t with a sorted list of files or directories matching
_W_i_l_d_C_a_r_d. The normal Unix wildcard constructs `?', `*', `[...]'
and `{...}' are recognised. The interpretation of `{...}' is
slightly different from the C shell (csh(1)). The comma-separated
argument can be arbitrary patterns, including `{...}' patterns.
The empty pattern is legal as well: `\{.pl,\}' matches either
`.pl' or the empty string.
If the pattern contains wildcard characters, only existing files
and directories are returned. Expanding a `pattern' without
wildcard characters returns the argument, regardless of whether or
not it exists.
Before expanding wildcards, the construct $_v_a_r is expanded to the
value of the environment variable _v_a_r, and a possible leading ~
character is expanded to the user's home directory.
pprroolloogg__ttoo__ooss__ffiilleennaammee((_?_P_r_o_l_o_g_P_a_t_h_, _?_O_s_P_a_t_h))
Convert between the internal Prolog path name conventions and the
operating system path name conventions. The internal conventions
follow the POSIX standard, which implies that this predicate is
equivalent to =/2 (unify) on POSIX (e.g., Unix) systems. On
Windows systems it changes the directory separator from \ into /.
rreeaadd__lliinnkk((_+_F_i_l_e_, _-_L_i_n_k_, _-_T_a_r_g_e_t))
If _F_i_l_e points to a symbolic link, unify _L_i_n_k with the value of the
link and _T_a_r_g_e_t to the file the link is pointing to. _T_a_r_g_e_t points
to a file, directory or non-existing entry in the file system, but
never to a link. Fails if _F_i_l_e is not a link. Fails always on
systems that do not support symbolic links.
ttmmpp__ffiillee((_+_B_a_s_e_, _-_T_m_p_N_a_m_e)) _[_d_e_p_r_e_c_a_t_e_d_]
Create a name for a temporary file. _B_a_s_e is an identifier for the
category of file. The _T_m_p_N_a_m_e is guaranteed to be unique. If the
system halts, it will automatically remove all created temporary
files. _B_a_s_e is used as part of the final filename. Portable
applications should limit themselves to alphanumeric characters.
Because it is possible to guess the generated filename, attackers
may create the filesystem entry as a link and possibly create a
security issue. New code should use tmp_file_stream/3.
ttmmpp__ffiillee__ssttrreeaamm((_+_E_n_c_o_d_i_n_g_, _-_F_i_l_e_N_a_m_e_, _-_S_t_r_e_a_m))
Create a temporary filename _F_i_l_e_N_a_m_e and open it for writing
in the given _E_n_c_o_d_i_n_g. _E_n_c_o_d_i_n_g is a text-encoding name or
binary. _S_t_r_e_a_m is the output stream. If the OS supports it,
the created file is only accessible to the current user. If the
OS supports it, the file is created using the open()-flag O_EXCL,
which guarantees that the file did not exist before this call.
This predicate is a safe replacement of tmp_file/2. Note that in
those cases where the temporary file is needed to store output from
an external command, the file must be closed first. E.g., the
following downloads a file from a URL to a temporary file and opens
the file for reading (on Unix systems you can delete the file for
cleanup after opening it for reading):
____________________________________________________________________| |
| open_url(URL, In) :- |
| tmp_file_stream(text, File, Stream), |
| close(Stream), |
| process_create(curl, ['-o', File, URL], []), |
| open(File, read, In), |
||________delete_file(File).______________%_Unix-only_______________ ||
Temporary files created using this call are removed if the
Prolog process terminates _g_r_a_c_e_f_u_l_l_y. Calling delete_file/1
using _F_i_l_e_N_a_m_e removes the file and removes the entry from the
administration of files-to-be-deleted.
mmaakkee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Create a new directory (folder) on the filesystem. Raises an
exception on failure. On Unix systems, the directory is created
with default permissions (defined by the process _u_m_a_s_k setting).
ddeelleettee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Delete directory (folder) from the filesystem. Raises an exception
on failure. Please note that in general it will not be possible to
delete a non-empty directory.
wwoorrkkiinngg__ddiirreeccttoorryy((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with an absolute path to the current working directory
and change working directory to _N_e_w. Use the pattern
working_directory(_C_W_D_, _C_W_D) to get the current directory. See also
absolute_file_name/2 and chdir/1. Note that the working directory
is shared between all threads.
cchhddiirr((_+_P_a_t_h))
Compatibility predicate. New code should use working_directory/2.
44..3377 UUsseerr TToopp--lleevveell MMaanniippuullaattiioonn
bbrreeaakk
Recursively start a new Prolog top level. This Prolog top
level shares everything from the environment it was started in.
Debugging is switched off on entering a break and restored on
leaving one. The break environment is terminated by typing the
system's end-of-file character (control-D). If that is somehow not
functional, the term end_of_file. can be entered to return from
the break environment. If the -t toplevel command line option
is given, this goal is started instead of entering the default
interactive top level (prolog/0).
Notably the gui based versions (swipl-win on Windows and MacOS)
provide the menu Run/New thread that opens a new toplevel that runs
concurrently with the initial toplevel. The concurrent toplevel
can be used to examine the program, in particular global dynamic
predicates. It can not access _g_l_o_b_a_l _v_a_r_i_a_b_l_e_s or thread-local
dynamic predicates (see thread_local/1) of the main thread.
aabboorrtt
Abort the Prolog execution and restart the top level. If the
-t toplevel command line option is given, this goal is restarted
instead of entering the default interactive top level.
Aborting is implemented by throwing the reserved exception
'$aborted'. This exception can be caught using catch/3, but the
recovery goal is wrapped with a predicate that prunes the choice
points of the recovery goal (i.e., as once/1) and re-throws the
exception. This is illustrated in the example below, where we
press control-C and `a'. See also section ????.
____________________________________________________________________| |
| ?- catch((repeat,fail), E, true). |
| ^CAction (h for help) ? abort |
||%_Execution_Aborted_______________________________________________ ||
hhaalltt _[_I_S_O_]
Terminate Prolog execution. This is the same as halt(_0). See
halt/1 for details.
hhaalltt((_+_S_t_a_t_u_s)) _[_I_S_O_]
Terminate Prolog execution with _S_t_a_t_u_s. This predicate calls
PL_halt() which preforms the following steps:
1. Set the Prolog flag exit_status to _S_t_a_t_u_s.
2. Call all hooks registered using at_halt/1. If _S_t_a_t_u_s equals 0
(zero), any of these hooks calls cancel_halt/1, termination is
cancelled.
3. Call all hooks registered using PL_at_halt(). In the future,
if any of these hooks returns non-zero, termination will be
cancelled. Currently, this only prints a warning.
4. Perform the following system cleanup actions:
o Cancel all threads, calling thread_at_exit/1 registered
termination hooks. Threads not responding within 1 second
are cancelled forcefully.
o Flush I/O and close all streams except for standard I/O.
o Reset the terminal if its properties were changed.
o Remove temporary files and incomplete compilation output.
o Reclaim memory.
5. Call exit(Status) to terminate the process
pprroolloogg
This goal starts the default interactive top level. Queries are
read from the stream user_input. See also the Prolog flag history.
The prolog/0 predicate is terminated (succeeds) by typing the
end-of-file character (typically control-D).
The following two hooks allow for expanding queries and handling the
result of a query. These hooks are used by the top level variable
expansion mechanism described in section ????.
eexxppaanndd__qquueerryy((_+_Q_u_e_r_y_, _-_E_x_p_a_n_d_e_d_, _+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. _Q_u_e_r_y and _B_i_n_d_i_n_g_s
represents the query read from the user and the names of the
free variables as obtained using read_term/3. If this predicate
succeeds, it should bind _E_x_p_a_n_d_e_d and _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s to the query
and bindings to be executed by the top level. This predicate is
used by the top level (prolog/0). See also expand_answer/2 and
term_expansion/2.
eexxppaanndd__aannsswweerr((_+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. Expand the result of
a successfully executed top-level query. _B_i_n_d_i_n_g_s is the query
< Name >=<_V_a_l_u_e> binding list from the query. _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s
must be unified with the bindings the top level should print.
44..3388 CCrreeaattiinngg aa PPrroottooccooll ooff tthhee UUsseerr IInntteerraaccttiioonn
SWI-Prolog offers the possibility to log the interaction with the user
on a file. All Prolog interaction, including warnings and tracer
output, are written to the protocol file.
pprroottooccooll((_+_F_i_l_e))
Start protocolling on file _F_i_l_e. If there is already a protocol
file open, then close it first. If _F_i_l_e exists it is truncated.
pprroottooccoollaa((_+_F_i_l_e))
Equivalent to protocol/1, but does not truncate the _F_i_l_e if it
exists.
nnoopprroottooccooll
Stop making a protocol of the user interaction. Pending output is
flushed on the file.
pprroottooccoolllliinngg((_-_F_i_l_e))
True if a protocol was started with protocol/1 or protocola/1 and
unifies _F_i_l_e with the current protocol output file.
44..3399 DDeebbuuggggiinngg aanndd TTrraacciinngg PPrrooggrraammss
This section is a reference to the debugger interaction predicates. A
more use-oriented overview of the debugger is in section ????.
If you have installed XPCE, you can use the graphical front-end of the
tracer. This front-end is installed using the predicate guitracer/0.
ttrraaccee
Start the tracer. trace/0 itself cannot be seen in the tracer.
Note that the Prolog top level treats trace/0 special; it means
`trace the next goal'.
ttrraacciinngg
True if the tracer is currently switched on. tracing/0 itself
cannot be seen in the tracer.
nnoottrraaccee
Stop the tracer. notrace/0 itself cannot be seen in the tracer.
gguuiittrraacceerr
Installs hooks (see prolog_trace_interception/4) into the system
that redirect tracing information to a GUI front-end providing
structured access to variable bindings, graphical overview of the
stack and highlighting of relevant source code.
nnoogguuiittrraacceerr
Revert back to the textual tracer.
ttrraaccee((_+_P_r_e_d))
Equivalent to trace(_P_r_e_d, +all).
ttrraaccee((_+_P_r_e_d_, _+_P_o_r_t_s))
Put a trace point on all predicates satisfying the predicate
specification _P_r_e_d. _P_o_r_t_s is a list of port names (call, redo,
exit, fail). The atom all refers to all ports. If the port is
preceded by a - sign, the trace point is cleared for the port. If
it is preceded by a +, the trace point is set.
The predicate trace/2 activates debug mode (see debug/0). Each
time a port (of the 4-port model) is passed that has a trace point
set, the goal is printed as with trace/0. Unlike trace/0, however,
the execution is continued without asking for further information.
Examples:
?- trace(hello). Trace all ports of hello with any
arity in any module.
?- trace(foo/2, +fail). Trace failures of foo/2 in any
module.
?- trace(bar/1, -all). Stop tracing bar/1.
The predicate debugging/0 shows all currently defined trace points.
nnoottrraaccee((_:_G_o_a_l))
Call _G_o_a_l, but suspend the debugger while _G_o_a_l is executing.
The current implementation cuts the choice points of _G_o_a_l after
successful completion. See once/1. Later implementations may have
the same semantics as call/1.
ddeebbuugg
Start debugger. In debug mode, Prolog stops at spy and trace
points, disables last-call optimisation and aggressive destruction
of choice points to make debugging information accessible.
Implemented by the Prolog flag debug.
Note that the min_free parameter of all stacks is enlarged to 8 K
cells if debugging is switched off in order to avoid excessive GC.
GC complicates tracing because it renames the __G_<_N_N_N_> variables and
replaces unreachable variables with the atom <garbage_collected>.
Calling nodebug/0 does _n_o_t reset the initial free-margin because
several parts of the top level and debugger disable debugging of
system code regions. See also set_prolog_stack/2.
nnooddeebbuugg
Stop debugger. Implemented by the Prolog flag debug. See also
debug/0.
ddeebbuuggggiinngg
Print debug status and spy points on current output stream. See
also the Prolog flag debug.
ssppyy((_+_P_r_e_d))
Put a spy point on all predicates meeting the predicate specifica-
tion _P_r_e_d. See section ????.
nnoossppyy((_+_P_r_e_d))
Remove spy point from all predicates meeting the predicate
specification _P_r_e_d.
nnoossppyyaallll
Remove all spy points from the entire program.
lleeaasshh((_?_P_o_r_t_s))
Set/query leashing (ports which allow for user interaction). _P_o_r_t_s
is one of _+_N_a_m_e, _-_N_a_m_e, _?_N_a_m_e or a list of these. _+_N_a_m_e enables
leashing on that port, _-_N_a_m_e disables it and _?_N_a_m_e succeeds or
fails according to the current setting. Recognised ports are call,
redo, exit, fail and unify. The special shorthand all refers to
all ports, full refers to all ports except for the unify port
(default). half refers to the call, redo and fail port.
vviissiibbllee((_+_P_o_r_t_s))
Set the ports shown by the debugger. See leash/1 for a description
of the _P_o_r_t_s specification. Default is full.
uunnkknnoowwnn((_-_O_l_d_, _+_N_e_w))
Edinburgh-Prolog compatibility predicate, interfacing to the ISO
Prolog flag unknown. Values are trace (meaning error) and fail.
If the unknown flag is set to warning, unknown/2 reports the value
as trace.
ssttyyllee__cchheecckk((_+_S_p_e_c))
Modify/query style checking options. _S_p_e_c is one of the terms
below or a list of these.
o +_S_t_y_l_e enables a style check
o -_S_t_y_l_e disables a style check
o ?(_S_t_y_l_e) queries a style check (note the brackets). If _S_t_y_l_e
is unbound, all active style check options are returned on
backtracking.
Loading a file using load_files/2 or one of its derived predicates
reset the style checking options to their value before loading the
file, scoping the option to the remainder of the file and all files
loaded _a_f_t_e_r changing the style checking.
ssiinngglleettoonn((_t_r_u_e))
The predicate read_clause/3 (used by the compiler to read
source code) warns on variables appearing only once in a term
(clause) which have a name not starting with an underscore.
See section ???? for details on variable handling and warnings.
nnoo__eeffffeecctt((_t_r_u_e))
This warning is generated by the compiler for BIPs (built-in
predicates) that are inlined by the compiler and for which
the compiler can prove that they are meaningless. An
example is using ==/2 against a not-yet-initialised variable
as illustrated in the example below. This comparison is
always false.
_______________________________________________________________| |
|always_false(X) :- |
| X == Y, |
||_______write(Y)._____________________________________________ ||
vvaarr__bbrraanncchheess((_f_a_l_s_e))
Verifies that if a variable is introduced in a branch and used
_a_f_t_e_r the branch, it is introduced in all branches. This code
aims at bugs following the skeleton below, where p(_N_e_x_t) may
be called with _N_e_x_t unbound.
_______________________________________________________________| |
|p(Arg) :- |
| ( Cond |
| -> Next = value1 |
| ; true |
| ), |
||_______p(Next).______________________________________________ ||
If a variable _V is intended to be left unbound, one can use
V=_. This construct is removed by the compiler and thus has no
implications for the performance of your program.
This check was suggested together with _s_e_m_a_n_t_i_c singleton
checking. The SWI-Prolog libraries contain about a hundred
clauses that are triggered by this style check. Unlike
semantic singleton analysis, only a tiny fraction of these
clauses proofed faulty. In most cases, the branches failing
to bind the variable fail or raise an exception or the caller
handles the case where the variable is unbound. The status
of this style check is unclear. It might be removed in the
future or it might be enhanced with a deeper analysis to be
more precise.
ddiissccoonnttiigguuoouuss((_t_r_u_e))
Warn if the clauses for a predicate are not together in the
same source file. It is advised to disable the warning for
discontiguous predicates using the discontiguous/1 directive.
cchhaarrsseett((_f_a_l_s_e))
Warn on atoms and variable names holding non-ASCII characters
that are not quoted. See also section ????.
44..4400 OObbttaaiinniinngg RRuunnttiimmee SSttaattiissttiiccss
ssttaattiissttiiccss((_+_K_e_y_, _-_V_a_l_u_e))
Unify system statistics determined by _K_e_y with _V_a_l_u_e. The possible
keys are given in the table ????. This predicate supports additional
keys for compatibility reasons. These keys are described in
table ????.
___________________________________________________________________________
|__________________Native_keys_(times_as_float_in_seconds)_________________|
| agc |Number of atom garbage collections performed |
| agc_gained N|umber of atoms removed |
| agc_time T|ime spent in atom garbage collections |
| atoms |Total number of defined atoms |
| c_stack S|ystem (C-) stack limit. 0 if not known. |
| cgc |Number of clause garbage collections performed |
| cgc_gained N|umber of clauses reclaimed |
| cgc_time T|ime spent in clause garbage collections |
| clauses |Total number of clauses in the program |
| codes |Total size of (virtual) executable code in words |
| cputime |(User) cpu time since thread was started in seconds |
| epoch |Time stamp when thread was started |
| functors |Total number of defined name/arity pairs |
| global |Allocated size of the global stack in bytes |
| globalused |Number of bytes in use on the global stack |
| globallimit |Size to which the global stack is allowed to grow |
| global_shifts N|umber of global stack expansions |
| heapused |Bytes of heap in use by Prolog (0 if not maintained) |
| inferences |Total number of passes via the call and redo ports|
| |since Prolog was started |
| modules |Total number of defined modules |
| local |Allocated size of the local stack in bytes |
| local_shifts N|umber of local stack expansions |
| locallimit |Size to which the local stack is allowed to grow |
| localused |Number of bytes in use on the local stack |
| table_space_usedA|mount of bytes in use by the thread's answer tables |
| trail |Allocated size of the trail stack in bytes |
| trail_shifts N|umber of trail stack expansions |
| traillimit |Size to which the trail stack is allowed to grow |
| trailused |Number of bytes in use on the trail stack |
| shift_time T|ime spent in stack-shifts |
| stack |Total memory in use for stacks in all threads |
| predicates |Total number of predicates. This includes predicates|
| |that are undefined or not yet resolved. |
| process_epoch T|ime stamp when Prolog was started |
| process_cputime (|User) cpu time since Prolog was started in seconds |
| thread_cputime M|T-version: Seconds CPU time used by finished threads.|
| B|asically non-portable. Works on Linux, MacOSX,|
| W|indows and probably some more. |
| threads |MT-version: number of active threads |
| threads_created M|T-version: number of created threads |
| engines |MT-version: number of existing engines |
|_engines_created_M|T-version:__number_of_created_engines_________________|_
Table 4.3: Keys for statistics/2. Space is expressed in bytes. Time
is expressed in seconds, represented as a floating point number.
____________________________________________________________________________________
|_____________________Compatibility_keys_(times_in_milliseconds)____________________|
| runtime |[ CPU time, CPU time since last ] (milliseconds,|
| |excluding time spent in garbage collection) |
| system_time [| System CPU time, System CPU time since last ] |
| (|milliseconds) |
| real_time [|Wall time, Wall time since last ] (integer seconds. |
| S|ee get_time/1) |
| walltime |[ Wall time since start, Wall time since last]|
| |(milliseconds, SICStus compatibility) |
| memory |[ Total unshared data, free memory ] (Uses getrusage()|
| |if available, otherwise incomplete own statistics.) |
| stacks |[ global use, local use ] |
| program |[ heap, 0 ] |
| global_stack [|global use, global free ] |
| local_stack [|local use, local free ] |
| trail |[ trail use, trail free ] |
| garbage_collection [|number of GC, bytes gained, time spent, bytes left ] |
| T|he last column is a SWI-Prolog extension. It contains|
| t|he sum of the memory left after each collection,|
| w|hich can be divided by the count to find the average|
| w|orking set size after GC. Use [Count, Gained, Time|_]|
| f|or compatiblity. |
| stack_shifts [|global shifts, local shifts, time spent ] |
| atoms |[ number, memory use, 0 ] |
| atom_garbage_collection [|number of AGC, bytes gained, time spent ] |
| clause_garbage_collection[|number of CGC, clauses gained, time spent ] |
|_core_____________________|Same_as_memory_________________________________________|_
Table 4.4: Compatibility keys for statistics/2. Time is expressed in
milliseconds.
ssttaattiissttiiccss
Display a table of system statistics on the stream user_error.
ttiimmee((_:_G_o_a_l))
Execute _G_o_a_l just like call/1 and print time used, number of
logical inferences and the average number of _l_i_p_s (logical
inferences per second). Note that SWI-Prolog counts the actual
executed number of inferences rather than the number of passes
through the call and redo ports of the theoretical 4-port model.
If _G_o_a_l is non-deterministic, print statistics for each solution,
where the reported values are relative to the previous answer.
44..4411 EExxeeccuuttiioonn pprrooffiilliinngg
This section describes the hierarchical execution profiler. This
profiler is based on ideas from gprof described in [??]. The profiler
consists of two parts: the information-gathering component built into
the kernel, and a presentation component which is defined in the
statistics library. The latter can be hooked, which is used by
the XPCE module swi/pce_profile to provide an interactive graphical
frontend for the results.
44..4411..11 PPrrooffiilliinngg pprreeddiiccaatteess
The following predicates are defined to interact with the profiler.
pprrooffiillee((_:_G_o_a_l))
Execute _G_o_a_l just like once/1, collecting profiling statistics, and
call show_profile(_[_]). With XPCE installed this opens a graphical
interface to examine the collected profiling data.
pprrooffiillee((_:_G_o_a_l_, _+_O_p_t_i_o_n_s))
Execute _G_o_a_l just like once/1. Collect profiling statistics
according to _O_p_t_i_o_n_s and call show_profile/1 with _O_p_t_i_o_n_s. The
default collects CPU profiling and opens a graphical interface when
provided, printing the `plain' time usage of the top 25 predicates
as a ballback. Options are described below. Remaining options are
passed to show_profile/1.
ttiimmee((_+_W_h_i_c_h))
If _W_h_i_c_h is cpu (default), collect CPU timing statistics. If
wall, collect wall time statistics based on a 5 millisecond
sampling rate. Wall time statistics can be useful if _G_o_a_l
calls blocking system calls.
sshhooww__pprrooffiillee((_+_O_p_t_i_o_n_s))
This predicate first calls prolog:show_profile_hook/1. If XPCE is
loaded, this hook is used to activate a GUI interface to visualise
the profile results. If not, a report is printed to the terminal
according to _O_p_t_i_o_n_s:
ttoopp((_+_N))
Show the only top _N predicates. Default is 25.
ccuummuullaattiivvee((_+_B_o_o_l))
If true (default false), include the time spent in children in
the time reported for a predicate.
pprrooffiilleerr((_-_O_l_d_, _+_N_e_w))
Query or change the status of the profiler. The status is one of
ffaallssee
The profiler is not activated.
ccppuuttiimmee
The profiler collects CPU statistics.
wwaallllttiimmee
The profiler collects wall time statistics.
The value true is accepted as a synonym for cputime for
compatibility reasons.
rreesseett__pprrooffiilleerr
Switches the profiler to false and clears all collected statistics.
nnoopprrooffiillee((_+_N_a_m_e_/_+_A_r_i_t_y_, _._._.))
Declares the predicate _N_a_m_e/_A_r_i_t_y to be invisible to the profiler.
The time spent in the named predicate is added to the caller,
and the callees are linked directly to the caller. This is
particularly useful for simple meta-predicates such as call/1,
ignore/1, catch/3, etc.
44..4411..22 VViissuuaalliizziinngg pprrooffiilliinngg ddaattaa
Browsing the annotated call-tree as described in section ???? itself
is not very attractive. Therefore, the results are combined
per predicate, collecting all _c_a_l_l_e_r_s and _c_a_l_l_e_e_s as well as the
propagation of time and activations in both directions. Figure ????
illustrates this. The central yellowish line is the `current'
predicate with counts for time spent in the predicate (`Self'), time
spent in its children (`Siblings'), activations through the call and
redo ports. Above that are the _c_a_l_l_e_r_s. Here, the two time fields
indicate how much time is spent serving each of the callers. The
columns sum to the time in the yellowish line. The caller <_r_e_c_u_r_s_i_v_e>
is the number of recursive calls. Below the yellowish lines are the
callees, with the time spent in the callee itself for serving the
current predicate and the time spent in the callees of the callee
('Siblings'), so the whole time-block adds up to the `Siblings' field
of the current predicate. The `Access' fields show how many times the
current predicate accesses each of the callees.
The predicates have a menu that allows changing the view of the detail
window to the given caller or callee, showing the documentation (if it
is a built-in) and/or jumping to the source.
The statistics shown in the report field of figure ???? show the
following information:
o _s_a_m_p_l_e_s
Number of times the call-tree was sampled for collecting time
statistics. On most hardware, the resolution of SIGPROF is 1/100
second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples,
relative time or absolute time.
o _s_e_c
Total user CPU time with the profiler active.
o _p_r_e_d_i_c_a_t_e_s
Total count of predicates that have been called at least one time
during the profile.
o _n_o_d_e_s
Number of nodes in the call-tree.
o _d_i_s_t_o_r_t_i_o_n
How much of the time is spent building the call-tree as a
percentage of the total execution time. Timing samples while the
profiler is building the call-tree are not added to the call-tree.
44..4411..33 IInnffoorrmmaattiioonn ggaatthheerriinngg
While the program executes under the profiler, the system builds a
_d_y_n_a_m_i_c call-tree. It does this using three hooks from the kernel:
one that starts a new goal (_p_r_o_f_C_a_l_l), one that tells the system
which goal is resumed after an _e_x_i_t (_p_r_o_f_E_x_i_t) and one that tells the
system which goal is resumed after a _f_a_i_l (i.e., which goal is used
to _r_e_t_r_y (_p_r_o_f_R_e_d_o)). The profCall() function finds or creates the
subnode for the argument predicate below the current node, increments
the call-count of this link and returns the sub-node which is recorded
in the Prolog stack-frame. Choice-points are marked with the current
profiling node. profExit() and profRedo() pass the profiling node
where execution resumes.
Just using the above algorithm would create a much too big tree due to
recursion. For this reason the system performs detection of recursion.
In the simplest case, recursive procedures increment the `recursive'
count on the current node. Mutual recursion, however, is not easily
detected. For example, call/1 can call a predicate that uses call/1
itself. This can be viewed as a recursive invocation, but this is
generally not desirable. Recursion is currently assumed if the same
predicate _w_i_t_h _t_h_e _s_a_m_e _p_a_r_e_n_t appears higher in the call-graph. Early
experience with some non-trivial programs are promising.
The last part of the profiler collects statistics on the CPU time
used in each node. On systems providing setitimer() with SIGPROF, it
`ticks' the current node of the call-tree each time the timer fires.
On Windows, a MM-timer in a separate thread checks 100 times per second
how much time is spent in the profiled thread and adds this to the
current node. See section ???? for details.
44..4411..33..11 PPrrooffiilliinngg iinn tthhee WWiinnddoowwss IImmpplleemmeennttaattiioonn
Profiling in the Windows version is similar, but as profiling is a
statistical process it is good to be aware of the implementation for
proper interpretation of the results.
Windows does not provide timers that fire asynchronously, frequent and
proportional to the CPU time used by the process. Windows does provide
multi-media timers that can run at high frequency. Such timers,
however, run in a separate thread of execution and they are fired on
the wall clock rather than the amount of CPU time used. The profiler
installs such a timer running, for saving CPU time, rather inaccurately
at about 100 Hz. Each time it is fired, it determines the CPU time in
milliseconds used by Prolog since the last time it was fired. If this
value is non-zero, active predicates are incremented with this value.
44..4422 MMeemmoorryy MMaannaaggeemmeenntt
ggaarrbbaaggee__ccoolllleecctt
Invoke the global and trail stack garbage collector. Normally
the garbage collector is invoked automatically if necessary.
Explicit invocation might be useful to reduce the need for
garbage collections in time-critical segments of the code. After
the garbage collection trim_stacks/0 is invoked to release the
collected memory resources.
ggaarrbbaaggee__ccoolllleecctt__aattoommss
Reclaim unused atoms. Normally invoked after agc_margin (a Prolog
flag) atoms have been created. On multithreaded versions the
actual collection is delayed until there are no threads performing
normal garbage collection. In this case garbage_collect_atoms/0
returns immediately. Note that there is no guarantee it will
_e_v_e_r happen, as there may always be threads performing garbage
collection.
ggaarrbbaaggee__ccoolllleecctt__ccllaauusseess
Reclaim retracted clauses. During normal operation, retracting
a clause implies setting the _e_r_a_s_e_d _g_e_n_e_r_a_t_i_o_n to the current
_g_e_n_e_r_a_t_i_o_n of the database and increment the generation. Keeping
the clause around is both needed to realise the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w
and deal with the fact that other threads may be executing the
clause. Both static and dynamic code is processed this way..
The clause garbage collector (CGC) scans the environment stacks of
all threads for referenced dirty predicates and at which generation
this reference accesses the predicate. It then removes the
references for clauses that have been retracted before the oldest
access generation from the clause list as well as the secondary
clauses indexes of the predicate. If the clause list is not being
scanned, the clause references and ultimately the clause itself is
reclaimed.
The clause garbage collector is called under three conditions,
(1) after _r_e_l_o_a_d_i_n_g a source file, (2) if the memory occupied
by retracted but not yet reclaimed clauses exceeds 12.5% of the
program store, or (3) if skipping dead clauses in the clause lists
becomes too costly. The cost of clause garbage collection is
proportional with the total size of the local stack of all threads
(the scanning phase) and the number of clauses in all `dirty'
predicates (the reclaiming phase).
sseett__pprroolloogg__ggcc__tthhrreeaadd((_C))
ontrol whether or not atom and clause garbage collection are
executed in a dedicated thread. The default is true. Values for
_S_t_a_t_u_s are true, false and stop. The latter stops the gc thread
but allows is to be recreated lazily. This is use by e.g., fork/1
to avoid forking a multi-threaded application. See also gc_thread.
ttrriimm__ssttaacckkss
Release stack memory resources that are not in use at this moment,
returning them to the operating system. It can be used to release
memory resources in a backtracking loop, where the iterations
require typically seconds of execution time and very different,
potentially large, amounts of stack space. Such a loop can be
written as follows:
____________________________________________________________________| |
| loop :- |
| generator, |
| trim_stacks, |
| potentially_expensive_operation, |
||________stop_condition,_!.________________________________________ ||
The Prolog top-level loop is written this way, reclaiming memory
resources after every user query.
sseett__pprroolloogg__ssttaacckk((_+_S_t_a_c_k_, _+_K_e_y_V_a_l_u_e))
Set a parameter for one of the Prolog runtime stacks. _S_t_a_c_k is one
of local, global, trail or argument. The table below describes the
_K_e_y(_V_a_l_u_e) pairs. _V_a_l_u_e can be an arithmetic integer expression.
For example, to specify a 2 GB limit for the global stack, one can
use:
____________________________________________________________________| |
||?-_set_prolog_stack(global,_limit(2*10**9)).______________________ ||
Current settings can be retrieved with prolog_stack_property/2.
lliimmiitt((_+_B_y_t_e_s))
Set the limit to which the stack is allowed to grow. If
the specified value is lower than the current usage a
permission_error is raised. If the limit is larger than
supported, the system silently reduces the requested limit to
the system limit.
mmiinn__ffrreeee((_+_C_e_l_l_s))
Minimum amount of free space after trimming or shifting the
stack. Setting this value higher can reduce the number of
garbage collections and stack-shifts at the cost of higher
memory usage. The spare stack amount is reported and
specified in `cells'. A cell is 4 bytes in the 32-bit version
and 8 bytes on the 64-bit version. See address_bits. See also
trim_stacks/0 and debug/0.
llooww((_+_C_e_l_l_s))
ffaaccttoorr((_+_N_u_m_b_e_r))
These two figures determine whether, if the stacks are
low, a stack _s_h_i_f_t (expansion) or garbage collection is
performed. This depends on these two parameters, the current
stack usage and the amount of stack used after the last
garbage collection. A garbage collection is started if
used> factorl* astused+low.
ssppaarree((_+_C_e_l_l_s))
All stacks trigger overflow before actually reaching the
limit, so the resulting error can be handled gracefully.
The spare stack is used for print_message/2 from the garbage
collector and for handling exceptions. The default suffices,
unless the user redefines related hooks. Do nnoott specify
large values for this because it reduces the amount of memory
available for your real task.
Related hooks are message_hook/3 (redefining GC messages),
prolog_trace_interception/4and prolog_exception_hook/4.
pprroolloogg__ssttaacckk__pprrooppeerrttyy((_?_S_t_a_c_k_, _?_K_e_y_V_a_l_u_e))
True if _K_e_y_V_a_l_u_e is a current property of _S_t_a_c_k. See
set_prolog_stack/2 for defined properties.
44..4433 WWiinnddoowwss DDDDEE iinntteerrffaaccee
The predicates in this section deal with MS-Windows `Dynamic Data
Exchange' or DDE protocol. A Windows DDE conversation is a form
of interprocess communication based on sending reserved window events
between the communicating processes.
Failing DDE operations raise an error of the structure below, where
_O_p_e_r_a_t_i_o_n is the name of the (partial) operation that failed and
_M_e_s_s_a_g_e is a translation of the operator error code. For some errors,
_C_o_n_t_e_x_t provides additional comments.
________________________________________________________________________| |
||_______error(dde_error(Operation,_Message),_Context)__________________ ||
44..4433..11 DDDDEE cclliieenntt iinntteerrffaaccee
The DDE client interface allows Prolog to talk to DDE server programs.
We will demonstrate the use of the DDE interface using the Windows
PROGMAN (Program Manager) application:
________________________________________________________________________| |
|1 ?- open_dde_conversation(progman, progman, C). |
| |
|C = 0 |
|2 ?- dde_request(0, groups, X) |
| |
|--> Unifies X with description of groups |
| |
|3 ?- dde_execute(0, '[CreateGroup("DDE Demo")]'). |
|true. |
| |
|4 ?- close_dde_conversation(0). |
|true.|_________________________________________________________________ | |
For details on interacting with progman, use the SDK online
manual section on the Shell DDE interface. See also the Prolog
library(progman), which may be used to write simple Windows setup
scripts in Prolog.
ooppeenn__ddddee__ccoonnvveerrssaattiioonn((_+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _-_H_a_n_d_l_e))
Open a conversation with a server supporting the given service name
and topic (atoms). If successful, _H_a_n_d_l_e may be used to send
transactions to the server. If no willing server is found this
predicate fails silently.
cclloossee__ddddee__ccoonnvveerrssaattiioonn((_+_H_a_n_d_l_e))
Close the conversation associated with _H_a_n_d_l_e. All opened
conversations should be closed when they're no longer needed,
although the system will close any that remain open on process
termination.
ddddee__rreeqquueesstt((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _-_V_a_l_u_e))
Request a value from the server. _I_t_e_m is an atom that identifies
the requested data, and _V_a_l_u_e will be a string (CF_TEXT data in DDE
parlance) representing that data, if the request is successful.
ddddee__eexxeeccuuttee((_+_H_a_n_d_l_e_, _+_C_o_m_m_a_n_d))
Request the DDE server to execute the given command string.
Succeeds if the command could be executed and fails with an error
message otherwise.
ddddee__ppookkee((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _+_C_o_m_m_a_n_d))
Issue a POKE command to the server on the specified _I_t_e_m. _c_o_m_m_a_n_d
is passed as data of type CF_TEXT.
44..4433..22 DDDDEE sseerrvveerr mmooddee
The library(dde) defines primitives to realise simple DDE server
applications in SWI-Prolog. These features are provided as of version
2.0.6 and should be regarded as prototypes. The C part of the DDE
server can handle some more primitives, so if you need features not
provided by this interface, please study library(dde).
ddddee__rreeggiisstteerr__sseerrvviiccee((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l))
Register a server to handle DDE request or DDE execute requests
from other applications. To register a service for a DDE request,
_T_e_m_p_l_a_t_e is of the form:
+Service(+Topic, +Item, +Value)
_S_e_r_v_i_c_e is the name of the DDE service provided (like progman in
the client example above). _T_o_p_i_c is either an atom, indicating
_G_o_a_l only handles requests on this topic, or a variable that also
appears in _G_o_a_l. _I_t_e_m and _V_a_l_u_e are variables that also appear in
_G_o_a_l. _I_t_e_m represents the request data as a Prolog atom.
The example below registers the Prolog current_prolog_flag/2
predicate to be accessible from other applications. The request
may be given from the same Prolog as well as from another
application.
____________________________________________________________________| |
| ?- dde_register_service(prolog(current_prolog_flag, F, V), |
| current_prolog_flag(F, V)). |
| |
| ?- open_dde_conversation(prolog, current_prolog_flag, Handle), |
| dde_request(Handle, home, Home), |
| close_dde_conversation(Handle). |
| |
||Home_=_'/usr/local/lib/pl-2.0.6/'_________________________________ ||
Handling DDE execute requests is very similar. In this case the
template is of the form:
+Service(+Topic, +Item)
Passing a _V_a_l_u_e argument is not needed as execute requests either
succeed or fail. If _G_o_a_l fails, a `not processed' is passed back
to the caller of the DDE request.
ddddee__uunnrreeggiisstteerr__sseerrvviiccee((_+_S_e_r_v_i_c_e))
Stop responding to _S_e_r_v_i_c_e. If Prolog is halted, it will
automatically call this on all open services.
ddddee__ccuurrrreenntt__sseerrvviiccee((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently registered services and the topics served on them.
ddddee__ccuurrrreenntt__ccoonnnneeccttiioonn((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently open conversations.
44..4444 MMiisscceellllaanneeoouuss
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2))
True if _A_t_o_m_1 matches _A_t_o_m_2 in the `Do What I Mean' sense. Both
_A_t_o_m_1 and _A_t_o_m_2 may also be integers or floats. The two atoms
match if:
o They are identical
o They differ by one character (spy spu)
o One character is inserted/deleted (debug deug)
o Two characters are transposed (trace tarce)
o `Sub-words' are glued differently (existsfile existsFile
exists_file)
o Two adjacent sub-words are transposed (existsFile
fileExists)
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2_, _-_D_i_f_f_e_r_e_n_c_e))
Equivalent to dwim_match/2, but unifies _D_i_f_f_e_r_e_n_c_e with an atom
identifying the difference between _A_t_o_m_1 and _A_t_o_m_2. The return
values are (in the same order as above): equal, mismatched_char,
inserted_char, transposed_char, separated and transposed_word.
wwiillddccaarrdd__mmaattcchh((_+_P_a_t_t_e_r_n_, _+_S_t_r_i_n_g))
True if _S_t_r_i_n_g matches the wildcard pattern _P_a_t_t_e_r_n. _P_a_t_t_e_r_n is
very similar to the Unix csh pattern matcher. The patterns are
given below:
? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.
<_c_h_a_r_1>-<_c_h_a_r_2>indicates a range.
{...} Matches any of the patterns of the comma-separated list between the braces.
Example:
____________________________________________________________________| |
| ?- wildcard_match('[a-z]*.{pro,pl}[%~]', 'a_hello.pl%'). |
||true._____________________________________________________________ ||
sslleeeepp((_+_T_i_m_e))
Suspend execution _T_i_m_e seconds. _T_i_m_e is either a floating point
number or an integer. Granularity is dependent on the system's
timer granularity. A negative time causes the timer to return
immediately. On most non-realtime operating systems we can only
ensure execution is suspended for aatt lleeaasstt _T_i_m_e seconds.
On Unix systems the sleep/1 predicate is realised ---in order of
preference--- by nanosleep(), usleep(), select() if the time is
below 1 minute, or sleep(). On Windows systems Sleep() is used.
CChhaapptteerr 55.. SSWWII--PPRROOLLOOGG EEXXTTEENNSSIIOONNSS
This chapter describes extensions to the Prolog language introduced
with SWI-Prolog version 7. The changes bring more modern syntactical
conventions to Prolog such as key-value maps, called _d_i_c_t_s as primary
citizens and a restricted form of _f_u_n_c_t_i_o_n_a_l _n_o_t_a_t_i_o_n. They also
extend Prolog basic types with strings, providing a natural notation to
textual material as opposed to identifiers (atoms) and lists.
These extensions make the syntax more intuitive to new users, simplify
the integration of domain specific languages (DSLs) and facilitate a
more natural Prolog representation for popular exchange languages such
as XML and JSON.
While many programs run unmodified in SWI-Prolog version 7, especially
those that pass double quoted strings to general purpose list
processing predicates require modifications. We provide a tool
(list_strings/0) that we used to port a huge code base in half a day.
55..11 LLiissttss aarree ssppeecciiaall
As of version 7, SWI-Prolog lists can be distinguished unambiguously at
runtime from ./2 terms and the atom '[]'. The constant [] is special
constant that is not an atom. It has the following properties:
________________________________________________________________________| |
|?- atom([]). |
|false. |
|?- atomic([]). |
|true. |
|?- [] == '[]'. |
|false. |
|?- [] == []. |
|true.|_________________________________________________________________ | |
The `cons' operator for creating list cells has changed from the pretty
atom '.' to the ugly atom '[|]', so we can use the '.' for other
purposes. See section ????.
This modification has minimal impact on typical Prolog code. It does
affect foreign code (see section ????) that uses the normal atom and
compound term interface for manipulation lists. In most cases this can
be avoided by using the dedicated list functions. For convenience, the
macros ATOM_nil and ATOM_dot are provided by SWI-Prolog.h.
Another place that is affected is write_canonical/1. Impact is
minimized by using the list syntax for lists. The predicates
read_term/2 and write_term/2 support the option dotlists(_t_r_u_e), which
causes read_term/2 to read .(a,[]) as [a] and write_term/2to write [a]
as .(a,[]).
55..11..11 MMoottiivvaattiinngg ''[|]'' aanndd [] ffoorr lliissttss
Representing lists the conventional way using ./2 as cons-cell and '[]'
as list terminator both (independently) poses conflicts, while these
conflicts are easily avoided.
o Using ./2 prevents using this commonly used symbol as an operator
because a.B cannot be distinguished from [a|B]. Freeing ./2
provides us with a unique term that we can use for functional
notation on dicts as described in section ????.
o Using '[]' as list terminator prevents dynamic distinction between
atoms and lists. As a result, we cannot use type polymorphism
that involve both atoms and lists. For example, we cannot use
_m_u_l_t_i _l_i_s_t_s (arbitrary deeply nested lists) of atoms. Multi
lists of atoms are in some situations a good representation of a
flat list that is assembled from sub sequences. The alternative,
using difference lists or DCGs is often less natural and sometimes
demands for `opening' proper lists (i.e., copying the list while
replacing the terminating empty list with a variable) that have
to be added to the sequence. The ambiguity of atom and list
is particularly painful when mapping external data representations
that do not suffer from this ambiguity.
At the same time, avoiding '[]' as a list terminator makes the
various text representations unambiguous, which allows us to write
predicates that require a textual argument to accept both atoms,
strings, and lists of character codes or one-character atoms.
Traditionally, the empty list can be interpreted both as the string
"[]" and "".
55..22 TThhee ssttrriinngg ttyyppee aanndd iittss ddoouubbllee qquuootteedd ssyynnttaaxx
As of SWI-Prolog version 7, text enclosed in double quotes (e.g.,
"Hello world") is read as objects of the type _s_t_r_i_n_g. A string
is a compact representation of a character sequence that lives on
the global (term) stack. Strings represent sequences of Unicode
characters including the character code 0 (zero). The length strings
is limited by the available space on the global (term) stack (see
set_prolog_stack/2). Strings are distinct from lists, which makes it
possible to detect them at runtime and print them using the string
syntax, as illustrated below:
________________________________________________________________________| |
|?- write("Hello world!"). |
|Hello world! |
| |
|?- writeq("Hello world!"). |
|"Hello|world!"_________________________________________________________ | |
_B_a_c_k _q_u_o_t_e_d text (as in `text`) is mapped to a list of character codes
in version 7. The settings for the flags that control how double and
back quoted text is read is summarised in table ????. Programs that
aim for compatibility should realise that the ISO standard defines back
quoted text, but does not define the back_quotes Prolog flag and does
not define the term that is produced by back quoted text.
_______________________________________________MMooddeedouble_quotesback_quotes
_______________________________________________Versions7tdefaultringcodes
_--traditional_________codes_______symbol_char_
Table 5.1: Mapping of double and back quoted text in the two modes.
Section ???? motivates the introduction of strings and mapping double
quoted text to this type.
55..22..11 PPrreeddiiccaatteess tthhaatt ooppeerraattee oonn ssttrriinnggss
Strings may be manipulated by a set of predicates that is similar to
the manipulation of atoms. In addition to the list below, string/1
performs the type check for this type and is described in section ????.
SWI-Prolog's string primitives are being synchronized with
http://eclipseclp.org/wiki/Prolog/StringsECLiPSe. We expect the
set of predicates documented in this section to be stable, although
it might be expanded. In general, SWI-Prolog's text manipulation
predicates accept any form of text as input argument and produce the
type indicated by the predicate name as output. This policy simplifies
migration and writing programs that can run unmodified or with minor
modifications on systems that do not support strings. Code should
avoid relying on this feature as much as possible for clarity as well
as to facilitate a more strict mode and/or type checking in future
releases.
aattoomm__ssttrriinngg((_?_A_t_o_m_, _?_S_t_r_i_n_g))
Bi-directional conversion between an atom and a string. At least
one of the two arguments must be instantiated. _A_t_o_m can also be an
integer or floating point number.
nnuummbbeerr__ssttrriinngg((_?_N_u_m_b_e_r_, _?_S_t_r_i_n_g))
Bi-directional conversion between a number and a string. At least
one of the two arguments must be instantiated. Besides the type
used to represent the text, this predicate differs in several ways
from its ISO cousin:
o If _S_t_r_i_n_g does not represent a number, the predicate _f_a_i_l_s
rather than throwing a syntax error exception.
o Leading white space and Prolog comments are _n_o_t allowed.
o Numbers may start with '+' or '-'.
o It is _n_o_t allowed to have white space between a leading '+' or
'-' and the number.
o Floating point numbers in exponential notation do not require
a dot before exponent, i.e., "1e10" is a valid number.
tteerrmm__ssttrriinngg((_?_T_e_r_m_, _?_S_t_r_i_n_g))
Bi-directional conversion between a term and a string. If _S_t_r_i_n_g
is instantiated, it is parsed and the result is unified with _T_e_r_m.
Otherwise _T_e_r_m is `written' using the option quoted(_t_r_u_e) and the
result is converted to _S_t_r_i_n_g.
tteerrmm__ssttrriinngg((_?_T_e_r_m_, _?_S_t_r_i_n_g_, _+_O_p_t_i_o_n_s))
As term_string/2, passing _O_p_t_i_o_n_s to either read_term/2 or
write_term/2. For example:
____________________________________________________________________| |
| ?- term_string(Term, 'a(A)', [variable_names(VNames)]). |
| Term = a(_G1466), |
||VNames_=_['A'=_G1466].____________________________________________ ||
ssttrriinngg__cchhaarrss((_?_S_t_r_i_n_g_, _?_C_h_a_r_s))
Bi-directional conversion between a string and a list of characters
(one-character atoms). At least one of the two arguments must be
instantiated.
ssttrriinngg__ccooddeess((_?_S_t_r_i_n_g_, _?_C_o_d_e_s))
Bi-directional conversion between a string and a list of character
codes. At least one of the two arguments must be instantiated.
tteexxtt__ttoo__ssttrriinngg((_+_T_e_x_t_, _-_S_t_r_i_n_g)) _[_d_e_t_]
Converts _T_e_x_t to a string. _T_e_x_t is an atom, string or list of
characters (codes or chars). When running in --traditional mode,
'[]' is ambiguous and interpreted as an empty string.
ssttrriinngg__lleennggtthh((_+_S_t_r_i_n_g_, _-_L_e_n_g_t_h))
Unify _L_e_n_g_t_h with the number of characters in _S_t_r_i_n_g. This
predicate is functionally equivalent to atom_length/2 and also
accepts atoms, integers and floats as its first argument.
ssttrriinngg__ccooddee((_?_I_n_d_e_x_, _+_S_t_r_i_n_g_, _?_C_o_d_e))
True when _C_o_d_e represents the character at the 1-based _I_n_d_e_x
position in _S_t_r_i_n_g. If _I_n_d_e_x is unbound the string is scanned from
index 1. Raises a domain error if _I_n_d_e_x is negative. Fails
silently if _I_n_d_e_x is zero or greater than the length of _S_t_r_i_n_g.
The mode string_code(_-_,_+_,_+) is deterministic if the searched-for
_C_o_d_e appears only once in _S_t_r_i_n_g. See also sub_string/5.
ggeett__ssttrriinngg__ccooddee((_+_I_n_d_e_x_, _+_S_t_r_i_n_g_, _-_C_o_d_e))
Semi-deterministic version of string_code/3. In addition, this
version provides strict range checking, throwing a domain error if
_I_n_d_e_x is less than 1 or greater than the length of _S_t_r_i_n_g. ECLiPSe
provides this to support String[Index] notation.
ssttrriinngg__ccoonnccaatt((_?_S_t_r_i_n_g_1_, _?_S_t_r_i_n_g_2_, _?_S_t_r_i_n_g_3))
Similar to atom_concat/3, but the unbound argument will be unified
with a string object rather than an atom. Also, if both _S_t_r_i_n_g_1
and _S_t_r_i_n_g_2 are unbound and _S_t_r_i_n_g_3 is bound to text, it breaks
_S_t_r_i_n_g_3, unifying the start with _S_t_r_i_n_g_1 and the end with _S_t_r_i_n_g_2
as append does with lists. Note that this is not particularly
fast on long strings, as for each redo the system has to create
two entirely new strings, while the list equivalent only creates a
single new list-cell and moves some pointers around.
sspplliitt__ssttrriinngg((_+_S_t_r_i_n_g_, _+_S_e_p_C_h_a_r_s_, _+_P_a_d_C_h_a_r_s_, _-_S_u_b_S_t_r_i_n_g_s)) _[_d_e_t_]
Break _S_t_r_i_n_g into _S_u_b_S_t_r_i_n_g_s. The _S_e_p_C_h_a_r_s argument provides the
characters that act as separators and thus the length of _S_u_b_S_t_r_i_n_g_s
is one more than the number of separators found if _S_e_p_C_h_a_r_s and
_P_a_d_C_h_a_r_s do not have common characters. If _S_e_p_C_h_a_r_s and _P_a_d_C_h_a_r_s
are equal, sequences of adjacent separators act as a single
separator. Leading and trailing characters for each substring
that appear in _P_a_d_C_h_a_r_s are removed from the substring. The
input arguments can be either atoms, strings or char/code lists.
Compatible with ECLiPSe. Below are some examples:
____________________________________________________________________| |
| % a simple split |
| ?- split_string("a.b.c.d", ".", "", L). |
| L = ["a", "b", "c", "d"]. |
| % Consider sequences of separators as a single one |
| ?- split_string("/home//jan///nice/path", "/", "/", L). |
| L = ["home", "jan", "nice", "path"]. |
| % split and remove white space |
| ?- split_string("SWI-Prolog, 7.0", ",", " ", L). |
| L = ["SWI-Prolog", "7.0"]. |
| % only remove leading and trailing white space |
| ?- split_string(" SWI-Prolog ", "", "\s\t\n", L). |
||L_=_["SWI-Prolog"]._______________________________________________ ||
In the typical use cases, _S_e_p_C_h_a_r_s either does not overlap _P_a_d_C_h_a_r_s
or is equivalent to handle multiple adjacent separators as a single
(often white space). The behaviour with partially overlapping sets
of padding and separators should be considered undefined. See also
read_string/5.
ssuubb__ssttrriinngg((_+_S_t_r_i_n_g_, _?_B_e_f_o_r_e_, _?_L_e_n_g_t_h_, _?_A_f_t_e_r_, _?_S_u_b_S_t_r_i_n_g))
_S_u_b_S_t_r_i_n_g is a substring of _S_t_r_i_n_g. There are _B_e_f_o_r_e characters in
_S_t_r_i_n_g before _S_u_b_S_t_r_i_n_g, _S_u_b_S_t_r_i_n_g contains _L_e_n_g_t_h character and is
followed by _A_f_t_e_r characters in _S_t_r_i_n_g. If not enough information
is provided to compute the start of the match, _S_t_r_i_n_g is scanned
left-to-right. This predicate is functionally equivalent to
sub_atom/5, but operates on strings. The following example splits
a string of the form <_n_a_m_e>=<_v_a_l_u_e> into the name part (an atom) and
the value (a string).
____________________________________________________________________| |
| name_value(String, Name, Value) :- |
| sub_string(String, Before, _, After, "="), !, |
| sub_string(String, 0, Before, _, NameString), |
| atom_string(Name, NameString), |
||________sub_string(String,__,_After,_0,_Value).___________________ ||
aattoommiiccss__ttoo__ssttrriinngg((_+_L_i_s_t_, _-_S_t_r_i_n_g))
_L_i_s_t is a list of strings, atoms, integers or floating point
numbers. Succeeds if _S_t_r_i_n_g can be unified with the concatenated
elements of _L_i_s_t. Equivalent to atomics_to_string(_L_i_s_t_, _'_'_,
_S_t_r_i_n_g).
aattoommiiccss__ttoo__ssttrriinngg((_+_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _-_S_t_r_i_n_g))
Creates a string just like atomics_to_string/2, but inserts _S_e_p_a_r_a_-
_t_o_r between each pair of inputs. For example:
____________________________________________________________________| |
| ?- atomics_to_string([gnu, "gnat", 1], ', ', A). |
| |
||A_=_"gnu,_gnat,_1"________________________________________________ ||
ssttrriinngg__uuppppeerr((_+_S_t_r_i_n_g_, _-_U_p_p_e_r_C_a_s_e))
Convert _S_t_r_i_n_g to upper case and unify the result with _U_p_p_e_r_C_a_s_e.
ssttrriinngg__lloowweerr((_+_S_t_r_i_n_g_, _L_o_w_e_r_C_a_s_e))
Convert _S_t_r_i_n_g to lower case and unify the result with _L_o_w_e_r_C_a_s_e.
rreeaadd__ssttrriinngg((_+_S_t_r_e_a_m_, _?_L_e_n_g_t_h_, _-_S_t_r_i_n_g))
Read at most _L_e_n_g_t_h characters from _S_t_r_e_a_m and return them in the
string _S_t_r_i_n_g. If _L_e_n_g_t_h is unbound, _S_t_r_e_a_m is read to the end and
_L_e_n_g_t_h is unified with the number of characters read.
rreeaadd__ssttrriinngg((_+_S_t_r_e_a_m_, _+_S_e_p_C_h_a_r_s_, _+_P_a_d_C_h_a_r_s_, _-_S_e_p_, _-_S_t_r_i_n_g))
Read a string from _S_t_r_e_a_m, providing functionality similar to
split_string/4. The predicate performs the following steps:
1. Skip all characters that match _P_a_d_C_h_a_r_s
2. Read up to a character that matches _S_e_p_C_h_a_r_s or end of file
3. Discard trailing characters that match _P_a_d_C_h_a_r_s from the
collected input
4. Unify _S_t_r_i_n_g with a string created from the input and _S_e_p with
the separator character read. If input was terminated by the
end of the input, _S_e_p is unified with -1.
The predicate read_string/5called repeatedly on an input until _S_e_p
is -1 (end of file) is equivalent to reading the entire file into
a string and calling split_string/4, provided that _S_e_p_C_h_a_r_s and
_P_a_d_C_h_a_r_s are not _p_a_r_t_i_a_l_l_y _o_v_e_r_l_a_p_p_i_n_g. Below are some examples:
____________________________________________________________________| |
| % Read a line |
| read_string(Input, "\n", "\r", End, String) |
| % Read a line, stripping leading and trailing white space |
| read_string(Input, "\n", "\r\t ", End, String) |
| % Read upto , or ), unifying End with 0', or 0') |
||read_string(Input,_",)",_"\t_",_End,_String)______________________ ||
ooppeenn__ssttrriinngg((_+_S_t_r_i_n_g_, _-_S_t_r_e_a_m))
True when _S_t_r_e_a_m is an input stream that accesses the content of
_S_t_r_i_n_g. _S_t_r_i_n_g can be any text representation, i.e., string, atom,
list of codes or list of characters.
55..22..22 RReepprreesseennttiinngg tteexxtt:: ssttrriinnggss,, aattoommss aanndd ccooddee lliissttss
With the introduction of strings as a Prolog data type, there are
three main ways to represent text: using strings, atoms or code
lists. This section explains what to choose for what purpose. Both
strings and atoms are _a_t_o_m_i_c objects: you can only look inside them
using dedicated predicates. Lists of character codes are compound
datastructures.
LLiissttss ooff cchhaarraacctteerr ccooddeess is what you need if you want to _p_a_r_s_e text
using Prolog grammar rules (DCGs, see phrase/3). Most of the text
reading predicates (e.g., read_line_to_codes/2) return a list of
character codes because most applications need to parse these lines
before the data can be processed.
AAttoommss are _i_d_e_n_t_i_f_i_e_r_s. They are typically used in cases where
identity comparison is the main operation and that are typically
not composed nor taken apart. Examples are RDF resources (URIs
that identify something), system identifiers (e.g., 'Boeing 747'),
but also individual words in a natural language processing system.
They are also used where other languages would use _e_n_u_m_e_r_a_t_e_d
_t_y_p_e_s, such as the names of days in the week. Unlike enumerated
types, Prolog atoms do not form not a fixed set and the same atom
can represent different things in different contexts.
SSttrriinnggss typically represents text that is processed as a unit most of
the time, but which is not an identifier for something. Format
specifications for format/3 is a good example. Another example
is a descriptive text provided in an application. Strings
may be composed and decomposed using e.g., string_concat/3 and
sub_string/5 or converted for parsing using string_codes/2 or
created from codes generated by a generative grammar rule, also
using string_codes/2.
55..22..33 AAddaappttiinngg ccooddee ffoorr ddoouubbllee qquuootteedd ssttrriinnggss
The predicates in this section can help adapting your program to the
new convention for handling double quoted strings. We have adapted a
huge code base with which we were not familiar in about half a day.
lliisstt__ssttrriinnggss
This predicate may be used to assess compatibility issues due
to the representation of double quoted text as string objects.
See section ???? and section ????. To use it, load your program
into Prolog and run list_strings/0. The predicate lists source
locations of string objects encountered in the program that are not
considered safe. Such string need to be examined manually, after
which one of the actions below may be appropriate:
o Rewrite the code. For example, change [X] = "a" into X = 0'a.
o If a particular module relies heavily on representing strings
as lists of character code, consider adding the following
directive to the module. Note that this flag only applies to
the module in which it appears.
_______________________________________________________________| |
||_________:-_set_prolog_flag(double_quotes,_codes).___________ ||
o Use a back quoted string (e.g., `text`). Note that this
will not make your code run regardless of the --traditional
command line option and code exploiting this mapping is also
not portable to ISO compliant systems.
o If the strings appear in facts and usage is safe, add a clause
to the multifile predicate check:string_predicate/1 to silence
list_strings/0 on all clauses of that predicate.
o If the strings appear as an argument to a predicate that can
handle string objects, add a clause to the multifile predicate
check:valid_string_goal/1 to silence list_strings/0.
cchheecckk::ssttrriinngg__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r))
Declare that _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r has clauses that contain strings,
but that this is safe. For example, if there is a predicate
help_info/2, where the second argument contains a double quoted
string that is handled properly by the predicates of the
applications' help system, add the following declaration to stop
list_strings/0 from complaining:
____________________________________________________________________| |
| :- multifile check:string_predicate/1. |
| |
||check:string_predicate(user:help_info/2)._________________________ ||
cchheecckk::vvaalliidd__ssttrriinngg__ggooaall((_:_G_o_a_l))
Declare that calls to _G_o_a_l are safe. The module qualification is
the actual module in which _G_o_a_l is defined. For example, a call
to format/3 is resolved by the predicate system:format/3. and
the code below specifies that the second argument may be a string
(system predicates that accept strings are defined in the library).
____________________________________________________________________| |
| :- multifile check:valid_string_goal/1. |
| |
||check:valid_string_goal(system:format(_,S,_))_:-_string(S)._______ ||
55..22..44 WWhhyy hhaass tthhee rreepprreesseennttaattiioonn ooff ddoouubbllee qquuootteedd tteexxtt cchhaannggeedd??
Prolog defines two forms of quoted text. Traditionally, single quoted
text is mapped to atoms while double quoted text is mapped to a list
of _c_h_a_r_a_c_t_e_r _c_o_d_e_s (integers) or characters represented as 1-character
atoms. Representing text using atoms is often considered inadequate
for several reasons:
o It hides the conceptual difference between text and program
symbols. Where content of text often matters because it is used
in I/O, program symbols are merely identifiers that match with the
same symbol elsewhere. Program symbols can often be consistently
replaced, for example to obfuscate or compact a program.
o Atoms are globally unique identifiers. They are stored in a shared
table. Volatile strings represented as atoms come at a significant
price due to the required cooperation between threads for creating
atoms. Reclaiming temporary atoms using _A_t_o_m _g_a_r_b_a_g_e _c_o_l_l_e_c_t_i_o_n is
a costly process that requires significant synchronisation.
o Many Prolog systems (not SWI-Prolog) put severe restrictions on the
length of atoms or the maximum number of atoms.
Representing text as a list of character codes or 1-character atoms
also comes at a price:
o It is not possible to distinguish (at runtime) a list of integers
or atoms from a string. Sometimes this information can be derived
from (implicit) typing. In other cases the list must be embedded
in a compound term to distinguish the two types. For example,
s("hello world") could be used to indicate that we are dealing with
a string.
Lacking runtime information, debuggers and the toplevel can only
use heuristics to decide whether to print a list of integers as
such or as a string (see portray_text/1).
While experienced Prolog programmers have learned to cope with
this, we still consider this an unfortunate situation.
o Lists are expensive structures, taking 2 cells per character (3 for
SWI-Prolog in its current form). This stresses memory consumption
on the stacks while pushing them on the stack and dealing with them
during garbage collection is unnecessarilly expensive.
We observe that in many programs, most strings are only handled as a
single unit during their lifetime. Examining real code tells us that
double quoted strings typically appear in one of the following roles:
AA DDCCGG lliitteerraall Although represented as a list of codes is the correct
representation for handling in DCGs, the DCG translator can
recognise the literal and convert it to the proper representation.
Such code need not be modified.
AA ffoorrmmaatt ssttrriinngg This is a typical example of text that is
conceptually not a program identifier. Format is designed to deal
with alternative representations of the format string. Such code
need not be modified.
GGeettttiinngg aa cchhaarraacctteerr ccooddee The construct [X] = "a" is a commonly used
template for getting the character code of the letter 'a'. ISO
Prolog defines the syntax 0'a for this purpose. Code using this
must be modified. The modified code will run on any ISO compliant
processor.
AAss aarrgguummeenntt ttoo lliisstt pprreeddiiccaatteess ttoo ooppeerraattee oonn ssttrriinnggss Here, we see
code such as append("name:", Rest, Codes). Such code needs to be
modified. In this particular example, the following is a good
portable alternative: phrase("name:", Codes, Rest)
CChheecckkss ffoorr aa cchhaarraacctteerr ttoo bbee iinn aa sseett Such tests are often performed
with code such as this: memberchk(C, "~!@#$"). This is a
rather inefficient check in a traditional Prolog system because it
pushes a list of character codes cell-by-cell the Prolog stack and
then traverses this list cell-by-cell to see whether one of the
cells unifies with _C. If the test is successful, the string will
eventually be subject to garbage collection. The best code for
this is to write a predicate as below, which pushes noting on the
stack and performs an indexed lookup to see whether the character
code is in `my_class'.
____________________________________________________________________| |
| my_class(0'~). |
| my_class(0'!). |
||..._______________________________________________________________ ||
An alternative to reach the same effect is to use term expansion to
create the clauses:
____________________________________________________________________| |
| term_expansion(my_class(_), Clauses) :- |
| findall(my_class(C), |
| string_code(_, "~!@#$", C), |
| Clauses). |
| |
||my_class(_).______________________________________________________ ||
Finally, the predicate string_code/3can be exploited directly as a
replacement for the memberchk/2 on a list of codes. Although the
string is still pushed onto the stack, it is more compact and only
a single entity.
We offer the predicate list_strings/0 to help porting your program.
55..33 SSyynnttaaxx cchhaannggeess
55..33..11 OOppeerraattoorrss aanndd qquuootteedd aattoommss
As of SWI-Prolog version 7, quoted atoms loose their operator property.
This means that expressions such as A = 'dynamic'/1 are valid syntax,
regardless of the operator definitions. From questions on the
mailinglist this is what people expect. To accomodate for real
quoted operators, a quoted atom that _n_e_e_d_s quotes can still act as an
operator. A good use-case for this is a unit library, which allows for
expressions such as below.
________________________________________________________________________| |
|?- Y isu 600kcal - 1h*200'W'. |
|Y|=_1790400.0'J'.______________________________________________________ | |
55..33..22 CCoommppoouunndd tteerrmmss wwiitthh zzeerroo aarrgguummeennttss
As of SWI-Prolog version 7, the system supports compound terms that
have no arguments. This implies that e.g., name() is valid syntax.
This extension aims at functions on dicts (see section ????) as well
as the implementation of domain specific languages (DSLs). To
minimise the consequences, the classic predicates functor/3 and =../2
have not been modified. The predicates compound_name_arity/3 and
compound_name_arguments/3 have been added. These predicates operate
only on compound terms and behave consistently for compounds with zero
arguments. Code that _g_e_n_e_r_a_l_i_s_e_s a term using the sequence below
should generally be changed to use compound_name_arity/3.
________________________________________________________________________| |
| ..., |
| functor(Specific, Name, Arity), |
| functor(General, Name, Arity), |
||___...,_______________________________________________________________ ||
Replacement of =../2 by compound_name_arguments/3 is typically needed to
deal with code that follow the skeleton below.
________________________________________________________________________| |
| ..., |
| Term0 =.. [Name|Args0], |
| maplist(convert, Args0, Args), |
| Term =.. [Name|Args], |
||___...,_______________________________________________________________ ||
For predicates, goals and arithmetic functions (evaluable terms), <_n_a_m_e>
and <_n_a_m_e>() are _e_q_u_i_v_a_l_e_n_t. Below are some examples that illustrate
this behaviour.
________________________________________________________________________| |
|go() :- format('Hello world~n'). |
| |
|?- go(). |
|Hello world |
| |
|?- go. |
|Hello world |
| |
|?- Pi is pi(). |
|Pi = 3.141592653589793. |
| |
|?- Pi is pi. |
|Pi|=_3.141592653589793.________________________________________________ | |
Note that the _c_a_n_n_o_n_i_c_a_l representation of predicate heads and
functions without arguments is an atom. Thus, clause(_g_o_(_)_, _B_o_d_y)
returns the clauses for go/0, but clause(_-_H_e_a_d_, _-_B_o_d_y_, _+_R_e_f) unifies
_H_e_a_d with an atom if the clause specified by _R_e_f is part of a predicate
with zero arguments.
55..33..33 BBlloocckk ooppeerraattoorrss
Introducing curly bracket and array subscripting. The symbols [] and
{} may be declared as an operator, which has the following effect:
[[ ]]
This operator is typically declared as a low-priority yf postfix
operator, which allows for array[index] notation. This syntax
produces a term []([index],array).
{ }
This operator is typically declared as a low-priority xf postfix
operator, which allows for head(arg) { body } notation. This
syntax produces a term {}({body},head(arg)).
Below is an example that illustrates the representation of a typical
`curly bracket language' in Prolog.
________________________________________________________________________| |
|?- op(100, xf, {}). |
|?- op(100, yf, []). |
|?- op(1100, yf, ;). |
| |
|?- displayq(func(arg) |
| { a[10] = 5; |
| update(); |
| }). |
|{}({;(=([]([10],a),5),;(update()))},func(arg))|________________________ | |
55..44 DDiiccttss:: ssttrruuccttuurreess wwiitthh nnaammeedd aarrgguummeennttss
SWI-Prolog version 7 introduces dicts as an abstract object with a
concrete modern syntax and functional notation for accessing members
and as well as access functions defined by the user. The syntax for
a dict is illustrated below. _T_a_g is either a variable or an atom.
As with compound terms, there is nnoo space between the tag and the
opening brace. The keys are either atoms or small integers (up to
max_tagged_integer). The values are arbitrary Prolog terms which are
parsed using the same rules as used for arguments in compound terms.
Tag{Key1:Value1, Key2:Value2, ...}
A dict can _n_o_t hold duplicate keys. The dict is transformed into
an opaque internal representation that does _n_o_t respect the order in
which the key-value pairs appear in the input text. If a dict is
written, the keys are written according to the standard order of terms
(see section ????). Here are some examples, where the second example
illustrates that the order is not maintained and the third illustrates
an anonymous dict.
________________________________________________________________________| |
|?- A = point{x:1, y:2}. |
|A = point{x:1, y:2}. |
| |
|?- A = point{y:2, x:1}. |
|A = point{x:1, y:2}. |
| |
|?- A = _{first_name:"Mel", last_name:"Smith"}. |
|A|=__G1476{first_name:"Mel",_last_name:"Smith"}._______________________ | |
Dicts can be unified following the standard symmetric Prolog
unification rules. As dicts use an internal canonical form, the
order in which the named keys are represented is not relevant. This
behaviour is illustrated by the following example.
________________________________________________________________________| |
|?- point{x:1, y:2} = Tag{y:2, x:X}. |
|Tag = point, |
|X|=_1._________________________________________________________________ | |
NNoottee In the current implementation, two dicts unify only if they have
the same set of keys and the tags and values associated with the keys
unify. In future versions, the notion of unification between dicts
could be modified such that two dicts unify if their tags and the
values associated with _c_o_m_m_o_n keys unify, turning both dicts into a new
dict that has the union of the keys of the two original dicts.
55..44..11 FFuunnccttiioonnss oonn ddiiccttss
The infix operator dot (op(_1_0_0_, _y_f_x_, _.) is used to extract values and
evaluate functions on dicts. Functions are recognised if they appear
in the argument of a _g_o_a_l in the source text, possibly nested in a
term. The keys act as field selector, which is illustrated in this
example.
________________________________________________________________________| |
|?- X = point{x:1,y:2}.x. |
|X = 1. |
| |
|?- Pt = point{x:1,y:2}, write(Pt.y). |
|2 |
|Pt = point{x:1,y:2}. |
| |
|?- X = point{x:1,y:2}.C. |
|X = 1, |
|C = x ; |
|X = 2, |
|C|=_y._________________________________________________________________ | |
The compiler translates a goal that contains ./2 terms in its arguments
into a conjunction of calls to ./3 defined in the system module. Terms
functor.2 that appears in the head are replaced with a variable and
calls to ./3 are inserted at the start of the body. Below are two
examples, where the first extracts the x key from a dict and the second
extends a dict containing an address with the postal code, given a
find_postal_code/4predicate.
________________________________________________________________________| |
|dict_x(X, X.x). |
| |
|add_postal_code(Dict, Dict.put(postal_code, Code)) :- |
| find_postal_code(Dict.city, |
| Dict.street, |
| Dict.house_number, |
||________________________Code).________________________________________ ||
Note that expansion of ./2 terms implies that such terms cannot be
created by writing them explicitly in your source code. Such terms
can still be created with functor/3, =../2, compound_name_arity/3 and
compound_name_arguments/3.
.((_+_D_i_c_t_, _+_F_u_n_c_t_i_o_n_, _-_R_e_s_u_l_t))
This predicate is called to evaluate ./2 terms found in the
arguments of a goal. This predicate evaluates the field extraction
described above, which is mapped to get_dict_ex/3. If _F_u_n_c_t_i_o_n is
a compound term, it checks for the predefined functions on dicts
described in section ???? or executes a user defined function as
described in section ????.
55..44..11..11 UUsseerr ddeeffiinneedd ffuunnccttiioonnss oonn ddiiccttss
The tag of a dict associates the dict to a module. If the dot notation
uses a compound term, this calls the goal below.
<_m_o_d_u_l_e>:<_n_a_m_e>(Arg1, ..., +Dict, -Value)
Functions are normal Prolog predicates. The dict infrastructure
provides a more convenient syntax for representing the head of such
predicates without worrying about the argument calling conventions.
The code below defines a function multiply(_T_i_m_e_s) on a point that
creates a new point by multiplying both coordinates. and len to
compute the length from the origin. The . and := operators are used
to abstract the location of the predicate arguments. It is allowed to
define multiple a function with multiple clauses, providing overloading
and non-determinism.
________________________________________________________________________| |
|:- module(point, []). |
| |
|M.multiply(F) := point{x:X, y:Y} :- |
| X is M.x*F, |
| Y is M.y*F. |
| |
|M.len() := Len :- |
||_______Len_is_sqrt(M.x**2_+_M.y**2).__________________________________ ||
After these definitions, we can evaluate the following functions:
________________________________________________________________________| |
|?- X = point{x:1, y:2}.multiply(2). |
|X = point{x:2, y:4}. |
| |
|?- X = point{x:1, y:2}.multiply(2).len(). |
|X|=_4.47213595499958.__________________________________________________ | |
55..44..11..22 PPrreeddeeffiinneedd ffuunnccttiioonnss oonn ddiiccttss
Dicts currently define the following reserved functions:
ggeett((_?_K_e_y))
Same as _D_i_c_t._K_e_y, but maps to get_dict/3 instead of get_dict_ex/3.
This implies that the function evaluation fails silently if _K_e_y
does not appear in _D_i_c_t. See also :</2, which can be used to test
for existence and unify multiple key values from a dict. For
example:
____________________________________________________________________| |
| ?- write(t{a:x}.get(a)). |
| x |
| ?- write(t{a:x}.get(b)). |
||false.____________________________________________________________ ||
ppuutt((_+_N_e_w))
Evaluates to a new dict where the key-values in _N_e_w replace or
extend the key-values in the original dict. See put_dict/3.
ppuutt((_+_K_e_y_P_a_t_h_, _+_V_a_l_u_e))
Evaluates to a new dict where the _K_e_y_P_a_t_h-_V_a_l_u_e replaces or extends
the key-values in the original dict. _K_e_y_P_a_t_h is either a key
or a term _K_e_y_P_a_t_h/_K_e_y, replacing the value associated with _K_e_y
in a sub-dict of the dict on which the function operates. See
put_dict/4. Below are some examples:
____________________________________________________________________| |
| ?- A = _{}.put(a, 1). |
| A = _G7359{a:1}. |
| |
| ?- A = _{a:1}.put(a, 2). |
| A = _G7377{a:2}. |
| |
| ?- A = _{a:1}.put(b/c, 2). |
| A = _G1395{a:1, b:_G1584{c:2}}. |
| |
| ?- A = _{a:_{b:1}}.put(a/b, 2). |
| A = _G1429{a:_G1425{b:2}}. |
| |
| ?- A = _{a:1}.put(a/b, 2). |
||A_=__G1395{a:_G1578{b:2}}.________________________________________ ||
55..44..22 PPrreeddiiccaatteess ffoorr mmaannaaggiinngg ddiiccttss
This section documents the predicates that are defined on dicts. We
use the naming and argument conventions of the traditional assoc.
iiss__ddiicctt((_@_T_e_r_m))
True if _T_e_r_m is a dict. This is the same as is_dict(Term,_).
iiss__ddiicctt((_@_T_e_r_m_, _-_T_a_g))
True if _T_e_r_m is a dict of _T_a_g.
ggeett__ddiicctt((_?_K_e_y_, _+_D_i_c_t_, _-_V_a_l_u_e))
Unify the value associated with _K_e_y in dict with _V_a_l_u_e. If _K_e_y
is unbound, all associations in _D_i_c_t are returned on backtracking.
The order in which the associations are returned is undefined.
This predicate is normally accessed using the functional notation
Dict.Key. See section ????.
Fails silently if Key does not appear in Dict. This is different
from the behavior of the functional `.`-notation, which throws an
existence error in that case.
ggeett__ddiicctt((_+_K_e_y_, _+_D_i_c_t_, _-_V_a_l_u_e_, _-_N_e_w_D_i_c_t_, _+_N_e_w_V_a_l_u_e)) _[_s_e_m_i_d_e_t_]
Create a new dict after updating the value for _K_e_y. Fails if _V_a_l_u_e
does not unify with the current value associated with _K_e_y. _D_i_c_t is
either a dict or a list the can be converted into a dict.
Has the behavior as if defined in the following way:
____________________________________________________________________| |
| get_dict(Key, Dict, Value, NewDict, NewValue) :- |
| get_dict(Key, Dict, Value), |
||________put_dict(Key,_Dict,_NewValue,_NewDict).___________________ ||
ddiicctt__ccrreeaattee((_-_D_i_c_t_, _+_T_a_g_, _+_D_a_t_a))
Create a dict in _T_a_g from _D_a_t_a. _D_a_t_a is a list of attribute-value
pairs using the syntax Key:Value, Key=Value, Key-Value or
Key(Value). An exception is raised if _D_a_t_a is not a proper list,
one of the elements is not of the shape above, a key is neither an
atom nor a small integer or there is a duplicate key.
ddiicctt__ppaaiirrss((_?_D_i_c_t_, _?_T_a_g_, _?_P_a_i_r_s))
Bi-directional mapping between a dict and an ordered list of pairs
(see section ????).
ppuutt__ddiicctt((_+_N_e_w_, _+_D_i_c_t_I_n_, _-_D_i_c_t_O_u_t))
_D_i_c_t_O_u_t is a new dict created by replacing or adding key-value
pairs from _N_e_w to _D_i_c_t. _N_e_w is either a dict or a valid input
for dict_create/3. This predicate is normally accessed using the
functional notation. Below are some examples:
____________________________________________________________________| |
| ?- A = point{x:1, y:2}.put(_{x:3}). |
| A = point{x:3, y:2}. |
| |
| ?- A = point{x:1, y:2}.put([x=3]). |
| A = point{x:3, y:2}. |
| |
| ?- A = point{x:1, y:2}.put([x=3,z=0]). |
||A_=_point{x:3,_y:2,_z:0}._________________________________________ ||
ppuutt__ddiicctt((_+_K_e_y_, _+_D_i_c_t_I_n_, _+_V_a_l_u_e_, _-_D_i_c_t_O_u_t))
_D_i_c_t_O_u_t is a new dict created by replacing or adding _K_e_y-_V_a_l_u_e to
_D_i_c_t_I_n. For example:
____________________________________________________________________| |
| ?- A = point{x:1, y:2}.put(x, 3). |
||A_=_point{x:3,_y:2}.______________________________________________ ||
This predicate can also be accessed by using the functional
notation, in which case Key can also be a *path* of keys. For
example:
____________________________________________________________________| |
| ?- Dict = _{}.put(a/b, c). |
||Dict_=__6096{a:_6200{b:c}}._______________________________________ ||
ddeell__ddiicctt((_+_K_e_y_, _+_D_i_c_t_I_n_, _?_V_a_l_u_e_, _-_D_i_c_t_O_u_t))
True when _K_e_y-_V_a_l_u_e is in _D_i_c_t_I_n and _D_i_c_t_O_u_t contains all
associations of _D_i_c_t_I_n except for _K_e_y.
_+_S_e_l_e_c_t :< _+_F_r_o_m _[_s_e_m_i_d_e_t_]
True when _S_e_l_e_c_t is a `sub dict' of _F_r_o_m: the tages must unify
and all keys in _S_e_l_e_c_t must appear with unifying values in _F_r_o_m.
_F_r_o_m may contain keys that are not in _S_e_l_e_c_t. This operation
is frequently used to _m_a_t_c_h a dict and at the same time extract
relevant values from it. For example:
____________________________________________________________________| |
| plot(Dict, On) :- |
| _{x:X, y:Y, z:Z} :< Dict, !, |
| plot_xyz(X, Y, Z, On). |
| plot(Dict, On) :- |
| _{x:X, y:Y} :< Dict, !, |
||________plot_xy(X,_Y,_On).________________________________________ ||
The goal Select :< From is equivalent to select_dict(_S_e_l_e_c_t_, _F_r_o_m_,
__).
sseelleecctt__ddiicctt((_+_S_e_l_e_c_t_, _+_F_r_o_m_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
True when the tags of _S_e_l_e_c_t and _F_r_o_m have been unified, all keys
in _S_e_l_e_c_t appear in _F_r_o_m and the corresponding values have been
unified. The key-value pairs of _F_r_o_m that do not appear in _S_e_l_e_c_t
are used to form an anonymous dict, which us unified with _R_e_s_t.
For example:
____________________________________________________________________| |
| ?- select_dict(P{x:0, y:Y}, point{x:0, y:1, z:2}, R). |
| P = point, |
| Y = 1, |
||R_=__G1705{z:2}.__________________________________________________ ||
See also select_dict/2 to ignore _R_e_s_t and >:</2 for a symmetric
partial unification of two dicts.
_+_D_i_c_t_1 >:< _+_D_i_c_t_2
This operator specifies a _p_a_r_t_i_a_l _u_n_i_f_i_c_a_t_i_o_n between _D_i_c_t_1 and
_D_i_c_t_2. It is true when the tags and the values associated with all
_c_o_m_m_o_n keys have been unified. The values associated to keys that
do not appear in the other dict are ignored. Partial unification
is symmetric. For example, given a list of dicts, find dicts that
represent a point with X equal to zero:
____________________________________________________________________| |
| member(Dict, List), |
||____Dict_>:<_point{x:0,_y:Y}._____________________________________ ||
See also :</2 and select_dict/3.
55..44..22..11 DDeessttrruuccttiivvee aassssiiggnnmmeenntt iinn ddiiccttss
This section describes the destructive update operations defined on
dicts. These actions can only _u_p_d_a_t_e keys and not add or remove
keys. If the requested key does not exist the predicate raises
existence_error(_k_e_y_, _K_e_y_, _D_i_c_t). Note the additional argument.
Destructive assignment is a non-logical operation and should be used
with care because the system may copy or share identical Prolog terms
at any time. Some of this behaviour can be avoided by adding an
additional unbound value to the dict. This prevents unwanted sharing
and ensures that copy_term/2 actually copies the dict. This pitfall is
demonstrated in the example below:
________________________________________________________________________| |
|?- A = a{a:1}, copy_term(A,B), b_set_dict(a, A, 2). |
|A = B, B = a{a:2}. |
| |
|?- A = a{a:1,dummy:_}, copy_term(A,B), b_set_dict(a, A, 2). |
|A = a{a:2, dummy:_G3195}, |
|B|=_a{a:1,_dummy:_G3391}.______________________________________________ | |
bb__sseett__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to
_V_a_l_u_e. The update is trailed and undone on backtracking. This
predicate raises an existence error if _K_e_y does not appear in _D_i_c_t.
The update semantics are equivalent to setarg/3 and b_setval/2.
nnbb__sseett__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to a
copy of _V_a_l_u_e. The update is _n_o_t undone on backtracking. This
predicate raises an existence error if _K_e_y does not appear in _D_i_c_t.
The update semantics are equivalent to nb_setarg/3 and nb_setval/2.
nnbb__lliinnkk__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to
_V_a_l_u_e. The update is _n_o_t undone on backtracking. This predicate
raises an existence error if _K_e_y does not appear in _D_i_c_t. The
update semantics are equivalent to nb_linkarg/3 and nb_linkval/2.
Use with extreme care and consult the documentation of nb_linkval/2
before use.
55..44..33 WWhheenn ttoo uussee ddiiccttss??
Dicts are a new type in the Prolog world. They compete with several
other types and libraries. In the list below we have a closer look
at these relations. We will see that dicts are first of all a good
replacement for compound terms with a high or not clearly fixed arity,
library record and option processing.
CCoommppoouunndd tteerrmmss Compound terms with positional arguments form the
traditional way to package data in Prolog. This representation is
well understood, fast and compound terms are stored efficiently.
Compound terms are still the representation of choice, provided
that the number of arguments is low and fixed or compactness or
performance are of utmost importance.
A good example of a compound term is the representation of RDF
triples using the term rdf(_S_u_b_j_e_c_t_, _P_r_e_d_i_c_a_t_e_, _O_b_j_e_c_t) because
RDF triples are defined to have precisely these three arguments
and they are always referred to in this order. An application
processing information about persons should probably use dicts
because the information that is related to a person is not so
fixed. Typically we see first and last name. But there may
also be title, middle name, gender, date of birth, etc. The
number of arguments becomes unmanagable when using a compound term,
while adding or removing an argument leads to many changes in the
program.
LLiibbrraarryy record Using library record relieves the maintenance issues
associated with using compound terms significantly. The library
generates access and modification predicates for each field in a
compound term from a declaration. The library provides sound
access to compound terms with many arguments. One of its problems
is the verbose syntax needed to access or modify fields which
results from long names for the generated predicates and the
restriction that each field needs to be extracted with a separate
goal. Consider the example below, where the first uses library
record and the second uses dicts.
____________________________________________________________________| |
| ..., |
| person_first_name(P, FirstName), |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| |
| ..., |
||____format('Dear_~w_~w,~n~n',_[Dict.first_name,_Dict.last_name])._ ||
Records have a fixed number of arguments and (non-)existence of
an argument must be represented using a value that is outside the
normal domain. This lead to unnatural code. For example, suppose
our person also has a title. If we know the first name we use this
and else we use the title. The code samples below illustrate this.
____________________________________________________________________| |
| salutation(P) :- |
| person_first_name(P, FirstName), nonvar(FirstName), !, |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| salutation(P) :- |
| person_title(P, Title), nonvar(Title), !, |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [Title, LastName]). |
| |
| salutation(P) :- |
| _{first_name:FirstName, last_name:LastName} :< P, !, |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| salutation(P) :- |
| _{title:Title, last_name:LastName} :< P, !, |
||____format('Dear_~w_~w,~n~n',_[Title,_LastName])._________________ ||
LLiibbrraarryy assoc This library implements a balanced binary tree. Dicts
can replace the use of this library if the association is fairly
static (i.e., there are few update operations), all keys are
atoms or (small) integers and the code does not rely on ordered
operations.
LLiibbrraarryy option Option lists are introduced by ISO Prolog, for example
for read_term/3, open/4, etc. The option library provides
operations to extract options, merge options lists, etc. Dicts are
well suited to replace option lists because they are cheaper, can
be processed faster and have a more natural syntax.
LLiibbrraarryy pairs This library is commonly used to process large name-
value associations. In many cases this concerns short-lived
datastructures that result from findall/3, maplist/3 and similar
list processing predicates. Dicts may play a role if frequent
random key lookups are needed on the resulting association. For
example, the skeleton `create a pairs list', `use list_to_assoc/2
to create an assoc', followed by frequent usage of get_assoc/3 to
extract key values can be replaced using dict_pairs/3and the dict
access functions. Using dicts in this scenario is more efficient
and provides a more pleasant access syntax.
55..44..44 AA mmoottiivvaattiioonn ffoorr ddiiccttss aass pprriimmaarryy cciittiizzeennss
Dicts, or key-value associations, are a common data structure. A good
old example are _p_r_o_p_e_r_t_y _l_i_s_t_s as found in Lisp, while a good recent
example is formed by JavaScript _o_b_j_e_c_t_s. Traditional Prolog does not
offer native property lists. As a result, people are using a wide
range of data structures for key-value associations:
o Using compound terms and positional arguments, e.g., point(1,2).
o Using compound terms with library record, which generates
access predicates for a term using positional arguments from a
description.
o Using lists of terms Name=Value, Name-Value, Name:Value or
Name(Value).
o Using library assoc which represents the associations as a balanced
binary tree.
This situation is unfortunate. Each of these have their advantages
and disadvantages. E.g., compound terms are compact and fast, but
inflexible and using positional arguments quickly breaks down. Library
record fixes this, but the syntax is considered hard to use. Lists are
flexible, but expensive and the alternative key-value representations
that are used complicate the matter even more. Library assoc
allows for efficient manipulation of changing associations, but the
syntactical representation of an assoc is complex, which makes them
unsuitable for e.g., _o_p_t_i_o_n_s _l_i_s_t_s as seen in predicates such as
open/4.
55..44..55 IImmpplleemmeennttaattiioonn nnootteess aabboouutt ddiiccttss
Although dicts are designed as an abstract data type and we
deliberately reserve the possibility to change the representation and
even use multiple representations, this section describes the current
implementation.
Dicts are currently represented as a compound term using the functor
`dict`. The first argument is the tag. The remaining arguments create
an array of sorted key-value pairs. This representation is compact and
guarantees good locality. Lookup is order log(N), while adding values,
deleting values and merging with other dicts has order N. The main
disadvantage is that changing values in large dicts is costly, both in
terms of memory and time.
Future versions may share keys in a separate structure or use a binary
trees to allow for cheaper updates. One of the issues is that the
representation must either be kept cannonical or unification must be
extended to compensate for alternate representations.
55..55 IInntteeggrraattiioonn ooff ssttrriinnggss aanndd ddiiccttss iinn tthhee lliibbrraarriieess
While lacking proper string support and dicts when designed, many
predicates and libraries use interfaces that must be classified as
suboptimal. Changing these interfaces is likely to break much more
code than the changes described in this chapter. This section
discusses some of these issues. Roughly, there are two cases.
There where key-value associations or text is required as _i_n_p_u_t, we
can facilitate the new features by overloading the accepted types.
Interfaces that produce text or key-value associations as their _o_u_t_p_u_t
however must make a choice. We plan to resolve that using either
options that specify the desired output or provide an alternative
library.
55..55..11 DDiiccttss aanndd ooppttiioonn pprroocceessssiinngg
System predicates and predicates based on library options process dicts
as an alternative to traditional option lists.
55..55..22 DDiiccttss iinn ccoorree ddaattaa ssttrruuccttuurreess
Some predicates now produce structured data using compound terms and
access predicates. We consider migrating these to dicts. Below is a
tentative list of candidates. Portable code should use the provided
access predicates and not rely on the term representation.
o Stream position terms
o Date and time records
55..55..33 DDiiccttss,, ssttrriinnggss aanndd XXMMLL
The XML representation could benefit significantly from the new
features. In due time we plan to provide an set of alternative
predicates and options to existing predicates that can be used to
exploit the new types. We propose the following changes to the data
representation:
o The attribute list of the element(_N_a_m_e_, _A_t_t_r_i_b_u_t_e_s_, _C_o_n_t_e_n_t) will
become a dict.
o Attribute values will remain atoms
o CDATA in element content will be represented as strings
55..55..44 DDiiccttss,, ssttrriinnggss aanndd JJSSOONN
The JSON representation could benefit significantly from the new
features. In due time we plan to provide an set of alternative
predicates and options to existing predicates that can be used to
exploit the new types. We propose the following changes to the data
representation:
o Instead of using json(_K_e_y_V_a_l_u_e_L_i_s_t), the new interface will
translate JSON objects to a dict. The type of this dict will be
json.
o String values in JSON will be mapped to strings.
o The values true, false and null will be represented as atoms.
55..55..55 DDiiccttss,, ssttrriinnggss aanndd HHTTTTPP
The HTTP library and related data structures would profit from
exploiting dicts. Below is a list of data structures that might be
affected by future changes. Code can be made more robust by using the
option library functions for extracting values from these structures.
o The HTTP request structure
o The HTTP parameter interface
o URI components
o Attributes to HTML elements
55..66 RReemmaaiinniinngg iissssuueess
The changes and extensions described in this chapter resolve a many
limitations of the Prolog language we have encountered. Still, there
are remaining issues for which we seek solutions in the future.
TTeexxtt rreepprreesseennttaattiioonn Although strings resolve this issue for many
applications, we are still faced with the representation of text as
lists of characters which we need for parsing using DCGs. The
ISO standard provides two representations, a list of _c_h_a_r_a_c_t_e_r _c_o_d_e_s
(`codes' for short) and a list of _o_n_e_-_c_h_a_r_a_c_t_e_r _a_t_o_m_s (`chars' for
short). There are two sets of predicates, named *_code(s) and
*_char(s) that provide the same functionality (e.g., atom_codes/2 and
atom_chars/2) using their own representation of characters. Codes
can be used in arithmetic expressions, while chars are more readable.
Neither can unambiguously be interpreted as a representation for text
because codes can be interpreted as a list of integers and chars as a
list of atoms.
We have not found a convincing way out. One of the options could
be the introduction of a `char' type. This type can be allowed in
arithmetic and with the 0'<char> syntax we have a concrete syntax for
it.
AArrrraayyss Although lists are generally a much cleaner alternative for
Prolog, real arrays with direct access to elements can be useful for
particular tasks. The problem of integrating arrays is twofold. First
of all, there is no good one-size-fits-all data representation for
arrays. Many tasks that involve arrays require _m_u_t_a_b_l_e arrays, while
Prolog data is immutable by design. Second, standard Prolog has no
good syntax support for arrays. SWI-Prolog version 7 has `block
operators' (see section ????) which can resolve the syntactic issues.
Block operators have been adopted by YAP.
LLaammbbddaa eexxpprreessssiioonnss Although many alternatives have been proposed, we
still feel uneasy with them.
LLooooppss Many people have explored routes to avoid the need for recursion
in Prolog for simple iterations over data. ECLiPSe have proposed
_l_o_g_i_c_a_l _l_o_o_p_s [??], while B-Prolog introduced _d_e_c_l_a_r_a_t_i_v_e _l_o_o_p_s and _l_i_s_t
_c_o_m_p_r_e_h_e_n_s_i_o_n. The above mentioned lambda expressions, combined with
maplist/2 can achieve similar results.
CChhaapptteerr 66.. MMOODDUULLEESS
A Prolog module is a collection of predicates which defines a public
interface by means of a set of provided predicates and operators.
Prolog modules are defined by an ISO standard. Unfortunately, the
standard is considered a failure and, as far as we are aware, not
implemented by any concrete Prolog implementation. The SWI-Prolog
module system syntax is derived from the Quintus Prolog module system.
The Quintus module system has been the starting point for the module
systems of a number of mainstream Prolog systems, such as SICStus,
Ciao and YAP. The underlying primitives of the SWI-Prolog module system
differ from the mentioned systems. These primitives allow for multiple
modules in a file, hierarchical modules, emulation of other modules
interfaces, etc.
This chapter motivates and describes the SWI-Prolog module system.
Novices can start using the module system after reading section ????
and section ????. The primitives defined in these sections suffice for
basic usage until one needs to export predicates that call or manage
other predicates dynamically (e.g., use call/1, assert/1, etc.). Such
predicates are called _m_e_t_a _p_r_e_d_i_c_a_t_e_s and are discussed in section ????.
Section ???? to section ???? describe more advanced issues. Starting with
section ????, we discuss more low-level aspects of the SWI-Prolog module
system that are used to implement the visible module system, and can be
used to build other code reuse mechanisms.
66..11 WWhhyy UUssee MMoodduulleess??
In classic Prolog systems, all predicates are organised in a single
namespace and any predicate can call any predicate. Because each
predicate in a file can be called from anywhere in the program,
it becomes very hard to find the dependencies and enhance the
implementation of a predicate without risking to break the overall
application. This is true for any language, but even worse for Prolog
due to its frequent need for `helper predicates'.
A Prolog module encapsulates a set of predicates and defines an
_i_n_t_e_r_f_a_c_e. Modules can import other modules, which makes the
dependencies explicit. Given explicit dependencies and a well-defined
interface, it becomes much easier to change the internal organisation
of a module without breaking the overall application.
Explicit dependencies can also be used by the development environment.
The SWI-Prolog library prolog_xref can be used to analyse completeness
and consistency of modules. This library is used by the built-in
editor PceEmacs for syntax highlighting, jump-to-definition, etc.
66..22 DDeeffiinniinngg aa MMoodduullee
Modules are normally created by loading a _m_o_d_u_l_e _f_i_l_e. A module file
is a file holding a module/2 directive as its first term. The module/2
directive declares the name and the public (i.e., externally visible)
predicates of the module. The rest of the file is loaded into the
module. Below is an example of a module file, defining reverse/2 and
hiding the helper predicate rev/3. A module can use all built-in
predicates and, by default, cannot redefine system predicates.
________________________________________________________________________| |
|:- module(reverse, [reverse/2]). |
| |
|reverse(List1, List2) :- |
| rev(List1, [], List2). |
| |
|rev([], List, List). |
|rev([Head|List1], List2, List3) :- |
||_______rev(List1,_[Head|List2],_List3)._______________________________ ||
The module is named reverse. Typically, the name of a module is
the same as the name of the file by which it is defined without the
filename extension, but this naming is not enforced. Modules are
organised in a single and flat namespace and therefore module names
must be chosen with some care to avoid conflicts. As we will see,
typical applications of the module system rarely use the name of a
module explicitly in the source text.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t))
This directive can only be used as the first term of a source
file. It declares the file to be a _m_o_d_u_l_e _f_i_l_e, defining a
module named _M_o_d_u_l_e. Note that a module name is an atom. The
module exports the predicates of _P_u_b_l_i_c_L_i_s_t. _P_u_b_l_i_c_L_i_s_t is a
list of predicate indicators (name/arity or name//arity pairs) or
operator declarations using the format op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_, _N_a_m_e).
Operators defined in the export list are available inside the
module as well as to modules importing this module. See also
section ????.
Compatible to Ciao Prolog, if _M_o_d_u_l_e is unbound, it is unified with
the basename without extension of the file being loaded.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t_, _+_D_i_a_l_e_c_t))
Same as module/2. The additional _D_i_a_l_e_c_t argument provides
a list of _l_a_n_g_u_a_g_e _o_p_t_i_o_n_s. Each atom in the list _D_i_a_l_e_c_t
is mapped to a use_module/1 goal as given below. See also
section ????. The third argument is supported for compatibility with
the http://prolog-commons.org/Prolog Commons project.
____________________________________________________________________| |
||:-_use_module(library(dialect/LangOption))._______________________ ||
66..33 IImmppoorrttiinngg PPrreeddiiccaatteess iinnttoo aa MMoodduullee
Predicates can be added to a module by _i_m_p_o_r_t_i_n_g them from another
module. Importing adds predicates to the namespace of a module. An
imported predicate can be called exactly the same as a locally defined
predicate, although its implementation remains part of the module in
which it has been defined.
Importing the predicates from another module is achieved using the
directives use_module/1 or use_module/2. Note that both directives take
_f_i_l_e_n_a_m_e_(_s_) as arguments. That is, modules are imported based on their
filename rather than their module name.
uussee__mmoodduullee((_+_F_i_l_e_s))
Load the file(s) specified with _F_i_l_e_s just like ensure_loaded/1.
The files must all be module files. All exported predicates
from the loaded files are imported into the module from which
this predicate is called. This predicate is equivalent to
ensure_loaded/1, except that it raises an error if _F_i_l_e_s are not
module files.
The imported predicates act as _w_e_a_k _s_y_m_b_o_l_s in the module into
which they are imported. This implies that a local definition of
a predicate overrides (clobbers) the imported definition. If the
flag warn_override_implicit_importis true (default), a warning is
printed. Below is an example of a module that uses library(lists),
but redefines flatten/2, giving it a totally different meaning:
____________________________________________________________________| |
| :- module(shapes, []). |
| :- use_module(library(lists)). |
| |
| flatten(cube, square). |
||flatten(ball,_circle).____________________________________________ ||
Loading the above file prints the following message:
____________________________________________________________________| |
| Warning: /home/janw/Bugs/Import/t.pl:5: |
| Local definition of shapes:flatten/2 |
||________overrides_weak_import_from_lists__________________________ ||
This warning can be avoided by (1) using use_module/2 to only
import the predicates from the lists library that are actually used
in the `shapes' module, (2) using the except([flatten/2]) option
of use_module/2, (3) use :- abolish(flatten/2). before the local
definition or (4) setting warn_override_implicit_import to false.
Globally disabling this warning is only recommended if overriding
imported predicates is common as a result of design choices or the
program is ported from a system that silently overrides imported
predicates.
Note that it is always an error to import two modules with
use_module/1 that export the same predicate. Such conflicts must
be resolved with use_module/2 as described above.
uussee__mmoodduullee((_+_F_i_l_e_, _+_I_m_p_o_r_t_L_i_s_t))
Load _F_i_l_e, which must be a module file, and import the predicates
as specified by _I_m_p_o_r_t_L_i_s_t. _I_m_p_o_r_t_L_i_s_t is a list of predicate
indicators specifying the predicates that will be imported
from the loaded module. _I_m_p_o_r_t_L_i_s_t also allows for renaming
or import-everything-except. See also the import option of
load_files/2. The first example below loads member/2 from the
lists library and append/2 under the name list_concat, which is
how this predicate is named in YAP. The second example loads all
exports from library option except for meta_options/3. These
renaming facilities are generally used to deal with portability
issues with as few changes as possible to the actual code. See
also section ???? and section ????.
____________________________________________________________________| |
| :- use_module(library(lists), [ member/2, |
| append/2 as list_concat |
| ]). |
||:-_use_module(library(option),_except([meta_options/3]))._________ ||
In most cases a module is imported because some of its predicates are
being used. However, sometimes a module is imported for other reasons,
e.g., for its declarations. In such cases it is best practice to use
use_module/2 with empty ImportList. This distinguishes an imported
module that is used, although not for its predicates, from a module
that is needlessly imported.
The module/2, use_module/1 and use_module/2 directives are sufficient
to partition a simple Prolog program into modules. The SWI-Prolog
graphical cross-referencing tool gxref/0 can be used to analyse the
dependencies between non-module files and propose module declarations
for each file.
66..44 DDeeffiinniinngg aa mmeettaa--pprreeddiiccaattee
A meta-predicate is a predicate that calls other predicates
dynamically, modifies a predicate, or reasons about properties of
a predicate. Such predicates use either a compound term or a
_p_r_e_d_i_c_a_t_e _i_n_d_i_c_a_t_o_r to describe the predicate they address, e.g.,
assert(name(jan)) or abolish(name/1). With modules, this simple
schema no longer works as each module defines its own mapping from
name+arity to predicate. This is resolved by wrapping the original
description in a term <_m_o_d_u_l_e>:<_t_e_r_m>, e.g., assert(person:name(jan)) or
abolish(person:name/1).
Of course, when calling assert/1 from inside a module, we expect to
assert to a predicate local to this module. In other words, we do
not wish to provide this :/2 wrapper by hand. The meta_predicate/1
directive tells the compiler that certain arguments are terms that will
be used to look up a predicate and thus need to be wrapped (qualified)
with <_m_o_d_u_l_e>:<_t_e_r_m>, unless they are already wrapped.
In the example below, we use this to define maplist/3 inside a
module. The argument `2' in the meta_predicate declaration means that
the argument is module-sensitive and refers to a predicate with an
arity that is two more than the term that is passed in. The compiler
only distinguishes the values 0..9 and :, which denote module-sensitive
arguments, from +, - and ?, which denote _m_o_d_e_s. The values 0..9
are used by the _c_r_o_s_s_-_r_e_f_e_r_e_n_c_e_r and syntax highlighting. Note that
the helper predicate maplist_/3 does not need to be declared as a
meta-predicate because the maplist/3 wrapper already ensures that _G_o_a_l
is qualified as <_m_o_d_u_l_e>:_G_o_a_l. See the description of meta_predicate/1
for details.
________________________________________________________________________| |
|:- module(maplist, [maplist/3]). |
|:- meta_predicate maplist(2, ?, ?). |
| |
|%% maplist(:Goal, +List1, ?List2) |
|% |
|% True if Goal can successfully be applied to all |
|% successive pairs of elements from List1 and List2. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, Goal). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
mmeettaa__pprreeddiiccaattee _+_H_e_a_d_, _._._.
Define the predicates referenced by the comma-separated list _H_e_a_d
as _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. Each argument of each head is a _m_e_t_a _a_r_g_u_m_e_n_t
_s_p_e_c_i_f_i_e_r. Defined specifiers are given below. Only 0..9, : and ^
are interpreted; the mode declarations +, - and ? are ignored.
00....99
The argument is a term that is used to reference a predicate
with N more arguments than the given argument term. For
example: call(0) or maplist(1, +).
:
The argument is module-sensitive, but does not directly refer
to a predicate. For example: consult(:).
-
The argument is not module-sensitive and unbound on entry.
?
The argument is not module-sensitive and the mode is unspeci-
fied.
*
The argument is not module-sensitive and the mode is unspeci-
fied. The specification * is equivalent to ?. It is accepted
for compatibility reasons. The predicate predicate_property/2
reports arguments declared using * with ?.
+
The argument is not module-sensitive and bound (i.e., nonvar)
on entry.
^
This extension is used to denote the possibly ^-annotated goal
of setof/3, bagof/3, aggregate/3 and aggregate/4. It is
processed similar to `0', but leaving the ^/2 intact.
//
The argument is a DCG body. See phrase/3.
Each argument that is module-sensitive (i.e., marked 0..9, : or ^)
is qualified with the context module of the caller if it is not
already qualified. The implementation ensures that the argument is
passed as <_m_o_d_u_l_e>:<_t_e_r_m>, where <_m_o_d_u_l_e> is an atom denoting the
name of a module and <_t_e_r_m> itself is not a :/2 term where the
first argument is an atom. Below is a simple declaration and a
number of queries.
____________________________________________________________________| |
| :- meta_predicate |
| meta(0, +). |
| |
| meta(Module:Term, _Arg) :- |
||________format('Module=~w,_Term_=_~q~n',_[Module,_Term])._________ ||
____________________________________________________________________| |
| ?- meta(test, x). |
| Module=user, Term = test |
| ?- meta(m1:test, x). |
| Module=m1, Term = test |
| ?- m2:meta(test, x). |
| Module=m2, Term = test |
| ?- m1:meta(m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:42:test, x). |
||Module=42,_Term_=_test____________________________________________ ||
The meta_predicate/1 declaration is the portable mechanism
for defining meta-predicates and replaces the old SWI-Prolog
specific mechanism provided by the deprecated predicates
module_transparent/1, context_module/1 and strip_module/3. See also
section ????.
66..55 OOvveerrrruulliinngg MMoodduullee BBoouunnddaarriieess
The module system described so far is sufficient to distribute programs
over multiple modules. There are, however, cases in which we would
like to be able to overrule this schema and explicitly call a predicate
in some module or assert explicitly into some module. Calling in
a particular module is useful for debugging from the user's top
level or to access multiple implementations of the same interface
that reside in multiple modules. Accessing the same interface from
multiple modules cannot be achieved using importing because importing a
predicate with the same name and arity from two modules results in a
name conflict. Asserting in a different module can be used to create
models dynamically in a new module. See section ????.
Direct addressing of modules is achieved using a :/2 explicitly in a
program and relies on the module qualification mechanism described in
section ????. Here are a few examples:
________________________________________________________________________| |
|?- assert(world:done). % asserts done/0 into module world |
|?- world:asserta(done). % the same |
|?-|world:done.___________%_calls_done/0_in_module_world________________ | |
Note that the second example is the same due to the Prolog flag
colon_sets_calling_context. The system predicate asserta/1 is called
in the module world, which is possible because system predicates are
_v_i_s_i_b_l_e in all modules. At the same time, the _c_a_l_l_i_n_g _c_o_n_t_e_x_t is
set to world. Because meta arguments are qualified with the calling
context, the resulting call is the same as the first example.
66..55..11 EExxpplliicciitt mmaanniippuullaattiioonn ooff tthhee ccaalllliinngg ccoonntteexxtt
Quintus' derived module systems have no means to separate the
lookup module (for finding predicates) from the calling context (for
qualifying meta arguments). Some other Prolog implementations (e.g.,
ECLiPSe and IF/Prolog) distinguish these operations, using @/2 for
setting the calling context of a goal. This is provided by SWI-Prolog,
currently mainly to support compatibility layers.
@@((_:_G_o_a_l_, _+_M_o_d_u_l_e))
Execute _G_o_a_l, setting the calling context to _M_o_d_u_l_e. Setting
the calling context affects meta-predicates, for which meta
arguments are qualified with _M_o_d_u_l_e and transparent predicates
(see module_transparent/1). It has no implications for other
predicates.
For example, the code asserta(done)@world is the same as
asserta(world:done). Unlike in world:asserta(done), asserta/1 is
resolved in the current module rather than the module world. This
makes no difference for system predicates, but usually does make a
difference for user predicates.
Not that SWI-Prolog does not define @ as an operator. Some systems
define this construct using op(900, xfx, @).
66..66 IInntteerraaccttiinngg wwiitthh mmoodduulleess ffrroomm tthhee ttoopp lleevveell
Debugging often requires interaction with predicates that reside in
modules: running them, setting spy points on them, etc. This can
be achieved using the <_m_o_d_u_l_e>:<_t_e_r_m> construct explicitly as described
above. In SWI-Prolog, you may also wish to omit the module
qualification. Setting a spy point (spy/1) on a plain predicate sets
a spy point on any predicate with that name in any module. Editing
(edit/1) or calling an unqualified predicate invokes the DWIM (Do
What I Mean) mechanism, which generally suggests the correct qualified
query.
Mainly for compatibility, we provide module/1 to switch the module with
which the interactive top level interacts:
mmoodduullee((_+_M_o_d_u_l_e))
The call module(_M_o_d_u_l_e) may be used to switch the default working
module for the interactive top level (see prolog/0). This may be
used when debugging a module. The example below lists the clauses
of file_of_label/2 in the module tex.
____________________________________________________________________| |
| 1 ?- module(tex). |
| true. |
| tex: 2 ?- listing(file_of_label/2). |
||..._______________________________________________________________ ||
66..77 CCoommppoossiinngg mmoodduulleess ffrroomm ootthheerr mmoodduulleess
The predicates in this section are intended to create new modules
from the content of other modules. Below is an example to define
a _c_o_m_p_o_s_i_t_e module. The example exports all public predicates of
module_1, module_2 and module_3, pred/1 from module_4, all predicates
from module_5 except do_not_use/1 and all predicates from module_6 while
renaming pred/1 into mypred/1.
________________________________________________________________________| |
|:- module(my_composite, []). |
|:- reexport([ module_1, |
| module_2, |
| module_3 |
| ]). |
|:- reexport(module_4, [ pred/1 ]). |
|:- reexport(module_5, except([do_not_use/1])). |
|:-|reexport(module_6,_except([pred/1_as_mypred]))._____________________ | |
rreeeexxppoorrtt((_+_F_i_l_e_s))
Load and import predicates as use_module/1 and re-export all
imported predicates. The reexport declarations must immediately
follow the module declaration.
rreeeexxppoorrtt((_+_F_i_l_e_, _+_I_m_p_o_r_t))
Import from _F_i_l_e as use_module/2 and re-export the imported
predicates. The reexport declarations must immediately follow the
module declaration.
66..88 OOppeerraattoorrss aanndd mmoodduulleess
Operators (section ????) are local to modules, where the initial
table behaves as if it is copied from the module user (see
section ????). A specific operator can be disabled inside a module
using :- op(0, Type, Name). Inheritance from the public table can be
restored using :- op(-1, Type, Name).
In addition to using the op/3 directive, operators can be declared in
the module/2 directive as shown below. Such operator declarations
are visible inside the module, and importing such a module makes
the operators visible in the target module. Exporting operators is
typically used by modules that implement sub-languages such as chr (see
chapter ????). The example below is copied from the library clpfd.
________________________________________________________________________| |
|:- module(clpfd, |
| [ op(760, yfx, #<==>), |
| op(750, xfy, #==>), |
| op(750, yfx, #<==), |
| op(740, yfx, #\/), |
| ... |
| (#<==>)/2, |
| (#==>)/2, |
| (#<==)/2, |
| (#\/)/2, |
| ... |
||_________]).__________________________________________________________ ||
66..99 DDyynnaammiicc iimmppoorrttiinngg uussiinngg iimmppoorrtt mmoodduulleess
Until now we discussed the public module interface that is, at least
to some extent, portable between Prolog implementations with a module
system that is derived from Quintus Prolog. The remainder of this
chapter describes the underlying mechanisms that can be used to emulate
other module systems or implement other code-reuse mechanisms.
In addition to built-in predicates, imported predicates and locally
defined predicates, SWI-Prolog modules can also call predicates from
its _i_m_p_o_r_t _m_o_d_u_l_e_s. Each module has a (possibly empty) list of import
modules. In the default setup, each new module has a single import
module, which is user for all normal user modules and system for all
system library modules. Module user imports from system where all
built-in predicates reside. These special modules are described in
more detail in section ????.
The list of import modules can be manipulated and queried using the
following predicates, as well as using set_module/1.
iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _-_I_m_p_o_r_t)) _[_n_o_n_d_e_t_]
True if _M_o_d_u_l_e inherits directly from _I_m_p_o_r_t. All normal
modules only import from user, which imports from system. The
predicates add_import_module/3 and delete_import_module/2 can be
used to manipulate the import list. See also default_module/2.
ddeeffaauulltt__mmoodduullee((_+_M_o_d_u_l_e_, _-_D_e_f_a_u_l_t)) _[_m_u_l_t_i_]
True if predicates and operators in _D_e_f_a_u_l_t are visible in _M_o_d_u_l_e.
Modules are returned in the same search order used for predicates
and operators. That is, _D_e_f_a_u_l_t is first unified with _M_o_d_u_l_e,
followed by the depth-first transitive closure of import_module/2.
aadddd__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t_, _+_S_t_a_r_t_O_r_E_n_d))
If _I_m_p_o_r_t is not already an import module for _M_o_d_u_l_e, add it to
this list at the start or end depending on _S_t_a_r_t_O_r_E_n_d. See also
import_module/2 and delete_import_module/2.
ddeelleettee__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t))
Delete _I_m_p_o_r_t from the list of import modules for _M_o_d_u_l_e. Fails
silently if _I_m_p_o_r_t is not in the list.
One usage scenario of import modules is to define a module that is a
copy of another, but where one or more predicates have an alternative
definition.
66..1100 RReesseerrvveedd MMoodduulleess aanndd uussiinngg tthhee ``uusseerr'' mmoodduullee
As mentioned above, SWI-Prolog contains two special modules. The
first one is the module system. This module contains all built-in
predicates. Module system has no import module. The second special
module is the module user. This module forms the initial working space
of the user. Initially it is empty. The import module of module user
is system, making all built-in predicates available.
All other modules import from the module user. This implies they
can use all predicates imported into user without explicitly importing
them. If an application loads all modules from the user module using
use_module/1, one achieves a scoping system similar to the C-language,
where every module can access all exported predicates without any
special precautions.
66..1111 AAnn aalltteerrnnaattiivvee iimmppoorrtt//eexxppoorrtt iinntteerrffaaccee
The use_module/1 predicate from section ???? defines import and export
relations based on the filename from which a module is loaded. If
modules are created differently, such as by asserting predicates into a
new module as described in section ????, this interface cannot be used.
The interface below provides for import/export from modules that are
not created using a module file.
eexxppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Add predicates to the public list of the context module. This
implies the predicate will be imported into another module if this
module is imported with use_module/[1,2]. Note that predicates are
normally exported using the directive module/2. export/1 is meant
to handle export from dynamically created modules.
iimmppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Import predicates _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r into the current context
module. _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r must specify the source module using
the <_m_o_d_u_l_e>:<_p_i>construct. Note that predicates are normally
imported using one of the directives use_module/[1,2]. The
import/1 alternative is meant for handling imports into dynamically
created modules. See also export/1 and export_list/2.
66..1122 DDyynnaammiicc MMoodduulleess
So far, we discussed modules that were created by loading a module
file. These modules have been introduced to facilitate the development
of large applications. The modules are fully defined at load-time of
the application and normally will not change during execution. Having
the notion of a set of predicates as a self-contained world can
be attractive for other purposes as well. For example, assume an
application that can reason about multiple worlds. It is attractive
to store the data of a particular world in a module, so we extract
information from a world simply by invoking goals in this world.
Dynamic modules can easily be created. Any built-in predicate that
tries to locate a predicate in a specific module will create this
module as a side-effect if it did not yet exist. For example:
________________________________________________________________________| |
|?- assert(world_a:consistent), |
||__set_prolog_flag(world_a:unknown,_fail)._____________________________ ||
These calls create a module called `world_a' and make the call
`world_a:consistent' succeed. Undefined predicates will not raise an
exception for this module (see unknown).
Import and export from a dynamically created world can be achieved
using import/1 and export/1 or by specifying the import module as
described in section ????.
________________________________________________________________________| |
|?- world_b:export(solve/2). % exports solve/2 from world_b |
|?-|world_c:import(world_b:solve/2).__%_and_import_it_to_world_c________ | |
66..1133 TTrraannssppaarreenntt pprreeddiiccaatteess:: ddeeffiinniittiioonn aanndd ccoonntteexxtt mmoodduullee
_T_h_e _`_m_o_d_u_l_e_-_t_r_a_n_s_p_a_r_e_n_t_' _m_e_c_h_a_n_i_s_m _i_s _s_t_i_l_l _u_n_d_e_r_l_y_i_n_g _t_h_e _a_c_t_u_a_l
_i_m_p_l_e_m_e_n_t_a_t_i_o_n_. _D_i_r_e_c_t _u_s_a_g_e _b_y _p_r_o_g_r_a_m_m_e_r_s _i_s _d_e_p_r_e_c_a_t_e_d_. _P_l_e_a_s_e _u_s_e
meta_predicate/1 _t_o _d_e_a_l _w_i_t_h _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s_.
The qualification of module-sensitive arguments described in section ????
is realised using _t_r_a_n_s_p_a_r_e_n_t predicates. It is now deprecated
to use this mechanism directly. However, studying the underlying
mechanism helps to understand SWI-Prolog's modules. In some
respect, the transparent mechanism is more powerful than meta-predicate
declarations.
Each predicate of the program is assigned a module, called its
_d_e_f_i_n_i_t_i_o_n _m_o_d_u_l_e. The definition module of a predicate is always the
module in which the predicate was originally defined. Each active goal
in the Prolog system has a _c_o_n_t_e_x_t _m_o_d_u_l_e assigned to it.
The context module is used to find predicates for a Prolog term. By
default, the context module is the definition module of the predicate
running the goal. For transparent predicates, however, this is the
context module of the goal inherited from the parent goal. Below,
we implement maplist/3 using the transparent mechanism. The code of
maplist/3 and maplist_/3 is the same as in section ????, but now we must
declare both the main predicate and the helper as transparent to avoid
changing the context module when calling the helper.
________________________________________________________________________| |
|:- module(maplist, maplist/3). |
| |
|:- module_transparent |
| maplist/3, |
| maplist_/3. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, G). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
Note that _a_n_y call that translates terms into predicates is
subject to the transparent mechanism, not just the terms passed
to module-sensitive arguments. For example, the module below
counts the number of unique atoms returned as bindings for a
variable. It works as expected. If we use the directive
:- module_transparent count_atom_results/3. instead, atom_result/2 is
called wrongly in the module _c_a_l_l_i_n_g count_atom_results/3. This can
be solved using strip_module/3 to create a qualified goal and a
non-transparent helper predicate that is defined in the same module.
________________________________________________________________________| |
|:- module(count_atom_results, |
| [ count_atom_results/3 |
| ]). |
|:- meta_predicate count_atom_results(-,0,-). |
| |
|count_atom_results(A, Goal, Count) :- |
| setof(A, atom_result(A, Goal), As), !, |
| length(As, Count). |
|count_atom_results(_, _, 0). |
| |
|atom_result(Var, Goal) :- |
| call(Goal), |
||_______atom(Var)._____________________________________________________ ||
The following predicates support the module-transparent interface:
::-- mmoodduullee__ttrraannssppaarreenntt((_+_P_r_e_d_s))
_P_r_e_d_s is a comma-separated list of name/arity pairs (like
dynamic/1). Each goal associated with a transparent-declared
predicate will inherit the _c_o_n_t_e_x_t _m_o_d_u_l_e from its parent goal.
ccoonntteexxtt__mmoodduullee((_-_M_o_d_u_l_e))
Unify _M_o_d_u_l_e with the context module of the current goal.
context_module/1 itself is, of course, transparent.
ssttrriipp__mmoodduullee((_+_T_e_r_m_, _-_M_o_d_u_l_e_, _-_P_l_a_i_n))
Used in module-transparent predicates or meta-predicates to extract
the referenced module and plain term. If _T_e_r_m is a
module-qualified term, i.e. of the format _M_o_d_u_l_e:_P_l_a_i_n, _M_o_d_u_l_e and
_P_l_a_i_n are unified to these values. Otherwise, _P_l_a_i_n is unified to
_T_e_r_m and _M_o_d_u_l_e to the context module.
66..1144 MMoodduullee pprrooppeerrttiieess
The following predicates can be used to query the module system for
reflexive programming:
ccuurrrreenntt__mmoodduullee((_?_M_o_d_u_l_e)) _[_n_o_n_d_e_t_]
True if _M_o_d_u_l_e is a currently defined module. This predicate
enumerates all modules, whether loaded from a file or created
dynamically. Note that modules cannot be destroyed in the current
version of SWI-Prolog.
mmoodduullee__pprrooppeerrttyy((_?_M_o_d_u_l_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _M_o_d_u_l_e. Defined properties are:
ccllaassss((_-_C_l_a_s_s))
True when _C_l_a_s_s is the class of the module. Defined classes
are
uusseerr
Default for user-defined modules.
ssyysstteemm
Module system and modules from <_h_o_m_e>/boot.
lliibbrraarryy
Other modules from the system directories.
tteemmppoorraarryy
Module is temporary.
tteesstt
Modules that create tests.
ddeevveellooppmmeenntt
Modules that only support the development environment.
ffiillee((_?_F_i_l_e))
True if _M_o_d_u_l_e was loaded from _F_i_l_e.
lliinnee__ccoouunntt((_-_L_i_n_e))
True if _M_o_d_u_l_e was loaded from the N-th line of file.
eexxppoorrttss((_-_L_i_s_t_O_f_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s))
True if _M_o_d_u_l_e exports the given predicates. Predicate
indicators are in canonical form (i.e., always using
name/arity and never the DCG form name//arity). Future
versions may also use the DCG form and include public
operators. See also predicate_property/2.
eexxppoorrtteedd__ooppeerraattoorrss((_-_L_i_s_t_O_f_O_p_e_r_a_t_o_r_s))
True if _M_o_d_u_l_e exports the given operators. Each exported
operator is represented as a term op(_P_r_i_,_A_s_s_o_c_,_N_a_m_e).
pprrooggrraamm__ssiizzee((_-_B_y_t_e_s))
Memory (in bytes) used for storing the predicates of this
module. This figure includes the predicate header and
clauses. Future versions might give a more precise number,
including e.g., the clause index tables.
pprrooggrraamm__ssppaaccee((_-_B_y_t_e_s))
If present, this number limits the program_size. See
set_module/1.
llaasstt__mmooddiiffiieedd__ggeenneerraattiioonn((_-_G_e_n_e_r_a_t_i_o_n))
Integer expression the last database generation where a clause
was added or removed from a predicate that is implemented in
this module. See also predicate_property/2.
sseett__mmoodduullee((_:_P_r_o_p_e_r_t_y))
Modify properties of the module. Currently, the following
properties may be modified:
bbaassee((_+_B_a_s_e))
Set the default import module of the current module to _M_o_d_u_l_e.
Typically, _M_o_d_u_l_e is one of user or system. See section ????.
ccllaassss((_+_C_l_a_s_s))
Set the class of the module. See module_property/2.
pprrooggrraamm__ssppaaccee((_+_B_y_t_e_s))
Maximum amount of memory used to store the predicates defined
inside the module. Raises a permission error if the
current usage is above the requested limit. Setting the
limit to 0 (zero) removes the limit. An attempt to
assert clauses that causes the limit to be exceeded causes
a resource_error(_p_r_o_g_r_a_m___s_p_a_c_e) exception. See assertz/1 and
module_property/2.
66..1155 CCoommppaattiibbiilliittyy ooff tthhee MMoodduullee SSyysstteemm
The SWI-Prolog module system is largely derived from the Quintus
Prolog module system, which is also adopted by SICStus, Ciao and YAP.
Originally, the mechanism for defining meta-predicates in SWI-Prolog
was based on the module_transparent/1 directive and strip_module/3.
Since 5.7.4 it supports the de-facto standard meta_predicate/1
directive for implementing meta-predicates, providing much better
compatibility.
The support for the meta_predicate/1 mechanism, however, is
considerably different. On most systems, the _c_a_l_l_e_r of a
meta-predicate is compiled differently to provide the required
<_m_o_d_u_l_e>:<_t_e_r_m> qualification. This implies that the meta-declaration
must be available to the compiler when compiling code that calls a
meta-predicate. In practice, this implies that other systems pose the
following restrictions on meta-predicates:
o Modules that provide meta-predicates for a module to be compiled
must be loaded explicitly by that module.
o The meta-predicate directives of exported predicates must follow
the module/2 directive immediately.
o After changing a meta-declaration, all modules that _c_a_l_l the
modified predicates need to be recompiled.
In SWI-Prolog, meta-predicates are also _m_o_d_u_l_e_-_t_r_a_n_s_p_a_r_e_n_t, and
qualifying the module-sensitive arguments is done inside the meta-
predicate. As a result, the caller need not be aware that it is
calling a meta-predicate and none of the above restrictions hold for
SWI-Prolog. However, code that aims at portability must obey the above
rules.
Other differences are listed below.
o If a module does not define a predicate, it is searched for in the
_i_m_p_o_r_t _m_o_d_u_l_e_s. By default, the import module of any user-defined
module is the user module. In turn, the user module imports from
the module system that provides all built-in predicates. The
auto-import hierarchy can be changed using add_import_module/3 and
delete_import_module/2.
This mechanism can be used to realise a simple object-oriented
system or a hierarchical module system.
o Operator declarations are local to a module and may be exported.
In Quintus and SICStus all operators are global. YAP and Ciao
also use local operators. SWI-Prolog provides global operator
declarations from within a module by explicitly qualifying the
operator name with the user module. I.e., operators are inherited
from the _i_m_p_o_r_t _m_o_d_u_l_e_s (see above).
____________________________________________________________________| |
||:-_op(precedence,_type,_user:(operatorname))._____________________ ||
CChhaapptteerr 77.. CCOONNSSTTRRAAIINNTT LLOOGGIICC PPRROOGGRRAAMMMMIINNGG
This chapter describes the extensions primarily designed to
support ccoonnssttrraaiinntt llooggiicc pprrooggrraammmmiinngg (CLP), an important declarative
programming paradigm with countless practical applications.
CLP(X) stands for constraint logic programming over the domain X.
Plain Prolog can be regarded as CLP(H), where H stands for
_H_e_r_b_r_a_n_d _t_e_r_m_s. Over this domain, =/2 and dif/2 are the most important
constraints that express, respectively, equality and disequality
of terms. Plain Prolog can thus be regarded as a special case of CLP.
There are dedicated constraint solvers for several important domains:
o CLP(FD) for iinntteeggeerrss (section ????)
o CLP(B) for BBoooolleeaann variables (section ????)
o CLP(Q) for rraattiioonnaall numbers (section ????)
o CLP(R) for ffllooaattiinngg ppooiinntt numbers (section ????).
In addition, CHR (chapter ????) provides a general purpose constraint
handling language to reason over user-defined constraints.
Constraints blend in naturally into Prolog programs, and behave exactly
like plain Prolog predicates in those cases that can also be expressed
without constraints. However, there are two key differences between
constraints and plain Prolog predicates:
o Constraints can _d_e_l_a_y checks until their truth can be safely
decided. This feature can significantly increase the _g_e_n_e_r_a_l_i_t_y of
your programs, and preserves their relational nature.
o Constraints can take into account everything you state about
the entities you reason about, independent of the order in
which you state it, both _b_e_f_o_r_e and also _d_u_r_i_n_g any search for
concrete solutions. Using available information to prune parts
of the search space is called constraint _p_r_o_p_a_g_a_t_i_o_n, and it is
performed automatically by the available constraint solvers for
their respective domains. This feature can significantly increase
the _p_e_r_f_o_r_m_a_n_c_e of your programs.
Due to these two key advantages over plain Prolog, CLP has become an
extremely important declarative programming paradigm in practice.
Among its most important and typical instances is CLP(FD), constraint
logic programming over _i_n_t_e_g_e_r_s. For example, using constraints, you
can state in the most general way that a variable _X is an integer
greater than 0. If, later, _X is bound to a concrete integer, the
constraint solver automatically ensures this. If you in addition
constrain _X to integers less than 3, the constraint solver combines the
existing knowledge to infer that _X is either 1 or 2 (see below). To
obtain concrete values for _X, you can ask the solver to _l_a_b_e_l _X and
produce 1 and 2 on backtracking. See section ????.
________________________________________________________________________| |
|?- use_module(library(clpfd)). |
|... |
|true. |
| |
|?- X #> 0, X #< 3. |
|X in 1..2. |
| |
|?- X #> 0, X #< 3, indomain(X). |
|X = 1 ; |
|X|=_2._________________________________________________________________ | |
Contrast this with plain Prolog, which has no efficient means to deal
with (integer) X> 0 and X < 3. At best it could translate X >0 to
between(_1_, _i_n_f_i_n_i_t_e_, _X) and a similar primitive for X <3. If the
two are combined it has no choice but to generate and test over this
infinite two-dimensional space.
Using constraints therefore makes your program more _d_e_c_l_a_r_a_t_i_v_e in that
it frees you from some procedural aspects and limitations of Prolog.
When working with constraints, keep in mind the following:
o As with plain Prolog, !/0 also destroys the declarative semantics
of constraints. A cut after a goal that is delayed may
prematurely prune the search space, because the truth of delayed
goals is not yet established. There are several ways to avoid
cuts in constraint logic programs, retaining both generality and
determinism of your programs. See for example zcompare/3.
o Term-copying operations (assertz/1, retract/1, findall/3,
copy_term/2, etc.) generally also copy constraints. The
effect varies from ok, silent copying of huge constraint networks
to violations of the internal consistency of constraint networks.
As a rule of thumb, copying terms holding attributes must be
deprecated. If you need to reason about a term that is involved
in constraints, use copy_term/3to obtain the constraints as Prolog
goals, and use these goals for further processing.
All of the mentioned constraint solvers are implemented using the
attributed variables interface described in section ????. These are
lower-level predicates that are mainly intended for library authors,
not for typical Prolog programmers.
77..11 AAttttrriibbuutteedd vvaarriiaabblleess
_A_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s provide a technique for extending the Prolog
unification algorithm [??] by hooking the binding of attributed
variables. There is no consensus in the Prolog community on the
exact definition and interface to attributed variables. The SWI-Prolog
interface is identical to the one realised by Bart Demoen for hProlog
[??]. This interface is simple and available on all Prolog systems
that can run the Leuven CHR system (see chapter ???? and the Leuven
https://dtai.cs.kuleuven.be/CHR/CHR page).
Binding an attributed variable schedules a goal to be executed at
the first possible opportunity. In the current implementation the
hooks are executed immediately after a successful unification of the
clause-head or successful completion of a foreign language (built-in)
predicate. Each attribute is associated to a module, and the hook
(attr_unify_hook/2) is executed in this module. The example below
realises a very simple and incomplete finite domain reasoner:
________________________________________________________________________| |
|:- module(domain, |
| [ domain/2 % Var, ?Domain |
| ]). |
|:- use_module(library(ordsets)). |
| |
|domain(X, Dom) :- |
| var(Dom), !, |
| get_attr(X, domain, Dom). |
|domain(X, List) :- |
| list_to_ord_set(List, Domain), |
| put_attr(Y, domain, Domain), |
| X = Y. |
| |
|% An attributed variable with attribute value Domain has been |
|% assigned the value Y |
| |
|attr_unify_hook(Domain, Y) :- |
| ( get_attr(Y, domain, Dom2) |
| -> ord_intersection(Domain, Dom2, NewDomain), |
| ( NewDomain == [] |
| -> fail |
| ; NewDomain = [Value] |
| -> Y = Value |
| ; put_attr(Y, domain, NewDomain) |
| ) |
| ; var(Y) |
| -> put_attr( Y, domain, Domain ) |
| ; ord_memberchk(Y, Domain) |
| ). |
| |
|% Translate attributes from this module to residual goals |
| |
|attribute_goals(X) --> |
| { get_attr(X, domain, List) }, |
||_______[domain(X,_List)]._____________________________________________ ||
Before explaining the code we give some example queries:
?- domain(X, [a,b]), X = c fail
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). domain(X, [a, c])
The predicate domain/2 fetches (first clause) or assigns (second
clause) the variable a _d_o_m_a_i_n, a set of values the variable can be
unified with. In the second clause, domain/2 first associates the
domain with a fresh variable (Y) and then unifies X to this variable to
deal with the possibility that X already has a domain. The predicate
attr_unify_hook/2 (see below) is a hook called after a variable with a
domain is assigned a value. In the simple case where the variable is
bound to a concrete value, we simply check whether this value is in the
domain. Otherwise we take the intersection of the domains and either
fail if the intersection is empty (first example), assign the value if
there is only one value in the intersection (second example), or assign
the intersection as the new domain of the variable (third example).
The nonterminal attribute_goals//1 is used to translate remaining
attributes to user-readable goals that, when called, reinstate these
attributes or attributes that correspond to equivalent constraints.
Implementing constraint solvers (chapter ????) is the most common, but
not the only use case for attributed variables: If you implement
algorithms that require efficient destructive modifications, then using
attributed variables is often a more convenient and somewhat more
declarative alternative for setarg/3 and related predicates whose
sharing semantics are harder to understand. In particular, attributed
variables make it easy to express graph networks and graph-oriented
algorithms, since each variable can store pointers to further variables
in its attributes. In such cases, the use of attributed variables
should be confined within a module that exposes its functionality via
more declarative interface predicates.
77..11..11 AAttttrriibbuuttee mmaanniippuullaattiioonn pprreeddiiccaatteess
aattttvvaarr((_@_T_e_r_m))
Succeeds if _T_e_r_m is an attributed variable. Note that var/1 also
succeeds on attributed variables. Attributed variables are created
with put_attr/3.
ppuutt__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _+_V_a_l_u_e))
If _V_a_r is a variable or attributed variable, set the value for
the attribute named _M_o_d_u_l_e to _V_a_l_u_e. If an attribute with this
name is already associated with _V_a_r, the old value is replaced.
Backtracking will restore the old value (i.e., an attribute is
a mutable term; see also setarg/3). This predicate raises an
uninstantiation error if _V_a_r is not a variable, and a type error if
_M_o_d_u_l_e is not an atom.
ggeett__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _-_V_a_l_u_e))
Request the current _v_a_l_u_e for the attribute named _M_o_d_u_l_e. If
_V_a_r is not an attributed variable or the named attribute is not
associated to _V_a_r this predicate fails silently. If _M_o_d_u_l_e is not
an atom, a type error is raised.
ddeell__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e))
Delete the named attribute. If _V_a_r loses its last attribute it
is transformed back into a traditional Prolog variable. If _M_o_d_u_l_e
is not an atom, a type error is raised. In all other cases this
predicate succeeds regardless of whether or not the named attribute
is present.
77..11..22 AAttttrriibbuutteedd vvaarriiaabbllee hhooookkss
Attribute names are linked to modules. This means that certain
operations on attributed variables cause _h_o_o_k_s to be called in the
module whose name matches the attribute name.
aattttrr__uunniiffyy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r_V_a_l_u_e))
A hook that must be defined in the module to which an attributed
variable refers. It is called _a_f_t_e_r the attributed variable has
been unified with a non-var term, possibly another attributed
variable. _A_t_t_V_a_l_u_e is the attribute that was associated to the
variable in this module and _V_a_r_V_a_l_u_e is the new value of the
variable. If this predicate fails, the unification fails. If
_V_a_r_V_a_l_u_e is another attributed variable the hook often combines the
two attributes and associates the combined attribute with _V_a_r_V_a_l_u_e
using put_attr/3.
TToo bbee ddoonnee The way in which this hook currently works
makes the implementation of important classes
of constraint solvers impossible or at least
extremely impractical. For increased generality
and convenience, simultaneous unifications as in
[X,Y]=[0,1] should be processed sequentially by the
Prolog engine, or a more general hook should
be provided in the future. See [??] for more
information.
aattttrriibbuuttee__ggooaallss((_+_V_a_r)) //
This nonterminal is the main mechanism in which residual con-
straints are obtained. It is called in every module where it
is defined, and _V_a_r has an attribute. Its argument is that
variable. In each module, attribute_goals//1 must describe a list
of Prolog goals that are declaratively equivalent to the goals that
caused the attributes of that module to be present and in their
current state. It is always possible to do this (since these
attributes stem from such goals), and it is the responsibility of
constraint library authors to provide this mapping without exposing
any library internals. Ideally and typically, remaining relevant
attributes are mapped to _p_u_r_e and potentially simplified Prolog
goals that satisfy both of the following:
o They are declaratively equivalent to the constraints that were
originally posted.
o They use only predicates that are themselves exported and
documented in the modules they stem from.
The latter property ensures that users can reason about residual
goals, and see for themselves whether a constraint library behaves
correctly. It is this property that makes it possible to
thoroughly test constraint solvers by contrasting obtained residual
goals with expected answers.
This nonterminal is used by copy_term/3, on which the Prolog top
level relies to ensure the basic invariant of pure Prolog programs:
The answer is _d_e_c_l_a_r_a_t_i_v_e_l_y _e_q_u_i_v_a_l_e_n_t to the query.
Note that instead of _d_e_f_a_u_l_t_y representations, a Prolog _l_i_s_t is
used to represent residual goals. This simplifies processing and
reasoning about residual goals throughout all programs that need
this functionality.
pprroojjeecctt__aattttrriibbuutteess((_+_Q_u_e_r_y_V_a_r_s_, _+_R_e_s_i_d_u_a_l_V_a_r_s))
A hook that can be defined in each module to project constraints on
newly introduced variables back to the query variables. _Q_u_e_r_y_V_a_r_s
is the list of variables occurring in the query and _R_e_s_i_d_u_a_l_V_a_r_s
is a list of variables that have attributes attached. There
may be variables that occur in both lists. If possible,
project_attributes/2 should change the attributes so that all
constraints are expressed as residual goals that refer only to
_Q_u_e_r_y_V_a_r_s, while other variables are existentially quantified.
aattttrr__ppoorrttrraayy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Called by write_term/2 and friends for each attribute if the
option attributes(_p_o_r_t_r_a_y) is in effect. If the hook succeeds
the attribute is considered printed. Otherwise Module = ... is
printed to indicate the existence of a variable. This predicate is
deprecated because it cannot work with pure interface predicates
like copy_term/3. Use attribute_goals//1instead to map attributes
to residual goals.
77..11..33 OOppeerraattiioonnss oonn tteerrmmss wwiitthh aattttrriibbuutteedd vvaarriiaabblleess
ccooppyy__tteerrmm((_+_T_e_r_m_, _-_C_o_p_y_, _-_G_s))
Create a regular term _C_o_p_y as a copy of _T_e_r_m (without any
attributes), and a list _G_s of goals that represents the attributes.
The goal maplist(call, Gs) recreates the attributes for _C_o_p_y. The
nonterminal attribute_goals//1, as defined in the modules the
attributes stem from, is used to convert attributes to lists of
goals.
This building block is used by the top level to report pending
attributes in a portable and understandable fashion. This
predicate is the preferred way to reason about and communicate
terms with constraints.
The form copy_term(Term, Term, Gs) can be used to reason about the
constraints in which Term is involved.
ccooppyy__tteerrmm__nnaatt((_+_T_e_r_m_, _-_C_o_p_y))
As copy_term/2. Attributes, however, are _n_o_t copied but replaced
by fresh variables.
tteerrmm__aattttvvaarrss((_+_T_e_r_m_, _-_A_t_t_V_a_r_s))
_A_t_t_V_a_r_s is a list of all attributed variables in _T_e_r_m and
its attributes. That is, term_attvars/2 works recursively
through attributes. This predicate is cycle-safe. The goal
term_attvars(_T_e_r_m_, _[_]) in an efficient test that _T_e_r_m has _n_o
attributes; scanning the term is aborted after the first attributed
variable is found.
77..11..44 SSppeecciiaall ppuurrppoossee pprreeddiiccaatteess ffoorr aattttrriibbuutteess
Normal user code should deal with put_attr/3, get_attr/3 and del_attr/2.
The routines in this section fetch or set the entire attribute list of
a variable. Use of these predicates is anticipated to be restricted to
printing and other special purpose operations.
ggeett__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Get all attributes of _V_a_r. _A_t_t_r_i_b_u_t_e_s is a term of the form
att(_M_o_d_u_l_e_, _V_a_l_u_e_, _M_o_r_e_A_t_t_r_i_b_u_t_e_s), where _M_o_r_e_A_t_t_r_i_b_u_t_e_s is [] for
the last attribute.
ppuutt__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Set all attributes of _V_a_r. See get_attrs/2 for a description of
_A_t_t_r_i_b_u_t_e_s.
ddeell__aattttrrss((_+_V_a_r))
If _V_a_r is an attributed variable, delete _a_l_l its attributes. In
all other cases, this predicate succeeds without side-effects.
77..22 CCoorroouuttiinniinngg
Coroutining allows us to delay the execution of Prolog goals until
their truth can be safely decided.
Among the most important coroutining predicates is dif/2, which
expresses _d_i_s_e_q_u_a_l_i_t_y of terms in a sound way. The actual test is
delayed until the terms are sufficiently different, or have become
identical. For example:
________________________________________________________________________| |
|?- dif(X, Y), X = a, Y = b. |
|X = a, |
|Y = b. |
| |
|?- dif(X, Y), X = a, Y = a. |
|false.|________________________________________________________________ | |
There are also lower-level coroutining predicates that are intended as
building blocks for higher-level constraints. For example, we can use
freeze/2 to define a variable that can only be assigned an atom:
________________________________________________________________________| |
|?- freeze(X, atom(X)), X = a. |
|X|=_a._________________________________________________________________ | |
In this case, calling atom/1 earlier causes the whole query to fail:
________________________________________________________________________| |
|?- atom(X), X = a. |
|false.|________________________________________________________________ | |
If available, domain-specific constraints should be used in such cases.
For example, to state that a variable can only assume even integers,
use the CLP(FD) constraint #=/2:
________________________________________________________________________| |
|?- X mod 2 #= 0. |
|X|mod_2#=0.____________________________________________________________ | |
Importantly, domain-specific constraints can apply stronger propagation
by exploiting logical properties of their respective domains. For
example:
________________________________________________________________________| |
|?- X mod 2 #= 0, X in 1..3. |
|X|=_2._________________________________________________________________ | |
Remaining constraints, such as X mod 2#=0 in the example above, are
called _r_e_s_i_d_u_a_l goals. They are said to _f_l_o_u_n_d_e_r, because their truth
is not yet decided. Declaratively, the query is only true if all
residual goals are satisfiable. Use call_residue_vars/2to collect all
variables that are involved in constraints.
ddiiff((_@_A_, _@_B))
The dif/2 predicate is a _c_o_n_s_t_r_a_i_n_t that is true if and only if
_A and _B are different terms. If _A and _B can never unify, dif/2
succeeds deterministically. If _A and _B are identical, it fails
immediately. Finally, if _A and _B can unify, goals are delayed that
prevent _A and _B to become equal. It is this last property that
makes dif/2 a more general and more declarative alternative for
\=/2 and related predicates.
This predicate behaves as if defined by dif(X, Y) :-
when(?=(X,Y), X \== Y). See also ?=/2. The implementation
can deal with cyclic terms.
The dif/2 predicate is realised using attributed variables
associated with the module dif. It is an autoloaded predicate that
is defined in the library dif.
ffrreeeezzee((_+_V_a_r_, _:_G_o_a_l))
Delay the execution of _G_o_a_l until _V_a_r is bound (i.e. is not a
variable or attributed variable). If _V_a_r is bound on entry
freeze/2 is equivalent to call/1. The freeze/2 predicate is
realised using an attributed variable associated with the module
freeze. Use frozen(Var, Goal) to find out whether and which goals
are delayed on _V_a_r.
ffrroozzeenn((_@_V_a_r_, _-_G_o_a_l))
Unify _G_o_a_l with the goal or conjunction of goals delayed on _V_a_r.
If no goals are frozen on _V_a_r, _G_o_a_l is unified to true.
wwhheenn((_@_C_o_n_d_i_t_i_o_n_, _:_G_o_a_l))
Execute _G_o_a_l when _C_o_n_d_i_t_i_o_n becomes true. _C_o_n_d_i_t_i_o_n is one of
?=(_X_, _Y), nonvar(_X), ground(_X), ,(_C_o_n_d_1_, _C_o_n_d_2) or ;(_C_o_n_d_1_, _C_o_n_d_2).
See also freeze/2 and dif/2. The implementation can deal with
cyclic terms in _X and _Y.
The when/2 predicate is realised using attributed variables
associated with the module when. It is defined in the autoload
library when.
ccaallll__rreessiidduuee__vvaarrss((_:_G_o_a_l_, _-_V_a_r_s))
Find residual attributed variables left by _G_o_a_l. This predicate
is intended for reasoning about and debugging programs that
use coroutining or constraints. To see why this predicate
is necessary, consider a predicate that poses contradicting
constraints on a variable, and where that variable does not
appear in any argument of the predicate and hence does not
yield any residual goals on the toplevel when the predicate is
invoked. Such programs should fail, but sometimes succeed because
the constraint solver is too weak to detect the contradiction.
Ideally, delayed goals and constraints are all executed at the
end of the computation. The meta predicate call_residue_vars/2
finds variables that are given attributes or whose attributes are
modified by _G_o_a_l, regardless of whether or not these variables are
reachable from the arguments of _G_o_a_l..
CChhaapptteerr 88.. CCHHRR:: CCOONNSSTTRRAAIINNTT HHAANNDDLLIINNGG RRUULLEESS
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments
by Jan Wielemaker.
The CHR system of SWI-Prolog is the _K_._U_._L_e_u_v_e_n _C_H_R _s_y_s_t_e_m. The runtime
environment is written by Christian Holzbaur and Tom Schrijvers while
the compiler is written by Tom Schrijvers. Both are integrated with
SWI-Prolog and licensed under compatible conditions with permission
from the authors.
The main reference for the K.U.Leuven CHR system is:
o T. Schrijvers, and B. Demoen, _T_h_e _K_._U_._L_e_u_v_e_n _C_H_R _S_y_s_t_e_m_:
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _A_p_p_l_i_c_a_t_i_o_n, First Workshop on Constraint
Handling Rules: Selected Contributions (Fr"uhwirth, T. and Meister,
M., eds.), pp. 1--5, 2004.
On the K.U.Leuven CHR website (http://dtai.cs.kuleuven.be/CHR/) you can
find more related papers, references and example programs.
88..11 IInnttrroodduuccttiioonn
Constraint Handling Rules (CHR) is a committed-choice rule-based
language embedded in Prolog. It is designed for writing constraint
solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like
scheduling, model checking, abduction, and type checking, among many
others.
CHR has previously been implemented in other Prolog systems (SICStus,
Eclipse, Yap), Haskell and Java. This CHR system is based on the
compilation scheme and runtime environment of CHR in SICStus.
In this documentation we restrict ourselves to giving a short overview
of CHR in general and mainly focus on elements specific to this
implementation. For a more thorough review of CHR we refer the reader
to [??]. More background on CHR can be found at [??].
In section ???? we present the syntax of CHR in Prolog and explain
informally its operational semantics. Next, section ???? deals with
practical issues of writing and compiling Prolog programs containing
CHR. Section ???? explains the (currently primitive) CHR debugging
facilities. Section ???? provides a few useful predicates to inspect
the constraint store, and section ???? illustrates CHR with two example
programs. Section ???? describes some compatibility issues with older
versions of this system and SICStus' CHR system. Finally, section ????
concludes with a few practical guidelines for using CHR.
88..22 SSyynnttaaxx aanndd SSeemmaannttiiccss
88..22..11 SSyynnttaaxx ooff CCHHRR rruulleess
________________________________________________________________________________________________________________________________________________|| ||
||rules --> rule, rules ; []. |
| |
|rule --> name, actual_rule, pragma, [atom('.')]. |
| |
|name --> atom, [atom('@')] ; []. |
| |
|actual_rule --> simplification_rule. |
|actual_rule --> propagation_rule. |
|actual_rule --> simpagation_rule. |
| |
|simplification_rule --> head, [atom('<=>')], guard, body. |
|propagation_rule --> head, [atom('==>')], guard, body. |
|simpagation_rule --> head, [atom('\')], head, [atom('<=>')], |
| guard, body. |
| |
|head --> constraints. |
| |
|constraints --> constraint, constraint_id. |
|constraints --> constraint, constraint_id, |
| [atom(',')], constraints. |
| |
|constraint --> compound_term. |
| |
|constraint_id --> []. |
|constraint_id --> [atom('#')], variable. |
|constraint_id --> [atom('#')], [atom('passive')] . |
| |
|guard --> [] ; goal, [atom('|')]. |
| |
|body --> goal. |
| |
|pragma --> []. |
|pragma --> [atom('pragma')], actual_pragmas. |
| |
|actual_pragmas --> actual_pragma. |
|actual_pragmas --> actual_pragma, [atom(',')], actual_pragmas. |
| |
|actual_pragma|-->_[atom('passive(')],_variable,_[atom(')')].___________ | |
Note that the guard of a rule may not contain any goal that binds a
variable in the head of the rule with a non-variable or with another
variable in the head of the rule. It may, however, bind variables
that do not appear in the head of the rule, e.g. an auxiliary variable
introduced in the guard.
88..22..22 SSeemmaannttiiccss
In this subsection the operational semantics of CHR in Prolog are
presented informally. They do not differ essentially from other CHR
systems.
When a constraint is called, it is considered an active constraint and
the system will try to apply the rules to it. Rules are tried and
executed sequentially in the order they are written.
A rule is conceptually tried for an active constraint in the following
way. The active constraint is matched with a constraint in the head of
the rule. If more constraints appear in the head, they are looked for
among the suspended constraints, which are called passive constraints
in this context. If the necessary passive constraints can be found and
all match with the head of the rule and the guard of the rule succeeds,
then the rule is committed and the body of the rule executed. If not
all the necessary passive constraints can be found, or the matching
or the guard fails, then the body is not executed and the process of
trying and executing simply continues with the following rules. If
for a rule there are multiple constraints in the head, the active
constraint will try the rule sequentially multiple times, each time
trying to match with another constraint.
This process ends either when the active constraint disappears, i.e. it
is removed by some rule, or after the last rule has been processed. In
the latter case the active constraint becomes suspended.
A suspended constraint is eligible as a passive constraint for an
active constraint. The other way it may interact again with the rules
is when a variable appearing in the constraint becomes bound to either
a non-variable or another variable involved in one or more constraints.
In that case the constraint is triggered, i.e. it becomes an active
constraint and all the rules are tried.
RRuullee TTyyppeess There are three different kinds of rules, each with its
specific semantics:
o _s_i_m_p_l_i_f_i_c_a_t_i_o_n
The simplification rule removes the constraints in its head and
calls its body.
o _p_r_o_p_a_g_a_t_i_o_n
The propagation rule calls its body exactly once for the
constraints in its head.
o _s_i_m_p_a_g_a_t_i_o_n
The simpagation rule removes the constraints in its head after the
\ and then calls its body. It is an optimization of simplification
rules of the form:
constraints1;constraints2<=> constraints1;body
Namely, in the simpagation form:
constraints1\constraints2<=> body
The constraints1constraints are not called in the body.
RRuullee NNaammeess
Naming a rule is optional and has no semantic meaning. It only
functions as documentation for the programmer.
PPrraaggmmaass The semantics of the pragmas are:
ppaassssiivvee((_I_d_e_n_t_i_f_i_e_r))
The constraint in the head of a rule _I_d_e_n_t_i_f_i_e_r can only match a
passive constraint in that rule. There is an abbreviated syntax
for this pragma. Instead of:
____________________________________________________________________| |
||________________...,_c_#_Id,_..._<=>_..._pragma_passive(Id)_______ ||
you can also write
____________________________________________________________________| |
||________________...,_c_#_passive,_..._<=>_..._____________________ ||
Additional pragmas may be released in the future.
::-- cchhrr__ooppttiioonn((_+_O_p_t_i_o_n_, _+_V_a_l_u_e))
It is possible to specify options that apply to all the CHR
rules in the module. Options are specified with the chr_option/2
declaration:
____________________________________________________________________| |
||:-_chr_option(Option,Value).______________________________________ ||
and may appear in the file anywhere after the first constraints
declaration.
Available options are:
cchheecckk__gguuaarrdd__bbiinnddiinnggss
This option controls whether guards should be checked for
(illegal) variable bindings or not. Possible values for this
option are on to enable the checks, and off to disable the
checks. If this option is on, any guard fails when it binds
a variable that appears in the head of the rule. When the
option is off (default), the behaviour of a binding in the
guard is undefined.
ooppttiimmiizzee
This option controls the degree of optimization. Possible
values are full to enable all available optimizations, and
off (default) to disable all optimizations. The default
is derived from the SWI-Prolog flag optimise, where true is
mapped to full. Therefore the command line option -O provides
full CHR optimization. If optimization is enabled, debugging
must be disabled.
ddeebbuugg
This option enables or disables the possibility to debug the
CHR code. Possible values are on (default) and off. See
section ???? for more details on debugging. The default is
derived from the Prolog flag generate_debug_info, which is
true by default. See -nodebug. If debugging is enabled,
optimization must be disabled.
88..33 CCHHRR iinn SSWWII--PPrroolloogg PPrrooggrraammss
88..33..11 EEmmbbeeddddiinngg iinn PPrroolloogg PPrrooggrraammss
The CHR constraints defined in a .pl file are associated with a module.
The default module is user. One should never load different .pl files
with the same CHR module name.
88..33..22 CCoonnssttrraaiinntt ddeeccllaarraattiioonn
::-- cchhrr__ccoonnssttrraaiinntt((_+_S_p_e_c_i_f_i_e_r))
Every constraint used in CHR rules has to be declared with a
chr_constraint/1 declaration by the _c_o_n_s_t_r_a_i_n_t _s_p_e_c_i_f_i_e_r. For
convenience multiple constraints may be declared at once with the
same chr_constraint/1 declaration followed by a comma-separated
list of constraint specifiers.
A constraint specifier is, in its compact form, F/A where F and
A are respectively the functor name and arity of the constraint,
e.g.:
____________________________________________________________________| |
| :- chr_constraint foo/1. |
||:-_chr_constraint_bar/2,_baz/3.___________________________________ ||
In its extended form, a constraint specifier is c(A1,...,An) where
c is the constraint's functor, n its arity and the Aiare argument
specifiers. An argument specifier is a mode, optionally followed
by a type. Example:
____________________________________________________________________| |
| :- chr_constraint get_value(+,?). |
| :- chr_constraint domain(?int, +list(int)), |
||__________________alldifferent(?list(int))._______________________ ||
MMooddeess
A mode is one of:
-
The corresponding argument of every occurrence of the constraint is
always unbound.
+
The corresponding argument of every occurrence of the constraint is
always ground.
?
The corresponding argument of every occurrence of the constraint
can have any instantiation, which may change over time. This is
the default value.
TTyyppeess
A type can be a user-defined type or one of the built-in types. A type
comprises a (possibly infinite) set of values. The type declaration
for a constraint argument means that for every instance of that
constraint the corresponding argument is only ever bound to values in
that set. It does not state that the argument necessarily has to be
bound to a value.
The built-in types are:
iinntt
The corresponding argument of every occurrence of the constraint is
an integer number.
ddeennssee__iinntt
The corresponding argument of every occurrence of the constraint is
an integer that can be used as an array index. Note that if this
argument takes values in [0; n], the array takes O(n) space.
ffllooaatt
...a floating point number.
nnuummbbeerr
...a number.
nnaattuurraall
...a positive integer.
aannyy
The corresponding argument of every occurrence of the constraint
can have any type. This is the default value.
::-- cchhrr__ttyyppee((_+_T_y_p_e_D_e_c_l_a_r_a_t_i_o_n))
User-defined types are algebraic data types, similar to those in
Haskell or the discriminated unions in Mercury. An algebraic data
type is defined using chr_type/1:
____________________________________________________________________| |
||:-_chr_type_type_--->_body._______________________________________ ||
If the type term is a functor of arity zero (i.e. one having zero
arguments), it names a monomorphic type. Otherwise, it names a
polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of
constructor definitions separated by semi-colons.
Each constructor definition must be a functor whose arguments
(if any) are types. Discriminated union definitions must be
transparent: all type variables occurring in the body must also
occur in the type.
Here are some examples of algebraic data type definitions:
____________________________________________________________________| |
| :- chr_type color ---> red ; blue ; yellow ; green. |
| |
| :- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree). |
| |
| :- chr_type list(T) ---> [] ; [T | list(T)]. |
| |
||:-_chr_type_pair(T1,_T2)_--->_(T1_-_T2).__________________________ ||
Each algebraic data type definition introduces a distinct type.
Two algebraic data types that have the same bodies are considered
to be distinct types (name equivalence).
Constructors may be overloaded among different types: there may be
any number of constructors with a given name and arity, so long as
they all have different types.
Aliases can be defined using ==. For example, if your program uses
lists of lists of integers, you can define an alias as follows:
____________________________________________________________________| |
||:-_chr_type_lli_==_list(list(int))._______________________________ ||
TTyyppee CChheecckkiinngg
Currently two complementary forms of type checking are performed:
1. Static type checking is always performed by the compiler. It is
limited to CHR rule heads and CHR constraint calls in rule bodies.
Two kinds of type error are detected. The first is where a
variable has to belong to two types. For example, in the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| :-chr_type bar ---> bar. |
| |
| :-chr_constraint abc(?foo). |
| :-chr_constraint def(?bar). |
| |
||foobar_@_abc(X)_<=>_def(X)._______________________________________ ||
the variable X has to be of both type foo and bar. This is
reported as a type clash error:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Type clash for variable _ in rule foobar: |
| expected type foo in body goal def(_, _) |
||________________expected_type_bar_in_head_def(_,__)_______________ ||
The second kind of error is where a functor is used that does not
belong to the declared type. For example in:
____________________________________________________________________| |
| :- chr_type foo ---> foo. |
| :- chr_type bar ---> bar. |
| |
| :- chr_constraint abc(?foo). |
| |
||foo_@_abc(bar)_<=>_true.__________________________________________ ||
bar appears in the head of the rule where something of type foo is
expected. This is reported as:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Invalid functor in head abc(bar) of rule foo: |
| found `bar', |
||________________expected_type_`foo'!______________________________ ||
No runtime overhead is incurred in static type checking.
2. Dynamic type checking checks at runtime, during program execution,
whether the arguments of CHR constraints respect their declared
types. The when/2 co-routining library is used to delay dynamic
type checks until variables are instantiated.
The kind of error detected by dynamic type checking is where a
functor is used that does not belong to the declared type. For
example, for the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| |
||:-chr_constraint_abc(?foo)._______________________________________ ||
we get the following error in an erroneous query:
____________________________________________________________________| |
| ?- abc(bar). |
| ERROR: Type error: `foo' expected, found `bar' |
||_______(CHR_Runtime_Type_Error)___________________________________ ||
Dynamic type checking is weaker than static type checking in the
sense that it only checks the particular program execution at hand
rather than all possible executions. It is stronger in the sense
that it tracks types throughout the whole program.
Note that it is enabled only in debug mode, as it incurs some
(minor) runtime overhead.
88..33..33 CCoommppiillaattiioonn
The SWI-Prolog CHR compiler exploits term_expansion/2 rules to
translate the constraint handling rules to plain Prolog. These rules
are loaded from the library chr. They are activated if the compiled
file has the .chr extension or after finding a declaration in the
following format:
________________________________________________________________________| |
|:-|chr_constraint_...__________________________________________________ | |
It is advised to define CHR rules in a module file, where the module
declaration is immediately followed by including the library(chr)
library as exemplified below:
________________________________________________________________________| |
|:- module(zebra, [ zebra/0 ]). |
|:- use_module(library(chr)). |
| |
|:-|chr_constraint_...__________________________________________________ | |
Using this style, CHR rules can be defined in ordinary Prolog .pl files
and the operator definitions required by CHR do not leak into modules
where they might cause conflicts.
88..44 DDeebbuuggggiinngg
The CHR debugging facilities are currently rather limited. Only
tracing is currently available. To use the CHR debugging facilities
for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived
from the SWI-Prolog flag generate_debug_info. Therefore debug info is
provided unless the -nodebug is used.
88..44..11 PPoorrttss
For CHR constraints the four standard ports are defined:
ccaallll
A new constraint is called and becomes active.
eexxiitt
An active constraint exits: it has either been inserted in
the store after trying all rules or has been removed from the
constraint store.
ffaaiill
An active constraint fails.
rreeddoo
An active constraint starts looking for an alternative solution.
In addition to the above ports, CHR constraints have five additional
ports:
wwaakkee
A suspended constraint is woken and becomes active.
iinnsseerrtt
An active constraint has tried all rules and is suspended in the
constraint store.
rreemmoovvee
An active or passive constraint is removed from the constraint
store.
ttrryy
An active constraint tries a rule with possibly some passive
constraints. The try port is entered just before committing to the
rule.
aappppllyy
An active constraint commits to a rule with possibly some passive
constraints. The apply port is entered just after committing to
the rule.
88..44..22 TTrraacciinngg
Tracing is enabled with the chr_trace/0 predicate and disabled with the
chr_notrace/0 predicate.
When enabled the tracer will step through the call, exit, fail, wake
and apply ports, accepting debug commands, and simply write out the
other ports.
The following debug commands are currently supported:
CHR debug options:
<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help
Their meaning is:
ccrreeeepp
Step to the next port.
sskkiipp
Skip to exit port of this call or wake port.
aanncceessttoorrss
Print list of ancestor call and wake ports.
nnooddeebbuugg
Disable the tracer.
bbrreeaakk
Enter a recursive Prolog top level. See break/0.
aabboorrtt
Exit to the top level. See abort/0.
ffaaiill
Insert failure in execution.
hheellpp
Print the above available debug options.
88..44..33 CCHHRR DDeebbuuggggiinngg PPrreeddiiccaatteess
The chr module contains several predicates that allow inspecting and
printing the content of the constraint store.
cchhrr__ttrraaccee
Activate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__nnoottrraaccee
Deactivate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__lleeaasshh((_+_S_p_e_c))
Define the set of CHR ports on which the CHR tracer asks for user
intervention (i.e. stops). _S_p_e_c is either a list of ports as
defined in section ???? or a predefined `alias'. Defined aliases
are: full to stop at all ports, none or off to never stop, and
default to stop at the call, exit, fail, wake and apply ports. See
also leash/1.
cchhrr__sshhooww__ssttoorree((_+_M_o_d))
Prints all suspended constraints of module _M_o_d to the standard
output. This predicate is automatically called by the SWI-Prolog
top level at the end of each query for every CHR module currently
loaded. The Prolog flag chr_toplevel_show_store controls whether
the top level shows the constraint stores. The value true enables
it. Any other value disables it.
ffiinndd__cchhrr__ccoonnssttrraaiinntt((_-_C_o_n_s_t_r_a_i_n_t))
Returns a constraint in the constraint store. Via backtracking,
all constraints in the store can be enumerated.
88..55 EExxaammpplleess
Here are two example constraint solvers written in CHR.
o The program below defines a solver with one constraint, leq/2/,
which is a less-than-or-equal constraint, also known as a partial
order constraint.
____________________________________________________________________| |
| :- module(leq,[leq/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint leq/2. |
| reflexivity @ leq(X,X) <=> true. |
| antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y. |
| idempotence @ leq(X,Y) \ leq(X,Y) <=> true. |
||transitivity_@_leq(X,Y),_leq(Y,Z)_==>_leq(X,Z).___________________ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the leq/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- leq(X,Y), leq(Y,Z). |
| leq(_G23837, _G23841) |
| leq(_G23838, _G23841) |
| leq(_G23837, _G23838) |
||true_.____________________________________________________________ ||
When the query succeeds, the SWI-Prolog top level prints the
content of the CHR constraint store and displays the bindings
generated during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above
example.
o The program below implements a simple finite domain constraint
solver.
____________________________________________________________________| |
| :- module(dom,[dom/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint dom(?int,+list(int)). |
| :- chr_type list(T) ---> [] ; [T|list(T)]. |
| |
| dom(X,[]) <=> fail. |
| dom(X,[Y]) <=> X = Y. |
| dom(X,L) <=> nonvar(X) | memberchk(X,L). |
||dom(X,L1),_dom(X,L2)_<=>_intersection(L1,L2,L3),_dom(X,L3)._______ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the dom/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- dom(A,[1,2,3]), dom(A,[3,4,5]). |
||A_=_3.____________________________________________________________ ||
88..66 BBaacckkwwaarrddss CCoommppaattiibbiilliittyy
88..66..11 TThhee OOlldd SSIICCSSttuuss CCHHRR iimmpplleemmeennaattiioonn
There are small differences between the current K.U.Leuven CHR system
in SWI-Prolog, older versions of the same system, and SICStus' CHR
system.
The current system maps old syntactic elements onto new ones and
ignores a number of no longer required elements. However, for each a
_d_e_p_r_e_c_a_t_e_d warning is issued. You are strongly urged to replace or
remove deprecated features.
Besides differences in available options and pragmas, the following
differences should be noted:
o _T_h_e constraints/1 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_constraint/1 declaration.
o _T_h_e option/2 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_option/2 declaration.
o _T_h_e handler/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus every CHR module requires a handler/1 declaration
declaring a unique handler name. This declaration is valid syntax
in SWI-Prolog, but will have no effect. A warning will be given
during compilation.
o _T_h_e rules/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus, for every CHR module it is possible to only enable a
subset of the available rules through the rules/1 declaration. The
declaration is valid syntax in SWI-Prolog, but has no effect. A
warning is given during compilation.
o _G_u_a_r_d _b_i_n_d_i_n_g_s
The check_guard_bindings option only turns invalid calls to
unification into failure. In SICStus this option does more: it
intercepts instantiation errors from Prolog built-ins such as is/2
and turns them into failure. In SWI-Prolog, we do not go this far,
as we like to separate concerns more. The CHR compiler is aware of
the CHR code, the Prolog system, and the programmer should be aware
of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.
88..66..22 TThhee OOlldd EECCLLiiPPSSee CCHHRR iimmpplleemmeennaattiioonn
The old ECLiPSe CHR implementation features a label_with/1 construct
for labeling variables in CHR constraints. This feature has long
since been abandoned. However, a simple transformation is all that is
required to port the functionality.
________________________________________________________________________| |
|label_with Constraint1 if Condition1. |
|... |
|label_with ConstraintN if ConditionN. |
|Constraint1 :- Body1. |
|... |
|ConstraintN|:-_BodyN.__________________________________________________ | |
is transformed into
________________________________________________________________________| |
|:- chr_constraint my_labeling/0. |
| |
|my_labeling \ Constraint1 <=> Condition1 | Body1. |
|... |
|my_labeling \ ConstraintN <=> ConditionN | BodyN. |
|my_labeling|<=>_true.__________________________________________________ | |
Be sure to put this code after all other rules in your program! With
my_labeling/0 (or another predicate name of your choosing) the labeling
is initiated, rather than ECLiPSe's chr_labeling/0.
88..77 PPrrooggrraammmmiinngg TTiippss aanndd TTrriicckkss
In this section we cover several guidelines on how to use CHR to write
constraint solvers and how to do so efficiently.
o _C_h_e_c_k _g_u_a_r_d _b_i_n_d_i_n_g_s _y_o_u_r_s_e_l_f
It is considered bad practice to write guards that bind variables
of the head and to rely on the system to detect this at runtime.
It is inefficient and obscures the working of the program.
o _S_e_t _s_e_m_a_n_t_i_c_s
The CHR system allows the presence of identical constraints, i.e.
multiple constraints with the same functor, arity and arguments.
For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation
rules should be added of the form:
constraint\constraint <=>true
o _M_u_l_t_i_-_h_e_a_d_e_d _r_u_l_e_s
Multi-headed rules are executed more efficiently when the
constraints share one or more variables.
o _M_o_d_e _a_n_d _t_y_p_e _d_e_c_l_a_r_a_t_i_o_n_s
Provide mode and type declarations to get more efficient program
execution. Make sure to disable debug (-nodebug) and enable
optimization (-O).
o _C_o_m_p_i_l_e _o_n_c_e_, _r_u_n _m_a_n_y _t_i_m_e_s
Does consulting your CHR program take a long time in SWI-Prolog?
Probably it takes the CHR compiler a long time to compile the
CHR rules into Prolog code. When you disable optimizations the
CHR compiler will be a lot quicker, but you may lose performance.
Alternatively, you can just use SWI-Prolog's qcompile/1 to generate
a .qlf file once from your .pl file. This .qlf contains the
generated code of the CHR compiler (be it in a binary format).
When you consult the .qlf file, the CHR compiler is not invoked and
consultation is much faster.
o _F_i_n_d_i_n_g _C_o_n_s_t_r_a_i_n_t_s
The find_chr_constraint/1 predicate is fairly expensive. Avoid
it, if possible. If you must use it, try to use it with an
instantiated top-level constraint symbol.
88..88 CCoommppiilleerr EErrrroorrss aanndd WWaarrnniinnggss
In this section we summarize the most important error and warning
messages of the CHR compiler.
88..88..11 CCHHRR CCoommppiilleerr EErrrroorrss
TTyyppee ccllaasshh for variable ... in rule ...
This error indicates an inconsistency between declared types; a
variable can not belong to two types. See static type checking.
IInnvvaalliidd ffuunnccttoorr in head ... of rule ...
This error indicates an inconsistency between a declared type and
the use of a functor in a rule. See static type checking.
CCyycclliicc aalliiaass definition: ... == ...
You have defined a type alias in terms of itself, either directly
or indirectly.
AAmmbbiigguuoouuss ttyyppee aalliiaasseess You have defined two overlapping type aliases.
MMuullttiippllee ddeeffiinniittiioonnss for type
You have defined the same type multiple times.
NNoonn--ggrroouunndd ttyyppee in constraint definition: ...
You have declared a non-ground type for a constraint argument.
CCoouulldd nnoott ffiinndd ttyyppee ddeeffiinniittiioonn for ...
You have used an undefined type in a type declaration.
IIlllleeggaall mmooddee//ttyyppee ddeeccllaarraattiioonn You have used invalid syntax in a
constraint declaration.
CCoonnssttrraaiinntt mmuullttiippllyy ddeeffiinneedd There is more than one declaration for the
same constraint.
UUnnddeeccllaarreedd ccoonnssttrraaiinntt ... in head of ...
You have used an undeclared constraint in the head of a rule. This
often indicates a misspelled constraint name or wrong number of
arguments.
IInnvvaalliidd pprraaggmmaa ... in ... Pragma should not be a variable.
You have used a variable as a pragma in a rule. This is not
allowed.
IInnvvaalliidd iiddeennttiiffiieerr ... in pragma passive in ...
You have used an identifier in a passive pragma that does not
correspond to an identifier in the head of the rule. Likely the
identifier name is misspelled.
UUnnkknnoowwnn pprraaggmmaa ... in ...
You have used an unknown pragma in a rule. Likely the pragma is
misspelled or not supported.
SSoommeetthhiinngg uunneexxppeecctteedd happened in the CHR compiler
You have most likely bumped into a bug in the CHR compiler. Please
contact Tom Schrijvers to notify him of this error.
CChhaapptteerr 99.. MMUULLTTIITTHHRREEAADDEEDD AAPPPPLLIICCAATTIIOONNSS
SWI-Prolog multithreading is based on standard C language multithread-
ing support. It is not like _P_a_r_L_o_g or other parallel implementations
of the Prolog language. Prolog threads have their own stacks and only
share the Prolog _h_e_a_p: predicates, records, flags and other global
non-backtrackable data. SWI-Prolog thread support is designed with the
following goals in mind.
o _M_u_l_t_i_t_h_r_e_a_d_e_d _s_e_r_v_e_r _a_p_p_l_i_c_a_t_i_o_n_s
Today's computing services often focus on (internet) server
applications. Such applications often have need for communication
between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication,
and thread creation is relatively cheap.
o _I_n_t_e_r_a_c_t_i_v_e _a_p_p_l_i_c_a_t_i_o_n_s
Interactive applications often need to perform extensive
computation. If such computations are executed in a new thread,
the main thread can process events and allow the user to cancel
the ongoing computation. User interfaces can also use multiple
threads, each thread dealing with input from a distinct group of
windows. See also section ????.
o _N_a_t_u_r_a_l _i_n_t_e_g_r_a_t_i_o_n _w_i_t_h _f_o_r_e_i_g_n _c_o_d_e
Each Prolog thread runs in a native thread of the operating system,
automatically making them cooperate with _M_T_-_s_a_f_e foreign code. In
addition, any foreign thread can create its own Prolog engine for
dealing with calling Prolog from C code.
SWI-Prolog multithreading is based on the POSIX thread standard [??]
used on most popular systems except for MS-Windows. On Windows it uses
the http://sources.redhat.com/pthreads-win32/pthread-win32 emulation of
POSIX threads mixed with the Windows native API for smoother and faster
operation. The SWI-Prolog thread implementation has been discussed in
the ISO WG17 working group and is largely addopted by YAP and XSB
Prolog.
99..11 CCrreeaattiinngg aanndd ddeessttrrooyyiinngg PPrroolloogg tthhrreeaaddss
tthhrreeaadd__ccrreeaattee((_:_G_o_a_l_, _-_I_d))
Shorthand for thread_create(Goal, Id, []). See thread_create/3.
tthhrreeaadd__ccrreeaattee((_:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s))
Create a new Prolog thread (and underlying operating system thread)
and start it by executing _G_o_a_l. If the thread is created
successfully, the thread identifier of the created thread is
unified to _I_d.
_I_d is the _a_l_i_a_s name if the option alias(_n_a_m_e) is given. Otherwise
it is a _b_l_o_b of type thread. The anonymous blobs are subject
to atom garbage collection. If a thread handle is garbage
collected and the thread is not _d_e_t_a_c_h_e_d, it is _j_o_i_n_e_d if it
has already terminated (see thread_join/2) and detached otherwise
(see thread_detach/1). The thread identifier blobs are printed
as <thread>(_I,_P_t_r), where _I is the internal thread identifier
and _P_t_r is the unique address of the identifier. The _I is
accepted as input argument for all thread APIs that accept a thread
identifier for convenient interaction from the toplevel. See also
thread_property/2.
_O_p_t_i_o_n_s is a list of options. The currently defined options
are below. Stack size options can also take the value inf or
infinite, which is mapped to the maximum stack size supported by
the platform.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Associate an `alias name' with the thread. This name may be
used to refer to the thread and remains valid until the thread
is joined (see thread_join/2). If the OS supports it (e.g.,
Linux), the operating system thread is named as well.
aatt__eexxiitt((_:_A_t_E_x_i_t))
Register _A_t_E_x_i_t as using thread_at_exit/1 before entering the
thread goal. Unlike calling thread_at_exit/1 as part of
the normal _G_o_a_l, this _e_n_s_u_r_e_s the _A_t_E_x_i_t is called. Using
thread_at_exit/1, the thread may be signalled or run out of
resources before thread_at_exit/1is reached.
ddeebbuugg((_+_B_o_o_l))
Enable/disable debugging the new thread. If false (default
true), the new thread is created with the property
debug(_f_a_l_s_e) and debugging is disabled before the new thread
is started. The thread debugging predicates such as tspy/1
and tdebug/0 do not signal threads with the debug property set
to false.
ddeettaacchheedd((_B_o_o_l))
If false (default), the thread can be waited for using
thread_join/2. thread_join/2 must be called on this thread
to reclaim all resources associated with the thread. If
true, the system will reclaim all associated resources
automatically after the thread finishes. Please note that
thread identifiers are freed for reuse after a detached thread
finishes or a normal thread has been joined. See also
thread_join/2 and thread_detach/1.
If a detached thread dies due to failure or exception
of the initial goal, the thread prints a message using
print_message/2. If such termination is considered normal, the
code must be wrapped using ignore/1 and/or catch/3 to ensure
successful completion.
iinnhheerriitt__ffrroomm((_+_T_h_r_e_a_d_I_d))
Inherit defaults from the given _T_h_r_e_a_d_I_d instead of the
calling thread. This option was added to ensure that the
__thread_pool_manager (see thread_create_in_pool/4), which is
created lazily, has a predictable state. The following
properties are inherited:
o The prompt (see prompt/2)
o The _t_y_p_e_i_n module (see module/1)
o The standard streams (user_input, etc.)
o The default encoding (see encoding)
o The default locale (see setlocale/1)
o All prolog flags
o The limits of Prolog stacks (see set_prolog_stack/2)
gglloobbaall((_K_-_B_y_t_e_s))
Set the limit to which the global stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -G command line option.
llooccaall((_K_-_B_y_t_e_s))
Set the limit to which the local stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -L command line option.
cc__ssttaacckk((_K_-_B_y_t_e_s))
Set the limit to which the system stack of this thread
may grow. The default, minimum and maximum values are
system-dependent.
ttrraaiill((_K_-_B_y_t_e_s))
Set the limit to which the trail stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -T command line option.
The _G_o_a_l argument is _c_o_p_i_e_d to the new Prolog engine. This implies
that further instantiation of this term in either thread does not
have consequences for the other thread: Prolog threads do not
share data from their stacks.
tthhrreeaadd__sseellff((_-_I_d))
Get the Prolog thread identifier of the running thread. If the
thread has an alias, the alias name is returned.
tthhrreeaadd__jjooiinn((_+_I_d))
Calls thread_join/2 and succeeds if thread _I_d terminated with
success. Otherwise the exception error(thread_error_(_S_t_a_t_u_s_)_, __) is
raised.
tthhrreeaadd__jjooiinn((_+_I_d_, _-_S_t_a_t_u_s))
Wait for the termination of the thread with the given _I_d. Then
unify the result status of the thread with _S_t_a_t_u_s. After this
call, _I_d becomes invalid and all resources associated with the
thread are reclaimed. Note that threads with the attribute
detached(_t_r_u_e) cannot be joined. See also thread_property/2.
A thread that has been completed without thread_join/2 being called
on it is partly reclaimed: the Prolog stacks are released and the
C thread is destroyed. A small data structure representing the
exit status of the thread is retained until thread_join/2 is called
on the thread. Defined values for _S_t_a_t_u_s are:
ttrruuee
The goal has been proven successfully.
ffaallssee
The goal has failed.
eexxcceeppttiioonn((_T_e_r_m))
The thread is terminated on an exception. See print_message/2
to turn system exceptions into readable messages.
eexxiitteedd((_T_e_r_m))
The thread is terminated on thread_exit/1 using the argument
_T_e_r_m.
tthhrreeaadd__ddeettaacchh((_+_I_d))
Switch thread into detached state (see detached(_B_o_o_l) option at
thread_create/3) at runtime. _I_d is the identifier of the thread
placed in detached state. This may be the result of thread_self/1.
One of the possible applications is to simplify debugging.
Threads that are created as _d_e_t_a_c_h_e_d leave no traces if they
crash. For non-detached threads the status can be inspected using
thread_property/2. Threads nobody is waiting for may be created
normally and detach themselves just before completion. This way
they leave no traces on normal completion and their reason for
failure can be inspected.
tthhrreeaadd__eexxiitt((_+_T_e_r_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Terminates the thread immediately, leaving exited(_T_e_r_m) as result
state for thread_join/2. If the thread has the attribute
detached(_t_r_u_e) it terminates, but its exit status cannot be
retrieved using thread_join/2, making the value of _T_e_r_m irrelevant.
The Prolog stacks and C thread are reclaimed.
The current implementation does not guarantee proper releasing
of all mutexes and proper cleanup in setup_call_cleanup/3, etc.
Please use the exception mechanism (throw/1) to abort execution
using non-standard control.
tthhrreeaadd__iinniittiiaalliizzaattiioonn((_:_G_o_a_l))
Run _G_o_a_l when thread is started. This predicate is similar to
initialization/1, but is intended for initialization operations of
the runtime stacks, such as setting global variables as described
in section ????. _G_o_a_l is run on four occasions: at the call to
this predicate, after loading a saved state, on starting a new
thread and on creating a Prolog engine through the C interface.
On loading a saved state, _G_o_a_l is executed _a_f_t_e_r running the
initialization/1 hooks.
tthhrreeaadd__aatt__eexxiitt((_:_G_o_a_l))
Run _G_o_a_l just before releasing the thread resources. This is
to be compared to at_halt/1, but only for the current thread.
These hooks are run regardless of why the execution of the thread
has been completed. When these hooks are run, the return code
is already available through thread_property/2 using the result
of thread_self/1 as thread identifier. Note that there are
two scenarios for using exit hooks. Using thread_at_exit/1 is
typically used if the thread creates a side-effect that must be
reverted if the thread dies. Another scenario is where the creator
of the thread wants to be informed when the thread ends. That
cannot be guaranteed by means of thread_at_exit/1 because it is
possible that the thread cannot be created or dies almost instantly
due to a signal or resource error. The at_exit(_G_o_a_l) option of
thread_create/3 is designed to deal with this scenario.
tthhrreeaadd__sseettccoonnccuurrrreennccyy((_-_O_l_d_, _+_N_e_w))
Determine the concurrency of the process, which is defined as the
maximum number of concurrently active threads. `Active' here means
they are using CPU time. This option is provided if the thread
implementation provides pthread_setconcurrency(). Solaris is a
typical example of this family. On other systems this predicate
unifies _O_l_d to 0 (zero) and succeeds silently.
99..22 MMoonniittoorriinngg tthhrreeaaddss
Normal multithreaded applications should not need the predicates from
this section because almost any usage of these predicates is unsafe.
For example checking the existence of a thread before signalling it is
of no use as it may vanish between the two calls. Catching exceptions
using catch/3 is the only safe way to deal with thread-existence
errors.
These predicates are provided for diagnosis and monitoring tasks. See
also section ????, describing more high-level primitives.
iiss__tthhrreeaadd((_@_T_e_r_m))
True if _T_e_r_m is a handle to an existing thread.
tthhrreeaadd__pprrooppeerrttyy((_?_I_d_, _?_P_r_o_p_e_r_t_y))
True if thread _I_d has _P_r_o_p_e_r_t_y. Either or both arguments may
be unbound, enumerating all relations on backtracking. Calling
thread_property/2 does not influence any thread. See also
thread_join/2. For threads that have an alias name, this name is
returned in _I_d instead of the opaque thread identifier. Defined
properties are:
aalliiaass((_A_l_i_a_s))
_A_l_i_a_s is the alias name of thread _I_d.
ddeettaacchheedd((_B_o_o_l_e_a_n))
Current detached status of the thread.
iidd((_I_n_t_e_g_e_r))
Integer identifier for the thread. Can be used as argument
to the thread predicates, but applications must be aware that
these references are reused.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the thread. _S_t_a_t_u_s is one of:
rruunnnniinngg
The thread is running. This is the initial status of a
thread. Please note that threads waiting for something
are considered running too.
ssuussppeennddeedd
Only if the thread is an engine (see section ????).
Indicates that the engine is currently not associated with
an OS thread.
ffaallssee
The _G_o_a_l of the thread has been completed and failed.
ttrruuee
The _G_o_a_l of the thread has been completed and succeeded.
eexxiitteedd((_T_e_r_m))
The _G_o_a_l of the thread has been terminated using
thread_exit/1 with _T_e_r_m as argument. If the underlying
native thread has exited (using pthread_exit()) _T_e_r_m is
unbound.
eexxcceeppttiioonn((_T_e_r_m))
The _G_o_a_l of the thread has been terminated due to an
uncaught exception (see throw/1 and catch/3).
eennggiinnee((_B_o_o_l_e_a_n))
If the thread is an engine (see chapter ????), _B_o_o_l_e_a_n is true.
Othwerwise the property is not present.
tthhrreeaadd((_T_h_r_e_a_d_I_d))
If the thread is an engine that is currently attached to a
thread, _T_h_r_e_a_d_I_d is the thread that executes the engine.
ssyysstteemm__tthhrreeaadd__iidd((_I_n_t_e_g_e_r))
Thread identifier used by the operating system for the calling
thread. Not available on all OSes. This is the same as the
Prolog flag system_thread_idfor the calling thread. Access
to the system thread identifier can, on some systems, be used
to gain additional control over or information about Prolog
threads.
See also thread_statistics/3 to obtain resource usage information
and message_queue_property/2 to get the number of queued messages
for a thread.
tthhrreeaadd__ssttaattiissttiiccss((_+_I_d_, _+_K_e_y_, _-_V_a_l_u_e))
Obtains statistical information on thread _I_d as statistics/2 does
in single-threaded applications. This call supports all keys of
statistics/2, although only stack sizes, cputime, inferences and
epoch yield different values for each thread.
mmuutteexx__ssttaattiissttiiccss
Print usage statistics on internal mutexes and mutexes associated
with dynamic predicates. For each mutex two numbers are printed:
the number of times the mutex was acquired and the number of
_c_o_l_l_i_s_i_o_n_s: the number of times the calling thread has to wait
for the mutex. Generally collision count is close to zero on
single-CPU hardware.
99..33 TThhrreeaadd ccoommmmuunniiccaattiioonn
99..33..11 MMeessssaaggee qquueeuueess
Prolog threads can exchange data using dynamic predicates, database
records, and other globally shared data. These provide no suitable
means to wait for data or a condition as they can only be checked in an
expensive polling loop. _M_e_s_s_a_g_e _q_u_e_u_e_s provide a means for threads to
wait for data or conditions without using the CPU.
Each thread has a message queue attached to it that is identified by
the thread. Additional queues are created using message_queue_create/1.
Explicitly created queues come in two flavours. When given an
_a_l_i_a_s, they must be destroyed by the user. _A_n_o_n_y_m_o_u_s message queues
are identified by a _b_l_o_b (see section ????) and subject to garbage
collection.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_Q_u_e_u_e_O_r_T_h_r_e_a_d_I_d_, _+_T_e_r_m))
Place _T_e_r_m in the given queue or default queue of the indicated
thread (which can even be the message queue of itself, see
thread_self/1). Any term can be placed in a message queue, but
note that the term is copied to the receiving thread and variable
bindings are thus lost. This call returns immediately.
If more than one thread is waiting for messages on the given queue
and at least one of these is waiting with a partially instantiated
_T_e_r_m, the waiting threads are _a_l_l sent a wake-up signal, starting a
rush for the available messages in the queue. This behaviour can
seriously harm performance with many threads waiting on the same
queue as all-but-the-winner perform a useless scan of the queue.
If there is only one waiting thread or all waiting threads wait
with an unbound variable, an arbitrary thread is restarted to scan
the queue.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_Q_u_e_u_e_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
As thread_send_message/2, but providing additional _O_p_t_i_o_n_s. These
are to deal with the case that the queue has a finite maximum
size and is full: whereas thread_send_message/2 will block until
the queue has drained sufficiently to accept a new message,
thread_send_message/3 can accept a time-out or deadline analogously
to thread_get_message/3. The options are:
ddeeaaddlliinnee((_+_A_b_s_T_i_m_e))
The call fails (silently) if no space has become available
before _A_b_s_T_i_m_e. See get_time/1 for the representation of
absolute time. If _A_b_s_T_i_m_e is earlier then the current time,
thread_send_message/3 fails immediately. Both resolution and
maximum wait time is platform-dependent.
ttiimmeeoouutt((_+_T_i_m_e))
_T_i_m_e is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the
deadline option. If both options are provided, the earlier
time is effective.
If _T_i_m_e is 0 or 0.0, thread_send_message/3 examines the queue
and sends the message if space is availabel, but does not
suspend if no space is available, failing immediately instead.
If _T_i_m_e < 0, thread_send_message/3 fails immediately without
sending the message.
tthhrreeaadd__ggeett__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message queue and if necessary blocks execution
until a term that unifies to _T_e_r_m arrives in the queue. After a
term from the queue has been unified to _T_e_r_m, the term is deleted
from the queue.
Please note that non-unifying messages remain in the queue. After
the following has been executed, thread 1 has the term b(_g_n_u) in
its queue and continues execution using _A = gnat.
____________________________________________________________________| |
| <thread 1> |
| thread_get_message(a(A)), |
| |
| <thread 2> |
| thread_send_message(Thread_1, b(gnu)), |
||___thread_send_message(Thread_1,_a(gnat)),________________________ ||
See also thread_peek_message/1.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message queue and compares the queued terms
with _T_e_r_m until one unifies or the end of the queue has
been reached. In the first case the call succeeds, possibly
instantiating _T_e_r_m. If no term from the queue unifies, this call
fails. I.e., thread_peek_message/1never waits and does not remove
any term from the queue. See also thread_get_message/3.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_?_Q_u_e_u_e))
Equivalent to message_queue_create(Queue,[]). For compatibil-
ity, calling message_queue_create(_+_A_t_o_m) is equivalent to
message_queue_create(_Q_u_e_u_e_, _[_a_l_i_a_s_(_A_t_o_m_)_]). New code should use
message_queue_create/2 to create a named queue.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_-_Q_u_e_u_e_, _+_O_p_t_i_o_n_s))
Create a message queue from _O_p_t_i_o_n_s. Defined options are:
aalliiaass((_+_A_l_i_a_s))
Create a message queue that is identified by the atom
_A_l_i_a_s. Message queues created this way must be explicitly
destroyed by the user. If the alias option is omitted, an
_A_n_o_n_y_m_o_u_s queue is created that is indentified by a _b_l_o_b (see
section ????) and subject to garbage collection.
mmaaxx__ssiizzee((_+_S_i_z_e))
Maximum number of terms in the queue. If this number is
reached, thread_send_message/2 will suspend until the queue
is drained. The option can be used if the source, sending
messages to the queue, is faster than the drain, consuming the
messages.
mmeessssaaggee__qquueeuuee__ddeessttrrooyy((_+_Q_u_e_u_e)) _[_d_e_t_]
Destroy a message queue created with message_queue_create/1. A
permission error is raised if _Q_u_e_u_e refers to (the default queue
of) a thread. Other threads that are waiting for _Q_u_e_u_e using
thread_get_message/2 receive an existence error.
tthhrreeaadd__ggeett__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m)) _[_d_e_t_]
As thread_get_message/1, operating on a given queue. It is allowed
(but not advised) to get messages from the queue of other threads.
This predicate raises an existence error exception if _Q_u_e_u_e doesn't
exist or is destroyed using message_queue_destroy/1 while this
predicate is waiting.
tthhrreeaadd__ggeett__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
As thread_get_message/2, but providing additional _O_p_t_i_o_n_s:
ddeeaaddlliinnee((_+_A_b_s_T_i_m_e))
The call fails (silently) if no message has arrived before
_A_b_s_T_i_m_e. See get_time/1 for the representation of absolute
time. If _A_b_s_T_i_m_e is earlier then the current time,
thread_get_message/3 fails immediately. Both resolution and
maximum wait time is platform-dependent.
ttiimmeeoouutt((_+_T_i_m_e))
_T_i_m_e is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the
deadline option. If both options are provided, the earlier
time is effective.
If _T_i_m_e is 0 or 0.0, thread_get_message/3 examines the queue
but does not suspend if no matching term is available. Note
that unlike thread_peek_message/2, a matching term is removed
from the queue.
If _T_i_m_e < 0, thread_get_message/3 fails immediately without
removing any message from the queue.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m)) _[_s_e_m_i_d_e_t_]
As thread_peek_message/1, operating on a given queue. It is
allowed to peek into another thread's message queue, an operation
that can be used to check whether a thread has swallowed a message
sent to it.
mmeessssaaggee__qquueeuuee__pprrooppeerrttyy((_?_Q_u_e_u_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _Q_u_e_u_e. Defined properties are:
aalliiaass((_A_l_i_a_s))
Queue has the given alias name.
mmaaxx__ssiizzee((_S_i_z_e))
Maximum number of terms that can be in the queue. See
message_queue_create/2. This property is not present if there
is no limit (default).
ssiizzee((_S_i_z_e))
Queue currently contains _S_i_z_e terms. Note that due to
concurrent access the returned value may be outdated before it
is returned. It can be used for debugging purposes as well as
work distribution purposes.
The size(_S_i_z_e) property is always present and may be used to
enumerate the created message queues. Note that this predicate
does _n_o_t _e_n_u_m_e_r_a_t_e threads, but can be used to query the properties
of the default queue of a thread.
Explicit message queues are designed with the _w_o_r_k_e_r_-_p_o_o_l model in
mind, where multiple threads wait on a single queue and pick up
the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example
provides no means to tell when all work is done. This must be realised
using additional synchronisation.
________________________________________________________________________| |
|%% create_workers(?Id, +N) |
|% |
|% Create a pool with Id and number of workers. |
|% After the pool is created, post_job/1 can be used to |
|% send jobs to the pool. |
| |
|create_workers(Id, N) :- |
| message_queue_create(Id), |
| forall(between(1, N, _), |
| thread_create(do_work(Id), _, [])). |
| |
|do_work(Id) :- |
| repeat, |
| thread_get_message(Id, Goal), |
| ( catch(Goal, E, print_message(error, E)) |
| -> true |
| ; print_message(error, goal_failed(Goal, worker(Id))) |
| ), |
| fail. |
| |
|%% post_job(+Id, +Goal) |
|% |
|% Post a job to be executed by one of the pool's workers. |
| |
|post_job(Id, Goal) :- |
||_______thread_send_message(Id,_Goal)._________________________________ ||
99..33..22 SSiiggnnaalllliinngg tthhrreeaaddss
These predicates provide a mechanism to make another thread execute
some goal as an _i_n_t_e_r_r_u_p_t. Signalling threads is safe as these
interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multithreaded environments should be
handled with care as the receiving thread may hold a _m_u_t_e_x (see
with_mutex/2). Signalling probably only makes sense to start debugging
threads and to cancel no-longer-needed threads with throw/1, where the
receiving thread should be designed carefully to handle exceptions at
any point.
tthhrreeaadd__ssiiggnnaall((_+_T_h_r_e_a_d_I_d_, _:_G_o_a_l))
Make thread _T_h_r_e_a_d_I_d execute _G_o_a_l at the first opportunity. In the
current implementation, this implies at the first pass through the
_C_a_l_l _p_o_r_t. The predicate thread_signal/2 itself places _G_o_a_l into
the signalled thread's signal queue and returns immediately.
Signals (interrupts) do not cooperate well with the world of
multithreading, mainly because the status of mutexes cannot be
guaranteed easily. At the call port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.
_G_o_a_l can be any valid Prolog goal, including throw/1 to make
the receiving thread generate an exception, and trace/0 to start
tracing the receiving thread.
In the Windows version, the receiving thread immediately executes
the signal if it reaches a Windows GetMessage() call, which
generally happens if the thread is waiting for (user) input.
99..33..33 TThhrreeaaddss aanndd ddyynnaammiicc pprreeddiiccaatteess
Besides queues (section ????) threads can share and exchange data using
dynamic predicates. The multithreaded version knows about two types
of dynamic predicates. By default, a predicate declared _d_y_n_a_m_i_c
(see dynamic/1) is shared by all threads. Each thread may assert,
retract and run the dynamic predicate. Synchronisation inside Prolog
guarantees the consistency of the predicate. Updates are _l_o_g_i_c_a_l:
visible clauses are not affected by assert/retract after a query
started on the predicate. In many cases primitives from section ????
should be used to ensure that application invariants on the predicate
are maintained.
Besides shared predicates, dynamic predicates can be declared with the
thread_local/1 directive. Such predicates share their attributes, but
the clause list is different in each thread.
tthhrreeaadd__llooccaall _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
This directive is related to the dynamic/1 directive. It tells
the system that the predicate may be modified using assert/1,
retract/1, etc., during execution of the program. Unlike normal
shared dynamic data, however, each thread has its own clause list
for the predicate. As a thread starts, this clause list is empty.
If there are still clauses when the thread terminates, these are
automatically reclaimed by the system (see also volatile/1). The
thread_local property implies the properties _d_y_n_a_m_i_c and _v_o_l_a_t_i_l_e.
Thread-local dynamic predicates are intended for maintaining
thread-specific state or intermediate results of a computation.
It is not recommended to put clauses for a thread-local predicate
into a file, as in the example below, because the clause is only
visible from the thread that loaded the source file. All other
threads start with an empty clause list.
____________________________________________________________________| |
| :- thread_local |
| foo/1. |
| |
||foo(gnat).________________________________________________________ ||
DDIISSCCLLAAIIMMEERR Whether or not this declaration is appropriate in the
sense of the proper mechanism to reach the goal is still debated.
If you have strong feelings in favour or against, please share them
in the SWI-Prolog mailing list.
99..44 TThhrreeaadd ssyynncchhrroonniissaattiioonn
All internal Prolog operations are thread-safe. This implies that
two Prolog threads can operate on the same dynamic predicate without
corrupting the consistency of the predicate. This section deals with
user-level _m_u_t_e_x_e_s (called _m_o_n_i_t_o_r_s in ADA or _c_r_i_t_i_c_a_l _s_e_c_t_i_o_n_s by
Microsoft). A mutex is a MMUUTTual EEXXclusive device, which implies that
at most one thread can _h_o_l_d a mutex.
Mutexes are used to realise related updates to the Prolog database.
With `related', we refer to the situation where a `transaction' implies
two or more changes to the Prolog database. For example, we have
a predicate address/2, representing the address of a person and we
want to change the address by retracting the old and asserting the
new address. Between these two operations the database is invalid:
this person has either no address or two addresses, depending on the
assert/retract order.
The code below provides a solution to this problem based on
with_mutex/2. It also illustrates the problem of mutexes. The
predicate with_mutex/2 behaves as once/1 with respect to the guarded
goal. This means that our predicate address/2 is no longer a nice
logical non-deterministic relation. This could be solved by explicit
locking and unlocking a mutex using setup_call_cleanup/2, but at the
risk of deadlocking the program if the choice point is left open by
accident.
________________________________________________________________________| |
|change_address(Id, Address) :- |
| with_mutex(addressbook, |
| ( retractall(address(Id, _)), |
| asserta(address_db(Id, Address)) |
| )). |
| |
|address(Id, Address) :- |
| with_mutex(addressbook, |
||__________________address_db(Id,_Address)).___________________________ ||
Message queues (see message_queue_create/3) often provide simpler and
more robust ways for threads to communicate. Still, mutexes can be a
sensible solution and are therefore provided.
mmuutteexx__ccrreeaattee((_?_M_u_t_e_x_I_d))
Create a mutex. If _M_u_t_e_x_I_d is an atom, a _n_a_m_e_d mutex is created.
If it is a variable, an anonymous mutex reference is returned.
Anonymous mutexes are subject to (atom) garbage collection.
mmuutteexx__ccrreeaattee((_-_M_u_t_e_x_I_d_, _+_O_p_t_i_o_n_s))
Create a mutex using options. Defined options are:
aalliiaass((_A_l_i_a_s))
Set the alias name. Using mutex_create(_X_, _[_a_l_i_a_s_(_n_a_m_e_)_]) is
preferred over the equivalent mutex_create(_n_a_m_e).
mmuutteexx__ddeessttrrooyy((_+_M_u_t_e_x_I_d))
Destroy a mutex. If the mutex is not locked, it is destroyed and
further access yields an existence_error exception. As of version
7.1.19, this behaviour is reliable. If the mutex is locked, the
mutex is sheduled for _d_e_l_a_y_e_d _d_e_s_t_r_u_c_t_i_o_n: it will be destroyed
when it becomes unlocked.
wwiitthh__mmuutteexx((_+_M_u_t_e_x_I_d_, _:_G_o_a_l))
Execute _G_o_a_l while holding _M_u_t_e_x_I_d. If _G_o_a_l leaves choice
points, these are destroyed (as in once/1). The mutex is
unlocked regardless of whether _G_o_a_l succeeds, fails or raises an
exception. An exception thrown by _G_o_a_l is re-thrown after the
mutex has been successfully unlocked. See also mutex_create/1 and
setup_call_cleanup/3.
Although described in the thread section, this predicate is also
available in the single-threaded version, where it behaves simply
as once/1.
mmuutteexx__lloocckk((_+_M_u_t_e_x_I_d))
Lock the mutex. Prolog mutexes are _r_e_c_u_r_s_i_v_e mutexes: they can be
locked multiple times by the same thread. Only after unlocking it
as many times as it is locked does the mutex become available for
locking by other threads. If another thread has locked the mutex
the calling thread is suspended until the mutex is unlocked.
If _M_u_t_e_x_I_d is an atom, and there is no current mutex with that
name, the mutex is created automatically using mutex_create/1.
This implies named mutexes need not be declared explicitly.
Please note that locking and unlocking mutexes should be paired
carefully. Especially make sure to unlock mutexes even if
the protected code fails or raises an exception. For most
common cases, use with_mutex/2, which provides a safer way for
handling Prolog-level mutexes. The predicate setup_call_cleanup/3
is another way to guarantee that the mutex is unlocked while
retaining non-determinism.
mmuutteexx__ttrryylloocckk((_+_M_u_t_e_x_I_d))
As mutex_lock/1, but if the mutex is held by another thread, this
predicates fails immediately.
mmuutteexx__uunnlloocckk((_+_M_u_t_e_x_I_d))
Unlock the mutex. This can only be called if the mutex is held by
the calling thread. If this is not the case, a permission_error
exception is raised.
mmuutteexx__uunnlloocckk__aallll _[_d_e_p_r_e_c_a_t_e_d_]
Unlock all mutexes held by the current thread. This predicate
should not be needed if mutex unlocking is guaranteed with
with_mutex/2 or setup_call_cleanup/3.
mmuutteexx__pprrooppeerrttyy((_?_M_u_t_e_x_I_d_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _M_u_t_e_x_I_d. Defined properties are:
aalliiaass((_A_l_i_a_s))
Mutex has the defined alias name. See mutex_create/2 using the
`alias' option.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the mutex. One of unlocked if the mutex
is currently not locked, or locked(_O_w_n_e_r_, _C_o_u_n_t) if mutex is
locked _C_o_u_n_t times by thread _O_w_n_e_r. Note that unless _O_w_n_e_r is
the calling thread, the locked status can change at any time.
There is no useful application of this property, except for
diagnostic purposes.
99..55 TThhrreeaadd ssuuppppoorrtt lliibbrraarryy((tthhrreeaadduuttiill))
This library defines a couple of useful predicates for demonstrating
and debugging multithreaded applications. This library is certainly
not complete.
tthhrreeaaddss
Lists all current threads and their status.
jjooiinn__tthhrreeaaddss
Join all terminated threads. For normal applications, dealing with
terminated threads must be part of the application logic, either
detaching the thread before termination or making sure it will be
joined. The predicate join_threads/0 is intended for interactive
sessions to reclaim resources from threads that died unexpectedly
during development.
iinntteerraaccttoorr
Create a new console and run the Prolog top level in this new
console. See also attach_console/0. In the Windows version a new
interactor can also be created from the Run/New thread menu.
99..55..11 DDeebbuuggggiinngg tthhrreeaaddss
Support for debugging threads is still very limited. Debug and trace
mode are flags that are local to each thread. Individual threads can
be debugged either using the graphical debugger described in section ????
(see tspy/1 and friends) or by attaching a console to the thread and
running the traditional command line debugger (see attach_console/0).
When using the graphical debugger, the debugger must be _l_o_a_d_e_d from the
main thread (for example using guitracer) before gtrace/0 can be called
from a thread.
aattttaacchh__ccoonnssoollee
If the current thread has no console attached yet, attach one
and redirect the user streams (input, output, and error) to the
new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version
swipl-win.exe rather than the console-based swipl.exe.
This predicate has a couple of useful applications. One is to
separate (debugging) I/O of different threads. Another is to start
debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this
thread:
____________________________________________________________________| |
||?-_thread_signal(10,_(attach_console,_trace)).____________________ ||
ttddeebbuugg((_+_T_h_r_e_a_d_I_d))
Prepare _T_h_r_e_a_d_I_d for debugging using the graphical tracer. This
implies installing the tracer hooks in the thread and switching the
thread to debug mode using debug/0. The call is injected into
the thread using thread_signal/2. We refer to the documentation
of this predicate for asynchronous interaction with threads. New
threads created inherit their debug mode from the thread that
created them.
ttddeebbuugg
Call tdebug/1 in all running threads.
ttnnooddeebbuugg((_+_T_h_r_e_a_d_I_d))
Disable debugging thread _T_h_r_e_a_d_I_d.
ttnnooddeebbuugg
Disable debugging in all threads.
ttssppyy((_:_S_p_e_c_, _+_T_h_r_e_a_d_I_d))
Set a spy point as spy/1 and enable the thread for debugging using
tdebug/1. Note that a spy point is a global flag on a predicate
that is visible from all threads. Spy points are honoured in all
threads that are in debug mode and ignored in threads that are in
nodebug mode.
ttssppyy((_:_S_p_e_c))
Set a spy point as spy/1 and enable debugging in all threads
using tdebug/0. Note that removing spy points can be done using
nospy/1. Disabling spy points in a specific thread is achieved by
tnodebug/1.
99..55..22 PPrrooffiilliinngg tthhrreeaaddss
In the current implementation, at most one thread can be profiled at
any moment. Any thread can call profile/1 to profile the execution of
some part of its code. The predicate tprofile/1 allows for profiling
the execution of another thread until the user stops collecting profile
data.
ttpprrooffiillee((_+_T_h_r_e_a_d_I_d))
Start collecting profile data in _T_h_r_e_a_d_I_d and ask the user to hit
<_r_e_t_u_r_n> to stop the profiler. See section ???? for details on the
execution profiler.
99..66 MMuullttiitthhrreeaaddeedd mmiixxeedd CC aanndd PPrroolloogg aapppplliiccaattiioonnss
All foreign code linked to the multithreading version of SWI-Prolog
should be thread-safe (_r_e_e_n_t_r_a_n_t) or guarded in Prolog using
with_mutex/2 from simultaneous access from multiple Prolog threads.
If you want to write mixed multithreaded C and Prolog applications
you should first familiarise yourself with writing multithreaded
applications in C (C++).
If you are using SWI-Prolog as an embedded engine in a multithreaded
application you can access the Prolog engine from multiple threads by
creating an _e_n_g_i_n_e in each thread from which you call Prolog. Without
creating an engine, a thread can only use functions that do _n_o_t use the
term_t type (for example PL_new_atom()).
The system supports two models. Section ???? describes the original
one-to-one mapping. In this schema a native thread attaches a Prolog
thread if it needs to call Prolog and detaches it when finished, as
opposed to the model from section ????, where threads temporarily use a
Prolog engine.
99..66..11 AA PPrroolloogg tthhrreeaadd ffoorr eeaacchh nnaattiivvee tthhrreeaadd ((oonnee--ttoo--oonnee))
In the one-to-one model, the thread that called PL_initialise()
has a Prolog engine attached. If another C thread in the
system wishes to call Prolog it must first attach an engine using
PL_thread_attach_engine() and call PL_thread_destroy_engine()after all
Prolog work is finished. This model is especially suitable with long
running threads that need to do Prolog work regularly. See section ????
for the alternative many-to-many model.
int PPLL__tthhrreeaadd__sseellff()
Returns the integer Prolog identifier of the engine or -1 if
the calling thread has no Prolog engine. This function is also
provided in the single-threaded version of SWI-Prolog, where it
returns -2.
int PPLL__uunniiffyy__tthhrreeaadd__iidd(_t_e_r_m___t _t_, _i_n_t _i)
Unify _t with the Prolog thread identifier for thread _i. Thread
identifiers are normally returned from PL_thread_self(). Returns
-1 if the thread does not exist or the unification fails.
int PPLL__tthhrreeaadd__aattttaacchh__eennggiinnee(_c_o_n_s_t _P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r)
Creates a new Prolog engine in the calling thread. If the calling
thread already has an engine the reference count of the engine is
incremented. The _a_t_t_r argument can be NULL to create a thread with
default attributes. Otherwise it is a pointer to a structure with
the definition below. For any field with value `0', the default
is used. The cancel field may be filled with a pointer to a
function that is called when PL_cleanup() terminates the running
Prolog engines. If this function is not present or returns FALSE
pthread_cancel() is used. The flags field defines the following
flags:
PPLL__TTHHRREEAADD__NNOO__DDEEBBUUGG
If this flag is present, the thread starts in normal no-debug
status. By default, the debug status is inherited from the
main thread.
____________________________________________________________________| |
| typedef struct |
| { unsigned long local_size; /* Stack sizes (Kbytes) */ |
| unsigned long global_size; |
| unsigned long trail_size; |
| unsigned long argument_size; |
| char * alias; /* alias name */ |
| int (*cancel)(int thread); |
| intptr_t flags; |
||}_PL_thread_attr_t;_______________________________________________ ||
The structure may be destroyed after PL_thread_attach_engine() has
returned. On success it returns the Prolog identifier for the
thread (as returned by PL_thread_self()). If an error occurs, -1
is returned. If this Prolog is not compiled for multithreading, -2
is returned.
int PPLL__tthhrreeaadd__ddeessttrrooyy__eennggiinnee()
Destroy the Prolog engine in the calling thread. Only takes
effect if PL_thread_destroy_engine() is called as many times as
PL_thread_attach_engine() in this thread. Returns TRUE on success
and FALSE if the calling thread has no engine or this Prolog does
not support threads.
Please note that construction and destruction of engines are
relatively expensive operations. Only destroy an engine if
performance is not critical and memory is a critical resource.
int PPLL__tthhrreeaadd__aatt__eexxiitt(_v_o_i_d _(_*_f_u_n_c_t_i_o_n_)_(_v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e_, _i_n_t _g_l_o_b_a_l)
Register a handle to be called as the Prolog engine is destroyed.
The handler function is called with one void * argument holding
_c_l_o_s_u_r_e. If _g_l_o_b_a_l is TRUE, the handler is installed _f_o_r _a_l_l
_t_h_r_e_a_d_s. Globally installed handlers are executed after the
thread-local handlers. If the handler is installed local for the
current thread only (_g_l_o_b_a_l == FALSE) it is stored in the same FIFO
queue as used by thread_at_exit/1.
99..66..22 PPoooolliinngg PPrroolloogg eennggiinneess ((mmaannyy--ttoo--mmaannyy))
In this model Prolog engines live as entities that are independent from
threads. If a thread needs to call Prolog it takes one of the engines
from the pool and returns the engine when done. This model is suitable
in the following identified cases:
o _C_o_m_p_a_t_i_b_i_l_i_t_y _w_i_t_h _t_h_e _s_i_n_g_l_e_-_t_h_r_e_a_d_e_d _v_e_r_s_i_o_n
In the single-threaded version, foreign threads must serialise
access to the one and only thread engine. Functions from this
section allow sharing one engine among multiple threads.
o _M_a_n_y _n_a_t_i_v_e _t_h_r_e_a_d_s _w_i_t_h _i_n_f_r_e_q_u_e_n_t _P_r_o_l_o_g _w_o_r_k
Prolog threads are expensive in terms of memory and time to create
and destroy them. For systems that use a large number of threads
that only infrequently need to call Prolog, it is better to take an
engine from a pool and return it there.
o _P_r_o_l_o_g _s_t_a_t_u_s _m_u_s_t _b_e _h_a_n_d_e_d _t_o _a_n_o_t_h_e_r _t_h_r_e_a_d
This situation has been identified by Uwe Lesta when creating
a .NET interface for SWI-Prolog. .NET distributes work for an
active internet connection over a pool of threads. If a Prolog
engine contains the state for a connection, it must be possible to
detach the engine from a thread and re-attach it to another thread
handling the same connection.
PL_engine_t PPLL__ccrreeaattee__eennggiinnee(_P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r_i_b_u_t_e_s)
Create a new Prolog engine. _a_t_t_r_i_b_u_t_e_s is described with
PL_thread_attach_engine(). Any thread can make this call after
PL_initialise() returns success. The returned engine is not
attached to any thread and lives until PL_destroy_engine()is used
on the returned handle.
In the single-threaded version this call always returns NULL,
indicating failure.
int PPLL__ddeessttrrooyy__eennggiinnee(_P_L___e_n_g_i_n_e___t _e)
Destroy the given engine. Destroying an engine is only allowed if
the engine is not attached to any thread or attached to the calling
thread. On success this function returns TRUE, on failure the
return value is FALSE.
int PPLL__sseett__eennggiinnee(_P_L___e_n_g_i_n_e___t _e_n_g_i_n_e_, _P_L___e_n_g_i_n_e___t _*_o_l_d)
Make the calling thread ready to use _e_n_g_i_n_e. If _o_l_d is non-NULL
the current engine associated with the calling thread is stored
at the given location. If _e_n_g_i_n_e equals PL_ENGINE_MAIN the
initial engine is attached to the calling thread. If _e_n_g_i_n_e is
PL_ENGINE_CURRENT the engine is not changed. This can be used
to query the current engine. This call returns PL_ENGINE_SET if
the engine was switched successfully, PL_ENGINE_INVAL if _e_n_g_i_n_e is
not a valid engine handle and PL_ENGINE_INUSE if the engine is
currently in use by another thread.
Engines can be changed at any time. For example, it is allowed
to select an engine to initiate a Prolog goal, detach it and at a
later moment execute the goal from another thread. Note, however,
that the term_t, qid_t and fid_t types are interpreted relative to
the engine for which they are created. Behaviour when passing one
of these types from one engine to another is undefined.
In the single-threaded version this call only succeeds if _e_n_g_i_n_e
refers to the main engine.
99..77 MMuullttiitthhrreeaaddiinngg aanndd tthhee XXPPCCEE ggrraapphhiiccss ssyysstteemm
GUI applications written in XPCE can benefit from Prolog threads if
they need to do expensive computations that would otherwise block the
UI. The XPCE message passing system is guarded with a single _m_u_t_e_x,
which synchronises both access from Prolog and activation through the
GUI. In MS-Windows, GUI events are processed by the thread that created
the window in which the event occurred, whereas in Unix/X11 they
are processed by the thread that dispatches messages. In practice,
the most feasible approach to graphical Prolog implementations is to
control XPCE from a single thread and deploy other threads for (long)
computations.
Traditionally, XPCE runs in the foreground (main) thread. We are
working towards a situation where XPCE can run comfortably in a
separate thread. A separate XPCE thread can be created using
pce_dispatch/1. It is also possible to create this thread as the (pce)
is loaded by setting the xpce_threaded to true.
Threads other than the thread in which XPCE runs are provided with two
predicates to communicate with XPCE.
iinn__ppccee__tthhrreeaadd((_:_G_o_a_l)) _[_d_e_t_]
Assuming XPCE is running in the foreground thread, this call gives
background threads the opportunity to make calls to the XPCE
thread. A call to in_pce_thread/1 succeeds immediately, copying
_G_o_a_l to the XPCE thread. _G_o_a_l is added to the XPCE event queue
and executed synchronous to normal user events like typing and
clicking.
iinn__ppccee__tthhrreeaadd__ssyynncc((_:_G_o_a_l)) _[_s_e_m_i_d_e_t_]
Same as in_pce_thread/1, but wait for _G_o_a_l to be completed.
Success depends on the success of executing _G_o_a_l. Variable
bindings inside _G_o_a_l are visible to the caller, but it should
be noted that the values are being _c_o_p_i_e_d. If _G_o_a_l throws an
exception, this exception is re-thrown by in_pce_thread/1. If the
calling thread is the `pce thread', in_pce_thread_sync/1 executes a
direct meta-call. See also pce_thread/1.
Note that in_pce_thread_sync/1 is expensive because it re-
quires copying and thread communication. For example,
in_pce_thread_synctrue runs at approximately 50,000 calls per second
(AMD Phenom 9600B, Ubuntu 11.04).
ppccee__ddiissppaattcchh((_+_O_p_t_i_o_n_s))
Create a Prolog thread with the alias name pce for XPCE event
handling. In the X11 version this call creates a thread that
executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE
event-handling thread has the alias pce. _O_p_t_i_o_n_s specifies the
thread attributes as thread_create/3.
CChhaapptteerr 1100.. CCOORROOUUTTIINNIINNGG UUSSIINNGG PPRROOLLOOGG EENNGGIINNEESS
Where the term _c_o_r_o_u_t_i_n_e in Prolog typically refer to hooks triggered
by _a_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s (section ????), SWI-Prolog provides two other
forms of coroutines. Delimited continuations (see section ????) allow
creating coroutines that run in the same Prolog engine by capturing
and restarting the _c_o_n_t_i_n_u_a_t_i_o_n. This section discusses _e_n_g_i_n_e_s, also
known as _i_n_t_e_r_a_c_t_o_r_s. The idea was pinned by Paul Tarau [??]. The API
described in this chapter has been established together with Paul Tarau
and Paulo Moura.
Engines are closely related to _t_h_r_e_a_d_s (section ????). An engine is a
Prolog virtual machine that has its own stacks and (virtual) machine
state. Unlike normal Prolog threads though, they are not associated
with an operating system thread. Instead, you _a_s_k an engine for a next
answer (engine_next/2). Asking an engine for the next answer attaches
the engine to the calling operating system thread and cause it to run
until the engine calls engine_yield/1 or its associated goal completes
with an answer, failure or an exception. After the engine yields or
completes, it is detached from the operating system thread and the
answer term is made available to the calling thread. Communicating
with an engine is similar to communicating with a Prolog system though
the terminal. In this sense engines are related to _P_e_n_g_i_n_e_s as
provided by library pengines, but where Pengines aim primarily at
accessing Prolog engines through the network, engines are in-process
entities.
1100..11 EExxaammpplleess uussiinngg eennggiinneess
We introduce engines by describing application areas and providing
simple example programs. The predicates are defined in section ????. We
identify the following application areas for engines.
1. Aggregating solutions from one or more goals. See section ????.
2. Access the terms produced in _f_o_r_w_a_r_d _e_x_e_c_u_t_i_o_n through backtracking
without collecting all of them first. Section ???? illustrates this
as well.
3. State accumulation and sharing. See section ????.
4. Scalable many-agent applications. See section ????.
1100..11..11 AAggggrreeggaattiioonn uussiinngg eennggiinneess
Engines can be used to reason about solutions produced by a goal
through backtracking. In this scenario we create an engine with the
goal we wish to backtrack over and we enumerate all its solution using
engine_next/1. This usage scenario competes with the all solution
predicates (findall/3, bagof/3, etc.) and the predicates from library
aggregate. Below we implement findall/3 using engines.
________________________________________________________________________| |
|findall(Templ, Goal, List) :- |
| setup_call_cleanup( |
| engine_create(Templ, Goal, E), |
| get_answers(E, List), |
| engine_destroy(E)). |
| |
|get_answers(E, [H|T]) :- |
| engine_next(E, H), !, |
| get_answers(E, T). |
|get_answers(_,|[]).____________________________________________________ | |
The above is not a particularly attractive alternative for the built-in
findall/3. It is mostly slower due to time required to create
and destroy the engine as well as the (currently) higher overhead
of copying terms between engines than the overhead required by the
dedicated representation used by findall/3.
It gets more interesting if we wish to combine answers from multiple
backtracking predicates. Assume we have two predicates that, on
backtracking, return ordered solutions and we wish to merge the two
answer streams into a single ordered stream of answers. The solution
in classical Prolog is below. It collects both answer sets, merges
them using ordered set merging and extract the answers. The code
is clean and short, but it doesn't produce any answers before both
generaters are fully enumerated and it uses memory that is proportional
to the combined set of answers.
________________________________________________________________________| |
|:- meta_predicate merge(?,0, ?,0, -). |
| |
|merge_answers(T1,G1, T2,G2, A) :- |
| findall(T1, G1, L1), |
| findall(T2, G2, L2), |
| ord_union(L1, L2, Ordered), |
||_______member(A,_Ordered).____________________________________________ ||
We can achieve the same using engines. We create two engines to
generate the solutions to both our generators. Now, we cas ask both
for an answer, put the smallest in the answer set and ask the engine
that created the smallest for its next answer, etc. This way we can
create an ordered list of answers as above, but now without creating
intermediate lists. We can avoid creating the intermediate list by
introducing a third engine that controls the two generators and _y_i_e_l_d_s
the answers rather than putting them in a list. This is a general
example of turning a predicate that builds a set of terms into a
non-deterministic predicate that produces the results on backtracking.
The full code is below. Merging the answers of two generators, each
generating a set of 10,000 integers is currently about 20% slower than
the code above, but the engine-based solution runs in constant space
and generates the first solution immediately after both our generators
have produced their first solution.
________________________________________________________________________| |
|:- meta_predicate merge(?,0, ?,0, -). |
| |
|merge(T1,G1, T2,G2, A) :- |
| engine_create(A, merge(T1,G1, T2,G2), E), |
| repeat, |
| ( engine_next(E, A) |
| -> true |
| ; !, fail |
| ). |
| |
|merge(T1,G1, T2,G2) :- |
| engine_create(T1, G1, E1), |
| engine_create(T2, G2, E2), |
| ( engine_next(E1, S1) |
| -> ( engine_next(E2, S2) |
| -> order_solutions(S1, S2, E1, E2) |
| ; yield_remaining(S1, E1) |
| ) |
| ; engine_next(E2, S2), |
| yield_remaining(S2, E2) |
| ). |
| |
|order_solutions(S1, S2, E1, E2) :- !, |
| ( S1 @=< S2 |
| -> engine_yield(S1), |
| ( engine_next(E1, S11) |
| -> order_solutions(S11, S2, E1, E2) |
| ; yield_remaining(S2, E2) |
| ) |
| ; engine_yield(S2), |
| ( engine_next(E2, S21) |
| -> order_solutions(S1, S21, E1, E2) |
| ; yield_remaining(S1, E1) |
| ) |
| ). |
| |
|yield_remaining(S, E) :- |
| engine_yield(S), |
| engine_next(E, S1), |
||_______yield_remaining(S1,_E).________________________________________ ||
1100..11..22 SSttaattee aaccccuummuullaattiioonn uussiinngg eennggiinneess
Applications that need to manage a state can do so by passing the state
around in an additional argument, storing it in a global variable or
update it in the dynamic database using assertz/1 and retract/1. Both
using an additional argument and a global variable (see b_setval/2),
make the state subject to backtracking. This may or may not be
desirable. If having a state is that subject to backtracking is
required, using an additional argument or backtrackable global variable
is the right approach. Otherwise, non-backtrackable global variables
(nb_setval/2) and dynamic database come into the picture, where global
variables are always local to a thread and the dynamic database may or
may not be shared between threads (see thread_local/1).
Engines bring an alternative that packages a state inside the engine
where it is typically represented in a (threaded) Prolog variable. The
state may be updated, while controlled backtracking to a previous state
belongs to the possibilities. It can be accessed and updated by anyone
with access to the engines' handle. Using an engine to represent state
has the following advantages:
o The programming style needed inside the engine is much more
`Prolog friendly', using engine_fetch/1 to read a request and
engine_yield/1 to reply to it.
o The state is packaged and subject to (atom) garbage collection.
o The state may be accessed from multiple threads. Access to the
state is synchronized without the need for explicit locks.
The example below implements a shared priority heap based on library
heaps. The predicate update_heap/1 shows the typical update loop for
maintaining state inside an engine: fetch a command, update the state,
yield with the reply and call the updater recursively. The update
step is guarded against failure. For robustness one may also guard
it against exceptions using catch/3. Note that heap_get/2 passes the
_P_r_i_o_r_i_t_y and _K_e_y it wishes to delete from the heap such that if the
unification fails, the heap remains unchanged.
The resulting heap is a global object with either a named or anonymous
handle that evolves independently from the Prolog thread(s) that access
it. If the heap is anonymous, it is subject to (atom) garbage
collection.
________________________________________________________________________| |
|:- use_module(library(heaps)). |
| |
|create_heap(E) :- |
| empty_heap(H), |
| engine_create(_, update_heap(H), E). |
| |
|update_heap(H) :- |
| engine_fetch(Command), |
| ( update_heap(Command, Reply, H, H1) |
| -> true |
| ; H1 = H, |
| Reply = false |
| ), |
| engine_yield(Reply), |
| update_heap(H1). |
| |
|update_heap(add(Priority, Key), true, H0, H) :- |
| add_to_heap(H0, Priority, Key, H). |
|update_heap(get(Priority, Key), Priority-Key, H0, H) :- |
| get_from_heap(H0, Priority, Key, H). |
| |
|heap_add(Priority, Key, E) :- |
| engine_post(E, add(Priority, Key), true). |
| |
|heap_get(Priority, Key, E) :- |
||_______engine_post(E,_get(Priority,_Key),_Priority-Key).______________ ||
1100..11..33 SSccaallaabbllee mmaannyy--aaggeenntt aapppplliiccaattiioonnss
The final application area we touch are agent systems were we wish to
capture an agent in a Prolog goal. Such systems can be implemented
using threads (see section ????) that use thread_send_message/2 and
thread_get_message/1 to communicate. The main problem is that each
thread is associated by an operating system thread. OS threads are,
depending on the OS, relatively expensive. Scalability of this design
typically ends, depending on OS and hardware, somewhere between 1,000
and 100,000 agents.
Engines provide an alternative. A detached Prolog engine currently
requires approximately 20 Kbytes memory on 64 bit hardware, growing
with the size of the Prolog stacks. The Prolog stacks may be minimised
by calling garbage_collect/0 followed by trim_stacks/0, providing a _d_e_e_p
_s_l_e_e_p mode. The set of agents, each represented by an engine can be
controlled by a static or dynamic pool of threads. Scheduling the
execution of agents and their communication is completely open and can
be optimised to satisfy the requirements of the application.
This section needs an example. Preferably something that fits
on one page and would not scale using threads. Engines might
work nice to implement _A_n_t_r_a_n_k_: _A_n _a_n_t _c_o_l_o_n_y _a_l_g_o_r_i_t_h_m _f_o_r
_r_a_n_k_i_n_g _w_e_b _p_a_g_e_s.
1100..22 EEnnggiinnee rreessoouurrccee uussaaggee
A Prolog engine consists of a virtual machine state that includes
the Prolog stacks. An `empty' engine requires aout 20 KBytes
of memory. This grows when the engine requires additional stack
space. Anonymous engines are subject to atom garbage collection (see
garbage_collect_atoms/0). Engines may be reclaimed immediately using
engine_destroy/1. Calling engine_destroy/1 destroys the virtual machine
state, while the handle itself is left to atom garbage collection.
The virtual machine is reclaimed as soon as an engine produced its
last result, failed or raised an exception. This implies that it is
only advantageous to call engine_destroy/1 explicitly if you are not
interested in further answers.
Engines that are expected to be left in inactive state for a prelonged
time can be minimized by calling garbage_collect/0 and trimm_stacks/0
(in that order) before calling engine_yield/1 or succeeding.
1100..33 EEnnggiinnee pprreeddiiccaattee rreeffeerreennccee
This section documents the built-in predicates that deal with engines.
In addition to these, most predicates dealing with threads and message
queue can be used to access engines.
eennggiinnee__ccrreeaattee((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _?_E_n_g_i_n_e)) _[_d_e_t_]
eennggiinnee__ccrreeaattee((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_E_n_g_i_n_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a new engine and unify _E_n_g_i_n_e with a handle to it. _T_e_m_p_l_a_t_e
and _G_o_a_l form a pair similar to findall/3: the instantiation
of _T_e_m_p_l_a_t_e becomes available though engine_next/2 after _G_o_a_l
succeeds. _O_p_t_i_o_n_s is a list of the following options. See
thread_create/3 for details.
aalliiaass((_+_N_a_m_e))
Give the engine a name. _N_a_m_e must be an atom. If this option
is provided, _E_n_g_i_n_e is unified with _N_a_m_e. The name space for
engines is shared with threads and mutexes.
gglloobbaall((_K_B_y_t_e_s))
Set the limit for the global stack in KBytes.
llooccaall((_K_B_y_t_e_s))
Set the limit for the local stack in KBytes.
ttrraaiill((_K_B_y_t_e_s))
Set the limit for the trail stack in KBytes.
The _E_n_g_i_n_e argument of engine_create/3 may be instantiated to an
atom, creating an engine with the given alias.
eennggiinnee__ddeessttrrooyy((_+_E_n_g_i_n_e)) _[_d_e_t_]
Destroy _E_n_g_i_n_e.
eennggiinnee__nneexxtt((_+_E_n_g_i_n_e_, _-_T_e_r_m)) _[_s_e_m_i_d_e_t_]
Ask the engine _E_n_g_i_n_e to produce a next answer. On this first call
on a specific engine, the _G_o_a_l of the engine is started. If a
previous call returned an answer through completion, this causes
the engine to backtrack and finally, if the engine produces a
previous result using engine_yield/1, execution proceeds after the
engine_yield/1 call.
eennggiinnee__nneexxtt__rreeiiffiieedd((_+_E_n_g_i_n_e_, _-_T_e_r_m)) _[_d_e_t_]
Similar to engine_next/2, but instead of success, failure or
or raising an exception, _T_e_r_m is unified with one of terms
below. This predicate is provided primarily for compatibility with
Lean Prolog.
tthhee((_A_n_s_w_e_r))
Goal succeeded with _T_e_m_p_l_a_t_e bound to _A_n_s_w_e_r or Goal yielded
with a term _A_n_s_w_e_r.
nnoo
Goal failed.
eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
Goal raises the error _E_x_c_e_p_t_i_o_n.
eennggiinnee__ppoosstt((_+_E_n_g_i_n_e_, _+_T_e_r_m)) _[_d_e_t_]
Make _T_e_r_m available to engine_fetch/1inside the _E_n_g_i_n_e. This call
must be followed by a call to engine_next/2 and the engine must
call engine_fetch/1.
eennggiinnee__ppoosstt((_+_E_n_g_i_n_e_, _+_T_e_r_m_, _-_R_e_p_l_y)) _[_d_e_t_]
Combines engine_post/2 and engine_next/2.
eennggiinnee__yyiieelldd((_+_T_e_r_m)) _[_d_e_t_]
Called from within the engine, causing engine_next/2 in the caller
to return with _T_e_r_m. A subsequent call to engine_next/2 causes
engine_yield/1 to `return'. This predicate can only be called if
the engine is not involved in a callback from C, i.e., when the
engine calls a predicate defined in C that calls back Prolog it is
not possible to use this predicate. Trying to do so results in a
permission_error exception.
eennggiinnee__ffeettcchh((_-_T_e_r_m)) _[_d_e_t_]
Called from within the engine to fetch the term made available
through engine_post/2or engine_post/3. If no term is available an
existence_error exception is raised.
eennggiinnee__sseellff((_-_E_n_g_i_n_e)) _[_d_e_t_]
Called from within the engine to get access to the handle to the
engine itself.
iiss__eennggiinnee((_@_T_e_r_m)) _[_s_e_m_i_d_e_t_]
True if _T_e_r_m is a reference to or the alias name of an existing
engine.
ccuurrrreenntt__eennggiinnee((_-_E_n_g_i_n_e)) _[_n_o_n_d_e_t_]
True when _E_n_g_i_n_e is an existing engine.
CChhaapptteerr 1111.. FFOORREEIIGGNN LLAANNGGUUAAGGEE IINNTTEERRFFAACCEE
SWI-Prolog offers a powerful interface to C [??]. The main design
objectives of the foreign language interface are flexibility and
performance. A foreign predicate is a C function that has the same
number of arguments as the predicate represented. C functions are
provided to analyse the passed terms, convert them to basic C types as
well as to instantiate arguments using unification. Non-deterministic
foreign predicates are supported, providing the foreign function with a
handle to control backtracking.
C can call Prolog predicates, providing both a query interface and an
interface to extract multiple solutions from a non-deterministic Prolog
predicate. There is no limit to the nesting of Prolog calling C,
calling Prolog, etc. It is also possible to write the `main' in C and
use Prolog as an embedded logical engine.
1111..11 OOvveerrvviieeww ooff tthhee IInntteerrffaaccee
A special include file called SWI-Prolog.h should be included with each
C source file that is to be loaded via the foreign interface. The
installation process installs this file in the directory include in the
SWI-Prolog home directory (?- current_prolog_flag(home, Home).). This C
header file defines various data types, macros and functions that can
be used to communicate with SWI-Prolog. Functions and macros can be
divided into the following categories:
o Analysing Prolog terms
o Constructing new terms
o Unifying terms
o Returning control information to Prolog
o Registering foreign predicates with Prolog
o Calling Prolog from C
o Recorded database interactions
o Global actions on Prolog (halt, break, abort, etc.)
1111..22 LLiinnkkiinngg FFoorreeiiggnn MMoodduulleess
Foreign modules may be linked to Prolog in two ways. Using _s_t_a_t_i_c
_l_i_n_k_i_n_g, the extensions, a (short) file defining main() which attaches
the extension calls to Prolog, and the SWI-Prolog kernel distributed
as a C library, are linked together to form a new executable. Using
_d_y_n_a_m_i_c _l_i_n_k_i_n_g, the extensions are linked to a shared library (.so
file on most Unix systems) or dynamic link library (.DLL file on
Microsoft platforms) and loaded into the running Prolog process.
1111..22..11 WWhhaatt lliinnkkiinngg iiss pprroovviiddeedd??
The _s_t_a_t_i_c _l_i_n_k_i_n_g schema can be used on all versions of SWI-Prolog.
Whether or not dynamic linking is supported can be deduced from the
Prolog flag open_shared_object (see current_prolog_flag/2). If this
Prolog flag yields true, open_shared_object/2 and related predicates are
defined. See section ???? for a suitable high-level interface to these
predicates.
1111..22..22 WWhhaatt kkiinndd ooff llooaaddiinngg sshhoouulldd II bbee uussiinngg??
All described approaches have their advantages and disadvantages.
Static linking is portable and allows for debugging on all platforms.
It is relatively cumbersome and the libraries you need to pass to the
linker may vary from system to system, though the utility program
swipl-ld described in section ???? often hides these problems from the
user.
Loading shared objects (DLL files on Windows) provides sharing and
protection and is generally the best choice. If a saved state is
created using qsave_program/[1,2], an initialization/1 directive may be
used to load the appropriate library at startup.
Note that the definition of the foreign predicates is the same,
regardless of the linking type used.
1111..22..33 lliibbrraarryy((sshhlliibb)):: UUttiilliittyy lliibbrraarryy ffoorr llooaaddiinngg ffoorreeiiggnn oobbjjeeccttss
((DDLLLLss,, sshhaarreedd oobbjjeeccttss))
This section discusses the functionality of the (autoload)
library(shlib), providing an interface to manage shared libraries. We
describe the procedure for using a foreign resource (DLL in Windows and
shared object in Unix) called mylib.
First, one must assemble the resource and make it compatible to
SWI-Prolog. The details for this vary between platforms. The
swipl-ld(1) utility can be used to deal with this in a portable manner.
The typical commandline is:
________________________________________________________________________| |
|swipl-ld|-o_mylib_file.{c,o,cc,C}_...__________________________________ | |
Make sure that one of the files provides a global function
install_mylib() that initialises the module using calls to
PL_register_foreign(). Here is a simple example file mylib.c, which
creates a Windows MessageBox:
________________________________________________________________________| |
|#include <windows.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|pl_say_hello(term_t to) |
|{ char *a; |
| |
| if ( PL_get_atom_chars(to, &a) ) |
| { MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL); |
| |
| PL_succeed; |
| } |
| |
| PL_fail; |
|} |
| |
|install_t |
|install_mylib() |
|{ PL_register_foreign("say_hello", 1, pl_say_hello, 0); |
|}|_____________________________________________________________________ | |
Now write a file mylib.pl:
________________________________________________________________________| |
|:- module(mylib, [ say_hello/1 ]). |
|:-|use_foreign_library(foreign(mylib)).________________________________ | |
The file mylib.pl can be loaded as a normal Prolog file and provides
the predicate defined in C.
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c)) _[_d_e_t_]
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After loading the _E_n_t_r_y function
is called without arguments. The default entry function is
composed from =install_=, followed by the file base-name. E.g.,
the load-call below calls the function install_mylib(). If the
platform prefixes extern functions with =_=, this prefix is added
before calling.
____________________________________________________________________| |
| ... |
| load_foreign_library(foreign(mylib)), |
||______..._________________________________________________________ ||
___________________________________________________________Arguments_
_F_i_l_e_S_p_e_c is a specification for absolute_file_name/3.
If searching the file fails, the plain name
is passed to the OS to try the default
method of the OS for locating foreign objects.
The default definition of file_search_path/2
searches <prolog home>/lib/<arch> on Unix and
<prolog home>/bin on Windows.
SSeeee aallssoo use_foreign_library/1,2 are intended for use in
directives.
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load and install a foreign library as load_foreign_library/1,2 and
register the installation using initialization/2 with the option
now. This is similar to using:
____________________________________________________________________| |
||:-_initialization(load_foreign_library(foreign(mylib))).__________ ||
but using the initialization/1 wrapper causes the library to be
loaded _a_f_t_e_r loading of the file in which it appears is completed,
while use_foreign_library/1 loads the library _i_m_m_e_d_i_a_t_e_l_y. I.e.
the difference is only relevant if the remainder of the file uses
functionality of the C-library.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_x_i_t_:_a_t_o_m)) _[_d_e_t_]
Unload a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After calling the _E_x_i_t function,
the shared object is removed from the process. The default
exit function is composed from =uninstall_=, followed by the file
base-name.
ccuurrrreenntt__ffoorreeiiggnn__lliibbrraarryy((_?_F_i_l_e_, _?_P_u_b_l_i_c))
Query currently loaded shared libraries.
rreellooaadd__ffoorreeiiggnn__lliibbrraarriieess
Reload all foreign libraries loaded (after restore of a state
created using qsave_program/2.
1111..22..44 LLooww--lleevveell ooppeerraattiioonnss oonn sshhaarreedd lliibbrraarriieess
The interface defined in this section allows the user to load shared
libraries (.so files on most Unix systems, .dll files on Windows).
This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more)
or shl_open(2) (HP/UX). It is advised to use the predicates from
section ???? in your application.
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e))
_F_i_l_e is the name of a shared object file (DLL in MS-Windows).
This file is attached to the current process, and _H_a_n_d_l_e
is unified with a handle to the library. Equivalent to
open_shared_object(File, Handle, []). See also open_shared_object/3
and load_foreign_library/1.
On errors, an exception shared_object(_A_c_t_i_o_n_, _M_e_s_s_a_g_e) is raised.
_M_e_s_s_a_g_e is the return value from dlerror().
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e_, _+_O_p_t_i_o_n_s))
As open_shared_object/2, but allows for additional flags to be
passed. _O_p_t_i_o_n_s is a list of atoms. now implies the symbols are
resolved immediately rather than lazy (default). global implies
symbols of the loaded object are visible while loading other shared
objects (by default they are local). Note that these flags may not
be supported by your operating system. Check the documentation of
dlopen() or equivalent on your operating system. Unsupported flags
are silently ignored.
cclloossee__sshhaarreedd__oobbjjeecctt((_+_H_a_n_d_l_e))
Detach the shared object identified by _H_a_n_d_l_e.
ccaallll__sshhaarreedd__oobbjjeecctt__ffuunnccttiioonn((_+_H_a_n_d_l_e_, _+_F_u_n_c_t_i_o_n))
Call the named function in the loaded shared library. The function
is called without arguments and the return value is ignored.
Normally this function installs foreign language predicates using
calls to PL_register_foreign().
1111..22..55 SSttaattiicc LLiinnkkiinngg
Below is an outline of the file structure required for statically
linking SWI-Prolog with foreign extensions. .../swipl refers to the
SWI-Prolog home directory (see the Prolog flag home). <_a_r_c_h> refers to
the architecture identifier that may be obtained using the Prolog flag
arch.
.../swipl/runtime/<_a_r_c_h>/libswipl.a SWI-Library
.../swipl/include/SWI-Prolog.h Include file
.../swipl/include/SWI-Stream.h Stream I/O include file
.../swipl/include/SWI-Exports Export declarations (AIX only)
.../swipl/include/stub.c Extension stub
The definition of the foreign predicates is the same as for dynamic
linking. Unlike with dynamic linking, however, there is no
initialisation function. Instead, the file .../swipl/include/stub.c
may be copied to your project and modified to define the foreign
extensions. Below is stub.c, modified to link the lowercase example
described later in this chapter:
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|extern foreign_t pl_lowercase(term, term); |
| |
|PL_extension predicates[] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "lowercase", 2 pl_lowercase, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|}; |
| |
| |
|int |
|main(int argc, char **argv) |
|{ PL_register_extensions(predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
Now, a new executable may be created by compiling this file and
linking it to libpl.a from the runtime directory and the libraries
required by both the extensions and the SWI-Prolog kernel. This
may be done by hand, or by using the swipl-ld utility described in
section ????. If the linking is performed by hand, the command line
option -dump-runtime-variables (see section ????) can be used to obtain
the required paths, libraries and linking options to link the new
executable.
1111..33 IInntteerrffaaccee DDaattaa TTyyppeess
1111..33..11 TTyyppee term_t:: aa rreeffeerreennccee ttoo aa PPrroolloogg tteerrmm
The principal data type is term_t. Type term_t is what Quintus calls
QP_term_ref. This name indicates better what the type represents: it
is a _h_a_n_d_l_e for a term rather than the term itself. Terms can only be
represented and manipulated using this type, as this is the only safe
way to ensure the Prolog kernel is aware of all terms referenced by
foreign code and thus allows the kernel to perform garbage collection
and/or stack-shifts while foreign code is active, for example during a
callback from C.
A term reference is a C unsigned long, representing the offset of a
variable on the Prolog environment stack. A foreign function is passed
term references for the predicate arguments, one for each argument. If
references for intermediate results are needed, such references may be
created using PL_new_term_ref() or PL_new_term_refs(). These references
normally live till the foreign function returns control back to Prolog.
Their scope can be explicitly limited using PL_open_foreign_frame() and
PL_close_foreign_frame()/PL_discard_foreign_frame().
A term_t always refers to a valid Prolog term (variable, atom, integer,
float or compound term). A term lives either until backtracking
takes us back to a point before the term was created, the garbage
collector has collected the term, or the term was created after a
PL_open_foreign_frame()and PL_discard_foreign_frame()has been called.
The foreign interface functions can either _r_e_a_d, _u_n_i_f_y or _w_r_i_t_e to
term references. In this document we use the following notation for
arguments of type term_t:
term_t +t Accessed in read-mode. The `+' indicates the
argument is `input'.
term_t -t Accessed in write-mode.
term_t ?t Accessed in unify-mode.
WWAARRNNIINNGG Term references that are accessed in `write' (-) mode will
refer to an invalid term if the term is allocated on the global stack
and backtracking takes us back to a point before the term was written.
Compounds, large integers, floats and strings are all allocated on the
global stack. Below is a typical scenario where this may happen. The
first solution writes a term extracted from the solution into _a. After
the system backtracks due to PL_next_solution(), _a becomes a reference
to a term that no longer exists.
________________________________________________________________________| |
|term_t a = PL_new_term_ref(); |
|... |
|query = PL_open_query(...); |
|while(PL_next_solution(query)) |
|{ PL_get_arg(i, ..., a); |
|} |
|PL_close_query(query);|________________________________________________ | |
There are two solutions to this problem. One is to scope the term
reference using PL_open_foreign_frame()and PL_close_foreign_frame() and
makes sure it goes out of scope before backtracking happens. The
other is to clear the term reference using PL_put_variable() before
backtracking.
Term references are obtained in any of the following ways:
o _P_a_s_s_e_d _a_s _a_r_g_u_m_e_n_t
The C functions implementing foreign predicates are passed their
arguments as term references. These references may be read or
unified. Writing to these variables causes undefined behaviour.
o _C_r_e_a_t_e_d _b_y PL_new_term_ref()
A term created by PL_new_term_ref() is normally used to build
temporary terms or to be written by one of the interface functions.
For example, PL_get_arg() writes a reference to the term argument
in its last argument.
o _C_r_e_a_t_e_d _b_y PL_new_term_refs(_i_n_t _n)
This function returns a set of term references with the same
characteristics as PL_new_term_ref(). See PL_open_query().
o _C_r_e_a_t_e_d _b_y PL_copy_term_ref(_t_e_r_m___t _t)
Creates a new term reference to the same term as the argument. The
term may be written to. See figure ????.
Term references can safely be copied to other C variables of type
term_t, but all copies will always refer to the same term.
term_t PPLL__nneeww__tteerrmm__rreeff()
Return a fresh reference to a term. The reference is allocated
on the _l_o_c_a_l stack. Allocating a term reference may trigger a
stack-shift on machines that cannot use sparse memory management
for allocation of the Prolog stacks. The returned reference
describes a variable.
term_t PPLL__nneeww__tteerrmm__rreeffss(_i_n_t _n)
Return _n new term references. The first term reference is
returned. The others are _t +1, _t +2, etc. There are two reasons
for using this function. PL_open_query()expects the arguments as
a set of consecutive term references, and _v_e_r_y time-critical code
requiring a number of term references can be written as:
____________________________________________________________________| |
| pl_mypredicate(term_t a0, term_t a1) |
| { term_t t0 = PL_new_term_refs(2); |
| term_t t1 = t0+1; |
| |
| ... |
||}_________________________________________________________________ ||
term_t PPLL__ccooppyy__tteerrmm__rreeff(_t_e_r_m___t _f_r_o_m)
Create a new term reference and make it point initially to the same
term as _f_r_o_m. This function is commonly used to copy a predicate
argument to a term reference that may be written.
void PPLL__rreesseett__tteerrmm__rreeffss(_t_e_r_m___t _a_f_t_e_r)
Destroy all term references that have been created after _a_f_t_e_r,
including _a_f_t_e_r itself. Any reference to the invalidated term
references after this call results in undefined behaviour.
Note that returning from the foreign context to Prolog will
reclaim all references used in the foreign context. This call
is only necessary if references are created inside a loop that
never exits back to Prolog. See also PL_open_foreign_frame(),
PL_close_foreign_frame() and PL_discard_foreign_frame().
1111..33..11..11 IInntteerraaccttiioonn wwiitthh tthhee ggaarrbbaaggee ccoolllleeccttoorr aanndd ssttaacckk--sshhiifftteerr
Prolog implements two mechanisms for avoiding stack overflow: garbage
collection and stack expansion. On machines that allow for it, Prolog
will use virtual memory management to detect stack overflow and expand
the runtime stacks. On other machines Prolog will reallocate the
stacks and update all pointers to them. To do so, Prolog needs to
know which data is referenced by C code. As all Prolog data known by
C is referenced through term references (term_t), Prolog has all the
information necessary to perform its memory management without special
precautions from the C programmer.
1111..33..22 OOtthheerr ffoorreeiiggnn iinntteerrffaaccee ttyyppeess
aattoomm__tt An atom in Prolog's internal representation. Atoms are pointers
to an opaque structure. They are a unique representation for
represented text, which implies that atom A represents the same
text as atom B if and only if A and B are the same pointer.
Atoms are the central representation for textual constants in
Prolog. The transformation of a character string C to an atom
implies a hash-table lookup. If the same atom is needed often, it
is advised to store its reference in a global variable to avoid
repeated lookup.
ffuunnccttoorr__tt A functor is the internal representation of a name/arity
pair. They are used to find the name and arity of a compound term
as well as to construct new compound terms. Like atoms they live
for the whole Prolog session and are unique.
pprreeddiiccaattee__tt Handle to a Prolog predicate. Predicate handles live
forever (although they can lose their definition).
qqiidd__tt Query identifier. Used by PL_open_query(), PL_next_solution() and
PL_close_query() to handle backtracking from C.
ffiidd__tt Frame identifier. Used by PL_open_foreign_frame() and
PL_close_foreign_frame().
mmoodduullee__tt A module is a unique handle to a Prolog module. Modules are
used only to call predicates in a specific module.
ffoorreeiiggnn__tt Return type for a C function implementing a Prolog predicate.
ccoonnttrrooll__tt Passed as additional argument to non-deterministic foreign
functions. See PL_retry*() and PL_foreign_context*().
iinnssttaallll__tt Type for the install() and uninstall() functions of shared or
dynamic link libraries. See section ????.
iinntt6644__tt Actually part of the C99 standard rather than Prolog. As
of version 5.5.6, Prolog integers are 64-bit on all hardware.
The C99 type int64_t is defined in the stdint.h standard header
and provides platform-independent 64-bit integers. Portable code
accessing Prolog should use this type to exchange integer values.
Please note that PL_get_long() can return FALSE on Prolog integers
that cannot be represented as a C long. Robust code should not
assume any of the integer fetching functions to succeed, _e_v_e_n if
the Prolog term is known to be an integer.
1111..33..22..11 PPLL__AARRIITTYY__AASS__SSIIZZEE
As of SWI-Prolog 7.3.12, the arity of terms has changed from int to
size_t. To deal with this transition, all affecting functions have
two versions, where the old name exchanges the arity as int and a new
function with name *_sz() exchanges the arity as size_t. If the C
macro PL_ARITY_AS_SIZE is defined before loading SWI-Prolog.h, macros are
put in place that map the old names to the new functions. Without
precautions, the old code is compatible, but the following warning is
printed when compiling:
________________________________________________________________________| |
|#warning "Term arity has changed from int to size_t." |
|#warning|"Please_update_your_code_and_use_#define_PL_ARITY_AS_SIZE_1."_ | |
To make the code compile silently again, include SWI-Prolog.h as below
and change the types you use to represent arity from int to size_t.
Please be aware that size_t is _u_n_s_i_g_n_e_d.
________________________________________________________________________| |
|#define PL_ARITY_AS_SIZE |
|#include|<SWI-Prolog.h>________________________________________________ | |
1111..44 TThhee FFoorreeiiggnn IInncclluuddee FFiillee
1111..44..11 AArrgguummeenntt PPaassssiinngg aanndd CCoonnttrrooll
If Prolog encounters a foreign predicate at run time it will call
a function specified in the predicate definition of the foreign
predicate. The arguments 1;:::; <_a_r_i_t_y>pass the Prolog arguments to the
goal as Prolog terms. Foreign functions should be declared of type
foreign_t. Deterministic foreign functions have two alternatives to
return control back to Prolog:
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ssuucccceeeedd(())
Succeed deterministically. PL_succeed is defined as return TRUE.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ffaaiill(())
Fail and start Prolog backtracking. PL_fail is defined as
return FALSE.
1111..44..11..11 NNoonn--ddeetteerrmmiinniissttiicc FFoorreeiiggnn PPrreeddiiccaatteess
By default foreign predicates are deterministic. Using the
PL_FA_NONDETERMINISTIC attribute (see PL_register_foreign()) it is
possible to register a predicate as a non-deterministic predicate.
Writing non-deterministic foreign predicates is slightly more
complicated as the foreign function needs context information for
generating the next solution. Note that the same foreign function
should be prepared to be simultaneously active in more than one
goal. Suppose the natural_number_below_n/2 is a non-deterministic
foreign predicate, backtracking over all natural numbers lower than the
first argument. Now consider the following predicate:
________________________________________________________________________| |
|quotient_below_n(Q, N) :- |
| natural_number_below_n(N, N1), |
| natural_number_below_n(N, N2), |
||_______Q_=:=_N1_/_N2,_!.______________________________________________ ||
In this predicate the function natural_number_below_n/2 simultaneously
generates solutions for both its invocations.
Non-deterministic foreign functions should be prepared to handle three
different calls from Prolog:
o _I_n_i_t_i_a_l _c_a_l_l _(PL_FIRST_CALL_)
Prolog has just created a frame for the foreign function and asks
it to produce the first answer.
o _R_e_d_o _c_a_l_l _(PL_REDO_)
The previous invocation of the foreign function associated with the
current goal indicated it was possible to backtrack. The foreign
function should produce the next solution.
o _T_e_r_m_i_n_a_t_e _c_a_l_l _(PL_PRUNED_)
The choice point left by the foreign function has been destroyed by
a cut. The foreign function is given the opportunity to clean the
environment.
Both the context information and the type of call is provided
by an argument of type control_t appended to the argument list
for deterministic foreign functions. The macro PL_foreign_control()
extracts the type of call from the control argument. The
foreign function can pass a context handle using the PL_retry*()
macros and extract the handle from the extra argument using the
PL_foreign_context*() macro.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy((_i_n_t_p_t_r___t _v_a_l_u_e))
The foreign function succeeds while leaving a choice point. On
backtracking over this goal the foreign function will be called
again, but the control argument now indicates it is a `Redo'
call and the macro PL_foreign_context() returns the handle passed
via PL_retry(). This handle is a signed value two bits smaller
than a pointer, i.e., 30 or 62 bits (two bits are used for
status indication). Defined as return _PL_retry(_n). See also
PL_succeed().
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy__aaddddrreessss((_v_o_i_d _*))
As PL_retry(), but ensures an address as returned by malloc() is
correctly recovered by PL_foreign_context_address(). Defined as
return _PL_retry_address(_n). See also PL_succeed().
_i_n_t PPLL__ffoorreeiiggnn__ccoonnttrrooll((_c_o_n_t_r_o_l___t))
Extracts the type of call from the control argument. The return
values are described above. Note that the function should be
prepared to handle the PL_PRUNED case and should be aware that the
other arguments are not valid in this case.
_i_n_t_p_t_r___t PPLL__ffoorreeiiggnn__ccoonntteexxtt((_c_o_n_t_r_o_l___t))
Extracts the context from the context argument. If the call type
is PL_FIRST_CALL the context value is 0L. Otherwise it is the value
returned by the last PL_retry() associated with this goal (both if
the call type is PL_REDO or PL_PRUNED).
_v_o_i_d _* PPLL__ffoorreeiiggnn__ccoonntteexxtt__aaddddrreessss((_c_o_n_t_r_o_l___t))
Extracts an address as passed in by PL_retry_address().
_p_r_e_d_i_c_a_t_e___t PPLL__ffoorreeiiggnn__ccoonntteexxtt__pprreeddiiccaattee((_c_o_n_t_r_o_l___t))
Fetch the Prolog predicate that is executing this function. Note
that if the predicate is imported, the returned predicate refers to
the final definition rather than the imported predicate, i.e., the
module reported by PL_predicate_info() is the module in which the
predicate is defined rather than the module where it was called.
See also PL_predicate_info().
Note: If a non-deterministic foreign function returns using
PL_succeed() or PL_fail(), Prolog assumes the foreign function has
cleaned its environment. NNoo call with control argument PL_PRUNED will
follow.
The code of figure ???? shows a skeleton for a non-deterministic foreign
predicate definition.
________________________________________________________________________| |
|typedef struct /* define a context structure */ |
|{ ... |
|} context; |
| |
|foreign_t |
|my_function(term_t a0, term_t a1, control_t handle) |
|{ struct context * ctxt; |
| |
| switch( PL_foreign_control(handle) ) |
| { case PL_FIRST_CALL: |
| ctxt = malloc(sizeof(struct context)); |
| ... |
| PL_retry_address(ctxt); |
| case PL_REDO: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| PL_retry_address(ctxt); |
| case PL_PRUNED: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| free(ctxt); |
| PL_succeed; |
| } |
|}|_____________________________________________________________________ | |
Figure 11.1: Skeleton for non-deterministic foreign functions
1111..44..22 AAttoommss aanndd ffuunnccttoorrss
The following functions provide for communication using atoms and
functors.
atom_t PPLL__nneeww__aattoomm(_c_o_n_s_t _c_h_a_r _*)
Return an atom handle for the given C-string. This function always
succeeds. The returned handle is valid as long as the atom is
referenced (see section ????). The following atoms are provided as
macros, giving access to the empty list symbol and the name of
the list constructor. Prior to version 7, ATOM_nil is the same
as PL_new_atom(_"_[_]_") and ATOM_dot is the same as PL_new_atom(_"_._").
This is no long the case in SWI-Prolog version 7.
_a_t_o_m___t AATTOOMM__nniill((_A))
tomic constant that represents the empty list. It is
adviced to use PL_get_nil(), PL_put_nil() or PL_unify_nil()
where applicable.
_a_t_o_m___t AATTOOMM__ddoott((_A))
tomic constant that represents the name of the list con-
structor. The list constructor itself is created using
PL_new_functor(_A_T_O_M___d_o_t_,_2). It is adviced to use PL_get_list(),
PL_put_list()or PL_unify_list() where applicable.
atom_t PPLL__nneeww__aattoomm__mmbbcchhaarrss(_i_n_t _r_e_p_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
This function generalizes PL_new_atom() and PL_new_atom_nchars()
while allowing for multiple encodings. The _r_e_p argument is one
of REP_ISO_LATIN_1, REP_UTF8 or REP_MB. If _l_e_n is (size_t)-1, it is
computed from _s using strlen().
const char* PPLL__aattoomm__cchhaarrss(_a_t_o_m___t _a_t_o_m)
Return a C-string for the text represented by the given atom. The
returned text will not be changed by Prolog. It is not allowed to
modify the contents, not even `temporary' as the string may reside
in read-only memory. The returned string becomes invalid if the
atom is garbage collected (see section ????). Foreign functions
that require the text from an atom passed in a term_t normally use
PL_get_atom_chars() or PL_get_atom_nchars().
functor_t PPLL__nneeww__ffuunnccttoorr(_a_t_o_m___t _n_a_m_e_, _i_n_t _a_r_i_t_y)
Returns a _f_u_n_c_t_o_r _i_d_e_n_t_i_f_i_e_r, a handle for the name/arity pair.
The returned handle is valid for the entire Prolog session.
atom_t PPLL__ffuunnccttoorr__nnaammee(_f_u_n_c_t_o_r___t _f)
Return an atom representing the name of the given functor.
size_t PPLL__ffuunnccttoorr__aarriittyy(_f_u_n_c_t_o_r___t _f)
Return the arity of the given functor.
1111..44..22..11 AAttoommss aanndd aattoomm ggaarrbbaaggee ccoolllleeccttiioonn
With the introduction of atom garbage collection in version 3.3.0,
atoms no longer live as long as the process. Instead, their
lifetime is guaranteed only as long as they are referenced. In the
single-threaded version, atom garbage collections are only invoked at
the _c_a_l_l_-_p_o_r_t. In the multithreaded version (see chapter ????), they
appear asynchronously, except for the invoking thread.
For dealing with atom garbage collection, two additional functions are
provided:
void PPLL__rreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Increment the reference count of the atom by one. PL_new_atom()
performs this automatically, returning an atom with a reference
count of at least one.
void PPLL__uunnrreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Decrement the reference count of the atom. If the reference count
drops below zero, an assertion error is raised.
Please note that the following two calls are different with respect to
atom garbage collection:
________________________________________________________________________| |
|PL_unify_atom_chars(t, "text"); |
|PL_unify_atom(t,|PL_new_atom("text"));_________________________________ | |
The latter increments the reference count of the atom text, which
effectively ensures the atom will never be collected. It is advised to
use the *_chars() or *_nchars() functions whenever applicable.
1111..44..33 AAnnaallyyssiinngg TTeerrmmss vviiaa tthhee FFoorreeiiggnn IInntteerrffaaccee
Each argument of a foreign function (except for the control argument)
is of type term_t, an opaque handle to a Prolog term. Three groups of
functions are available for the analysis of terms. The first just
validates the type, like the Prolog predicates var/1, atom/1, etc.,
and are called PL_is_*(). The second group attempts to translate the
argument into a C primitive type. These predicates take a term_t and a
pointer to the appropriate C type and return TRUE or FALSE depending on
successful or unsuccessful translation. If the translation fails, the
pointed-to data is never modified.
1111..44..33..11 TTeessttiinngg tthhee ttyyppee ooff aa tteerrmm
int PPLL__tteerrmm__ttyyppee(_t_e_r_m___t)
Obtain the type of a term, which should be a term returned by
one of the other interface predicates or passed as an argument.
The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions
PL_get_*() also validate the type and thus the two sections below
are equivalent.
____________________________________________________________________| |
| if ( PL_is_atom(t) ) |
| { char *s; |
| |
| PL_get_atom_chars(t, &s); |
| ...; |
| } |
| |
| or |
| |
| char *s; |
| if ( PL_get_atom_chars(t, &s) ) |
| { ...; |
||________}_________________________________________________________ ||
VVeerrssiioonn 77 added PL_NIL, PL_BLOB, PL_LIST_PAIR and PL_DICT. Older
versions classify PL_NIL and PL_BLOB as PL_ATOM, PL_LIST_PAIR as
PL_TERM and do not have dicts.
_______________________________________________________________
| PL_VARIABLE |A variable or attributed variable |
| PL_ATOM |A Prolog atom |
| PL_NIL |The constant [] |
| PL_BLOB |A blob (see section ????) |
| PL_STRING |A string (see section ????) |
| PL_INTEGER |A integer |
| PL_FLOAT |A floating point number |
| PL_TERM |A compound term |
| PL_LIST_PAIR |A list cell ([H|T]) |
|_PL_DICT________________|A_dict_(see_section_????))_____________|
The functions PL_is_<_t_y_p_e> are an alternative to PL_term_type(). The test
PL_is_variable(_t_e_r_m) is equivalent to PL_term_type(_t_e_r_m)== PL_VARIABLE,
but the first is considerably faster. On the other hand, using a
switch over PL_term_type() is faster and more readable then using an
if-then-else using the functions below. All these functions return
either TRUE or FALSE.
int PPLL__iiss__vvaarriiaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a variable.
int PPLL__iiss__ggrroouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a ground term. See also ground/1.
This function is cycle-safe.
int PPLL__iiss__aattoomm(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an atom.
int PPLL__iiss__ssttrriinngg(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a string.
int PPLL__iiss__iinntteeggeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer.
int PPLL__iiss__ffllooaatt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a float.
int PPLL__iiss__ccaallllaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a callable term. See callable/1 for
details.
int PPLL__iiss__ccoommppoouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term.
int PPLL__iiss__ffuunnccttoorr(_t_e_r_m___t_, _f_u_n_c_t_o_r___t)
Returns non-zero if _t_e_r_m is compound and its functor is _f_u_n_c_t_o_r.
This test is equivalent to PL_get_functor(), followed by testing
the functor, but easier to write and faster.
int PPLL__iiss__lliisstt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term using the list
constructor or the list terminator. See also PL_is_pair() and
PL_skip_list().
int PPLL__iiss__ppaaiirr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term using the list
constructor. See also PL_is_list() and PL_skip_list().
int PPLL__iiss__aattoommiicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is atomic (not variable or compound).
int PPLL__iiss__nnuummbbeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer or float.
int PPLL__iiss__aaccyycclliicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is acyclic (i.e. a finite tree).
1111..44..33..22 RReeaaddiinngg ddaattaa ffrroomm aa tteerrmm
The functions PL_get_*() read information from a Prolog term. Most of
them take two arguments. The first is the input term and the second is
a pointer to the output value or a term reference.
int PPLL__ggeett__aattoomm(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_a)
If _t is an atom, store the unique atom identifier over _a. See also
PL_atom_chars() and PL_new_atom(). If there is no need to access
the data (characters) of an atom, it is advised to manipulate atoms
using their handle. As the atom is referenced by _t, it will live
at least as long as _t does. If longer live-time is required, the
atom should be locked using PL_register_atom().
int PPLL__ggeett__aattoomm__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s)
If _t is an atom, store a pointer to a 0-terminated C-string in _s.
It is explicitly nnoott allowed to modify the contents of this string.
Some built-in atoms may have the string allocated in read-only
memory, so `temporary manipulation' can cause an error.
int PPLL__ggeett__ssttrriinngg__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _s_i_z_e___t _*_l_e_n)
If _t is a string object, store a pointer to a 0-terminated
C-string in _s and the length of the string in _l_e_n. Note that
this pointer is invalidated by backtracking, garbage collection and
stack-shifts, so generally the only save operations are to pass it
immediately to a C function that doesn't involve Prolog.
int PPLL__ggeett__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Convert the argument term _t to a 0-terminated C-string. _f_l_a_g_s is
a bitwise disjunction from two groups of constants. The first
specifies which term types should be converted and the second
how the argument is stored. Below is a specification of these
constants. BUF_RING implies, if the data is not static (as from an
atom), that the data is copied to the next buffer from a ring of 16
buffers. This is a convenient way of converting multiple arguments
passed to a foreign predicate to C-strings. If BUF_MALLOC is used,
the data must be freed using PL_free() when no longer needed.
With the introduction of wide characters (see section ????), not all
atoms can be converted into a char*. This function fails if _t is
of the wrong type, but also if the text cannot be represented. See
the REP_* flags below for details.
CCVVTT__AATTOOMM
Convert if term is an atom.
CCVVTT__SSTTRRIINNGG
Convert if term is a string.
CCVVTT__LLIISSTT
Convert if term is a list of of character codes.
CCVVTT__IINNTTEEGGEERR
Convert if term is an integer.
CCVVTT__FFLLOOAATT
Convert if term is a float. The characters returned are the
same as write/1 would write for the floating point number.
CCVVTT__NNUUMMBBEERR
Convert if term is an integer or float.
CCVVTT__AATTOOMMIICC
Convert if term is atomic.
CCVVTT__VVAARRIIAABBLLEE
Convert variable to print-name
CCVVTT__WWRRIITTEE
Convert any term that is not converted by any of the other
flags using write/1. If no BUF_* is provided, BUF_RING is
implied.
CCVVTT__WWRRIITTEE__CCAANNOONNIICCAALL
As CVT_WRITE, but using write_canonical/2.
CCVVTT__WWRRIITTEEQQ
As CVT_WRITE, but using writeq/2.
CCVVTT__AALLLL
Convert if term is any of the above, except for CVT_VARIABLE
and CVT_WRITE*.
CCVVTT__EEXXCCEEPPTTIIOONN
If conversion fails due to a type error, raise a Prolog type
error exception in addition to failure
BBUUFF__DDIISSCCAARRDDAABBLLEE
Data must copied immediately
BBUUFF__RRIINNGG
Data is stored in a ring of buffers
BBUUFF__MMAALLLLOOCC
Data is copied to a new buffer returned by PL_malloc(3). When
no longer needed the user must call PL_free() on the data.
RREEPP__IISSOO__LLAATTIINN__11
Text is in ISO Latin-1 encoding and the call fails if text
cannot be represented. This flag has the value 0 and is thus
the default.
RREEPP__UUTTFF88
Convert the text to a UTF-8 string. This works for all text.
RREEPP__MMBB
Convert to default locale-defined 8-bit string. Success
depends on the locale. Conversion is done using the wcrtomb()
C library function.
int PPLL__ggeett__lliisstt__cchhaarrss(_+_t_e_r_m___t _l_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Same as PL_get_chars(_l_, _s_, _C_V_T___L_I_S_T___f_l_a_g_s), provided _f_l_a_g_s contains
none of the CVT_* flags.
int PPLL__ggeett__iinntteeggeerr(_+_t_e_r_m___t _t_, _i_n_t _*_i)
If _t is a Prolog integer, assign its value over _i. On 32-bit
machines, this is the same as PL_get_long(), but avoids a warning
from the compiler. See also PL_get_long().
int PPLL__ggeett__lloonngg(_t_e_r_m___t _+_t_, _l_o_n_g _*_i)
If _t is a Prolog integer that can be represented as a long, assign
its value over _i. If _t is an integer that cannot be represented by
a C long, this function returns FALSE. If _t is a floating point
number that can be represented as a long, this function succeeds as
well. See also PL_get_int64().
int PPLL__ggeett__iinntt6644(_t_e_r_m___t _+_t_, _i_n_t_6_4___t _*_i)
If _t is a Prolog integer or float that can be represented as a
int64_t, assign its value over _i.
int PPLL__ggeett__iinnttppttrr(_t_e_r_m___t _+_t_, _i_n_t_p_t_r___t _*_i)
Get an integer that is at least as wide as a pointer. On most
platforms this is the same as PL_get_long(), but on Win64 pointers
are 8 bytes and longs only 4. Unlike PL_get_pointer(), the value
is not modified.
int PPLL__ggeett__bbooooll(_t_e_r_m___t _+_t_, _i_n_t _*_v_a_l)
If _t has the value true or false, set _v_a_l to the C constant TRUE or
FALSE and return success, otherwise return failure.
int PPLL__ggeett__ppooiinntteerr(_t_e_r_m___t _+_t_, _v_o_i_d _*_*_p_t_r)
In the current system, pointers are represented by Prolog integers,
but need some manipulation to make sure they do not get truncated
due to the limited Prolog integer range. PL_put_pointer() and
PL_get_pointer() guarantee pointers in the range of malloc() are
handled without truncating.
int PPLL__ggeett__ffllooaatt(_t_e_r_m___t _+_t_, _d_o_u_b_l_e _*_f)
If _t is a float or integer, its value is assigned over _f.
int PPLL__ggeett__ffuunnccttoorr(_t_e_r_m___t _+_t_, _f_u_n_c_t_o_r___t _*_f)
If _t is compound or an atom, the Prolog representation of
the name-arity pair will be assigned over _f. See also
PL_get_name_arity() and PL_is_functor().
int PPLL__ggeett__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _s_i_z_e___t _*_a_r_i_t_y)
If _t is compound or an atom, the functor name will be assigned
over _n_a_m_e and the arity over _a_r_i_t_y. See also PL_get_functor() and
PL_is_functor(). See section ????.
int PPLL__ggeett__ccoommppoouunndd__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _s_i_z_e___t _*_a_r_i_t_y)
If _t is compound term, the functor name will be assigned over _n_a_m_e
and the arity over _a_r_i_t_y. This is the same as PL_get_name_arity(),
but this function fails if _t is an atom.
int PPLL__ggeett__mmoodduullee(_t_e_r_m___t _+_t_, _m_o_d_u_l_e___t _*_m_o_d_u_l_e)
If _t is an atom, the system will look up or create the
corresponding module and assign an opaque pointer to it over
_m_o_d_u_l_e.
int PPLL__ggeett__aarrgg(_s_i_z_e___t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
If _t is compound and index is between 1 and arity (inclusive),
assign _a with a term reference to the argument.
int _PPLL__ggeett__aarrgg(_s_i_z_e___t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
Same as PL_get_arg(), but no checking is performed, neither whether
_t is actually a term nor whether _i_n_d_e_x is a valid argument index.
1111..44..33..33 EExxcchhaannggiinngg tteexxtt uussiinngg lleennggtthh aanndd ssttrriinngg
All internal text representation in SWI-Prolog is represented using
char * plus length and allow for _0_-_b_y_t_e_s in them. The foreign library
supports this by implementing a *_nchars() function for each applicable
*_chars() function. Below we briefly present the signatures of these
functions. For full documentation consult the *_chars() function.
int PPLL__ggeett__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_atom_chars().
int PPLL__ggeett__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_list_chars().
int PPLL__ggeett__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _i_n_t _f_l_a_g_s)
See PL_get_chars().
int PPLL__ppuutt__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_atom_chars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_string_chars().
int PPLL__ppuutt__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_codes().
int PPLL__ppuutt__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_chars().
int PPLL__uunniiffyy__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_atom_chars().
int PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_string_chars().
int PPLL__uunniiffyy__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_codes().
int PPLL__uunniiffyy__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_list_chars().
In addition, the following functions are available for creating and
inspecting atoms:
atom_t PPLL__nneeww__aattoomm__nncchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
Create a new atom as PL_new_atom(), but using the given length and
characters. If _l_e_n is (size_t)-1, it is computed from _s using
strlen().
const char * PPLL__aattoomm__nncchhaarrss(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n)
Extract the text and length of an atom.
1111..44..33..44 WWiiddee--cchhaarraacctteerr vveerrssiioonnss
Support for exchange of wide-character strings is still under
consideration. The functions dealing with 8-bit character strings
return failure when operating on a wide-character atom or Prolog string
object. The functions below can extract and unify both 8-bit and wide
atoms and string objects. Wide character strings are represented as
C arrays of objects of the type pl_wchar_t, which is guaranteed to be
the same as wchar_t on platforms supporting this type. For example, on
MS-Windows, this represents 16-bit UCS2 characters, while using the GNU
C library (glibc) this represents 32-bit UCS4 characters.
atom_t PPLL__nneeww__aattoomm__wwcchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Create atom from wide-character string as PL_new_atom_nchars() does
for ISO-Latin-1 strings. If _s only contains ISO-Latin-1 characters
a normal byte-array atom is created. If _l_e_n is (size_t)-1, it is
computed from _s using wcslen().
pl_wchar_t* PPLL__aattoomm__wwcchhaarrss(_a_t_o_m___t _a_t_o_m_, _i_n_t _*_l_e_n)
Extract characters from a wide-character atom. Succeeds on any
atom marked as `text'. If the underlying atom is a wide-character
atom, the returned pointer is a pointer into the atom structure.
If it is an ISO-Latin-1 character, the returned pointer comes from
Prolog's `buffer ring' (see PL_get_chars()).
int PPLL__ggeett__wwcchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _p_l___w_c_h_a_r___t _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Wide-character version of PL_get_chars(). The _f_l_a_g_s argument is
the same as for PL_get_chars().
int PPLL__uunniiffyy__wwcchhaarrss(_t_e_r_m___t _t_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Unify _t with a textual representation of the C wide-character array
_s. The _t_y_p_e argument defines the Prolog representation and is one
of PL_ATOM, PL_STRING, PL_CODE_LIST or PL_CHAR_LIST.
int PPLL__uunniiffyy__wwcchhaarrss__ddiiffff(_t_e_r_m___t _+_t_, _t_e_r_m___t _-_t_a_i_l_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Difference list version of PL_unify_wchars(), only supporting the
types PL_CODE_LIST and PL_CHAR_LIST. It serves two purposes. It
allows for returning very long lists from data read from a stream
without the need for a resizing buffer in C. Also, the use of
difference lists is often practical for further processing in
Prolog. Examples can be found in packages/clib/readutil.c from the
source distribution.
1111..44..33..55 RReeaaddiinngg aa lliisstt
The functions from this section are intended to read a Prolog list from
C. Suppose we expect a list of atoms; the following code will print the
atoms, each on a line:
________________________________________________________________________| |
|foreign_t |
|pl_write_atoms(term_t l) |
|{ term_t head = PL_new_term_ref(); /* the elements */ |
| term_t list = PL_copy_term_ref(l); /* copy (we modify list) */ |
| |
| while( PL_get_list(list, head, list) ) |
| { char *s; |
| |
| if ( PL_get_atom_chars(head, &s) ) |
| Sprintf("%s\n", s); |
| else |
| PL_fail; |
| } |
| |
| return PL_get_nil(list); /* test end for [] */ |
|}|_____________________________________________________________________ | |
Note that as of version 7, lists have a new representation unless the
option --traditional is used. see section ????.
int PPLL__ggeett__lliisstt(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
If _l is a list and not the empty list, assign a term reference to
the head to _h and to the tail to _t.
int PPLL__ggeett__hheeaadd(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h)
If _l is a list and not the empty list, assign a term reference to
the head to _h.
int PPLL__ggeett__ttaaiill(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_t)
If _l is a list and not the empty list, assign a term reference to
the tail to _t.
int PPLL__ggeett__nniill(_t_e_r_m___t _+_l)
Succeeds if _l represents the list termination constant.
int PPLL__sskkiipp__lliisstt(_t_e_r_m___t _+_l_i_s_t_, _t_e_r_m___t _-_t_a_i_l_, _s_i_z_e___t _*_l_e_n)
This is a multi-purpose function to deal with lists. It allows for
finding the length of a list, checking whether something is a list,
etc. The reference _t_a_i_l is set to point to the end of the list,
_l_e_n is filled with the number of list-cells skipped, and the return
value indicates the status of the list:
PPLL__LLIISSTT
The list is a `proper' list: one that ends in the list
terminator constant and _t_a_i_l is filled with the terminator
constant.
PPLL__PPAARRTTIIAALL__LLIISSTT
The list is a `partial' list: one that ends in a variable and
_t_a_i_l is a reference to this variable.
PPLL__CCYYCCLLIICC__TTEERRMM
The list is cyclic (e.g. X = [a_X]). _t_a_i_l points to an
arbitrary cell of the list and _l_e_n is at most twice the cycle
length of the list.
PPLL__NNOOTT__AA__LLIISSTT
The term _l_i_s_t is not a list at all. _t_a_i_l is bound to
the non-list term and _l_e_n is set to the number of list-cells
skipped.
It is allowed to pass 0 for _t_a_i_l and NULL for _l_e_n.
1111..44..33..66 AAnn eexxaammppllee:: ddeeffiinniinngg write/1 iinn CC
Figure ???? shows a simplified definition of write/1 to illustrate the
described functions. This simplified version does not deal with
operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.
________________________________________________________________________| |
|foreign_t |
|pl_display(term_t t) |
|{ functor_t functor; |
| int arity, len, n; |
| char *s; |
| |
| switch( PL_term_type(t) ) |
| { case PL_VARIABLE: |
| case PL_ATOM: |
| case PL_INTEGER: |
| case PL_FLOAT: |
| PL_get_chars(t, &s, CVT_ALL); |
| Sprintf("%s", s); |
| break; |
| case PL_STRING: |
| PL_get_string_chars(t, &s, &len); |
| Sprintf("\"%s\"", s); |
| break; |
| case PL_TERM: |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_name_arity(t, &name, &arity); |
| Sprintf("%s(", PL_atom_chars(name)); |
| for(n=1; n<=arity; n++) |
| { PL_get_arg(n, t, a); |
| if ( n > 1 ) |
| Sprintf(", "); |
| pl_display(a); |
| } |
| Sprintf(")"); |
| break; |
| default: |
| PL_fail; /* should not happen */ |
| } |
| } |
| |
| PL_succeed; |
|}|_____________________________________________________________________ | |
Figure 11.2: A Foreign definition of display/1
1111..44..44 CCoonnssttrruuccttiinngg TTeerrmmss
Terms can be constructed using functions from the PL_put_*() and
PL_cons_*() families. This approach builds the term `inside-out',
starting at the leaves and subsequently creating compound terms.
Alternatively, terms may be created `top-down', first creating
a compound holding only variables and subsequently unifying the
arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL_call()
and PL_open_query().
void PPLL__ppuutt__vvaarriiaabbllee(_t_e_r_m___t _-_t)
Put a fresh variable in the term, resetting the term reference to
its initial state.
void PPLL__ppuutt__aattoomm(_t_e_r_m___t _-_t_, _a_t_o_m___t _a)
Put an atom in the term reference from a handle. See also
PL_new_atom() and PL_atom_chars().
void PPLL__ppuutt__bbooooll(_t_e_r_m___t _-_t_, _i_n_t _v_a_l)
Put one of the atoms true or false in the term reference See also
PL_put_atom(), PL_unify_bool()and PL_get_bool().
int PPLL__ppuutt__cchhaarrss(_t_e_r_m___t _-_t_, _i_n_t _f_l_a_g_s_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
New function to deal with setting a term from a char* with
various encodings. The _f_l_a_g_s argument is a bitwise _o_r specifying
the Prolog target type and the encoding of _c_h_a_r_s. A Prolog
type is one of PL_ATOM, PL_STRING, PL_CODE_LIST or PL_CHAR_LIST. A
representation is one of REP_ISO_LATIN_1, REP_UTF8 or REP_MB. See
PL_get_chars() for a definition of the representation types. If
_l_e_n is -1 _c_h_a_r_s must be zero-terminated and the length is computed
from _c_h_a_r_s using strlen().
int PPLL__ppuutt__aattoomm__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put an atom in the term reference constructed from the zero-
terminated string. The string itself will never be referenced by
Prolog after this function.
int PPLL__ppuutt__ssttrriinngg__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a zero-terminated string in the term reference. The data will
be copied. See also PL_put_string_nchars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _-_t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a string, represented by a length/start pointer pair in the
term reference. The data will be copied. This interface can deal
with 0-bytes in the string. See also section ????.
int PPLL__ppuutt__lliisstt__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a list of ASCII values in the term reference.
int PPLL__ppuutt__iinntteeggeerr(_t_e_r_m___t _-_t_, _l_o_n_g _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__iinntt6644(_t_e_r_m___t _-_t_, _i_n_t_6_4___t _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__ppooiinntteerr(_t_e_r_m___t _-_t_, _v_o_i_d _*_p_t_r)
Put a Prolog integer in the term reference. Provided _p_t_r is in the
`malloc()-area', PL_get_pointer() will get the pointer back.
int PPLL__ppuutt__ffllooaatt(_t_e_r_m___t _-_t_, _d_o_u_b_l_e _f)
Put a floating-point value in the term reference.
int PPLL__ppuutt__ffuunnccttoorr(_t_e_r_m___t _-_t_, _f_u_n_c_t_o_r___t _f_u_n_c_t_o_r)
Create a new compound term from _f_u_n_c_t_o_r and bind _t to this term.
All arguments of the term will be variables. To create a term with
instantiated arguments, either instantiate the arguments using the
PL_unify_*() functions or use PL_cons_functor().
int PPLL__ppuutt__lliisstt(_t_e_r_m___t _-_l)
As PL_put_functor(), using the list-cell functor. Note that
on classical Prolog systems or in SWI-Prolog using the option
--traditional, this is ./2, while on SWI-Prolog version 7 this is
[|]/2.
int PPLL__ppuutt__nniill(_t_e_r_m___t _-_l)
Put the list terminator constant in _l. Always returns TRUE. Note
that in classical Prolog systems or in SWI-Prolog using the option
--traditional, this is the same as PL_put_atom_chars(_"_[_]_"). See
section ????.
void PPLL__ppuutt__tteerrmm(_t_e_r_m___t _-_t_1_, _t_e_r_m___t _+_t_2)
Make _t_1 point to the same term as _t_2.
int PPLL__ccoonnss__ffuunnccttoorr(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _._._.)
Create a term whose arguments are filled from a variable argument
list holding the same number of term_t objects as the arity of the
functor. To create the term animal(gnu, 50), use:
____________________________________________________________________| |
| { term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| term_t t = PL_new_term_ref(); |
| functor_t animal2; |
| |
| /* animal2 is a constant that may be bound to a global |
| variable and re-used |
| */ |
| animal2 = PL_new_functor(PL_new_atom("animal"), 2); |
| |
| PL_put_atom_chars(a1, "gnu"); |
| PL_put_integer(a2, 50); |
| PL_cons_functor(t, animal2, a1, a2); |
||}_________________________________________________________________ ||
After this sequence, the term references _a_1 and _a_2 may be used for
other purposes.
int PPLL__ccoonnss__ffuunnccttoorr__vv(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _t_e_r_m___t _a_0)
Create a compound term like PL_cons_functor(), but _a_0 is an array
of term references as returned by PL_new_term_refs(). The length
of this array should match the number of arguments required by the
functor.
int PPLL__ccoonnss__lliisstt(_t_e_r_m___t _-_l_, _t_e_r_m___t _+_h_, _t_e_r_m___t _+_t)
Create a list (cons-) cell in _l from the head _h and tail _t. The
code below creates a list of atoms from a char **. The list is
built tail-to-head. The PL_unify_*() functions can be used to
build a list head-to-tail.
____________________________________________________________________| |
| void |
| put_list(term_t l, int n, char **words) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_put_nil(l); |
| while( --n >= 0 ) |
| { PL_put_atom_chars(a, words[n]); |
| PL_cons_list(l, a, l); |
| } |
||}_________________________________________________________________ ||
Note that _l can be redefined within a PL_cons_list call as shown
here because operationally its old value is consumed before its new
value is set.
1111..44..55 UUnniiffyyiinngg ddaattaa
The functions of this section _u_n_i_f_y terms with other terms or
translated C data structures. Except for PL_unify(), these functions
are specific to SWI-Prolog. They have been introduced because they
shorten the code for returning data to Prolog and at the same time make
this more efficient by avoiding the need to allocate temporary term
references and reduce the number of calls to the Prolog API. Consider
the case where we want a foreign function to return the host name of
the machine Prolog is running on. Using the PL_get_*() and PL_put_*()
functions, the code becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| { term_t tmp = PL_new_term_ref(); |
| |
| PL_put_atom_chars(tmp, buf); |
| return PL_unify(name, tmp); |
| } |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Using PL_unify_atom_chars(), this becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| return PL_unify_atom_chars(name, buf); |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Note that unification functions that perform multiple bindings may
leave part of the bindings in case of failure. See PL_unify() for
details.
int PPLL__uunniiffyy(_t_e_r_m___t _?_t_1_, _t_e_r_m___t _?_t_2)
Unify two Prolog terms and return TRUE on success.
Care is needed if PL_unify() returns FAIL and the foreign function
does not _i_m_m_e_d_i_a_t_e_l_y return to Prolog with FAIL. Unification may
perform multiple changes to either _t_1 or _t_2. A failing unification
may have created bindings before failure is detected. _A_l_r_e_a_d_y
_c_r_e_a_t_e_d _b_i_n_d_i_n_g_s _a_r_e _n_o_t _u_n_d_o_n_e. For example, calling PL_unify()
on a(_X_, _a) and a(_c_,_b) binds _X to c and fails when trying to unify a
to b. If control remains in C or even if we want to return success
to Prolog, we _m_u_s_t undo such bindings. This is achieved using
PL_open_foreign_frame() and PL_rewind_foreign_frame(), as shown in
the snippet below.
____________________________________________________________________| |
| { fid_t fid = PL_open_foreign_frame(); |
| |
| ... |
| if ( !PL_unify(t1, t2) ) |
| PL_rewind_foreign_frame(fid); |
| ... |
| |
| PL_close_foreign_frame(fid); |
||____}_____________________________________________________________ ||
In addition, PL_unify() may have failed on an eexxcceeppttiioonn,
typically a resource (stack) overflow. This can be tested
using PL_exception(), passing 0 (zero) for the query-id argument.
Foreign functions that encounter an exception must return FAIL to
Prolog as soon as possible or call PL_clear_exception() if they
wish to ignore the exception.
int PPLL__uunniiffyy__aattoomm(_t_e_r_m___t _?_t_, _a_t_o_m___t _a)
Unify _t with the atom _a and return non-zero on success.
int PPLL__uunniiffyy__bbooooll(_t_e_r_m___t _?_t_, _i_n_t _a)
Unify _t with either true or false.
int PPLL__uunniiffyy__cchhaarrss(_t_e_r_m___t _?_t_, _i_n_t _f_l_a_g_s_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
New function to deal with unification of char* with various
encodings to a Prolog representation. The _f_l_a_g_s argument is a
bitwise _o_r specifying the Prolog target type and the encoding of
_c_h_a_r_s. A Prolog type is one of PL_ATOM, PL_STRING, PL_CODE_LIST or
PL_CHAR_LIST. A representation is one of REP_ISO_LATIN_1, REP_UTF8
or REP_MB. See PL_get_chars() for a definition of the representation
types. If _l_e_n is -1 _c_h_a_r_s must be zero-terminated and the length
is computed from _c_h_a_r_s using strlen().
If _f_l_a_g_s includes PL_DIFF_LIST and type is one of PL_CODE_LIST or
PL_CHAR_LIST, the text is converted to a _d_i_f_f_e_r_e_n_c_e _l_i_s_t. The tail
of the difference list is t +1.
int PPLL__uunniiffyy__aattoomm__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with an atom created from _c_h_a_r_s and return non-zero on
success.
int PPLL__uunniiffyy__lliisstt__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a list of ASCII characters constructed from _c_h_a_r_s.
void PPLL__uunniiffyy__ssttrriinngg__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the zero-
terminated string _c_h_a_r_s. The data will be copied. See also
PL_unify_string_nchars().
int PPLL__uunniiffyy__iinntteeggeerr(_t_e_r_m___t _?_t_, _i_n_t_p_t_r___t _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__iinntt6644(_t_e_r_m___t _?_t_, _i_n_t_6_4___t _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__uuiinntt6644(_t_e_r_m___t _?_t_, _u_i_n_t_6_4___t _n)
Unify _t with a Prolog integer from _n. Note that unbounded integer
support is required if _n does not fit in a _s_i_g_n_e_d int64_t. If
unbounded integers are not supported a representation_error is
raised.
int PPLL__uunniiffyy__ffllooaatt(_t_e_r_m___t _?_t_, _d_o_u_b_l_e _f)
Unify _t with a Prolog float from _f.
int PPLL__uunniiffyy__ppooiinntteerr(_t_e_r_m___t _?_t_, _v_o_i_d _*_p_t_r)
Unify _t with a Prolog integer describing the pointer. See also
PL_put_pointer() and PL_get_pointer().
int PPLL__uunniiffyy__ffuunnccttoorr(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fail.
Note that this function does not create a term if the argument is
already instantiated. If _f is a functor with arity 0, _t is unified
with an atom. See also PL_unify_compound().
int PPLL__uunniiffyy__ccoommppoouunndd(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fail.
Note that this function does not create a term if the argument is
already instantiated. If _f is a functor with arity 0, _t is unified
with compound without arguments. See also PL_unify_functor().
int PPLL__uunniiffyy__lliisstt(_t_e_r_m___t _?_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
Unify _l with a list-cell (./2). If successful, write a reference
to the head of the list into _h and a reference to the tail of the
list into _t. This reference may be used for subsequent calls to
this function. Suppose we want to return a list of atoms from
a char **. We could use the example described by PL_put_list(),
followed by a call to PL_unify(), or we can use the code below. If
the predicate argument is unbound, the difference is minimal (the
code based on PL_put_list() is probably slightly faster). If the
argument is bound, the code below may fail before reaching the end
of the word list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.
____________________________________________________________________| |
| foreign_t |
| pl_get_environ(term_t env) |
| { term_t l = PL_copy_term_ref(env); |
| term_t a = PL_new_term_ref(); |
| extern char **environ; |
| char **e; |
| |
| for(e = environ; *e; e++) |
| { if ( !PL_unify_list(l, a, l) || |
| !PL_unify_atom_chars(a, *e) ) |
| PL_fail; |
| } |
| |
| return PL_unify_nil(l); |
||}_________________________________________________________________ ||
int PPLL__uunniiffyy__nniill(_t_e_r_m___t _?_l)
Unify _l with the atom [].
int PPLL__uunniiffyy__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _?_t_, _t_e_r_m___t _?_a)
Unifies the _i_n_d_e_x_-_t_h argument (1-based) of _t with _a.
int PPLL__uunniiffyy__tteerrmm(_t_e_r_m___t _?_t_, _._._.)
Unify _t with a (normally) compound term. The remaining arguments
are a sequence of a type identifier followed by the required
arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign
interface has been derived, but has proved to be a powerful and
comfortable way to create compound terms from C. Due to the vararg
packing/unpacking and the required type-switching this interface is
slightly slower than using the primitives. Please note that some
bad C compilers have fairly low limits on the number of arguments
that may be passed to a function.
Special attention is required when passing numbers. C `promotes'
any integral smaller than int to int. That is, the types char,
short and int are all passed as int. In addition, on most 32-bit
platforms int and long are the same. Up to version 4.0.5, only
PL_INTEGER could be specified, which was taken from the stack
as long. Such code fails when passing small integral types on
machines where int is smaller than long. It is advised to use
PL_SHORT, PL_INT or PL_LONG as appropriate. Similarly, C compilers
promote float to double and therefore PL_FLOAT and PL_DOUBLE are
synonyms.
The type identifiers are:
PL_VARIABLE _n_o_n_e
No op. Used in arguments of PL_FUNCTOR.
PL_BOOL _i_n_t
Unify the argument with true or false.
PL_ATOM _a_t_o_m___t
Unify the argument with an atom, as in PL_unify_atom().
PL_CHARS _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom constructed from the C char *,
as in PL_unify_atom_chars().
PL_NCHARS _s_i_z_e___t_, _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom constructed from length and
char* as in PL_unify_atom_nchars().
PL_UTF8_CHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a UTF-8 string.
PL_UTF8_STRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a UTF-8 string.
PL_MBCHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a multi-byte string in the current locale.
PL_MBCODES _c_o_n_s_t _c_h_a_r _*
Create a list of character codes from a multi-byte string in
the current locale.
PL_MBSTRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a multi-byte string in the
current locale.
PL_NWCHARS _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create an atom from a length and a wide character pointer.
PL_NWCODES _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create a list of character codes from a length and a wide
character pointer.
PL_NWSTRING _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create a packed string object from a length and a wide
character pointer.
PL_SHORT _s_h_o_r_t
Unify the argument with an integer, as in PL_unify_integer().
As short is promoted to int, PL_SHORT is a synonym for PL_INT.
PL_INTEGER _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT _i_n_t
Unify the argument with an integer, as in PL_unify_integer().
PL_LONG _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT64 _i_n_t_6_4___t
Unify the argument with a 64-bit integer, as in
PL_unify_int64().
PL_INTPTR _i_n_t_p_t_r___t
Unify the argument with an integer with the same width as a
pointer. On most machines this is the same as PL_LONG. but on
64-bit MS-Windows pointers are 64 bits while longs are only 32
bits.
PL_DOUBLE _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
Note that, as the argument is passed using the C vararg
conventions, a float must be casted to a double explicitly.
PL_FLOAT _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
PL_POINTER _v_o_i_d _*
Unify the argument with a pointer, as in PL_unify_pointer().
PL_STRING _c_o_n_s_t _c_h_a_r _*
Unify the argument with a string object, as in
PL_unify_string_chars().
PL_TERM _t_e_r_m___t
Unify a subterm. Note this may be the return value of a
PL_new_term_ref()call to get access to a variable.
PL_FUNCTOR _f_u_n_c_t_o_r___t_, _._._.
Unify the argument with a compound term. This specification
should be followed by exactly as many specifications as the
number of arguments of the compound term.
PL_FUNCTOR_CHARS _c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _._._.
Create a functor from the given name and arity and then behave
as PL_FUNCTOR.
PL_LIST _i_n_t _l_e_n_g_t_h_, _._._.
Create a list of the indicated length. The remaining
arguments contain the elements of the list.
For example, to unify an argument with the term language(dutch),
the following skeleton may be used:
____________________________________________________________________| |
| static functor_t FUNCTOR_language1; |
| |
| static void |
| init_constants() |
| { FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"),1); |
| } |
| |
| foreign_t |
| pl_get_lang(term_t r) |
| { return PL_unify_term(r, |
| PL_FUNCTOR, FUNCTOR_language1, |
| PL_CHARS, "dutch"); |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("get_lang", 1, pl_get_lang, 0); |
| init_constants(); |
||}_________________________________________________________________ ||
int PPLL__cchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _c_h_a_r _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Parse the string _c_h_a_r_s and put the resulting Prolog term into _t.
_c_h_a_r_s may or may not be closed using a Prolog full-stop (i.e., a
dot followed by a blank). Returns FALSE if a syntax error was
encountered and TRUE after successful completion. In addition to
returning FALSE, the exception-term is returned in _t on a syntax
error. See also term_to_atom/2.
The following example builds a goal term from a string and calls
it.
____________________________________________________________________| |
| int |
| call_chars(const char *goal) |
| { fid_t fid = PL_open_foreign_frame(); |
| term_t g = PL_new_term_ref(); |
| BOOL rval; |
| |
| if ( PL_chars_to_term(goal, g) ) |
| rval = PL_call(goal, NULL); |
| else |
| rval = FALSE; |
| |
| PL_discard_foreign_frame(fid); |
| return rval; |
| } |
| ... |
| call_chars("consult(load)"); |
||__..._____________________________________________________________ ||
int PPLL__wwcchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _p_l___w_c_h_a_r___t _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Wide character version of PL_chars_to_term().
char * PPLL__qquuoottee(_i_n_t _c_h_r_, _c_o_n_s_t _c_h_a_r _*_s_t_r_i_n_g)
Return a quoted version of _s_t_r_i_n_g. If _c_h_r is '\'', the result is a
quoted atom. If _c_h_r is '"', the result is a string. The result
string is stored in the same ring of buffers as described with the
BUF_RING argument of PL_get_chars();
In the current implementation, the string is surrounded by _c_h_r and
any occurrence of _c_h_r is doubled. In the future the behaviour will
depend on the character_escapes Prolog flag.
1111..44..66 CCoonnvveenniieenntt ffuunnccttiioonnss ttoo ggeenneerraattee PPrroolloogg eexxcceeppttiioonnss
The typical implementation of a foreign predicate first uses the
PL_get_*() functions to extract C data types from the Prolog terms.
Failure of any of these functions is normally because the Prolog term
is of the wrong type. The *_ex() family of functions are wrappers
around (mostly) the PL_get_*() functions, such that we can write code
in the style below and get proper exceptions if an argument is
uninstantiated or of the wrong type.
________________________________________________________________________| |
|/** set_size(+Name:atom, +Width:int, +Height:int) is det. |
| |
|static foreign_t |
|set_size(term_t name, term_t width, term_t height) |
|{ char *n; |
| int w, h; |
| |
| if ( !PL_get_chars(name, &n, CVT_ATOM|CVT_EXCEPTION) || |
| !PL_get_integer_ex(with, &w) || |
| !PL_get_integer_ex(height, &h) ) |
| return FALSE; |
| |
| ... |
| |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__aattoomm__eexx(_t_e_r_m___t _t_, _a_t_o_m___t _*_a)
As PL_get_atom(), but raises a type or instantiation error if _t is
not an atom.
int PPLL__ggeett__iinntteeggeerr__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
As PL_get_integer(), but raises a type or instantiation error if _t
is not an integer, or a representation error if the Prolog integer
does not fit in a C int.
int PPLL__ggeett__lloonngg__eexx(_t_e_r_m___t _t_, _l_o_n_g _*_i)
As PL_get_long(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C long.
int PPLL__ggeett__iinntt6644__eexx(_t_e_r_m___t _t_, _i_n_t_6_4___t _*_i)
As PL_get_int64(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C int64_t.
int PPLL__ggeett__iinnttppttrr__eexx(_t_e_r_m___t _t_, _i_n_t_p_t_r___t _*_i)
As PL_get_intptr(), but raises a type or instantiation error if _t
is not an atom, or a representation error if the Prolog integer
does not fit in a C intptr_t.
int PPLL__ggeett__ssiizzee__eexx(_t_e_r_m___t _t_, _s_i_z_e___t _*_i)
As PL_get_size(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C size_t.
int PPLL__ggeett__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
As PL_get_bool(), but raises a type or instantiation error if _t is
not an boolean.
int PPLL__ggeett__ffllooaatt__eexx(_t_e_r_m___t _t_, _d_o_u_b_l_e _*_f)
As PL_get_float(), but raises a type or instantiation error if _t is
not a float.
int PPLL__ggeett__cchhaarr__eexx(_t_e_r_m___t _t_, _i_n_t _*_p_, _i_n_t _e_o_f)
Get a character code from _t, where _t is either an integer or an
atom with length one. If _e_o_f is TRUE and _t is -1, _p is filled with
-1. Raises an appropriate error if the conversion is not possible.
int PPLL__ggeett__ppooiinntteerr__eexx(_t_e_r_m___t _t_, _v_o_i_d _*_*_a_d_d_r_p)
As PL_get_pointer(), but raises a type or instantiation error if _t
is not a pointer.
int PPLL__ggeett__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
As PL_get_list(), but raises a type or instantiation error if _t is
not a list.
int PPLL__ggeett__nniill__eexx(_t_e_r_m___t _l)
As PL_get_nil(), but raises a type or instantiation error if _t is
not the empty list.
int PPLL__uunniiffyy__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
As PL_unify_list(), but raises a type error if _t is not a variable,
list-cell or the empty list.
int PPLL__uunniiffyy__nniill__eexx(_t_e_r_m___t _l)
As PL_unify_nil(), but raises a type error if _t is not a variable,
list-cell or the empty list.
int PPLL__uunniiffyy__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _v_a_l)
As PL_unify_bool(), but raises a type error if _t is not a variable
or a boolean.
The second family of functions in this section simplifies the
generation of ISO compatible error terms. Any foreign function that
calls this function must return to Prolog with the return code of
the error function or the constant FALSE. If available, these error
functions add the name of the calling predicate to the error context.
See also PL_raise_exception().
int PPLL__iinnssttaannttiiaattiioonn__eerrrroorr(_t_e_r_m___t _c_u_l_p_r_i_t)
Raise instantiation_error. _C_u_l_p_r_i_t is ignored, but should be
bound to the term that is insufficiently instantiated. See
instantiation_error/1.
int PPLL__uunniinnssttaannttiiaattiioonn__eerrrroorr(_t_e_r_m___t _c_u_l_p_r_i_t)
Raise uninstantiation_error(culprit). This should be called if an
argument that must be unbound at entry is bound to _c_u_l_p_r_i_t. This
error is typically raised for a pure output arguments such as a
newly created stream handle (e.g., the third argument of open/3).
int PPLL__rreepprreesseennttaattiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_r_e_s_o_u_r_c_e)
Raise representation_error(resource). See representation_error/1.
int PPLL__ttyyppee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise type_error(expected, culprit). See type_error/2.
int PPLL__ddoommaaiinn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise domain_error(expected, culprit). See domain_error/2.
int PPLL__eexxiisstteennccee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise existence_error(type, culprit). See type_error/2.
int PPLL__ppeerrmmiissssiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_o_p_e_r_a_t_i_o_n_, _c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise permission_error(operation, type, culprit). See
permission_error/3.
int PPLL__rreessoouurrccee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_r_e_s_o_u_r_c_e)
Raise resource_error(resource). See resource_error/1.
int PPLL__ssyynnttaaxx__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_m_e_s_s_a_g_e_, _I_O_S_T_R_E_A_M _*_i_n)
Raise syntax_error(message). If _a_r_g is not NULL, add information
about the current position of the input stream.
1111..44..77 BBLLOOBBSS:: UUssiinngg aattoommss ttoo ssttoorree aarrbbiittrraarryy bbiinnaarryy ddaattaa
SWI-Prolog atoms as well as strings can represent arbitrary binary data
of arbitrary length. This facility is attractive for storing foreign
data such as images in an atom. An atom is a unique handle to this
data and the atom garbage collector is able to destroy atoms that are
no longer referenced by the Prolog engine. This property of atoms
makes them attractive as a handle to foreign resources, such as Java
atoms, Microsoft's COM objects, etc., providing safe combined garbage
collection.
To exploit these features safely and in an organised manner,
the SWI-Prolog foreign interface allows for creating `atoms' with
additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing
the atom, writing it, sorting it, etc. Two atoms created with
different types can represent the same sequence of bytes. Atoms are
first ordered on the rank number of the type and then on the result of
the compare() function. Rank numbers are assigned when the type is
registered.
1111..44..77..11 DDeeffiinniinngg aa BBLLOOBB ttyyppee
The type PL_blob_t represents a structure with the layout displayed
below. The structure contains additional fields at the ...for internal
bookkeeping as well as future extensions.
________________________________________________________________________| |
|typedef struct PL_blob_t |
|{ uintptr_t magic; /* PL_BLOB_MAGIC */ |
| uintptr_t flags; /* Bitwise or of PL_BLOB_* */ |
| char * name; /* name of the type */ |
| int (*release)(atom_t a); |
| int (*compare)(atom_t a, atom_t b); |
| int (*write)(IOSTREAM *s, atom_t a, int flags); |
| void (*acquire)(atom_t a); |
| ... |
|}|PL_blob_t;___________________________________________________________ | |
For each type, exactly one such structure should be allocated. Its
first field must be initialised to PL_BLOB_MAGIC. The _f_l_a_g_s is a bitwise
_o_r of the following constants:
PPLL__BBLLOOBB__TTEEXXTT
If specified the blob is assumed to contain text and is considered
a normal Prolog atom.
PPLL__BBLLOOBB__UUNNIIQQUUEE
If specified the system ensures that the blob-handle is a unique
reference for a blob with the given type, length and content. If
this flag is not specified, each lookup creates a new blob.
PPLL__BBLLOOBB__NNOOCCOOPPYY
By default the content of the blob is copied. Using this flag
the blob references the external data directly. The user must
ensure the provided pointer is valid as long as the atom lives.
If PL_BLOB_UNIQUE is also specified, uniqueness is determined by
comparing the pointer rather than the data pointed at.
The _n_a_m_e field represents the type name as available to Prolog. See
also current_blob/2. The other fields are function pointers that must
be initialised to proper functions or NULL to get the default behaviour
of built-in atoms. Below are the defined member functions:
void aaccqquuiirree(_a_t_o_m___t _a)
Called if a new blob of this type is created through PL_put_blob()
or PL_unify_blob(). This callback may be used together with the
release hook to deal with reference-counted external objects.
int rreelleeaassee(_a_t_o_m___t _a)
The blob (atom) _a is about to be released. This function can
retrieve the data of the blob using PL_blob_data(). If it returns
FALSE the atom garbage collector will _n_o_t reclaim the atom.
int ccoommppaarree(_a_t_o_m___t _a_, _a_t_o_m___t _b)
Compare the blobs _a and _b, both of which are of the type associated
to this blob type. Return values are, as memcmp(), < 0 if _a is
less than _b, = 0 if both are equal, and >0 otherwise.
int wwrriittee(_I_O_S_T_R_E_A_M _*_s_, _a_t_o_m___t _a_, _i_n_t _f_l_a_g_s)
Write the content of the blob _a to the stream _s respecting the
_f_l_a_g_s. The _f_l_a_g_s are a bitwise _o_r _o_f _z_e_r_o _o_r _m_o_r_e _o_f _t_h_e PL_WRT_*
_f_l_a_g_s _d_e_f_i_n_e_d _i_n SWI-Prolog.h_. _T_h_i_s _p_r_o_t_o_t_y_p_e _i_s _a_v_a_i_l_a_b_l_e _i_f _t_h_e
_u_n_d_o_c_u_m_e_n_t_e_d SWI-Stream.h _i_s _i_n_c_l_u_d_e_d _b_e_f_o_r_e SWI-Prolog.h_.
_I_f _t_h_i_s _f_u_n_c_t_i_o_n _i_s _n_o_t _p_r_o_v_i_d_e_d_, write/1 _e_m_i_t_s _t_h_e _c_o_n_t_e_n_t _o_f _t_h_e
_b_l_o_b _f_o_r _b_l_o_b_s _o_f _t_y_p_e PL_BLOB_TEXT _o_r _a _s_t_r_i_n_g _o_f _t_h_e _f_o_r_m_a_t <#_h_e_x
_d_a_t_a> _f_o_r _b_i_n_a_r_y _b_l_o_b_s_.
If a blob type is registered from a loadable object (shared object
or DLL) the blob type must be deregistered before the object may be
released.
int PPLL__uunnrreeggiisstteerr__bblloobb__ttyyppee(_P_L___b_l_o_b___t _*_t_y_p_e)
Unlink the blob type from the registered type and transform the
type of possible living blobs to unregistered, avoiding further
reference to the type structure, functions referred by it, as well
as the data. This function returns TRUE if no blobs of this type
existed and FALSE otherwise. PL_unregister_blob_type() is intended
for the uninstall() hook of foreign modules, avoiding further
references to the module.
1111..44..77..22 AAcccceessssiinngg bblloobbss
The blob access functions are similar to the atom accessing functions.
Blobs being atoms, the atom functions operate on blobs and vice versa.
For clarity and possible future compatibility issues, however, it is
not advised to rely on this.
int PPLL__iiss__bblloobb(_t_e_r_m___t _t_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Succeeds if _t refers to a blob, in which case _t_y_p_e is filled with
the type of the blob.
int PPLL__uunniiffyy__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Unify _t to a new blob constructed from the given data and
associated to the given type. See also PL_unify_atom_nchars().
int PPLL__ppuutt__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Store the described blob in _t. The return value indicates whether
a new blob was allocated (FALSE) or the blob is a reference to
an existing blob (TRUE). Reporting new/existing can be used to
deal with external objects having their own reference counts. If
the return is TRUE this reference count must be incremented, and
it must be decremented on blob destruction callback. See also
PL_put_atom_nchars().
int PPLL__ggeett__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_*_b_l_o_b_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
If _t holds a blob or atom, get the data and type and return TRUE.
Otherwise return FALSE. Each result pointer may be NULL, in which
case the requested information is ignored.
void * PPLL__bblloobb__ddaattaa(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Get the data and type associated to a blob. This function is
mainly used from the callback functions described in section ????.
1111..44..88 EExxcchhaannggiinngg GGMMPP nnuummbbeerrss
If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic
Library (GMP, used by default), the foreign interface provides
functions for exchanging numeric values to GMP types. To
access these functions the header <gmp.h> must be included _b_e_f_o_r_e
<SWI-Prolog.h>. Foreign code using GMP linked to SWI-Prolog asks for
some considerations.
o SWI-Prolog normally rebinds the GMP allocation functions us-
ing mp_set_memory_functions(). This means SWI-Prolog must be
initialised before the foreign code touches any GMP function.
You can call \cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, TRUE}
to force Prolog's GMP initialization without doing the
rest of the Prolog initialization. If you do
not want Prolog rebinding the GMP allocation, call
\cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, FALSE} _b_e_f_o_r_e ini-
tializing Prolog.
o On Windows, each DLL has its own memory pool. To make exchange
of GMP numbers between Prolog and foreign code possible you must
either let Prolog rebind the allocation functions (default) or you
must recompile SWI-Prolog to link to a DLL version of the GMP
library.
Here is an example exploiting the function mpz_nextprime():
________________________________________________________________________| |
|#include <gmp.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|next_prime(term_t n, term_t prime) |
|{ mpz_t mpz; |
| int rc; |
| |
| mpz_init(mpz); |
| if ( PL_get_mpz(n, mpz) ) |
| { mpz_nextprime(mpz, mpz); |
| |
| rc = PL_unify_mpz(prime, mpz); |
| } else |
| rc = FALSE; |
| |
| mpz_clear(mpz); |
| return rc; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("next_prime", 2, next_prime, 0); |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
If _t represents an integer, _m_p_z is filled with the value and the
function returns TRUE. Otherwise _m_p_z is untouched and the function
returns FALSE. Note that _m_p_z must have been initialised before
calling this function and must be cleared using mpz_clear() to
reclaim any storage associated with it.
int PPLL__ggeett__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
If _t is an integer or rational number (term rdiv/2), _m_p_q is filled
with the _n_o_r_m_a_l_i_s_e_d rational number and the function returns TRUE.
Otherwise _m_p_q is untouched and the function returns FALSE. Note
that _m_p_q must have been initialised before calling this function
and must be cleared using mpq_clear() to reclaim any storage
associated with it.
int PPLL__uunniiffyy__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
Unify _t with the integer value represented by _m_p_z and return TRUE
on success. The _m_p_z argument is not changed.
int PPLL__uunniiffyy__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
Unify _t with a rational number represented by _m_p_q and return TRUE
on success. Note that _t is unified with an integer if the
denominator is 1. The _m_p_q argument is not changed.
1111..44..99 CCaalllliinngg PPrroolloogg ffrroomm CC
The Prolog engine can be called from C. There are two interfaces
for this. For the first, a term is created that could be used as
an argument to call/1, and then PL_call() is used to call Prolog.
This system is simple, but does not allow to inspect the different
answers to a non-deterministic goal and is relatively slow as the
runtime system needs to find the predicate. The other interface
is based on PL_open_query(), PL_next_solution() and PL_cut_query() or
PL_close_query(). This mechanism is more powerful, but also more
complicated to use.
1111..44..99..11 PPrreeddiiccaattee rreeffeerreenncceess
This section discusses the functions used to communicate about
predicates. Though a Prolog predicate may be defined or not,
redefined, etc., a Prolog predicate has a handle that is neither
destroyed nor moved. This handle is known by the type predicate_t.
predicate_t PPLL__pprreedd(_f_u_n_c_t_o_r___t _f_, _m_o_d_u_l_e___t _m)
Return a handle to a predicate for the specified name/arity in the
given module. This function always succeeds, creating a handle for
an undefined predicate if no handle was available. If the module
argument _m is NULL, the current context module is used.
predicate_t PPLL__pprreeddiiccaattee(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _c_o_n_s_t _c_h_a_r_* _m_o_d_u_l_e)
Same as PL_pred(), but provides a more convenient interface to the
C programmer.
void PPLL__pprreeddiiccaattee__iinnffoo(_p_r_e_d_i_c_a_t_e___t _p_, _a_t_o_m___t _*_n_, _s_i_z_e___t _*_a_, _m_o_d_u_l_e___t _*_m)
Return information on the predicate _p. The name is stored over
_n, the arity over _a, while _m receives the definition module.
Note that the latter need not be the same as specified with
PL_predicate(). If the predicate is imported into the module given
to PL_predicate(), this function will return the module where the
predicate is defined. Any of the arguments _n, _a and _m can be NULL.
1111..44..99..22 IInniittiiaattiinngg aa qquueerryy ffrroomm CC
This section discusses the functions for creating and manipulating
queries from C. Note that a foreign context can have at most one active
query. This implies that it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc.),
but it is nnoott allowed to open multiple queries and start generating
solutions for each of them by calling PL_next_solution(). Be sure to
call PL_cut_query() or PL_close_query() on any query you opened before
opening the next or returning control back to Prolog.
qid_t PPLL__ooppeenn__qquueerryy(_m_o_d_u_l_e___t _c_t_x_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_, _t_e_r_m___t _+_t_0)
Opens a query and returns an identifier for it. _c_t_x is the
_c_o_n_t_e_x_t _m_o_d_u_l_e of the goal. When NULL, the context module
of the calling context will be used, or user if there is no
calling context (as may happen in embedded systems). Note
that the context module only matters for _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. See
meta_predicate/1, context_module/1 and module_transparent/1. The _p
argument specifies the predicate, and should be the result of a
call to PL_pred() or PL_predicate(). Note that it is allowed to
store this handle as global data and reuse it for future queries.
The term reference _t_0 is the first of a vector of term references
as returned by PL_new_term_refs(_n).
The _f_l_a_g_s arguments provides some additional options concerning
debugging and exception handling. It is a bitwise _o_r of the
following values:
PL_Q_NORMAL
Normal operation. The debugger inherits its settings from the
environment. If an exception occurs that is not handled in
Prolog, a message is printed and the tracer is started to
debug the error.
PL_Q_NODEBUG
Switch off the debugger while executing the goal. This option
is used by many calls to hook-predicates to avoid tracing the
hooks. An example is print/1 calling portray/1 from foreign
code.
PL_Q_CATCH_EXCEPTION
If an exception is raised while executing the goal, do not
report it, but make it available for PL_exception().
PL_Q_PASS_EXCEPTION
As PL_Q_CATCH_EXCEPTION, but do not invalidate the exception-
term while calling PL_close_query(). This option is
experimental.
PL_Q_ALLOW_YIELD
Support the I_YIELD instruction for engine-based coroutining.
See $engine_yield/2 in boot/init.pl for details.
PL_Q_EXT_STATUS
Make PL_next_solution() return extended status. Instead of
only TRUE or FALSE extended status as illustrated in the
following table:
__EExxtteennddeedd______________NNoorrmmaall____________________________________________________________________________________________________
PL_S_EXCEPTION FALSE Exception available through PL_exception()
PL_S_FALSE FALSE Query failed
PL_S_TRUE TRUE Query succeeded with choicepoint
PL_S_LAST TRUE Query succeeded without choicepoint
PL_open_query() can return the query identifier `0' if there is not
enough space on the environment stack. This function succeeds,
even if the referenced predicate is not defined. In this
case, running the query using PL_next_solution() will return an
existence_error. See PL_exception().
The example below opens a query to the predicate is_a/2 to find the
ancestor of `me'. The reference to the predicate is valid for the
duration of the process and may be cached by the client.
____________________________________________________________________| |
| char * |
| ancestor(const char *me) |
| { term_t a0 = PL_new_term_refs(2); |
| static predicate_t p; |
| |
| if ( !p ) |
| p = PL_predicate("is_a", 2, "database"); |
| |
| PL_put_atom_chars(a0, me); |
| PL_open_query(NULL, PL_Q_NORMAL, p, a0); |
| ... |
||}_________________________________________________________________ ||
int PPLL__nneexxtt__ssoolluuttiioonn(_q_i_d___t _q_i_d)
Generate the first (next) solution for the given query. The return
value is TRUE if a solution was found, or FALSE to indicate the
query could not be proven. This function may be called repeatedly
until it fails to generate all solutions to the query.
void PPLL__ccuutt__qquueerryy(_q_i_d___t _q_i_d)
Discards the query, but does not delete any of the data created by
the query. It just invalidates _q_i_d, allowing for a new call to
PL_open_query() in this context.
void PPLL__cclloossee__qquueerryy(_q_i_d___t _q_i_d)
As PL_cut_query(), but all data and bindings created by the query
are destroyed.
qid_t PPLL__ccuurrrreenntt__qquueerryy(_v_o_i_d)
Returns the query id of of the current query or 0 if the current
thread is not executing any queries.
int PPLL__ccaallll__pprreeddiiccaattee(_m_o_d_u_l_e___t _m_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_r_e_d_, _t_e_r_m___t _+_t_0)
Shorthand for PL_open_query(), PL_next_solution(), PL_cut_query(),
generating a single solution. The arguments are the same as for
PL_open_query(), the return value is the same as PL_next_solution().
int PPLL__ccaallll(_t_e_r_m___t _t_, _m_o_d_u_l_e___t _m)
Call term _t just like the Prolog predicate once/1. _t is called in
the module _m, or in the context module if _m == NULL. Returns TRUE
if the call succeeds, FALSE otherwise. Figure ???? shows an example
to obtain the number of defined atoms. All checks are omitted to
improve readability.
1111..44..1100 DDiissccaarrddiinngg DDaattaa
The Prolog data created and term references needed to set up the call
and/or analyse the result can in most cases be discarded right after
the call. PL_close_query() allows for destroying the data, while
leaving the term references. The calls below may be used to destroy
term references and data. See figure ???? for an example.
fid_t PPLL__ooppeenn__ffoorreeiiggnn__ffrraammee()
Create a foreign frame, holding a mark that allows the system
to undo bindings and destroy data created after it, as well as
providing the environment for creating term references. This
function is called by the kernel before calling a foreign
predicate.
void PPLL__cclloossee__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Discard all term references created after the frame was opened.
All other Prolog data is retained. This function is called by the
kernel whenever a foreign function returns control back to Prolog.
void PPLL__ddiissccaarrdd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Same as PL_close_foreign_frame(), but also undo all bindings made
since the open and destroy all Prolog data.
void PPLL__rreewwiinndd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Undo all bindings and discard all term references created since the
frame was created, but do not pop the frame. That is, the same
frame can be rewound multiple times, and must eventually be closed
or discarded.
It is obligatory to call either of the two closing functions to discard
a foreign frame. Foreign frames may be nested.
________________________________________________________________________| |
|int |
|count_atoms() |
|{ fid_t fid = PL_open_foreign_frame(); |
| term_t goal = PL_new_term_ref(); |
| term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2); |
| int atoms; |
| |
| PL_put_atom_chars(a1, "atoms"); |
| PL_cons_functor(goal, s2, a1, a2); |
| PL_call(goal, NULL); /* call it in current module */ |
| |
| PL_get_integer(a2, &atoms); |
| PL_discard_foreign_frame(fid); |
| |
| return atoms; |
|}|_____________________________________________________________________ | |
Figure 11.3: Calling Prolog
1111..44..1111 FFoorreeiiggnn CCooddee aanndd MMoodduulleess
Modules are identified via a unique handle. The following functions
are available to query and manipulate modules.
module_t PPLL__ccoonntteexxtt()
Return the module identifier of the context module of the currently
active foreign predicate.
int PPLL__ssttrriipp__mmoodduullee(_t_e_r_m___t _+_r_a_w_, _m_o_d_u_l_e___t _*_m_, _t_e_r_m___t _-_p_l_a_i_n)
Utility function. If _r_a_w is a term, possibly holding the module
construct <_m_o_d_u_l_e>:<_r_e_s_t>, this function will make _p_l_a_i_n a reference
to <_r_e_s_t> and fill _m_o_d_u_l_e _* with <_m_o_d_u_l_e>. For further nested
module constructs the innermost module is returned via _m_o_d_u_l_e _*.
If _r_a_w is not a module construct, _r_a_w will simply be put in _p_l_a_i_n.
The value pointed to by _m must be initialized before calling
PL_strip_module(), either to the default module or to NULL. A NULL
value is replaced by the current context module if _r_a_w carries no
module. The following example shows how to obtain the plain term
and module if the default module is the user module:
____________________________________________________________________| |
| { module m = PL_new_module(PL_new_atom("user")); |
| term_t plain = PL_new_term_ref(); |
| |
| PL_strip_module(term, &m, plain); |
| ... |
||}_________________________________________________________________ ||
atom_t PPLL__mmoodduullee__nnaammee(_m_o_d_u_l_e___t _m_o_d_u_l_e)
Return the name of _m_o_d_u_l_e as an atom.
module_t PPLL__nneeww__mmoodduullee(_a_t_o_m___t _n_a_m_e)
Find an existing module or create a new module with the name _n_a_m_e.
1111..44..1122 PPrroolloogg eexxcceeppttiioonnss iinn ffoorreeiiggnn ccooddee
This section discusses PL_exception(), PL_throw() and
PL_raise_exception(), the interface functions to detect and generate
Prolog exceptions from C code. PL_throw() and PL_raise_exception() from
the C interface raise an exception from foreign code. PL_throw()
exploits the C function longjmp() to return immediately to the
innermost PL_next_solution(). PL_raise_exception() registers the
exception term and returns FALSE. If a foreign predicate returns FALSE,
while an exception term is registered, a Prolog exception will be
raised by the virtual machine.
Calling these functions outside the context of a function implementing
a foreign predicate results in undefined behaviour.
PL_exception() may be used after a call to PL_next_solution() fails,
and returns a term reference to an exception term if an exception was
raised, and 0 otherwise.
If a C function implementing a predicate calls Prolog and detects
an exception using PL_exception(), it can handle this exception or
return with the exception. Some caution is required though. It
is nnoott allowed to call PL_close_query() or PL_discard_foreign_frame()
afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog-defined arithmetic function (see
arithmetic_function/1).
If PL_next_solution() succeeds, the result is analysed and translated
to a number, after which the query is closed and all Prolog data
created after PL_open_foreign_frame() is destroyed. On the other
hand, if PL_next_solution() fails and if an exception was raised,
just pass it. Otherwise generate an exception (PL_error() is an
internal call for building the standard error terms and calling
PL_raise_exception()). After this, the Prolog environment should be
discarded using PL_cut_query() and PL_close_foreign_frame() to avoid
invalidating the exception term.
________________________________________________________________________| |
|static int |
|prologFunction(ArithFunction f, term_t av, Number r) |
|{ int arity = f->proc->definition->functor->arity; |
| fid_t fid = PL_open_foreign_frame(); |
| qid_t qid; |
| int rval; |
| |
| qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av); |
| |
| if ( PL_next_solution(qid) ) |
| { rval = valueExpression(av+arity-1, r); |
| PL_close_query(qid); |
| PL_discard_foreign_frame(fid); |
| } else |
| { term_t except; |
| |
| if ( (except = PL_exception(qid)) ) |
| { rval = PL_throw(except); /* pass exception */ |
| } else |
| { char *name = stringAtom(f->proc->definition->functor->name); |
| |
| /* generate exception */ |
| rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc); |
| } |
| |
| PL_cut_query(qid); /* donot destroy data */ |
| PL_close_foreign_frame(fid); /* same */ |
| } |
| |
| return rval; |
|}|_____________________________________________________________________ | |
int PPLL__rraaiissee__eexxcceeppttiioonn(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Generate an exception (as throw/1) and return FALSE. Below is an
example returning an exception from a foreign predicate:
____________________________________________________________________| |
| foreign_t |
| pl_hello(term_t to) |
| { char *s; |
| |
| if ( PL_get_atom_chars(to, &s) ) |
| { Sprintf("Hello \"%s\"\n", s); |
| |
| PL_succeed; |
| } else |
| { term_t except = PL_new_term_ref(); |
| |
| PL_unify_term(except, |
| PL_FUNCTOR_CHARS, "type_error", 2, |
| PL_CHARS, "atom", |
| PL_TERM, to); |
| |
| return PL_raise_exception(except); |
| } |
||}_________________________________________________________________ ||
int PPLL__tthhrrooww(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Similar to PL_raise_exception(), but returns using the C longjmp()
function to the innermost PL_next_solution().
term_t PPLL__eexxcceeppttiioonn(_q_i_d___t _q_i_d)
If PL_next_solution() fails, this can be due to normal failure
of the Prolog call, or because an exception was raised using
throw/1. This function returns a handle to the exception term if
an exception was raised, or 0 if the Prolog goal simply failed. If
there is an exception, PL_exception()allocates a term-handle using
PL_new_term_ref() that is used to return the exception term.
Additionally, \cfuncref{PL_exception}{0} returns the pending
exception in the current query or 0 if no exception is pending.
This can be used to check the error status after a failing call to,
e.g., one of the unification functions.
void PPLL__cclleeaarr__eexxcceeppttiioonn(_v_o_i_d)
Tells Prolog that the encountered exception must be ignored. This
function must be called if control remains in C after a previous
API call fails with an exception.
1111..44..1133 CCaattcchhiinngg SSiiggnnaallss ((SSooffttwwaarree IInntteerrrruuppttss))
SWI-Prolog offers both a C and Prolog interface to deal with software
interrupts (signals). The Prolog mapping is defined in section ????.
This subsection deals with handling signals from C.
If a signal is not used by Prolog and the handler does not call Prolog
in any way, the native signal interface routines may be used.
Any handler that wishes to call one of the Prolog interface functions
should call PL_sigaction() to install the handler. PL_signal()
provides a deprecated interface that is notably not capable of properly
restoring the old signal status if the signal was previously handled by
Prolog.
int PPLL__ssiiggaaccttiioonn(_i_n_t _s_i_g_, _p_l___s_i_g_a_c_t_i_o_n___t _*_a_c_t_, _p_l___s_i_g_a_c_t_i_o_n___t _*_o_l_d_a_c_t)
Install or query the status for signal _s_i_g. The signal is an
integer between 1 and 64, where the where the signals up to 32 are
mapped to OS signals and signals above that are handled by Prolog's
synchronous signal handling. The pl_sigaction_t is a struct with
the following definition:
____________________________________________________________________| |
| typedef struct pl_sigaction |
| { void (*sa_cfunction)(int); /* traditional C function */|
| predicate_t sa_predicate; /* call a predicate */ |
| int sa_flags; /* additional flags */ |
||}_pl_sigaction_t;_________________________________________________ ||
The sa_flags is a bitwise or of PLSIG_THROW, PLSIG_SYNC and
PLSIG_NOFRAME. Signal handling is enabled if PLSIG_THROW is
provided, sa_cfunction or sa_predicate is provided. sa_predicate is
a predicate handle for a predicate with arity 1. If no action is
provided the signal handling for this signal is restored to the
default before PL_initialise() was called.
Finally, 0 (zero) may be passsed for _s_i_g. In that case the system
allocates a free signal in the _P_r_o_l_o_g _r_a_n_g_e (32...64). Such signal
handler are activated using PL_thread_raise().
void (*)() PPLL__ssiiggnnaall(_s_i_g_, _f_u_n_c)
This function is equivalent to the BSD-Unix signal() function,
regardless of the platform used. The signal handler is blocked
while the signal routine is active, and automatically reactivated
after the handler returns.
After a signal handler is registered using this function, the
native signal interface redirects the signal to a generic signal
handler inside SWI-Prolog. This generic handler validates the
environment, creates a suitable environment for calling the
interface functions described in this chapter and finally calls the
registered user-handler.
By default, signals are handled asynchronously (i.e., at the time
they arrive). It is inherently dangerous to call extensive code
fragments, and especially exception related code from asynchronous
handlers. The interface allows for _s_y_n_c_h_r_o_n_o_u_s handling of
signals. In this case the native OS handler just schedules the
signal using PL_raise(), which is checked by PL_handle_signals() at
the call- and redo-port. This behaviour is realised by _o_r-ing _s_i_g
with the constant PL_SIGSYNC.
Signal handling routines may raise exceptions using
PL_raise_exception(). The use of PL_throw() is not safe.
If a synchronous handler raises an exception, the exception is
delayed to the next call to PL_handle_signals();
int PPLL__rraaiissee(_i_n_t _s_i_g)
Register _s_i_g for _s_y_n_c_h_r_o_n_o_u_s handling by Prolog. Synchronous
signals are handled at the call-port or if foreign code calls
PL_handle_signals(). See also thread_signal/2.
int PPLL__hhaannddllee__ssiiggnnaallss(_v_o_i_d)
Handle any signals pending from PL_raise(). PL_handle_signals()
is called at each pass through the call- and redo-port at a safe
point. Exceptions raised by the handler using PL_raise_exception()
are properly passed to the environment.
The user may call this function inside long-running foreign
functions to handle scheduled interrupts. This routine returns the
number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE
as soon as possible.
int PPLL__ggeett__ssiiggnnuumm__eexx(_t_e_r_m___t _t_, _i_n_t _*_s_i_g)
Extract a signal specification from a Prolog term and store as an
integer signal number in _s_i_g. The specification is an integer, a
lowercase signal name without SIG or the full signal name. These
refer to the same: 9, kill and SIGKILL. Leaves a typed, domain or
instantiation error if the conversion fails.
1111..44..1144 MMiisscceellllaanneeoouuss
1111..44..1144..11 TTeerrmm CCoommppaarriissoonn
int PPLL__ccoommppaarree(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Compares two terms using the standard order of terms and returns
-1, 0 or 1. See also compare/3.
int PPLL__ssaammee__ccoommppoouunndd(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Yields TRUE if _t_1 and _t_2 refer to physically the same compound term
and FALSE otherwise.
1111..44..1144..22 RReeccoorrddeedd ddaattaabbaassee
In some applications it is useful to store and retrieve Prolog terms
from C code. For example, the XPCE graphical environment does this for
storing arbitrary Prolog data as slot-data of XPCE objects.
Please note that the returned handles have no meaning at the Prolog
level and the recorded terms are not visible from Prolog. The
functions PL_recorded() and PL_erase() are the only functions that can
operate on the stored term.
Two groups of functions are provided. The first group (PL_record() and
friends) store Prolog terms on the Prolog heap for retrieval during the
same session. These functions are also used by recorda/3 and friends.
The recorded database may be used to communicate Prolog terms between
threads.
record_t PPLL__rreeccoorrdd(_t_e_r_m___t _+_t)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase() is called on it. PL_recorded() is used to copy
recorded terms back to the Prolog stack.
record_t PPLL__dduupplliiccaattee__rreeccoorrdd(_r_e_c_o_r_d___t _r_e_c_o_r_d)
Return a duplicate of _r_e_c_o_r_d. As records are read-only objects
this function merely increments the records reference count.
int PPLL__rreeccoorrddeedd(_r_e_c_o_r_d___t _r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
Returns TRUE on success, and FALSE if there is not enough space
on the stack to accommodate the term. See also PL_record() and
PL_erase().
void PPLL__eerraassee(_r_e_c_o_r_d___t _r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
The second group (headed by PL_record_external()) provides the same
functionality, but the returned data has properties that enable storing
the data on an external device. It has been designed to make
it possible to store Prolog terms fast and compact in an external
database. Here are the main features:
o _I_n_d_e_p_e_n_d_e_n_t _o_f _s_e_s_s_i_o_n
Records can be communicated to another Prolog session and made
visible using PL_recorded_external().
o _B_i_n_a_r_y
The representation is binary for maximum performance. The returned
data may contain zero bytes.
o _B_y_t_e_-_o_r_d_e_r _i_n_d_e_p_e_n_d_e_n_t
The representation can be transferred between machines with
different byte order.
o _N_o _a_l_i_g_n_m_e_n_t _r_e_s_t_r_i_c_t_i_o_n_s
There are no memory alignment restrictions and copies of the record
can thus be moved freely. For example, it is possible to use
this representation to exchange terms using shared memory between
different Prolog processes.
o _C_o_m_p_a_c_t
It is assumed that a smaller memory footprint will eventually
outperform slightly faster representations.
o _S_t_a_b_l_e
The format is designed for future enhancements without breaking
compatibility with older records.
char * PPLL__rreeccoorrdd__eexxtteerrnnaall(_t_e_r_m___t _+_t_, _s_i_z_e___t _*_l_e_n)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase_external() is called on it.
It is allowed to copy the data and use PL_recorded_external() on
the copy. The user is responsible for the memory management of
the copy. After copying, the original may be discarded using
PL_erase_external().
PL_recorded_external() is used to copy such recorded terms back to
the Prolog stack.
int PPLL__rreeccoorrddeedd__eexxtteerrnnaall(_c_o_n_s_t _c_h_a_r _*_r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
See also PL_record_external() and PL_erase_external().
int PPLL__eerraassee__eexxtteerrnnaall(_c_h_a_r _*_r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
1111..44..1144..33 GGeettttiinngg ffiillee nnaammeess
The function PL_get_file_name() provides access to Prolog filenames and
its file-search mechanism described with absolute_file_name/3. Its
existence is motivated to realise a uniform interface to deal with file
properties, search, naming conventions, etc., from foreign code.
int PPLL__ggeett__ffiillee__nnaammee(_t_e_r_m___t _s_p_e_c_, _c_h_a_r _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Translate a Prolog term into a file name. The name is stored
in the static buffer ring described with th PL_get_chars() option
BUF_RING. Conversion from the internal UNICODE encoding is done
using standard C library functions. _f_l_a_g_s is a bit-mask
controlling the conversion process. Options are:
PL_FILE_ABSOLUTE
Return an absolute path to the requested file.
PL_FILE_OSPATH
Return the name using the hosting OS conventions. On
MS-Windows, \ is used to separate directories rather than the
canonical /.
PL_FILE_SEARCH
Invoke absolute_file_name/3. This implies rules from
file_search_path/2are used.
PL_FILE_EXIST
Demand the path to refer to an existing entity.
PL_FILE_READ
Demand read-access on the result.
PL_FILE_WRITE
Demand write-access on the result.
PL_FILE_EXECUTE
Demand execute-access on the result.
PL_FILE_NOERRORS
Do not raise any exceptions.
int PPLL__ggeett__ffiillee__nnaammeeWW(_t_e_r_m___t _s_p_e_c_, _w_c_h_a_r___t _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Same as PL_get_file_name(), but returns the filename as a wide-
character string. This is intended for Windows to access the
Unicode version of the Win32 API. Note that the flag PL_FILE_OSPATH
must be provided to fetch a filename in OS native (e.g., C:\x\y)
notation.
1111..44..1144..44 DDeeaalliinngg wwiitthh PPrroolloogg ffllaaggss ffrroomm CC
Foreign code can set or create Prolog flags using PL_set_prolog_flag().
See set_prolog_flag/2and create_prolog_flag/3.
int PPLL__sseett__pprroolloogg__ffllaagg(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _t_y_p_e_, _._._.)
Set/create a Prolog flag from C. _n_a_m_e is the name of the affected
flag. _t_y_p_e is one of the values below, which also dictates
the type of the final argument. The function returns TRUE on
success and FALSE on failure. This function can be called _b_e_f_o_r_e
PL_initialise(), making the flag available to the Prolog startup
code.
PL_BOOL
Create a boolean (true or false) flag. The argument must be
an int.
PL_ATOM
Create a flag with an atom as value. The argument must be of
type const char *.
PL_INTEGER
Create a flag with an integer as value. The argument must be
of type intptr_t *.
1111..44..1155 EErrrroorrss aanndd wwaarrnniinnggss
PL_warning() prints a standard Prolog warning message to the standard
error (user_error) stream. Please note that new code should consider
using PL_raise_exception() to raise a Prolog exception. See also
section ????.
int PPLL__wwaarrnniinngg(_f_o_r_m_a_t_, _a_1_, _._._.)
Print an error message starting with `[WARNING: ', followed by
the output from _f_o_r_m_a_t, followed by a `]' and a newline. Then
start the tracer. _f_o_r_m_a_t and the arguments are the same as for
printf(2). Always returns FALSE.
1111..44..1166 EEnnvviirroonnmmeenntt CCoonnttrrooll ffrroomm FFoorreeiiggnn CCooddee
int PPLL__aaccttiioonn(_i_n_t_, _._._.)
Perform some action on the Prolog system. _i_n_t describes the
action. Remaining arguments depend on the requested action. The
actions are listed below:
PPLL__AACCTTIIOONN__TTRRAACCEE
Start Prolog tracer (trace/0). Requires no arguments.
PPLL__AACCTTIIOONN__DDEEBBUUGG
Switch on Prolog debug mode (debug/0). Requires no arguments.
PPLL__AACCTTIIOONN__BBAACCKKTTRRAACCEE
Print backtrace on current output stream. The argument (an
int) is the number of frames printed.
PPLL__AACCTTIIOONN__HHAALLTT
Halt Prolog execution. This action should be called rather
than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. See halt/1.
PPLL__AACCTTIIOONN__AABBOORRTT
Generate a Prolog abort (abort/0). This call does not return.
Requires no arguments.
PPLL__AACCTTIIOONN__BBRREEAAKK
Create a standard Prolog break environment (break/0). Returns
after the user types the end-of-file character. Requires no
arguments.
PPLL__AACCTTIIOONN__GGUUIIAAPPPP
Windows: Used to indicate to the kernel that the application
is a GUI application if the argument is not 0, and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on a GUI
application, and otherwise simply prints the error and exits.
PPLL__AACCTTIIOONN__TTRRAADDIITTIIOONNAALL
Same effect as using --traditional. Must be called _b_e_f_o_r_e
PL_initialise().
PPLL__AACCTTIIOONN__WWRRIITTEE
Write the argument, a char * to the current output stream.
PPLL__AACCTTIIOONN__FFLLUUSSHH
Flush the current output stream. Requires no arguments.
PPLL__AACCTTIIOONN__AATTTTAACCHH__CCOONNSSOOLLEE
Attach a console to a thread if it does not have one. See
attach_console/0.
PPLL__GGMMPP__SSEETT__AALLLLOOCC__FFUUNNCCTTIIOONNSS
Takes an integer argument. If TRUE, the GMP allocations
are immediately bound to the Prolog functions. If FALSE,
SWI-Prolog will never rebind the GMP allocation functions.
See mp_set_memory_functions() in the GMP documentation. The
action returns FALSE if there is no GMP support or GMP is
already initialised.
1111..44..1177 QQuueerryyiinngg PPrroolloogg
long PPLL__qquueerryy(_i_n_t)
Obtain status information on the Prolog system. The actual
argument type depends on the information required. _i_n_t describes
what information is wanted. The options are given in table ????.
__________________________________________________________
| PL_QUERY_ARGC |Return an integer holding the|
| |number of arguments given to|
| |Prolog from Unix. |
| PL_QUERY_ARGV |Return a char ** holding the|
| |argument vector given to Prolog|
| |from Unix. |
| PL_QUERY_SYMBOLFILE |Return a char * holding the|
| |current symbol file of the|
| |running process. |
| PL_MAX_INTEGER |Return a long, representing the|
| |maximal integer value repre-|
| |sented by a Prolog integer. |
| PL_MIN_INTEGER |Return a long, representing the|
| |minimal integer value. |
| PL_QUERY_VERSION |Return a long, representing the|
| |version as 10;000M* +100m* +p,|
| |where M is the major, m the |
| |minor version number and p the|
| |patch level. For example, 20717|
| |means 2.7.17. |
| PL_QUERY_ENCODING |Return the default stream encod-|
| |ing of Prolog (of type IOENC). |
| PL_QUERY_USER_CPU |Get amount of user CPU time of|
|________________________|the_process_in_milliseconds.____|
Table 11.1: PL_query() options
1111..44..1188 RReeggiisstteerriinngg FFoorreeiiggnn PPrreeddiiccaatteess
int PPLL__rreeggiisstteerr__ffoorreeiiggnn__iinn__mmoodduullee(_c_h_a_r _*_m_o_d_, _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_)_(_)_, _i_n_t _f_l_a_g_s_, _._._.)
Register the C function _f to implement a Prolog predicate. After
this call returns successfully a predicate with name _n_a_m_e (a char
*) and arity _a_r_i_t_y (a C int) is created in module _m_o_d. If _m_o_d
is NULL, the predicate is created in the module of the calling
context, or if no context is present in the module user.
When called in Prolog, Prolog will call _f_u_n_c_t_i_o_n. _f_l_a_g_s form a
bitwise _o_r'ed list of options for the installation. These are:
_______________________________________________________________
| PL_FA_META |Provide meta-predicate info (see|
| |below) |
| PL_FA_TRANSPARENT |Predicate is module transparent|
| |(deprecated) |
| PL_FA_NONDETERMINISTIC |Predicate is non-deterministic. See|
| |also PL_retry(). |
| PL_FA_NOTRACE |Predicate cannot be seen in the|
| |tracer |
|_PL_FA_VARARGS__________|Use_alternative_calling_convention.__|
If PL_FA_META is provided, PL_register_foreign_in_module()takes one
extra argument. This argument is of type const char*. This
string must be exactly as long as the number of arguments of
the predicate and filled with characters from the set 0-9:^-+?.
See meta_predicate/1 for details. PL_FA_TRANSPARENT is implied
if at least one meta-argument is provided (0-9:^). Note that
meta-arguments are _n_o_t _a_l_w_a_y_s passed as <_m_o_d_u_l_e>:<_t_e_r_m>. Always
use PL_strip_module()to extract the module and plain term from a
meta-argument.
Predicates may be registered either before or after
PL_initialise(). When registered before initialisation the
registration is recorded and executed after installing the system
predicates and before loading the saved state.
Default calling (i.e. without PL_FA_VARARGS) _f_u_n_c_t_i_o_n is passed the
same number of term_t arguments as the arity of the predicate and,
if the predicate is non-deterministic, an extra argument of type
control_t (see section ????). If PL_FA_VARARGS is provided, _f_u_n_c_t_i_o_n
is called with three arguments. The first argument is a term_t
handle to the first argument. Further arguments can be reached
by adding the offset (see also PL_new_term_refs()). The second
argument is the arity, which defines the number of valid term
references in the argument vector. The last argument is used for
non-deterministic calls. It is currently undocumented and should
be defined of type void*. Here is an example:
____________________________________________________________________| |
| static foreign_t |
| atom_checksum(term_t a0, int arity, void* context) |
| { char *s; |
| |
| if ( PL_get_atom_chars(a0, &s) ) |
| { int sum; |
| |
| for(sum=0; *s; s++) |
| sum += *s&0xff; |
| |
| return PL_unify_integer(a0+1, sum&0xff); |
| } |
| |
| return FALSE; |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("atom_checksum", 2, |
| atom_checksum, PL_FA_VARARGS); |
||}_________________________________________________________________ ||
int PPLL__rreeggiisstteerr__ffoorreeiiggnn(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_u_n_c_t_i_o_n_)_(_)_, _i_n_t _f_l_a_g_s_, _._._.)
Same as PL_register_foreign_in_module(), passing NULL for the
_m_o_d_u_l_e.
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss__iinn__mmoodduullee(_c_o_n_s_t _c_h_a_r _*_m_o_d_u_l_e_, _P_L___e_x_t_e_n_s_i_o_n _*_e)
Register a series of predicates from an array of definitions of the
type PL_extension in the given _m_o_d_u_l_e. If _m_o_d_u_l_e is NULL, the
predicate is created in the module of the calling context, or if no
context is present in the module user. The PL_extension type is
defined as
____________________________________________________________________| |
| typedef struct PL_extension |
| { char *predicate_name; /* Name of the predicate */ |
| short arity; /* Arity of the predicate */ |
| pl_function_t function; /* Implementing functions */ |
| short flags; /* Or of PL_FA_... */ |
||}_PL_extension;___________________________________________________ ||
For details, see PL_register_foreign_in_module(). Here is an
example of its usage:
____________________________________________________________________| |
| static PL_extension predicates[] = { |
| { "foo", 1, pl_foo, 0 }, |
| { "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC }, |
| { NULL, 0, NULL, 0 } |
| }; |
| |
| main(int argc, char **argv) |
| { PL_register_extensions_in_module("user", predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| ... |
||}_________________________________________________________________ ||
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss( _P_L___e_x_t_e_n_s_i_o_n _*_e)
Same as PL_register_extensions_in_module()using NULL for the _m_o_d_u_l_e
argument.
1111..44..1199 FFoorreeiiggnn CCooddee HHooookkss
For various specific applications some hooks are provided.
PL_dispatch_hook_t PPLL__ddiissppaattcchh__hhooookk(_P_L___d_i_s_p_a_t_c_h___h_o_o_k___t)
If this hook is not NULL, this function is called when reading from
the terminal. It is supposed to dispatch events when SWI-Prolog
is connected to a window environment. It can return two values:
PL_DISPATCH_INPUT indicates Prolog input is available on file
descriptor 0 or PL_DISPATCH_TIMEOUT to indicate a timeout. The old
hook is returned. The type PL_dispatch_hook_t is defined as:
____________________________________________________________________| |
||typedef_int__(*PL_dispatch_hook_t)(void);_________________________ ||
void PPLL__aabboorrtt__hhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is
implemented using C setjmp()/longjmp() construct. The hooks are
executed in the reverse order of their registration after the
longjmp() took place and before the Prolog top level is reinvoked.
The type PL_abort_hook_t is defined as:
____________________________________________________________________| |
||typedef_void_(*PL_abort_hook_t)(void);____________________________ ||
int PPLL__aabboorrtt__uunnhhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Remove a hook installed with PL_abort_hook(). Returns FALSE if no
such hook is found, TRUE otherwise.
void PPLL__oonn__hhaalltt(_i_n_t _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Register the function _f to be called if SWI-Prolog is halted. The
function is called with two arguments: the exit code of the
process (0 if this cannot be determined) and the _c_l_o_s_u_r_e argument
passed to the PL_on_halt() call. Handlers _m_u_s_t return 0. Other
return values are reserved for future use. See also at_halt/1.
These handlers are called _b_e_f_o_r_e system cleanup and can therefore
access all normal Prolog resources. See also PL_exit_hook().
void PPLL__eexxiitt__hhooookk(_i_n_t _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Similar to PL_on_halt(), but the hooks are executed by PL_halt()
instead of PL_cleanup() just before calling exit().
PL_agc_hook_t PPLL__aaggcc__hhooookk(_P_L___a_g_c___h_o_o_k___t _n_e_w)
Register a hook with the atom-garbage collector (see
garbage_collect_atoms/0) that is called on any atom that is
reclaimed. The old hook is returned. If no hook is currently
defined, NULL is returned. The argument of the called hook is the
atom that is to be garbage collected. The return value is an int.
If the return value is zero, the atom is nnoott reclaimed. The hook
may invoke any Prolog predicate.
The example below defines a foreign library for printing the
garbage collected atoms for debugging purposes.
____________________________________________________________________| |
| #include <SWI-Stream.h> |
| #include <SWI-Prolog.h> |
| |
| static int |
| atom_hook(atom_t a) |
| { Sdprintf("AGC: deleting %s\n", PL_atom_chars(a)); |
| |
| return TRUE; |
| } |
| |
| static PL_agc_hook_t old; |
| |
| install_t |
| install() |
| { old = PL_agc_hook(atom_hook); |
| } |
| |
| install_t |
| uninstall() |
| { PL_agc_hook(old); |
||}_________________________________________________________________ ||
1111..44..2200 SSttoorriinngg ffoorreeiiggnn ddaattaa
When combining foreign code with Prolog, it can be necessary to make
data represented in the foreign language available to Prolog. For
example, to pass it to another foreign function. At the end of this
section, there is a partial implementation of using foreign functions
to manage bit-vectors. Another example is the SGML/XML library that
manages a `parser' object, an object that represents the current state
of the parser and that can be directed to perform actions such as
parsing a document or make queries about the document content.
This section provides some hints for handling foreign data in Prolog.
There are four options for storing such data:
o _N_a_t_u_r_a_l _P_r_o_l_o_g _d_a_t_a
Uses the representation one would choose if no foreign interface
was required. For example, a bitvector representing a list of
small integers can be represented as a Prolog list of integers.
o _O_p_a_q_u_e _p_a_c_k_e_d _d_a_t_a _o_n _t_h_e _s_t_a_c_k_s
It is possible to represent the raw binary representation of the
foreign object as a Prolog string (see section ????). Strings may be
created from foreign data using PL_put_string_nchars() and retrieved
using PL_get_string_chars(). It is good practice to wrap the string
in a compound term with arity 1, so Prolog can identify the type.
The hook portray/1 rules may be used to streamline printing such
terms during development.
o _O_p_a_q_u_e _p_a_c_k_e_d _d_a_t_a _i_n _a _b_l_o_b
Similar to the above solution, binary data can be stored in
an atom. The blob interface (section ????) provides additional
facilities to assign a type and hook-functions that act on creation
and destruction of the underlying atom.
o _N_a_t_u_r_a_l _f_o_r_e_i_g_n _d_a_t_a_, _p_a_s_s_e_d _a_s _a _p_o_i_n_t_e_r
An alternative is to pass a pointer to the foreign data. Again,
the pointer is often wrapped in a compound term.
The choice may be guided using the following distinctions
o _I_s _t_h_e _d_a_t_a _o_p_a_q_u_e _t_o _P_r_o_l_o_g
With `opaque' data, we refer to data handled in foreign functions,
passed around in Prolog, but where Prolog never examines the
contents of the data itself. If the data is opaque to Prolog, the
selection will be driven solely by simplicity of the interface and
performance.
o _W_h_a_t _i_s _t_h_e _l_i_f_e_t_i_m_e _o_f _t_h_e _d_a_t_a
With `lifetime' we refer to how it is decided that the object is
(or can be) destroyed. We can distinguish three cases:
1. The object must be destroyed on backtracking and normal Prolog
garbage collection (i.e., it acts as a normal Prolog term).
In this case, representing the object as a Prolog string
(second option above) is the only feasible solution.
2. The data must survive Prolog backtracking. This leaves two
options. One is to represent the object using a pointer and
use explicit creation and destruction, making the programmer
responsible. The alternative is to use the blob-interface,
leaving destruction to the (atom) garbage collector.
3. The data lives as during the lifetime of a foreign
function that implements a predicate. If the predicate is
deterministic, foreign automatic variables are suitable. If
the predicate is non-deterministic, the data may be allocated
using malloc() and a pointer may be passed. See section ????.
1111..44..2200..11 EExxaammpplleess ffoorr ssttoorriinngg ffoorreeiiggnn ddaattaa
In this section, we outline some examples, covering typical cases.
In the first example, we will deal with extending Prolog's data
representation with integer sets, represented as bit-vectors. Then, we
discuss the outline of the DDE interface.
IInntteeggeerr sseettss with not-too-far-apart upper- and lower-bounds can be
represented using bit-vectors. Common set operations, such as union,
intersection, etc., are reduced to simple _a_n_d'ing and _o_r'ing the
bit-vectors. This can be done using Prolog's unbounded integers.
For really demanding applications, foreign representation will perform
better, especially time-wise. Bit-vectors are naturally expressed
using string objects. If the string is wrapped in bitvector/1, the
lower-bound of the vector is 0 and the upper-bound is not defined; an
implementation for getting and putting the sets as well as the union
predicate for it is below.
________________________________________________________________________| |
|#include <SWI-Prolog.h> |
| |
|#define max(a, b) ((a) > (b) ? (a) : (b)) |
|#define min(a, b) ((a) < (b) ? (a) : (b)) |
| |
|static functor_t FUNCTOR_bitvector1; |
| |
|static int |
|get_bitvector(term_t in, int *len, unsigned char **data) |
|{ if ( PL_is_functor(in, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, in, a); |
| return PL_get_string(a, (char **)data, len); |
| } |
| |
| PL_fail; |
|} |
| |
|static int |
|unify_bitvector(term_t out, int len, const unsigned char *data) |
|{ if ( PL_unify_functor(out, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, out, a); |
| |
| return PL_unify_string_nchars(a, len, (const char *)data); |
| } |
| |
| PL_fail; |
|} |
| |
|static foreign_t |
|pl_bitvector_union(term_t t1, term_t t2, term_t u) |
|{ unsigned char *s1, *s2; |
| int l1, l2; |
| |
| if ( get_bitvector(t1, &l1, &s1) && |
| get_bitvector(t2, &l2, &s2) ) |
| { int l = max(l1, l2); |
| unsigned char *s3 = alloca(l); |
| |
| if ( s3 ) |
| { int n; |
| int ml = min(l1, l2); |
| |
| for(n=0; n<ml; n++) |
| s3[n] = s1[n] | s2[n]; |
| for( ; n < l1; n++) |
| s3[n] = s1[n]; |
| for( ; n < l2; n++) |
| s3[n] = s2[n]; |
| |
| return unify_bitvector(u, l, s3); |
| } |
| |
| return PL_warning("Not enough memory"); |
| } |
| |
| PL_fail; |
|} |
| |
| |
|install_t |
|install() |
|{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0); |
| |
| FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1); |
|}|_____________________________________________________________________ | |
TThhee DDDDEE iinntteerrffaaccee (see section ????) represents another common usage of
the foreign interface: providing communication to new operating system
features. The DDE interface requires knowledge about active DDE server
and client channels. These channels contains various foreign data
types. Such an interface is normally achieved using an open/close
protocol that creates and destroys a _h_a_n_d_l_e. The handle is a reference
to a foreign data structure containing the relevant information.
There are a couple of possibilities for representing the handle. The
choice depends on responsibilities and debugging facilities. The
simplest approach is to use PL_unify_pointer() and PL_get_pointer().
This approach is fast and easy, but has the drawbacks of (untyped)
pointers: there is no reliable way to detect the validity of the
pointer, nor to verify that it is pointing to a structure of the
desired type. The pointer may be wrapped into a compound term with
arity 1 (i.e., dde_channel(<_P_o_i_n_t_e_r>)), making the type-problem less
serious.
Alternatively (used in the DDE interface), the interface code can
maintain a (preferably variable length) array of pointers and return
the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good
suggestion.
1111..44..2211 EEmmbbeeddddiinngg SSWWII--PPrroolloogg iinn ootthheerr aapppplliiccaattiioonnss
With embedded Prolog we refer to the situation where the `main' program
is not the Prolog application. Prolog is sometimes embedded in C, C++,
Java or other languages to provide logic based services in a larger
application. Embedding loads the Prolog engine as a library to the
external language. Prolog itself only provides for embedding in the C
language (compatible with C++). Embedding in Java is achieved using
JPL using a C-glue between the Java and Prolog C interfaces.
The most simple embedded program is below. The interface
function PL_initialise() mmuusstt be called before any of the other
SWI-Prolog foreign language functions described in this chapter,
except for PL_initialise_hook(), PL_new_atom(), PL_new_functor() and
PL_register_foreign(). PL_initialise() interprets all the command line
arguments, except for the -t toplevel flag that is interpreted by
PL_toplevel().
________________________________________________________________________| |
|int |
|main(int argc, char **argv) |
|{ if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
int PPLL__iinniittiiaalliissee(_i_n_t _a_r_g_c_, _c_h_a_r _*_*_a_r_g_v)
Initialises the SWI-Prolog heap and stacks, restores the Prolog
state, loads the system and personal initialisation files, runs the
initialization/1 hooks and finally runs the -g goal hook.
Special consideration is required for argv[0]. On UUnniixx, this
argument passes the part of the command line that is used to locate
the executable. Prolog uses this to find the file holding the
running executable. The WWiinnddoowwss version uses this to find a _m_o_d_u_l_e
of the running executable. If the specified module cannot be
found, it tries the module libpl.dll, containing the Prolog runtime
kernel. In all these cases, the resulting file is used for two
purposes:
o See whether a Prolog saved state is appended to the file. If
this is the case, this state will be loaded instead of the
default boot.prc file from the SWI-Prolog home directory. See
also qsave_program/[1,2] and section ????.
o Find the Prolog home directory. This process is described in
detail in section ????.
PL_initialise() returns 1 if all initialisation succeeded and 0
otherwise.
In most cases, _a_r_g_c and _a_r_g_v will be passed from the main program.
It is allowed to create your own argument vector, provided argv[0]
is constructed according to the rules above. For example:
____________________________________________________________________| |
| int |
| main(int argc, char **argv) |
| { char *av[10]; |
| int ac = 0; |
| |
| av[ac++] = argv[0]; |
| av[ac++] = "-x"; |
| av[ac++] = "mystate"; |
| av[ac] = NULL; |
| |
| if ( !PL_initialise(ac, av) ) |
| PL_halt(1); |
| ... |
||}_________________________________________________________________ ||
Please note that the passed argument vector may be referred from
Prolog at any time and should therefore be valid as long as the
Prolog engine is used.
A good setup in Windows is to add SWI-Prolog's bin directory to
your PATH and either pass a module holding a saved state, or
"libpl.dll" as argv[0]. If the Prolog state is attached to a DLL
(see the -dll option of swipl-ld), pass the name of this DLL.
int PPLL__iiss__iinniittiiaalliisseedd(_i_n_t _*_a_r_g_c_, _c_h_a_r _*_*_*_a_r_g_v)
Test whether the Prolog engine is already initialised. Returns
FALSE if Prolog is not initialised and TRUE otherwise. If the
engine is initialised and _a_r_g_c is not NULL, the argument count used
with PL_initialise() is stored in _a_r_g_c. Same for the argument
vector _a_r_g_v.
int PPLL__sseett__rreessoouurrccee__ddbb__mmeemm(_c_o_n_s_t _u_n_s_i_g_n_e_d _c_h_a_r _*_d_a_t_a_, _s_i_z_e___t _s_i_z_e)
This function must be called at most once and _b_e_f_o_r_e calling
PL_initialise(). The memory area designated by _d_a_t_a and _s_i_z_e must
contain the resource data and be in the format as produced by
qsave_program/2. The memory area is accessed by PL_initialise() as
well as calls to open_resource/3.
For example, we can include the bootstrap data into an embedded
executable using the steps below. The advantage of this approach
is that it is fully supported by any OS and you obtain a single
file executable.
1. Create a saved state using qsave_program/2 or
_______________________________________________________________| |
|%|swipl_-o_state_-c_file.pl_..._______________________________ | |
2. Create a C source file from the state using e.g., the Unix
utility xxd(1):
_______________________________________________________________| |
|%|xxd_-i_state_>_state.h______________________________________ | |
3. Embed Prolog as in the example below. Instead of calling the
toplevel you probably want to call your application code.
_______________________________________________________________| |
|#include <SWI-Prolog.h> |
|#include "state.h" |
| |
|int |
|main(int argc, char **argv) |
|{ if ( !PL_set_resource_db_mem(state, state_len) || |
| !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| return PL_toplevel(); |
|}|____________________________________________________________ | |
Alternative to xxd, it is possible to use inline assembler, e.g.
the gcc incbin instruction. Code for gcc was provided by Roberto
Bagnara on the SWI-Prolog mailinglist. Given the state in a file
state, create the following assembler program:
____________________________________________________________________| |
| .globl _state |
| .globl _state_end |
| _state: |
| .incbin "state" |
||_state_end:_______________________________________________________ ||
Now include this as follows:
____________________________________________________________________| |
| #include <SWI-Prolog.h> |
| |
| #if __linux |
| #define STATE _state |
| #define STATE_END _state_end |
| #else |
| #define STATE state |
| #define STATE_END state_end |
| #endif |
| |
| extern unsigned char STATE[]; |
| extern unsigned char STATE_END[]; |
| |
| int |
| main(int argc, char **argv) |
| { if ( !PL_set_resource_db_mem(STATE, STATE_END - STATE) || |
| !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| return PL_toplevel(); |
||}_________________________________________________________________ ||
As Jose Morales pointed at https://github.com/graphitemaster/
incbin, which contains a portability layer on top of the above
idea.
int PPLL__ttoopplleevveell()
Runs the goal of the -t toplevel switch (default prolog/0) and
returns 1 if successful, 0 otherwise.
int PPLL__cclleeaannuupp(_i_n_t _s_t_a_t_u_s)
This function performs the reverse of PL_initialise(). It runs the
PL_on_halt() and at_halt/1 handlers, closes all streams (except for
the `standard I/O' streams which are flushed only), deallocates
all memory if _s_t_a_t_u_s equals `0' and restores all signal handlers.
The _s_t_a_t_u_s argument is passed to the various termination hooks and
indicates the _e_x_i_t_-_s_t_a_t_u_s.
The function returns TRUE if successful and FALSE otherwise.
Currently, FALSE is returned when an attempt is made to call
PL_cleanup() recursively or if one of the exit handlers cancels the
termination using cancel_halt/1. Exit handlers may only cancel
termination if _s_t_a_t_u_s is 0.
In theory, this function allows deleting and restarting the Prolog
system in the same process. In practice, SWI-Prolog's cleanup
process is far from complete, and trying to revive the system using
PL_initialise() will leak memory in the best case. It can also
crash the appliction.
In this state, there is little practical use for this function.
If you want to use Prolog temporarily, consider running it in a
separate process. If you want to be able to reset Prolog, your
options are (again) a separate process, modules or threads.
void PPLL__cclleeaannuupp__ffoorrkk()
Stop intervaltimer that may be running on behalf of profile/1. The
call is intended to be used in combination with fork():
____________________________________________________________________| |
| if ( (pid=fork()) == 0 ) |
| { PL_cleanup_fork(); |
| <some exec variation> |
||____}_____________________________________________________________ ||
The call behaves the same on Windows, though there is probably no
meaningful application.
int PPLL__hhaalltt(_i_n_t _s_t_a_t_u_s)
Clean up the Prolog environment using PL_cleanup() and if success-
ful call exit() with the status argument. Returns FALSE if exit
was cancelled by PL_cleanup().
1111..44..2211..11 TThhrreeaaddiinngg,, SSiiggnnaallss aanndd eemmbbeeddddeedd PPrroolloogg
This section applies to Unix-based environments that have signals or
multithreading. The Windows version is compiled for multithreading,
and Windows lacks proper signals.
We can distinguish two classes of embedded executables. There are
small C/C++ programs that act as an interfacing layer around Prolog.
Most of these programs can be replaced using the normal Prolog
executable extended with a dynamically loaded foreign extension and in
most cases this is the preferred route. In other cases, Prolog is
embedded in a complex application that---like Prolog---wants to control
the process environment. A good example is Java. Embedding Prolog
is generally the only way to get these environments together in one
process image. Java VMs, however, are by nature multithreaded and
appear to do signal handling (software interrupts).
On Unix systems, SWI-Prolog installs handlers for the following
signals:
SSIIGGUUSSRR22 has an empty signal handler. This signal is sent to a thread
after sending a thread-signal (see thread_signal/2). It causes
blocking system calls to return with EINTR, which gives them the
opportunity to react to thread-signals.
In some cases the embedded system and SWI-Prolog may both use
SIGUSR2 without conflict. If the embedded system redefines SIGUSR2
with a handler that runs quickly and no harm is done in the
embedded system due to spurious wakeup when initiated from Prolog,
there is no problem. If SWI-Prolog is initialised _a_f_t_e_r the
embedded system it will call the handler set by the embedded system
and the same conditions as above apply. SWI-Prolog's handler is
a simple function only chaining a possibly previously registered
handler. SWI-Prolog can handle spurious SIGUSR2 signals.
SSIIGGIINNTT is used by the top level to activate the tracer (typically bound
to control-C). The first control-C posts a request for starting the
tracer in a safe, synchronous fashion. If control-C is hit again
before the safe route is executed, it prompts the user whether or
not a forced interrupt is desired.
SSIIGGTTEERRMM,, SSIIGGAABBRRTT aanndd SSIIGGQQUUIITT are caught to cleanup before killing the
process again using the same signal.
SSIIGGSSEEGGVV,, SSIIGGIILLLL,, SSIIGGBBUUSS,, SSIIGGFFPPEE aanndd SSIIGGSSYYSS are caught by to print a
backtrace before killing the process again using the same signal.
SSIIGGHHUUPP is caught and causes the process to exit with status 2 after
cleanup.
The --nosignals option can be used to inhibit all signal processing
except for SIGUSR2. The handling of SIGUSR2 is vital for dealing with
blocking system call in threads. The used signal may be changed using
the --sigalert=NUM option or disabled using --sigalert=0.
1111..55 LLiinnkkiinngg eemmbbeeddddeedd aapppplliiccaattiioonnss uussiinngg sswwiippll--lldd
The utility program swipl-ld (Win32: swipl-ld.exe) may be used to
link a combination of C files and Prolog files into a stand-alone
executable. swipl-ld automates most of what is described in the
previous sections.
In normal usage, a copy is made of the default embedding template
.../swipl/include/stub.c. The main() routine is modified to suit
your application. PL_initialise() mmuusstt be passed the program name
(_a_r_g_v_[_0_]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command line may be
modified. Next, swipl-ld is typically invoked as:
________________________________________________________________________| |
|swipl-ld|-o_output_stubfile.c_[other-c-or-o-files]_[plfiles]___________ | |
swipl-ld will first split the options into various groups for both the
C compiler and the Prolog compiler. Next, it will add various default
options to the C compiler and call it to create an executable holding
the user's C code and the Prolog kernel. Then, it will call the
SWI-Prolog compiler to create a saved state from the provided Prolog
files and finally, it will attach this saved state to the created
emulator to create the requested executable.
Below, it is described how the options are split and which additional
options are passed.
-help
Print brief synopsis.
-pl _p_r_o_l_o_g
Select the Prolog to use. This Prolog is used for two purposes:
get the home directory as well as the compiler/linker options and
create a saved state of the Prolog code.
-ld _l_i_n_k_e_r
Linker used to link the raw executable. Default is to use the C
compiler (Win32: link.exe).
-cc _C _c_o_m_p_i_l_e_r
Compiler for .c files found on the command line. Default is the
compiler used to build SWI-Prolog accessible through the Prolog
flag c_cc (Win32: cl.exe).
-c++ _C_+_+_-_c_o_m_p_i_l_e_r
Compiler for C++ source file (extensions .cpp, .cxx, .cc or .C)
found on the command line. Default is c++ or g++ if the C compiler
is gcc (Win32: cl.exe).
-nostate
Just relink the kernel, do not add any Prolog code to the
new kernel. This is used to create a new kernel holding
additional foreign predicates on machines that do not support
the shared-library (DLL) interface, or if building the state
cannot be handled by the default procedure used by swipl-ld.
In the latter case the state is created separately and
appended to the kernel using cat <_k_e_r_n_e_l> <_s_t_a_t_e> > <_o_u_t>(Win32:
copy /b <_k_e_r_n_e_l>+<_s_t_a_t_e> <_o_u_t>).
-shared
Link C, C++ or object files into a shared object (DLL) that can be
loaded by the load_foreign_library/1predicate. If used with -c
it sets the proper options to compile a C or C++ file ready for
linking into a shared object.
-dll
_W_i_n_d_o_w_s _o_n_l_y. Embed SWI-Prolog into a DLL rather than an
executable.
-c
Compile C or C++ source files into object files. This turns
swipl-ld into a replacement for the C or C++ compiler, where proper
options such as the location of the include directory are passed
automatically to the compiler.
-E
Invoke the C preprocessor. Used to make swipl-ld a replacement for
the C or C++ compiler.
-pl-options _,_._._.
Additional options passed to Prolog when creating the saved state.
The first character immediately following pl-options is used as
separator and translated to spaces when the argument is built.
Example: -pl-options,-F,xpce passes -F xpce as additional flags to
Prolog.
-ld-options _,_._._.
Passes options to the linker, similar to -pl-options.
-cc-options _,_._._.
Passes options to the C/C++ compiler, similar to -pl-options.
-v
Select verbose operation, showing the various programs and their
options.
-o _o_u_t_f_i_l_e
Reserved to specify the final output file.
-l_l_i_b_r_a_r_y
Specifies a library for the C compiler. By default, -lswipl
(Win32: libpl.lib) and the libraries needed by the Prolog kernel
are given.
-L_l_i_b_r_a_r_y_-_d_i_r_e_c_t_o_r_y
Specifies a library directory for the C compiler. By default
the directory containing the Prolog C library for the current
architecture is passed.
-g | -I_i_n_c_l_u_d_e_-_d_i_r_e_c_t_o_r_y | -D_d_e_f_i_n_i_t_i_o_n
These options are passed to the C compiler. By default, the
include directory containing SWI-Prolog.h is passed. swipl-ld adds
two additional * -Ddef flags:
-D__SWI_PROLOG__
Indicates the code is to be connected to SWI-Prolog.
-D__SWI_EMBEDDED__
Indicates the creation of an embedded program.
_*_._o | _*_._c | _*_._C | _*_._c_x_x | _*_._c_p_p
Passed as input files to the C compiler.
_*_._p_l |_*_._q_l_f
Passed as input files to the Prolog compiler to create the saved
state.
*
All other options. These are passed as linker options to the C
compiler.
1111..55..11 AA ssiimmppllee eexxaammppllee
The following is a very simple example going through all the steps
outlined above. It provides an arithmetic expression evaluator. We
will call the application calc and define it in the files calc.c and
calc.pl. The Prolog file is simple:
________________________________________________________________________| |
|calc(Atom) :- |
| term_to_atom(Expr, Atom), |
| A is Expr, |
| write(A), |
||_______nl.____________________________________________________________ ||
The C part of the application parses the command line options,
initialises the Prolog engine, locates the calc/1 predicate and calls
it. The coder is in figure ????.
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|#define MAXLINE 1024 |
| |
|int |
|main(int argc, char **argv) |
|{ char expression[MAXLINE]; |
| char *e = expression; |
| char *program = argv[0]; |
| char *plav[2]; |
| int n; |
| |
| /* combine all the arguments in a single string */ |
| |
| for(n=1; n<argc; n++) |
| { if ( n != 1 ) |
| *e++ = ' '; |
| strcpy(e, argv[n]); |
| e += strlen(e); |
| } |
| |
| /* make the argument vector for Prolog */ |
| |
| plav[0] = program; |
| plav[1] = NULL; |
| |
| /* initialise Prolog */ |
| |
| if ( !PL_initialise(1, plav) ) |
| PL_halt(1); |
| |
| /* Lookup calc/1 and make the arguments and call */ |
| |
| { predicate_t pred = PL_predicate("calc", 1, "user"); |
| term_t h0 = PL_new_term_refs(1); |
| int rval; |
| |
| PL_put_atom_chars(h0, expression); |
| rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0); |
| |
| PL_halt(rval ? 0 : 1); |
| } |
| |
| return 0; |
|}|_____________________________________________________________________ | |
Figure 11.4: C source for the calc application
The application is now created using the following command line:
________________________________________________________________________| |
|%|swipl-ld_-o_calc_calc.c_calc.pl______________________________________ | |
The following indicates the usage of the application:
________________________________________________________________________| |
|% calc pi/2 |
|1.5708|________________________________________________________________ | |
1111..66 TThhee PPrroolloogg ``hhoommee'' ddiirreeccttoorryy
Executables embedding SWI-Prolog should be able to find the `home'
directory of the development environment unless a self-contained saved
state has been added to the executable (see qsave_program/[1,2] and
section ????).
If Prolog starts up, it will try to locate the development environment.
To do so, it will try the following steps until one succeeds:
1. If the --home=DIR is provided, use this.
2. If the environment variable SWI_HOME_DIRis defined and points to
an existing directory, use this.
3. If the environment variable SWIPL is defined and points to an
existing directory, use this.
4. Locate the primary executable or (Windows only) a component
(_m_o_d_u_l_e) thereof and check whether the parent directory of the
directory holding this file contains the file swipl. If so, this
file contains the (relative) path to the home directory. If this
directory exists, use this. This is the normal mechanism used by
the binary distribution.
5. If the precompiled path exists, use it. This is only useful for a
source installation.
If all fails and there is no state attached to the executable or
provided Windows module (see PL_initialise()), SWI-Prolog gives up. If
a state is attached, the current working directory is used.
The file_search_path/2 alias swi is set to point to the home directory
located.
1111..77 EExxaammppllee ooff UUssiinngg tthhee FFoorreeiiggnn IInntteerrffaaccee
Below is an example showing all stages of the declaration of a foreign
predicate that transforms atoms possibly holding uppercase letters into
an atom only holding lowercase letters. Figure ???? shows the C source
file, figure ???? illustrates compiling and loading of foreign code.
________________________________________________________________________| |
|/* Include file depends on local installation */ |
|#include <SWI-Prolog.h> |
|#include <stdlib.h> |
|#include <string.h> |
|#include <ctype.h> |
| |
|foreign_t |
|pl_lowercase(term_t u, term_t l) |
|{ char *copy; |
| char *s, *q; |
| int rval; |
| |
| if ( !PL_get_atom_chars(u, &s) ) |
| return PL_warning("lowercase/2: instantiation fault"); |
| copy = malloc(strlen(s)+1); |
| |
| for( q=copy; *s; q++, s++) |
| *q = (isupper(*s) ? tolower(*s) : *s); |
| *q = '\0'; |
| |
| rval = PL_unify_atom_chars(l, copy); |
| free(copy); |
| |
| return rval; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("lowercase", 2, pl_lowercase, 0); |
|}|_____________________________________________________________________ | |
Figure 11.5: Lowercase source file
________________________________________________________________________| |
|% gcc -I/usr/local/lib/swipl-\plversion/include -fpic -c lowercase.c |
|% gcc -shared -o lowercase.so lowercase.o |
|% swipl |
|Welcome to SWI-Prolog (...) |
|... |
| |
|1 ?- load_foreign_library(lowercase). |
|true. |
| |
|2 ?- lowercase('Hello World!', L). |
|L|=_'hello_world!'.____________________________________________________ | |
Figure 11.6: Compiling the C source and loading the object file
1111..88 NNootteess oonn UUssiinngg FFoorreeiiggnn CCooddee
1111..88..11 FFoorreeiiggnn ddeebbuuggggiinngg ffuunnccttiioonnss
The functions in this section are primarily intended for debugging
foreign extensions or embedded Prolog. Violating the constraints of
the foreign interface often leads to crashes in a subsequent garbage
collection. If this happens, the system needs to be recompiled with
the cflags -DO_DEBUG. This is normally achieved by editing src/Makefile
and changing the definition of COFLAGS to the value below. The
-gdwarf-2 -g3 provides detailed debugging information for gcc. If you
use another C compiler you may need other flags.
________________________________________________________________________| |
|COFLAGS=-DO_DEBUG|-gdwarf-2_-g3________________________________________ | |
After recompiling the Prolog kernel all functions listed above are
available to use from the debugger (e.g. gdb) or can be placed at
critical location in your code or the system code.
void PPLL__bbaacckkttrraaccee(_i_n_t _d_e_p_t_h_, _i_n_t _f_l_a_g_s)
Dump a Prolog backtrace to the user_error stream. _D_e_p_t_h is the
number of frames to dump. _F_l_a_g_s is a bitwise or of the following
constants:
PPLL__BBTT__SSAAFFEE
(0x1) Do not try to print _g_o_a_l_s. Instead, just print the
predicate name and arity. This reduces the likelyhood to
crash if PL_backtrace() is called in a damaged environment.
PPLL__BBTT__UUSSEERR
(0x2) Only show `user' frames. Default is to also show frames
of hidden built-in predicates.
char * PPLL__bbaacckkttrraaccee__ssttrriinngg(_i_n_t _d_e_p_t_h_, _i_n_t _f_l_a_g_s)
As PL_backtrace(), but returns the stack as a string. The string
uses UTF-8 encoding. The returned string must be freed using
PL_free(). This function is was added to get stack traces from
running servers where I/O is redirected or discarded. For example,
using gdb, a stack trace is printed in the gdb console regardless
of Prolog I/O redirection using the following command:
____________________________________________________________________| |
||(gdb)_printf_"%s",_PL_backtrace_string(25,0)______________________ ||
The source distribution provides the script scripts/swipl-bt that
exploits gdb and PL_backtrace_string() to print stack traces in
various formats for a SWI-Prolog process, given its process id.
int PPLL__cchheecckk__ddaattaa(_t_e_r_m___t _d_a_t_a)
Check the consistency of the term _d_a_t_a. Returns TRUE this is
actually implemented in the current version and FALSE otherwise.
The actual implementation only exists if the system is compiled
with the cflag -DO_DEBUG or -DO_MAINTENANCE. This is _n_o_t the
default.
int PPLL__cchheecckk__ssttaacckkss()
Check the consistency of the runtime stacks of the calling thread.
Returns TRUE this is actually implemented in the current version
and FALSE otherwise. The actual implementation only exists if
the system is compiled with the cflag -DO_DEBUG or -DO_MAINTENANCE.
This is _n_o_t the default.
The Prolog kernel sources use the macro DEBUG(_T_o_p_i_c_, _C_o_d_e). These
macros are disabled in the production version and must be enabled
by recompiling the system as described above. Specific topics
can be enabled and disabled using the predicates prolog_debug/1 and
prolog_nodebug/1. In addition, they can be activated from the
commandline using commandline option -d topics, where _t_o_p_i_c_s is a
comma-separated list of debug topics to enable. For example, the code
below adds many consistency checks and prints messages if the Prolog
signal handler dispatches signals.
________________________________________________________________________| |
|$|swipl_-d_chk_secure,msg_signal_______________________________________ | |
pprroolloogg__ddeebbuugg((_+_T_o_p_i_c))
pprroolloogg__nnooddeebbuugg((_+_T_o_p_i_c))
Enable/disable a debug topic. _T_o_p_i_c is an atom that identifies the
desired topic. The available topics are defined in src/pl-debug.h.
Please search the sources to find out what is actually printed and
when. We highlight one topic here:
cchhkk__sseeccuurree((_A))
dd many expensive consistency checks to the system. This
should typically be used when the system crashes, notably in
the garbage collector. Garbage collection crashes are in most
cases caused by invalid data on the Prolog stacks. This debug
topic may help locating how the invalid data was created.
1111..88..22 MMeemmoorryy AAllllooccaattiioonn
SWI-Prolog's heap memory allocation is based on the malloc(3) library
routines. SWI-Prolog provides the functions below as a wrapper around
malloc(). Allocation errors in these functions trap SWI-Prolog's
fatal-error handler, in which case PL_malloc() or PL_realloc() do not
return.
Portable applications must use PL_free() to release strings returned by
PL_get_chars()using the BUF_MALLOC argument. Portable applications may
use both PL_malloc() and friends or malloc() and friends but should not
mix these two sets of functions on the same memory.
void * PPLL__mmaalllloocc(_s_i_z_e___t _b_y_t_e_s)
Allocate _b_y_t_e_s of memory. On failure SWI-Prolog's fatal-error
handler is called and PL_malloc() does not return. Memory
allocated using these functions must use PL_realloc() and PL_free()
rather than realloc() and free().
void * PPLL__rreeaalllloocc(_v_o_i_d _*_m_e_m_, _s_i_z_e___t _s_i_z_e)
Change the size of the allocated chunk, possibly moving it. The
_m_e_m argument must be obtained from a previous PL_malloc() or
PL_realloc() call.
void PPLL__ffrreeee(_v_o_i_d _*_m_e_m)
Release memory. The _m_e_m argument must be obtained from a previous
PL_malloc() or PL_realloc() call.
1111..88..22..11 BBooeehhmm--GGCC ssuuppppoorrtt
This section is obsolete. Although the Boehm-GC interfaces
still exist, it turns out that the scalability is not good
enough for SWI-Prolog. It is unlikely that SWI-Prolog will
ever switch to Boehm-GC.
To accommodate future use of the Boehm garbage collector for heap
memory allocation, the interface provides the functions described
below. Foreign extensions that wish to use the Boehm-GC facilities can
use these wrappers. Please note that if SWI-Prolog is not compiled to
use Boehm-GC (default), the user is responsible for calling PL_free()
to reclaim memory.
void* PPLL__mmaalllloocc__aattoommiicc(_s_i_z_e___t _b_y_t_e_s)
void* PPLL__mmaalllloocc__uunnccoolllleeccttaabbllee(_s_i_z_e___t _b_y_t_e_s)
void* PPLL__mmaalllloocc__aattoommiicc__uunnccoolllleeccttaabbllee(_s_i_z_e___t _b_y_t_e_s)
If Boehm-GC is not used, these are all the same as PL_malloc().
With Boehm-GC, these map to the corresponding Boehm-GC functions.
_A_t_o_m_i_c means that the content should not be scanned for pointers,
and _u_n_c_o_l_l_e_c_t_a_b_l_e means that the object should never be garbage
collected.
void* PPLL__mmaalllloocc__ssttuubbbboorrnn(_s_i_z_e___t _b_y_t_e_s)
void PPLL__eenndd__ssttuubbbboorrnn__cchhaannggee(_v_o_i_d _*_m_e_m_o_r_y)
These functions allow creating objects, promising GC that the
content will not change after PL_end_stubborn_change().
1111..88..33 CCoommppaattiibbiilliittyy bbeettwweeeenn PPrroolloogg vveerrssiioonnss
Great care is taken to ensure binary compatibility of foreign
extensions between different Prolog versions. Only the much less
frequently used stream interface has been responsible for binary
incompatibilities.
Source code that relies on new features of the foreign interface
can use the macro PLVERSION to find the version of SWI-Prolog.h and
PL_query() using the option PL_QUERY_VERSION to find the version of
the attached Prolog system. Both follow the same numbering schema
explained with PL_query().
1111..88..44 DDeebbuuggggiinngg aanndd pprrooffiilliinngg ffoorreeiiggnn ccooddee ((vvaallggrriinndd))
This section is only relevant for Unix users on platforms supported
by http://valgrind.org/valgrind. Valgrind is an excellent binary
instrumentation platform. Unlike many other instrumentation platforms,
valgrind can deal with code loaded through dlopen().
The callgrind tool can be used to profile foreign code loaded under
SWI-Prolog. Compile the foreign library adding -g option to gcc
or swipl-ld. By setting the environment variable VALGRIND to yes,
SWI-Prolog will _n_o_t release loaded shared objects using dlclose().
This trick is required to get source information on the loaded library.
Without, valgrind claims that the shared object has no debugging
information. Here is the complete sequence using bash as login shell:
________________________________________________________________________| |
|% VALGRIND=yes valgrind --tool=callgrind pl <args> |
|<prolog interaction> |
|%|kcachegrind_callgrind.out.<pid>______________________________________ | |
1111..88..55 NNaammee CCoonnfflliiccttss iinn CC mmoodduulleess
In the current version of the system all public C functions of
SWI-Prolog are in the symbol table. This can lead to name clashes with
foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now
I can only suggest you give your function another name. You can do
this using the C preprocessor. If---for example---your foreign package
uses a function warning(), which happens to exist in SWI-Prolog as
well, the following macro should fix the problem:
________________________________________________________________________| |
|#define|warning_warning________________________________________________ | |
Note that shared libraries do not have this problem as the shared
library loader will only look for symbols in the main executable for
symbols that are not defined in the library itself.
1111..88..66 CCoommppaattiibbiilliittyy ooff tthhee FFoorreeiiggnn IInntteerrffaaccee
The term reference mechanism was first used by Quintus Prolog
version 3. SICStus Prolog version 3 is strongly based on the Quintus
interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments
of type +term. SWI-Prolog explicitly uses type functor_t, while
Quintus and SICStus use <_n_a_m_e> and <_a_r_i_t_y>. As the names of the
functions differ from Prolog to Prolog, a simple macro layer dealing
with the names can also deal with this detail. For example:
________________________________________________________________________| |
|#define QP_put_functor(t, n, a) \ |
||_______PL_put_functor(t,_PL_new_functor(n,_a))________________________ ||
The PL_unify_*() functions are lacking from the Quintus and SICStus
interface. They can easily be emulated, or the put/unify approach
should be used to write compatible code.
The PL_open_foreign_frame()/PL_close_foreign_frame() combination is lack-
ing from both other Prologs. SICStus has PL_new_term_refs(_0), followed
by PL_reset_term_refs(), that allows for discarding term references.
The Prolog interface for the graphical user interface package XPCE
shares about 90% of the code using a simple macro layer to deal with
different naming and calling conventions of the interfaces.
CChhaapptteerr 1122.. GGEENNEERRAATTIINNGG RRUUNNTTIIMMEE AAPPPPLLIICCAATTIIOONNSS
This chapter describes the features of SWI-Prolog for delivering
applications that can run without the development version of the system
installed.
A SWI-Prolog runtime executable is a file consisting of two parts. The
first part is the _e_m_u_l_a_t_o_r, which is machine-dependent. The second
part is the _r_e_s_o_u_r_c_e _a_r_c_h_i_v_e, which contains the compiled program in a
machine-independent format, startup options and possibly user-defined
_r_e_s_o_u_r_c_e_s; see resource/3 and open_resource/3.
These two parts can be connected in various ways. The most common way
for distributed runtime applications is to _c_o_n_c_a_t_e_n_a_t_e the two parts.
This can be achieved using external commands (Unix: cat, Windows:
copy), or using the stand_alone option to qsave_program/2. The second
option is to attach a startup script in front of the resource that
starts the emulator with the proper options. This is the default under
Unix. Finally, an emulator can be told to use a specified resource
file using the -x command line switch.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e_, _+_O_p_t_i_o_n_s))
Saves the current state of the program to the file _F_i_l_e. The
result is a resource archive containing a saved state that
expresses all Prolog data from the running program and all
user-defined resources. Depending on the stand_alone option, the
resource is headed by the emulator, a Unix shell script or nothing.
_O_p_t_i_o_n_s is a list of additional options:
llooccaall((_+_K_B_y_t_e_s))
Limit for the local stack. See section ????.
gglloobbaall((_+_K_B_y_t_e_s))
Limit for the global stack. See section ????.
ttrraaiill((_+_K_B_y_t_e_s))
Limit for the trail stack. See section ????.
ggooaall((_:_C_a_l_l_a_b_l_e))
Initialization goal for the new executable (see -g).
ttoopplleevveell((_:_C_a_l_l_a_b_l_e))
Top-level goal for the new executable (see -t).
iinniitt__ffiillee((_+_A_t_o_m))
Default initialization file for the new executable. See -f.
ccllaassss((_+_C_l_a_s_s))
If runtime, only read resources from the state (default).
If kernel, lock all predicates as system predicates. If
development, save the predicates in their current state and
keep reading resources from their source (if present). See
also resource/3.
aauuttoollooaadd((_+_B_o_o_l_e_a_n))
If true (default), run autoload/0 first.
mmaapp((_+_F_i_l_e))
Dump a human-readable trace of what has been saved in _F_i_l_e.
oopp((_+_A_c_t_i_o_n))
One of save (default) to save the current operator table or
standard to use the initial table of the emulator.
ssttaanndd__aalloonnee((_+_B_o_o_l_e_a_n))
If true, the emulator is the first part of the state. If
the emulator is started it will test whether a boot file
(state) is attached to the emulator itself and load this
state. Provided the application has all libraries loaded,
the resulting executable is completely independent of the
runtime environment or location where it was built. See also
section ????.
eemmuullaattoorr((_+_F_i_l_e))
File to use for the emulator. Default is the running Prolog
image.
ffoorreeiiggnn((_+_A_c_t_i_o_n))
If save, include shared objects (DLLs) into the saved state.
See current_foreign_library/2. If the program strip is
available, this is first used to reduce the size of the shared
object. If a state is started, use_foreign_library/1 first
tries to locate the foreign resource in the executable. When
found it copies the content of the resource to a temporary
file and loads it. If possible (Unix), the temporary object
is deleted immediately after opening.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e))
Equivalent to qsave_program(File, []).
aauuttoollooaadd
Check the current Prolog program for predicates that are referred
to, are undefined and have a definition in the Prolog library.
Load the appropriate libraries.
This predicate is used by qsave_program/[1,2] to ensure the saved
state does not depend on availability of the libraries. The
predicate autoload/0 examines all clauses of the loaded program
(obtained with clause/2) and analyzes the body for referenced
goals. Such an analysis cannot be complete in Prolog, which allows
for the creation of arbitrary terms at runtime and the use of them
as a goal. The current analysis is limited to the following:
o Direct goals appearing in the body
o Arguments of declared meta-predicates that are marked with an
integer (0..9). See meta_predicate/1.
The analysis of meta-predicate arguments is limited to cases where
the argument appears literally in the clause or is assigned using
=/2 before the meta-call. That is, the following fragment is
processed correctly:
____________________________________________________________________| |
| ..., |
| Goal = prove(Theory), |
| forall(current_theory(Theory), |
||_______________Goal)),____________________________________________ ||
But, the calls to prove_simple/1 and prove_complex/1 in the example
below are _n_o_t discovered by the analysis and therefore the modules
that define these predicates must be loaded explicitly using
use_module/1,2.
____________________________________________________________________| |
| ..., |
| member(Goal, [ prove_simple(Theory), |
| prove_complex(Theory) |
| ]), |
| forall(current_theory(Theory), |
||_______________Goal)),____________________________________________ ||
It is good practice to use gxref/0 to make sure that the program
has sufficient declarations such that the analaysis tools can
verify that all required predicates can be resolved and that all
code is called. See meta_predicate/1, dynamic/1, public/1 and
prolog:called_by/2.
vvoollaattiillee _+_N_a_m_e_/_A_r_i_t_y_, _._._.
Declare that the clauses of specified predicates should nnoott be
saved to the program. The volatile declaration is normally used to
prevent the clauses of dynamic predicates that represent data for
the current session from being saved in the state file.
1122..11 LLiimmiittaattiioonnss ooff qqssaavvee__pprrooggrraamm
There are three areas that require special attention when using
qsave_program/[1,2].
o If the program is an embedded Prolog application or uses the
foreign language interface, care has to be taken to restore the
appropriate foreign context. See section ???? for details.
o If the program uses directives (:- goal. lines) that perform other
actions than setting predicate attributes (dynamic, volatile, etc.)
or loading files (consult, etc.), the directive may need to be
prefixed with initialization/1.
o Database references as returned by clause/3, recorded/3, etc., are
not preserved and may thus not be part of the database when saved.
1122..22 RRuunnttiimmeess aanndd FFoorreeiiggnn CCooddee
Some applications may need to use the foreign language interface.
Object code is by definition machine-dependent and thus cannot be part
of the saved program file.
To complicate the matter even further there are various ways of loading
foreign code:
o _U_s_i_n_g _t_h_e _l_i_b_r_a_r_y_(_s_h_l_i_b_) _p_r_e_d_i_c_a_t_e_s
This is the preferred way of dealing with foreign code. It loads
quickly and ensures an acceptable level of independence between the
versions of the emulator and the foreign code loaded. It works on
Unix machines supporting shared libraries and library functions to
load them. Most modern Unixes, as well as Win32 (Windows 95/NT),
satisfy this constraint.
o _S_t_a_t_i_c _l_i_n_k_i_n_g
This mechanism works on all machines, but generally requires the
same C compiler and linker to be used for the external code as is
used to build SWI-Prolog itself.
To make a runtime executable that can run on multiple platforms one
must make runtime checks to find the correct way of linking. Suppose
we have a source file myextension.c defining the installation function
install().
If this file is compiled into a shared library, load_foreign_library/1
will load this library and call the installation function to initialise
the foreign code. If it is loaded as a static extension, define
install() as the predicate install/0:
________________________________________________________________________| |
|static foreign_t |
|pl_install() |
|{ install(); |
| |
| PL_succeed; |
|} |
| |
|PL_extension PL_extensions [] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "install", 0, pl_install, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|};|____________________________________________________________________ | |
Now, use the following Prolog code to load the foreign library:
________________________________________________________________________| |
|load_foreign_extensions :- |
| current_predicate(install, install), !, % static loaded |
| install. |
|load_foreign_extensions :- % shared library |
| load_foreign_library(foreign(myextension)). |
| |
|:-|initialization_load_foreign_extensions._____________________________ | |
The path alias foreign is defined by file_search_path/2. By default
it searches the directories <_h_o_m_e>/lib/<_a_r_c_h> and <_h_o_m_e>/lib. The
application can specify additional rules for file_search_path/2.
1122..33 UUssiinngg pprrooggrraamm rreessoouurrcceess
A _r_e_s_o_u_r_c_e is very similar to a file. Resources, however, can be
represented in two different formats: on files, as well as part of the
resource _a_r_c_h_i_v_e of a saved state (see qsave_program/2).
A resource has a _n_a_m_e and a _c_l_a_s_s. The _s_o_u_r_c_e data of the resource is
a file. Resources are declared by declaring the predicate resource/3.
They are accessed using the predicate open_resource/3.
Before going into details, let us start with an example. Short
texts can easily be expressed in Prolog source code, but long texts
are cumbersome. Assume our application defines a command `help' that
prints a helptext to the screen. We put the content of the helptext
into a file called help.txt. The following code implements our help
command such that help.txt is incorporated into the runtime executable.
________________________________________________________________________| |
|resource(help, text, 'help.txt'). |
| |
|help :- |
| open_resource(help, text, In), |
| call_cleanup(copy_stream_data(In, user_output), |
||____________________close(In))._______________________________________ ||
The predicate help/0 opens the resource as a Prolog stream. If we
are executing this from the development environment, this will actually
return a stream to the file help.txt itself. When executed from the
saved state, the stream will actually be a stream opened on the program
resource file, taking care of the offset and length of the resource.
1122..33..11 RReessoouurrccee mmaanniippuullaattiioonn pprreeddiiccaatteess
rreessoouurrccee((_+_N_a_m_e_, _+_C_l_a_s_s_, _+_F_i_l_e_S_p_e_c))
This predicate is defined as a dynamic predicate in the module
user. Clauses for it may be defined in any module, including
the user module. _N_a_m_e is the name of the resource (an atom).
A resource name may contain any character, except for $ and :,
which are reserved for internal usage by the resource library.
_C_l_a_s_s describes the kind of object stored in the resource. In
the current implementation, it is just an atom. _F_i_l_e_S_p_e_c is
a file specification that may exploit file_search_path/2 (see
absolute_file_name/2).
Normally, resources are defined as unit clauses (facts), but the
definition of this predicate also allows for rules. For proper
generation of the saved state, it must be possible to enumerate
the available resources by calling this predicate with all its
arguments unbound.
Dynamic rules are useful to turn all files in a certain directory
into resources, without specifying a resource for each file. For
example, assume the file_search_path/2icons refers to the resource
directory containing icon files. The following definition makes
all these images available as resources:
____________________________________________________________________| |
| resource(Name, image, icons(XpmName)) :- |
| atom(Name), !, |
| file_name_extension(Name, xpm, XpmName). |
| resource(Name, image, XpmFile) :- |
| var(Name), |
| absolute_file_name(icons(.), [type(directory)], Dir) |
| concat(Dir, '/*.xpm', Pattern), |
| expand_file_name(Pattern, XpmFiles), |
||________member(XpmFile,_XpmFiles).________________________________ ||
ooppeenn__rreessoouurrccee((_+_N_a_m_e_, _?_C_l_a_s_s_, _-_S_t_r_e_a_m))
Opens the resource specified by _N_a_m_e and _C_l_a_s_s. If the latter is a
variable, it will be unified to the class of the first resource
found that has the specified _N_a_m_e. If successful, _S_t_r_e_a_m becomes a
handle to a binary input stream, providing access to the content of
the resource.
The predicate open_resource/3 first checks resource/3. When
successful it will open the returned resource source file.
Otherwise it will look in the program's resource database. When
creating a saved state, the system normally saves the resource
contents into the resource archive, but does not save the resource
clauses.
This way, the development environment uses the files (and
modifications) to the resource/3 declarations and/or files
containing resource info, thus immediately affecting the running
environment, while the runtime system quickly accesses the system
resources.
1122..33..22 TThhee swipl-rc pprrooggrraamm
The utility program swipl-rc can be used to examine and manipulate the
contents of a SWI-Prolog resource file. The options are inspired by
the Unix ar program. The basic command is:
________________________________________________________________________| |
|%|swipl-rc_option_resource-file_member_..._____________________________ | |
The options are described below.
l
List contents of the archive.
x
Extract named (or all) members of the archive into the current
directory.
a
Add files to the archive. If the archive already contains a
member with the same name, the contents are replaced. Anywhere
in the sequence of members, the options --class=_c_l_a_s_s and
--encoding=_e_n_c_o_d_i_n_g may appear. They affect the class and encoding
of subsequent files. The initial class is data and encoding none.
d
Delete named members from the archive.
This command is also described in the pl(1) Unix manual page.
1122..44 FFiinnddiinngg AApppplliiccaattiioonn ffiilleess
If your application uses files that are not part of the saved program
such as database files, configuration files, etc., the runtime version
has to be able to locate these files. The file_search_path/2 mechanism
in combination with the -palias command line argument is the preferred
way to locate runtime files. The first step is to define an alias
for the top-level directory of your application. We will call this
directory gnatdir in our examples.
A good place for storing data associated with SWI-Prolog runtime
systems is below the emulator's home directory. swi is a predefined
alias for this directory. The following is a useful default definition
for the search path.
________________________________________________________________________| |
|user:file_search_path(gnatdir,|swi(gnat))._____________________________ | |
The application should locate all files using absolute_file_name.
Suppose gnatdir contains a file config.pl to define the local
configuration. Then use the code below to load this file:
________________________________________________________________________| |
|configure_gnat :- |
| ( absolute_file_name(gnatdir('config.pl'), ConfigFile) |
| -> consult(ConfigFile) |
| ; format(user_error, 'gnat: Cannot locate config.pl~n'), |
| halt(1) |
||__).__________________________________________________________________ ||
1122..44..11 SSppeecciiffyyiinngg aa ffiillee sseeaarrcchh ppaatthh ffrroomm tthhee ccoommmmaanndd lliinnee
Suppose the system administrator has installed the SWI-Prolog
runtime environment in /usr/local/lib/rt-pl-3.2.0. A user wants
to install gnat, but gnat will look for its configuration in
/usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.
The user decides to install the gnat runtime files in /users/bob/lib/
gnat. For one-time usage, the user may decide to start gnat using the
command:
________________________________________________________________________| |
|%|gnat_-p_gnatdir=/users/bob/lib/gnat__________________________________ | |
CChhaapptteerr 1133.. TTHHEE SSWWII--PPRROOLLOOGG LLIIBBRRAARRYY
This chapter documents the SWI-Prolog library. As SWI-Prolog provides
auto-loading, there is little difference between library predicates
and built-in predicates. Part of the library is therefore documented
in the rest of the manual. Library predicates differ from built-in
predicates in the following ways:
o User definition of a built-in leads to a permission error, while
using the name of a library predicate is allowed.
o If autoloading is disabled explicitly or because trapping unknown
predicates is disabled (see unknown/2 and current_prolog_flag/2),
library predicates must be loaded explicitly.
o Using libraries reduces the footprint of applications that don't
need them.
_T_h_e _d_o_c_u_m_e_n_t_a_t_i_o_n _o_f _t_h_e _l_i_b_r_a_r_y _h_a_s _j_u_s_t _s_t_a_r_t_e_d_. _M_a_t_e_r_i_a_l
_f_r_o_m _t_h_e _s_t_a_n_d_a_r_d _p_a_c_k_a_g_e_s _s_h_o_u_l_d _b_e _m_o_v_e_d _h_e_r_e_, _s_o_m_e _m_a_t_e_r_i_a_l
_f_r_o_m _o_t_h_e_r _p_a_r_t_s _o_f _t_h_e _m_a_n_u_a_l _s_h_o_u_l_d _b_e _m_o_v_e_d _t_o_o _a_n_d _v_a_r_i_o_u_s
_l_i_b_r_a_r_i_e_s _a_r_e _n_o_t _d_o_c_u_m_e_n_t_e_d _a_t _a_l_l_.
1133..11 lliibbrraarryy((aaggggrreeggaattee)):: AAggggrreeggaattiioonn ooppeerraattoorrss oonn bbaacckkttrraacckkaabbllee
pprreeddiiccaatteess
CCoommppaattiibbiilliittyy Quintus, SICStus 4. The forall/2 is a
SWI-Prolog built-in and term_variables/3 is a SWI-Prolog
built-in with ddiiffffeerreenntt sseemmaannttiiccss.
TToo bbee ddoonnee
- Analysing the aggregation template and compiling a
predicate for the list aggregation can be done at compile
time.
- aggregate_all/3 can be rewritten to run in constant
space using non-backtrackable assignment on a term.
This library provides aggregating operators over the solutions of a
predicate. The operations are a generalisation of the bagof/3, setof/3
and findall/3 built-in predicates. The defined aggregation operations
are counting, computing the sum, minimum, maximum, a bag of solutions
and a set of solutions. We first give a simple example, computing the
country with the smallest area:
________________________________________________________________________| |
|smallest_country(Name, Area) :- |
||_______aggregate(min(A,_N),_country(N,_A),_min(Area,_Name)).__________ ||
There are four aggregation predicates (aggregate/3, aggregate/4,
aggregate_all/3 and aggregate/4), distinguished on two properties.
aaggggrreeggaattee vvss.. aaggggrreeggaattee__aallll The aggregate predicates use setof/3
(aggregate/4) or bagof/3 (aggregate/3), dealing with existential
qualified variables (Var^Goal) and providing multiple solutions
for the remaining free variables in Goal. The aggregate_all/3
predicate uses findall/3, implicitly qualifying all free variables
and providing exactly one solution, while aggregate_all/4 uses
sort/2 over solutions that Discriminator (see below) generated
using findall/3.
TThhee DDiissccrriimmiinnaattoorr aarrgguummeenntt The versions with 4 arguments deduplicate
redundant solutions of Goal. Solutions for which both the template
variables and Discriminator are identical will be treated as one
solution. For example, if we wish to compute the total population
of all countries, and for some reason country(belgium, 11000000)
may succeed twice, we can use the following to avoid counting the
population of Belgium twice:
____________________________________________________________________| |
||____aggregate(sum(P),_Name,_country(Name,_P),_Total)______________ ||
All aggregation predicates support the following operators below in
Template. In addition, they allow for an arbitrary named compound
term, where each of the arguments is a term from the list below.
For example, the term r(min(X), max(X)) computes both the minimum and
maximum binding for X.
ccoouunntt
Count number of solutions. Same as sum(1).
ssuumm((_E_x_p_r))
Sum of _E_x_p_r for all solutions.
mmiinn((_E_x_p_r))
Minimum of _E_x_p_r for all solutions.
mmiinn((_E_x_p_r_, _W_i_t_n_e_s_s))
A term min(Min, Witness), where Min is the minimal version of _E_x_p_r
over all solutions, and _W_i_t_n_e_s_s is any other template applied to
solutions that produced Min. If multiple solutions provide the
same minimum, _W_i_t_n_e_s_s corresponds to the first solution.
mmaaxx((_E_x_p_r))
Maximum of _E_x_p_r for all solutions.
mmaaxx((_E_x_p_r_, _W_i_t_n_e_s_s))
As min(Expr, Witness), but producing the maximum result.
sseett((_X))
An ordered set with all solutions for _X.
bbaagg((_X))
A list of all solutions for _X.
AAcckknnoowwlleeddggeemmeennttss
_T_h_e _d_e_v_e_l_o_p_m_e_n_t _o_f _t_h_i_s _l_i_b_r_a_r_y _w_a_s _s_p_o_n_s_o_r_e_d _b_y _S_e_c_u_r_i_t_E_a_s_e_,
http://www.securitease.com
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/3
version performs bagof/3 on _G_o_a_l.
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/4
version performs setof/3 on _G_o_a_l.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/3 version performs findall/3 on _G_o_a_l. Note that this
predicate fails if _T_e_m_p_l_a_t_e contains one or more of min(X), max(X),
min(X,Witness) or max(X,Witness) and _G_o_a_l has no solutions, i.e.,
the minumum and maximum of an empty set is undefined.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/4 version performs findall/3 followed by sort/2 on
_G_o_a_l. See aggregate_all/3 to understand why this predicate can
fail.
ffoorreeaacchh((_:_G_e_n_e_r_a_t_o_r_, _:_G_o_a_l))
True if conjunction of results is true. Unlike forall/2, which
runs a failure-driven loop that proves _G_o_a_l for each solution of
_G_e_n_e_r_a_t_o_r, foreach/2 creates a conjunction. Each member of the
conjunction is a copy of _G_o_a_l, where the variables it shares
with _G_e_n_e_r_a_t_o_r are filled with the values from the corresponding
solution.
The implementation executes forall/2 if _G_o_a_l does not contain any
variables that are not shared with _G_e_n_e_r_a_t_o_r.
Here is an example:
____________________________________________________________________| |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 5. |
| Y = 5. |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 3. |
||false.____________________________________________________________ ||
bbuugg _G_o_a_l is copied repeatedly, which may cause problems
if attributed variables are involved.
ffrreeee__vvaarriiaabblleess((_:_G_e_n_e_r_a_t_o_r_, _+_T_e_m_p_l_a_t_e_, _+_V_a_r_L_i_s_t_0_, _-_V_a_r_L_i_s_t)) _[_d_e_t_]
Find free variables in bagof/setof template. In order to handle
variables properly, we have to find all the universally quantified
variables in the _G_e_n_e_r_a_t_o_r. All variables as yet unbound are
universally quantified, unless
1. they occur in the template
2. they are bound by X^P, setof/3, or bagof/3
free_variables(Generator, Template, OldList, NewList) finds this
set using OldList as an accumulator.
aauutthhoorr
- Richard O'Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)
lliicceennssee Public domain (from DEC10 library).
TToo bbee ddoonnee
- Distinguish between control-structures and data
terms.
- Exploit our built-in term_variables/2 at some
places?
ssaannddbbooxx::ssaaffee__mmeettaa((_+_G_o_a_l_, _-_C_a_l_l_e_d)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Declare the aggregate meta-calls safe. This cannot be proven due
to the manipulations of the argument _G_o_a_l.
1133..22 lliibbrraarryy((aappppllyy)):: AAppppllyy pprreeddiiccaatteess oonn aa lliisstt
SSeeee aallssoo
- apply_macros.pl provides compile-time expansion for part
of this library.
- http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm
TToo bbee ddoonnee Add include/4, include/5, exclude/4, exclude/5
This module defines meta-predicates that apply a predicate on all
members of a list.
iinncclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l succeeds. True if _L_i_s_t_2 contains
those elements Xi of _L_i_s_t_1 for which call(Goal, Xi) succeeds.
SSeeee aallssoo Older versions of SWI-Prolog had sublist/3 with
the same arguments and semantics.
eexxcclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l fails. True if _L_i_s_t_2 contains those
elements Xi of _L_i_s_t_1 for which call(Goal, Xi) fails.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_I_n_c_l_u_d_e_d_, _?_E_x_c_l_u_d_e_d)) _[_d_e_t_]
Filter elements of _L_i_s_t according to _P_r_e_d. True if _I_n_c_l_u_d_e_d
contains all elements for which call(Pred, X) succeeds and _E_x_c_l_u_d_e_d
contains the remaining elements.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_L_e_s_s_, _?_E_q_u_a_l_, _?_G_r_e_a_t_e_r)) _[_s_e_m_i_d_e_t_]
Filter _L_i_s_t according to _P_r_e_d in three sets. For each element Xi
of _L_i_s_t, its destination is determined by call(Pred, Xi, Place),
where Place must be unified to one of <, = or >. _P_r_e_d must be
deterministic.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t))
True if _G_o_a_l can successfully be applied on all elements of _L_i_s_t.
Arguments are reordered to gain performance as well as to make the
predicate deterministic under normal circumstances.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
As maplist/2, operating on pairs of elements from two lists.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3))
As maplist/2, operating on triples of elements from three lists.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3_, _?_L_i_s_t_4))
As maplist/2, operating on quadruples of elements from four lists.
ccoonnvvlliisstt((_:_G_o_a_l_, _+_L_i_s_t_I_n_, _-_L_i_s_t_O_u_t)) _[_d_e_t_]
Similar to maplist/3, but elements for which call(Goal, ElemIn, _)
fails are omitted from _L_i_s_t_O_u_t. For example (using library(yall)):
____________________________________________________________________| |
| ?- convlist([X,Y]>>(integer(X), Y is X^2), |
| [3, 5, 4.4, 2], L). |
||L_=_[9,_25,_4].___________________________________________________ ||
CCoommppaattiibbiilliittyy Also appears in YAP library(maplist) and
SICStus library(lists).
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_L_i_s_t_4_, _+_V_0_, _-_V))
Fold a list, using arguments of the list as left argument. The
foldl family of predicates is defined by:
____________________________________________________________________| |
| foldl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, Vn) :- |
| P(X11, ..., Xm1, V0, V1), |
| ... |
||______P(X1n,_...,_Xmn,_V',_Vn).___________________________________ ||
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_L_i_s_t_4_, _+_V_0_, _-_V_a_l_u_e_s))
Left scan of list. The scanl family of higher order list
operations is defined by:
____________________________________________________________________| |
| scanl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, |
| [V0,V1,...,Vn]) :- |
| P(X11, ..., Xm1, V0, V1), |
| ... |
||______P(X1n,_...,_Xmn,_V',_Vn).___________________________________ ||
1133..33 lliibbrraarryy((aassssoocc)):: AAssssoocciiaattiioonn lliissttss
Authors: _R_i_c_h_a_r_d _A_. _O_'_K_e_e_f_e_, _L_._D_a_m_a_s_, _V_._S_._C_o_s_t_a _a_n_d _h_t_t_p_s_:_/_/_w_w_w_._m_e_t_a_l_e_v_e_l_._a_t_M_a_r_k_u_s _T_r_i_s_k_a
1133..33..11 IInnttrroodduuccttiioonn
An _a_s_s_o_c_i_a_t_i_o_n _l_i_s_t as implemented by this library is a collection of
unique _k_e_y_s that are associated to _v_a_l_u_e_s. Keys must be ground, values
need not be.
An association list can be used to _f_e_t_c_h elements via their keys and to
_e_n_u_m_e_r_a_t_e its elements in ascending order of their keys.
This library uses AAVVLL ttrreeeess to implement association lists. This means
that
o inserting a key
o changing an association
o fetching a single element
are all _O_(log(N)_) _w_o_r_s_t_-_c_a_s_e (and expected) time operations, where _N
denotes the number of elements in the association list.
The logarithmic overhead is often acceptable in practice. Notable
advantages of association lists over several other methods are:
o library(assoc) is written entirely in Prolog, making it portable to
other systems
o the interface predicates fit the declarative nature of Prolog,
avoiding destructive updates to terms
o AVL trees scale very predictably and can be used to represent
sparse arrays efficiently.
1133..33..22 CCrreeaattiinngg aassssoocciiaattiioonn lliissttss
An assocation list is _c_r_e_a_t_e_d with one of the following predicates:
eemmppttyy__aassssoocc((_?_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
Is true if _A_s_s_o_c is the empty association list.
lliisstt__ttoo__aassssoocc((_+_P_a_i_r_s_, _-_A_s_s_o_c)) _[_d_e_t_]
Create an association from a list _P_a_i_r_s of Key-Value pairs. List
must not contain duplicate keys.
EErrrroorrss domain_error(unique_key_pairs, List) if List con-
tains duplicate keys
oorrdd__lliisstt__ttoo__aassssoocc((_+_P_a_i_r_s_, _-_A_s_s_o_c)) _[_d_e_t_]
_A_s_s_o_c is created from an ordered list _P_a_i_r_s of Key-Value pairs.
The pairs must occur in strictly ascending order of their keys.
EErrrroorrss domain_error(key_ordered_pairs, List) if pairs are
not ordered.
1133..33..33 QQuueerryyiinngg aassssoocciiaattiioonn lliissttss
An association list can be _q_u_e_r_i_e_d with:
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _-_V_a_l_u_e)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-_V_a_l_u_e is an association in _A_s_s_o_c.
EErrrroorrss type_error(assoc, Assoc) if _A_s_s_o_c is not an
association list.
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_0_, _?_V_a_l_0_, _?_A_s_s_o_c_, _?_V_a_l)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-_V_a_l_0 is in _A_s_s_o_c_0 and _K_e_y-_V_a_l is in _A_s_s_o_c.
mmaaxx__aassssoocc((_+_A_s_s_o_c_, _-_K_e_y_, _-_V_a_l_u_e)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-_V_a_l_u_e is in _A_s_s_o_c and _K_e_y is the largest key.
mmiinn__aassssoocc((_+_A_s_s_o_c_, _-_K_e_y_, _-_V_a_l_u_e)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-_V_a_l_u_e is in assoc and _K_e_y is the smallest key.
ggeenn__aassssoocc((_?_K_e_y_, _+_A_s_s_o_c_, _?_V_a_l_u_e)) _[_n_o_n_d_e_t_]
True if _K_e_y-_V_a_l_u_e is an association in _A_s_s_o_c. Enumerates keys in
ascending order on backtracking.
SSeeee aallssoo get_assoc/3.
1133..33..44 MMooddiiffyyiinngg aassssoocciiaattiioonn lliissttss
Elements of an association list can be changed and inserted with:
ppuutt__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_0_, _+_V_a_l_u_e_, _-_A_s_s_o_c)) _[_d_e_t_]
_A_s_s_o_c is _A_s_s_o_c_0, except that _K_e_y is associated with _V_a_l_u_e. This
can be used to insert and change associations.
ddeell__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_0_, _?_V_a_l_u_e_, _-_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-_V_a_l_u_e is in _A_s_s_o_c_0. _A_s_s_o_c is _A_s_s_o_c_0 with _K_e_y-_V_a_l_u_e
removed.
ddeell__mmiinn__aassssoocc((_+_A_s_s_o_c_0_, _?_K_e_y_, _?_V_a_l_, _-_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-Value is in _A_s_s_o_c_0 and _K_e_y is the smallest key. _A_s_s_o_c
is _A_s_s_o_c_0 with _K_e_y-Value removed. Warning: This will succeed with
_n_o bindings for _K_e_y or _V_a_l if _A_s_s_o_c_0 is empty.
ddeell__mmaaxx__aassssoocc((_+_A_s_s_o_c_0_, _?_K_e_y_, _?_V_a_l_, _-_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
True if _K_e_y-Value is in _A_s_s_o_c_0 and _K_e_y is the greatest key. _A_s_s_o_c
is _A_s_s_o_c_0 with _K_e_y-Value removed. Warning: This will succeed with
_n_o bindings for _K_e_y or _V_a_l if _A_s_s_o_c_0 is empty.
1133..33..55 CCoonnvveerrssiioonn pprreeddiiccaatteess
Conversion of (parts of) an association list to _l_i_s_t_s is possible with:
aassssoocc__ttoo__lliisstt((_+_A_s_s_o_c_, _-_P_a_i_r_s)) _[_d_e_t_]
Translate _A_s_s_o_c to a list _P_a_i_r_s of Key-Value pairs. The keys in
_P_a_i_r_s are sorted in ascending order.
aassssoocc__ttoo__kkeeyyss((_+_A_s_s_o_c_, _-_K_e_y_s)) _[_d_e_t_]
True if _K_e_y_s is the list of keys in _A_s_s_o_c. The keys are sorted in
ascending order.
aassssoocc__ttoo__vvaalluueess((_+_A_s_s_o_c_, _-_V_a_l_u_e_s)) _[_d_e_t_]
True if _V_a_l_u_e_s is the list of values in _A_s_s_o_c. _V_a_l_u_e_s are ordered
in ascending order of the key to which they were associated.
_V_a_l_u_e_s may contain duplicates.
1133..33..66 RReeaassoonniinngg aabboouutt aassssoocciiaattiioonn lliissttss aanndd tthheeiirr eelleemmeennttss
Further inspection predicates of an association list and its elements
are:
iiss__aassssoocc((_+_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
True if _A_s_s_o_c is an association list. This predicate checks that
the structure is valid, elements are in order, and tree is balanced
to the extent guaranteed by AVL trees. I.e., branches of each
subtree differ in depth by at most 1.
mmaapp__aassssoocc((_:_P_r_e_d_, _+_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
True if _P_r_e_d(Value) is true for all values in _A_s_s_o_c.
mmaapp__aassssoocc((_:_P_r_e_d_, _+_A_s_s_o_c_0_, _?_A_s_s_o_c)) _[_s_e_m_i_d_e_t_]
Map corresponding values. True if _A_s_s_o_c is _A_s_s_o_c_0 with _P_r_e_d
applied to all corresponding pairs of of values.
1133..44 lliibbrraarryy((bbrrooaaddccaasstt)):: BBrrooaaddccaasstt aanndd rreecceeiivvee eevveenntt nnoottiiffiiccaattiioonnss
The broadcast library was invented to realise GUI applications
consisting of stand-alone components that use the Prolog database for
storing the application data. Figure ???? illustrates the flow of
information using this design
The broadcasting service provides two services. Using the `shout'
service, an unknown number of agents may listen to the message and act.
The broadcaster is not (directly) aware of the implications. Using the
`request' service, listening agents are asked for an answer one-by-one
and the broadcaster is allowed to reject answers using normal Prolog
failure.
Shouting is often used to inform about changes made to a common
database. Other messages can be ``save yourself'' or ``show this''.
Requesting is used to get information while the broadcaster is not
aware who might be able to answer the question. For example ``who is
showing X?''.
bbrrooaaddccaasstt((_+_T_e_r_m))
Broadcast _T_e_r_m. There are no limitations to _T_e_r_m, though being
a global service, it is good practice to use a descriptive and
unique principal functor. All associated goals are started
and regardless of their success or failure, broadcast/1 always
succeeds. Exceptions are passed.
bbrrooaaddccaasstt__rreeqquueesstt((_+_T_e_r_m))
Unlike broadcast/1, this predicate stops if an associated goal
succeeds. Backtracking causes it to try other listeners. A
broadcast request is used to fetch information without knowing the
identity of the agent providing it. C.f. ``Is there someone who
knows the age of John?'' could be asked using
____________________________________________________________________| |
| ..., |
||________broadcast_request(age_of('John',_Age)),___________________ ||
If there is an agent (_l_i_s_t_e_n_e_r) that registered an `age-of' service
and knows about the age of `John' this question will be answered.
lliisstteenn((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Register a _l_i_s_t_e_n channel. Whenever a term unifying _T_e_m_p_l_a_t_e
is broadcasted, call _G_o_a_l. The following example traps all
broadcasted messages as a variable unifies to any message. It is
commonly used to debug usage of the library.
____________________________________________________________________| |
| ?- listen(Term, (writeln(Term),fail)). |
| ?- broadcast(hello(world)). |
| hello(world) |
||true._____________________________________________________________ ||
lliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Declare _L_i_s_t_e_n_e_r as the owner of the channel. Unlike a channel
opened using listen/2, channels that have an owner can terminate
the channel. This is commonly used if an object is listening to
broadcast messages. In the example below we define a `name-item'
displaying the name of an identifier represented by the predicate
name_of/2.
____________________________________________________________________| |
| :- pce_begin_class(name_item, text_item). |
| |
| variable(id, any, get, "Id visualised"). |
| |
| initialise(NI, Id:any) :-> |
| name_of(Id, Name), |
| send_super(NI, initialise, name, Name, |
| message(NI, set_name, @arg1)), |
| send(NI, slot, id, Id), |
| listen(NI, name_of(Id, Name), |
| send(NI, selection, Name)). |
| |
| unlink(NI) :-> |
| unlisten(NI), |
| send_super(NI, unlink). |
| |
| set_name(NI, Name:name) :-> |
| get(NI, id, Id), |
| retractall(name_of(Id, _)), |
| assert(name_of(Id, Name)), |
| broadcast(name_of(Id, Name)). |
| |
||:-_pce_end_class._________________________________________________ ||
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r and
_T_e_m_p_l_a_t_e unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r,
_T_e_m_p_l_a_t_e and _G_o_a_l unify.
lliisstteenniinngg((_?_L_i_s_t_e_n_e_r_, _?_T_e_m_p_l_a_t_e_, _?_G_o_a_l))
Examine the current listeners. This predicate is useful for
debugging purposes.
1133..55 lliibbrraarryy((cchhaarrssiioo)):: II//OO oonn LLiissttss ooff CChhaarraacctteerr CCooddeess
CCoommppaattiibbiilliittyy The naming of this library is not in line
with the ISO standard. We believe that the SWI-Prolog
native predicates form a more elegant alternative for this
library.
This module emulates the Quintus/SICStus library charsio.pl for reading
and writing from/to lists of character codes. Most of these predicates
are straight calls into similar SWI-Prolog primitives. Some can even
be replaced by ISO standard predicates.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s)) _[_d_e_t_]
Use format/2 to write to a list of character codes.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Use format/2 to write to a difference list of character codes.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s))
Write a term to a code list. True when _C_o_d_e_s is a list of
character codes written by write/1 on _T_e_r_m.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Write a term to a code list. _C_o_d_e_s\_T_a_i_l is a difference list of
character codes produced by write/1 on _T_e_r_m.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert _A_t_o_m into a list of character codes.
ddeepprreeccaatteedd Use ISO atom_codes/2.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert _A_t_o_m into a difference list of character codes.
nnuummbbeerr__ttoo__cchhaarrss((_+_N_u_m_b_e_r_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert Atom into a list of character codes.
ddeepprreeccaatteedd Use ISO number_codes/2.
nnuummbbeerr__ttoo__cchhaarrss((_+_N_u_m_b_e_r_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert _N_u_m_b_e_r into a difference list of character codes.
rreeaadd__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m.
CCoommppaattiibbiilliittyy The SWI-Prolog version does not require
_C_o_d_e_s to end in a full-stop.
rreeaadd__tteerrmm__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m. _O_p_t_i_o_n_s are processed by read_term/3.
CCoommppaattiibbiilliittyy sicstus
ooppeenn__cchhaarrss__ssttrreeaamm((_+_C_o_d_e_s_, _-_S_t_r_e_a_m)) _[_d_e_t_]
Open _C_o_d_e_s as an input stream.
SSeeee aallssoo open_string/2.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_C_o_d_e_s)) _[_d_e_t_]
Run _G_o_a_l as with once/1. Output written to current_output is
collected in _C_o_d_e_s.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Run _G_o_a_l as with once/1. Output written to current_output is
collected in _C_o_d_e_s\_T_a_i_l.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Same as with_output_to_chars/3 using an explicit stream. The
difference list _C_o_d_e_s\_T_a_i_l contains the character codes that _G_o_a_l
has written to _S_t_r_e_a_m.
1133..66 lliibbrraarryy((cchheecckk)):: CCoonnssiisstteennccyy cchheecckkiinngg
SSeeee aallssoo
- gxref/0 provides a graphical cross referencer
- PceEmacs performs real time consistency checks while you
edit
- library(prolog_xref) implements `offline' cross-
referencing
- library(prolog_codewalk) implements `online' analysis
This library provides some consistency checks for the loaded Prolog
program. The predicate make/0 runs list_undefined/0 to find undefined
predicates in `user' modules.
cchheecckk _[_d_e_t_]
Run all consistency checks defined by checker/2. Checks enabled by
default are:
o list_undefined/0 reports undefined predicates
o list_trivial_fails/0 reports calls for which there is no
matching clause.
o list_redefined/0 reports predicates that have a local
definition and a global definition. Note that these are nnoott
errors.
o list_autoload/0 lists predicates that will be defined at
runtime using the autoloader.
lliisstt__uunnddeeffiinneedd _[_d_e_t_]
lliisstt__uunnddeeffiinneedd((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
Report undefined predicates. This predicate finds undefined
predciates by decompiling and analyzing the body of all clauses.
_O_p_t_i_o_n_s:
mmoodduullee__ccllaassss((_+_C_l_a_s_s_e_s))
Process modules of the given _C_l_a_s_s_e_s. The default for classes
is [user]. For example, to include the libraries into the
examination, use [user,library].
SSeeee aallssoo
- gxref/0 provides a graphical cross-referencer.
- make/0 calls list_undefined/0
lliisstt__aauuttoollooaadd _[_d_e_t_]
Report predicates that may be auto-loaded. These are predicates
that are not defined, but will be loaded on demand if referenced.
SSeeee aallssoo autoload/0
TToo bbee ddoonnee This predicate uses an older mechanism for
finding undefined predicates. Should be synchronized
with list undefined.
lliisstt__rreeddeeffiinneedd
Lists predicates that are defined in the global module user as well
as in a normal module; that is, predicates for which the local
definition overrules the global default definition.
lliisstt__vvooiidd__ddeeccllaarraattiioonnss _[_d_e_t_]
List predicates that have declared attributes, but no clauses.
lliisstt__ttrriivviiaall__ffaaiillss _[_d_e_t_]
lliisstt__ttrriivviiaall__ffaaiillss((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
List goals that trivially fail because there is no matching clause.
_O_p_t_i_o_n_s:
mmoodduullee__ccllaassss((_+_C_l_a_s_s_e_s))
Process modules of the given _C_l_a_s_s_e_s. The default for classes
is [user]. For example, to include the libraries into the
examination, use [user,library].
ttrriivviiaall__ffaaiill__ggooaall((_:_G_o_a_l)) _[_m_u_l_t_i_f_i_l_e_]
Multifile hook that tells list_trivial_fails/0 to accept _G_o_a_l as
valid.
lliisstt__ssttrriinnggss _[_d_e_t_]
lliisstt__ssttrriinnggss((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
List strings that appear in clauses. This predicate is used to
find portability issues for changing the Prolog flag double_quotes
from codes to string, creating packed string objects. Warnings may
be suppressed using the following multifile hooks:
o string_predicate/1 to stop checking certain predicates
o valid_string_goal/1to tell the checker that a goal is safe.
SSeeee aallssoo Prolog flag double_quotes.
ssttrriinngg__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_m_u_l_t_i_f_i_l_e_]
Multifile hook to disable list_strings/0 on the given predicate.
This is typically used for facts that store strings.
vvaalliidd__ssttrriinngg__ggooaall((_+_G_o_a_l)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Multifile hook that qualifies _G_o_a_l as valid for list_strings/0.
For example, format("Hello world~n") is considered proper use of
string constants.
cchheecckkeerr((_:_G_o_a_l_, _+_M_e_s_s_a_g_e_:_t_e_x_t)) _[_m_u_l_t_i_f_i_l_e_]
Register code validation routines. Each clause defines a _G_o_a_l
which performs a consistency check executed by check/0. _M_e_s_s_a_g_e
is a short description of the check. For example, assuming the
my_checks module defines a predicate list_format_mistakes/0:
____________________________________________________________________| |
| :- multifile check:checker/2. |
| check:checker(my_checks:list_format_mistakes, |
||______________"errors_with_format/2_arguments").__________________ ||
The predicate is dynamic, so you can disable checks with retract/1.
For example, to stop reporting redefined predicates:
____________________________________________________________________| |
||retract(check:checker(list_redefined,_))._________________________ ||
1133..77 lliibbrraarryy((ccllppbb)):: CCLLPP((BB)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr BBoooolleeaann
VVaarriiaabblleess
aauutthhoorr https://www.metalevel.atMarkus Triska
1133..77..11 IInnttrroodduuccttiioonn
This library provides CLP(B), Constraint Logic Programming over Boolean
variables. It can be used to model and solve combinatorial problems
such as verification, allocation and covering tasks.
CLP(B) is an instance of the general CLP(_X) scheme (section ????),
extending logic programming with reasoning over specialised domains.
The implementation is based on reduced and ordered Binary Decision
Diagrams (BDDs).
Benchmarks and usage examples of this library are available from:
https://www.metalevel.at/clpb/hhttttppss:://wwwwww..mmeettaalleevveell..aatt//ccllppbb//
We recommend the following reference for citing this library in
scientific publications:
________________________________________________________________________| |
|@inproceedings{Triska2016, |
| author = "Markus Triska", |
| title = "The {Boolean} Constraint Solver of {SWI-Prolog}: |
| System Description", |
| booktitle = "FLOPS", |
| series = "LNCS", |
| volume = 9613, |
| year = 2016, |
| pages = "45--61" |
|}|_____________________________________________________________________ | |
The paper is available from
https://www.metalevel.at/swiclpb.pdfhttps://www.metalevel.at/swiclpb.pdf
1133..77..22 BBoooolleeaann eexxpprreessssiioonnss
A _B_o_o_l_e_a_n _e_x_p_r_e_s_s_i_o_n is one of:
__________________________________________________
| 0 |false |
| 1 |true |
| _v_a_r_i_a_b_l_e _|unknown truth value |
| _a_t_o_m _|universally quantified variable |
| ~ _E_x_p_r _|logical NOT |
| _E_x_p_r + _E_x_p_r _|logical OR |
| _E_x_p_r * _E_x_p_r _|logical AND |
| _E_x_p_r # _E_x_p_r _|exclusive OR |
| _V_a_r ^ _E_x_p_r _|existential quantification |
| _E_x_p_r =:= _E_x_p_r _|equality |
| _E_x_p_r =\= _E_x_p_r _|disequality (same as #) |
| _E_x_p_r =< _E_x_p_r _|less or equal (implication) |
| _E_x_p_r >= _E_x_p_r _|greater or equal |
| _E_x_p_r < _E_x_p_r _|less than |
| _E_x_p_r > _E_x_p_r _|greater than |
| card(Is,Exprs) |_s_e_e _b_e_l_o_w _|
_| +(Exprs) |_s_e_e _b_e_l_o_w _|
_|__*(Exprs)______________|_s_e_e___b_e_l_o_w_______________________________________________|
where _E_x_p_r again denotes a Boolean expression.
The Boolean expression card(Is,Exprs) is true iff the number of true
expressions in the list _E_x_p_r_s is a member of the list _I_s of integers
and integer ranges of the form From-To.
+(Exprs) and *(Exprs) denote, respectively, the disjunction and
conjunction of all elements in the list _E_x_p_r_s of Boolean expressions.
Atoms denote parametric values that are universally quantified. All
universal quantifiers appear implicitly in front of the entire
expression. In residual goals, universally quantified variables always
appear on the right-hand side of equations. Therefore, they can be
used to express functional dependencies on input variables.
1133..77..33 IInntteerrffaaccee pprreeddiiccaatteess
The most frequently used CLP(B) predicates are:
ssaatt((_+_E_x_p_r))
True iff the Boolean expression _E_x_p_r is satisfiable.
ttaauutt((_+_E_x_p_r_, _-_T))
If _E_x_p_r is a tautology with respect to the posted constraints,
succeeds with _T == 11. If _E_x_p_r cannot be satisfied, succeeds with _T
== 00. Otherwise, it fails.
llaabbeelliinngg((_+_V_s))
Assigns truth values to the variables _V_s such that all constraints
are satisfied.
The unification of a CLP(B) variable _X with a term _T is equivalent to
posting the constraint sat(X=:=T).
1133..77..44 EExxaammpplleess
Here is an example session with a few queries and their answers:
________________________________________________________________________| |
|?- use_module(library(clpb)). |
|true. |
| |
|?- sat(X*Y). |
|X = Y, Y = 1. |
| |
|?- sat(X * ~X). |
|false. |
| |
|?- taut(X * ~X, T). |
|T = 0, |
|sat(X=:=X). |
| |
|?- sat(X^Y^(X+Y)). |
|sat(X=:=X), |
|sat(Y=:=Y). |
| |
|?- sat(X*Y + X*Z), labeling([X,Y,Z]). |
|X = Z, Z = 1, Y = 0 ; |
|X = Y, Y = 1, Z = 0 ; |
|X = Y, Y = Z, Z = 1. |
| |
|?- sat(X =< Y), sat(Y =< Z), taut(X =< Z, T). |
|T = 1, |
|sat(X=:=X*Y), |
|sat(Y=:=Y*Z). |
| |
|?- sat(1#X#a#b). |
|sat(X=:=a#b).|_________________________________________________________ | |
The pending residual goals constrain remaining variables to Boolean
expressions and are declaratively equivalent to the original query.
The last example illustrates that when applicable, remaining variables
are expressed as functions of universally quantified variables.
1133..77..55 OObbttaaiinniinngg BBDDDDss
By default, CLP(B) residual goals appear in (approximately) algebraic
normal form (ANF). This projection is often computationally expensive.
We can set the Prolog flag clpb_residuals to the value bdd to see
the BDD representation of all constraints. This results in faster
projection to residual goals, and is also useful for learning more
about BDDs. For example:
________________________________________________________________________| |
|?- set_prolog_flag(clpb_residuals, bdd). |
|true. |
| |
|?- sat(X#Y). |
|node(3)- (v(X, 0)->node(2);node(1)), |
|node(1)- (v(Y, 1)->true;false), |
|node(2)-|(v(Y,_1)->false;true).________________________________________ | |
Note that this representation cannot be pasted back on the toplevel,
and its details are subject to change. Use copy_term/3to obtain such
answers as Prolog terms.
The variable order of the BDD is determined by the order in which the
variables first appear in constraints. To obtain different orders, we
can for example use:
________________________________________________________________________| |
|?- sat(+[1,Y,X]), sat(X#Y). |
|node(3)- (v(Y, 0)->node(2);node(1)), |
|node(1)- (v(X, 1)->true;false), |
|node(2)-|(v(X,_1)->false;true).________________________________________ | |
1133..77..66 EEnnaabblliinngg mmoonnoottoonniicc CCLLPP((BB))
In the default execution mode, CLP(B) constraints are _n_o_t monotonic.
This means that _a_d_d_i_n_g constraints can yield new solutions. For
example:
________________________________________________________________________| |
|?- sat(X=:=1), X = 1+0. |
|false. |
| |
|?- X = 1+0, sat(X=:=1), X = 1+0. |
|X|=_1+0._______________________________________________________________ | |
This behaviour is highly problematic from a logical point of view,
and it may render https://www.metalevel.at/prolog/debuggingddeeccllaarraattiivvee
ddeebbuuggggiinngg techniques inapplicable.
Set the flag clpb_monotonic to true to make CLP(B) mmoonnoottoonniicc. If this
mode is enabled, then you must wrap CLP(B) variables with the functor
v/1. For example:
________________________________________________________________________| |
|?- set_prolog_flag(clpb_monotonic, true). |
|true. |
| |
|?- sat(v(X)=:=1#1). |
|X|=_0._________________________________________________________________ | |
1133..77..77 EExxaammppllee:: PPiiggeeoonnss
In this example, we are attempting to place _I pigeons into _J holes
in such a way that each hole contains at most one pigeon. One
interesting property of this task is that it can be formulated using
only _c_a_r_d_i_n_a_l_i_t_y _c_o_n_s_t_r_a_i_n_t_s (card/2). Another interesting aspect is
that this task has no short resolution refutations in general.
In the following, we use https://www.metalevel.at/prolog/dcgPPrroolloogg DDCCGG
nnoottaattiioonn to describe a list _C_s of CLP(B) constraints that must all be
satisfied.
________________________________________________________________________| |
|:- use_module(library(clpb)). |
|:- use_module(library(clpfd)). |
| |
|pigeon(I, J, Rows, Cs) :- |
| length(Rows, I), length(Row, J), |
| maplist(same_length(Row), Rows), |
| transpose(Rows, TRows), |
| phrase((all_card1(Rows),all_max1(TRows)), Cs). |
| |
|all_card1([]) --> []. |
|all_card1([Ls|Lss]) --> [card([1],Ls)], all_card1(Lss). |
| |
|all_max1([]) --> []. |
|all_max1([Ls|Lss])|-->_[card([0,1],Ls)],_all_max1(Lss).________________ | |
Example queries:
________________________________________________________________________| |
|?- pigeon(9, 8, Rows, Cs), sat(*(Cs)). |
|false. |
| |
|?- pigeon(2, 3, Rows, Cs), sat(*(Cs)), |
| append(Rows, Vs), labeling(Vs), |
| maplist(portray_clause, Rows). |
|[0, 0, 1]. |
|[0,|1,_0]._____________________________________________________________ | |
1133..77..88 EExxaammppllee:: BBoooolleeaann cciirrccuuiitt
Consider a Boolean circuit that express the Boolean function XOR with
4 NAND gates. We can model such a circuit with CLP(B) constraints as
follows:
________________________________________________________________________| |
|:- use_module(library(clpb)). |
| |
|nand_gate(X, Y, Z) :- sat(Z =:= ~(X*Y)). |
| |
|xor(X, Y, Z) :- |
| nand_gate(X, Y, T1), |
| nand_gate(X, T1, T2), |
| nand_gate(Y, T1, T3), |
||_______nand_gate(T2,_T3,_Z).__________________________________________ ||
Using universally quantified variables, we can show that the circuit
does compute XOR as intended:
________________________________________________________________________| |
|?- xor(x, y, Z). |
|sat(Z=:=x#y).|_________________________________________________________ | |
1133..77..99 AAcckknnoowwlleeddggmmeennttss
The interface predicates of this library follow the example of
https://sicstus.sics.seSSIICCSSttuuss PPrroolloogg.
Use SICStus Prolog for higher performance in many cases.
1133..77..1100 CCLLPP((BB)) pprreeddiiccaattee iinnddeexx
In the following, each CLP(B) predicate is described in more detail.
We recommend the following link to refer to this manual:
http://eu.swi-prolog.org/man/clpb.html
ssaatt((_+_E_x_p_r)) _[_s_e_m_i_d_e_t_]
True iff _E_x_p_r is a satisfiable Boolean expression.
ttaauutt((_+_E_x_p_r_, _-_T)) _[_s_e_m_i_d_e_t_]
Tautology check. Succeeds with _T = 0 if the Boolean expression
_E_x_p_r cannot be satisfied, and with _T = 1 if _E_x_p_r is always true
with respect to the current constraints. Fails otherwise.
llaabbeelliinngg((_+_V_s)) _[_m_u_l_t_i_]
Enumerate concrete solutions. Assigns truth values to the Boolean
variables _V_s such that all stated constraints are satisfied.
ssaatt__ccoouunntt((_+_E_x_p_r_, _-_C_o_u_n_t)) _[_d_e_t_]
_C_o_u_n_t the number of admissible assignments. _C_o_u_n_t is the number
of different assignments of truth values to the variables in the
Boolean expression _E_x_p_r, such that _E_x_p_r is true and all posted
constraints are satisfiable.
A common form of invocation is sat_count(+[1|Vs], Count): This
counts the number of admissible assignments to _V_s without imposing
any further constraints.
Examples:
____________________________________________________________________| |
| ?- sat(A =< B), Vs = [A,B], sat_count(+[1|Vs], Count). |
| Vs = [A, B], |
| Count = 3, |
| sat(A=:=A*B). |
| |
| ?- length(Vs, 120), |
| sat_count(+Vs, CountOr), |
| sat_count(*(Vs), CountAnd). |
| Vs = [...], |
| CountOr = 1329227995784915872903807060280344575, |
||CountAnd_=_1._____________________________________________________ ||
wweeiigghhtteedd__mmaaxxiimmuumm((_+_W_e_i_g_h_t_s_, _+_V_s_, _-_M_a_x_i_m_u_m)) _[_m_u_l_t_i_]
Enumerate weighted optima over admissible assignments. Maximize a
linear objective function over Boolean variables _V_s with integer
coefficients _W_e_i_g_h_t_s. This predicate assigns 0 and 1 to the
variables in _V_s such that all stated constraints are satisfied, and
_M_a_x_i_m_u_m is the maximum of sum(Weight_i*V_i) over all admissible
assignments. On backtracking, all admissible assignments that
attain the optimum are generated.
This predicate can also be used to _m_i_n_i_m_i_z_e a linear Boolean
program, since negative integers can appear in _W_e_i_g_h_t_s.
Example:
____________________________________________________________________| |
| ?- sat(A#B), weighted_maximum([1,2,1], [A,B,C], Maximum). |
||A_=_0,_B_=_1,_C_=_1,_Maximum_=_3._________________________________ ||
rraannddoomm__llaabbeelliinngg((_+_S_e_e_d_, _+_V_s)) _[_d_e_t_]
Select a single random solution. An admissible assignment of truth
values to the Boolean variables in _V_s is chosen in such a way that
each admissible assignment is equally likely. _S_e_e_d is an integer,
used as the initial seed for the random number generator.
1133..88 lliibbrraarryy((ccllppffdd)):: CCLLPP((FFDD)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr FFiinniittee
DDoommaaiinnss
aauutthhoorr https://www.metalevel.atMarkus Triska
DDeevveellooppmmeenntt ooff tthhiiss lliibbrraarryy hhaass mmoovveedd ttoo SSIICCSSttuuss PPrroolloogg..
Please see https://github.com/triska/clpzCCLLPP((ZZ)) for more information.
1133..88..11 IInnttrroodduuccttiioonn
This library provides CLP(FD): Constraint Logic Programming over
Finite Domains. This is an instance of the general CLP(_X)
scheme (section ????), extending logic programming with reasoning over
specialised domains. CLP(FD) lets us reason about iinntteeggeerrss in a way
that honors the relational nature of Prolog.
Read https://www.metalevel.at/prologTThhee PPoowweerr ooff PPrroolloogg to understand
how this library is meant to be used in practice.
There are two major use cases of CLP(FD) constraints:
1. ddeeccllaarraattiivvee iinntteeggeerr aarriitthhmmeettiicc (section ????)
2. solving ccoommbbiinnaattoorriiaall pprroobblleemmss such as planning, scheduling and
allocation tasks.
The predicates of this library can be classified as:
o _a_r_i_t_h_m_e_t_i_c constraints like #=/2, #>/2 and #\=/2 (section ????)
o the _m_e_m_b_e_r_s_h_i_p constraints in/2 and ins/2 (section ????)
o the _e_n_u_m_e_r_a_t_i_o_n predicates indomain/1, label/1 and labeling/2
(section ????)
o _c_o_m_b_i_n_a_t_o_r_i_a_l constraints like all_distinct/1 and
global_cardinality/2 (section ????)
o _r_e_i_f_i_c_a_t_i_o_n predicates such as #<==>/2 (section ????)
o _r_e_f_l_e_c_t_i_o_n predicates such as fd_dom/2 (section ????)
In most cases, _a_r_i_t_h_m_e_t_i_c _c_o_n_s_t_r_a_i_n_t_s (section ????) are the only
predicates you will ever need from this library. When reasoning
over integers, simply replace low-level arithmetic predicates like
(is)/2 and (>)/2 by the corresponding CLP(FD) constraints like #=/2 and
#>/2 to honor and preserve declarative properties of your programs.
For satisfactory performance, arithmetic constraints are implicitly
rewritten at compilation time so that low-level fallback predicates are
automatically used whenever possible.
Almost all Prolog programs also reason about integers. Therefore, it
is highly advisable that you make CLP(FD) constraints available in all
your programs. One way to do this is to put the following directive in
your ~/.swiplrc initialisation file:
________________________________________________________________________| |
|:-|use_module(library(clpfd))._________________________________________ | |
All example programs that appear in the CLP(FD) documentation assume
that you have done this.
Important concepts and principles of this library are illustrated by
means of usage examples that are available in a public git repository:
https://github.com/triska/clpfdggiitthhuubb..ccoomm//ttrriisskkaa//ccllppffdd
If you are used to the complicated operational considerations that
low-level arithmetic primitives necessitate, then moving to CLP(FD)
constraints may, due to their power and convenience, at first feel to
you excessive and almost like cheating. It _i_s_n_'_t. Constraints are
an integral part of all popular Prolog systems, and they are designed
to help you eliminate and avoid the use of low-level and less general
primitives by providing declarative alternatives that are meant to be
used instead.
When teaching Prolog, CLP(FD) constraints should be introduced
_b_e_f_o_r_e explaining low-level arithmetic predicates and their procedural
idiosyncrasies. This is because constraints are easy to explain,
understand and use due to their purely relational nature. In contrast,
the modedness and directionality of low-level arithmetic primitives are
impure limitations that are better deferred to more advanced lectures.
We recommend the following reference (PDF:
https://www.metalevel.at/swiclpfd.pdfmetalevel.at/swiclpfd.pdf) for
citing this library in scientific publications:
________________________________________________________________________| |
|@inproceedings{Triska12, |
| author = {Markus Triska}, |
| title = {The Finite Domain Constraint Solver of {SWI-Prolog}}, |
| booktitle = {FLOPS}, |
| series = {LNCS}, |
| volume = {7294}, |
| year = {2012}, |
| pages = {307-316} |
|}|_____________________________________________________________________ | |
More information about CLP(FD) constraints and their implementation is
contained in: https://www.metalevel.at/drt.pdfmmeettaalleevveell..aatt//ddrrtt..ppddff
The best way to discuss applying, improving and extending
CLP(FD) constraints is to use the dedicated clpfd tag on
http://stackoverflow.comstackoverflow.com. Several of the world's
foremost CLP(FD) experts regularly participate in these discussions and
will help you for free on this platform.
1133..88..22 AArriitthhmmeettiicc ccoonnssttrraaiinnttss
In modern Prolog systems, aarriitthhmmeettiicc ccoonnssttrraaiinnttss subsume and supersede
low-level predicates over integers. The main advantage of arithmetic
constraints is that they are true _r_e_l_a_t_i_o_n_s and can be used in all
directions. For most programs, arithmetic constraints are the only
predicates you will ever need from this library.
The most important arithmetic constraint is #=/2, which subsumes both
(is)/2 and (=:=)/2 over integers. Use #=/2 to make your programs more
general. See declarative integer arithmetic (section ????).
In total, the arithmetic constraints are:
___________________________________________________________
| Expr1 #= Expr2 |Expr1 equals Expr2 |
| Expr1 #\= Expr2 |Expr1 is not equal to Expr2 |
| Expr1 #>= Expr2 |Expr1 is greater than or equal to Expr2 |
| Expr1 #=< Expr2 |Expr1 is less than or equal to Expr2 |
| Expr1 #> Expr2 |Expr1 is greater than Expr2 |
|_Expr1_#<_Expr2__|Expr1_is_less_than_Expr2________________|
_E_x_p_r_1 and _E_x_p_r_2 denote aarriitthhmmeettiicc eexxpprreessssiioonnss, which are:
_______________________________________________________
| _i_n_t_e_g_e_r _|Given value |
| _v_a_r_i_a_b_l_e _|Unknown integer |
| ?(_v_a_r_i_a_b_l_e) |Unknown integer |
| -Expr |Unary minus |
| Expr + Expr |Addition |
| Expr * Expr |Multiplication |
| Expr - Expr |Subtraction |
| Expr ^ Expr |Exponentiation |
| min(Expr,Expr) |Minimum of two expressions |
| max(Expr,Expr) |Maximum of two expressions |
| Expr mod Expr |Modulo induced by floored division |
| Expr rem Expr |Modulo induced by truncated division |
| abs(Expr) |Absolute value |
| Expr // Expr |Truncated integer division |
|_Expr_div_Expr__|Floored_integer_division_____________|
where _E_x_p_r again denotes an arithmetic expression.
The bitwise operations (\)/1, (/\)/2, (\/)/2, (>>)/2, (<<)/2, lsb/1,
msb/1, popcount/1 and (xor)/2 are also supported.
1133..88..33 DDeeccllaarraattiivvee iinntteeggeerr aarriitthhmmeettiicc
The _a_r_i_t_h_m_e_t_i_c _c_o_n_s_t_r_a_i_n_t_s (section ????) #=/2, #>/2 etc. are meant to
be used _i_n_s_t_e_a_d of the primitives (is)/2, (=:=)/2, (>)/2 etc. over
integers. Almost all Prolog programs also reason about integers.
Therefore, it is recommended that you put the following directive
in your ~/.swiplrc initialisation file to make CLP(FD) constraints
available in all your programs:
________________________________________________________________________| |
|:-|use_module(library(clpfd))._________________________________________ | |
Throughout the following, it is assumed that you have done this.
The most basic use of CLP(FD) constraints is _e_v_a_l_u_a_t_i_o_n of arithmetic
expressions involving integers. For example:
________________________________________________________________________| |
|?- X #= 1+2. |
|X|=_3._________________________________________________________________ | |
This could in principle also be achieved with the lower-level predicate
(is)/2. However, an important advantage of arithmetic constraints
is their purely relational nature: Constraints can be used in _a_l_l
_d_i_r_e_c_t_i_o_n_s, also if one or more of their arguments are only partially
instantiated. For example:
________________________________________________________________________| |
|?- 3 #= Y+2. |
|Y|=_1._________________________________________________________________ | |
This relational nature makes CLP(FD) constraints easy to explain and
use, and well suited for beginners and experienced Prolog programmers
alike. In contrast, when using low-level integer arithmetic, we get:
________________________________________________________________________| |
|?- 3 is Y+2. |
|ERROR: is/2: Arguments are not sufficiently instantiated |
| |
|?- 3 =:= Y+2. |
|ERROR:|=:=/2:_Arguments_are_not_sufficiently_instantiated______________ | |
Due to the necessary operational considerations, the use of these
low-level arithmetic predicates is considerably harder to understand
and should therefore be deferred to more advanced lectures.
For supported expressions, CLP(FD) constraints are drop-in replacements
of these low-level arithmetic predicates, often yielding more general
programs. See n_factorial/2 (section ????) for an example.
This library uses goal_expansion/2 to automatically rewrite constraints
at compilation time so that low-level arithmetic predicates are
_a_u_t_o_m_a_t_i_c_a_l_l_y used whenever possible. For example, the predicate:
________________________________________________________________________| |
|positive_integer(N)|:-_N_#>=_1.________________________________________ | |
is executed as if it were written as:
________________________________________________________________________| |
|positive_integer(N) :- |
| ( integer(N) |
| -> N >= 1 |
| ; N #>= 1 |
||_______)._____________________________________________________________ ||
This illustrates why the performance of CLP(FD) constraints is almost
always completely satisfactory when they are used in modes that can be
handled by low-level arithmetic. To disable the automatic rewriting,
set the Prolog flag clpfd_goal_expansion to false.
If you are used to the complicated operational considerations that
low-level arithmetic primitives necessitate, then moving to CLP(FD)
constraints may, due to their power and convenience, at first feel to
you excessive and almost like cheating. It _i_s_n_'_t. Constraints are
an integral part of all popular Prolog systems, and they are designed
to help you eliminate and avoid the use of low-level and less general
primitives by providing declarative alternatives that are meant to be
used instead.
1133..88..44 EExxaammppllee:: FFaaccttoorriiaall rreellaattiioonn
We illustrate the benefit of using #=/2 for more generality with a
simple example.
Consider first a rather conventional definition of n_factorial/2,
relating each natural number _N to its factorial _F:
________________________________________________________________________| |
|n_factorial(0, 1). |
|n_factorial(N, F) :- |
| N #> 0, |
| N1 #= N - 1, |
| n_factorial(N1, F1), |
||_______F_#=_N_*_F1.___________________________________________________ ||
This program uses CLP(FD) constraints _i_n_s_t_e_a_d of low-level arithmetic
throughout, and everything that _w_o_u_l_d _h_a_v_e _w_o_r_k_e_d with low-level
arithmetic _a_l_s_o works with CLP(FD) constraints, retaining roughly the
same performance. For example:
________________________________________________________________________| |
|?- n_factorial(47, F). |
|F = 258623241511168180642964355153611979969197632389120000000000 ; |
|false.|________________________________________________________________ | |
Now the point: Due to the increased flexibility and generality of
CLP(FD) constraints, we are free to _r_e_o_r_d_e_r the goals as follows:
________________________________________________________________________| |
|n_factorial(0, 1). |
|n_factorial(N, F) :- |
| N #> 0, |
| N1 #= N - 1, |
| F #= N * F1, |
||_______n_factorial(N1,_F1).___________________________________________ ||
In this concrete case, _t_e_r_m_i_n_a_t_i_o_n properties of the predicate are
improved. For example, the following queries now both terminate:
________________________________________________________________________| |
|?- n_factorial(N, 1). |
|N = 0 ; |
|N = 1 ; |
|false. |
| |
|?- n_factorial(N, 3). |
|false.|________________________________________________________________ | |
To make the predicate terminate if _a_n_y argument is instantiated, add
the (implied) constraint F #\= 0 before the recursive call. Otherwise,
the query n_factorial(N, 0) is the only non-terminating case of this
kind.
The value of CLP(FD) constraints does _n_o_t lie in completely
freeing us from _a_l_l procedural phenomena. For example, the
two programs do not even have the same _t_e_r_m_i_n_a_t_i_o_n _p_r_o_p_e_r_t_i_e_s
in all cases. Instead, the primary benefit of CLP(FD)
constraints is that they allow you to try different execution
orders and apply https://www.metalevel.at/prolog/debuggingddeeccllaarraattiivvee
ddeebbuuggggiinngg techniques _a_t _a_l_l! Reordering goals (and clauses) can
significantly impact the performance of Prolog programs, and you are
free to try different variants if you use declarative approaches.
Moreover, since all CLP(FD) constraints _a_l_w_a_y_s _t_e_r_m_i_n_a_t_e, placing them
earlier can at most _i_m_p_r_o_v_e, never worsen, the termination properties
of your programs. An additional benefit of CLP(FD) constraints is
that they eliminate the complexity of introducing (is)/2 and (=:=)/2 to
beginners, since _b_o_t_h predicates are subsumed by #=/2 when reasoning
over integers.
In the case above, the clauses are mutually exclusive _i_f the
first argument is sufficiently instantiated. To make the predicate
deterministic in such cases while retaining its generality, you can
use zcompare/3 to _r_e_i_f_y a comparison, making the different cases
distinguishable by pattern matching. For example, in this concrete
case and others like it, you can use zcompare(Comp, 0, N) to obtain as
_C_o_m_p the symbolic outcome (<, =, >) of 0 compared to N.
1133..88..55 CCoommbbiinnaattoorriiaall ccoonnssttrraaiinnttss
In addition to subsuming and replacing low-level arithmetic predicates,
CLP(FD) constraints are often used to solve combinatorial problems
such as planning, scheduling and allocation tasks. Among the
most frequently used ccoommbbiinnaattoorriiaall ccoonnssttrraaiinnttss are all_distinct/1,
global_cardinality/2 and cumulative/2. This library also provides
several other constraints like disjoint2/1 and automaton/8, which are
useful in more specialized applications.
1133..88..66 DDoommaaiinnss
Each CLP(FD) variable has an associated set of admissible integers,
which we call the variable's ddoommaaiinn. Initially, the domain of each
CLP(FD) variable is the set of _a_l_l integers. CLP(FD) constraints like
#=/2, #>/2 and #\=/2 can at most reduce, and never extend, the domains
of their arguments. The constraints in/2 and ins/2 let us explicitly
state domains of CLP(FD) variables. The process of determining and
adjusting domains of variables is called constraint pprrooppaaggaattiioonn, and
it is performed automatically by this library. When the domain of a
variable contains only one element, then the variable is automatically
unified to that element.
Domains are taken into account when further constraints are stated, and
by enumeration predicates like labeling/2.
1133..88..77 EExxaammppllee:: SSuuddookkuu
As another example, consider _S_u_d_o_k_u: It is a popular puzzle over
integers that can be easily solved with CLP(FD) constraints.
________________________________________________________________________| |
|sudoku(Rows) :- |
| length(Rows, 9), maplist(same_length(Rows), Rows), |
| append(Rows, Vs), Vs ins 1..9, |
| maplist(all_distinct, Rows), |
| transpose(Rows, Columns), |
| maplist(all_distinct, Columns), |
| Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is], |
| blocks(As, Bs, Cs), |
| blocks(Ds, Es, Fs), |
| blocks(Gs, Hs, Is). |
| |
|blocks([], [], []). |
|blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :- |
| all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]), |
| blocks(Ns1, Ns2, Ns3). |
| |
|problem(1, [[_,_,_,_,_,_,_,_,_], |
| [_,_,_,_,_,3,_,8,5], |
| [_,_,1,_,2,_,_,_,_], |
| [_,_,_,5,_,7,_,_,_], |
| [_,_,4,_,_,_,1,_,_], |
| [_,9,_,_,_,_,_,_,_], |
| [5,_,_,_,_,_,_,7,3], |
| [_,_,2,_,1,_,_,_,_], |
||___________[_,_,_,_,4,_,_,_,9]])._____________________________________ ||
Sample query:
________________________________________________________________________| |
|?- problem(1, Rows), sudoku(Rows), maplist(portray_clause, Rows). |
|[9, 8, 7, 6, 5, 4, 3, 2, 1]. |
|[2, 4, 6, 1, 7, 3, 9, 8, 5]. |
|[3, 5, 1, 9, 2, 8, 7, 4, 6]. |
|[1, 2, 8, 5, 3, 7, 6, 9, 4]. |
|[6, 3, 4, 8, 9, 2, 1, 5, 7]. |
|[7, 9, 5, 4, 6, 1, 8, 3, 2]. |
|[5, 1, 9, 2, 8, 6, 4, 7, 3]. |
|[4, 7, 2, 3, 1, 9, 5, 6, 8]. |
|[8, 6, 3, 7, 4, 5, 2, 1, 9]. |
|Rows|=_[[9,_8,_7,_6,_5,_4,_3,_2|...],_..._,_[...|...]].________________ | |
In this concrete case, the constraint solver is strong enough to find
the unique solution without any search. For the general case, see
search (section ????).
1133..88..88 RReessiidduuaall ggooaallss
Here is an example session with a few queries and their answers:
________________________________________________________________________| |
|?- X #> 3. |
|X in 4..sup. |
| |
|?- X #\= 20. |
|X in inf..19\/21..sup. |
| |
|?- 2*X #= 10. |
|X = 5. |
| |
|?- X*X #= 144. |
|X in -12\/12. |
| |
|?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup. |
|X = 3, |
|Y = 6. |
| |
|?- X #= Y #<==> B, X in 0..3, Y in 4..5. |
|B = 0, |
|X in 0..3, |
|Y|in_4..5._____________________________________________________________ | |
The answers emitted by the toplevel are called _r_e_s_i_d_u_a_l _p_r_o_g_r_a_m_s, and
the goals that comprise each answer are called rreessiidduuaall ggooaallss. In
each case above, and as for all pure programs, the residual program
is declaratively equivalent to the original query. From the residual
goals, it is clear that the constraint solver has deduced additional
domain restrictions in many cases.
To inspect residual goals, it is best to let the toplevel display them
for us. Wrap the call of your predicate into call_residue_vars/2 to
make sure that all constrained variables are displayed. To make the
constraints a variable is involved in available as a Prolog term for
further reasoning within your program, use copy_term/3. For example:
________________________________________________________________________| |
|?- X #= Y + Z, X in 0..5, copy_term([X,Y,Z], [X,Y,Z], Gs). |
|Gs = [clpfd: (X in 0..5), clpfd: (Y+Z#=X)], |
|X in 0..5, |
|Y+Z#=X.|_______________________________________________________________ | |
This library also provides _r_e_f_l_e_c_t_i_o_n predicates (like fd_dom/2,
fd_size/2 etc.) with which we can inspect a variable's current domain.
These predicates can be useful if you want to implement your own
labeling strategies.
1133..88..99 CCoorree rreellaattiioonnss aanndd sseeaarrcchh
Using CLP(FD) constraints to solve combinatorial tasks typically
consists of two phases:
1. MMooddeelliinngg. In this phase, all relevant constraints are stated.
2. SSeeaarrcchh. In this phase, _e_n_u_m_e_r_a_t_i_o_n _p_r_e_d_i_c_a_t_e_s are used to search
for concrete solutions.
It is good practice to keep the modeling part, via a dedicated
predicate called the ccoorree rreellaattiioonn, separate from the actual search for
solutions. This lets us observe termination and determinism properties
of the core relation in isolation from the search, and more easily try
different search strategies.
As an example of a constraint satisfaction problem, consider the
cryptoarithmetic puzzle SEND + MORE = MONEY, where different letters
denote distinct integers between 0 and 9. It can be modeled in CLP(FD)
as follows:
________________________________________________________________________| |
|puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :- |
| Vars = [S,E,N,D,M,O,R,Y], |
| Vars ins 0..9, |
| all_different(Vars), |
| S*1000 + E*100 + N*10 + D + |
| M*1000 + O*100 + R*10 + E #= |
| M*10000 + O*1000 + N*100 + E*10 + Y, |
||_______M_#\=_0,_S_#\=_0.______________________________________________ ||
Notice that we are _n_o_t using labeling/2 in this predicate, so that we
can first execute and observe the modeling part in isolation. Sample
query and its result (actual variables replaced for readability):
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs). |
|As = [9, A2, A3, A4], |
|Bs = [1, 0, B3, A2], |
|Cs = [1, 0, A3, A2, C5], |
|A2 in 4..7, |
|all_different([9, A2, A3, A4, 1, 0, B3, C5]), |
|91*A2+A4+10*B3#=90*A3+C5, |
|A3 in 5..8, |
|A4 in 2..8, |
|B3 in 2..8, |
|C5|in_2..8.____________________________________________________________ | |
From this answer, we see that this core relation _t_e_r_m_i_n_a_t_e_s and is in
fact _d_e_t_e_r_m_i_n_i_s_t_i_c. Moreover, we see from the residual goals that the
constraint solver has deduced more stringent bounds for all variables.
Such observations are only possible if modeling and search parts are
cleanly separated.
Labeling can then be used to search for solutions in a separate
predicate or goal:
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs), label(As). |
|As = [9, 5, 6, 7], |
|Bs = [1, 0, 8, 5], |
|Cs = [1, 0, 6, 5, 2] ; |
|false.|________________________________________________________________ | |
In this case, it suffices to label a subset of variables to find the
puzzle's unique solution, since the constraint solver is strong enough
to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground
solutions.
1133..88..1100 EExxaammppllee:: EEiigghhtt qquueeeennss ppuuzzzzllee
We illustrate the concepts of the preceding sections by means of the
so-called _e_i_g_h_t _q_u_e_e_n_s _p_u_z_z_l_e. The task is to place 8 queens on an 8x8
chessboard such that none of the queens is under attack. This means
that no two queens share the same row, column or diagonal.
To express this puzzle via CLP(FD) constraints, we must first pick
a suitable representation. Since CLP(FD) constraints reason over
_i_n_t_e_g_e_r_s, we must find a way to map the positions of queens to
integers. Several such mappings are conceivable, and it is not
immediately obvious which we should use. On top of that, different
constraints can be used to express the desired relations. For such
reasons, _m_o_d_e_l_i_n_g combinatorial problems via CLP(FD) constraints often
necessitates some creativity and has been described as more of an art
than a science.
In our concrete case, we observe that there must be exactly one queen
per column. The following representation therefore suggests itself:
We are looking for 8 integers, one for each column, where each integer
denotes the _r_o_w of the queen that is placed in the respective column,
and which are subject to certain constraints.
In fact, let us now generalize the task to the so-called _N _q_u_e_e_n_s
_p_u_z_z_l_e, which is obtained by replacing 8 by _N everywhere it occurs
in the above description. We implement the above considerations in
the ccoorree rreellaattiioonn n_queens/2, where the first argument is the number
of queens (which is identical to the number of rows and columns of
the generalized chessboard), and the second argument is a list of _N
integers that represents a solution in the form described above.
________________________________________________________________________| |
|n_queens(N, Qs) :- |
| length(Qs, N), |
| Qs ins 1..N, |
| safe_queens(Qs). |
| |
|safe_queens([]). |
|safe_queens([Q|Qs]) :- safe_queens(Qs, Q, 1), safe_queens(Qs). |
| |
|safe_queens([], _, _). |
|safe_queens([Q|Qs], Q0, D0) :- |
| Q0 #\= Q, |
| abs(Q0 - Q) #\= D0, |
| D1 #= D0 + 1, |
||_______safe_queens(Qs,_Q0,_D1)._______________________________________ ||
Note that all these predicates can be used in _a_l_l _d_i_r_e_c_t_i_o_n_s: We
can use them to _f_i_n_d solutions, _t_e_s_t solutions and _c_o_m_p_l_e_t_e partially
instantiated solutions.
The original task can be readily solved with the following query:
________________________________________________________________________| |
|?- n_queens(8, Qs), label(Qs). |
|Qs|=_[1,_5,_8,_6,_3,_7,_2,_4]_.________________________________________ | |
Using suitable labeling strategies, we can easily find solutions with
80 queens and more:
________________________________________________________________________| |
|?- n_queens(80, Qs), labeling([ff], Qs). |
|Qs = [1, 3, 5, 44, 42, 4, 50, 7, 68|...] . |
| |
|?- time((n_queens(90, Qs), labeling([ff], Qs))). |
|% 5,904,401 inferences, 0.722 CPU in 0.737 seconds (98% CPU) |
|Qs|=_[1,_3,_5,_50,_42,_4,_49,_7,_59|...]_._____________________________ | |
Experimenting with different search strategies is easy because we have
separated the core relation from the actual search.
1133..88..1111 OOppttiimmiissaattiioonn
We can use labeling/2 to minimize or maximize the value of a CLP(FD)
expression, and generate solutions in increasing or decreasing order
of the value. See the labeling options min(Expr) and max(Expr),
respectively.
Again, to easily try different labeling options in connection with
optimisation, we recommend to introduce a dedicated predicate for
posting constraints, and to use labeling/2 in a separate goal. This
way, we can observe properties of the core relation in isolation, and
try different labeling options without recompiling our code.
If necessary, we can use once/1 to commit to the first
optimal solution. However, it is often very valuable to see
alternative solutions that are _a_l_s_o optimal, so that we can
choose among optimal solutions by other criteria. For the sake
of https://www.metalevel.at/prolog/purityppuurriittyy and completeness, we
recommend to avoid once/1 and other constructs that lead to impurities
in CLP(FD) programs.
Related to optimisation with CLP(FD) constraints are http://eu.swi-
prolog.org/man/simplex.htmllibrary(simplex) and CLP(Q) which reason
about _l_i_n_e_a_r constraints over rational numbers.
1133..88..1122 RReeiiffiiccaattiioonn
The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be
_r_e_i_f_i_e_d, which means reflecting their truth values into Boolean values
represented by the integers 0 and 1. Let P and Q denote reifiable
constraints or Boolean variables, then:
__________________________________________________
| #\ Q |True iff Q is false |
| P #\/ Q |True iff either P or Q |
| P #/\ Q |True iff both P and Q |
| P #\ Q |True iff either P or Q, but not both |
| P #<==> Q |True iff P and Q are equivalent |
| P #==> Q |True iff P implies Q |
|_P_#<==_Q___|True_iff_Q_implies_P________________ |
The constraints of this table are reifiable as well.
When reasoning over Boolean variables, also consider us-
ing CLP(B) constraints as provided by http://eu.swi-
prolog.org/man/clpb.htmllibrary(clpb).
1133..88..1133 EEnnaabblliinngg mmoonnoottoonniicc CCLLPP((FFDD))
In the default execution mode, CLP(FD) constraints still exhibit some
non-relational properties. For example, _a_d_d_i_n_g constraints can yield
new solutions:
________________________________________________________________________| |
|?- X #= 2, X = 1+1. |
|false. |
| |
|?- X = 1+1, X #= 2, X = 1+1. |
|X|=_1+1._______________________________________________________________ | |
This behaviour is highly problematic from a logical point of view, and
it may render declarative debugging techniques inapplicable.
Set the Prolog flag clpfd_monotonic to true to make CLP(FD) mmoonnoottoonniicc:
This means that _a_d_d_i_n_g new constraints _c_a_n_n_o_t yield new solutions.
When this flag is true, we must wrap variables that occur in arithmetic
expressions with the functor (?)/1 or (#)/1. For example:
________________________________________________________________________| |
|?- set_prolog_flag(clpfd_monotonic, true). |
|true. |
| |
|?- #(X) #= #(Y) + #(Z). |
|#(Y)+ #(Z)#= #(X). |
| |
|?- X #= 2, X = 1+1. |
|ERROR:|Arguments_are_not_sufficiently_instantiated_____________________ | |
The wrapper can be omitted for variables that are already constrained
to integers.
1133..88..1144 CCuussttoomm ccoonnssttrraaiinnttss
We can define custom constraints. The mechanism to do this is not
yet finalised, and we welcome suggestions and descriptions of use cases
that are important to you.
As an example of how it can be done currently, let us define a new
custom constraint oneground(X,Y,Z), where Z shall be 1 if at least one
of X and Y is instantiated:
________________________________________________________________________| |
|:- multifile clpfd:run_propagator/2. |
| |
|oneground(X, Y, Z) :- |
| clpfd:make_propagator(oneground(X, Y, Z), Prop), |
| clpfd:init_propagator(X, Prop), |
| clpfd:init_propagator(Y, Prop), |
| clpfd:trigger_once(Prop). |
| |
|clpfd:run_propagator(oneground(X, Y, Z), MState) :- |
| ( integer(X) -> clpfd:kill(MState), Z = 1 |
| ; integer(Y) -> clpfd:kill(MState), Z = 1 |
| ; true |
||_______)._____________________________________________________________ ||
First, clpfd:make_propagator/2 is used to transform a user-defined
representation of the new constraint to an internal form. With
clpfd:init_propagator/2, this internal form is then attached to X and
Y. From now on, the propagator will be invoked whenever the domains of
X or Y are changed. Then, clpfd:trigger_once/1 is used to give the
propagator its first chance for propagation even though the variables'
domains have not yet changed. Finally, clpfd:run_propagator/2 is
extended to define the actual propagator. As explained, this predicate
is automatically called by the constraint solver. The first argument
is the user-defined representation of the constraint as used in
clpfd:make_propagator/2, and the second argument is a mutable state
that can be used to prevent further invocations of the propagator when
the constraint has become entailed, by using clpfd:kill/1. An example
of using the new constraint:
________________________________________________________________________| |
|?- oneground(X, Y, Z), Y = 5. |
|Y = 5, |
|Z = 1, |
|X|in_inf..sup._________________________________________________________ | |
1133..88..1155 AApppplliiccaattiioonnss
CLP(FD) applications that we find particularly impressive and worth
studying include:
o Michael Hendricks uses CLP(FD) constraints for flexible
reasoning about _d_a_t_e_s and _t_i_m_e_s in the http://www.swi-
prolog.org/pack/list?p=julianjulian package.
o Julien Cumin uses CLP(FD) constraints for integer arithmetic in
https://github.com/JCumin/BrachylogBrachylog.
1133..88..1166 AAcckknnoowwlleeddggmmeennttss
This library gives you a glimpse of what
https://sicstus.sics.se/SSIICCSSttuuss PPrroolloogg can do. The API is in-
tentionally mostly compatible with that of SICStus Prolog, so that you
can easily switch to a much more feature-rich and much faster CLP(FD)
system when you need it. I thank https://www.sics.se/ matsc/Mats
Carlsson, the designer and main implementor of SICStus Prolog,
for his elegant example. I first encountered his system as
part of the excellent http://www.complang.tuwien.ac.at/ulrich/gupu/GGUUPPUU
teaching environment by http://www.complang.tuwien.ac.at/ulrich/Ulrich
Neumerkel. Ulrich was also the first and most determined tester
of the present system, filing hundreds of comments and suggestions
for improvement. https://people.cs.kuleuven.be/ tom.schrijvers/Tom
Schrijvers has contributed several constraint libraries to SWI-Prolog,
and I learned a lot from his coding style and implementation examples.
https://people.cs.kuleuven.be/ bart.demoen/Bart Demoen was a driving
force behind the implementation of attributed variables in SWI-Prolog,
and this library could not even have started without his prior work and
contributions. Thank you all!
1133..88..1177 CCLLPP((FFDD)) pprreeddiiccaattee iinnddeexx
In the following, each CLP(FD) predicate is described in more detail.
We recommend the following link to refer to this manual:
http://eu.swi-prolog.org/man/clpfd.html
1133..88..1177..11 AArriitthhmmeettiicc ccoonnssttrraaiinnttss
_A_r_i_t_h_m_e_t_i_c constraints are the most basic use of CLP(FD). Every time
you use (is)/2 or one of the low-level arithmetic comparisons ((<)/2,
(>)/2 etc.) over integers, consider using CLP(FD) constraints _i_n_s_t_e_a_d.
This can at most _i_n_c_r_e_a_s_e the generality of your programs. See
declarative integer arithmetic (section ????).
_?_X #= _?_Y
The arithmetic expression _X equals _Y. This is the most important
arithmetic constraint (section ????), subsuming and replacing both
(is)/2 _a_n_d (=:=)/2 over integers. See declarative integer
arithmetic (section ????).
_?_X #\= _?_Y
The arithmetic expressions _X and _Y evaluate to distinct integers.
When reasoning over integers, replace (=\=)/2 by #\=/2 to obtain
more general relations. See declarative integer arithmetic
(section ????).
_?_X #>= _?_Y
Same as _Y #=< _X. When reasoning over integers, replace (>=)/2 by
#>=/2 to obtain more general relations. See declarative integer
arithmetic (section ????).
_?_X #=< _?_Y
The arithmetic expression _X is less than or equal to _Y. When
reasoning over integers, replace (=<)/2 by #=</2 to obtain
more general relations. See declarative integer arithmetic
(section ????).
_?_X #> _?_Y
Same as _Y #< _X. When reasoning over integers, replace (>)/2 by #>/2
to obtain more general relations See declarative integer arithmetic
(section ????).
_?_X #< _?_Y
The arithmetic expression _X is less than _Y. When reasoning over
integers, replace (<)/2 by #</2 to obtain more general relations.
See declarative integer arithmetic (section ????).
In addition to its regular use in tasks that require it, this
constraint can also be useful to eliminate uninteresting symmetries
from a problem. For example, all possible matches between pairs
built from four players in total:
____________________________________________________________________| |
| ?- Vs = [A,B,C,D], Vs ins 1..4, |
| all_different(Vs), |
| A #< B, C #< D, A #< C, |
| findall(pair(A,B)-pair(C,D), label(Vs), Ms). |
| Ms = [ pair(1, 2)-pair(3, 4), |
| pair(1, 3)-pair(2, 4), |
||_______pair(1,_4)-pair(2,_3)].____________________________________ ||
1133..88..1177..22 MMeemmbbeerrsshhiipp ccoonnssttrraaiinnttss
If you are using CLP(FD) to model and solve combinatorial tasks, then
you typically need to specify the admissible domains of variables. The
_m_e_m_b_e_r_s_h_i_p _c_o_n_s_t_r_a_i_n_t_s in/2 and ins/2 are useful in such cases.
_?_V_a_r iinn _+_D_o_m_a_i_n
_V_a_r is an element of _D_o_m_a_i_n. _D_o_m_a_i_n is one of:
_I_n_t_e_g_e_r
Singleton set consisting only of _I_n_t_e_g_e_r.
_L_o_w_e_r .... _U_p_p_e_r
All integers _I such that _L_o_w_e_r =< _I =< _U_p_p_e_r. _L_o_w_e_r must be
an integer or the atom iinnff, which denotes negative infinity.
_U_p_p_e_r must be an integer or the atom ssuupp, which denotes
positive infinity.
_D_o_m_a_i_n_1 \/ _D_o_m_a_i_n_2
The union of _D_o_m_a_i_n_1 and _D_o_m_a_i_n_2.
_+_V_a_r_s iinnss _+_D_o_m_a_i_n
The variables in the list _V_a_r_s are elements of _D_o_m_a_i_n. See in/2
for the syntax of _D_o_m_a_i_n.
1133..88..1177..33 EEnnuummeerraattiioonn pprreeddiiccaatteess
When modeling combinatorial tasks, the actual search for solutions is
typically performed by _e_n_u_m_e_r_a_t_i_o_n _p_r_e_d_i_c_a_t_e_s like labeling/2. See the
the section about _c_o_r_e _r_e_l_a_t_i_o_n_s and search for more information.
iinnddoommaaiinn((_?_V_a_r))
Bind _V_a_r to all feasible values of its domain on backtracking. The
domain of _V_a_r must be finite.
llaabbeell((_+_V_a_r_s))
Equivalent to labeling([], Vars). See labeling/2.
llaabbeelliinngg((_+_O_p_t_i_o_n_s_, _+_V_a_r_s))
Assign a value to each variable in _V_a_r_s. Labeling means
systematically trying out values for the finite domain variables
_V_a_r_s until all of them are ground. The domain of each variable in
_V_a_r_s must be finite. _O_p_t_i_o_n_s is a list of options that let you
exhibit some control over the search process. Several categories
of options exist:
The variable selection strategy lets you specify which variable of
_V_a_r_s is labeled next and is one of:
lleeffttmmoosstt
Label the variables in the order they occur in _V_a_r_s. This is
the default.
ffff
_F_i_r_s_t _f_a_i_l. Label the leftmost variable with smallest domain
next, in order to detect infeasibility early. This is often a
good strategy.
ffffcc
Of the variables with smallest domains, the leftmost one
participating in most constraints is labeled next.
mmiinn
Label the leftmost variable whose lower bound is the lowest
next.
mmaaxx
Label the leftmost variable whose upper bound is the highest
next.
The value order is one of:
uupp
Try the elements of the chosen variable's domain in ascending
order. This is the default.
ddoowwnn
Try the domain elements in descending order.
The branching strategy is one of:
sstteepp
For each variable X, a choice is made between X = V and X #\=
V, where V is determined by the value ordering options. This
is the default.
eennuumm
For each variable X, a choice is made between X = V_1, X = V_2
etc., for all values V_i of the domain of X. The order is
determined by the value ordering options.
bbiisseecctt
For each variable X, a choice is made between X #=< M and X #>
M, where M is the midpoint of the domain of X.
At most one option of each category can be specified, and an option
must not occur repeatedly.
The order of solutions can be influenced with:
o min(Expr)
o max(Expr)
This generates solutions in ascending/descending order with respect
to the evaluation of the arithmetic expression Expr. Labeling _V_a_r_s
must make Expr ground. If several such options are specified, they
are interpreted from left to right, e.g.:
____________________________________________________________________| |
||?-_[X,Y]_ins_10..20,_labeling([max(X),min(Y)],[X,Y])._____________ ||
This generates solutions in descending order of X, and for each
binding of X, solutions are generated in ascending order of Y. To
obtain the incomplete behaviour that other systems exhibit with
"maximize(Expr)" and "minimize(Expr)", use once/1, e.g.:
____________________________________________________________________| |
||once(labeling([max(Expr)],_Vars))_________________________________ ||
Labeling is always complete, always terminates, and yields no
redundant solutions. See core relations and search (section ????)
for usage advice.
1133..88..1177..44 GGlloobbaall ccoonnssttrraaiinnttss
A _g_l_o_b_a_l _c_o_n_s_t_r_a_i_n_t expresses a relation that involves many variables
at once. The most frequently used global constraints of this library
are the combinatorial constraints all_distinct/1, global_cardinality/2
and cumulative/2.
aallll__ddiissttiinncctt((_+_V_a_r_s))
True iff _V_a_r_s are pairwise distinct. For example, all_distinct/1
can detect that not all variables can assume distinct values given
the following domains:
____________________________________________________________________| |
| ?- maplist(in, Vs, |
| [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), |
| all_distinct(Vs). |
||false.____________________________________________________________ ||
aallll__ddiiffffeerreenntt((_+_V_a_r_s))
Like all_distinct/1, but with weaker propagation. Consider
using all_distinct/1 instead, since all_distinct/1 is typically
acceptably efficient and propagates much more strongly.
ssuumm((_+_V_a_r_s_, _+_R_e_l_, _?_E_x_p_r))
The sum of elements of the list _V_a_r_s is in relation _R_e_l to _E_x_p_r.
_R_e_l is one of #=, #\=, #<, #>, #=< or #>=. For example:
____________________________________________________________________| |
| ?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100). |
| A in 0..100, |
| A+B+C#=100, |
| B in 0..100, |
||C_in_0..100.______________________________________________________ ||
ssccaallaarr__pprroodduucctt((_+_C_s_, _+_V_s_, _+_R_e_l_, _?_E_x_p_r))
True iff the scalar product of _C_s and _V_s is in relation _R_e_l to
_E_x_p_r. _C_s is a list of integers, _V_s is a list of variables and
integers. _R_e_l is #=, #\=, #<, #>, #=< or #>=.
lleexx__cchhaaiinn((_+_L_i_s_t_s))
_L_i_s_t_s are lexicographically non-decreasing.
ttuupplleess__iinn((_+_T_u_p_l_e_s_, _+_R_e_l_a_t_i_o_n))
True iff all _T_u_p_l_e_s are elements of _R_e_l_a_t_i_o_n. Each element of
the list _T_u_p_l_e_s is a list of integers or finite domain variables.
_R_e_l_a_t_i_o_n is a list of lists of integers. Arbitrary finite
relations, such as compatibility tables, can be modeled in this
way. For example, if 1 is compatible with 2 and 5, and 4 is
compatible with 0 and 3:
____________________________________________________________________| |
| ?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4. |
| X = 4, |
||Y_in_0\/3.________________________________________________________ ||
As another example, consider a train schedule represented as a list
of quadruples, denoting departure and arrival places and times for
each train. In the following program, Ps is a feasible journey
of length 3 from A to D via trains that are part of the given
schedule.
____________________________________________________________________| |
| trains([[1,2,0,1], |
| [2,3,4,5], |
| [2,3,0,1], |
| [3,4,5,6], |
| [3,4,2,3], |
| [3,4,8,9]]). |
| |
| threepath(A, D, Ps) :- |
| Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]], |
| T2 #> T1, |
| T4 #> T3, |
| trains(Ts), |
||________tuples_in(Ps,_Ts).________________________________________ ||
In this example, the unique solution is found without labeling:
____________________________________________________________________| |
| ?- threepath(1, 4, Ps). |
||Ps_=_[[1,_2,_0,_1],_[2,_3,_4,_5],_[3,_4,_8,_9]].__________________ ||
sseerriiaalliizzeedd((_+_S_t_a_r_t_s_, _+_D_u_r_a_t_i_o_n_s))
Describes a set of non-overlapping tasks. _S_t_a_r_t_s = [S_1,...,S_n],
is a list of variables or integers, _D_u_r_a_t_i_o_n_s = [D_1,...,D_n] is a
list of non-negative integers. Constrains _S_t_a_r_t_s and _D_u_r_a_t_i_o_n_s to
denote a set of non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j
+ D_j =< S_i for all 1 =< i < j =< n. Example:
____________________________________________________________________| |
| ?- length(Vs, 3), |
| Vs ins 0..3, |
| serialized(Vs, [1,2,3]), |
| label(Vs). |
| Vs = [0, 1, 3] ; |
| Vs = [2, 0, 3] ; |
||false.____________________________________________________________ ||
SSeeee aallssoo Dorndorf et al. 2000, "Constraint Propagation
Techniques for the Disjunctive Scheduling Problem"
eelleemmeenntt((_?_N_, _+_V_s_, _?_V))
The _N-th element of the list of finite domain variables _V_s is _V.
Analogous to nth1/3.
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s))
Global Cardinality constraint. Equivalent to
global_cardinality(Vs, Pairs, []). See global_cardinality/3.
Example:
____________________________________________________________________| |
| ?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs). |
| Vs = [1, 1, 3] ; |
| Vs = [1, 3, 1] ; |
||Vs_=_[3,_1,_1].___________________________________________________ ||
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s_, _+_O_p_t_i_o_n_s))
Global Cardinality constraint. _V_s is a list of finite domain
variables, _P_a_i_r_s is a list of Key-Num pairs, where Key is an
integer and Num is a finite domain variable. The constraint holds
iff each V in _V_s is equal to some key, and for each Key-Num pair in
_P_a_i_r_s, the number of occurrences of Key in _V_s is Num. _O_p_t_i_o_n_s is a
list of options. Supported options are:
ccoonnssiisstteennccyy((_v_a_l_u_e))
A weaker form of consistency is used.
ccoosstt((_C_o_s_t_, _M_a_t_r_i_x))
_M_a_t_r_i_x is a list of rows, one for each variable, in the order
they occur in _V_s. Each of these rows is a list of integers,
one for each key, in the order these keys occur in _P_a_i_r_s.
When variable v_i is assigned the value of key k_j, then the
associated cost is _M_a_t_r_i_x__{ij}. _C_o_s_t is the sum of all costs.
cciirrccuuiitt((_+_V_s))
True iff the list _V_s of finite domain variables induces a
Hamiltonian circuit. The k-th element of _V_s denotes the successor
of node k. Node indexing starts with 1. Examples:
____________________________________________________________________| |
| ?- length(Vs, _), circuit(Vs), label(Vs). |
| Vs = [] ; |
| Vs = [1] ; |
| Vs = [2, 1] ; |
| Vs = [2, 3, 1] ; |
| Vs = [3, 1, 2] ; |
||Vs_=_[2,_3,_4,_1]_._______________________________________________ ||
ccuummuullaattiivvee((_+_T_a_s_k_s))
Equivalent to cumulative(Tasks, [limit(1)]). See cumulative/2.
ccuummuullaattiivvee((_+_T_a_s_k_s_, _+_O_p_t_i_o_n_s))
Schedule with a limited resource. _T_a_s_k_s is a list of tasks,
each of the form task(S_i, D_i, E_i, C_i, T_i). S_i denotes the
start time, D_i the positive duration, E_i the end time, C_i the
non-negative resource consumption, and T_i the task identifier.
Each of these arguments must be a finite domain variable with
bounded domain, or an integer. The constraint holds iff at each
time slot during the start and end of each task, the total resource
consumption of all tasks running at that time does not exceed the
global resource limit. _O_p_t_i_o_n_s is a list of options. Currently,
the only supported option is:
lliimmiitt((_L))
The integer _L is the global resource limit. Default is 1.
For example, given the following predicate that relates three tasks
of durations 2 and 3 to a list containing their starting times:
____________________________________________________________________| |
| tasks_starts(Tasks, [S1,S2,S3]) :- |
| Tasks = [task(S1,3,_,1,_), |
| task(S2,2,_,1,_), |
||_________________task(S3,2,_,1,_)]._______________________________ ||
We can use cumulative/2 as follows, and obtain a schedule:
____________________________________________________________________| |
| ?- tasks_starts(Tasks, Starts), Starts ins 0..10, |
| cumulative(Tasks, [limit(2)]), label(Starts). |
| Tasks = [task(0, 3, 3, 1, _G36), task(0, 2, 2, 1, _G45), ...], |
||Starts_=_[0,_0,_2]_.______________________________________________ ||
ddiissjjooiinntt22((_+_R_e_c_t_a_n_g_l_e_s))
True iff _R_e_c_t_a_n_g_l_e_s are not overlapping. _R_e_c_t_a_n_g_l_e_s is a list of
terms of the form F(X_i, W_i, Y_i, H_i), where F is any functor, and
the arguments are finite domain variables or integers that denote,
respectively, the X coordinate, width, Y coordinate and height of
each rectangle.
aauuttoommaattoonn((_+_V_s_, _+_N_o_d_e_s_, _+_A_r_c_s))
Describes a list of finite domain variables with a finite automa-
ton. Equivalent to automaton(Vs, _, Vs, Nodes, Arcs, [], [], _),
a common use case of automaton/8. In the following example, a
list of binary finite domain variables is constrained to contain at
least two consecutive ones:
____________________________________________________________________| |
| two_consecutive_ones(Vs) :- |
| automaton(Vs, [source(a),sink(c)], |
| [arc(a,0,a), arc(a,1,b), |
| arc(b,0,a), arc(b,1,c), |
||___________________arc(c,0,c),_arc(c,1,c)]).______________________ ||
Example query:
____________________________________________________________________| |
| ?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs). |
| Vs = [0, 1, 1] ; |
| Vs = [1, 1, 0] ; |
||Vs_=_[1,_1,_1].___________________________________________________ ||
aauuttoommaattoonn((_+_S_e_q_u_e_n_c_e_, _?_T_e_m_p_l_a_t_e_, _+_S_i_g_n_a_t_u_r_e_, _+_N_o_d_e_s_, _+_A_r_c_s_, _+_C_o_u_n_t_e_r_s_, _+_I_n_i_t_i_a_l_s_, _?_F_i_n_a_l_s))
Describes a list of finite domain variables with a finite
automaton. True iff the finite automaton induced by _N_o_d_e_s and
_A_r_c_s (extended with _C_o_u_n_t_e_r_s) accepts _S_i_g_n_a_t_u_r_e. _S_e_q_u_e_n_c_e is a
list of terms, all of the same shape. Additional constraints
must link _S_e_q_u_e_n_c_e to _S_i_g_n_a_t_u_r_e, if necessary. _N_o_d_e_s is a
list of source(Node) and sink(Node) terms. _A_r_c_s is a list of
arc(Node,Integer,Node) and arc(Node,Integer,Node,Exprs) terms that
denote the automaton's transitions. Each node is represented by
an arbitrary term. Transitions that are not mentioned go to an
implicit failure node. _E_x_p_r_s is a list of arithmetic expressions,
of the same length as _C_o_u_n_t_e_r_s. In each expression, variables
occurring in _C_o_u_n_t_e_r_s symbolically refer to previous counter
values, and variables occurring in _T_e_m_p_l_a_t_e refer to the current
element of _S_e_q_u_e_n_c_e. When a transition containing arithmetic
expressions is taken, each counter is updated according to the
result of the corresponding expression. When a transition without
arithmetic expressions is taken, all counters remain unchanged.
_C_o_u_n_t_e_r_s is a list of variables. _I_n_i_t_i_a_l_s is a list of finite
domain variables or integers denoting, in the same order, the
initial value of each counter. These values are related to _F_i_n_a_l_s
according to the arithmetic expressions of the taken transitions.
The following example is taken from Beldiceanu, Carlsson, Debruyne
and Petit: "Reformulation of Global Constraints Based on
Constraints Checkers", Constraints 10(4), pp 339-362 (2005). It
relates a sequence of integers and finite domain variables to its
number of inflexions, which are switches between strictly ascending
and strictly descending subsequences:
____________________________________________________________________| |
| sequence_inflexions(Vs, N) :- |
| variables_signature(Vs, Sigs), |
| automaton(Sigs, _, Sigs, |
| [source(s),sink(i),sink(j),sink(s)], |
| [arc(s,0,s), arc(s,1,j), arc(s,2,i), |
| arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i), |
| arc(j,0,j), arc(j,1,j), |
| arc(j,2,i,[C+1])], |
| [C], [0], [N]). |
| |
| variables_signature([], []). |
| variables_signature([V|Vs], Sigs) :- |
| variables_signature_(Vs, V, Sigs). |
| |
| variables_signature_([], _, []). |
| variables_signature_([V|Vs], Prev, [S|Sigs]) :- |
| V #= Prev #<==> S #= 0, |
| Prev #< V #<==> S #= 1, |
| Prev #> V #<==> S #= 2, |
||________variables_signature_(Vs,_V,_Sigs).________________________ ||
Example queries:
____________________________________________________________________| |
| ?- sequence_inflexions([1,2,3,3,2,1,3,0], N). |
| N = 3. |
| |
| ?- length(Ls, 5), Ls ins 0..1, |
| sequence_inflexions(Ls, 3), label(Ls). |
| Ls = [0, 1, 0, 1, 0] ; |
||Ls_=_[1,_0,_1,_0,_1]._____________________________________________ ||
cchhaaiinn((_+_Z_s_, _+_R_e_l_a_t_i_o_n))
_Z_s form a chain with respect to _R_e_l_a_t_i_o_n. _Z_s is a list of finite
domain variables that are a chain with respect to the partial order
_R_e_l_a_t_i_o_n, in the order they appear in the list. _R_e_l_a_t_i_o_n must be
#=, #=<, #>=, #< or #>. For example:
____________________________________________________________________| |
| ?- chain([X,Y,Z], #>=). |
| X#>=Y, |
||Y#>=Z.____________________________________________________________ ||
1133..88..1177..55 RReeiiffiiccaattiioonn pprreeddiiccaatteess
Many CLP(FD) constraints can be _r_e_i_f_i_e_d. This means that their
truth value is itself turned into a CLP(FD) variable, so that we
can explicitly reason about whether a constraint holds or not. See
reification (section ????).
#\ _+_Q
_Q does _n_o_t hold. See reification (section ????).
For example, to obtain the complement of a domain:
____________________________________________________________________| |
| ?- #\ X in -3..0\/10..80. |
||X_in_inf.._-4\/1..9\/81..sup._____________________________________ ||
_?_P #<==> _?_Q
_P and _Q are equivalent. See reification (section ????).
For example:
____________________________________________________________________| |
| ?- X #= 4 #<==> B, X #\= 4. |
| B = 0, |
||X_in_inf..3\/5..sup.______________________________________________ ||
The following example uses reified constraints to relate a list of
finite domain variables to the number of occurrences of a given
value:
____________________________________________________________________| |
| vs_n_num(Vs, N, Num) :- |
| maplist(eq_b(N), Vs, Bs), |
| sum(Bs, #=, Num). |
| |
||eq_b(X,_Y,_B)_:-_X_#=_Y_#<==>_B.__________________________________ ||
Sample queries and their results:
____________________________________________________________________| |
| ?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num). |
| Vs = [X, Y, Z], |
| Num = 0, |
| X in 0..1, |
| Y in 0..1, |
| Z in 0..1. |
| |
| ?- vs_n_num([X,Y,Z], 2, 3). |
| X = 2, |
| Y = 2, |
||Z_=_2.____________________________________________________________ ||
_?_P #==> _?_Q
_P implies _Q. See reification (section ????).
_?_P #<== _?_Q
_Q implies _P. See reification (section ????).
_?_P #/\ _?_Q
_P and _Q hold. See reification (section ????).
_?_P #\/ _?_Q
_P or _Q holds. See reification (section ????).
For example, the sum of natural numbers below 1000 that are
multiples of 3 or 5:
____________________________________________________________________| |
| ?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, |
| indomain(N)), |
| Ns), |
| sum(Ns, #=, Sum). |
| Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...], |
||Sum_=_233168._____________________________________________________ ||
_?_P #\ _?_Q
Either _P holds or _Q holds, but not both. See reification
(section ????).
zzccoommppaarree((_?_O_r_d_e_r_, _?_A_, _?_B))
Analogous to compare/3, with finite domain variables _A and _B.
Think of zcompare/3 as _r_e_i_f_y_i_n_g an arithmetic comparison of two
integers. This means that we can explicitly reason about the
different cases _w_i_t_h_i_n our programs. As in compare/3, the atoms <,
> and = denote the different cases of the trichotomy. In contrast
to compare/3 though, zcompare/3 works correctly for _a_l_l _m_o_d_e_s, also
if only a subset of the arguments is instantiated. This allows
you to make several predicates over integers deterministic while
preserving their generality and completeness. For example:
____________________________________________________________________| |
| n_factorial(N, F) :- |
| zcompare(C, N, 0), |
| n_factorial_(C, N, F). |
| |
| n_factorial_(=, _, 1). |
| n_factorial_(>, N, F) :- |
| F #= F0*N, |
| N1 #= N - 1, |
||________n_factorial(N1,_F0).______________________________________ ||
This version of n_factorial/2 is deterministic if the first
argument is instantiated, because argument indexing can distinguish
the different clauses that reflect the possible and admissible
outcomes of a comparison of _N against 0. Example:
____________________________________________________________________| |
| ?- n_factorial(30, F). |
||F_=_265252859812191058636308480000000.____________________________ ||
Since there is no clause for <, the predicate automatically _f_a_i_l_s
if _N is less than 0. The predicate can still be used in all
directions, including the most general query:
____________________________________________________________________| |
| ?- n_factorial(N, F). |
| N = 0, |
| F = 1 ; |
| N = F, F = 1 ; |
||N_=_F,_F_=_2_.____________________________________________________ ||
In this case, all clauses are tried on backtracking, and zcompare/3
ensures that the respective ordering between N and 0 holds in each
case.
The truth value of a comparison can also be reified with (#<==>)/2
in combination with one of the _a_r_i_t_h_m_e_t_i_c _c_o_n_s_t_r_a_i_n_t_s (section ????).
See reification (section ????). However, zcompare/3 lets you more
conveniently distinguish the cases.
1133..88..1177..66 RReefflleeccttiioonn pprreeddiiccaatteess
Reflection predicates let us obtain, in a well-defined way, information
that is normally internal to this library. In addition to the
predicates explained below, also take a look at call_residue_vars/2 and
copy_term/3 to reason about CLP(FD) constraints that arise in programs.
This can be useful in program analyzers and declarative debuggers.
ffdd__vvaarr((_+_V_a_r))
True iff _V_a_r is a CLP(FD) variable.
ffdd__iinnff((_+_V_a_r_, _-_I_n_f))
_I_n_f is the infimum of the current domain of _V_a_r.
ffdd__ssuupp((_+_V_a_r_, _-_S_u_p))
_S_u_p is the supremum of the current domain of _V_a_r.
ffdd__ssiizzee((_+_V_a_r_, _-_S_i_z_e))
Reflect the current size of a domain. _S_i_z_e is the number of
elements of the current domain of _V_a_r, or the atom ssuupp if the
domain is unbounded.
ffdd__ddoomm((_+_V_a_r_, _-_D_o_m))
_D_o_m is the current domain (see in/2) of _V_a_r. This predicate is
useful if you want to reason about domains. It is _n_o_t needed
if you only want to display remaining domains; instead, separate
your model from the search part and let the toplevel display this
information via residual goals.
For example, to implement a custom labeling strategy, you may need
to inspect the current domain of a finite domain variable. With
the following code, you can convert a _f_i_n_i_t_e domain to a list of
integers:
____________________________________________________________________| |
| dom_integers(D, Is) :- phrase(dom_integers_(D), Is). |
| |
| dom_integers_(I) --> { integer(I) }, [I]. |
| dom_integers_(L..U) --> { numlist(L, U, Is) }, Is. |
||dom_integers_(D1\/D2)_-->_dom_integers_(D1),_dom_integers_(D2).___ ||
Example:
____________________________________________________________________| |
| ?- X in 1..5, X #\= 4, fd_dom(X, D), dom_integers(D, Is). |
| D = 1..3\/5, |
| Is = [1,2,3,5], |
||X_in_1..3\/5._____________________________________________________ ||
1133..88..1188 CClloossiinngg aanndd ooppeenniinngg wwoorrddss aabboouutt CCLLPP((FFDD))
CLP(FD) constraints are one of the main reasons why logic programming
approaches are picked over other paradigms for solving many tasks
of high practical relevance. The usefulness of CLP(FD) constraints
for scheduling, allocation and combinatorial optimization tasks is
well-known both in academia and industry.
With this library, we take the applicability of CLP(FD) constraints
one step further, following the road that visionary systems like
SICStus Prolog have already clearly outlined: This library is designed
to completely subsume and _r_e_p_l_a_c_e low-level predicates over integers,
which were in the past repeatedly found to be a major stumbling block
when introducing logic programming to beginners.
Embrace the change and new opportunities that this paradigm allows!
Use CLP(FD) constraints in your programs. The use of CLP(FD)
constraints instead of low-level arithmetic is also a good indicator to
judge the quality of any introductory Prolog text.
1133..99 lliibbrraarryy((ccllppqqrr)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr RRaattiioonnaallss aanndd
RReeaallss
Author: _C_h_r_i_s_t_i_a_n _H_o_l_z_b_a_u_r, ported to SWI-Prolog by _L_e_s_l_i_e _D_e
_K_o_n_i_n_c_k, K.U. Leuven
This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog
by Christian Holzbaur: Holzbaur C.: OFAI clp(q,r) Manual, Edition
1.3.3, Austrian Research Institute for Artificial Intelligence, Vienna,
TR-95-09, 1995. This manual is roughly based on the manual of the
above mentioned CLP(Q,R) implementation.
The CLP(Q,R) system consists of two components: the CLP(Q) library for
handling constraints over the rational numbers and the CLP(R) library
for handling constraints over the real numbers (using floating point
numbers as representation). Both libraries offer the same predicates
(with exception of bb_inf/4 in CLP(Q) and bb_inf/5 in CLP(R)). It is
allowed to use both libraries in one program, but using both CLP(Q) and
CLP(R) constraints on the same variable will result in an exception.
Please note that the clpqr library is _n_o_t an _a_u_t_o_l_o_a_d library and
therefore this library must be loaded explicitly before using it:
________________________________________________________________________| |
|:-|use_module(library(clpq)).__________________________________________ | |
or
________________________________________________________________________| |
|:-|use_module(library(clpr)).__________________________________________ | |
1133..99..11 SSoollvveerr pprreeddiiccaatteess
The following predicates are provided to work with constraints:
{}((_+_C_o_n_s_t_r_a_i_n_t_s))
Adds the constraints given by _C_o_n_s_t_r_a_i_n_t_s to the constraint store.
eennttaaiilleedd((_+_C_o_n_s_t_r_a_i_n_t))
Succeeds if _C_o_n_s_t_r_a_i_n_t is necessarily true within the current
constraint store. This means that adding the negation of the
constraint to the store results in failure.
iinnff((_+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
Computes the infimum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that infimum in _I_n_f. This predicate
does not change the constraint store.
ssuupp((_+_E_x_p_r_e_s_s_i_o_n_, _-_S_u_p))
Computes the supremum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that supremum in _S_u_p. This predicate
does not change the constraint store.
mmiinniimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Minimizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the infimum and equating the expression to
that infimum.
mmaaxxiimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Maximizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the supremum and equating the expression to
that supremum.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x_, _+_E_p_s))
This predicate is offered in CLP(R) only. It computes the
infimum of _E_x_p_r_e_s_s_i_o_n within the current constraint store, with the
additional constraint that in that infimum, all variables in _I_n_t_s
have integral values. _V_e_r_t_e_x will contain the values of _I_n_t_s in
the infimum. _E_p_s denotes how much a value may differ from an
integer to be considered an integer. E.g. when _E_p_s = 0.001, then X
= 4.999 will be considered as an integer (5 in this case). _E_p_s
should be between 0 and 0.5.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x))
This predicate is offered in CLP(Q) only. It behaves the same as
bb_inf/5 but does not use an error margin.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
The same as bb_inf/5 or bb_inf/4 but without returning the values
of the integers. In CLP(R), an error margin of 0.001 is used.
dduummpp((_+_T_a_r_g_e_t_, _+_N_e_w_v_a_r_s_, _-_C_o_d_e_d_A_n_s_w_e_r))
Returns the constraints on _T_a_r_g_e_t in the list _C_o_d_e_d_A_n_s_w_e_r where all
variables of _T_a_r_g_e_t have been replaced by _N_e_w_V_a_r_s. This operation
does not change the constraint store. E.g. in
____________________________________________________________________| |
||dump([X,Y,Z],[x,y,z],Cons)________________________________________ ||
Cons will contain the constraints on X, Y and Z, where these
variables have been replaced by atoms x, y and z.
1133..99..22 SSyynnttaaxx ooff tthhee pprreeddiiccaattee aarrgguummeennttss
The arguments of the predicates defined in the subsection above are
defined in table ????. Failing to meet the syntax rules will result in
an exception.
_______________________________________________________________________
| <_C_o_n_s_t_r_a_i_n_t_s>::= <_C_o_n_s_t_r_a_i_n_t> |single constraint |
| | <_C_o_n_s_t_r_a_i_n_t> , <_C_o_n_s_t_r_a_i_n_t_s> |conjunction |
| | <_C_o_n_s_t_r_a_i_n_t> ; <_C_o_n_s_t_r_a_i_n_t_s> |disjunction |
| <_C_o_n_s_t_r_a_i_n_t> ::= <_E_x_p_r_e_s_s_i_o_n> < <_E_x_p_r_e_s_s_i_o_n> |less than |
| | <_E_x_p_r_e_s_s_i_o_n> > <_E_x_p_r_e_s_s_i_o_n> |greater than |
| | <_E_x_p_r_e_s_s_i_o_n> =< <_E_x_p_r_e_s_s_i_o_n> |less or equal |
| | <=(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |less or equal |
| | <_E_x_p_r_e_s_s_i_o_n> >= <_E_x_p_r_e_s_s_i_o_n> |greater or equal |
| | <_E_x_p_r_e_s_s_i_o_n> =\= <_E_x_p_r_e_s_s_i_o_n> |not equal |
| | <_E_x_p_r_e_s_s_i_o_n> =:= <_E_x_p_r_e_s_s_i_o_n> |equal |
| | <_E_x_p_r_e_s_s_i_o_n> = <_E_x_p_r_e_s_s_i_o_n> |equal |
| <_E_x_p_r_e_s_s_i_o_n> ::= <_V_a_r_i_a_b_l_e> |Prolog variable |
| | <_N_u_m_b_e_r> |Prolog number |
| | +<_E_x_p_r_e_s_s_i_o_n> |unary plus |
| | -<_E_x_p_r_e_s_s_i_o_n> |unary minus |
| | <_E_x_p_r_e_s_s_i_o_n> + <_E_x_p_r_e_s_s_i_o_n> |addition |
| | <_E_x_p_r_e_s_s_i_o_n> - <_E_x_p_r_e_s_s_i_o_n> |substraction |
| | <_E_x_p_r_e_s_s_i_o_n> * <_E_x_p_r_e_s_s_i_o_n> |multiplication |
| | <_E_x_p_r_e_s_s_i_o_n> / <_E_x_p_r_e_s_s_i_o_n> |division |
| | abs(<_E_x_p_r_e_s_s_i_o_n>) |absolute value |
| | sin(<_E_x_p_r_e_s_s_i_o_n>) |sine |
| | cos(<_E_x_p_r_e_s_s_i_o_n>) |cosine |
| | tan(<_E_x_p_r_e_s_s_i_o_n>) |tangent |
| | exp(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | pow(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | <_E_x_p_r_e_s_s_i_o_n> ^ <_E_x_p_r_e_s_s_i_o_n> |exponent |
| | min(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |minimum |
|_________________|_max(<_E_x_p_r_e_s_s_i_o_n>,_<_E_x_p_r_e_s_s_i_o_n>)_|maximum___________|
Table 13.1: CLP(Q,R) constraint BNF
1133..99..33 UUssee ooff uunniiffiiccaattiioonn
Instead of using the {}/1 predicate, you can also use the standard
unification mechanism to store constraints. The following code samples
are equivalent:
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_v_a_r_i_a_b_l_e=:= Y} |
| {X = Y} |
||X_=_Y_____________________________________________________________ ||
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_n_u_m_b_e_r=:= 5.0} |
| {X = 5.0} |
||X_=_5.0___________________________________________________________ ||
1133..99..44 NNoonn--lliinneeaarr ccoonnssttrraaiinnttss
The CLP(Q,R) system deals only passively with non-linear constraints.
They remain in a passive state until certain conditions are satisfied.
These conditions, which are called the isolation axioms, are given in
table ????.
______________________________________________________________
| A =B *C |B or C is ground |A = 5 * C or A = B * |
| | |4 |
| |A and (B or C) are|20 = 5 * C or 20 = B |
|______________|ground________________|*_4___________________|_
| A =B=C |C is ground |A = B / 3 |
|______________|A_and_B_are_ground____|4_=_12_/_C____________|_
| X =min(Y; Z) |Y and Z are ground |X = min(4,3) |
| X =max(Y; Z) |Y and Z are ground |X = max(4,3) |
|_X_=abs(Y_)___|Y_is_ground___________|X_=_abs(-7)___________|_
| X =pow(Y; Z) |X and Y are ground |8 = 2 ^ Z |
| X =exp(Y; Z) |X and Z are ground |8 = Y ^ 3 |
|_X_=Y__^_Z___|Y_and_Z_are_ground_____|X_=_2_^_3_____________|_
| X =sin(Y ) X|is ground |1 = sin(Y) |
| X =cos(Y ) Y|is ground |X = sin(1.5707) |
|_X_=tan(Y_)___|______________________|______________________|_
Table 13.2: CLP(Q,R) isolating axioms
1133..99..55 SSttaattuuss aanndd kknnoowwnn pprroobblleemmss
The clpq and clpr libraries are `orphaned', i.e., they currently have
no maintainer.
o _T_o_p_-_l_e_v_e_l _o_u_t_p_u_t
The top-level output may contain variables not present in the
original query:
____________________________________________________________________| |
| ?- {X+Y>=1}. |
| {Y=1-X+_G2160, _G2160>=0}. |
| |
||?-________________________________________________________________ ||
Nonetheless, for linear constraints this kind of answer means
unconditional satisfiability.
o _D_u_m_p_i_n_g _c_o_n_s_t_r_a_i_n_t_s
The first argument of dump/3 has to be a list of free variables at
call-time:
____________________________________________________________________| |
| ?- {X=1},dump([X],[Y],L). |
| ERROR: Unhandled exception: Unknown message: |
| instantiation_error(dump([1],[_G11],_G6),1) |
||?-________________________________________________________________ ||
1133..1100 lliibbrraarryy((ccssvv)):: PPrroocceessss CCSSVV ((CCoommmmaa--SSeeppaarraatteedd VVaalluueess)) ddaattaa
SSeeee aallssoo RFC 4180
TToo bbee ddoonnee
- Implement immediate assert of the data to avoid possible
stack overflows.
- Writing creates an intermediate code-list, possibly
overflowing resources. This waits for pure output!
This library parses and generates CSV data. CSV data is represented in
Prolog as a list of rows. Each row is a compound term, where all rows
have the same name and arity.
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s)) _[_d_e_t_]
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read a CSV file into a list of rows. Each row is a Prolog term
with the same arity. _O_p_t_i_o_n_s is handed to csv//2. Remaining
options are processed by phrase_from_file/3. The default separator
depends on the file name extension and is \t for .tsv files and ,
otherwise.
Suppose we want to create a predicate table/6 from a CSV file that
we know contains 6 fields per record. This can be done using the
code below. Without the option arity(6), this would generate a
predicate table/N, where N is the number of fields per record in
the data.
____________________________________________________________________| |
| ?- csv_read_file(File, Rows, [functor(table), arity(6)]), |
||___maplist(assert,_Rows)._________________________________________ ||
ccssvv((_?_R_o_w_s)) // _[_d_e_t_]
ccssvv((_?_R_o_w_s_, _+_O_p_t_i_o_n_s)) // _[_d_e_t_]
Prolog DCG to `read/write' CSV data. _O_p_t_i_o_n_s:
sseeppaarraattoorr((_+_C_o_d_e))
The comma-separator. Must be a character code. Default is
(of course) the comma. Character codes can be specified using
the 0' notion. E.g., using separator(0';) parses a semicolon
separated file.
iiggnnoorree__qquuootteess((_+_B_o_o_l_e_a_n))
If true (default false), threat double quotes as a normal
character.
ssttrriipp((_+_B_o_o_l_e_a_n))
If true (default false), strip leading and trailing blank
space. RFC4180 says that blank space is part of the data.
ccoonnvveerrtt((_+_B_o_o_l_e_a_n))
If true (default), use name/2 on the field data. This
translates the field into a number if possible.
ccaassee((_+_A_c_t_i_o_n))
If down, downcase atomic values. If up, upcase them and if
preserve (default), do not change the case.
ffuunnccttoorr((_+_A_t_o_m))
Functor to use for creating row terms. Default is row.
aarriittyy((_?_A_r_i_t_y))
Number of fields in each row. This predicate raises a
domain_error(row_arity(Expected), Found) if a row is found
with different arity.
mmaattcchh__aarriittyy((_+_B_o_o_l_e_a_n))
If false (default true), do not reject CSV files where lines
provide a varying number of fields (columns). This can be a
work-around to use some incorrect CSV files.
ccssvv__rreeaadd__ffiillee__rrooww((_+_F_i_l_e_, _-_R_o_w_, _+_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
True when _R_o_w is a row in _F_i_l_e. First unifies _R_o_w with the first
row in _F_i_l_e. Backtracking yields the second, ... row. This
interface is an alternative to csv_read_file/3that avoids loading
all rows in memory. Note that this interface does not guarantee
that all rows in _F_i_l_e have the same arity.
In addition to the options of csv_read_file/3, this predicate
processes the option:
lliinnee((_-_L_i_n_e))
_L_i_n_e is unified with the 1-based line-number from which _R_o_w is
read. Note that _L_i_n_e is not the physical line, but rather the
_l_o_g_i_c_a_l record number.
TToo bbee ddoonnee Input is read line by line. If a record
separator is embedded in a quoted field, parsing the
record fails and another line is added to the input.
This does not nicely deal with other reasons why
parsing the row may fail.
ccssvv__rreeaadd__rrooww((_+_S_t_r_e_a_m_, _-_R_o_w_, _+_C_o_m_p_i_l_e_d_O_p_t_i_o_n_s)) _[_d_e_t_]
Read the next CSV record from _S_t_r_e_a_m and unify the result with _R_o_w.
_C_o_m_p_i_l_e_d_O_p_t_i_o_n_s is created from options defined for csv//2 using
csv_options/2. _R_o_w is unified with end_of_file upon reaching the
end of the input.
ccssvv__ooppttiioonnss((_-_C_o_m_p_i_l_e_d_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
_C_o_m_p_i_l_e_d is the compiled representation of the CSV processing
options as they may be passed into csv//2, etc. This predicate
is used in combination with csv_read_row/3 to avoid repeated
processing of the options.
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a)) _[_d_e_t_]
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Write a list of Prolog terms to a CSV file. _O_p_t_i_o_n_s are given
to csv//2. Remaining options are given to open/4. The default
separator depends on the file name extension and is \t for .tsv
files and , otherwise.
ccssvv__wwrriittee__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_D_a_t_a_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Write the rows in _D_a_t_a to _S_t_r_e_a_m. This is similar to
csv_write_file/3, but can deal with data that is produced
incrementally. The example below saves all answers from the
predicate data/3 to File.
____________________________________________________________________| |
| save_data(File) :- |
| setup_call_cleanup( |
| open(File, write, Out), |
| forall(data(C1,C2,C3), |
| csv_write_stream(Out, [row(C1,C2,C3)], [])), |
||_______close(Out)),_______________________________________________ ||
1133..1111 lliibbrraarryy((ddeebbuugg)):: PPrriinntt ddeebbuugg mmeessssaaggeess aanndd tteesstt aasssseerrttiioonnss
aauutthhoorr Jan Wielemaker
This library is a replacement for format/3 for printing debug messages.
Messages are assigned a _t_o_p_i_c. By dynamically enabling or disabling
topics the user can select desired messages. Debug statements are
removed when the code is compiled for optimization.
See manual for details. With XPCE, you can use the call below to start
a graphical monitoring tool.
________________________________________________________________________| |
|?-|prolog_ide(debug_monitor).__________________________________________ | |
Using the predicate assertion/1 you can make assumptions about your
program explicit, trapping the debugger if the condition does not hold.
ddeebbuuggggiinngg((_+_T_o_p_i_c)) _[_s_e_m_i_d_e_t_]
ddeebbuuggggiinngg((_-_T_o_p_i_c)) _[_n_o_n_d_e_t_]
ddeebbuuggggiinngg((_?_T_o_p_i_c_, _?_B_o_o_l)) _[_n_o_n_d_e_t_]
Examine debug topics. The form debugging(+Topic) may be used to
perform more complex debugging tasks. A typical usage skeleton is:
____________________________________________________________________| |
| ( debugging(mytopic) |
| -> <perform debugging actions> |
| ; true |
| ), |
||______..._________________________________________________________ ||
The other two calls are intended to examine existing and enabled
debugging tokens and are typically not used in user programs.
ddeebbuugg((_+_T_o_p_i_c)) _[_d_e_t_]
nnooddeebbuugg((_+_T_o_p_i_c)) _[_d_e_t_]
Add/remove a topic from being printed. nodebug(_) removes all
topics. Gives a warning if the topic is not defined unless it is
used from a directive. The latter allows placing debug topics at
the start of a (load-)file without warnings.
For debug/1, _T_o_p_i_c can be a term _T_o_p_i_c > Out, where Out is either
a stream or stream-alias or a filename (atom). This redirects
debug information on this topic to the given output.
lliisstt__ddeebbuugg__ttooppiiccss _[_d_e_t_]
List currently known debug topics and their setting.
ddeebbuugg__mmeessssaaggee__ccoonntteexxtt((_+_W_h_a_t)) _[_d_e_t_]
Specify additional context for debug messages. _W_h_a_t is one
of +Context or -Context, and Context is one of thread, time
or time(Format), where Format is a format specification for
format_time/3 (default is %T.%3f). Initially, debug/3 shows only
thread information.
ddeebbuugg((_+_T_o_p_i_c_, _+_F_o_r_m_a_t_, _:_A_r_g_s)) _[_d_e_t_]
_F_o_r_m_a_t a message if debug topic is enabled. Similar to format/3 to
user_error, but only prints if _T_o_p_i_c is activated through debug/1.
_A_r_g_s is a meta-argument to deal with goal for the @-command.
Output is first handed to the hook prolog:debug_print_hook/3. If
this fails, _F_o_r_m_a_t+_A_r_g_s is translated to text using the message-
translation (see print_message/2) for the term debug(Format, Args)
and then printed to every matching destination (controlled by
debug/1) using print_message_lines/3.
The message is preceded by '% ' and terminated with a newline.
SSeeee aallssoo format/3.
pprroolloogg::ddeebbuugg__pprriinntt__hhooookk((_+_T_o_p_i_c_, _+_F_o_r_m_a_t_, _+_A_r_g_s)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook called by debug/3. This hook is used by the graphical
frontend that can be activated using prolog_ide/1:
____________________________________________________________________| |
||?-_prolog_ide(debug_monitor)._____________________________________ ||
aasssseerrttiioonn((_:_G_o_a_l)) _[_d_e_t_]
Acts similar to C assert() macro. It has no effect if _G_o_a_l
succeeds. If _G_o_a_l fails or throws an exception, the following
steps are taken:
o call prolog:assertion_failed/2. If prolog:assertion_failed/2
fails, then:
{{ If this is an interactive toplevel thread, print a
message, the stack-trace, and finally trap the debugger.
{{ Otherwise, throw error(assertion_error(Reason, G),_) where
Reason is one of fail or the exception raised.
pprroolloogg::aasssseerrttiioonn__ffaaiilleedd((_+_R_e_a_s_o_n_, _+_G_o_a_l)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
This hook is called if the _G_o_a_l of assertion/1 fails. _R_e_a_s_o_n is
unified with either fail if _G_o_a_l simply failed or an exception call
otherwise. If this hook fails, the default behaviour is activated.
If the hooks throws an exception it will be propagated into the
caller of assertion/1.
1133..1122 lliibbrraarryy((eerrrroorr)):: EErrrroorr ggeenneerraattiinngg ssuuppppoorrtt
aauutthhoorr
- Jan Wielemaker
- Richard O'Keefe
- Ulrich Neumerkel
SSeeee aallssoo
- library(debug) and library(prolog_stack).
- print_message/2 is used to print (uncaught) error terms.
This module provides predicates to simplify error generation and
checking. It's implementation is based on a discussion on the
SWI-Prolog mailinglist on best practices in error handling. The
utility predicate must_be/2 provides simple run-time type validation.
The *_error predicates are simple wrappers around throw/1 to simplify
throwing the most common ISO error terms.
ttyyppee__eerrrroorr((_+_T_y_p_e_, _+_T_e_r_m))
Tell the user that _T_e_r_m is not of the expected _T_y_p_e. This error is
closely related to domain_error/2 because the notion of types is
not really set in stone in Prolog. We introduce the difference
using a simple example.
Suppose an argument must be a non-negative integer. If the actual
argument is not an integer, this is a _t_y_p_e___e_r_r_o_r. If it is a
negative integer, it is a _d_o_m_a_i_n___e_r_r_o_r.
Typical borderline cases are predicates accepting a compound term,
e.g., point(X,Y). One could argue that the basic type is a
compound-term and any other compound term is a domain error. Most
Prolog programmers consider each compound as a type and would
consider a compoint that is not point(_,_) a _t_y_p_e___e_r_r_o_r.
ddoommaaiinn__eerrrroorr((_+_T_y_p_e_, _+_T_e_r_m))
The argument is of the proper type, but has a value that is outside
the supported values. See type_error/2 for a more elaborate
discussion of the distinction between type- and domain-errors.
eexxiisstteennccee__eerrrroorr((_+_T_y_p_e_, _+_T_e_r_m))
_T_e_r_m is of the correct type and correct domain, but there is no
existing (external) resource that is represented by it.
eexxiisstteennccee__eerrrroorr((_+_T_y_p_e_, _+_T_e_r_m_, _+_S_e_t))
_T_e_r_m is of the correct type and correct domain, but there is
no existing (external) resource that is represented by it in the
provided set.
CCoommppaattiibbiilliittyy This error is not in ISO.
ppeerrmmiissssiioonn__eerrrroorr((_+_A_c_t_i_o_n_, _+_T_y_p_e_, _+_T_e_r_m))
It is not allowed to perform _A_c_t_i_o_n on the object _T_e_r_m that is of
the given _T_y_p_e.
iinnssttaannttiiaattiioonn__eerrrroorr((_+_T_e_r_m))
An argument is under-instantiated. I.e. it is not acceptable as
it is, but if some variables are bound to appropriate values it
would be acceptable.
___________________________________________________________Arguments_
_T_e_r_m is the term that needs (further) instantiation.
Unfortunately, the ISO error does not allow for
passing this term along with the error, but
we pass it to this predicate for documentation
purposes and to allow for future enhancement.
uunniinnssttaannttiiaattiioonn__eerrrroorr((_+_T_e_r_m))
An argument is over-instantiated. This error is used for output
arguments whose value cannot be known upfront. For example, the
goal open(File, read, input) cannot succeed because the system will
allocate a new unique stream handle that will never unify with
input.
rreepprreesseennttaattiioonn__eerrrroorr((_+_R_e_a_s_o_n))
A representation error indicates a limitation of the implementa-
tion. SWI-Prolog has no such limits that are not covered by other
errors, but an example of a representation error in another Prolog
implementation could be an attempt to create a term with an arity
higher than supported by the system.
ssyynnttaaxx__eerrrroorr((_+_C_u_l_p_r_i_t))
A text has invalid syntax. The error is described by _C_u_l_p_r_i_t.
TToo bbee ddoonnee Deal with proper description of the location
of the error. For short texts, we allow for
Type(Text), meaning Text is not a valid Type. E.g.
syntax_error(number('1a')) means that 1a is not a
valid number.
rreessoouurrccee__eerrrroorr((_+_C_u_l_p_r_i_t))
A goal cannot be completed due to lack of resources.
mmuusstt__bbee((_+_T_y_p_e_, _@_T_e_r_m)) _[_d_e_t_]
True if _T_e_r_m satisfies the type constraints for _T_y_p_e. Defined
types are atom, atomic, between, boolean, callable, chars,
codes, text, compound, constant, float, integer, nonneg,
positive_integer, negative_integer, nonvar, number, oneof, list,
list_or_partial_list, symbol, var, rational, encoding, dict and
string.
Most of these types are defined by an arity-1 built-in predicate of
the same name. Below is a brief definition of the other types.
______________________________________________________________________________________________________
| acyclic |Acyclic term (tree); see acyclic_term/1 |
| any | |
| between(FloatL,FloatU) |Number [FloatL..FloatU] |
| between(IntL,IntU) |Integer [IntL..IntU] |
| boolean |One of true or false |
| char |Atom of length 1 |
| chars |Proper list of 1-character atoms |
| code |Representation Unicode code point |
| codes |Proper list of Unicode character codes |
| constant |Same as atomic |
| cyclic |Cyclic term (rational tree); see cyclic_term/1 |
| dict |A dictionary term; see is_dict/1 |
| encoding |Valid name for a character encoding; see current_encoding/1 |
| list |A (non-open) list; see is_list/1 |
| negative_integer I|nteger < 0 |
| nonneg |Integer >= 0 |
| oneof(L) |Ground term that is member of L |
| positive_integer I|nteger > 0 |
| proper_list S|ame as list |
| list(Type) |Proper list with elements of _T_y_p_e _|
_| list_or_partial_list A |list or an open list (ending in a variable); see is_list_or_partial_list/1|
| stream |A stream name or valid stream handle; see is_stream/1 |
| symbol |Same as atom |
|_text___________________|One_of_atom,_string,_chars_or_codes_________________________________________|
Note: The Windows version can only represent Unicode code points
up to 2^16-1. Higher values cause a representation error on most
text handling predicates.
tthhrroowwss instantiation_error if _T_e_r_m is insufficiently
instantiated and type_error(Type, Term) if _T_e_r_m is
not of _T_y_p_e.
iiss__ooff__ttyyppee((_+_T_y_p_e_, _@_T_e_r_m)) _[_s_e_m_i_d_e_t_]
True if _T_e_r_m satisfies _T_y_p_e.
hhaass__ttyyppee((_+_T_y_p_e_, _@_T_e_r_m)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
True if _T_e_r_m satisfies _T_y_p_e.
ccuurrrreenntt__ttyyppee((_?_T_y_p_e_, _@_V_a_r_, _-_B_o_d_y)) _[_n_o_n_d_e_t_]
True when _T_y_p_e is a currently defined type and _V_a_r satisfies _T_y_p_e
of the body term _B_o_d_y succeeds.
1133..1133 lliibbrraarryy((ggeennssyymm)):: GGeenneerraattee uunniiqquuee iiddeennttiiffiieerrss
Gensym (GGeennerate SSyymmbols) is an old library for generating unique
symbols (atoms). Such symbols are generated from a base atom which
gets a sequence number appended. Of course there is no guarantee that
`catch22' is not an already defined atom and therefore one must be
aware these atoms are only unique in an isolated context.
The SWI-Prolog gensym library is thread-safe. The sequence numbers are
global over all threads and therefore generated atoms are unique over
all threads.
ggeennssyymm((_+_B_a_s_e_, _-_U_n_i_q_u_e))
Generate a unique atom from base _B_a_s_e and unify it with _U_n_i_q_u_e.
_B_a_s_e should be an atom. The first call will return <_b_a_s_e>1, the
next <_b_a_s_e>2, etc. Note that this is no guarantee that the atom is
unique in the system.
rreesseett__ggeennssyymm((_+_B_a_s_e))
Restart generation of identifiers from _B_a_s_e at <_B_a_s_e>1. Used to
make sure a program produces the same results on subsequent runs.
Use with care.
rreesseett__ggeennssyymm
Reset gensym for all registered keys. This predicate is available
for compatibility only. New code is strongly advised to avoid the
use of reset_gensym or at least to reset only the keys used by your
program to avoid unexpected side effects on other components.
1133..1144 lliibbrraarryy((iioossttrreeaamm)):: UUttiilliittiieess ttoo ddeeaall wwiitthh ssttrreeaammss
SSeeee aallssoo library(archive), library(process), library(zlib),
library(http/http_stream)
This library contains utilities that deal with streams, notably
originating from non-built-in sources such as URLs, archives, windows,
processes, etc.
The predicate open_any/5 acts as a _b_r_o_k_e_r between applications that can
process data from a stream and libraries that can create streams from
diverse sources. Without this predicate, processing data inevitally
follows the pattern below. As _c_a_l_l___s_o_m_e___o_p_e_n___v_a_r_i_a_t_i_o_n can be anything,
this blocks us from writing predicates such as load_xml(From, DOM) that
can operate on arbitrary input sources.
________________________________________________________________________| |
|setup_call_cleanup( |
| call_some_open_variation(Spec, In), |
| process(In), |
||___close(In)).________________________________________________________ ||
Libraries that can open streams can install the hook
iostream:open_hook/6 to make their functionality available through
open_any/5.
ooppeenn__aannyy((_+_S_p_e_c_i_f_i_c_a_t_i_o_n_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _-_C_l_o_s_e_, _+_O_p_t_i_o_n_s))
Establish a stream from _S_p_e_c_i_f_i_c_a_t_i_o_n that should be closed using
_C_l_o_s_e, which can either be called or passed to close_any/1.
_O_p_t_i_o_n_s processed:
eennccooddiinngg((_E_n_c))
Set stream to encoding _E_n_c.
Without loaded plugins, the open_any/5 processes the following
values for _S_p_e_c_i_f_i_c_a_t_i_o_n. If no rule matches, open_any/5 processes
_S_p_e_c_i_f_i_c_a_t_i_o_n as file(Specification).
_S_t_r_e_a_m
A plain stream handle. Possisible post-processing options
such as encoding are applied. _C_l_o_s_e does _n_o_t close the
stream, but resets other side-effects such as the encoding.
ssttrreeaamm((_S_t_r_e_a_m))
Same as a plain _S_t_r_e_a_m.
_F_i_l_e_U_R_L
If _S_p_e_c_i_f_i_c_a_t_i_o_n is of the form =file://...=, the pointed to
file is opened using open/4. Requires library(uri) to be
installed.
ffiillee((_P_a_t_h))
Explicitly open the file _P_a_t_h. _P_a_t_h can be an _P_a_t_h(File) term
as accepted by absolute_file_name/3.
ssttrriinngg((_S_t_r_i_n_g))
Open a Prolog string, atom, list of characters or codes as an
_i_n_p_u_t stream.
The typical usage scenario is given in the code below, where
<process> processes the input.
____________________________________________________________________| |
| setup_call_cleanup( |
| open_any(Spec, read, In, Close, Options), |
| <process>(In), |
||____Close)._______________________________________________________ ||
Currently, the following libraries extend this predicate:
lliibbrraarryy((_h_t_t_p_/_h_t_t_p___o_p_e_n))
Adds support for URLs using the http and https schemes.
cclloossee__aannyy((_+_G_o_a_l))
Execute the _C_l_o_s_e closure returned by open_any/5. The closure
can also be called directly. Using close_any/1 can be considered
better style and enhances tractability of the source code.
ooppeenn__hhooookk((_+_S_p_e_c_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _-_C_l_o_s_e_, _+_O_p_t_i_o_n_s_0_, _-_O_p_t_i_o_n_s))_[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Open _S_p_e_c in _M_o_d_e, producing _S_t_r_e_a_m.
___________________________________________________________Arguments_
_C_l_o_s_e is unified to a goal that must be called to
undo the side-effects of the action, e.g.,
typically the term close(Stream)
_O_p_t_i_o_n_s_0 are the options passed to open_any/5
_O_p_t_i_o_n_s are passed to the post processing filters that
may be installed by open_any/5.
1133..1155 lliibbrraarryy((lliissttss)):: LLiisstt MMaanniippuullaattiioonn
CCoommppaattiibbiilliittyy Virtually every Prolog system has
library(lists), but the set of provided predicates
is diverse. There is a fair agreement on the semantics
of most of these predicates, although error handling may
vary.
This library provides commonly accepted basic predicates for list
manipulation in the Prolog community. Some additional list
manipulations are built-in. See e.g., memberchk/2, length/2.
The implementation of this library is copied from many places. These
include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL)
and the YAP lists library. Some predicates are reimplemented based on
their specification by Quintus and SICStus.
mmeemmbbeerr((_?_E_l_e_m_, _?_L_i_s_t))
True if _E_l_e_m is a member of _L_i_s_t. The SWI-Prolog definition
differs from the classical one. Our definition avoids unpacking
each list element twice and provides determinism on the last
element. E.g. this is deterministic:
____________________________________________________________________| |
||____member(X,_[One])._____________________________________________ ||
aauutthhoorr Gertjan van Noord
aappppeenndd((_?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_1_A_n_d_L_i_s_t_2))
_L_i_s_t_1_A_n_d_L_i_s_t_2 is the concatenation of _L_i_s_t_1 and _L_i_s_t_2
aappppeenndd((_+_L_i_s_t_O_f_L_i_s_t_s_, _?_L_i_s_t))
Concatenate a list of lists. Is true if _L_i_s_t_O_f_L_i_s_t_s is a list of
lists, and _L_i_s_t is the concatenation of these lists.
___________________________________________________________Arguments_
_L_i_s_t_O_f_L_i_s_t_s must be a list of _p_o_s_s_i_b_l_y partial lists
pprreeffiixx((_?_P_a_r_t_, _?_W_h_o_l_e))
True iff _P_a_r_t is a leading substring of _W_h_o_l_e. This is the same as
append(Part, _, Whole).
sseelleecctt((_?_E_l_e_m_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when _L_i_s_t_1, with _E_l_e_m removed, results in _L_i_s_t_2.
sseelleeccttcchhkk((_+_E_l_e_m_, _+_L_i_s_t_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic removal of first element in _L_i_s_t that unifies
with _E_l_e_m.
sseelleecctt((_?_X_, _?_X_L_i_s_t_, _?_Y_, _?_Y_L_i_s_t)) _[_n_o_n_d_e_t_]
Select from two lists at the same positon. True if _X_L_i_s_t is
unifiable with _Y_L_i_s_t apart a single element at the same position
that is unified with _X in _X_L_i_s_t and with _Y in _Y_L_i_s_t. A typical
use for this predicate is to _r_e_p_l_a_c_e an element, as shown in
the example below. All possible substitutions are performed on
backtracking.
____________________________________________________________________| |
| ?- select(b, [a,b,c,b], 2, X). |
| X = [a, 2, c, b] ; |
| X = [a, b, c, 2] ; |
||false.____________________________________________________________ ||
SSeeee aallssoo selectchk/4 provides a semidet version.
sseelleeccttcchhkk((_?_X_, _?_X_L_i_s_t_, _?_Y_, _?_Y_L_i_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic version of select/4.
nneexxttttoo((_?_X_, _?_Y_, _?_L_i_s_t))
True if _Y directly follows _X in _L_i_s_t.
ddeelleettee((_+_L_i_s_t_1_, _@_E_l_e_m_, _-_L_i_s_t_2)) _[_d_e_t_]
Delete matching elements from a list. True when _L_i_s_t_2 is a list
with all elements from _L_i_s_t_1 except for those that unify with _E_l_e_m.
Matching _E_l_e_m with elements of _L_i_s_t_1 is uses \+ Elem \= H, which
implies that _E_l_e_m is not changed.
SSeeee aallssoo select/3, subtract/3.
ddeepprreeccaatteedd There are too many ways in which one might
want to delete elements from a list to justify the
name. Think of matching (= vs. ==), delete
first/all, be deterministic or not.
nntthh00((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
True when _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting starts at
0.
EErrrroorrss type_error(integer, Index) if _I_n_d_e_x is not an
integer or unbound.
SSeeee aallssoo nth1/3.
nntthh11((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
Is true when _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting starts
at 1.
SSeeee aallssoo nth0/3.
nntthh00((_?_N_, _?_L_i_s_t_, _?_E_l_e_m_, _?_R_e_s_t)) _[_d_e_t_]
Select/insert element at index. True when _E_l_e_m is the _N'th
(0-based) element of _L_i_s_t and _R_e_s_t is the remainder (as in by
select/3) of _L_i_s_t. For example:
____________________________________________________________________| |
| ?- nth0(I, [a,b,c], E, R). |
| I = 0, E = a, R = [b, c] ; |
| I = 1, E = b, R = [a, c] ; |
| I = 2, E = c, R = [a, b] ; |
||false.____________________________________________________________ ||
____________________________________________________________________| |
| ?- nth0(1, L, a1, [a,b]). |
||L_=_[a,_a1,_b].___________________________________________________ ||
nntthh11((_?_N_, _?_L_i_s_t_, _?_E_l_e_m_, _?_R_e_s_t)) _[_d_e_t_]
As nth0/4, but counting starts at 1.
llaasstt((_?_L_i_s_t_, _?_L_a_s_t))
Succeeds when _L_a_s_t is the last element of _L_i_s_t. This predicate is
semidet if _L_i_s_t is a list and multi if _L_i_s_t is a partial list.
CCoommppaattiibbiilliittyy There is no de-facto standard for the
argument order of last/2. Be careful when porting
code or use append(_, [Last], List) as a portable
alternative.
pprrooppeerr__lleennggtthh((_@_L_i_s_t_, _-_L_e_n_g_t_h)) _[_s_e_m_i_d_e_t_]
True when _L_e_n_g_t_h is the number of elements in the proper list _L_i_s_t.
This is equivalent to
____________________________________________________________________| |
| proper_length(List, Length) :- |
| is_list(List), |
||______length(List,_Length)._______________________________________ ||
ssaammee__lleennggtthh((_?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when _L_i_s_t_1 and _L_i_s_t_2 are lists with the same number of
elements. The predicate is deterministic if at least one of the
arguments is a proper list. It is non-deterministic if both
arguments are partial lists.
SSeeee aallssoo length/2
rreevveerrssee((_?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when the elements of _L_i_s_t_2 are in reverse order compared to
_L_i_s_t_1.
ppeerrmmuuttaattiioonn((_?_X_s_, _?_Y_s)) _[_n_o_n_d_e_t_]
True when _X_s is a permutation of _Y_s. This can solve for
_Y_s given _X_s or _X_s given _Y_s, or even enumerate _X_s and _Y_s
together. The predicate permutation/2 is primarily intended
to generate permutations. Note that a list of length N has
N! permutations, and unbounded permutation generation becomes
prohibitively expensive, even for rather short lists (10! =
3,628,800).
If both _X_s and _Y_s are provided and both lists have equal length the
order is |_X_s|^2. Simply testing whether _X_s is a permutation of _Y_s
can be achieved in order log(|_X_s|) using msort/2 as illustrated
below with the semidet predicate is_permutation/2:
____________________________________________________________________| |
| is_permutation(Xs, Ys) :- |
| msort(Xs, Sorted), |
||__msort(Ys,_Sorted).______________________________________________ ||
The example below illustrates that _X_s and _Y_s being proper lists is
not a sufficient condition to use the above replacement.
____________________________________________________________________| |
| ?- permutation([1,2], [X,Y]). |
| X = 1, Y = 2 ; |
| X = 2, Y = 1 ; |
||false.____________________________________________________________ ||
EErrrroorrss type_error(list, Arg) if either argument is not a
proper or partial list.
ffllaatttteenn((_+_N_e_s_t_e_d_L_i_s_t_, _-_F_l_a_t_L_i_s_t)) _[_d_e_t_]
Is true if _F_l_a_t_L_i_s_t is a non-nested version of _N_e_s_t_e_d_L_i_s_t. Note
that empty lists are removed. In standard Prolog, this implies
that the atom '[]' is removed too. In SWI7, [] is distinct from
'[]'.
Ending up needing flatten/2 often indicates, like append/3 for
appending two lists, a bad design. Efficient code that generates
lists from generated small lists must use difference lists, often
possible through grammar rules for optimal readability.
SSeeee aallssoo append/2
mmaaxx__mmeemmbbeerr((_-_M_a_x_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _M_a_x is the largest member in the standard order of terms.
Fails if _L_i_s_t is empty.
SSeeee aallssoo
- compare/3
- max_list/2 for the maximum of a list of numbers.
mmiinn__mmeemmbbeerr((_-_M_i_n_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _M_i_n is the smallest member in the standard order of
terms. Fails if _L_i_s_t is empty.
SSeeee aallssoo
- compare/3
- min_list/2 for the minimum of a list of numbers.
ssuumm__lliisstt((_+_L_i_s_t_, _-_S_u_m)) _[_d_e_t_]
_S_u_m is the result of adding all numbers in _L_i_s_t.
mmaaxx__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_a_x_:_n_u_m_b_e_r)) _[_s_e_m_i_d_e_t_]
True if _M_a_x is the largest number in _L_i_s_t. Fails if _L_i_s_t is empty.
SSeeee aallssoo max_member/2.
mmiinn__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_i_n_:_n_u_m_b_e_r)) _[_s_e_m_i_d_e_t_]
True if _M_i_n is the smallest number in _L_i_s_t. Fails if _L_i_s_t is
empty.
SSeeee aallssoo min_member/2.
nnuummlliisstt((_+_L_o_w_, _+_H_i_g_h_, _-_L_i_s_t)) _[_s_e_m_i_d_e_t_]
_L_i_s_t is a list [_L_o_w, _L_o_w+1, ... _H_i_g_h]. Fails if _H_i_g_h < _L_o_w.
EErrrroorrss
- type_error(integer, Low)
- type_error(integer, High)
iiss__sseett((_@_S_e_t)) _[_s_e_m_i_d_e_t_]
True if _S_e_t is a proper list without duplicates. Equivalence is
based on ==/2. The implementation uses sort/2, which implies
that the complexity is N*log(N) and the predicate may cause a
resource-error. There are no other error conditions.
lliisstt__ttoo__sseett((_+_L_i_s_t_, _?_S_e_t)) _[_d_e_t_]
True when _S_e_t has the same elements as _L_i_s_t in the same order. The
left-most copy of duplicate elements is retained. _L_i_s_t may contain
variables. Elements _E_1 and _E_2 are considered duplicates iff _E_1 ==
_E_2 holds. The complexity of the implementation is N*log(N).
EErrrroorrss _L_i_s_t is type-checked.
SSeeee aallssoo sort/2 can be used to create an ordered set.
Many set operations on ordered sets are order N
rather than order N**2. The list_to_set/2 predicate
is more expensive than sort/2 because it involves,
two sorts and a linear scan.
CCoommppaattiibbiilliittyy Up to version 6.3.11, list_to_set/2 had
complexity N**2 and equality was tested using =/2.
iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the intersection of _S_e_t_1 and _S_e_t_2. The
complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|. A _s_e_t is defined to
be an unordered list without duplicates. Elements are considered
duplicates if they can be unified.
SSeeee aallssoo ord_intersection/3.
uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the union of the lists _S_e_t_1 and _S_e_t_2.
The complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|. A _s_e_t is
defined to be an unordered list without duplicates. Elements are
considered duplicates if they can be unified.
SSeeee aallssoo ord_union/3
ssuubbsseett((_+_S_u_b_S_e_t_, _+_S_e_t)) _[_s_e_m_i_d_e_t_]
True if all elements of _S_u_b_S_e_t belong to _S_e_t as well. Membership
test is based on memberchk/2. The complexity is |_S_u_b_S_e_t|*|_S_e_t|.
A _s_e_t is defined to be an unordered list without duplicates.
Elements are considered duplicates if they can be unified.
SSeeee aallssoo ord_subset/2.
ssuubbttrraacctt((_+_S_e_t_, _+_D_e_l_e_t_e_, _-_R_e_s_u_l_t)) _[_d_e_t_]
_D_e_l_e_t_e all elements in _D_e_l_e_t_e from _S_e_t. Deletion is based on
unification using memberchk/2. The complexity is |_D_e_l_e_t_e|*|_S_e_t|.
A _s_e_t is defined to be an unordered list without duplicates.
Elements are considered duplicates if they can be unified.
SSeeee aallssoo ord_subtract/3.
1133..1166 lliibbrraarryy((mmaaiinn)):: PPrroovviiddee eennttrryy ppooiinntt ffoorr ssccrriippttss
SSeeee aallssoo XPCE users should have a look at library(pce_main),
which starts the GUI and processes events until all
windows have gone.
This library is intended for supporting PrologScript on Unix using the
#! magic sequence for scripts using commandline options. The entry
point main/0 calls the user-supplied predicate main/1 passing a list of
commandline options. Below is `echo' in Prolog (adjust /usr/bin/swipl
to where SWI-Prolog is installed)
________________________________________________________________________| |
|#!/usr/bin/env swipl |
| |
|:- initialization(main, main). |
| |
|main(Argv) :- |
| echo(Argv). |
| |
|echo([]) :- nl. |
|echo([Last]) :- !, |
| write(Last), nl. |
|echo([H|T]) :- |
| write(H), write(' '), |
||_______echo(T)._______________________________________________________ ||
mmaaiinn
Call main/1 using the passed command-line arguments. Before
calling main/1 this predicate installs a signal handler for SIGINT
(Control-C) that terminates the process with status 1.
aarrggvv__ooppttiioonnss((_+_A_r_g_v_, _-_R_e_s_t_A_r_g_v_, _-_O_p_t_i_o_n_s)) _[_d_e_t_]
Generic transformation of long commandline arguments to options.
Each --Name=Value is mapped to Name(Value). Each plain name is
mapped to Name(true), unless Name starts with no-, in which case
the option is mapped to Name(false). Numeric option values are
mapped to Prolog numbers.
SSeeee aallssoo library(optparse) provides a more involved
option library, providing both short and long
options, help and error handling. This predicate is
more for quick-and-dirty scripts.
1133..1177 lliibbrraarryy((nnbb__sseett)):: NNoonn--bbaacckkttrraacckkaabbllee sseett
The library nb_set defines _n_o_n_-_b_a_c_k_t_r_a_c_k_a_b_l_e _s_e_t_s, implemented as
binary trees. The sets are represented as compound terms and
manipulated using nb_setarg/3. Non-backtrackable manipulation of
datastructures is not supported by a large number of Prolog
implementations, but it has several advantages over using the database.
It produces less garbage, is thread-safe, reentrant and deals with
exceptions without leaking data.
Similar to the assoc library, keys can be any Prolog term, but it is
not allowed to instantiate or modify a term.
One of the ways to use this library is to generate unique values on
backtracking _w_i_t_h_o_u_t generating _a_l_l solutions first, for example to
act as a filter between a generator producing many duplicates and an
expensive test routine, as outlined below:
________________________________________________________________________| |
|generate_and_test(Solution) :- |
| empty_nb_set(Set), |
| generate(Solution), |
| add_nb_set(Solution, Set, true), |
||_______test(Solution).________________________________________________ ||
eemmppttyy__nnbb__sseett((_?_S_e_t))
True if _S_e_t is a non-backtrackable empty set.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t))
Add _K_e_y to _S_e_t. If _K_e_y is already a member of _S_e_t, add_nb_set/3
succeeds without modifying _S_e_t.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t_, _?_N_e_w))
If _K_e_y is not in _S_e_t and _N_e_w is unified to true, _K_e_y is added to
_S_e_t. If _K_e_y is in _S_e_t, _N_e_w is unified to false. It can be used
for many purposes:
add_nb_set(+, +, false) Test membership
add_nb_set(+, +, true) Succeed only if new member
add_nb_set(+, +, Var) Succeed, binding _V_a_r
ggeenn__nnbb__sseett((_+_S_e_t_, _-_K_e_y))
Generate all members of _S_e_t on backtracking in the standard order
of terms. To test membership, use add_nb_set/3.
ssiizzee__nnbb__sseett((_+_S_e_t_, _-_S_i_z_e))
Unify _S_i_z_e with the number of elements in _S_e_t.
nnbb__sseett__ttoo__lliisstt((_+_S_e_t_, _-_L_i_s_t))
Unify _L_i_s_t with a list of all elements in _S_e_t in the standard order
of terms (i.e., an _o_r_d_e_r_e_d _l_i_s_t).
1133..1188 lliibbrraarryy((wwwwww__bbrroowwsseerr)):: AAccttiivvaattiinngg yyoouurr WWeebb--bbrroowwsseerr
This library deals with the very system-dependent task of opening a web
page in a browser. See also url and the HTTP package.
wwwwww__ooppeenn__uurrll((_+_U_R_L))
Open _U_R_L in an external web browser. The reason to place this
in the library is to centralise the maintenance on this highly
platform- and browser-specific task. It distinguishes between the
following cases:
o _M_S_-_W_i_n_d_o_w_s
If it detects MS-Windows it uses win_shell/2 to open the _U_R_L.
The behaviour and browser started depends on the version of
Windows and Windows-shell configuration, but in general it
should be the behaviour expected by the user.
o _O_t_h_e_r _p_l_a_t_f_o_r_m_s
On other platforms it tests the environment variable (see
getenv/2) named BROWSER or uses netscape if this variable is
not set. If the browser is either mozilla or netscape,
www_open_url/1 first tries to open a new window on a running
browser using the -remote option of Netscape. If this fails
or the browser is not mozilla or netscape the system simply
passes the URL as first argument to the program.
1133..1199 lliibbrraarryy((ooppttiioonn)):: OOppttiioonn lliisstt pprroocceessssiinngg
SSeeee aallssoo
- library(record)
- Option processing capabilities may be declared using the
directive predicate_options/3.
TToo bbee ddoonnee We should consider putting many options in an assoc
or record with appropriate preprocessing to achieve better
performance.
The library(option) provides some utilities for processing option
lists. Option lists are commonly used as an alternative for
many arguments. Examples of built-in predicates are open/4 and
write_term/3. Naming the arguments results in more readable code, and
the list nature makes it easy to extend the list of options accepted
by a predicate. Option lists come in two styles, both of which are
handled by this library.
NNaammee((VVaalluuee)) This is the preferred style.
NNaammee == VVaalluuee This is often used, but deprecated.
Processing options inside time-critical code (loops) can cause serious
overhead. One possibility is to define a record using library(record)
and initialise this using make_<record>/2. In addition to providing
good performance, this also provides type-checking and central
declaration of defaults.
________________________________________________________________________| |
|:- record atts(width:integer=100, shape:oneof([box,circle])=box). |
| |
|process(Data, Options) :- |
| make_atts(Options, Attributes), |
| action(Data, Attributes). |
| |
|action(Data, Attributes) :- |
| atts_shape(Attributes, Shape), |
||_______...____________________________________________________________ ||
Options typically have exactly one argument. The library does
support options with 0 or more than one argument with the following
restrictions:
o The predicate option/3 and select_option/4, involving default
are meaningless. They perform an arg(1, Option, Default),
causing failure without arguments and filling only the first
option-argument otherwise.
o meta_options/3 can only qualify options with exactly one argument.
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t_, _+_D_e_f_a_u_l_t)) _[_s_e_m_i_d_e_t_]
Get an _O_p_t_i_o_n from _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention.
___________________________________________________________Arguments_
_O_p_t_i_o_n Term of the form Name(?Value).
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t)) _[_s_e_m_i_d_e_t_]
Get an _O_p_t_i_o_n from _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention. Fails silently if the
option does not appear in _O_p_t_i_o_n_L_i_s_t.
___________________________________________________________Arguments_
_O_p_t_i_o_n Term of the form Name(?Value).
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
Get and remove _O_p_t_i_o_n from an option list. As option/2, removing
the matching option from _O_p_t_i_o_n_s and unifying the remaining options
with _R_e_s_t_O_p_t_i_o_n_s.
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s_, _+_D_e_f_a_u_l_t)) _[_d_e_t_]
Get and remove _O_p_t_i_o_n with default value. As select_option/3, but
if _O_p_t_i_o_n is not in _O_p_t_i_o_n_s, its value is unified with _D_e_f_a_u_l_t and
_R_e_s_t_O_p_t_i_o_n_s with _O_p_t_i_o_n_s.
mmeerrggee__ooppttiioonnss((_+_N_e_w_, _+_O_l_d_, _-_M_e_r_g_e_d)) _[_d_e_t_]
Merge two option lists. _M_e_r_g_e_d is a sorted list of options using
the canonical format Name(Value) holding all options from _N_e_w and
_O_l_d, after removing conflicting options from _O_l_d.
Multi-values options (e.g., proxy(Host, Port)) are allowed, where
both option-name and arity define the identity of the option.
mmeettaa__ooppttiioonnss((_+_I_s_M_e_t_a_, _:_O_p_t_i_o_n_s_0_, _-_O_p_t_i_o_n_s)) _[_d_e_t_]
Perform meta-expansion on options that are module-sensitive.
Whether an option name is module-sensitive is determined by calling
call(IsMeta, Name). Here is an example:
____________________________________________________________________| |
| meta_options(is_meta, OptionsIn, Options), |
| ... |
| |
||is_meta(callback).________________________________________________ ||
Meta-options must have exactly one argument. This argument will be
qualified.
TToo bbee ddoonnee Should be integrated with declarations from
predicate_options/3.
ddiicctt__ooppttiioonnss((_?_D_i_c_t_, _?_O_p_t_i_o_n_s)) _[_d_e_t_]
Convert between an option list and a dictionary. One of the
arguments must be instantiated. If the option list is created, it
is created in canonical form, i.e., using Option(Value) with the
_O_p_t_i_o_n_s sorted in the standard order of terms. Note that the
conversion is not always possible due to different constraints and
convertion may thus lead to (type) errors.
o _D_i_c_t keys can be integers. This is not allowed in canonical
option lists.
o _O_p_t_i_o_n_s can hold multiple options with the same key. This is
not allowed in dicts.
o _O_p_t_i_o_n_s can have more than one value (name(V1,V2)). This is
not allowed in dicts.
Also note that most system predicates and predicates using this
library for processing the option argument can both work with
classical Prolog options and dicts objects.
1133..2200 lliibbrraarryy((ooppttppaarrssee)):: ccoommmmaanndd lliinnee ppaarrssiinngg
aauutthhoorr Marcus Uneson
vveerrssiioonn 0.20 (2011-04-27)
TToo bbee ddoonnee : validation? e.g, numbers; file path existence;
one-out-of-a-set-of-atoms
This module helps in building a command-line interface to an
application. In particular, it provides functions that take an option
specification and a list of atoms, probably given to the program on
the command line, and return a parsed representation (a list of the
customary Key(Val) by default; or optionally, a list of Func(Key, Val)
terms in the style of current_prolog_flag/2). It can also synthesize a
simple help text from the options specification.
The terminology in the following is partly borrowed from python,
see http://docs.python.org/library/optparse.html#terminology . Very
briefly, _a_r_g_u_m_e_n_t_s is what you provide on the command line
and for many prologs show up as a list of atoms Args in
current_prolog_flag(argv, Args). For a typical prolog incantation,
they can be divided into
o _r_u_n_t_i_m_e _a_r_g_u_m_e_n_t_s, which controls the prolog runtime; convention-
ally, they are ended by '--';
o _o_p_t_i_o_n_s, which are key-value pairs (with a boolean value possibly
implicit) intended to control your program in one way or another;
and
o _p_o_s_i_t_i_o_n_a_l _a_r_g_u_m_e_n_t_s, which is what remains after all runtime
arguments and options have been removed (with implicit arguments --
true/false for booleans -- filled in).
Positional arguments are in particular used for mandatory arguments
without which your program won't work and for which there are no
sensible defaults (e.g,, input file names). Options, by contrast,
offer flexibility by letting you change a default setting. Options
are optional not only by etymology: this library has no notion of
mandatory or required options (see the python docs for other rationales
than laziness).
The command-line arguments enter your program as a list of atoms, but
the programs perhaps expects booleans, integers, floats or even prolog
terms. You tell the parser so by providing an _o_p_t_i_o_n_s _s_p_e_c_i_f_i_c_a_t_i_o_n.
This is just a list of individual option specifications. One of those,
in turn, is a list of ground prolog terms in the customary Name(Value)
format. The following terms are recognized (any others raise error).
oopptt((_K_e_y))
_K_e_y is what the option later will be accessed by, just like for
current_prolog_flag(Key, Value). This term is mandatory (an error
is thrown if missing).
sshhoorrttffllaaggss((_L_i_s_t_O_f_F_l_a_g_s))
_L_i_s_t_O_f_F_l_a_g_s denotes any single-dashed, single letter args specify-
ing the current option (-s , -K, etc). Uppercase letters must
be quoted. Usually _L_i_s_t_O_f_F_l_a_g_s will be a singleton list, but
sometimes aliased flags may be convenient.
lloonnggffllaaggss((_L_i_s_t_O_f_F_l_a_g_s))
_L_i_s_t_O_f_F_l_a_g_s denotes any double-dashed arguments specifying the
current option (--verbose, --no-debug, etc). They are basically a
more readable alternative to short flags, except
1. long flags can be specified as --flag value or --flag=value (but
not as --flagvalue); short flags as -f val or -fval (but not
-f=val)
2. boolean long flags can be specified as --bool-flag or --bool-
flag=true or --bool-flag true; and they can be negated as
--no-bool-flag or --bool-flag=false or --bool-flag false.
Except that shortflags must be single characters, the distinction
between long and short is in calling convention, not in namespaces.
Thus, if you have shortflags([v]), you can use it as -v2 or -v 2 or
--v=2 or --v 2 (but not -v=2 or --v2).
Shortflags and longflags both default to []. It can be useful to
have flagless options -- see example below.
mmeettaa((_M_e_t_a))
_M_e_t_a is optional and only relevant for the synthesized usage
message and is the name (an atom) of the metasyntactic variable
(possibly) appearing in it together with type and default value
(e.g, x:integer=3, interest:float=0.11). It may be useful to have
named variables (x, interest) in case you wish to mention them
again in the help text. If not given the Meta: part is suppressed
-- see example below.
ttyyppee((_T_y_p_e))
_T_y_p_e is one of boolean, atom, integer, float, term. The corre-
sponding argument will be parsed appropriately. This term is
optional; if not given, defaults to term.
ddeeffaauulltt((_D_e_f_a_u_l_t))
_D_e_f_a_u_l_t value. This term is optional; if not given, or if given
the special value '_', an uninstantiated variable is created (and
any type declaration is ignored).
hheellpp((_H_e_l_p))
_H_e_l_p is (usually) an atom of text describing the option in the help
text. This term is optional (but obviously strongly recommended
for all options which have flags).
Long lines are subject to basic word wrapping -- split on white
space, reindent, rejoin. However, you can get more control by
supplying the line breaking yourself: rather than a single line
of text, you can provide a list of lines (as atoms). If you do,
they will be joined with the appropriate indent but otherwise left
untouched (see the option mode in the example below).
Absence of mandatory option specs or the presence of more than one for
a particular option throws an error, as do unknown or incompatible
types.
As a concrete example from a fictive application, suppose we want the
following options to be read from the command line (long flag(s), short
flag(s), meta:type=default, help)
________________________________________________________________________| |
|--mode -m atom=SCAN data gathering mode, |
| one of |
| SCAN: do this |
| READ: do that |
| MAKE: make numbers |
| WAIT: do nothing |
|--rebuild-cache -r boolean=true rebuild cache in |
| each iteration |
|--heisenberg-threshold -t,-h float=0.1 heisenberg threshold |
|--depths, --iters -i,-d K:integer=3 stop after K |
| iterations |
|--distances term=[1,2,3,5] initial prolog term |
|--output-file -o FILE:atom=_ write output to FILE |
|--label -l atom=REPORT report label |
|--verbosity -v V:integer=2 verbosity level, |
||______________________________________________1_<=_V_<=_3_____________ ||
We may also have some configuration parameters which we currently
think not needs to be controlled from the command line, say
path('/some/file/path').
This interface is described by the following options specification
(order between the specifications of a particular option is
irrelevant).
________________________________________________________________________| |
|ExampleOptsSpec = |
| [ [opt(mode ), type(atom), default('SCAN'), |
| shortflags([m]), longflags(['mode'] ), |
| help([ 'data gathering mode, one of' |
| , ' SCAN: do this' |
| , ' READ: do that' |
| , ' MAKE: fabricate some numbers' |
| , ' WAIT: don''t do anything'])] |
| |
| , [opt(cache), type(boolean), default(true), |
| shortflags([r]), longflags(['rebuild-cache']), |
| help('rebuild cache in each iteration')] |
| |
| , [opt(threshold), type(float), default(0.1), |
| shortflags([t,h]), longflags(['heisenberg-threshold']), |
| help('heisenberg threshold')] |
| |
| , [opt(depth), meta('K'), type(integer), default(3), |
| shortflags([i,d]),longflags([depths,iters]), |
| help('stop after K iterations')] |
| |
| , [opt(distances), default([1,2,3,5]), |
| longflags([distances]), |
| help('initial prolog term')] |
| |
| , [opt(outfile), meta('FILE'), type(atom), |
| shortflags([o]), longflags(['output-file']), |
| help('write output to FILE')] |
| |
| , [opt(label), type(atom), default('REPORT'), |
| shortflags([l]), longflags([label]), |
| help('report label')] |
| |
| , [opt(verbose), meta('V'), type(integer), default(2), |
| shortflags([v]), longflags([verbosity]), |
| help('verbosity level, 1 <= V <= 3')] |
| |
| , [opt(path), default('/some/file/path/')] |
||___]._________________________________________________________________ ||
The help text above was accessed by
opt_help(ExamplesOptsSpec, HelpText). The options appear in the
same order as in the OptsSpec.
Given ExampleOptsSpec, a command line (somewhat syntactically
inconsistent, in order to demonstrate different calling conventions)
may look as follows
________________________________________________________________________| |
|ExampleArgs = [ '-d5' |
| , '--heisenberg-threshold', '0.14' |
| , '--distances=[1,1,2,3,5,8]' |
| , '--iters', '7' |
| , '-ooutput.txt' |
| , '--rebuild-cache', 'true' |
| , 'input.txt' |
| , '--verbosity=2' |
||_____________]._______________________________________________________ ||
opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs) would
then succeed with
________________________________________________________________________| |
|Opts = [ mode('SCAN') |
| , label('REPORT') |
| , path('/some/file/path') |
| , threshold(0.14) |
| , distances([1,1,2,3,5,8]) |
| , depth(7) |
| , outfile('output.txt') |
| , cache(true) |
| , verbose(2) |
| ], |
|PositionalArgs|=_['input.txt'].________________________________________ | |
Note that path('/some/file/path') showing up in Opts has a default
value (of the implicit type 'term'), but no corresponding flags
in OptsSpec. Thus it can't be set from the command line.
The rest of your program doesn't need to know that, of course.
This provides an alternative to the common practice of asserting
such hard-coded parameters under a single predicate (for instance
setting(path, '/some/file/path')), with the advantage that you may
seamlessly upgrade them to command-line options, should you one day
find this a good idea. Just add an appropriate flag or two and a
line of help text. Similarly, suppressing an option in a cluttered
interface amounts to commenting out the flags.
opt_parse/5 allows more control through an additional argument list as
shown in the example below.
________________________________________________________________________| |
|?- opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs, |
| [ output_functor(appl_config) |
| ]). |
| |
|Opts = [ appl_config(verbose, 2), |
| , appl_config(label, 'REPORT') |
| ... |
||_________]____________________________________________________________ ||
This representation may be preferable with the empty-flag configuration
parameter style above (perhaps with asserting appl_config/2).
1133..2200..11 NNootteess aanndd ttiippss
o In the example we were mostly explicit about the types. Since
the default is term, which subsumes integer, float, atom, it may
be possible to get away cheaper (e.g., by only giving booleans).
However, it is recommended practice to always specify types:
parsing becomes more reliable and error messages will be easier to
interpret.
o Note that -sbar is taken to mean -s bar, not -s -b -a -r, that is,
there is no clustering of flags.
o -s=foo is disallowed. The rationale is that although some
command-line parsers will silently interpret this as -s =foo, this
is very seldom what you want. To have an option argument start
with '=' (very un-recommended), say so explicitly.
o The example specifies the option depth twice: once as -d5 and
once as --iters 7. The default when encountering duplicated flags
is to keeplast (this behaviour can be controlled, by ParseOption
duplicated_flags).
o The order of the options returned by the parsing functions is the
same as given on the command line, with non-overridden defaults
prepended and duplicates removed as in previous item. You should
not rely on this, however.
o Unknown flags (not appearing in OptsSpec) will throw errors. This
is usually a Good Thing. Sometimes, however, you may wish to pass
along flags to an external program (say, one called by shell/2),
and it means duplicated effort and a maintenance headache to have
to specify all possible flags for the external program explicitly
(if it even can be done). On the other hand, simply taking all
unknown flags as valid makes error checking much less efficient
and identification of positional arguments uncertain. A better
solution is to collect all arguments intended for passing along to
an indirectly called program as a single argument, probably as an
atom (if you don't need to inspect them first) or as a prolog term
(if you do).
oopptt__aarrgguummeennttss((_+_O_p_t_s_S_p_e_c_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s)) _[_d_e_t_]
Extract commandline options according to a specification. Con-
venience predicate, assuming that command-line arguments can be
accessed by current_prolog_flag/2 (as in swi-prolog). For other
access mechanisms and/or more control, get the args and pass them
as a list of atoms to opt_parse/4 or opt_parse/5 instead.
_O_p_t_s is a list of parsed options in the form Key(Value). Dashed
args not in _O_p_t_s_S_p_e_c are not permitted and will raise error (see
tip on how to pass unknown flags in the module description).
_P_o_s_i_t_i_o_n_a_l_A_r_g_s are the remaining non-dashed args after each flag
has taken its argument (filling in true or false for booleans).
There are no restrictions on non-dashed arguments and they may go
anywhere (although it is good practice to put them last). Any
leading arguments for the runtime (up to and including '--') are
discarded.
oopptt__ppaarrssee((_+_O_p_t_s_S_p_e_c_, _+_A_p_p_l_A_r_g_s_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s)) _[_d_e_t_]
Equivalent to opt_parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
oopptt__ppaarrssee((_+_O_p_t_s_S_p_e_c_, _+_A_p_p_l_A_r_g_s_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s_, _+_P_a_r_s_e_O_p_t_i_o_n_s))_[_d_e_t_]
Parse the arguments Args (as list of atoms) according to _O_p_t_s_S_p_e_c.
Any runtime arguments (typically terminated by '--') are assumed to
be removed already.
_O_p_t_s is a list of parsed options in the form Key(Value), or (with
the option functor(Func) given) in the form Func(Key, Value).
Dashed args not in _O_p_t_s_S_p_e_c are not permitted and will raise error
(see tip on how to pass unknown flags in the module description).
_P_o_s_i_t_i_o_n_a_l_A_r_g_s are the remaining non-dashed args after each flag
has taken its argument (filling in true or false for booleans).
There are no restrictions on non-dashed arguments and they may
go anywhere (although it is good practice to put them last).
_P_a_r_s_e_O_p_t_i_o_n_s are
oouuttppuutt__ffuunnccttoorr((_F_u_n_c))
Set the functor _F_u_n_c of the returned options _F_u_n_c(Key,Value).
Default is the special value 'OPTION' (upper-case), which
makes the returned options have form Key(Value).
dduupplliiccaatteedd__ffllaaggss((_K_e_e_p))
Controls how to handle options given more than once on the
commad line. _K_e_e_p is one of keepfirst, keeplast, keepall with
the obvious meaning. Default is keeplast.
aallllooww__eemmppttyy__ffllaagg__ssppeecc((_B_o_o_l))
If true (default), a flag specification is not required (it
is allowed that both shortflags and longflags be either []
or absent). Flagless options cannot be manipulated from the
command line and will not show up in the generated help.
This is useful when you have (also) general configuration
parameters in your _O_p_t_s_S_p_e_c, especially if you think they one
day might need to be controlled externally. See example in
the module overview. allow_empty_flag_spec(false) gives the
more customary behaviour of raising error on empty flags.
oopptt__hheellpp((_+_O_p_t_s_S_p_e_c_, _-_H_e_l_p_:_a_t_o_m)) _[_d_e_t_]
True when _H_e_l_p is a help string synthesized from _O_p_t_s_S_p_e_c.
ppaarrssee__ttyyppee((_+_T_y_p_e_, _+_C_o_d_e_s_:_l_i_s_t_(_c_o_d_e_)_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to parse option text _C_o_d_e_s to an object of type _T_y_p_e.
1133..2211 lliibbrraarryy((oorrddsseettss)):: OOrrddeerreedd sseett mmaanniippuullaattiioonn
Ordered sets are lists with unique elements sorted to the standard
order of terms (see sort/2). Exploiting ordering, many of the set
operations can be expressed in order N rather than N^2 when dealing
with unordered sets that may contain duplicates. The library(ordsets)
is available in a number of Prolog implementations. Our predicates are
designed to be compatible with common practice in the Prolog community.
The implementation is incomplete and relies partly on library(oset),
an older ordered set library distributed with SWI-Prolog. New
applications are advised to use library(ordsets).
Some of these predicates match directly to corresponding list
operations. It is advised to use the versions from this library
to make clear you are operating on ordered sets. An exception is
member/2. See ord_memberchk/2.
The ordsets library is based on the standard order of terms. This
implies it can handle all Prolog terms, including variables. Note
however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if
variables in the set are unified with each other or a variable in the
set is unified with a variable that is `older' than the newest variable
in the set. In practice, this implies that it is allowed to use
member(X, OrdSet) on an ordered set that holds variables only if X is a
fresh variable. In other cases one should cease using it as an ordset
because the order it relies on may have been changed.
iiss__oorrddsseett((_@_T_e_r_m)) _[_s_e_m_i_d_e_t_]
True if _T_e_r_m is an ordered set. All predicates in this library
expect ordered sets as input arguments. Failing to fullfil this
assumption results in undefined behaviour. Typically, ordered sets
are created by predicates from this library, sort/2 or setof/3.
oorrdd__eemmppttyy((_?_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _L_i_s_t is the empty ordered set. Simply unifies list with
the empty list. Not part of Quintus.
oorrdd__sseetteeqq((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if _S_e_t_1 and _S_e_t_2 have the same elements. As both are
canonical sorted lists, this is the same as ==/2.
CCoommppaattiibbiilliittyy sicstus
lliisstt__ttoo__oorrdd__sseett((_+_L_i_s_t_, _-_O_r_d_S_e_t)) _[_d_e_t_]
Transform a list into an ordered set. This is the same as sorting
the list.
oorrdd__iinntteerrsseecctt((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if both ordered sets have a non-empty intersection.
oorrdd__ddiissjjooiinntt((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if _S_e_t_1 and _S_e_t_2 have no common elements. This is the
negation of ord_intersect/2.
oorrdd__iinntteerrsseecctt((_+_S_e_t_1_, _+_S_e_t_2_, _-_I_n_t_e_r_s_e_c_t_i_o_n))
_I_n_t_e_r_s_e_c_t_i_o_n holds the common elements of _S_e_t_1 and _S_e_t_2.
ddeepprreeccaatteedd Use ord_intersection/3
oorrdd__iinntteerrsseeccttiioonn((_+_P_o_w_e_r_S_e_t_, _-_I_n_t_e_r_s_e_c_t_i_o_n))
_I_n_t_e_r_s_e_c_t_i_o_n of a powerset. True when _I_n_t_e_r_s_e_c_t_i_o_n is an ordered
set holding all elements common to all sets in _P_o_w_e_r_S_e_t.
CCoommppaattiibbiilliittyy sicstus
oorrdd__iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_I_n_t_e_r_s_e_c_t_i_o_n)) _[_d_e_t_]
_I_n_t_e_r_s_e_c_t_i_o_n holds the common elements of _S_e_t_1 and _S_e_t_2. Uses
ord_disjoint/2 if _I_n_t_e_r_s_e_c_t_i_o_n is bound to [] on entry.
oorrdd__iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _?_I_n_t_e_r_s_e_c_t_i_o_n_, _?_D_i_f_f_e_r_e_n_c_e)) _[_d_e_t_]
_I_n_t_e_r_s_e_c_t_i_o_n and difference between two ordered sets. _I_n_t_e_r_s_e_c_t_i_o_n
is the intersection between _S_e_t_1 and _S_e_t_2, while _D_i_f_f_e_r_e_n_c_e is
defined by ord_subtract(Set2, Set1, Difference).
SSeeee aallssoo ord_intersection/3 and ord_subtract/3.
oorrdd__aadddd__eelleemmeenntt((_+_S_e_t_1_, _+_E_l_e_m_e_n_t_, _?_S_e_t_2)) _[_d_e_t_]
Insert an element into the set. This is the same as
ord_union(Set1, [Element], Set2).
oorrdd__ddeell__eelleemmeenntt((_+_S_e_t_, _+_E_l_e_m_e_n_t_, _-_N_e_w_S_e_t)) _[_d_e_t_]
Delete an element from an ordered set. This is the same as
ord_subtract(Set, [Element], NewSet).
oorrdd__sseelleeccttcchhkk((_+_I_t_e_m_, _?_S_e_t_1_, _?_S_e_t_2)) _[_s_e_m_i_d_e_t_]
Selectchk/3, specialised for ordered sets. Is true when
select(Item, Set1, Set2) and _S_e_t_1, _S_e_t_2 are both sorted lists
without duplicates. This implementation is only expected to work
for _I_t_e_m ground and either _S_e_t_1 or _S_e_t_2 ground. The "chk"
suffix is meant to remind you of memberchk/2, which also expects
its first argument to be ground. ord_selectchk(X, S, T) =>
ord_memberchk(X, S) & \+ ord_memberchk(X, T).
aauutthhoorr Richard O'Keefe
oorrdd__mmeemmbbeerrcchhkk((_+_E_l_e_m_e_n_t_, _+_O_r_d_S_e_t)) _[_s_e_m_i_d_e_t_]
True if _E_l_e_m_e_n_t is a member of _O_r_d_S_e_t, compared using ==. Note
that _e_n_u_m_e_r_a_t_i_n_g elements of an ordered set can be done using
member/2.
Some Prolog implementations also provide ord_member/2, with the
same semantics as ord_memberchk/2. We believe that having a
semidet ord_member/2 is unacceptably inconsistent with the *_chk
convention. Portable code should use ord_memberchk/2 or member/2.
aauutthhoorr Richard O'Keefe
oorrdd__ssuubbsseett((_+_S_u_b_, _+_S_u_p_e_r)) _[_s_e_m_i_d_e_t_]
Is true if all elements of _S_u_b are in _S_u_p_e_r
oorrdd__ssuubbttrraacctt((_+_I_n_O_S_e_t_, _+_N_o_t_I_n_O_S_e_t_, _-_D_i_f_f)) _[_d_e_t_]
_D_i_f_f is the set holding all elements of _I_n_O_S_e_t that are not in
_N_o_t_I_n_O_S_e_t.
oorrdd__uunniioonn((_+_S_e_t_O_f_S_e_t_s_, _-_U_n_i_o_n)) _[_d_e_t_]
True if _U_n_i_o_n is the union of all elements in the superset
_S_e_t_O_f_S_e_t_s. Each member of _S_e_t_O_f_S_e_t_s must be an ordered set, the
sets need not be ordered in any way.
aauutthhoorr Copied from YAP, probably originally by Richard
O'Keefe.
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _?_U_n_i_o_n)) _[_d_e_t_]
_U_n_i_o_n is the union of _S_e_t_1 and _S_e_t_2
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_U_n_i_o_n_, _-_N_e_w)) _[_d_e_t_]
True iff ord_union(Set1, Set2, Union) and
ord_subtract(Set2, Set1, New).
oorrdd__ssyymmddiiffff((_+_S_e_t_1_, _+_S_e_t_2_, _?_D_i_f_f_e_r_e_n_c_e)) _[_d_e_t_]
Is true when _D_i_f_f_e_r_e_n_c_e is the symmetric difference of _S_e_t_1 and
_S_e_t_2. I.e., _D_i_f_f_e_r_e_n_c_e contains all elements that are not in
the intersection of _S_e_t_1 and _S_e_t_2. The semantics is the same as
the sequence below (but the actual implementation requires only a
single scan).
____________________________________________________________________| |
| ord_union(Set1, Set2, Union), |
| ord_intersection(Set1, Set2, Intersection), |
||______ord_subtract(Union,_Intersection,_Difference).______________ ||
For example:
____________________________________________________________________| |
| ?- ord_symdiff([1,2], [2,3], X). |
||X_=_[1,3].________________________________________________________ ||
1133..2222 lliibbrraarryy((ppaaiirrss)):: OOppeerraattiioonnss oonn kkeeyy--vvaalluuee lliissttss
aauutthhoorr Jan Wielemaker
SSeeee aallssoo keysort/2, library(assoc)
This module implements common operations on Key-Value lists, also
known as _P_a_i_r_s. Pairs have great practical value, especially due to
keysort/2 and the library assoc.pl.
This library is based on disussion in the SWI-Prolog mailinglist,
including specifications from Quintus and a library proposal by Richard
O'Keefe.
ppaaiirrss__kkeeyyss__vvaalluueess((_?_P_a_i_r_s_, _?_K_e_y_s_, _?_V_a_l_u_e_s)) _[_d_e_t_]
True if _K_e_y_s holds the keys of _P_a_i_r_s and _V_a_l_u_e_s the values.
Deterministic if any argument is instantiated to a finite list and
the others are either free or finite lists. All three lists are in
the same order.
SSeeee aallssoo pairs_values/2 and pairs_keys/2.
ppaaiirrss__vvaalluueess((_+_P_a_i_r_s_, _-_V_a_l_u_e_s)) _[_d_e_t_]
Remove the keys from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, _, Values)
ppaaiirrss__kkeeyyss((_+_P_a_i_r_s_, _-_K_e_y_s)) _[_d_e_t_]
Remove the values from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, Keys, _)
ggrroouupp__ppaaiirrss__bbyy__kkeeyy((_+_P_a_i_r_s_, _-_J_o_i_n_e_d_:_l_i_s_t_(_K_e_y_-_V_a_l_u_e_s_))) _[_d_e_t_]
Group values with equivalent (==/2) consecutive keys. For example:
____________________________________________________________________| |
| ?- group_pairs_by_key([a-2, a-1, b-4, a-3], X). |
| |
||X_=_[a-[2,1],_b-[4],_a-[3]]_______________________________________ ||
Sorting the list of pairs before grouping can be used to group _a_l_l
values associated with a key. For example, finding all values
associated with the largest key:
____________________________________________________________________| |
| ?- sort(1, @>=, [a-1, b-2, c-3, a-4, a-5, c-6], Ps), |
| group_pairs_by_key(Ps, [K-Vs|_]). |
| K = c, |
||Vs_=_[3,_6].______________________________________________________ ||
In this example, sorting by key only (first argument of sort/4 is
1) ensures that the order of the values in the original list of
pairs is maintained.
___________________________________________________________Arguments_
_P_a_i_r_s _K_e_y-Value list
_J_o_i_n_e_d List of _K_e_y-Group, where Group is the list of
_V_a_l_u_e_s associated with equivalent consecutive
Keys in the same order as they appear in _P_a_i_r_s.
ttrraannssppoossee__ppaaiirrss((_+_P_a_i_r_s_, _-_T_r_a_n_s_p_o_s_e_d)) _[_d_e_t_]
Swap Key-Value to Value-Key. The resulting list is sorted using
keysort/2 on the new key.
mmaapp__lliisstt__ttoo__ppaaiirrss((_:_F_u_n_c_t_i_o_n_, _+_L_i_s_t_, _-_K_e_y_e_d))
Create a Key-Value list by mapping each element of _L_i_s_t. For
example, if we have a list of lists we can create a list of
Length-_L_i_s_t using
____________________________________________________________________| |
||________map_list_to_pairs(length,_ListOfLists,_Pairs),____________ ||
1133..2233 lliibbrraarryy((ppeerrssiisstteennccyy)):: PPrroovviiddee ppeerrssiisstteenntt ddyynnaammiicc pprreeddiiccaatteess
TToo bbee ddoonnee
- Provide type safety while loading
- Thread safety must now be provided at the user-level.
Can we provide generic thread safety? Basically, this
means that we must wrap all exported predicates. That
might better be done outside this library.
- Transaction management?
- Should assert_<name> only assert if the database does
not contain a variant?
This module provides simple persistent storage for one or more dynamic
predicates. A database is always associated with a module. A module
that wishes to maintain a database must declare the terms that can be
placed in the database using the directive persistent/1.
The persistent/1 expands each declaration into four predicates:
o name(Arg, ...)
o assert_name(Arg, ...)
o retract_name(Arg, ...)
o retractall_name(Arg, ...)
As mentioned, a database can only be accessed from within a single
module. This limitation is on purpose, forcing the user to provide a
proper API for accessing the shared persistent data.
Below is a simple example:
________________________________________________________________________| |
|:- module(user_db, |
| [ attach_user_db/1, % +File |
| current_user_role/2, % ?User, ?Role |
| add_user/2, % +User, +Role |
| set_user_role/2 % +User, +Role |
| ]). |
|:- use_module(library(persistency)). |
| |
|:- persistent |
| user_role(name:atom, role:oneof([user,administrator])). |
| |
|attach_user_db(File) :- |
| db_attach(File, []). |
| |
|%% current_user_role(+Name, -Role) is semidet. |
| |
|current_user_role(Name, Role) :- |
| with_mutex(user_db, user_role(Name, Role)). |
| |
|add_user(Name, Role) :- |
| assert_user_role(Name, Role). |
| |
|set_user_role(Name, Role) :- |
| user_role(Name, Role), !. |
|set_user_role(Name, Role) :- |
| with_mutex(user_db, |
| ( retractall_user_role(Name, _), |
||_____________________assert_user_role(Name,_Role))).__________________ ||
ppeerrssiisstteenntt _+_S_p_e_c
Declare dynamic database terms. Declarations appear in a directive
and have the following format:
____________________________________________________________________| |
| :- persistent |
| <callable>, |
| <callable>, |
||________..._______________________________________________________ ||
Each specification is a callable term, following the conventions of
library(record), where each argument is of the form
____________________________________________________________________| |
||name:type_________________________________________________________ ||
Types are defined by library(error).
ccuurrrreenntt__ppeerrssiisstteenntt__pprreeddiiccaattee((_:_P_I)) _[_n_o_n_d_e_t_]
True if _P_I is a predicate that provides access to the persistent
database DB.
ddbb__aattttaacchh((_:_F_i_l_e_, _+_O_p_t_i_o_n_s))
Use _F_i_l_e as persistent database for the calling module. The
calling module must defined persistent/1 to declare the database
terms. Defined options:
ssyynncc((_+_S_y_n_c))
One of close (close journal after write), flush (default,
flush journal after write) or none (handle as fully buffered
stream).
If _F_i_l_e is already attached this operation may change the sync
behaviour.
ddbb__aattttaacchheedd((_:_F_i_l_e)) _[_s_e_m_i_d_e_t_]
True if the context module attached to the persistent database
_F_i_l_e.
ddbb__ddeettaacchh _[_d_e_t_]
Detach persistency from the calling module and delete all persis-
tent clauses from the Prolog database. Note that the file is
not affected. After this operation another file may be attached,
providing it satisfies the same persistency declaration.
ddbb__ssyynncc((_:_W_h_a_t))
Synchronise database with the associated file. _W_h_a_t is one of:
rreellooaadd
Database is reloaded from file if the file was modified since
loaded.
uuppddaattee
As reload, but use incremental loading if possible. This
allows for two processes to examine the same database file,
where one writes the database and the other periodycally calls
db_sync(update) to follow the modified data.
ggcc
Database was re-written, deleting all retractall statements.
This is the same as gc(50).
ggcc((_P_e_r_c_e_n_t_a_g_e))
GC DB if the number of deleted terms is the given percentage
of the total number of terms.
cclloossee
Database stream was closed
ddeettaacchh
Remove all registered persistency for the calling module
nnoopp
No-operation performed
With unbound _W_h_a_t, db_sync/1 reloads the database if it was
modified on disk, gc it if it is dirty and close it if it is
opened.
ddbb__ssyynncc__aallll((_+_W_h_a_t))
Sync all registered databases.
1133..2244 lliibbrraarryy((ppiioo)):: PPuurree II//OO
This library provides pure list-based I/O processing for Prolog, where
the communication to the actual I/O device is performed transparently
through coroutining. This module itself is just an interface to the
actual implementation modules.
1133..2244..11 lliibbrraarryy((ppuurree__iinnppuutt)):: PPuurree IInnppuutt ffrroomm ffiilleess aanndd ssttrreeaammss
TToo bbee ddoonnee Provide support for alternative input readers, e.g.
reading terms, tokens, etc.
This module is part of pio.pl, dealing with _p_u_r_e _i_n_p_u_t: processing
input streams from the outside world using pure predicates, notably
grammar rules (DCG). Using pure predicates makes non-deterministic
processing of input much simpler.
Pure input uses attributed variables to read input from the external
source into a list _o_n _d_e_m_a_n_d. The overhead of lazy reading is more
than compensated for by using block reads based on read_pending_codes/3.
Ulrich Neumerkel came up with the idea to use coroutining for creating
a _l_a_z_y _l_i_s_t. His implementation repositioned the file to deal
with re-reading that can be necessary on backtracking. The current
implementation uses destructive assignment together with more low-level
attribute handling to realise pure input on any (buffered) stream.
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e)) _[_n_o_n_d_e_t_]
Process the content of _F_i_l_e using the DCG rule _G_r_a_m_m_a_r. The space
usage of this mechanism depends on the length of the not committed
part of _G_r_a_m_m_a_r. Committed parts of the temporary list are
reclaimed by the garbage collector, while the list is extended on
demand due to unification of the attributed tail variable. Below
is an example that counts the number of times a string appears in
a file. The library dcg/basics provides string//1 matching an
arbitrary string and remainder//1 which matches the remainder of
the input without parsing.
____________________________________________________________________| |
| :- use_module(library(dcg/basics)). |
| |
| file_contains(File, Pattern) :- |
| phrase_from_file(match(Pattern), File). |
| |
| match(Pattern) --> |
| string(_), |
| string(Pattern), |
| remainder(_). |
| |
| match_count(File, Pattern, Count) :- |
||________aggregate_all(count,_file_contains(File,_Pattern),_Count)._||
This can be called as (note that the pattern must be a string (code
list)):
____________________________________________________________________| |
||?-_match_count('pure_input.pl',_`file`,_Count).___________________ ||
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e_, _+_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
As phrase_from_file/2, providing additional _O_p_t_i_o_n_s. _O_p_t_i_o_n_s are
passed to open/4.
pphhrraassee__ffrroomm__ssttrreeaamm((_:_G_r_a_m_m_a_r_, _+_S_t_r_e_a_m))
Run Grammer against the character codes on _S_t_r_e_a_m. _S_t_r_e_a_m must be
buffered.
ssyynnttaaxx__eerrrroorr((_+_E_r_r_o_r)) //
Throw the syntax error _E_r_r_o_r at the current location of the input.
This predicate is designed to be called from the handler of
phrase_from_file/3.
tthhrroowwss error(syntax_error(Error), Location)
llaazzyy__lliisstt__llooccaattiioonn((_-_L_o_c_a_t_i_o_n)) // _[_d_e_t_]
Determine current (error) location in a lazy list. True when
_L_o_c_a_t_i_o_n is an (error) location term that represents the current
location in the DCG list.
___________________________________________________________Arguments_
_L_o_c_a_t_i_o_n is a term file(Name, Line, LinePos, CharNo)
or stream(Stream, Line, LinePos, CharNo) if no
file is associated to the stream RestLazyList.
Finally, if the Lazy list is fully materialized
(ends in []), _L_o_c_a_t_i_o_n is unified with
end_of_file-CharCount.
SSeeee aallssoo lazy_list_character_count//1 only provides the
character count.
llaazzyy__lliisstt__cchhaarraacctteerr__ccoouunntt((_-_C_h_a_r_C_o_u_n_t)) //
True when _C_h_a_r_C_o_u_n_t is the current character count in the Lazy
list. The character count is computed by finding the distance to
the next frozen tail of the lazy list. _C_h_a_r_C_o_u_n_t is one of:
o An integer
o A term end_of_file-Count
SSeeee aallssoo lazy_list_location//1 provides full details of
the location for error reporting.
ssttrreeaamm__ttoo__llaazzyy__lliisstt((_+_S_t_r_e_a_m_, _-_L_i_s_t)) _[_d_e_t_]
Create a lazy list representing the character codes in _S_t_r_e_a_m.
_L_i_s_t is a partial list ending in an attributed variable. Unifying
this variable reads the next block of data. The block is stored
with the attribute value such that there is no need to re-read it.
CCoommppaattiibbiilliittyy Unlike the previous version of this predi-
cate this version does not require a repositionable
stream. It does require a buffer size of at least
the maximum number of bytes of a multi-byte sequence
(6).
1133..2255 lliibbrraarryy((pprreeddiiccaattee__ooppttiioonnss)):: DDeeccllaarree ooppttiioonn--pprroocceessssiinngg ooff pprreeddii--
ccaatteess
_D_i_s_c_u_s_s_i_o_n_s _w_i_t_h _J_e_f_f _S_c_h_u_l_t_z _h_e_l_p_e_d _s_h_a_p_i_n_g _t_h_i_s _l_i_b_r_a_r_y
1133..2255..11 TThhee ssttrreennggtthh aanndd wweeaakknneessss ooff pprreeddiiccaattee ooppttiioonnss
Many ISO predicates accept options, e.g., open/4, write_term/3.
Options offer an attractive alternative to proliferation into many
predicates and using high-arity predicates. Properly defined and used,
they also form a mechanism for extending the API of both system and
application predicates without breaking portability. I.e., previously
fixed behaviour can be replaced by dynamic behaviour controlled by an
option where the default is the previously defined fixed behaviour.
The alternative to using options is to add an additional argument
and maintain the previous definition. While a series of predicates
with increasing arity is adequate for a small number of additional
parameters, the untyped positional argument handling of Prolog quickly
makes this unmanageable.
The ISO standard uses the extensibility offered by options by allowing
implementations to extend the set of accepted options. While options
form a perfect solution to maintain backward portability in a linear
development model, it is not well equipped to deal with concurrent
branches because
1. There is no API to find which options are supported in a particular
implementation.
2. While the portability problem caused by a missing predicate in
Prolog _A can easily be solved by implementing this predicate, it is
much harder to add processing of an additional option to an already
existing predicate.
Different Prolog implementations can be seen as concurrent development
branches of the Prolog language. Different sets of supported options
pose a serious portability issue. Using an option _O that establishes
the desired behaviour on system _A leads (on most systems) to an error
or system _B. Porting may require several actions:
o Drop _O (if the option is not vital, such as the layout options to
write_term/3)
o Replace _O by _O_2 (i.e., a differently named option doing the same)
o Something else (cannot be ported; requires a totally different
approach, etc.)
Predicates that process options are particularly a problem when writing
a compatibility layer to run programs developed for System _A on System
_B because complete emulation is often hard, may cause a serious
slowdown and is often not needed because the application-to-be-ported
only uses options that are shared by all target Prolog implementations.
Unfortunately, the consequences of a partial emulation cannot be
assessed by tools.
1133..2255..22 OOppttiioonnss aass aarrgguummeennttss oorr eennvviirroonnmmeenntt??
We distinguish two views on options. One is to see them as additional
parameters that require strict existence, type and domain-checking and
the other is to consider them `locally scoped environment variables'.
Most systems adopt the first option. SWI-Prolog adopts the second:
it silently ignores options that are not supported but does type and
domain checking of option-values. The `environment' view is commonly
used in applications to create predicates supporting more options using
the skeleton below. This way of programming requires that _p_r_e_d_1 and
_p_r_e_d_2 do not interpret the same option differently. In cases where
this is not true, the options must be distributed by _s_o_m_e___p_r_e_d. We
have been using this programming style for many years and in practice
it turns out that the need for active distribution of options is
rare. I.e., options either have distinct names or multiple predicates
implement the same option but this has the desired effect. An example
of the latter is the encoding option, which typically needs to be
applied consistently.
________________________________________________________________________| |
|some_pred(..., Options) :- |
| pred1(..., Options), |
||_____pred2(...,_Options)._____________________________________________ ||
As stated before, options provide a readable alternative to high-arity
predicates and offer a robust mechanism to evolve the API, but at the
cost of some runtime overhead and weaker consistency checking, both
at compiletime and runtime. From our experience, the `environment'
approach is productive, but the consequence is that mistyped options
are silently ignored. The option infrastructure described in this
section tries to remedy these problems.
1133..2255..33 IImmpprroovviinngg oonn tthhee ccuurrrreenntt ssiittuuaattiioonn
Whether we see options as arguments or locally scoped environment
variables, the most obvious way to improve on the current situation is
to provide reflective support for options: discover that an argument
is an option-list and find what options are supported. Reflective
access to options can be used by the compiler and development
environment as well as by the runtime system to warn or throw errors.
1133..2255..33..11 OOppttiioonnss aass ttyyppeess
An obvious approach to deal with options is to define the different
possible option values as a type and type the argument that processes
the option as list(<option_type>), as illustrated below. Considering
options as types fully covers the case where we consider options as
additional parameters.
________________________________________________________________________| |
|:- type open_option ---> type(stream_type) | |
| alias(atom) | ... . |
|:-|pred_open(source_sink,_open_mode,_stream,_list(open_option))._______ | |
There are three reasons for considering a different approach:
o There is no consensus about types in the Prolog world, neither
about what types should look like, nor whether or not they are
desirable. It is not likely that this debate will be resolved
shortly.
o Considering options as types does not support the `environment'
view, which we consider the most productive.
o Even when using types, we need reflective access to what options
are provided in order to be able to write compile or runtime
conditional code.
1133..2255..33..22 RReefflleeccttiivvee aacccceessss ttoo ooppttiioonnss
From the above, we conclude that we require reflective access to
find out whether an option is supported and valid for a particular
predicate. Possible option values must be described by types. Due to
lack of a type system, we use library(error) to describe allowed option
values. Predicate options are declared using predicate_options/3:
pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Declare that the predicate _P_I processes options on _A_r_g. _O_p_t_i_o_n_s is
a list of options processed. Each element is one of:
o Option(ModeAndType) _P_I processes Option. The option-value
must comply to ModeAndType. Mode is one of + or - and Type is
a type as accepted by must_be/2.
o pass_to(:_P_I,_A_r_g) The option-list is passed to the indicated
predicate.
Below is an example that processes the option header(boolean) and
passes all options to open/4:
____________________________________________________________________| |
| :- predicate_options(write_xml_file/3, 3, |
| [ header(boolean), |
| pass_to(open/4, 4) |
| ]). |
| |
| write_xml_file(File, XMLTerm, Options) :- |
| open(File, write, Out, Options), |
| ( option(header(true), Options, true) |
| -> write_xml_header(Out) |
| ; true |
| ), |
||____...___________________________________________________________ ||
This predicate may only be used as a _d_i_r_e_c_t_i_v_e and is processed by
expand_term/2. Option processing can be specified at runtime using
assert_predicate_options/3, which is intended to support program
analysis.
aasssseerrtt__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n_s_, _?_N_e_w)) _[_s_e_m_i_d_e_t_]
As predicate_options(:_P_I, +_A_r_g, +_O_p_t_i_o_n_s). _N_e_w is a boolean
indicating whether the declarations have changed. If _N_e_w is
provided and false, the predicate becomes semidet and fails without
modifications if modifications are required.
The predicates below realise the support for compile and runtime
checking for supported options.
ccuurrrreenntt__pprreeddiiccaattee__ooppttiioonn((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n)) _[_n_o_n_d_e_t_]
True when _A_r_g of _P_I processes _O_p_t_i_o_n. For example, the following
is true:
____________________________________________________________________| |
| ?- current_predicate_option(open/4, 4, type(text)). |
||true._____________________________________________________________ ||
This predicate is intended to support conditional compilation using
if/1 ... endif/0. The predicate current_predicate_options/3 can
be used to access the full capabilities of a predicate.
cchheecckk__pprreeddiiccaattee__ooppttiioonn((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n)) _[_d_e_t_]
Verify predicate options at runtime. Similar to
current_predicate_option/3, but intended to support runtime
checking.
EErrrroorrss
- existence_error(option, OptionName) if the option
is not supported by _P_I.
- type_error(Type, Value) if the option is supported
but the value does not match the option type. See
must_be/2.
The predicates below can be used in a development environment to inform
the user about supported options. PceEmacs uses this for colouring
option names and values.
ccuurrrreenntt__ooppttiioonn__aarrgg((_:_P_I_, _?_A_r_g)) _[_n_o_n_d_e_t_]
True when _A_r_g of _P_I processes predicate options. Which options are
processed can be accessed using current_predicate_option/3.
ccuurrrreenntt__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
True when _O_p_t_i_o_n_s is the current active option declaration for _P_I
on _A_r_g. See predicate_options/3for the argument descriptions. If
_P_I is ground and refers to an undefined predicate, the autoloader
is used to obtain a definition of the predicate.
The library can execute a complete check of your program using
check_predicate_options/0:
cchheecckk__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Analyse loaded program for erroneous options. This predicate
decompiles the current program and searches for calls to predicates
that process options. For each option list, it validates whether
the provided options are supported and validates the argument
type. This predicate performs partial dataflow analysis to track
option-lists inside a clause.
SSeeee aallssoo derive_predicate_options/0 can be used to derive
declarations for predicates that pass options.
This predicate should normally be called before
check_predicate_options/0.
The library offers predicates that may be used to create declarations
for your application. These predicates are designed to cooperate with
the module system.
ddeerriivvee__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Derive new predicate option declarations. This predicate analyses
the loaded program to find clauses that process options using one
of the predicates from library(option) or passes options to other
predicates that are known to process options. The process is
repeated until no new declarations are retrieved.
SSeeee aallssoo autoload/0 may be used to complete the loaded
program.
rreettrraaccttaallll__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Remove all dynamically (derived) predicate options.
ddeerriivveedd__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
Derive option arguments using static analysis. True when _O_p_t_i_o_n_s
is the current _d_e_r_i_v_e_d active option declaration for _P_I on _A_r_g.
ddeerriivveedd__pprreeddiiccaattee__ooppttiioonnss((_+_M_o_d_u_l_e)) _[_d_e_t_]
Derive predicate option declarations for a module. The derived
options are printed to the current_output stream.
1133..2266 lliibbrraarryy((pprroolloogg__ppaacckk)):: AA ppaacckkaaggee mmaannaaggeerr ffoorr PPrroolloogg
SSeeee aallssoo Installed packages can be inspected using ?-
doc_browser.
TToo bbee ddoonnee
- Version logic
- Find and resolve conflicts
- Upgrade git packages
- Validate git packages
- Test packages: run tests from directory `test'.
The library(prolog_pack) provides the SWI-Prolog package manager. This
library lets you inspect installed packages, install packages, remove
packages, etc. It is complemented by the built-in attach_packs/0 that
makes installed packages available as libaries.
ppaacckk__lliisstt__iinnssttaalllleedd _[_d_e_t_]
List currently installed packages. Unlike pack_list/1, only
locally installed packages are displayed and no connection is made
to the internet.
SSeeee aallssoo Use pack_list/1 to find packages.
ppaacckk__iinnffoo((_+_P_a_c_k))
Print more detailed information about _P_a_c_k.
ppaacckk__sseeaarrcchh((_+_Q_u_e_r_y)) _[_d_e_t_]
ppaacckk__lliisstt((_+_Q_u_e_r_y)) _[_d_e_t_]
_Q_u_e_r_y package server and installed packages and display results.
_Q_u_e_r_y is matches case-insensitively against the name and title of
known and installed packages. For each matching package, a single
line is displayed that provides:
o Installation status
{{ pp: package, not installed
{{ ii: installed package; up-to-date with public version
{{ UU: installed package; can be upgraded
{{ AA: installed package; newer than publically available
{{ ll: installed package; not on server
o Name@Version
o Name@Version(ServerVersion)
o Title
Hint: ?- pack_list(''). lists all packages.
The predicates pack_list/1 and pack_search/1 are synonyms. Both
contact the package server at http://www.swi-prolog.org to find
available packages.
SSeeee aallssoo pack_list_installed/0 to list installed packages
without contacting the server.
ppaacckk__iinnssttaallll((_+_S_p_e_c_:_a_t_o_m)) _[_d_e_t_]
Install a package. _S_p_e_c is one of
o Archive file name
o HTTP URL of an archive file name. This URL may contain a star
(*) for the version. In this case pack_install asks for the
deirectory content and selects the latest version.
o GIT URL (not well supported yet)
o A local directory name given as file:// URL.
o A package name. This queries the package repository at
http://www.swi-prolog.org
After resolving the type of package, pack_install/2 is used to do
the actual installation.
ppaacckk__iinnssttaallll((_+_N_a_m_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Install package _N_a_m_e. Processes the options below. Default
options as would be used by pack_install/1are used to complete the
provided _O_p_t_i_o_n_s.
uurrll((_+_U_R_L))
Source for downloading the package
ppaacckkaaggee__ddiirreeccttoorryy((_+_D_i_r))
Directory into which to install the package
iinntteerraaccttiivvee((_+_B_o_o_l_e_a_n))
Use default answer without asking the user if there is a
default action.
ssiilleenntt((_+_B_o_o_l_e_a_n))
If true (default false), suppress informational progress
messages.
uuppggrraaddee((_+_B_o_o_l_e_a_n))
If true (default false), upgrade package if it is already
installed.
ggiitt((_+_B_o_o_l_e_a_n))
If true (default false unless _U_R_L ends with =.git=), assume
the URL is a GIT repository.
Non-interactive installation can be established using the option
interactive(false). It is adviced to install from a particular
_t_r_u_s_t_e_d URL instead of the plain pack name for unattented
operation.
ppaacckk__uurrll__ffiillee((_+_U_R_L_, _-_F_i_l_e)) _[_d_e_t_]
True if _F_i_l_e is a unique id for the referenced pack and version.
Normally, that is simply the base name, but GitHub archives destroy
this picture. Needed by the pack manager.
ppaacckk__rreebbuuiilldd((_+_P_a_c_k)) _[_d_e_t_]
Rebuilt possible foreign components of _P_a_c_k.
ppaacckk__rreebbuuiilldd _[_d_e_t_]
Rebuild foreign components of all packages.
eennvviirroonnmmeenntt((_-_N_a_m_e_, _-_V_a_l_u_e)) _[_n_o_n_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to define the environment for building packs. This
Multifile hook extends the process environment for building foreign
extensions. A value provided by this hook overrules defaults
provided by def_environment/2. In addition to changing the
environment, this may be used to pass additional values to the
environment, as in:
____________________________________________________________________| |
| prolog_pack:environment('USER', User) :- |
||____getenv('USER',_User)._________________________________________ ||
___________________________________________________________Arguments_
_N_a_m_e is an atom denoting a valid variable name
_V_a_l_u_e is either an atom or number representing the
value of the variable.
ppaacckk__uuppggrraaddee((_+_P_a_c_k)) _[_s_e_m_i_d_e_t_]
Try to upgrade the package _P_a_c_k.
TToo bbee ddoonnee Update dependencies when updating a pack from
git?
ppaacckk__rreemmoovvee((_+_N_a_m_e)) _[_d_e_t_]
Remove the indicated package.
ppaacckk__pprrooppeerrttyy((_?_P_a_c_k_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True when _P_r_o_p_e_r_t_y is a property of an installed _P_a_c_k. This
interface is intended for programs that wish to interact with the
package manager. Defined properties are:
ddiirreeccttoorryy((_D_i_r_e_c_t_o_r_y))
_D_i_r_e_c_t_o_r_y into which the package is installed
vveerrssiioonn((_V_e_r_s_i_o_n))
Installed version
ttiittllee((_T_i_t_l_e))
Full title of the package
aauutthhoorr((_A_u_t_h_o_r))
Registered author
ddoowwnnllooaadd((_U_R_L))
Official download _U_R_L
rreeaaddmmee((_F_i_l_e))
Package README file (if present)
ttooddoo((_F_i_l_e))
Package TODO file (if present)
1133..2277 lliibbrraarryy((pprroolloogg__xxrreeff)):: CCrroossss--rreeffeerreennccee ddaattaa ccoolllleeccttiioonn lliibbrraarryy
This library collects information on defined and used objects in Prolog
source files. Typically these are predicates, but we expect the
library to deal with other types of objects in the future. The
library is a building block for tools doing dependency tracking in
applications. Dependency tracking is useful to reveal the structure of
an unknown program or detect missing components at compile time, but
also for program transformation or minimising a program saved state by
only saving the reachable objects.
This section gives a partial description of the library API, providing
some insight in how you can use it for analysing your program. The
library should be further modularized, moving its knowledge about, for
example, XPCE into a different file and allowing for adding knowledge
about other libraries such as Logtalk. PPlleeaassee ddoo nnoott ccoonnssiiddeerr tthhiiss
iinntteerrffaaccee rroocckk--ssoolliidd..
The library is exploited by two graphical tools in the SWI-Prolog
environment: the XPCE front-end started by gxref/0 and described in
section ????, and PceEmacs (section ????), which exploits this library for
its syntax colouring.
For all predicates described below, _S_o_u_r_c_e is the source that is
processed. This is normally a filename in any notation acceptable
to the file loading predicates (see load_files/2). Using the hooks
defined in section ???? it can be anything else that can be translated
into a Prolog stream holding Prolog source text. _C_a_l_l_a_b_l_e is a
callable term (see callable/1). Callables do not carry a module
qualifier unless the referred predicate is not in the module defined
_S_o_u_r_c_e.
xxrreeff__ssoouurrccee((_+_S_o_u_r_c_e))
Gather information on _S_o_u_r_c_e. If _S_o_u_r_c_e has already been processed
and is still up-to-date according to the file timestamp, no action
is taken. This predicate must be called on a file before
information can be gathered.
xxrreeff__ccuurrrreenntt__ssoouurrccee((_?_S_o_u_r_c_e))
_S_o_u_r_c_e has been processed.
xxrreeff__cclleeaann((_+_S_o_u_r_c_e))
Remove the information gathered for _S_o_u_r_c_e
xxrreeff__ddeeffiinneedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _-_H_o_w))
_C_a_l_l_a_b_l_e is defined in _S_o_u_r_c_e. _H_o_w is one of
dynamic(_L_i_n_e) Declared dynamic at _L_i_n_e
thread_local(_L_i_n_e) Declared thread local at _L_i_n_e
multifile(_L_i_n_e) Declared multifile at _L_i_n_e
local(_L_i_n_e) First clause at _L_i_n_e
foreign(_L_i_n_e) Foreign library loaded at _L_i_n_e
constraint(_L_i_n_e) CHR Constraint at _L_i_n_e
imported(_F_i_l_e) Imported from _F_i_l_e
xxrreeff__ccaalllleedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _?_B_y))
_C_a_l_l_a_b_l_e is called in _S_o_u_r_c_e by _B_y.
xxrreeff__eexxppoorrtteedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e))
_C_a_l_l_a_b_l_e is public (exported from the module).
xxrreeff__mmoodduullee((_?_S_o_u_r_c_e_, _?_M_o_d_u_l_e))
_S_o_u_r_c_e is a module file defining the given module.
xxrreeff__bbuuiilltt__iinn((_?_C_a_l_l_a_b_l_e))
True if _C_a_l_l_a_b_l_e is a built-in predicate. Currently this is
assumed for all predicates defined in the system module and having
the property built_in. Built-in predicates are not registered as
`called'.
1133..2277..11 EExxtteennddiinngg tthhee lliibbrraarryy
The library provides hooks for extending the rules it uses for finding
predicates called by some programming construct.
pprroolloogg::ccaalllleedd__bbyy((_+_G_o_a_l_, _-_C_a_l_l_e_d))
_G_o_a_l is a non-var subgoal appearing in the called object (typically
a clause body). If it succeeds it must return a list of goals
called by _G_o_a_l. As a special construct, if a term Callable +N
is returned, N variable arguments are added to _C_a_l_l_a_b_l_e before
further processing. For simple meta-calls a single fact suffices.
Complex rules as used in the html_write library provided by the
HTTP package examine the arguments and create a list of called
objects.
The current system cannot deal with the same name/arity in
different modules that behave differently with respect to called
arguments.
1133..2288 lliibbrraarryy((qquuaassii__qquuoottaattiioonnss)):: DDeeffiinnee QQuuaassii QQuuoottaattiioonn ssyynnttaaxx
aauutthhoorr Jan Wielemaker. Introduction of Quasi Quotation was
suggested by Michael Hendricks.
SSeeee aallssoo http://www.cs.tufts.edu/comp/150FP/archive/geoff-
mainland/quasiquoting.pdfWhy it's nice to be quoted:
quasiquoting for haskell
Inspired by http://www.haskell.org/haskellwiki/QuasiquotationHaskell,
SWI-Prolog support _q_u_a_s_i _q_u_o_t_a_t_i_o_n. Quasi quotation allows for
embedding (long) strings using the syntax of an external language
(e.g., HTML, SQL) in Prolog text and syntax-aware embedding of Prolog
variables in this syntax. At the same time, quasi quotation provides
an alternative to represent long strings and atoms in Prolog.
The basic form of a quasi quotation is defined below. Here, _S_y_n_t_a_x
is an arbitrary Prolog term that must parse into a _c_a_l_l_a_b_l_e (atom or
compound) term and Quotation is an arbitrary sequence of characters,
not including the sequence |}. If this sequence needs to be embedded,
it must be escaped according to the rules of the target language or the
`quoter' must provide an escaping mechanism.
________________________________________________________________________| |
|{|Syntax||Quotation|}|_________________________________________________ | |
While reading a Prolog term, and if the Prolog flag quasi_quotes is
set to true (which is the case if this library is loaded), the parser
collects quasi quotations. After reading the final full stop, the
parser makes the call below. Here, _S_y_n_t_a_x_N_a_m_e is the functor name
of _S_y_n_t_a_x above and _S_y_n_t_a_x_A_r_g_s is a list holding the arguments, i.e.,
Syntax =.. [SyntaxName|SyntaxArgs]. Splitting the syntax into its name
and arguments is done to make the quasi quotation parser a predicate
with a consistent arity 4, regardless of the number of additional
arguments.
________________________________________________________________________| |
|call(+SyntaxName,|+Content,_+SyntaxArgs,_+VariableNames,_-Result)______ | |
The arguments are defined as
o _S_y_n_t_a_x_N_a_m_e is the principal functor of the quasi quotation syntax.
This must be declared using quasi_quotation_syntax/1and there must
be a predicate SyntaxName/4.
o _C_o_n_t_e_n_t is an opaque term that carries the content of the quasi
quoted material and position information about the source code. It
is passed to with_quasi_quote_input/3.
o _S_y_n_t_a_x_A_r_g_s carries the additional arguments of the _S_y_n_t_a_x. These
are commonly used to make the parameter passing between the clause
and the quasi quotation explicit. For example:
____________________________________________________________________| |
| ..., |
| {|html(Name, Address)|| |
| <tr><td>Name<td>Address</tr> |
||_____|}___________________________________________________________ ||
o _V_a_r_i_a_b_l_e_N_a_m_e_s is the complete variable dictionary of the clause
as it is made available throug read_term/3 with the option
variable_names. It is a list of terms Name = Var.
o _R_e_s_u_l_t is a variable that must be unified to resulting term.
Typically, this term is structured Prolog tree that carries a
(partial) representation of the abstract syntax tree with embedded
variables that pass the Prolog parameters. This term is normally
either passed to a predicate that serializes the abstract syntax
tree, or a predicate that processes the result in Prolog. For
example, HTML is commonly embedded for writing HTML documents
(see library(http/html_write)). Examples of languages that may be
embedded for processing in Prolog are SPARQL, RuleML or regular
expressions.
The file library(http/html_quasiquotations) provides the, suprisingly
simple, quasi quotation parser for HTML.
wwiitthh__qquuaassii__qquuoottaattiioonn__iinnppuutt((_+_C_o_n_t_e_n_t_, _-_S_t_r_e_a_m_, _:_G_o_a_l)) _[_d_e_t_]
Process the quasi-quoted _C_o_n_t_e_n_t using _S_t_r_e_a_m parsed by _G_o_a_l.
_S_t_r_e_a_m is a temporary stream with the following properties:
o Its initial _p_o_s_i_t_i_o_n represents the position of the start of
the quoted material.
o It is a text stream, using utf8 _e_n_c_o_d_i_n_g.
o It allows for repositioning
o It will be closed after _G_o_a_l completes.
___________________________________________________________Arguments_
_G_o_a_l is executed as once(Goal). _G_o_a_l must succeed.
Failure or exceptions from _G_o_a_l are interpreted
as syntax errors.
SSeeee aallssoo phrase_from_quasi_quotation/2 can be used to
process a quotation using a grammar.
pphhrraassee__ffrroomm__qquuaassii__qquuoottaattiioonn((_:_G_r_a_m_m_a_r_, _+_C_o_n_t_e_n_t)) _[_d_e_t_]
Process the quasi quotation using the DCG _G_r_a_m_m_a_r. Failure of the
grammar is interpreted as a syntax error.
SSeeee aallssoo with_quasi_quotation_input/3 for processing quo-
tations from stream.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx((_:_S_y_n_t_a_x_N_a_m_e)) _[_d_e_t_]
Declare the predicate _S_y_n_t_a_x_N_a_m_e/4 to implement the the quasi quote
syntax _S_y_n_t_a_x_N_a_m_e. Normally used as a directive.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx__eerrrroorr((_+_E_r_r_o_r))
Report syntax_error(Error) using the current location in the quasi
quoted input parser.
tthhrroowwss error(syntax_error(Error), Position)
1133..2299 lliibbrraarryy((rraannddoomm)):: RRaannddoomm nnuummbbeerrss
aauutthhoorr R.A. O'Keefe, V.S. Costa, L. Damas, Jan Wielemaker
SSeeee aallssoo Built-in function random/1: A is random(10)
This library is derived from the DEC10 library random. Later,
the core random generator was moved to C. The current version uses
the SWI-Prolog arithmetic functions to realise this library. These
functions are based on the GMP library.
rraannddoomm((_-_R_:_f_l_o_a_t)) _[_d_e_t_]
Binds _R to a new random float in the _o_p_e_n interval (0.0,1.0).
SSeeee aallssoo
- setrand/1, getrand/1 may be used to fetch/set the
state.
- In SWI-Prolog, random/1 is implemented by the
function random_float/0.
rraannddoomm__bbeettwweeeenn((_+_L_:_i_n_t_, _+_U_:_i_n_t_, _-_R_:_i_n_t)) _[_s_e_m_i_d_e_t_]
Binds _R to a random integer in [_L,_U] (i.e., including both _L and
_U). Fails silently if _U<_L.
rraannddoomm((_+_L_:_i_n_t_, _+_U_:_i_n_t_, _-_R_:_i_n_t)) _[_d_e_t_]
rraannddoomm((_+_L_:_f_l_o_a_t_, _+_U_:_f_l_o_a_t_, _-_R_:_f_l_o_a_t)) _[_d_e_t_]
Generate a random integer or float in a range. If _L and _U are both
integers, _R is a random integer in the half open interval [_L,_U). If
_L and _U are both floats, _R is a float in the open interval (_L,_U).
ddeepprreeccaatteedd Please use random/1 for generating a random
float and random_between/3 for generating a random
integer. Note that random_between/3 includes the
upper bound, while this predicate excludes it.
sseettrraanndd((_+_S_t_a_t_e)) _[_d_e_t_]
ggeettrraanndd((_-_S_t_a_t_e)) _[_d_e_t_]
Query/set the state of the random generator. This is intended for
restarting the generator at a known state only. The predicate
setrand/1 accepts an opaque term returned by getrand/1. This term
may be asserted, written and read. The application may not make
other assumptions about this term.
For compatibility reasons with older versions of this library,
setrand/1 also accepts a term rand(A,B,C), where A, B and C are
integers in the range 1..30,000. This argument is used to seed the
random generator. Deprecated.
EErrrroorrss existence_error(random_state, _) is raised if the
underlying infrastructure cannot fetch the random
state. This is currently the case if SWI-Prolog is
not compiled with the GMP library.
SSeeee aallssoo set_random/1 and random_property/1 provide the
SWI-Prolog native implementation.
mmaayybbee _[_s_e_m_i_d_e_t_]
Succeed/fail with equal probability (variant of maybe/1).
mmaayybbee((_+_P)) _[_s_e_m_i_d_e_t_]
Succeed with probability _P, fail with probability 1-_P
mmaayybbee((_+_K_, _+_N)) _[_s_e_m_i_d_e_t_]
Succeed with probability _K/_N (variant of maybe/1)
rraannddoomm__ppeerrmm22((_?_A_, _?_B_, _?_X_, _?_Y)) _[_s_e_m_i_d_e_t_]
Does _X=_A,_Y=_B or _X=_B,_Y=_A with equal probability.
rraannddoomm__mmeemmbbeerr((_-_X_, _+_L_i_s_t_:_l_i_s_t)) _[_s_e_m_i_d_e_t_]
_X is a random member of _L_i_s_t. Equivalent to random_between(1,
|_L_i_s_t|), followed by nth1/3. Fails of _L_i_s_t is the empty list.
CCoommppaattiibbiilliittyy Quintus and SICStus libraries.
rraannddoomm__sseelleecctt((_-_X_, _+_L_i_s_t_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
rraannddoomm__sseelleecctt((_+_X_, _-_L_i_s_t_, _+_R_e_s_t)) _[_d_e_t_]
Randomly select or insert an element. Either _L_i_s_t or _R_e_s_t must be
a list. Fails if _L_i_s_t is the empty list.
CCoommppaattiibbiilliittyy Quintus and SICStus libraries.
rraannddsseett((_+_K_:_i_n_t_, _+_N_:_i_n_t_, _-_S_:_l_i_s_t_(_i_n_t_))) _[_d_e_t_]
_S is a sorted list of _K unique random integers in the range 1.._N.
Implemented by enumerating 1.._N and deciding whether or not the
number should be part of the set. For example:
____________________________________________________________________| |
| ?- randset(5, 5, S). |
| S = [1, 2, 3, 4, 5]. (always) |
| ?- randset(5, 20, S). |
||S_=_[2,_7,_10,_19,_20].___________________________________________ ||
SSeeee aallssoo randseq/3.
bbuugg Slow if _N is large and _K is small.
rraannddsseeqq((_+_K_:_i_n_t_, _+_N_:_i_n_t_, _-_L_i_s_t_:_l_i_s_t_(_i_n_t_))) _[_d_e_t_]
S is a list of _K unique random integers in the range 1.._N. The
order is random. Works as if defined by the following code.
____________________________________________________________________| |
| randseq(K, N, List) :- |
| randset(K, N, Set), |
||______random_permutation(Set,_List).______________________________ ||
SSeeee aallssoo randset/3.
rraannddoomm__ppeerrmmuuttaattiioonn((_+_L_i_s_t_, _-_P_e_r_m_u_t_a_t_i_o_n)) _[_d_e_t_]
rraannddoomm__ppeerrmmuuttaattiioonn((_-_L_i_s_t_, _+_P_e_r_m_u_t_a_t_i_o_n)) _[_d_e_t_]
_P_e_r_m_u_t_a_t_i_o_n is a random permutation of _L_i_s_t. This is intended to
process the elements of _L_i_s_t in random order. The predicate is
symmetric.
EErrrroorrss instantiation_error, type_error(list, _).
1133..3300 lliibbrraarryy((rreeaadduuttiill)):: RReeaaddiinngg lliinneess,, ssttrreeaammss aanndd ffiilleess
This library contains primitives to read lines, files, multiple terms,
etc. The package clib provides a shared object (DLL) named readutil.
If the library can locate this shared object it will use the foreign
implementation for reading character codes. Otherwise it will use a
Prolog implementation. Distributed applications should make sure to
deliver the readutil shared object if performance of these predicates
is critical.
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read the next line of input from _S_t_r_e_a_m and unify the result
with _C_o_d_e_s _a_f_t_e_r the line has been read. A line is ended by a
newline character or end-of-file. Unlike read_line_to_codes/3, this
predicate removes a trailing newline character.
On end-of-file the atom end_of_file is returned. See also
at_end_of_stream/[0,1].
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version to read an input line to a list of
character codes. Reading stops at the newline or end-of-file
character, but unlike read_line_to_codes/2, the newline is retained
in the output. This predicate is especially useful for reading a
block of lines up to some delimiter. The following example reads
an HTTP header ended by a blank line:
____________________________________________________________________| |
| read_header_data(Stream, Header) :- |
| read_line_to_codes(Stream, Header, Tail), |
| read_header_data(Header, Stream, Tail). |
| |
| read_header_data("\r\n", _, _) :- !. |
| read_header_data("\n", _, _) :- !. |
| read_header_data("", _, _) :- !. |
| read_header_data(_, Stream, Tail) :- |
| read_line_to_codes(Stream, Tail, NewTail), |
||________read_header_data(Tail,_Stream,_NewTail).__________________ ||
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read all input until end-of-file and unify the result to _C_o_d_e_s.
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version of read_stream_to_codes/2.
rreeaadd__ffiillee__ttoo__ccooddeess((_+_S_p_e_c_, _-_C_o_d_e_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of character codes. _S_p_e_c is a file
specification for absolute_file_name/3. _C_o_d_e_s is the resulting
code list. _O_p_t_i_o_n_s is a list of options for absolute_file_name/3
and open/4. In addition, the option tail(_T_a_i_l) is defined, forming
a difference-list.
rreeaadd__ffiillee__ttoo__tteerrmmss((_+_S_p_e_c_, _-_T_e_r_m_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of Prolog terms (see read/1). _S_p_e_c
is a file specification for absolute_file_name/3. _T_e_r_m_s is the
resulting list of Prolog terms. _O_p_t_i_o_n_s is a list of options
for absolute_file_name/3 and open/4. In addition, the option
tail(_T_a_i_l) is defined, forming a difference-list.
1133..3311 lliibbrraarryy((rreeccoorrdd)):: AAcccceessss nnaammeedd ffiieellddss iinn aa tteerrmm
The library record provides named access to fields in a record
represented as a compound term such as point(X, Y). The Prolog world
knows various approaches to solve this problem, unfortunately with no
consensus. The approach taken by this library is proposed by Richard
O'Keefe on the SWI-Prolog mailinglist.
The approach automates a technique commonly described in Prolog
text-books, where access and modification predicates are defined for
the record type. Such predicates are subject to normal import/export
as well as analysis by cross-referencers. Given the simple nature of
the access predicates, an optimizing compiler can easily inline them
for optimal preformance.
A record is defined using the directive record/1. We introduce the
library with a short example:
________________________________________________________________________| |
|:- record point(x:integer=0, y:integer=0). |
| |
| ..., |
| default_point(Point), |
| point_x(Point, X), |
| set_x_of_point(10, Point, Point1), |
| |
||_______make_point([y(20)],_YPoint),___________________________________ ||
The principal functor and arity of the term used defines the name and
arity of the compound used as records. Each argument is described
using a term of the format below.
<_n_a_m_e>[:<_t_y_p_e>][=<_d_e_f_a_u_l_t>]
In this definition, <_n_a_m_e> is an atom defining the name of the argument,
<_t_y_p_e> is an optional type specification as defined by must_be/2 from
library error, and <_d_e_f_a_u_l_t> is the default initial value. The <_t_y_p_e>
defaults to any. If no default value is specified the default is an
unbound variable.
A record declaration creates a set of predicates through _t_e_r_m_-
_e_x_p_a_n_s_i_o_n. We describe these predicates below. In this description,
<_c_o_n_s_t_r_u_c_t_o_r> refers to the name of the record (`point' in the example
above) and <_n_a_m_e> to the name of an argument (field).
o _d_e_f_a_u_l_t__<_c_o_n_s_t_r_u_c_t_o_r>_(_-_R_e_c_o_r_d_)
Create a new record where all fields have their default values.
This is the same as make_<_c_o_n_s_t_r_u_c_t_o_r>([], Record).
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_)
Create a new record where specified fields have the specified
values and remaining fields have their default value. Each
field is specified as a term <_n_a_m_e>(<_v_a_l_u_e>). See example in the
introduction.
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Same as make_<_c_o_n_s_t_r_u_c_t_o_r>/2, but named fields that do not appear in
_R_e_c_o_r_d are returned in _R_e_s_t_F_i_e_l_d_s. This predicate is motivated by
option-list processing. See library option.
o <_c_o_n_s_t_r_u_c_t_o_r>_<_n_a_m_e>_(_R_e_c_o_r_d_, _V_a_l_u_e_)
Unify _V_a_l_u_e with argument in _R_e_c_o_r_d named <_n_a_m_e>.
o <_c_o_n_s_t_r_u_c_t_o_r>__d_a_t_a_(_?_N_a_m_e_, _+_R_e_c_o_r_d_, _?_V_a_l_u_e_)
True when _V_a_l_u_e is the value for the field named _N_a_m_e in _R_e_c_o_r_d.
This predicate does not perform type-checking.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _+_O_l_d_R_e_c_o_r_d_, _-_N_e_w_R_e_c_o_r_d_)
Replace the value for <_n_a_m_e> in _O_l_d_R_e_c_o_r_d by _V_a_l_u_e and unify the
result with _N_e_w_R_e_c_o_r_d.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
Destructively replace the argument <_n_a_m_e> in _R_e_c_o_r_d by _V_a_l_u_e based
on setarg/3. Use with care.
o _n_b___s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
As above, but using non-backtrackable assignment based on
nb_setarg/3. Use with _e_x_t_r_e_m_e care.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set multiple fields using the same syntax as make_<_c_o_n_s_t_r_u_c_t_o_r>/2,
but starting with _R_e_c_o_r_d_0 rather than the default record.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Similar to set_<_c_o_n_s_t_r_u_c_t_o_r>_fields/4, but fields not defined by
<_c_o_n_s_t_r_u_c_t_o_r> are returned in _R_e_s_t_F_i_e_l_d_s.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_(_+_F_i_e_l_d_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set a single field specified as a term <_n_a_m_e>(<_v_a_l_u_e>).
rreeccoorrdd((_+_S_p_e_c))
The construct :- record Spec, ... is used to define access to
named fields in a compound. It is subject to term-expansion (see
expand_term/2) and cannot be called as a predicate. See section ????
for details.
1133..3322 lliibbrraarryy((rreeggiissttrryy)):: MMaanniippuullaattiinngg tthhee WWiinnddoowwss rreeggiissttrryy
The registry is only available on the MS-Windows version of SWI-Prolog.
It loads the foreign extension plregtry.dll, providing the predicates
described below. This library only makes the most common operations
on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please
consult the sources in pl/src/win32/foreign/plregtry.c for further
details.
In all these predicates, _P_a_t_h refers to a `/' separated path into
the registry. This is _n_o_t an atom containing `/'-characters as used
for filenames, but a term using the functor //2. Windows defines
the following roots for the registry: classes_root, current_user,
local_machine and users.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _-_V_a_l_u_e))
Get the principal (default) value associated to this key. Fails
silently if the key does not exist.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _-_V_a_l_u_e))
Get a named value associated to this key.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_V_a_l_u_e))
Set the principal (default) value of this key. Creates (a path to)
the key if it does not already exist.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _+_V_a_l_u_e))
Associate a named value to this key. Creates (a path to) the key
if it does not already exist.
rreeggiissttrryy__ddeelleettee__kkeeyy((_+_P_a_t_h))
Delete the indicated key.
sshheellll__rreeggiisstteerr__ffiillee__ttyyppee((_+_E_x_t_, _+_T_y_p_e_, _+_N_a_m_e_, _+_O_p_e_n_A_c_t_i_o_n))
Register a file-type. _E_x_t is the extension to associate. _T_y_p_e
is the type name, often something like prolog.type. _N_a_m_e is the
name visible in the Windows file-type browser. Finally, _O_p_e_n_A_c_t_i_o_n
defines the action to execute when a file with this extension is
opened in the Windows explorer.
sshheellll__rreeggiisstteerr__ddddee((_+_T_y_p_e_, _+_A_c_t_i_o_n_, _+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _+_C_o_m_m_a_n_d_, _+_I_f_N_o_t_R_u_n_n_i_n_g))
Associate DDE actions to a type. _T_y_p_e is the same type as used for
the 2nd argument of shell_register_file_type/4, _A_c_t_i_o_n is the action
to perform, _S_e_r_v_i_c_e and _T_o_p_i_c specify the DDE topic to address,
and _C_o_m_m_a_n_d is the command to execute on this topic. Finally,
_I_f_N_o_t_R_u_n_n_i_n_g defines the command to execute if the required DDE
server is not present.
sshheellll__rreeggiisstteerr__pprroolloogg((_+_E_x_t))
Default registration of SWI-Prolog, which is invoked as part of the
initialisation process on Windows systems. As the source also
includes the above predicates, it is given as an example:
____________________________________________________________________| |
| shell_register_prolog(Ext) :- |
| current_prolog_flag(argv, [Me|_]), |
| atomic_list_concat(['"', Me, '" "%1"'], OpenCommand), |
| shell_register_file_type( |
| Ext, 'prolog.type', 'Prolog Source', OpenCommand), |
| shell_register_dde( |
| 'prolog.type', consult, |
| prolog, control, 'consult(''%1'')', Me), |
| shell_register_dde( |
| 'prolog.type', edit, |
||____________prolog,_control,_'edit(''%1'')',_Me)._________________ ||
1133..3333 lliibbrraarryy((ssiimmpplleexx)):: SSoollvvee lliinneeaarr pprrooggrraammmmiinngg pprroobblleemmss
aauutthhoorr https://www.metalevel.atMarkus Triska
1133..3333..11 IInnttrroodduuccttiioonn
A lliinneeaarr pprrooggrraammmmiinngg pprroobblleemm or simply lliinneeaarr pprrooggrraamm (LP) consists of:
o a set of _l_i_n_e_a_r ccoonnssttrraaiinnttss
o a set of vvaarriiaabblleess
o a _l_i_n_e_a_r oobbjjeeccttiivvee ffuunnccttiioonn.
The goal is to assign values to the variables so as to _m_a_x_i_m_i_z_e (or
minimize) the value of the objective function while satisfying all
constraints.
Many optimization problems can be modeled in this way. As one basic
example, consider a knapsack with fixed capacity C, and a number of
items with sizes s(i) and values v(i). The goal is to put as many
items as possible in the knapsack (not exceeding its capacity) while
maximizing the sum of their values.
As another example, suppose you are given a set of _c_o_i_n_s with certain
values, and you are to find the minimum number of coins such that their
values sum up to a fixed amount. Instances of these problems are
solved below.
Solving an LP or integer linear program (ILP) with this library
typically comprises 4 stages:
1. an initial state is generated with gen_state/1
2. all relevant constraints are added with constraint/3
3. maximize/3 or minimize/3 are used to obtain a _s_o_l_v_e_d _s_t_a_t_e that
represents an optimum solution
4. variable_value/3 and objective/2 are used on the solved state to
obtain variable values and the objective function at the optimum.
The most frequently used predicates are thus:
ggeenn__ssttaattee((_-_S_t_a_t_e))
Generates an initial state corresponding to an empty linear
program.
ccoonnssttrraaiinntt((_+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Adds a linear or integrality constraint to the linear program
corresponding to state _S_0. A linear constraint is of the form
Left Op C, where _L_e_f_t is a list of Coefficient*Variable terms
(variables in the context of linear programs can be atoms or
compound terms) and _C is a non-negative numeric constant. The list
represents the sum of its elements. _O_p can be =, =< or >=. The
coefficient 1 can be omitted. An integrality constraint is of
the form integral(Variable) and constrains Variable to an integral
value.
mmaaxxiimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Maximizes the objective function, stated as a list of
Coefficient*Variable terms that represents the sum of its elements,
with respect to the linear program corresponding to state _S_0.
\arg{_S} is unified with an internal representation of the solved
instance.
mmiinniimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Analogous to maximize/3.
vvaarriiaabbllee__vvaalluuee((_+_S_t_a_t_e_, _+_V_a_r_i_a_b_l_e_, _-_V_a_l_u_e))
_V_a_l_u_e is unified with the value obtained for _V_a_r_i_a_b_l_e. _S_t_a_t_e must
correspond to a solved instance.
oobbjjeeccttiivvee((_+_S_t_a_t_e_, _-_O_b_j_e_c_t_i_v_e))
Unifies _O_b_j_e_c_t_i_v_e with the result of the objective function at the
obtained extremum. _S_t_a_t_e must correspond to a solved instance.
All numeric quantities are converted to rationals via rationalize/1,
and rational arithmetic is used throughout solving linear programs. In
the current implementation, all variables are implicitly constrained
to be _n_o_n_-_n_e_g_a_t_i_v_e. This may change in future versions, and
non-negativity constraints should therefore be stated explicitly.
1133..3333..22 DDeellaayyeedd ccoolluummnn ggeenneerraattiioonn
_D_e_l_a_y_e_d _c_o_l_u_m_n _g_e_n_e_r_a_t_i_o_n means that more constraint columns are added
to an existing LP. The following predicates are frequently used when
this method is applied:
ccoonnssttrraaiinntt((_+_N_a_m_e_, _+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Like constraint/3, and attaches the name _N_a_m_e (an atom or compound
term) to the new constraint.
sshhaaddooww__pprriiccee((_+_S_t_a_t_e_, _+_N_a_m_e_, _-_V_a_l_u_e))
Unifies _V_a_l_u_e with the shadow price corresponding to the linear
constraint whose name is _N_a_m_e. _S_t_a_t_e must correspond to a solved
instance.
ccoonnssttrraaiinntt__aadddd((_+_N_a_m_e_, _+_L_e_f_t_, _+_S_0_, _-_S))
_L_e_f_t is a list of Coefficient*Variable terms. The terms are added
to the left-hand side of the constraint named _N_a_m_e. _S is unified
with the resulting state.
An example application of _d_e_l_a_y_e_d _c_o_l_u_m_n _g_e_n_e_r_a_t_i_o_n
to solve a _b_i_n _p_a_c_k_i_n_g task is available from:
https://www.metalevel.at/various/colgen/mmeettaalleevveell..aatt//vvaarriioouuss//ccoollggeenn//
1133..3333..33 SSoollvviinngg LLPPss wwiitthh ssppeecciiaall ssttrruuccttuurree
The following predicates allow you to solve specific kinds of LPs more
efficiently:
ttrraannssppoorrttaattiioonn((_+_S_u_p_p_l_i_e_s_, _+_D_e_m_a_n_d_s_, _+_C_o_s_t_s_, _-_T_r_a_n_s_p_o_r_t))
Solves a transportation problem. _S_u_p_p_l_i_e_s and _D_e_m_a_n_d_s must be
lists of non-negative integers. Their respective sums must be
equal. _C_o_s_t_s is a list of lists representing the cost matrix,
where an entry (_i,_j) denotes the integer cost of transporting one
unit from _i to _j. A transportation plan having minimum cost is
computed and unified with _T_r_a_n_s_p_o_r_t in the form of a list of lists
that represents the transportation matrix, where element (_i,_j)
denotes how many units to ship from _i to _j.
aassssiiggnnmmeenntt((_+_C_o_s_t_, _-_A_s_s_i_g_n_m_e_n_t))
Solves a linear assignment problem. _C_o_s_t is a list of lists
representing the quadratic cost matrix, where element (i,j)
denotes the integer cost of assigning entity $i$ to entity $j$.
An assignment with minimal cost is computed and unified with
_A_s_s_i_g_n_m_e_n_t as a list of lists, representing an adjacency matrix.
1133..3333..44 EExxaammpplleess
We include a few examples for solving LPs with this library.
1133..3333..44..11 EExxaammppllee 11
This is the "radiation therapy" example, taken from _I_n_t_r_o_d_u_c_t_i_o_n _t_o
_O_p_e_r_a_t_i_o_n_s _R_e_s_e_a_r_c_h by Hillier and Lieberman.
https://www.metalevel.at/prolog/dcgPPrroolloogg DDCCGG nnoottaattiioonn is used to
_i_m_p_l_i_c_i_t_l_y thread the state through posting the constraints:
________________________________________________________________________| |
|:- use_module(library(simplex)). |
| |
|radiation(S) :- |
| gen_state(S0), |
| post_constraints(S0, S1), |
| minimize([0.4*x1, 0.5*x2], S1, S). |
| |
|post_constraints --> |
| constraint([0.3*x1, 0.1*x2] =< 2.7), |
| constraint([0.5*x1, 0.5*x2] = 6), |
| constraint([0.6*x1, 0.4*x2] >= 6), |
| constraint([x1] >= 0), |
||_______constraint([x2]_>=_0)._________________________________________ ||
An example query:
________________________________________________________________________| |
|?- radiation(S), variable_value(S, x1, Val1), |
| variable_value(S, x2, Val2). |
|Val1 = 15 rdiv 2, |
|Val2|=_9_rdiv_2._______________________________________________________ | |
1133..3333..44..22 EExxaammppllee 22
Here is an instance of the knapsack problem described above, where
C = 8, and we have two types of items: One item with value 7 and
size 6, and 2 items each having size 4 and value 4. We introduce two
variables, x(1) and x(2) that denote how many items to take of each
type.
________________________________________________________________________| |
|:- use_module(library(simplex)). |
| |
|knapsack(S) :- |
| knapsack_constraints(S0), |
| maximize([7*x(1), 4*x(2)], S0, S). |
| |
|knapsack_constraints(S) :- |
| gen_state(S0), |
| constraint([6*x(1), 4*x(2)] =< 8, S0, S1), |
| constraint([x(1)] =< 1, S1, S2), |
||_______constraint([x(2)]_=<_2,_S2,_S).________________________________ ||
An example query yields:
________________________________________________________________________| |
|?- knapsack(S), variable_value(S, x(1), X1), |
| variable_value(S, x(2), X2). |
|X1 = 1 |
|X2|=_1_rdiv_2._________________________________________________________ | |
That is, we are to take the one item of the first type, and half of one
of the items of the other type to maximize the total value of items in
the knapsack.
If items can not be split, integrality constraints have to be imposed:
________________________________________________________________________| |
|knapsack_integral(S) :- |
| knapsack_constraints(S0), |
| constraint(integral(x(1)), S0, S1), |
| constraint(integral(x(2)), S1, S2), |
||_______maximize([7*x(1),_4*x(2)],_S2,_S)._____________________________ ||
Now the result is different:
________________________________________________________________________| |
|?- knapsack_integral(S), variable_value(S, x(1), X1), |
| variable_value(S, x(2), X2). |
| |
|X1 = 0 |
|X2|=_2_________________________________________________________________ | |
That is, we are to take only the _t_w_o items of the second type.
Notice in particular that always choosing the remaining item with best
performance (ratio of value to size) that still fits in the knapsack
does not necessarily yield an optimal solution in the presence of
integrality constraints.
1133..3333..44..33 EExxaammppllee 33
We are given:
o 3 coins each worth 1 unit
o 20 coins each worth 5 units and
o 10 coins each worth 20 units.
The task is to find a _m_i_n_i_m_a_l number of these coins that amount to 111
units in total. We introduce variables c(1), c(5) and c(20) denoting
how many coins to take of the respective type:
________________________________________________________________________| |
|:- use_module(library(simplex)). |
| |
|coins(S) :- |
| gen_state(S0), |
| coins(S0, S). |
| |
|coins --> |
| constraint([c(1), 5*c(5), 20*c(20)] = 111), |
| constraint([c(1)] =< 3), |
| constraint([c(5)] =< 20), |
| constraint([c(20)] =< 10), |
| constraint([c(1)] >= 0), |
| constraint([c(5)] >= 0), |
| constraint([c(20)] >= 0), |
| constraint(integral(c(1))), |
| constraint(integral(c(5))), |
| constraint(integral(c(20))), |
||_______minimize([c(1),_c(5),_c(20)])._________________________________ ||
An example query:
________________________________________________________________________| |
|?- coins(S), variable_value(S, c(1), C1), |
| variable_value(S, c(5), C5), |
| variable_value(S, c(20), C20). |
| |
|C1 = 1, |
|C5 = 2, |
|C20|=_5._______________________________________________________________ | |
1133..3344 lliibbrraarryy((ssoolluuttiioonn__sseeqquueenncceess)):: MMooddiiffyy ssoolluuttiioonn sseeqquueenncceess
SSeeee aallssoo
- all solution predicates findall/3, bagof/3 and setof/3.
- library(aggregate)
The meta predicates of this library modify the sequence of solutions
of a goal. The modifications and the predicate names are based on
the classical database operations DISTINCT, LIMIT, OFFSET, ORDER BY and
GROUP BY.
These predicates were introduced in the context of the
http://swish.swi-prolog.orgSWISH Prolog browser-based shell, which
can represent the solutions to a predicate as a table. Notably
wrapping a goal in distinct/1 avoids duplicates in the result table and
using order_by/2 produces a nicely ordered table.
However, the predicates from this library can also be used to stay
longer within the clean paradigm where non-deterministic predicates
are composed from simpler non-deterministic predicates by means of
conjunction and disjunction. While evaluating a conjunction, we might
want to eliminate duplicates of the first part of the conjunction.
Below we give both the classical solution for solving variations of
(a(X), b(X)) and the ones using this library side-by-side.
____________________________________________________________________| |
AAvvooiidd||dduupplliiccaatteesssooffeeeaarrlliieerrtsstteeppssof(X, a(X), Xs), distinct(a(X)), |
| member(X, Xs), b(X) |
||__b(X).___________________________________________________________ ||
Note that the distinct/1 based solution returns the first result of
distinct(a(X)) immediately after a/1 produces a result, while the
setof/3 based solution will first compute all results of a/1.
____________________________________________________________________| |
OOnnllyy|ttrryysb(X)eoonnllyytffoorrotthheefttoopp--1100(a(X)X, a(X), Xs), limit(10, order_by([desc(X)], a(X))),|
| reverse(Xs, Desc), b(X) |
| first_max_n(10, Desc, Limit), |
| member(X, Limit), |
||__b(X)____________________________________________________________ ||
Here we see power of composing primitives from this library and
staying within the paradigm of pure non-deterministic relational
predicates.
ddiissttiinncctt((_:_G_o_a_l))
ddiissttiinncctt((_?_W_i_t_n_e_s_s_, _:_G_o_a_l))
True if _G_o_a_l is true and no previous solution of _G_o_a_l bound
_W_i_t_n_e_s_s to the same value. As previous answers need to be copied,
equivalence testing is based on _t_e_r_m _v_a_r_i_a_n_c_e (=@=/2). The variant
distinct/1 is equivalent to distinct(Goal,Goal).
If the answers are ground terms, the predicate behaves as the code
below, but answers are returned as soon as they become available
rather than first computing the complete answer set.
____________________________________________________________________| |
| distinct(Goal) :- |
| findall(Goal, Goal, List), |
| list_to_set(List, Set), |
||____member(Goal,_Set).____________________________________________ ||
rreedduucceedd((_:_G_o_a_l))
rreedduucceedd((_?_W_i_t_n_e_s_s_, _:_G_o_a_l_, _+_O_p_t_i_o_n_s))
Similar to distinct/1, but does not guarantee unique results in
return for using a limited amount of memory. Both distinct/1
and reduced/1 create a table that block duplicate results. For
distinct/1, this table may get arbitrary large. In contrast,
reduced/1 discards the table and starts a new one of the table size
exceeds a specified limit. This filter is useful for reducing
the number of answers when processing large or infinite long tail
distributions. _O_p_t_i_o_n_s:
ssiizzee__lliimmiitt((_+_I_n_t_e_g_e_r))
Max number of elements kept in the table. Default is 10,000.
lliimmiitt((_+_C_o_u_n_t_, _:_G_o_a_l))
Limit the number of solutions. True if _G_o_a_l is true, returning
at most _C_o_u_n_t solutions. Solutions are returned as soon as they
become available.
ooffffsseett((_+_C_o_u_n_t_, _:_G_o_a_l))
Ignore the first _C_o_u_n_t solutions. True if _G_o_a_l is true and
produces more than _C_o_u_n_t solutions. This predicate computes and
ignores the first _C_o_u_n_t solutions.
oorrddeerr__bbyy((_S_p_e_c_, _G_o_a_l))
Order solutions according to _S_p_e_c. _S_p_e_c is a list of terms, where
each element is one of. The ordering of solutions of _G_o_a_l that
only differ in variables that are _n_o_t shared with _S_p_e_c is not
changed.
aasscc((_T_e_r_m))
Order solution according to ascending _T_e_r_m
ddeesscc((_T_e_r_m))
Order solution according to descending _T_e_r_m
ggrroouupp__bbyy((_+_B_y_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_n_o_n_d_e_t_]
Group bindings of _T_e_m_p_l_a_t_e that have the same value for _B_y. This
predicate is almost the same as bagof/3, but instead of specifying
the existential variables we specify the free variables. It
is provided for consistency and complete coverage of the common
database vocabulary.
1133..3355 lliibbrraarryy((ttaabblliinngg)):: TTaabblleedd eexxeeccuuttiioonn ((SSLLGG))
The library tabling provides support for _T_a_b_l_e_d _e_x_e_c_u_t_i_o_n of one
or more Prolog predicates, also called _S_L_G _r_e_s_o_l_u_t_i_o_n. Tabling a
predicate provides two properties:
1. Re-evaluation of a tabled predicate is avoided by _m_e_m_o_i_z_i_n_g the
answers. This can realise huge performance enhancements as
illustrated in section ????. It also comes with two downsides: the
memoized answers are not automatically updated or invalidated if
the world (set of predicates on which the answers depend) changes
and the answer tables must be stored (in memory).
2. _L_e_f_t _r_e_c_u_r_s_i_o_n, a goal calling a _v_a_r_i_a_n_t of itself recursively and
thus _l_o_o_p_i_n_g under the normal Prolog SLD resolution is avoided by
suspending the variant call and resuming it with answers from the
table. This is illustrated in section ????.
Tabling is particularly suited to simplify inference over a highly
entangled set of predicates that express axioms and rules in a static
(not changing) world. When using SLD resolution for such problems,
it is hard to ensure termination and avoid frequent recomputation of
intermediate results. A solution is to use Datalog style bottom-up
evaluation, i.e., applying rules on the axioms and derived facts until
a fixed point is reached. However, bottom-up evaluation typically
derives many facts that are never used. Tabling provides a _g_o_a_l
_o_r_i_e_n_t_e_d resolution strategy for such problems and is enabled simply by
adding a table/1 directive to the program.
1133..3355..00..11 EExxaammppllee 11:: uussiinngg ttaabblliinngg ffoorr mmeemmooiizziinngg
As a first classical example we use tabling for _m_e_m_o_i_z_i_n_g intermediate
results. We use Fibonacci numbers to illustrate the approach. The
Fibonacci number I is defined as the sum of the Fibonacci numbers for
I- 1 and I- 2, while the Fibonacci number of 0 and 1 are both defined to
be 1. This can be translated naturally into Prolog:
________________________________________________________________________| |
|fib(0, 1) :- !. |
|fib(1, 1) :- !. |
|fib(N, F) :- |
| N > 1, |
| N1 is N-1, |
| N2 is N-2, |
| fib(N1, F1), |
| fib(N2, F2), |
||_______F_is_F1+F2.____________________________________________________ ||
The complexity of executing this using SLD resolution however is 2N
and thus becomes prohibitively slow rather quickly, e.g., the execution
time for N = 30 is already 0.4 seconds. Using tabling, fib(_N_,_F)
for each value of N is computed only once and the algorithm becomes
linear. Tabling effectively inverts the execution order for this case:
it suspends the final addition (F is F1+F2) until the two preceeding
Fibonacci numbers have been added to the answer tables. Thus, we can
reduce the complexity from the show-stopping 2N to linear by adding a
tabling directive and otherwise not changing the algorithm. The code
becomes:
________________________________________________________________________| |
|:- use_module(library(tabling)). |
|:- table fib/2. |
| |
|fib(0, 1) :- !. |
|fib(1, 1) :- !. |
|fib(N, F) :- |
| N > 1, |
| N1 is N-1, |
| N2 is N-2, |
| fib(N1, F1), |
| fib(N2, F2), |
||_______F_is_F1+F2.____________________________________________________ ||
The price that we pay is that a table fib(_I_,_F) is created for each
I in 0::N. The execution time for N = 30 is now 1 millisecond and
computing the Fibonacci number for N =1000 is doable (output edited for
readability).
________________________________________________________________________| |
|1 ?- time(fib(1000, X)). |
|% 52,991 inferences, 0.013 CPU in 0.013 seconds |
|X = 70330367711422815821835254877183549770181269836358 |
| 73274260490508715453711819693357974224949456261173 |
| 34877504492417659910881863632654502236471060120533 |
| 74121273867339111198139373125598767690091902245245 |
||___323403501._________________________________________________________ ||
In the case of Fibonacci numbers we can still rather easily achieve
linear complexity using program transformation, where we use bottom-up
instead of top-down evaluation, i.e., we compute fib(_N_,_F) for growing
N, where we pass the last two Fibonacci numbers to the next iteration.
Not having to create the tables and not having to suspend and resume
goals makes this implementation about 25 times faster than the tabled
one. However, even in this simple case the transformation is not
obvious and it is far more difficult to recognise the algorithm as an
implementation of Fibonacci numbers.
________________________________________________________________________| |
|fib(0, 1) :- !. |
|fib(1, 1) :- !. |
|fib(N, F) :- |
| fib(1,1,1,N,F). |
| |
|fib(_F, F1, N, N, F1) :- !. |
|fib(F0, F1, I, N, F) :- |
| F2 is F0+F1, |
| I2 is I + 1, |
||_______fib(F1,_F2,_I2,_N,_F)._________________________________________ ||
1133..3355..00..22 EExxaammppllee 22:: aavvooiiddiinngg nnoonn--tteerrmmiinnaattiioonn
SLD resolution easily results in an infinite loop due to _l_e_f_t
_r_e_c_u_r_s_i_o_n, a goal that (indirectly) calls a variant of itself or
cycles in the input data. Thus, if we have a series of connection/2
statements that define railway connections between two cities, we
cannot use the most natural logical definition to express that we can
travel between two cities:
________________________________________________________________________| |
|% :- use_module(library(tabling)). |
|% :- table connection/2. |
| |
|connection(X, Y) :- |
| connection(X, Z), |
| connection(Z, Y). |
|connection(X, Y) :- |
| connection(Y, X). |
| |
|connection('Amsterdam', 'Schiphol'). |
|connection('Amsterdam', 'Haarlem'). |
|connection('Schiphol', 'Leiden'). |
|connection('Haarlem',|'Leiden')._______________________________________ | |
After enabling tabling however, the above works just fine as
illustrated in the session below. Where is the magic and what is
the price we paid? The magic is, again, the fact that new goals to
the tabled predicate suspend. So, all recursive goals are suspended.
Eventually, a table for connection(_'_A_m_s_t_e_r_d_a_m_'_, _X) is created with the
two direct connections from Amsterdam. Now, it resumes the first
clause using the tabled solutions, continuing the last connection/2
subgoal with connection(_'_S_c_h_i_p_h_o_l_'_, _X) and connection(_'_H_a_a_r_l_e_m_'_, _X).
These two go through the same process, creating new suspended recursive
calls and creating tables for the connections from Schiphol and
Haarlem. Eventually, we end up with a set of tables for each call
variant that is involved in computing the transitive closure of the
network starting in Amsterdam. However, if the Japanese rail network
would have been in our data as well, we would not have produced tables
for that.
________________________________________________________________________| |
|1 ?- connection('Amsterdam', X). |
|X = 'Haarlem' ; |
|X = 'Schiphol' ; |
|X = 'Amsterdam' ; |
|X|=_'Leiden'.__________________________________________________________ | |
Again, the fact that a simple table/1 directive turns the pure logical
specification into a fairly efficient algorithm is a clear advantage.
Without tabling the program needs to be _s_t_r_a_t_i_f_i_e_d, introducing a base
layer with the raw connections, a second layer that introduces the
_c_o_m_m_u_t_a_t_i_v_e property of a railway (if you can travel from A to B
you can also travel from B to A and a final layer that realises
_t_r_a_n_s_i_t_i_v_i_t_y (if you can travel from A to B and from B to C you can
also travel from A to C). The third and final layer must keep track
which cities you have already visited to avoid traveling in circles.
The transformed program however uses little memory (the list of already
visited cities and the still open choices) and does not need to deal
with maintaining consistency between the tables and ground facts.
1133..3355..00..33 MMooddee ddiirreecctteedd ttaabblliinngg
Tabling as defined above has a serious limitation. Although the
definition of connection/2 from section section ???? can compute the
transitive closure of connected cities, it cannot provide you with a
route to travel. The reason is that there are infinitely many routes
if there are cycles in the network and each new route found will be
added to the answer table and cause the tabled execution's completion
algorithm to search for more routes, eventually running out of memory.
The solution to this problem is called _m_o_d_e _d_i_r_e_c_t_e_d _t_a_b_l_i_n_g or _a_n_s_w_e_r
_s_u_b_s_u_m_p_t_i_o_n. In this execution model one or more arguments are _n_o_t
added to the table. Instead, we remember a single _a_g_g_r_e_g_a_t_e_d value for
these arguments. The example below is derived from section ???? and
returns the connection as a list of cities. This argument is defined
as a _m_o_d_e_d argument using the lattice(_P_I) mode. This causes the
tabling engine each time that it finds an new path to call shortest/3
and keep the shortest route.
________________________________________________________________________| |
|:- use_module(library(tabling)). |
|:- table |
| connection(_,_,lattice(shortest/3)). |
| |
|shortest(P1, P2, P):- |
| length(P1, L1), |
| length(P2, L2), |
| ( L1 < L2 |
| -> P = P1 |
| ; P = P2 |
| ). |
| |
|connection(X, Y, [X,Y]) :- |
| connection(X, Y). |
|connection(X, Y, P) :- |
| connection(X, Z, P0), |
| connection(Z, Y), |
||___append(P0,_[Y],_P).________________________________________________ ||
The mode declation scheme is equivalent to XSB with partial
compatibility support for YAP and B-Prolog. The lattice(_P_I) mode is
the most general mode. The YAP all (B-Prolog @) mode is not yet
supported. The list below describes the supported modes and indicates
the portability.
VVaarr
+
iinnddeexx
A variable (XSB), the atom index (YAP) or a + (B-Prolog) declare
that the argument is tabled normally.
llaattttiiccee((_P_I))
_P_I must be the predicate indicator of a predicate with arity 3.
On each answer, _P_I is called with three arguments: the current
aggregated answer and the new answer are inputs. The last argument
must be unified with a term that represents the new aggregated
answer. In SWI-Prolog the arity (3) may be omitted. See the
example above.
ppoo((_P_I))
_P_a_r_t_i_a_l _O_r_d_e_n_i_n_g. The new answer is added iff call(_P_I_, _+_O_l_d_,
_+_A_n_s_w_e_r) succeeds. For example, po('<'/2) accumulates the largest
result. In SWI-Prolog the arity (2) may be omitted, resulting in
po(<).
-
ffiirrsstt((_T))
he atom - (B-Prolog) and first (YAP) declare to keep the first
answer for this argument.
llaasstt
The atom last (YAP) declares to keep the last answer.
mmiinn
The atom min (YAP) declares to keep the smallest answer according
to the standard order of terms (see @</2). Note that in SWI-Prolog
the standard order of terms orders numbers by value.
mmaaxx
The atom max (YAP) declares to keep the largest answer according to
the standard order of terms (see @>/2). Note that in SWI-Prolog
the standard order of terms orders numbers by value.
ssuumm
The atom sum (YAP) declares to sum numeric answers.
1133..3355..11 TTaabblliinngg pprreeddiiccaattee rreeffeerreennccee
ttaabbllee _+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s
Prepare the given _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s for tabling. Can only be
used as a directive. The example below prepares the predicate
edge/2 and the non-terminal statement//1 for tabled execution.
____________________________________________________________________| |
||:-_table_edge/2,_statement//1.____________________________________ ||
In addition to using _p_r_e_d_i_c_a_t_e _i_n_d_i_c_a_t_o_r_s, a predicate can be
declared for _m_o_d_e _d_i_r_e_c_t_e_d _t_a_b_l_i_n_g using a term where each argument
declares the intended mode. For example:
____________________________________________________________________| |
||:-_table_connection(_,_,min)._____________________________________ ||
_M_o_d_e _d_i_r_e_c_t_e_d _t_a_b_l_i_n_g is discussed in the general introduction
section about tabling.
aabboolliisshh__aallll__ttaabblleess
Remove all tables. This is normally used to free up the space or
recompute the result after predicates on which the result for some
tabled predicates depend.
EErrrroorrss permission_error(abolish, table, all) if tabling
is in progress.
aabboolliisshh__ttaabbllee__ssuubbggooaallss((_:_S_u_b_g_o_a_l)) _[_d_e_t_]
Abolish all tables that unify with SubGoal.
1133..3355..11..11 AAbboouutt tthhee ttaabblliinngg iimmpplleemmeennttaattiioonn
The SWI-Prolog implementation uses _D_e_l_i_m_i_t_e_d _c_o_n_t_i_n_u_a_t_i_o_n_s (see
section ???? to realise suspension of variant calls. The initial version
was written by Benoit Desouter and described in [??]. We moved the
main data structures required for tabling, the _a_n_s_w_e_r _t_a_b_l_e_s (see
section ????) and the _w_o_r_k_l_i_s_t to SWI-Prolog's C core. _M_o_d_e _d_i_r_e_c_t_e_d
_t_a_b_l_i_n_g (section ????) is based on a prototype implementation by Fabrizio
Riguzzi.
The table/1 directive causes the creation of a wrapper calling the
renamed original predicate. For example, the program in section ????
is translated into the following program. We give this information
to improve your understanding of the current tabling implementation.
Future versions are likely to use a more low-level translation that is
not based on wrappers.
________________________________________________________________________| |
|connection(A, B) :- |
| start_tabling(user:connection(A, B), |
| 'connection tabled'(A, B)). |
| |
|'connection tabled'(X, Y) :- |
| connection(X, Z), |
| connection(Z, Y). |
|'connection tabled'(X, Y) :- |
| connection(Y, X). |
| |
|'connection tabled'('Amsterdam', 'Schiphol'). |
|'connection tabled'('Amsterdam', 'Haarlem'). |
|'connection tabled'('Schiphol', 'Leiden'). |
|'connection|tabled'('Haarlem',_'Leiden').______________________________ | |
1133..3355..11..22 SSttaattuuss ooff ttaabblliinngg
The current implementation is merely a first prototype. It needs
several enhancements before we can consider it a serious competitor to
Prolog systems with mature tabling such as XSB, YAP and B-Prolog. In
particular,
o The performance needs to be improved.
o Memory usage needs to be reduced.
o Tables must be shared between threads, both to reduce space and
avoid recomputation.
o Tables must be invalidated and reclaimed automatically.
o Notably XSB supports incremental tabeling and well-founded
semantics under negation.
1133..3366 lliibbrraarryy((tthhrreeaadd__ppooooll)):: RReessoouurrccee bboouunnddeedd tthhrreeaadd mmaannaaggeemmeenntt
SSeeee aallssoo http_handler/3 and http_spawn/2.
The module library(thread_pool) manages threads in pools. A pool
defines properties of its member threads and the maximum number of
threads that can coexist in the pool. The call thread_create_in_pool/4
allocates a thread in the pool, just like thread_create/3. If the pool
is fully allocated it can be asked to wait or raise an error.
The library has been designed to deal with server applications that
receive a variety of requests, such as HTTP servers. Simply starting a
thread for each request is a bit too simple minded for such servers:
o Creating many CPU intensive threads often leads to a slow-down
rather than a speedup.
o Creating many memory intensive threads may exhaust resources
o Tasks that require little CPU and memory but take long waiting for
external resources can run many threads.
Using this library, one can define a pool for each set of tasks with
comparable characteristics and create threads in this pool. Unlike the
worker-pool model, threads are not started immediately. Depending on
the design, both approaches can be attractive.
The library is implemented by means of a manager thread with the
fixed thread id __thread_pool_manager. All state is maintained in
this manager thread, which receives and processes requests to create
and destroy pools, create threads in a pool and handle messages from
terminated threads. Thread pools are _n_o_t saved in a saved state and
must therefore be recreated using the initialization/1 directive or
otherwise during startup of the application.
tthhrreeaadd__ppooooll__ccrreeaattee((_+_P_o_o_l_, _+_S_i_z_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a pool of threads. A pool of threads is a declaration
for creating threads with shared properties (stack sizes) and
a limited number of threads. Threads are created using
thread_create_in_pool/4. If all threads in the pool are in use,
the behaviour depends on the wait option of thread_create_in_pool/4
and the backlog option described below. _O_p_t_i_o_n_s are passed to
thread_create/3, except for
bbaacckklloogg((_+_M_a_x_B_a_c_k_L_o_g))
Maximum number of requests that can be suspended. Default is
infinite. Otherwise it must be a non-negative integer. Using
backlog(0) will never delay thread creation for this pool.
The pooling mechanism does _n_o_t interact with the detached state of
a thread. Threads can be created both detached and normal and must
be joined using thread_join/2 if they are not detached.
tthhrreeaadd__ppooooll__ddeessttrrooyy((_+_N_a_m_e)) _[_d_e_t_]
Destroy the thread pool named _N_a_m_e.
EErrrroorrss existence_error(thread_pool, Name).
ccuurrrreenntt__tthhrreeaadd__ppooooll((_?_N_a_m_e)) _[_n_o_n_d_e_t_]
True if _N_a_m_e refers to a defined thread pool.
tthhrreeaadd__ppooooll__pprrooppeerrttyy((_?_N_a_m_e_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True if _P_r_o_p_e_r_t_y is a property of thread pool _N_a_m_e. Defined
properties are:
ooppttiioonnss((_O_p_t_i_o_n_s))
Thread creation options for this pool
ffrreeee((_S_i_z_e))
Number of free slots on this pool
ssiizzee((_S_i_z_e))
Total number of slots on this pool
mmeemmbbeerrss((_L_i_s_t_O_f_I_D_s))
_L_i_s_t_O_f_I_D_s is the list or threads running in this pool
rruunnnniinngg((_R_u_n_n_i_n_g))
Number of running threads in this pool
bbaacckklloogg((_S_i_z_e))
Number of delayed thread creations on this pool
tthhrreeaadd__ccrreeaattee__iinn__ppooooll((_+_P_o_o_l_, _:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a thread in _P_o_o_l. _O_p_t_i_o_n_s overrule default thread creation
options associated to the pool. In addition, the following option
is defined:
wwaaiitt((_+_B_o_o_l_e_a_n))
If true (default) and the pool is full, wait until a member of
the pool completes. If false, throw a resource_error.
EErrrroorrss
- resource_error(threads_in_pool(Pool)) is raised if
wait is false or the backlog limit has been reached.
- existence_error(thread_pool, Pool) if _P_o_o_l does not
exist.
ccrreeaattee__ppooooll((_+_P_o_o_l_N_a_m_e)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to create a thread pool lazily. The hook is called if
thread_create_in_pool/4 discovers that the thread pool does not
exist. If the hook succeeds, thread_create_in_pool/4 retries
creating the thread. For example, we can use the following
declaration to create threads in the pool media, which holds a
maximum of 20 threads.
____________________________________________________________________| |
| :- multifile thread_pool:create_pool/1. |
| |
| thread_pool:create_pool(media) :- |
||____thread_pool_create(media,_20,_[]).____________________________ ||
1133..3377 lliibbrraarryy((uuggrraapphhss)):: UUnnwweeiigghhtteedd GGrraapphhss
Authors: _R_i_c_h_a_r_d _O_'_K_e_e_f_e _& _V_i_t_o_r _S_a_n_t_o_s _C_o_s_t_a
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _d_o_c_u_m_e_n_t_a_t_i_o_n _a_r_e _c_o_p_i_e_d _f_r_o_m _Y_A_P _5_._0_._1_.
_T_h_e ugraph _l_i_b_r_a_r_y _i_s _b_a_s_e_d _o_n _c_o_d_e _o_r_i_g_i_n_a_l_l_y _w_r_i_t_t_e_n
_b_y _R_i_c_h_a_r_d _O_'_K_e_e_f_e_. _T_h_e _c_o_d_e _w_a_s _t_h_e_n _e_x_t_e_n_d_e_d _t_o _b_e
_c_o_m_p_a_t_i_b_l_e _w_i_t_h _t_h_e _S_I_C_S_t_u_s _P_r_o_l_o_g _u_g_r_a_p_h_s _l_i_b_r_a_r_y_. _C_o_d_e _a_n_d
_d_o_c_u_m_e_n_t_a_t_i_o_n _h_a_v_e _b_e_e_n _c_l_e_a_n_e_d _a_n_d _s_t_y_l_e _h_a_s _b_e_e_n _c_h_a_n_g_e_d _t_o
_b_e _m_o_r_e _i_n _l_i_n_e _w_i_t_h _t_h_e _r_e_s_t _o_f _S_W_I_-_P_r_o_l_o_g_.
_T_h_e _u_g_r_a_p_h_s _l_i_b_r_a_r_y _w_a_s _o_r_i_g_i_n_a_l_l_y _r_e_l_e_a_s_e_d _i_n _t_h_e _p_u_b_l_i_c
_d_o_m_a_i_n_. _T_h_e _Y_A_P _v_e_r_s_i_o_n _i_s _c_o_v_e_r_e_d _b_y _t_h_e _P_e_r_l _A_r_t_i_s_t_i_c
_l_i_c_e_n_s_e_, _v_e_r_s_i_o_n _2_._0_. _T_h_i_s _c_o_d_e _i_s _d_u_a_l_-_l_i_c_e_n_s_e_d _u_n_d_e_r _t_h_e
_m_o_d_i_f_i_e_d _G_P_L _a_s _u_s_e_d _f_o_r _a_l_l _S_W_I_-_P_r_o_l_o_g _l_i_b_r_a_r_i_e_s _o_r _t_h_e _P_e_r_l
_A_r_t_i_s_t_i_c _l_i_c_e_n_s_e_, _v_e_r_s_i_o_n _2_._0_.
The routines assume directed graphs; undirected graphs may be
implemented by using two edges.
Originally graphs were represented in two formats. The SICStus library
and this version of ugraphs.pl only use the _S_-_r_e_p_r_e_s_e_n_t_a_t_i_o_n. The
S-representation of a graph is a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort) and the
neighbors of each vertex are also in standard order (as produced by
sort). This form is convenient for many calculations. Each vertex
appears in the S-representation, even if it has no neighbors.
vveerrttiicceess__eeddggeess__ttoo__uuggrraapphh((_+_V_e_r_t_i_c_e_s_, _+_E_d_g_e_s_, _-_G_r_a_p_h))
Given a graph with a set of _V_e_r_t_i_c_e_s and a set of _E_d_g_e_s, _G_r_a_p_h must
unify with the corresponding S-representation. Note that vertices
without edges will appear in _V_e_r_t_i_c_e_s but not in _E_d_g_e_s. Moreover,
it is sufficient for a vertex to appear in _E_d_g_e_s.
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[]]___________________________ ||
In this case all vertices are defined implicitly. The next example
shows three unconnected vertices:
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[],_6-[],_7-[],_8-[]]_?_______ ||
vveerrttiicceess((_+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with all vertices appearing in _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1,_2,_3,_4,_5]_______________________________________________ ||
eeddggeess((_+_G_r_a_p_h_, _-_E_d_g_e_s))
Unify _E_d_g_e_s with all edges appearing in _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1-3,_1-5,_2-4,_4-5]__________________________________________ ||
aadddd__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
_V_e_r_t_i_c_e_s to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG). |
||NG_=_[0-[],_1-[3,5],_2-[],_9-[]]__________________________________ ||
ddeell__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by deleting the list
of _V_e_r_t_i_c_e_s and all edges that start from or go to a vertex in
_V_e_r_t_i_c_e_s from _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- del_vertices([2,1], |
| [1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[2,6],8-[]], |
| NL). |
||NL_=_[3-[],4-[5],5-[],6-[],7-[6],8-[]]____________________________ ||
aadddd__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
_E_d_g_e_s to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_edges([1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5], |
| NL). |
| NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5], |
||______5-[7],_6-[],_7-[],_8-[]]____________________________________ ||
ddeell__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by removing the list of
_E_d_g_e_s from _G_r_a_p_h. Notice that no vertices are deleted. Example:
____________________________________________________________________| |
| ?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5,1-3], |
| NL). |
||NL_=_[1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]__________________ ||
ttrraannssppoossee__uuggrraapphh((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained from _G_r_a_p_h by replacing
all edges of the form V1-V2 by edges of the form V2-V1. The cost
is O(|V|2). Notice that an undirected graph is its own transpose.
Example:
____________________________________________________________________| |
| ?- transpose_ugraph([1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]_______________ ||
nneeiigghhbboouurrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the list of neighbours of vertex _V_e_r_t_e_x in
_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- neighbours(4,[1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1,2,7,5]____________________________________________________ ||
nneeiigghhbboorrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
American version of neighbours/3.
ccoommpplleemmeenntt((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with the graph complementary to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- complement([1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
| NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8], |
| 4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8], |
||______7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]________________________ ||
ccoommppoossee((_+_L_e_f_t_G_r_a_p_h_, _+_R_i_g_h_t_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Compose _N_e_w_G_r_a_p_h by connecting the _d_r_a_i_n_s of _L_e_f_t_G_r_a_p_h to the
_s_o_u_r_c_e_s of _R_i_g_h_t_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[4],_2-[1,2,4],_3-[]]______________________________________ ||
uuggrraapphh__uunniioonn((_+_G_r_a_p_h_1_, _+_G_r_a_p_h_2_, _-_N_e_w_G_r_a_p_h))
_N_e_w_G_r_a_p_h is the union of _G_r_a_p_h_1 and _G_r_a_p_h_2. Example:
____________________________________________________________________| |
| ?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[2],_2-[3,4],_3-[1,2,4]]___________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t))
Generate the set of nodes _S_o_r_t as a topological sorting of _G_r_a_p_h,
if one is possible. A toplogical sort is possible if the graph
is connected and acyclic. In the example we show how topological
sorting works for a linear graph:
____________________________________________________________________| |
| ?- top_sort([1-[2], 2-[3], 3-[]], L). |
||L_=_[1,_2,_3]_____________________________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t_0_, _-_S_o_r_t))
Generate the difference list Sort-Sort0 as a topological sorting of
_G_r_a_p_h, if one is possible.
ttrraannssiittiivvee__cclloossuurree((_+_G_r_a_p_h_, _-_C_l_o_s_u_r_e))
Generate the graph Closure as the transitive closure of _G_r_a_p_h.
Example:
____________________________________________________________________| |
| ?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L). |
||L_=_[1-[2,3,4,5,6],_2-[4,5,6],_4-[6]]_____________________________ ||
rreeaacchhaabbllee((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the set of all vertices in _G_r_a_p_h that are
reachable from _V_e_r_t_e_x. Example:
____________________________________________________________________| |
| ?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V). |
||V_=_[1,_3,_5]_____________________________________________________ ||
1133..3388 lliibbrraarryy((uurrll)):: AAnnaallyyssiinngg aanndd ccoonnssttrruuccttiinngg UURRLL
aauutthhoorr
- Jan Wielemaker
- Lukas Faulstich
ddeepprreeccaatteedd New code should use library(uri), provided by the
clib package.
This library deals with the analysis and construction of a URL,
Universal Resource Locator. URL is the basis for communicating
locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP, and a protocol-specific syntax further
defining the location. URLs are standardized in RFC-1738.
The implementation in this library covers only a small portion of the
defined protocols. Though the initial implementation followed RFC-1738
strictly, the current is more relaxed to deal with frequent violations
of the standard encountered in practical use.
gglloobbaall__uurrll((_+_U_R_L_, _+_B_a_s_e_, _-_G_l_o_b_a_l)) _[_d_e_t_]
Translate a possibly relative _U_R_L into an absolute one.
EErrrroorrss syntax_error(illegal_url) if _U_R_L is not legal.
iiss__aabbssoolluuttee__uurrll((_+_U_R_L))
True if _U_R_L is an absolute _U_R_L. That is, a _U_R_L that starts with a
protocol identifier.
hhttttpp__llooccaattiioonn((_?_P_a_r_t_s_, _?_L_o_c_a_t_i_o_n))
Construct or analyze an HTTP location. This is similar to
parse_url/2, but only deals with the location part of an HTTP URL.
That is, the path, search and fragment specifiers. In the HTTP
protocol, the first line of a message is
____________________________________________________________________| |
||<Action>_<Location>_HTTP/<version>________________________________ ||
___________________________________________________________Arguments_
_L_o_c_a_t_i_o_n Atom or list of character codes.
ppaarrssee__uurrll((_?_U_R_L_, _?_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Construct or analyse a _U_R_L. _U_R_L is an atom holding a _U_R_L or a
variable. _A_t_t_r_i_b_u_t_e_s is a list of components. Each component is
of the format Name(Value). Defined components are:
pprroottooccooll((_P_r_o_t_o_c_o_l))
The used protocol. This is, after the optional url:, an
identifier separated from the remainder of the _U_R_L using
:. parse_url/2 assumes the http protocol if no protocol is
specified and the _U_R_L can be parsed as a valid HTTP url.
In addition to the RFC-1738 specified protocols, the file
protocol is supported as well.
hhoosstt((_H_o_s_t))
_H_o_s_t-name or IP-address on which the resource is located.
Supported by all network-based protocols.
ppoorrtt((_P_o_r_t))
Integer port-number to access on the \arg{Host}. This only
appears if the port is explicitly specified in the _U_R_L.
Implicit default ports (e.g., 80 for HTTP) do _n_o_t appear in
the part-list.
ppaatthh((_P_a_t_h))
(File-) path addressed by the _U_R_L. This is supported for the
ftp, http and file protocols. If no path appears, the library
generates the path /.
sseeaarrcchh((_L_i_s_t_O_f_N_a_m_e_V_a_l_u_e))
Search-specification of HTTP _U_R_L. This is the part after the
?, normally used to transfer data from HTML forms that use the
HTTP GET method. In the _U_R_L it consists of a www-form-encoded
list of Name=Value pairs. This is mapped to a list of Prolog
Name=Value terms with decoded names and values.
ffrraaggmmeenntt((_F_r_a_g_m_e_n_t))
_F_r_a_g_m_e_n_t specification of HTTP _U_R_L. This is the part after the
# character.
The example below illustrates all of this for an HTTP _U_R_L.
____________________________________________________________________| |
| ?- parse_url('http://www.xyz.org/hello?msg=Hello+World%21#x', |
| P). |
| |
| P = [ protocol(http), |
| host('www.xyz.org'), |
| fragment(x), |
| search([ msg = 'Hello World!' |
| ]), |
| path('/hello') |
||____]_____________________________________________________________ ||
By instantiating the parts-list this predicate can be used to
create a _U_R_L.
ppaarrssee__uurrll((_+_U_R_L_, _+_B_a_s_e_U_R_L_, _-_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Similar to parse_url/2 for relative URLs. If _U_R_L is relative, it
is resolved using the absolute _U_R_L _B_a_s_e_U_R_L.
wwwwww__ffoorrmm__eennccooddee((_+_V_a_l_u_e_, _-_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
wwwwww__ffoorrmm__eennccooddee((_-_V_a_l_u_e_, _+_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
En/decode to/from application/x-www-form-encoded. Encoding encodes
all characters except RFC 3986 _u_n_r_e_s_e_r_v_e_d (ASCII alnum (see
code_type/2)), and one of "-._~" using percent encoding. Newline
is mapped to %OD%OA. When decoding, newlines appear as a single
newline (10) character.
Note that a space is encoded as %20 instead of +. Decoding decodes
both to a space.
ddeepprreeccaatteedd Use uri_encoded/3 for new code.
sseett__uurrll__eennccooddiinngg((_?_O_l_d_, _+_N_e_w)) _[_s_e_m_i_d_e_t_]
Query and set the encoding for URLs. The default is utf8. The
only other defined value is iso_latin_1.
TToo bbee ddoonnee Having a global flag is highly inconvenient,
but a work-around for old sites using ISO Latin 1
encoding.
uurrll__iirrii((_+_E_n_c_o_d_e_d_, _-_D_e_c_o_d_e_d)) _[_d_e_t_]
uurrll__iirrii((_-_E_n_c_o_d_e_d_, _+_D_e_c_o_d_e_d)) _[_d_e_t_]
Convert between a URL, encoding in US-ASCII and an IRI. An IRI is a
fully expanded Unicode string. Unicode strings are first encoded
into UTF-8, after which %-encoding takes place.
ppaarrssee__uurrll__sseeaarrcchh((_?_S_p_e_c_, _?_F_i_e_l_d_s_:_l_i_s_t_(_N_a_m_e_=_V_a_l_u_e_))) _[_d_e_t_]
Construct or analyze an HTTP search specification. This deals with
form data using the MIME-type application/x-www-form-urlencoded as
used in HTTP GET requests.
ffiillee__nnaammee__ttoo__uurrll((_+_F_i_l_e_, _-_U_R_L)) _[_d_e_t_]
ffiillee__nnaammee__ttoo__uurrll((_-_F_i_l_e_, _+_U_R_L)) _[_s_e_m_i_d_e_t_]
Translate between a filename and a file:// _U_R_L.
TToo bbee ddoonnee Current implementation does not deal with
paths that need special encoding.
1133..3399 lliibbrraarryy((vvaarrnnuummbbeerrss)):: UUttiilliittiieess ffoorr nnuummbbeerreedd tteerrmmss
SSeeee aallssoo numbervars/4, =@=/2 (variant/2).
CCoommppaattiibbiilliittyy This library was introduced by Quintus and
available in many related implementations, although not
with exactly the same set of predicates.
This library provides the inverse functionality of the built-in
numbervars/3. Note that this library suffers from the known issues
that '$VAR'(X) is a normal Prolog term and, -unlike the built-in
numbervars-, the inverse predicates do _n_o_t process cyclic terms. The
following predicate is true for any acyclic term that contains no
'$VAR'(X), integer(X) terms and no constraint variables:
________________________________________________________________________| |
|always_true(X) :- |
| copy_term(X, X2), |
| numbervars(X), |
| varnumbers(X, Copy), |
||_____Copy_=@=_X2._____________________________________________________ ||
nnuummbbeerrvvaarrss((_+_T_e_r_m)) _[_d_e_t_]
Number variables in _T_e_r_m using $VAR(N). Equivalent to
numbervars(Term, 0, _).
SSeeee aallssoo numbervars/3, numbervars/4
vvaarrnnuummbbeerrss((_+_T_e_r_m_, _-_C_o_p_y)) _[_d_e_t_]
Inverse of numbervars/1. Equivalent to varnumbers(Term, 0, Copy).
vvaarrnnuummbbeerrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_C_o_p_y)) _[_d_e_t_]
Inverse of numbervars/3. True when _C_o_p_y is a copy of _T_e_r_m with
all variables numbered >= _S_t_a_r_t consistently replaced by fresh
variables. Variables in _T_e_r_m are _s_h_a_r_e_d with _C_o_p_y rather than
replaced by fresh variables.
EErrrroorrss domain_error(acyclic_term, Term) if _T_e_r_m is
cyclic.
CCoommppaattiibbiilliittyy Quintus, SICStus. Not in YAP version of
this library
mmaaxx__vvaarr__nnuummbbeerr((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_M_a_x)) _[_d_e_t_]
True when _M_a_x is the max of _S_t_a_r_t and the highest numbered $VAR(N)
term.
aauutthhoorr Vitor Santos Costa
CCoommppaattiibbiilliittyy YAP
vvaarrnnuummbbeerrss__nnaammeess((_+_T_e_r_m_, _-_C_o_p_y_, _-_V_a_r_i_a_b_l_e_N_a_m_e_s)) _[_d_e_t_]
If _T_e_r_m is a term with numbered and named variables using the
reserved term '$VAR'(X), _C_o_p_y is a copy of _T_e_r_m where each
'$VAR'(X) is consistently replaced by a fresh variable and Bindings
is a list X = Var, relating the _X terms with the variable it is
mapped to.
SSeeee aallssoo numbervars/3, varnumbers/3, read_term/3using the
variable_names option.
1133..4400 lliibbrraarryy((yyaallll)):: LLaammbbddaa eexxpprreessssiioonnss
aauutthhoorr Paulo Moura and Jan Wielemaker
TToo bbee ddoonnee Extend optimization support
Prolog realizes _h_i_g_h_-_o_r_d_e_r programming with meta-calling. The core
predicate of this is call/1, which simply calls its argument. This can
be used to define higher-order predicates such as ignore/1 or forall/2.
The call/N construct calls a _c_l_o_s_u_r_e with N-1 _a_d_d_i_t_i_o_n_a_l _a_r_g_u_m_e_n_t_s.
This is used to define higher-order predicates such as the maplist/N
family or foldl/N.
The problem with higher order predicates based on call/N is
that the additional arguments are always added to the end of
the closure's argument list. This often requires defining
trivial helper predicates to get the argument order right. For
example, if you want to add a common postfix to a list
of atoms you need to apply atom_concat(In,Postfix,Out), but
maplist(x(PostFix),ListIn,ListOut) calls x(PostFix,In,Out). This is
where this library comes in, which allows us to write
________________________________________________________________________| |
|?- maplist([In,Out]>>atom_concat(In,'_p',Out), [a,b], ListOut). |
|ListOut|=_[a_p,_b_p].__________________________________________________ | |
The {...} specifies which variables are _s_h_a_r_e_d between the lambda and
the context. This allows us to write the code below. Without the
{PostFix} a free variable would be passed to atom_concat/3.
________________________________________________________________________| |
|add_postfix(PostFix, ListIn, ListOut) :- |
| maplist({PostFix}/[In,Out]>>atom_concat(In,PostFix,Out), |
||___________ListIn,_ListOut).__________________________________________ ||
This introduces the second application area of lambda expressions: the
ability to stop binding variables in the context. This features
shines when combined with bagof/3 or setof/3 where you normally have
to specify the the variables in whose binding you are _n_o_t interested
using the Var^Goal construct (marking _V_a_r as existential quantified).
Lambdas allow doing the reverse: specify the variables in which you
are interested.
Lambda expressions use the syntax below
________________________________________________________________________| |
|{...}/[...]>>Goal.|____________________________________________________ | |
The {...} optional part is used for lambda-free variables. The order
of variables doesn't matter hence the {...} set notation.
The [...] optional part lists lambda parameters. Here order of
variables matters hence the list notation.
As / and >> are standard infix operators, no new operators are added by
this library. An advantage of this syntax is that we can simply unify
a lambda expression with Free/Parameters>>Lambda to access each of its
components. Spaces in the lambda expression are not a problem although
the goal may need to be written between ()'s. Goals that are qualified
by a module prefix also need to be wrapped inside parentheses.
Combined with library(apply_macros), library(yall) allows writing
one-liners for many list operations that have the same performance as
hand written code.
The module name, _y_a_l_l, stands for Yet Another Lambda Library.
This module implements Logtalk's lambda expressions syntax. The
development of this module was sponsored by Kyndi, Inc.
_+_P_a_r_a_m_e_t_e_r_s >> _+_L_a_m_b_d_a
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5_, _?_A_6))
>>((_+_P_a_r_a_m_e_t_e_r_s_, _+_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5_, _?_A_6_, _?_A_7))
Calls a copy of _L_a_m_b_d_a. This is similar to call(Lambda,A1,...),
but arguments are reordered according to the list _P_a_r_a_m_e_t_e_r_s:
o The first length(Parameters) arguments from _A_1, ... are
unified with (a copy of) _P_a_r_a_m_e_t_e_r_s, which _m_a_y share them with
variables in _L_a_m_b_d_a.
o Possible excess arguments are passed by position.
___________________________________________________________Arguments_
_P_a_r_a_m_e_t_e_r_s is either a plain list of parameters or a term
{Free}/List. _F_r_e_e represents variables that
are shared between the context and the _L_a_m_b_d_a
term. This is needed for compiling _L_a_m_b_d_a
expressions.
_+_F_r_e_e / _:_L_a_m_b_d_a
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5_, _?_A_6))
/((_+_F_r_e_e_, _:_L_a_m_b_d_a_, _?_A_1_, _?_A_2_, _?_A_3_, _?_A_4_, _?_A_5_, _?_A_6_, _?_A_7))
Shorthand for Free/[]>>Lambda. This is the same as applying call/N
on _L_a_m_b_d_a, except that only variables appearing in _F_r_e_e are bound
by the call. For example
____________________________________________________________________| |
| p(1,a). |
| p(2,b). |
| |
| ?- {X}/p(X,Y). |
| X = 1; |
||X_=_2.____________________________________________________________ ||
This can in particularly be combined with bagof/3 and setof/3
to _s_e_l_e_c_t particular variables to be concerned rather than using
existential quantification (^/2) to _e_x_c_l_u_d_e variables. For
example, the two calls below are equivalent.
____________________________________________________________________| |
| setof(X, Y^p(X,Y), Xs) |
||setof(X,_{X}/p(X,_),_Xs)__________________________________________ ||
iiss__llaammbbddaa((_@_T_e_r_m)) _[_s_e_m_i_d_e_t_]
True if _T_e_r_m is a valid Lambda expression.
llaammbbddaa__ccaallllss((_+_L_a_m_b_d_a_E_x_p_r_e_s_s_i_o_n_, _-_G_o_a_l)) _[_d_e_t_]
llaammbbddaa__ccaallllss((_+_L_a_m_b_d_a_E_x_p_r_e_s_s_i_o_n_, _+_E_x_t_r_a_A_r_g_s_, _-_G_o_a_l)) _[_d_e_t_]
_G_o_a_l is the goal called if call/N is applied to _L_a_m_b_d_a_E_x_p_r_e_s_s_i_o_n,
where _E_x_t_r_a_A_r_g_s are the additional arguments to call/N. _E_x_t_r_a_A_r_g_s
can be an integer or a list of concrete arguments. This predicate
is used for cross-referencing and code highlighting.
CChhaapptteerr 1144.. HHAACCKKEERRSS CCOORRNNEERR
This appendix describes a number of predicates which enable the
Prolog user to inspect the Prolog environment and manipulate (or
even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described
here should be handled with some care as it is easy to corrupt the
consistency of the Prolog system by misusing them.
1144..11 EExxaammiinniinngg tthhee EEnnvviirroonnmmeenntt SSttaacckk
pprroolloogg__ccuurrrreenntt__ffrraammee((_-_F_r_a_m_e)) _[_d_e_t_]
Unify _F_r_a_m_e with an integer providing a reference to the parent
of the current local stack frame. A pointer to the current
local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately
after succeeding.
pprroolloogg__ccuurrrreenntt__cchhooiiccee((_-_C_h_o_i_c_e)) _[_s_e_m_i_d_e_t_]
Unify _C_h_o_i_c_e with an integer provided a reference to the last
choice point. Fails if the current environment has no choice
points. See also prolog_choice_attribute/3.
pprroolloogg__ffrraammee__aattttrriibbuuttee((_+_F_r_a_m_e_, _+_K_e_y_, _:_V_a_l_u_e))
Obtain information about the local stack frame _F_r_a_m_e. _F_r_a_m_e
is a frame reference as obtained through prolog_current_frame/1,
prolog_trace_interception/4 or this predicate. The key values are
described below.
aalltteerrnnaattiivvee
_V_a_l_u_e is unified with an integer reference to the local stack
frame in which execution is resumed if the goal associated
with _F_r_a_m_e fails. Fails if the frame has no alternative
frame.
hhaass__aalltteerrnnaattiivveess
_V_a_l_u_e is unified with true if _F_r_a_m_e still is a candidate for
backtracking; false otherwise.
ggooaall
_V_a_l_u_e is unified with the goal associated with _F_r_a_m_e. If
the definition module of the active predicate is not the
calling context, the goal is represented as <_m_o_d_u_l_e>:<_g_o_a_l>.
Do not instantiate variables in this goal unless you kknnooww
what you are doing! Note that the returned term may contain
references to the frame and should be discarded before the
frame terminates.
ppaarreenntt__ggooaall
If _V_a_l_u_e is instantiated to a callable term, find a frame
executing the predicate described by _V_a_l_u_e and unify the
arguments of _V_a_l_u_e to the goal arguments associated with the
frame. This is intended to check the current execution
context. The user must ensure the checked parent goal is not
removed from the stack due to last-call optimisation and be
aware of the slow operation on deeply nested calls.
pprreeddiiccaattee__iinnddiiccaattoorr
Similar to goal, but only returning the
[<_m_o_d_u_l_e>:]<_n_a_m_e>/<_a_r_i_t_y> term describing the term, not
the actual arguments. It avoids creating an illegal term as
goal and is used by the library prolog_stack.
ccllaauussee
_V_a_l_u_e is unified with a reference to the currently running
clause. Fails if the current goal is associated with a
foreign (C) defined predicate. See also nth_clause/3 and
clause_property/2.
lleevveell
_V_a_l_u_e is unified with the recursion level of _F_r_a_m_e. The top
level frame is at level `0'.
ppaarreenntt
_V_a_l_u_e is unified with an integer reference to the parent local
stack frame of _F_r_a_m_e. Fails if _F_r_a_m_e is the top frame.
ccoonntteexxtt__mmoodduullee
_V_a_l_u_e is unified with the name of the context module of the
environment.
ttoopp
_V_a_l_u_e is unified with true if _F_r_a_m_e is the top Prolog goal
from a recursive call back from the foreign language; false
otherwise.
hhiiddddeenn
_V_a_l_u_e is unified with true if the frame is hidden from the
user, either because a parent has the hide-childs attribute
(all system predicates), or the system has no trace-me
attribute.
sskkiippppeedd
_V_a_l_u_e is true if this frame was skipped in the debugger.
ppcc
_V_a_l_u_e is unified with the program pointer saved on behalf
of the parent goal if the parent goal is not owned by a
foreign predicate or belongs to a compound meta-call (e.g.,
call((a,b))).
aarrgguummeenntt((_N))
_V_a_l_u_e is unified with the _N-th slot of the frame. Argument
1 is the first argument of the goal. Arguments above the
arity refer to local variables. Fails silently if _N is out of
range.
pprroolloogg__cchhooiiccee__aattttrriibbuuttee((_+_C_h_o_i_c_e_P_o_i_n_t_, _+_K_e_y_, _-_V_a_l_u_e))
Extract attributes of a choice point. _C_h_o_i_c_e_P_o_i_n_t is a reference
to a choice point as passed to prolog_trace_interception/4 on
the 3rd argument or obtained using prolog_current_choice/1. _K_e_y
specifies the requested information:
ppaarreenntt
Requests a reference to the first older choice point.
ffrraammee
Requests a reference to the frame to which the choice point
refers.
ttyyppee
Requests the type. Defined values are clause (the goal
has alternative clauses), foreign (non-deterministic foreign
predicate), jump (clause internal choice point), top (first
dummy choice point), catch (catch/3 to allow for undo), debug
(help the debugger), or none (has been deleted).
This predicate is used for the graphical debugger to show the
choice point stack.
ddeetteerrmmiinniissttiicc((_-_B_o_o_l_e_a_n))
Unifies its argument with true if no choice point exists that is
more recent than the entry of the clause in which it appears.
There are few realistic situations for using this predicate. It
is used by the prolog/0 top level to check whether Prolog should
prompt the user for alternatives. Similar results can be achieved
in a more portable fashion using call_cleanup/2.
1144..22 AAnncceessttrraall ccuuttss
pprroolloogg__ccuutt__ttoo((_+_C_h_o_i_c_e))
Prunes all choice points created since _C_h_o_i_c_e. Can be used
together with prolog_current_choice/1 to implement _a_n_c_e_s_t_r_a_l cuts.
This predicate is in the hackers corner because it should not be
used in normal Prolog code. It may be used to create new high
level control structures, particularly for compatibility purposes.
Note that in the current implementation, the pruned choice points
and environment frames are _n_o_t reclaimed. As a consequence, where
predicates that are deterministic due to clause indexing, normal
cuts or (if\send{then};else) and and tail recursive run in bounded
local stack space, predicates using prolog_cut_to/1will run out of
stack.
1144..33 IInntteerrcceeppttiinngg tthhee TTrraacceerr
pprroolloogg__ttrraaccee__iinntteerrcceeppttiioonn((_+_P_o_r_t_, _+_F_r_a_m_e_, _+_C_h_o_i_c_e_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. This predicate is called
from the SWI-Prolog debugger just before it would show a port.
If this predicate succeeds, the debugger assumes that the trace
action has been taken care of and continues execution as described
by _A_c_t_i_o_n. Otherwise the normal Prolog debugger actions are
performed.
_P_o_r_t denotes the reason to activate the tracer (`port' in the
4/5-port, but with some additions):
ccaallll
Normal entry through the call port of the 4-port debugger.
rreeddoo((_P_C))
Normal entry through the redo port of the 4-port debugger.
The redo port signals resuming a predicate to generate
alternative solutions. If _P_C is 0 (zero), clause indexing has
found another clause that will be tried next. Otherwise, _P_C
is the program counter in the current clause where execution
continues. This implies we are dealing with an in-clause
choice point left by, e.g., ;/2. Note that non-determinism in
foreign predicates are also handled using an in-clause choice
point.
uunniiffyy
The unify port represents the _n_e_c_k instruction, signalling
the end of the head-matching process. This port is normally
invisible. See leash/1 and visible/1.
eexxiitt
The exit port signals the goal is proved. It is possible for
the goal to have alternatives. See prolog_frame_attribute/3 to
examine the goal stack.
ffaaiill
The fail port signals final failure of the goal.
eexxcceeppttiioonn((_E_x_c_e_p_t))
An exception is raised and still pending. This port is
activated on each parent frame of the frame generating the
exception until the exception is caught or the user restarts
normal computation using retry. _E_x_c_e_p_t is the pending
exception term.
bbrreeaakk((_P_C))
A break instruction is executed. _P_C is program counter. This
port is used by the graphical debugger.
ccuutt__ccaallll((_P_C))
A cut is encountered at _P_C. This port is used by the graphical
debugger to visualise the effect of the cut.
ccuutt__eexxiitt((_P_C))
A cut has been executed. See cut_call(_P_C) for more informa-
tion.
_F_r_a_m_e is a reference to the current local stack frame, which
can be examined using prolog_frame_attribute/3. _C_h_o_i_c_e is a
reference to the last choice point and can be examined using
prolog_choice_attribute/3. _A_c_t_i_o_n must be unified with a term that
specifies how execution must continue. The following actions are
defined:
aabboorrtt
Abort execution. See abort/0.
ccoonnttiinnuuee
Continue (i.e., _c_r_e_e_p in the command line debugger).
ffaaiill
Make the current goal fail.
iiggnnoorree
Step over the current goal without executing it.
nnooddeebbuugg
Continue execution in normal nodebugging mode. See nodebug/0.
rreettrryy
Retry the current frame.
rreettrryy((_F_r_a_m_e))
Retry the given frame. This must be a parent of the current
frame.
sskkiipp
Skip over the current goal (i.e., _s_k_i_p in the command line
debugger).
uupp
Skip to the parent goal (i.e., _u_p in the command line
debugger).
Together with the predicates described in section ???? and the other
predicates of this chapter, this predicate enables the Prolog user
to define a complete new debugger in Prolog. Besides this,
it enables the Prolog programmer to monitor the execution of a
program. The example below records all goals trapped by the tracer
in the database.
____________________________________________________________________| |
| prolog_trace_interception(Port, Frame, _PC, continue) :- |
| prolog_frame_attribute(Frame, goal, Goal), |
| prolog_frame_attribute(Frame, level, Level), |
||________recordz(trace,_trace(Port,_Level,_Goal))._________________ ||
To trace the execution of `go' this way the following query should
be given:
____________________________________________________________________| |
||?-_trace,_go,_notrace.____________________________________________ ||
pprroolloogg__sskkiipp__ffrraammee((_-_F_r_a_m_e))
Indicate _F_r_a_m_e as a skipped frame and set the `skip level' (see
prolog_skip_level/2 to the recursion depth of _F_r_a_m_e. The effect of
the skipped flag is that a redo on a child of this frame is handled
differently. First, a redo trace is called for the child, where
the skip level is set to redo_in_skip. Next, the skip level is set
to skip level of the skipped frame.
pprroolloogg__sskkiipp__lleevveell((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the old value of `skip level' and then set
this level according to _N_e_w. _N_e_w is an integer, the atom
very_deep (meaning don't skip) or the atom skip_in_redo (see
prolog_skip_frame/1). The `skip level' is a setting of each Prolog
thread that disables the debugger on all recursion levels deeper
than the level of the variable. See also prolog_skip_frame/1.
1144..44 BBrreeaakkppooiinntt aanndd wwaattcchhppooiinntt hhaannddlliinngg
SWI-Prolog support _b_r_e_a_k_p_o_i_n_t_s. Breakpoints can be manipulated with
the library prolog_breakpoints. Setting a breakpoint replaces a
virtual machine instruction with the D_BREAK instruction. If the
virtual machine executes a D_BREAK, it performs a callback to decide on
the action to perform. This section describes this callback, called
prolog:break_hook/6.
pprroolloogg::bbrreeaakk__hhooookk((_+_C_l_a_u_s_e_, _+_P_C_, _+_F_R_, _+_B_F_R_, _+_E_x_p_r_e_s_s_i_o_n_, _-_A_c_t_i_o_n))_[_h_o_o_k_,_s_e_m_i_d_e_t_]
_E_x_p_e_r_i_m_e_n_t_a_l This hook is called if the virtual machine executes a
D_BREAK, set using set_breakpoint/4. _C_l_a_u_s_e and _P_C identify the
breakpoint. _F_R and _B_F_R provide the environment frame and current
choicepoint. _E_x_p_r_e_s_s_i_o_n identifies the action that is interrupted,
and is one of the following:
ccaallll((_G_o_a_l))
The instruction will call _G_o_a_l. This is generated for nearly
all instructions. Note that _G_o_a_l is semantically equivalent
to the compiled body term, but might differ syntactically.
This is notably the case when arithmetic expressions are
compiled in optimized mode (see optimise). In particular,
the arguments of arithmetic expressions have already been
evaluated. Thus, _A is 3*_B, where _B equals 3 results in a
term call(A is 9) if the clause was compiled with optimization
enabled.
!
The instruction will call the cut. Because the semantics of
metacalling the cut differs from executing the cut in its
original context we do not wrap the cut in call/1.
:-
The breakpoint is on the _n_e_c_k instruction, i.e., after
performing the head unifications.
eexxiitt
The breakpoint is on the _e_x_i_t instruction, i.e., at the end of
the clause. Note that the exit instruction may not be reached
due to last-call optimisation.
uunniiffyy__eexxiitt
The breakpoint is on the completion of an in-lined unification
while the system is not in debug mode. If the system is in
debug mode, inlined unification is returned as call(Var=Term).
If prolog:break_hook/6 succeeds, it must unify _A_c_t_i_o_n with a value
that describes how execution must continue. Possible values for
_A_c_t_i_o_n are:
ccoonnttiinnuuee
Just continue as if no breakpoint was present.
ddeebbuugg
Continue in _d_e_b_u_g _m_o_d_e. See debug/0.
ttrraaccee
Continue in _t_r_a_c_e _m_o_d_e. See trace/0.
ccaallll((_G_o_a_l))
Execute _G_o_a_l instead of the goal that would be executed.
_G_o_a_l is executed as call/1, preserving (non-)determinism and
exceptions.
If this hook throws an exception, the exception is propagated
normally. If this hook is not defined or fails, the default action
is executed. This implies that, if the thread is in debug mode,
the tracer will be enabled (trace) and otherwise the breakpoint is
ignored (continue).
This hook allows for injecting various debugging scenarios into the
executable without recompiling. The hook can access variables of
the calling context using the frame inspection predicates. Here
are some examples.
o Create _c_o_n_d_i_t_i_o_n_a_l breakpoints by imposing conditions before
deciding the return trace.
o Watch variables at a specific point in the execution. Note
that binding of these variables can be monitored using
_a_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s, see section ????.
o Dynamically add _a_s_s_e_r_t_i_o_n_s on variables using assertion/1.
o Wrap the _G_o_a_l into a meta-call that traces progress of the
_G_o_a_l.
1144..55 AAddddiinngg ccoonntteexxtt ttoo eerrrroorrss:: pprroolloogg__eexxcceeppttiioonn__hhooookk
The hook prolog_exception_hook/4 has been introduced in SWI-Prolog 5.6.5
to provide dedicated exception handling facilities for application
frameworks, for example non-interactive server applications that wish
to provide extensive context for exceptions for offline debugging.
pprroolloogg__eexxcceeppttiioonn__hhooookk((_+_E_x_c_e_p_t_i_o_n_I_n_, _-_E_x_c_e_p_t_i_o_n_O_u_t_, _+_F_r_a_m_e_, _+_C_a_t_c_h_e_r_F_r_a_m_e))
This hook predicate, if defined in the module user, is between
raising an exception and handling it. It is intended to
allow a program adding additional context to an exception to
simplify diagnosing the problem. _E_x_c_e_p_t_i_o_n_I_n is the exception
term as raised by throw/1 or one of the built-in predicates.
The output argument _E_x_c_e_p_t_i_o_n_O_u_t describes the exception that
is actually raised. _F_r_a_m_e is the innermost frame. See
prolog_frame_attribute/3 and the library prolog_stack for getting
information from this. _C_a_t_c_h_e_r_F_r_a_m_e is a reference to the frame
calling the matching catch/3, none if the exception is not caught
or 'C' if the exception is caught in C calling Prolog using the
flag PL_Q_CATCH_EXCEPTION.
The hook is run in `nodebug' mode. If it succeeds, _E_x_c_e_p_t_i_o_n_O_u_t is
considered the current exception. If it fails, _E_x_c_e_p_t_i_o_n_I_n is used
for further processing. The hook is _n_e_v_e_r called recursively. The
hook is _n_o_t allowed to modify _E_x_c_e_p_t_i_o_n_O_u_t in such a way that it no
longer unifies with the catching frame.
Typically, prolog_exception_hook/4 is used to fill the second
argument of error(_F_o_r_m_a_l_, _C_o_n_t_e_x_t) exceptions. _F_o_r_m_a_l is defined
by the ISO standard, while SWI-Prolog defines _C_o_n_t_e_x_t as a
term context(_L_o_c_a_t_i_o_n_, _M_e_s_s_a_g_e). _L_o_c_a_t_i_o_n is bound to a term
<_n_a_m_e>/<_a_r_i_t_y> by the kernel. This hook can be used to add more
information on the calling context, such as a full stack trace.
Applications that use exceptions as part of normal processing must
do a quick test of the environment before starting expensive
gathering information on the state of the program.
The hook can call trace/0 to enter trace mode immediately. For
example, imagine an application performing an unwanted division by
zero while all other errors are expected and handled. We can force
the debugger using the hook definition below. Run the program in
debug mode (see debug/0) to preserve as much as possible of the
error context.
____________________________________________________________________| |
| user:prolog_exception_hook( |
| error(evaluation_error(zero_divisor), _), |
| _, _, _) :- |
||________trace,_fail.______________________________________________ ||
1144..66 HHooookkss uussiinngg tthhee eexxcceeppttiioonn pprreeddiiccaattee
This section describes the predicate exception/3, which can be defined
by the user in the module user as a multifile predicate. Unlike the
name suggests, this is actually a _h_o_o_k predicate that has no relation
to Prolog exceptions as defined by the ISO predicates catch/3 and
throw/1.
The predicate exception/3 is called by the kernel on a couple of
events, allowing the user to `fix' errors just-in-time. The mechanism
allows for _l_a_z_y creation of objects such as predicates.
eexxcceeppttiioonn((_+_E_x_c_e_p_t_i_o_n_, _+_C_o_n_t_e_x_t_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. Called by the Prolog
system on run-time exceptions that can be repaired `just-in-time'.
The values for _E_x_c_e_p_t_i_o_n are described below. See also catch/3 and
throw/1.
If this hook predicate succeeds it must instantiate the _A_c_t_i_o_n
argument to the atom fail to make the operation fail silently,
retry to tell Prolog to retry the operation or error to make the
system generate an exception. The action retry only makes sense if
this hook modified the environment such that the operation can now
succeed without error.
uunnddeeffiinneedd__pprreeddiiccaattee
_C_o_n_t_e_x_t is instantiated to a predicate indicator
([module]:<_n_a_m_e>/<_a_r_i_t_y>). If the predicate fails, Prolog will
generate an existence_error exception. The hook is intended
to implement alternatives to the built-in autoloader, such as
autoloading code from a database. Do _n_o_t use this hook to
suppress existence errors on predicates. See also unknown and
section ????.
uunnddeeffiinneedd__gglloobbaall__vvaarriiaabbllee
_C_o_n_t_e_x_t is instantiated to the name of the missing global
variable. The hook must call nb_setval/2 or b_setval/2 before
returning with the action retry.
1144..77 HHooookkss ffoorr iinntteeggrraattiinngg lliibbrraarriieess
Some libraries realise an entirely new programming paradigm on top of
Prolog. An example is XPCE which adds an object system to Prolog as
well as an extensive set of graphical primitives. SWI-Prolog provides
several hooks to improve the integration of such libraries. See also
section ???? for editing hooks and section ???? for hooking into the
message system.
pprroolloogg__lliisstt__ggooaall((_:_G_o_a_l))
Hook, normally not defined. This hook is called by the 'L' command
of the tracer in the module user to list the currently called
predicate. This hook may be defined to list only relevant clauses
of the indicated _G_o_a_l and/or show the actual source code in an
editor. See also portray/1 and multifile/1.
pprroolloogg::ddeebbuugg__ccoonnttrrooll__hhooookk((_:_A_c_t_i_o_n))
Hook for the debugger control predicates that allows the creator of
more high-level programming languages to use the common front-end
predicates to control the debugger. For example, XPCE uses these
hooks to allow for spying methods rather than predicates. _A_c_t_i_o_n
is one of:
ssppyy((_S_p_e_c))
Hook in spy/1. If the hook succeeds spy/1 takes no further
action.
nnoossppyy((_S_p_e_c))
Hook in nospy/1. If the hook succeeds nospy/1 takes no
further action. If spy/1 is hooked, it is advised to place a
complementary hook for nospy/1.
nnoossppyyaallll
Hook in nospyall/0. Should remove all spy points. This hook
is called in a failure-driven loop.
ddeebbuuggggiinngg
Hook in debugging/0. It can be used in two ways. It can
report the status of the additional debug points controlled
by the above hooks and fail to let the system report the
others, or it succeeds, overruling the entire behaviour of
debugging/0.
pprroolloogg::hheellpp__hhooookk((_+_A_c_t_i_o_n))
Hook into help/0 and help/1. If the hook succeeds, the built-in
actions are not executed. For example, ?- help(picture). is caught
by the XPCE help hook to give help on the class _p_i_c_t_u_r_e. Defined
actions are:
hheellpp
User entered plain help/0 to give default help. The default
performs help(help/1), giving help on help.
hheellpp((_W_h_a_t))
Hook in help/1 on the topic _W_h_a_t.
aapprrooppooss((_W_h_a_t))
Hook in apropos/1 on the topic _W_h_a_t.
1144..88 HHooookkss ffoorr llooaaddiinngg ffiilleess
All loading of source files is achieved by load_files/2. The hook
prolog_load_file/2 can be used to load Prolog code from non-files or
even load entirely different information, such as foreign files.
pprroolloogg__llooaadd__ffiillee((_+_S_p_e_c_, _+_O_p_t_i_o_n_s))
Load a single object. If this call succeeds, load_files/2 assumes
the action has been taken care of. This hook is only called if
_O_p_t_i_o_n_s does not contain the stream(_I_n_p_u_t) option. The hook must
be defined in the module user.
This can be used to load from unusual places. For example,
library http/http_load loads Prolog directly from an HTTP server.
It can also be used to load source in unusual forms, such as
loading compressed files without decompressing them first. There
is currently no example of that.
pprroolloogg::ccoommmmeenntt__hhooookk((_+_C_o_m_m_e_n_t_s_, _+_P_o_s_, _+_T_e_r_m))
This hook allows for processing comments encountered by the
compiler. If this hook is defined, the compiler calls read_term/2
with the option comments(_C_o_m_m_e_n_t_s). If the list of comments
returned by read_term/2 is not empty it calls this comment hook
with the following arguments.
o _C_o_m_m_e_n_t_s is the non-empty list of comments. Each comment is
a pair _P_o_s_i_t_i_o_n-_S_t_r_i_n_g, where _S_t_r_i_n_g is a string object (see
section ????) that contains the comment _i_n_c_l_u_d_i_n_g delimiters.
Consecutive line comments are returned as a single comment.
o _P_o_s is a stream-position term that describes the starting
position of _T_e_r_m
o _T_e_r_m is the term read.
This hook is exploited by the documentation system. See
stream_position_data/3. See also read_term/3.
CChhaapptteerr 1155.. CCOOMMPPAATTIIBBIILLIITTYY WWIITTHH OOTTHHEERR PPRROOLLOOGG DDIIAALLEECCTTSS
This chapter explains issues for writing portable Prolog programs.
It was started after discussion with Vitor Santos Costa, the leading
developer of YAP Prolog YAP and SWI-Prolog have expressed the
ambition to enhance the portability beyond the trivial Prolog examples,
including complex libraries involving foreign code.
Although it is our aim to enhance compatibility, we are still faced
with many incompatibilities between the dialects. As a first step both
YAP and SWI will provide some instruments that help developing portable
code. A first release of these tools appeared in SWI-Prolog 5.6.43.
Some of the facilities are implemented in the base system, others in
the library dialect.pl.
o The Prolog flag dialect is an unambiguous and fast way to find out
which Prolog dialect executes your program. It has the value swi
for SWI-Prolog and yap on YAP.
o The Prolog flag version_data is bound to a term swi(_M_a_j_o_r_, _M_i_n_o_r_,
_P_a_t_c_h_, _E_x_t_r_a)
o Conditional compilation using :- if(Condition) ...:- endif is
supported. See section ????.
o The predicate expects_dialect/1 allows for specifying for which
Prolog system the code was written.
o The predicates exists_source/1 and source_exports/2 can be used to
query the library content. The require/1 directive can be used to
get access to predicates without knowing their location.
o The module predicates use_module/1, use_module/2have been extended
with a notion for `import-except' and `import-as'. This is
particularly useful together with reexport/1 and reexport/2 to
compose modules from other modules and mapping names.
o Foreign code can expect __SWI_PROLOG__ when compiled for SWI-Prolog
and __YAP_PROLOG__when compiled on YAP.
::-- eexxppeeccttss__ddiiaalleecctt((_+_D_i_a_l_e_c_t))
This directive states that the code following the directive is
written for the given Prolog _D_i_a_l_e_c_t. See also dialect. The
declaration holds until the end of the file in which it appears.
The current dialect is available using prolog_load_context/2.
The exact behaviour of this predicate is still subject to
discussion. Of course, if _D_i_a_l_e_c_t matches the running dialect the
directive has no effect. Otherwise we check for the existence
of library(_d_i_a_l_e_c_t_/_D_i_a_l_e_c_t) and load it if the file is found.
Currently, this file has this functionality:
o Define system predicates of the requested dialect we do not
have.
o Apply goal_expansion/2 rules that map conflicting predicates
to versions emulating the requested dialect. These expansion
rules reside in the dialect compatibility module, but are
applied if prolog_load_context(dialect, Dialect) is active.
o Modify the search path for library directories, putting
libraries compatible with the target dialect before the native
libraries.
o Setup support for the default filename extension of the
dialect.
eexxiissttss__ssoouurrccee((_+_S_p_e_c))
Is true if _S_p_e_c exists as a Prolog source. _S_p_e_c uses the same
conventions as load_files/2. Fails without error if _S_p_e_c cannot be
found.
ssoouurrccee__eexxppoorrttss((_+_S_p_e_c_, _+_E_x_p_o_r_t))
Is true if source _S_p_e_c exports _E_x_p_o_r_t, a predicate indicator.
Fails without error otherwise.
1155..11 SSoommee ccoonnssiiddeerraattiioonnss ffoorr wwrriittiinngg ppoorrttaabbllee ccooddee
The traditional way to write portable code is to define custom
predicates for all potentially non-portable code and define these
separately for all Prolog dialects one wishes to support. Here are
some considerations.
o Probably the best reason for this is that it allows to define
minimal semantics required by the application for the portability
predicates. Such functionality can often be mapped efficiently to
the target dialect. Contrary, if code was written for dialect
X, the defined semantics are those of dialect X. Emulating all
extreme cases and full error handling compatibility may be tedious
and result in a much slower implementation that needed. Take for
example call_cleanup/2. The SICStus definition is fundamentally
different from the SWI definition, but 99% of the applications just
want to make calls like below to guarantee _S_t_r_e_a_m_I_n is closed, even
if process/1 misbehaves.
____________________________________________________________________| |
||________call_cleanup(process(StreamIn),_close(In))________________ ||
o As a drawback, the code becomes full of _m_y___c_a_l_l___c_l_e_a_n_u_p, etc. and
every potential portability conflict needs to be abstracted. It
is hard for people who have to maintain such code later to grasp
the exact semantics of the _m_y___* predicates and applications that
combine multiple libraries using this compatibility approach are
likely to encounter conflicts between the portability layers. A
good start is not to use _m_y___*, but a prefix derived from the
library or application name or names that explain the intended
semantics more precisely.
o Another problem is that most code is initially not written
with portability in mind. Instead, ports are requested by
users or arise from the desire to switch Prolog dialect.
Typically, we want to achieve compatibility with the new Prolog
dialect with minimal changes, often keeping compatibility with
the original dialect(s). This problem is well known from the
C/Unix world and we advise anyone to study the philosophy of
http://www.gnu.org/software/autoconf/GNU autoconf, from which we
will illustrate some highlights below.
The GNU autoconf suite, known to most people as configure, was an
answer to the frustrating life of Unix/C programmers when Unix dialects
were about as abundant and poorly standardised as Prolog dialects
today. Writing a portable C program can only be achieved using cpp,
the C preprocessor. The C preprocessor performs two tasks: macro
expansion and conditional compilation. Prolog realises macro expansion
through term_expansion/2 and goal_expansion/2. Conditional compilation
is achieved using :- if(Condition) as explained in section ????. The
situation appears similar.
The important lesson learned from GNU autoconf is that the _l_a_s_t resort
for conditional compilation to achieve portability is to switch on the
platform or dialect. Instead, GNU autoconf allows you to write tests
for specific properties of the platform. Most of these are whether
or not some function or file is available. Then there are some
standard tests for difficult-to-write-portable situations and finally
there is a framework that allows you to write arbitrary C programs
and check whether they can be compiled and/or whether they show the
intended behaviour. Using a separate configure program is needed in
C, as you cannot perform C compilation step or run C programs from
the C preprocessor. In most Prolog environments we do not need this
distinction as the compiler is integrated into the runtime environment
and Prolog has excellent reflexion capabilities.
We must learn from the distinction to test for features instead of
platform (dialect), as this makes the platform-specific code robust for
future changes of the dialect. Suppose we need compare/3 as defined in
this manual. The compare/3 predicate is not part of the ISO standard,
but many systems support it and it is not unlikely it will become
ISO standard or the intended dialect will start supporting it. GNU
autoconf strongly advises to test for the availability:
________________________________________________________________________| |
|:- if(\+current_predicate(_, compare(_,_,_))). |
|compare(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare(=, Term1, Term2) :- |
| Term1 == Term2. |
|:-|endif.______________________________________________________________ | |
This code is mmuucchh more robust against changes to the intended dialect
and, possibly at least as important, will provide compatibility with
dialects you didn't even consider porting to right now.
In a more challenging case, the target Prolog has compare/3, but the
semantics are different. What to do? One option is to write a
my_compare/3 and change all occurrences in the code. Alternatively you
can rename calls using goal_expansion/2 like below. This construct
will not only deal with Prolog dialects lacking compare/3 as well as
those that only implement it for numeric comparison or have changed
the argument order. Of course, writing rock-solid code would require
a complete test-suite, but this example will probably cover all
Prolog dialects that allow for conditional compilation, have core ISO
facilities and provide goal_expansion/2, the things we claim a Prolog
dialect should have to start writing portable code for it.
________________________________________________________________________| |
|:- if(\+catch(compare(<,a,b), _, fail)). |
|compare_standard_order(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare_standard_order(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare_standard_order(=, Term1, Term2) :- |
| Term1 == Term2. |
| |
|goal_expansion(compare(Order, Term1, Term2), |
| compare_standard_order(Order, Term1, Term2)). |
|:-|endif.______________________________________________________________ | |
CChhaapptteerr 1166.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS
aannoonnyymmoouuss [[vvaarriiaabbllee]]
The variable _ is called the _a_n_o_n_y_m_o_u_s variable. Multiple
occurrences of _ in a single _t_e_r_m are not _s_h_a_r_e_d.
aarrgguummeennttss
Arguments are _t_e_r_m_s that appear in a _c_o_m_p_o_u_n_d _t_e_r_m. _A_1 and _a_2 are
the first and second argument of the term myterm(_A_1_, _a_2).
aarriittyy
Argument count (= number of arguments) of a _c_o_m_p_o_u_n_d _t_e_r_m.
aasssseerrtt
Add a _c_l_a_u_s_e to a _p_r_e_d_i_c_a_t_e. Clauses can be added at either end of
the clause-list of a _p_r_e_d_i_c_a_t_e. See asserta/1 and assertz/1.
aattoomm
Textual constant. Used as name for _c_o_m_p_o_u_n_d terms, to represent
constants or text.
bbaacckkttrraacckkiinngg
Search process used by Prolog. If a predicate offers multiple
_c_l_a_u_s_e_s to solve a _g_o_a_l, they are tried one-by-one until one
_s_u_c_c_e_e_d_s. If a subsequent part of the proof is not satisfied
with the resulting _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g, it may ask for an alternative
_s_o_l_u_t_i_o_n (= _b_i_n_d_i_n_g of the _v_a_r_i_a_b_l_e_s), causing Prolog to reject the
previously chosen _c_l_a_u_s_e and try the next one.
bbiinnddiinngg [[ooff aa vvaarriiaabbllee]]
Current value of the _v_a_r_i_a_b_l_e. See also _b_a_c_k_t_r_a_c_k_i_n_g and _q_u_e_r_y.
bbuuiilltt--iinn [[pprreeddiiccaattee]]
Predicate that is part of the Prolog system. Built-in predicates
cannot be redefined by the user, unless this is overruled using
redefine_system_predicate/1.
bbooddyy
Part of a _c_l_a_u_s_e behind the _n_e_c_k operator (:-).
cchhooiiccee ppooiinntt
A _c_h_o_i_c_e _p_o_i_n_t represents a choice in the search for a _s_o_l_u_t_i_o_n.
Choice points are created if multiple clauses match a _q_u_e_r_y or
using disjunction (;/2). On _b_a_c_k_t_r_a_c_k_i_n_g, the execution state of
the most recent _c_h_o_i_c_e _p_o_i_n_t is restored and search continues with
the next alternative (i.e., next clause or second branch of ;/2).
ccllaauussee
`Sentence' of a Prolog program. A _c_l_a_u_s_e consists of a _h_e_a_d and
_b_o_d_y separated by the _n_e_c_k operator (:-) or it is a _f_a_c_t. For
example:
____________________________________________________________________| |
| parent(X) :- |
||________father(X,__)._____________________________________________ ||
Expressed as ``X is a parent if X is a father of someone''. See
also _v_a_r_i_a_b_l_e and _p_r_e_d_i_c_a_t_e.
ccoommppiillee
Process where a Prolog _p_r_o_g_r_a_m is translated to a sequence of
instructions. See also _i_n_t_e_r_p_r_e_t_e_d. SWI-Prolog always compiles
your program before executing it.
ccoommppoouunndd [[tteerrmm]]
Also called _s_t_r_u_c_t_u_r_e. It consists of a name followed by _N
_a_r_g_u_m_e_n_t_s, each of which are _t_e_r_m_s. _N is called the _a_r_i_t_y of the
term.
ccoonntteexxtt mmoodduullee
If a _t_e_r_m is referring to a _p_r_e_d_i_c_a_t_e in a _m_o_d_u_l_e, the _c_o_n_t_e_x_t
_m_o_d_u_l_e is used to find the target module. The context module of a
_g_o_a_l is the module in which the _p_r_e_d_i_c_a_t_e is defined, unless this
_p_r_e_d_i_c_a_t_e is _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t, in which case the _c_o_n_t_e_x_t _m_o_d_u_l_e
is inherited from the parent _g_o_a_l. See also module_transparent/1
and _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
ddccgg
Abbreviation for _D_e_f_i_n_i_t_e _C_l_a_u_s_e _G_r_a_m_m_a_r.
ddeett [[ddeetteerrmmiinniissmm]]
Short for _d_e_t_e_r_m_i_n_i_s_t_i_c.
ddeetteerrmmiinniissmm
How many solutions a _g_o_a_l can provide. Values are `nondet' (zero
to infinite), `multi' (one to infinite), `det' (exactly one) and
`semidet' (zero or one).
ddeetteerrmmiinniissttiicc
A _p_r_e_d_i_c_a_t_e is _d_e_t_e_r_m_i_n_i_s_t_i_c if it succeeds exactly one time
without leaving a _c_h_o_i_c_e _p_o_i_n_t.
ddyynnaammiicc [[pprreeddiiccaattee]]
A _d_y_n_a_m_i_c predicate is a predicate to which _c_l_a_u_s_e_s may be _a_s_s_e_r_ted
and from which _c_l_a_u_s_e_s may be _r_e_t_r_a_c_ted while the program is
running. See also _u_p_d_a_t_e _v_i_e_w.
eexxppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _e_x_p_o_r_t_e_d from a _m_o_d_u_l_e if it appears
in the _p_u_b_l_i_c _l_i_s_t. This implies that the predicate can be
_i_m_p_o_r_t_e_d into another module to make it visible there. See also
use_module/[1,2].
ffaacctt
_C_l_a_u_s_e without a _b_o_d_y. This is called a fact because, interpreted
as logic, there is no condition to be satisfied. The example below
states john is a person.
____________________________________________________________________| |
||person(john)._____________________________________________________ ||
ffaaiill
A _g_o_a_l is said to haved failed if it could not be _p_r_o_v_e_n.
ffllooaatt
Computer's crippled representation of a real number. Represented
as `IEEE double'.
ffoorreeiiggnn
Computer code expressed in languages other than Prolog. SWI-Prolog
can only cooperate directly with the C and C++ computer languages.
ffuunnccttoorr
Combination of name and _a_r_i_t_y of a _c_o_m_p_o_u_n_d term. The term foo(_a_,
_b_, _c) is said to be a term belonging to the functor foo/3. foo/0
is used to refer to the _a_t_o_m foo.
ggooaall
Question stated to the Prolog engine. A _g_o_a_l is either an _a_t_o_m
or a _c_o_m_p_o_u_n_d term. A _g_o_a_l either succeeds, in which case the
_v_a_r_i_a_b_l_e_s in the _c_o_m_p_o_u_n_d terms have a _b_i_n_d_i_n_g, or it _f_a_i_l_s if
Prolog fails to prove it.
hhaasshhiinngg
_I_n_d_e_x_i_n_g technique used for quick lookup.
hheeaadd
Part of a _c_l_a_u_s_e before the _n_e_c_k operator (:-). This is an _a_t_o_m or
_c_o_m_p_o_u_n_d term.
iimmppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _i_m_p_o_r_t_e_d into a _m_o_d_u_l_e if it is defined
in another _m_o_d_u_l_e and made available in this _m_o_d_u_l_e. See also
chapter ????.
iinnddeexxiinngg
Indexing is a technique used to quickly select candidate _c_l_a_u_s_e_s of
a _p_r_e_d_i_c_a_t_e for a specific _g_o_a_l. In most Prolog systems, indexing
is done (only) on the first _a_r_g_u_m_e_n_t of the _h_e_a_d. If this argument
is instantiated to an _a_t_o_m, _i_n_t_e_g_e_r, _f_l_o_a_t or _c_o_m_p_o_u_n_d term with
_f_u_n_c_t_o_r, _h_a_s_h_i_n_g is used to quickly select all _c_l_a_u_s_e_s where the
first argument may _u_n_i_f_y with the first argument of the _g_o_a_l.
SWI-Prolog supports just-in-time and multi-argument indexing. See
section ????.
iinntteeggeerr
Whole number. On all implementations of SWI-Prolog integers are at
least 64-bit signed values. When linked to the GNU GMP library,
integer arithmetic is unbounded. See also current_prolog_flag/2,
flags bounded, max_integer and min_integer.
iinntteerrpprreetteedd
As opposed to _c_o_m_p_i_l_e_d, interpreted means the Prolog system
attempts to prove a _g_o_a_l by directly reading the _c_l_a_u_s_e_s rather
than executing instructions from an (abstract) instruction set that
is not or only indirectly related to Prolog.
iinnssttaannttiiaattiioonn [[ooff aann aarrgguummeenntt]]
To what extend a term is bound to a value. Typical levels
are `unbound' (a _v_a_r_i_a_b_l_e), `ground' (term without variables) or
`partially bound' (term with embedded variables).
mmeettaa--pprreeddiiccaattee
A _p_r_e_d_i_c_a_t_e that reasons about other _p_r_e_d_i_c_a_t_e_s, either by calling
them, (re)defining them or querying _p_r_o_p_e_r_t_i_e_s.
mmooddee [[ddeeccllaarraattiioonn]]
Declaration of an argument _i_n_s_t_a_n_t_i_a_t_i_o_n pattern for a _p_r_e_d_i_c_a_t_e,
often accompanied with a _d_e_t_e_r_m_i_n_i_s_m.
mmoodduullee
Collection of predicates. Each module defines a name-space for
predicates. _b_u_i_l_t_-_i_n predicates are accessible from all modules.
Predicates can be published (_e_x_p_o_r_t_e_d) and _i_m_p_o_r_t_e_d to make their
definition available to other modules.
mmoodduullee ttrraannssppaarreenntt [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e that does not change the _c_o_n_t_e_x_t _m_o_d_u_l_e. Sometimes
also called a _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
mmuullttii [[ddeetteerrmmiinniissmm]]
A _p_r_e_d_i_c_a_t_e is said to have _d_e_t_e_r_m_i_n_i_s_m multi if it generates at
_l_e_a_s_t one answer.
mmuullttiiffiillee [[pprreeddiiccaattee]]
Predicate for which the definition is distributed over multiple
source files. See multifile/1.
nneecckk
Operator (:-) separating _h_e_a_d from _b_o_d_y in a _c_l_a_u_s_e.
nnoonnddeett
Short for _n_o_n _d_e_t_e_r_m_i_n_i_s_t_i_c.
nnoonn ddeetteerrmmiinniissttiicc
A _n_o_n _d_e_t_e_r_m_i_n_i_s_t_i_c predicate is a predicate that mail fail or
succeed any number of times.
ooppeerraattoorr
Symbol (_a_t_o_m) that may be placed before its _o_p_e_r_a_n_d (prefix), after
its _o_p_e_r_a_n_d (postfix) or between its two _o_p_e_r_a_n_d_s (infix).
In Prolog, the expression a+b is exactly the same as the canonical
term +(a,b).
ooppeerraanndd
_A_r_g_u_m_e_n_t of an _o_p_e_r_a_t_o_r.
pprreecceeddeennccee
The _p_r_i_o_r_i_t_y of an _o_p_e_r_a_t_o_r. Operator precedence is used to
interpret a+b*c as +(a, *(b,c)).
pprreeddiiccaattee
Collection of _c_l_a_u_s_e_s with the same _f_u_n_c_t_o_r (name/_a_r_i_t_y). If a
_g_o_a_l is proved, the system looks for a _p_r_e_d_i_c_a_t_e with the same
functor, then uses _i_n_d_e_x_i_n_g to select candidate _c_l_a_u_s_e_s and then
tries these _c_l_a_u_s_e_s one-by-one. See also _b_a_c_k_t_r_a_c_k_i_n_g.
pprreeddiiccaattee iinnddiiccaattoorr
Term of the form Name/Arity (traditional) or Name//Arity (ISO DCG
proposal), where Name is an atom and Arity a non-negative integer.
It acts as an _i_n_d_i_c_a_t_o_r (or reference) to a predicate or _D_C_G rule.
pprriioorriittyy
In the context of _o_p_e_r_a_t_o_r_s a synonym for _p_r_e_c_e_d_e_n_c_e.
pprrooggrraamm
Collection of _p_r_e_d_i_c_a_t_e_s.
pprrooppeerrttyy
Attribute of an object. SWI-Prolog defines various _*___p_r_o_p_e_r_t_y
predicates to query the status of predicates, clauses. etc.
pprroovvee
Process where Prolog attempts to prove a _q_u_e_r_y using the available
_p_r_e_d_i_c_a_t_e_s.
ppuubblliicc lliisstt
List of _p_r_e_d_i_c_a_t_e_s exported from a _m_o_d_u_l_e.
qquueerryy
See _g_o_a_l.
rreettrraacctt
Remove a _c_l_a_u_s_e from a _p_r_e_d_i_c_a_t_e. See also _d_y_n_a_m_i_c, _u_p_d_a_t_e _v_i_e_w
and _a_s_s_e_r_t.
sseemmiiddeett
Shorthand for
sseemmii ddeetteerrmmiinniissttiicc
.
sseemmii ddeetteerrmmiinniissttiicc
A _p_r_e_d_i_c_a_t_e that is _s_e_m_i _d_e_t_e_r_m_i_n_i_s_t_i_c either fails or succeeds
exactly once without a _c_h_o_i_c_e _p_o_i_n_t. See also _d_e_t_e_r_m_i_n_i_s_t_i_c.
sshhaarreedd
Two _v_a_r_i_a_b_l_e_s are called _s_h_a_r_e_d after they are _u_n_i_f_i_e_d. This
implies if either of them is _b_o_u_n_d, the other is bound to the same
value:
____________________________________________________________________| |
| ?- A = B, A = a. |
||A_=_B,_B_=_a._____________________________________________________ ||
ssiinngglleettoonn [[vvaarriiaabbllee]]
_V_a_r_i_a_b_l_e appearing only one time in a _c_l_a_u_s_e. SWI-Prolog normally
warns for this to avoid you making spelling mistakes. If a
variable appears on purpose only once in a clause, write it as
_ (see _a_n_o_n_y_m_o_u_s). Rules for naming a variable and avoiding a
warning are given in section ????.
ssoolluuttiioonn
_B_i_n_d_i_n_g_s resulting from a successfully _p_r_o_v_en _g_o_a_l.
ssttrruuccttuurree
Synonym for _c_o_m_p_o_u_n_d term.
ssttrriinngg
Used for the following representations of text: a packed array
(see section ????, SWI-Prolog specific), a list of character codes or
a list of one-character _a_t_o_m_s.
ssuucccceeeedd
A _g_o_a_l is said to have _s_u_c_c_e_e_d_e_d if it has been _p_r_o_v_e_n.
tteerrmm
Value in Prolog. A _t_e_r_m is either a _v_a_r_i_a_b_l_e, _a_t_o_m, _i_n_t_e_g_e_r, _f_l_o_a_t
or _c_o_m_p_o_u_n_d term. In addition, SWI-Prolog also defines the type
_s_t_r_i_n_g.
ttrraannssppaarreenntt
See _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t.
uunniiffyy
Prolog process to make two terms equal by assigning variables in
one term to values at the corresponding location of the other term.
For example:
____________________________________________________________________| |
| ?- foo(a, B) = foo(A, b). |
| A = a, |
||B_=_b.____________________________________________________________ ||
Unlike assignment (which does not exist in Prolog), unification is
not directed.
uuppddaattee vviieeww
How Prolog behaves when a _d_y_n_a_m_i_c _p_r_e_d_i_c_a_t_e is changed while it is
running. There are two models. In most older Prolog systems the
change becomes immediately visible to the _g_o_a_l, in modern systems
including SWI-Prolog, the running _g_o_a_l is not affected. Only new
_g_o_a_l_s `see' the new definition.
vvaarriiaabbllee
A Prolog variable is a value that `is not yet bound'. After
_b_i_n_d_i_n_g a variable, it cannot be modified. _B_a_c_k_t_r_a_c_k_i_n_g to a point
in the execution before the variable was bound will turn it back
into a variable:
____________________________________________________________________| |
| ?- A = b, A = c. |
| false. |
| |
| ?- (A = b; true; A = c). |
| A = b ; |
| true ; |
||A_=_c_.___________________________________________________________ ||
See also _u_n_i_f_y.
CChhaapptteerr 1177.. SSWWII--PPRROOLLOOGG LLIICCEENNSSEE CCOONNDDIITTIIOONNSS AANNDD TTOOOOLLSS
As of version 7.4.0, the SWI-Prolog source code is distributed under
the https://opensource.org/licenses/BSD-2-ClauseSimplified BSD license:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
This, unfortunately, ddooeess nnoott mmeeaann yyoouu ccaann aannyy vveerrssiioonn ooff SSWWII--PPrroolloogg
uunnddeerr tthhee aabboovvee lliicceennssee. The SWI-Prolog core may be linked to
libraries that are more restrictive and in addition your code may have
loaded extension packages that have more restrictive conditions. In
particular, the core is by default linked to https://gmplib.org/libgmp,
distributed under the Lesser GNU Public license.
The above implies you need to configure and recompile the system
without these components. For this we provide options to the configure
script:
________________________________________________________________________| |
|./configure --without-gpl |
|./configure|--without-lgpl_____________________________________________ | |
The GNU MP Bignum Library provides unbounded integers, rational
numbers and some cryptographical functionality. As libgmp is provided
under the Lesser GNU Public license it may legally be combined with
proprietary software as long as libgmp is _d_y_n_a_m_i_c_a_l_l_y _l_i_n_k_e_d (default)
and the end user can replace the libgmp shared object and use your
application with their (possibly modified) version of libgmp. In
practice this leads to problems if the application is not accessible
(e.g., embedded in closed hardware) or you want to avoid customers to
peek around in the process memory as they can easily do so by adding a
backdoor to the modified LGPL component. Note that such a protection
is in general not possible anyway if the customer has unrestricted
access to the machine on which the application runs.
1177..11 CCoonnttrriibbuuttiinngg ttoo tthhee SSWWII--PPrroolloogg pprroojjeecctt
To reach maximal coherence we will, as a rule of thumb, only accept
new code that has the Simplified BSD license and existing code with a
_p_e_r_m_i_s_s_i_v_e license such as MIT, Apache, BSD-3, etc. In exceptional
cases we may accept code with GPL or LGPL conditions. Such code
must be tagged using a license/1 directive (Prolog) or a call to
PL_license() for foreign code and, if they are part of the core, the
code must be excluded using the --without-gpl or --without-lgpl option.
1177..22 SSooffttwwaarree ssuuppppoorrtt ttoo kkeeeepp ttrraacckk ooff lliicceennssee ccoonnddiittiioonnss
Given the above, it is possible that SWI-Prolog packages and extensions
rely on the GPL, LGPL or other licenses. The predicates below
allow for registering license requirements for Prolog files and foreign
modules. The predicate license/0 reports which components from the
currently configured system are distributed under non-permissive open
source licenses and therefore may need to be replaced to suit your
requirements.
lliicceennssee
Evaluate the license conditions of all loaded components. If the
system contains one or more components that are licenced under
GPL-like restrictions the system indicates this program may only
be distributed under the GPL license as well as which components
prohibit the use of other license conditions. Likewise for for
LGPL components.
lliicceennssee((_+_L_i_c_e_n_s_e_I_d_, _+_C_o_m_p_o_n_e_n_t))
Register the fact that _C_o_m_p_o_n_e_n_t is distributed under a license
identified by _L_i_c_e_n_s_e_I_d. Known license identifiers can be listed
using known_licenses/0. A new license can be registered as a known
language using a declaration like below. The second argument
defines the _c_a_t_e_g_o_r_y if the license, which is one of gpl, lgpl,
permissive or proprietary.
____________________________________________________________________| |
| :- multifile license:license/3. |
| |
| license:license(mylicense, permissive, |
| [ comment('My personal license'), |
| url('http://www.mine.org/license.html') |
| ]). |
| |
||:-_license(mylicense).____________________________________________ ||
lliicceennssee((_+_L_i_c_e_n_s_e_I_d))
Intended as a directive in Prolog source files. It takes the
current filename and calls license/2.
void PPLL__lliicceennssee(_c_o_n_s_t _c_h_a_r _*_L_i_c_e_n_s_e_I_d_, _c_o_n_s_t _c_h_a_r _*_C_o_m_p_o_n_e_n_t)
Intended for the install() procedure of foreign libraries. This
call can be made _b_e_f_o_r_e PL_initialise().
kknnoowwnn__lliicceennsseess
List all licenses _k_n_o_w_n to the system. This does not imply
the system contains code covered by the listed licenses. See
license/2.
1177..33 LLiicceennssee ccoonnddiittiioonnss iinnhheerriitteedd ffrroomm uusseedd ccooddee
1177..33..11 CCrryyppttooggrraapphhiicc rroouuttiinneess
Cryptographic routines are used in variant_sha1/2 and crypt. These
routines are provided under the following conditions:
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
CChhaapptteerr 1188.. SSUUMMMMAARRYY
1188..11 PPrreeddiiccaatteess
The predicate summary is used by the Prolog predicate apropos/1 to
suggest predicates from a keyword.
@/2 Call using calling context
!/0 Cut (discard choicepoints)
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also functional notation
:</2 Select keys from a dict
;/2 Disjunction of two goals
</2 Arithmetic smaller
=/2 True when arguments are unified
=../2 ``Univ.'' Term to list conversion
=:=/2 Arithmetic equality
=</2 Arithmetic smaller or equal
==/2 Test for strict equality
=@=/2 Test for structural equality (variant)
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
>:</2 Partial dict unification
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 True if arguments cannot be unified
\==/2 True if arguments are not strictly equal
\=@=/2 Not structural identical
^/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction in DCGs. Same as ;/2
{}/1 DCG escape; constraints
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abolish_all_tables/0 Abolish computed tables
abolish_table_subgoals/1 Abolish tables for a goal
abort/0 Abort execution, return to top level
absolute_file_name/2 Get absolute path name
absolute_file_name/3 Get absolute path name with options
access_file/2 Check access permissions of a file
acyclic_term/1 Test term for cycles
add_import_module/3 Add module to the auto-import list
add_nb_set/2 Add term to a non-backtrackable set
add_nb_set/3 Add term to a non-backtrackable set
append/1 Append to a file
apply/2 Call goal with additional arguments
apropos/1 online_help Search manual
arg/3 Access argument of a term
assoc_to_list/2 Convert association tree to list
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertion/1 Make assertions about your program
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach_console/0 Attach I/O console to thread
attach_packs/0 Attach add-ons
attach_packs/1 Attach add-ons from directory
attach_packs/2 Attach add-ons from directory
attribute_goals/3 Project attributes to goals
attr_unify_hook/2 Attributed variable unification hook
attr_portray_hook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at_end_of_stream/0 Test for end of file on input
at_end_of_stream/1 Test for end of file on stream
at_halt/1 Register goal to run at halt/1
atom/1 Type check for an atom
atom_chars/2 Convert between atom and list of characters
atom_codes/2 Convert between atom and list of characters codes
atom_concat/3 Contatenate two atoms
atom_length/2 Determine length of an atom
atom_number/2 Convert between atom and number
atom_prefix/2 Test for start of atom
atom_string/2 Conversion between atom and string
atom_to_term/3 Convert between atom and term
atomic/1 Type check for primitive
atomic_concat/3 Concatenate two atomic values to an atom
atomic_list_concat/2 Append a list of atomics
atomic_list_concat/3 Append a list of atomics with separator
atomics_to_string/2 Concatenate list of inputs to a string
atomics_to_string/3 Concatenate list of inputs to a string
autoload/0 Autoload all predicates now
autoload_path/1 Add directories for autoloading
b_getval/2 Fetch backtrackable global variable
b_set_dict/3 Destructive assignment on a dict
b_setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
blob/2 Type check for a blob
break/0 Start interactive top level
break_hook/6 (hook) Debugger hook
byte_count/2 Byte-position in a stream
call/1 Call a goal
call/[2..] Call with additional arguments
call_cleanup/3 Guard a goal with a cleaup-handler
call_cleanup/2 Guard a goal with a cleaup-handler
call_dcg/3 As phrase/3 without type checking
call_residue_vars/2 Find residual attributed variables
call_shared_object_function/2UNIX: Call C-function in shared (.so) file
call_with_depth_limit/3 Prove goal with bounded depth
call_with_inference_limit/3 Prove goal in limited inferences
callable/1 Test for atom or compound term
cancel_halt/1 Cancel halt/0 from an at_halt/1 hook
catch/3 Call goal, watching for exceptions
char_code/2 Convert between character and character code
char_conversion/2 Provide mapping of input characters
char_type/2 Classify characters
character_count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr_constraint/1 CHR Constraint declaration
chr_show_store/1 List suspended CHR constraints
chr_trace/0 Start CHR tracer
chr_type/1 CHR Type declaration
chr_notrace/0 Stop CHR tracer
chr_leash/1 Define CHR leashed ports
chr_option/2 Specify CHR compilation options
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause_property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close_dde_conversation/1 Win32: Close DDE channel
close_shared_object/1 UNIX: Close shared library (.so file)
collation_key/2 Sort key for locale dependent ordering
comment_hook/3 (hook) handle comments in sources
compare/3 Compare, using a predicate to determine the order
compile_aux_clauses/1 Compile predicates for goal_expansion/2
compile_predicates/1 Compile dynamic code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
compound_name_arity/3 Name and arity of a compound term
compound_name_arguments/3 Name and arguments of a compound term
code_type/2 Classify a character-code
consult/1 Read (compile) a Prolog source file
context_module/1 Get context module of current goal
convert_time/8 Break time stamp into fields
convert_time/2 Convert time stamp to string
copy_stream_data/2 Copy all data from stream to stream
copy_stream_data/3 Copy n bytes from stream to stream
copy_predicate_clauses/2 Copy clauses between predicates
copy_term/2 Make a copy of a term
copy_term/3 Copy a term and obtain attribute-goals
copy_term_nat/2 Make a copy of a term without attributes
create_prolog_flag/3 Create a new Prolog flag
current_arithmetic_function/1 Examine evaluable functions
current_atom/1 Examine existing atoms
current_blob/2 Examine typed blobs
current_char_conversion/2 Query input character mapping
current_engine/1 Enumerate known engines
current_flag/1 Examine existing flags
current_foreign_library/2 shlib Examine loaded shared libraries (.so files)
current_format_predicate/2 Enumerate user-defined format codes
current_functor/2 Examine existing name/arity pairs
current_input/1 Get current input stream
current_key/1 Examine existing database keys
current_locale/1 Get the current locale
current_module/1 Examine existing modules
current_op/3 Examine current operator declarations
current_output/1 Get the current output stream
current_predicate/1 Examine existing predicates (ISO)
current_predicate/2 Examine existing predicates
current_signal/3 Current software signal mapping
current_stream/3 Examine open streams
current_trie/1 Enumerate known tries
cyclic_term/1 Test term for cycles
day_of_the_week/2 Determine ordinal-day from date
date_time_stamp/2 Convert date structure to time-stamp
date_time_value/3 Extract info from a date structure
dcg_translate_rule/2 Source translation of DCG rules
dcg_translate_rule/4 Source translation of DCG rules
dde_current_connection/2 Win32: Examine open DDE connections
dde_current_service/2 Win32: Examine DDE services provided
dde_execute/2 Win32: Execute command on DDE server
dde_register_service/2 Win32: Become a DDE server
dde_request/3 Win32: Make a DDE request
dde_poke/3 Win32: POKE operation on DDE server
dde_unregister_service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debug_control_hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
default_module/2 Query module inheritance
del_attr/2 Delete attribute from variable
del_attrs/1 Delete all attributes from variable
del_dict/4 Delete Key-Value pair from a dict
delete_directory/1 Remove a folder from the file system
delete_file/1 Remove a file from the file system
delete_import_module/2 Remove module from import list
deterministic/1 Test deterministicy of current clause
dif/2 Constrain two terms to be different
directory_files/2 Get entries of a directory/folder
discontiguous/1 Indicate distributed definition of a predicate
divmod/4 Compute quotient and remainder of two integers
downcase_atom/2 Convert atom to lower-case
duplicate_term/2 Create a copy of a term
dwim_match/2 Atoms match in ``Do What I Mean'' sense
dwim_match/3 Atoms match in ``Do What I Mean'' sense
dwim_predicate/2 Find predicate in ``Do What I Mean'' sense
dynamic/1 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
elif/1 Part of conditional compilation (directive)
else/0 Part of conditional compilation (directive)
empty_assoc/1 Create/test empty association tree
empty_nb_set/1 Test/create an empty non-backtrackable set
encoding/1 Define encoding inside a source file
endif/0 End of conditional compilation (directive)
engine_create/3 Create an interactor
engine_create/4 Create an interactor
engine_destroy/1 Destroy an interactor
engine_fetch/1 Get term from caller
engine_next/2 Ask interactor for next term
engine_next_reified/2 Ask interactor for next term
engine_post/2 Send term to an interactor
engine_post/3 Send term to an interactor and wait for reply
engine_self/1 Get handle to running interactor
engine_yield/1 Make term available to caller
ensure_loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
exception/3 (hook) Handle runtime exceptions
exists_directory/1 Check existence of directory
exists_file/1 Check existence of file
exists_source/1 Check existence of a Prolog source
expand_answer/2 Expand answer of query
expand_file_name/2 Wildcard expansion of file names
expand_file_search_path/2 Wildcard expansion of file paths
expand_goal/2 Compiler: expand goal in clause-body
expand_goal/4 Compiler: expand goal in clause-body
expand_query/4 Expanded entered query
expand_term/2 Compiler: expand read term into clause(s)
expand_term/4 Compiler: expand read term into clause(s)
expects_dialect/1 For which Prolog dialect is this code written?
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
fail/0 Always false
false/0 Always false
fast_term_serialized/2 Fast term (de-)serialization
fast_read/2 Read binary term serialization
fast_write/2 Write binary term serialization
current_prolog_flag/2 Get system configuration parameters
file_base_name/2 Get file part of path
file_directory_name/2 Get directory part of path
file_name_extension/3 Add, remove or test file extensions
file_search_path/2 Define path-aliases for locating files
find_chr_constraint/1 Returns a constraint from the store
findall/3 Find all solutions to a goal
findall/4 Difference list version of findall/3
findnsols/4 Find first _N solutions
findnsols/5 Difference list version of findnsols/4
fill_buffer/1 Fill the input buffer of a stream
flag/3 Simple global variable system
float/1 Type check for a floating point number
flush_output/0 Output pending characters on current stream
flush_output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format_time/3 C strftime() like date/time formatter
format_time/4 date/time formatter with explicit locale
format_predicate/2 Program format/[1,2]
term_attvars/2 Find attributed variables in a term
term_variables/2 Find unbound variables in a term
term_variables/3 Find unbound variables in a term
text_to_string/2 Convert arbitrary text to a string
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
garbage_collect/0 Invoke the garbage collector
garbage_collect_atoms/0 Invoke the atom garbage collector
garbage_collect_clauses/0 Invoke clause garbage collector
gen_assoc/3 Enumerate members of association tree
gen_nb_set/2 Generate members of non-backtrackable set
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get_assoc/3 Fetch key from association tree
get_assoc/5 Fetch key from association tree
get_attr/3 Fetch named attribute from a variable
get_attrs/2 Fetch all attributes of a variable
get_byte/1 Read next byte (ISO)
get_byte/2 Read next byte from a stream (ISO)
get_char/1 Read next character as an atom (ISO)
get_char/2 Read next character from a stream (ISO)
get_code/1 Read next character (ISO)
get_code/2 Read next character from a stream (ISO)
get_dict/3 Get the value associated to a key from a dict
get_dict/5 Replace existing value in a dict
get_flag/2 Get value of a flag
get_single_char/1 Read next character from the terminal
get_string_code/3 Get character code at index in string
get_time/1 Get current time
get0/1 Read next character
get0/2 Read next character from a stream
getenv/2 Get shell environment variable
goal_expansion/2 Hook for macro-expanding goals
goal_expansion/4 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
gdebug/0 Debug using graphical tracer
gspy/1 Spy using graphical tracer
gtrace/0 Trace using graphical tracer
guitracer/0 Install hooks for the graphical debugger
gxref/0 Cross-reference loaded program
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
term_hash/2 Hash-value of ground term
term_hash/4 Hash-value of term with depth limit
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help_hook/1 (hook) User-hook in the help-system
if/1 Start conditional compilation (directive)
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
import_module/2 Query import modules
in_pce_thread/1 Run goal in XPCE thread
in_pce_thread_sync/1 Run goal in XPCE thread
include/1 Include a file with declarations
initialization/1 Initialization directive
initialization/2 Initialization directive
initialize/0 Run program initialization
instance/2 Fetch clause or record from reference
integer/1 Type check for integer
interactor/0 Start new thread with console and top level
is/2 Evaluate arithmetic expression
is_absolute_file_name/1 True if arg defines an absolute path
is_assoc/1 Verify association list
is_engine/1 Type check for an engine handle
is_list/1 Type check for a list
is_dict/1 Type check for a dict
is_dict/2 Type check for a dict in a class
is_stream/1 Type check for a stream handle
is_trie/1 Type check for a trie handle
is_thread/1 Type check for an thread handle
join_threads/0 Join all terminated threads interactively
keysort/2 Sort, using a key
known_licenses/0 Print known licenses
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library_directory/1 (hook) Directories holding Prolog libraries
license/0 Evaluate licenses of loaded modules
license/1 Define license for current file
license/2 Define license for named module
line_count/2 Line number on stream
line_position/2 Character position in line on stream
list_debug_topics/0 List registered topics for debugging
list_to_assoc/2 Create association tree from list
list_to_set/2 Remove duplicates from a list
list_strings/0 Help porting to version 7
listing/0 List program in current module
listing/1 List predicate
load_files/1 Load source files
load_files/2 Load source files with options
load_foreign_library/1 shlib Load shared library (.so file)
load_foreign_library/2 shlib Load shared library (.so file)
locale_create/3 Create a new locale object
locale_destroy/1 Destroy a locale object
locale_property/2 Query properties of locale objects
locale_sort/2 Language dependent sort of atoms
make/0 Reconsult all changed source files
make_directory/1 Create a folder on the file system
make_library_index/1 Create autoload file INDEX.pl
make_library_index/2 Create selective autoload file INDEX.pl
map_assoc/2 Map association tree
map_assoc/3 Map association tree
dict_create/3 Create a dict from data
dict_pairs/3 Convert between dict and list of pairs
max_assoc/3 Highest key in association tree
memberchk/2 Deterministic member/2
message_hook/3 Intercept print_message/2
message_line_element/2 (hook) Intercept print_message_lines/3
message_property/2 (hook) Define display of a message
message_queue_create/1 Create queue for thread communication
message_queue_create/2 Create queue for thread communication
message_queue_destroy/1 Destroy queue for thread communication
message_queue_property/2 Query message queue properties
message_to_string/2 Translate message-term to string
meta_predicate/1 Declare access to other predicates
min_assoc/3 Lowest key in association tree
module/1 Query/set current type-in module
module/2 Declare a module
module/3 Declare a module with language options
module_property/2 Find properties of a module
module_transparent/1 Indicate module based meta-predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex_create/1 Create a thread-synchronisation device
mutex_create/2 Create a thread-synchronisation device
mutex_destroy/1 Destroy a mutex
mutex_lock/1 Become owner of a mutex
mutex_property/2 Query mutex properties
mutex_statistics/0 Print statistics on mutex usage
mutex_trylock/1 Become owner of a mutex (non-blocking)
mutex_unlock/1 Release ownership of mutex
mutex_unlock_all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb_current/2 Enumerate non-backtrackable global variables
nb_delete/1 Delete a non-backtrackable global variable
nb_getval/2 Fetch non-backtrackable global variable
nb_link_dict/3 Non-backtrackable assignment to dict
nb_linkarg/3 Non-backtrackable assignment to term
nb_linkval/2 Assign non-backtrackable global variable
nb_set_to_list/2 Convert non-backtrackable set to list
nb_set_dict/3 Non-backtrackable assignment to dict
nb_setarg/3 Non-backtrackable assignment to term
nb_setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonground/2 Term is not ground due to witness
nonvar/1 Type check for bound term
noprofile/1 Hide (meta-) predicate for the profiler
noprotocol/0 Disable logging of user interaction
normalize_space/2 Normalize white space
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth_clause/3 N-th clause of a predicate
nth_integer_root_and_remainder/4Integer root and remainder
number/1 Type check for integer or float
number_chars/2 Convert between number and one-char atoms
number_codes/2 Convert between number and character codes
number_string/2 Convert between number and string
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on_signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open_dde_conversation/3 Win32: Open DDE channel
open_null_stream/1 Open a stream to discard output
open_resource/3 Open a program resource as a stream
open_shared_object/2 UNIX: Open shared library (.so file)
open_shared_object/3 UNIX: Open shared library (.so file)
open_string/2 Open a string as a stream
ord_list_to_assoc/2 Convert ordered list to assoc
parse_time/2 Parse text to a time-stamp
parse_time/3 Parse text to a time-stamp
pce_dispatch/1 Run XPCE GUI in separate thread
pce_call/1 Run goal in XPCE GUI thread
peek_byte/1 Read byte without removing
peek_byte/2 Read byte without removing
peek_char/1 Read character without removing
peek_char/2 Read character without removing
peek_code/1 Read character-code without removing
peek_code/2 Read character-code without removing
peek_string/3 Read a string without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
phrase_from_quasi_quotation/2 Parse quasi quotation with DCG
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray_clause/1 Pretty print a clause
portray_clause/2 Pretty print a clause to a stream
predicate_property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
print/1 Print a term
print/2 Print a term on a stream
print_message/2 Print message from (exception) term
print_message_lines/3 Print message to stream
profile/1 Obtain execution statistics
profile/2 Obtain execution statistics
profile_count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive top level
prolog_alert_signal/2 Query/set unblock signal
prolog_choice_attribute/3 Examine the choice point stack
prolog_current_choice/1 Reference to most recent choice point
prolog_current_frame/1 Reference to goal's environment stack
prolog_cut_to/1 Realise global cuts
prolog_edit:locate/2 Locate targets for edit/1
prolog_edit:locate/3 Locate targets for edit/1
prolog_edit:edit_source/1 Call editor for edit/1
prolog_edit:edit_command/2 Specify editor activation
prolog_edit:load/0 Load edit/1 extensions
prolog_exception_hook/4 Rewrite exceptions
prolog_file_type/2 Define meaning of file extension
prolog_frame_attribute/3 Obtain information on a goal environment
prolog_ide/1 Program access to the development environment
prolog_list_goal/1 (hook) Intercept tracer 'L' command
prolog_load_context/2 Context information for directives
prolog_load_file/2 (hook) Program load_files/2
prolog_skip_level/2 Indicate deepest recursion to trace
prolog_skip_frame/1 Perform `skip' on a frame
prolog_stack_property/2 Query properties of the stacks
prolog_to_os_filename/2 Convert between Prolog and OS filenames
prolog_trace_interception/4 user Intercept the Prolog tracer
project_attributes/2 Project constraints to query variables
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
public/1 Declaration that a predicate may be called
put/1 Write a character
put/2 Write a character on a stream
put_assoc/4 Add Key-Value to association tree
put_attr/3 Put attribute on a variable
put_attrs/2 Set/replace all attributes on a variable
put_byte/1 Write a byte
put_byte/2 Write a byte on a stream
put_char/1 Write a character
put_char/2 Write a character on a stream
put_code/1 Write a character-code
put_code/2 Write a character-code on a stream
put_dict/3 Add/replace multiple keys in a dict
put_dict/4 Add/replace a single key in a dict
qcompile/1 Compile source to Quick Load File
qcompile/2 Compile source to Quick Load File
qsave_program/1 Create runtime application
qsave_program/2 Create runtime application
quasi_quotation_syntax/1 Declare quasi quotation syntax
quasi_quotation_syntax_error/1 Raise syntax error
random_property/1 Query properties of random generation
rational/1 Type check for a rational number
rational/3 Decompose a rational
read/1 Read Prolog term
read/2 Read Prolog term from stream
read_clause/3 Read clause from stream
read_history/6 Read using history substitution
read_link/3 Read a symbolic link
read_pending_codes/3 Fetch buffered input from a stream
read_pending_chars/3 Fetch buffered input from a stream
read_string/3 Read a number of characters into a string
read_string/5 Read string upto a delimiter
read_term/2 Read term with options
read_term/3 Read term with options from stream
read_term_from_atom/3 Read term with options from atom
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine_system_predicate/1 Abolish system definition
reexport/1 Load files and re-export the imported predicates
reexport/2 Load predicates from a file and re-export it
reload_foreign_libraries/0 Reload DLLs/shared objects
reload_library_index/0 Force reloading the autoload index
rename_file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset/3 Wrapper for delimited continuations
reset_gensym/1 Reset a gensym key
reset_gensym/0 Reset all gensym keys
reset_profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
same_file/2 Succeeds if arguments refer to same file
same_term/2 Test terms to be at the same address
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select_dict/2 Select matching attributes from a dict
select_dict/3 Select matching attributes from a dict
set_end_of_stream/1 Set physical end of an open file
set_flag/2 Set value of a flag
set_input/1 Set current input stream from a stream
set_locale/1 Set the default local
set_module/1 Set properties of a module
set_output/1 Set current output stream from a stream
set_prolog_IO/3 Prepare streams for interactive session
set_prolog_flag/2 Define a system feature
set_prolog_gc_thread/1 Control the gc thread
set_prolog_stack/2 Modify stack characteristics
set_random/1 Control random number generation
set_stream/2 Set stream attribute
set_stream_position/2 Seek stream to position
setup_call_cleanup/3 Undo side-effects safely
setup_call_catcher_cleanup/4 Undo side-effects safely
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
shell/1 Execute OS command
shell/2 Execute OS command
shift/1 Shift control to the closest reset/3
show_profile/1 Show results of the profiler
size_file/2 Get size of a file in characters
size_nb_set/2 Determine size of non-backtrackable set
skip/1 Skip to character in current input
skip/2 Skip to character on stream
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
sort/4 Sort elements in a list
source_exports/2 Check whether source exports a predicate
source_file/1 Examine currently loaded source files
source_file/2 Obtain source file of predicate
source_file_property/2 Information about loaded files
source_location/2 Location of last read term
split_string/4 Break a string into substrings
spy/1 Force tracer on specified predicate
stamp_date_time/3 Convert time-stamp to date structure
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream_pair/3 Create/examine a bi-directional stream
stream_position_data/3 Access fields from stream position
stream_property/2 Get stream properties
string/1 Type check for string
string_concat/3 atom_concat/3 for strings
string_length/2 Determine length of a string
string_chars/2 Conversion between string and list of characters
string_codes/2 Conversion between string and list of character codes
string_code/3 Get or find a character code in a string
string_lower/2 Case conversion to lower case
string_upper/2 Case conversion to upper case
string_predicate/1 (hook) Predicate contains strings
strip_module/3 Extract context module and term
style_check/1 Change level of warnings
sub_atom/5 Take a substring from an atom
sub_atom_icasechk/3 Case insensitive substring match
sub_string/5 Take a substring from a string
subsumes_term/2 One-sided unification test
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
table/1 Declare predicate to be tabled
tdebug/0 Switch all threads into debug mode
tdebug/1 Switch a thread into debug mode
tell/1 Change current output stream
telling/1 Query current output stream
term_expansion/2 (hook) Convert term before compilation
term_expansion/4 (hook) Convert term before compilation
term_singletons/2 Find singleton variables in a term
term_string/2 Read/write a term from/to a string
term_string/3 Read/write a term from/to a string
term_subsumer/3 Most specific generalization of two terms
term_to_atom/2 Convert between term and atom
thread_at_exit/1 Register goal to be called at exit
thread_create/2 Create a new Prolog task
thread_create/3 Create a new Prolog task
thread_detach/1 Make thread cleanup after completion
thread_exit/1 Terminate Prolog task with value
thread_get_message/1 Wait for message
thread_get_message/2 Wait for message in a queue
thread_get_message/3 Wait for message in a queue
thread_initialization/1 Run action at start of thread
thread_join/1 Wait for Prolog task-completion
thread_join/2 Wait for Prolog task-completion
thread_local/1 Declare thread-specific clauses for a predicate
thread_message_hook/3 Thread local message_hook/3
thread_peek_message/1 Test for message
thread_peek_message/2 Test for message in a queue
thread_property/2 Examine Prolog threads
thread_self/1 Get identifier of current thread
thread_send_message/2 Send message to another thread
thread_send_message/3 Send message to another thread
thread_setconcurrency/2 Number of active threads
thread_signal/2 Execute goal in another thread
thread_statistics/3 Get statistics of another thread
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time_file/2 Get last modification time of file
tmp_file/2 Create a temporary filename
tmp_file_stream/3 Create a temporary file and open it
tnodebug/0 Switch off debug mode in all threads
tnodebug/1 Switch off debug mode in a thread
told/0 Close current output
tprofile/1 Profile a thread for some period
trace/0 Start the tracer
trace/1 Set trace point on predicate
trace/2 Set/Clear trace point on ports
tracing/0 Query status of the tracer
trie_delete/3 Remove term from trie
trie_destroy/1 Destroy a trie
trie_gen/3 Get all terms from a trie
trie_insert/3 Insert term into a trie
trie_insert/4 Insert term into a trie
trie_lookup/3 Lookup a term in a trie
trie_new/1 Create a trie
trie_property/2 Examine a trie's properties
trie_update/3 Update associated value in trie
trie_term/2 Get term from a trie by handle
trim_stacks/0 Release unused memory resources
true/0 Succeed
tspy/1 Set spy point and enable debugging in all threads
tspy/2 Set spy point and enable debugging in a thread
tty_get_capability/3 Get terminal parameter
tty_goto/2 Goto position on screen
tty_put/2 Write control string to terminal
tty_size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
unify_with_occurs_check/2 Logically sound unification
unifiable/3 Determining binding required for unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unload_file/1 Unload a source file
unload_foreign_library/1 shlib Detach shared library (.so file)
unload_foreign_library/2 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
upcase_atom/2 Convert atom to upper-case
use_foreign_library/1 Load DLL/shared object (directive)
use_foreign_library/2 Load DLL/shared object (directive)
use_module/1 Import a module
use_module/2 Import predicates from a module
valid_string_goal/1 (hook) Goal handles strings
var/1 Type check for unbound variable
var_number/2 Check that var is numbered by numbervars
var_property/2 Variable properties during macro expansion
variant_sha1/2 Term-hash for term-variants
variant_hash/2 Term-hash for term-variants
version/0 Print system banner message
version/1 Add messages to the system banner
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait_for_input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard_match/2 Csh(1) style wildcard match
win_add_dll_directory/1 Add directory to DLL search path
win_add_dll_directory/2 Add directory to DLL search path
win_remove_dll_directory/1 Remove directory from DLL search path
win_exec/2 Win32: spawn Windows task
win_has_menu/0 Win32: true if console menu is available
win_folder/2 Win32: get special folder by CSIDL
win_insert_menu/2 swipl-win.exe: add menu
win_insert_menu_item/4 swipl-win.exe: add item to menu
win_shell/2 Win32: open document through Shell
win_shell/3 Win32: open document through Shell
win_registry_get_value/3 Win32: get registry value
win_window_pos/1 Win32: change size and position of window
window_title/2 Win32: change title of window
with_mutex/2 Run goal while holding mutex
with_output_to/2 Write to strings and more
with_quasi_quotation_input/3 Parse quasi quotation from stream
working_directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
writeln/2 Write term, followed by a newline to a stream
write_canonical/1 Write a term with quotes, ignore operators
write_canonical/2 Write a term with quotes, ignore operators on a stream
write_length/3 Dermine #characters to output a term
write_term/2 Write term with options
write_term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream
1188..22 LLiibbrraarryy pprreeddiiccaatteess
1188..22..11 lliibbrraarryy((aaggggrreeggaattee))
aggregate/3 Aggregate bindings in Goal according to Template.
aggregate/4 Aggregate bindings in Goal according to Template.
aggregate_all/3 Aggregate bindings in Goal according to Template.
aggregate_all/4 Aggregate bindings in Goal according to Template.
foreach/2 True if conjunction of results is true.
free_variables/4 Find free variables in bagof/setof template.
1188..22..22 lliibbrraarryy((aappppllyy))
convlist/3 Similar to maplist/3, but elements for which call(Goal, ElemIn, _) fails are omitted from ListOut.
exclude/3 Filter elements for which Goal fails.
foldl/4 Fold a list, using arguments of the list as left argument.
foldl/5 Fold a list, using arguments of the list as left argument.
foldl/6 Fold a list, using arguments of the list as left argument.
foldl/7 Fold a list, using arguments of the list as left argument.
include/3 Filter elements for which Goal succeeds.
maplist/2 True if Goal can successfully be applied on all elements of List.
maplist/3 As maplist/2, operating on pairs of elements from two lists.
maplist/4 As maplist/2, operating on triples of elements from three lists.
maplist/5 As maplist/2, operating on quadruples of elements from four lists.
partition/4 Filter elements of List according to Pred.
partition/5 Filter List according to Pred in three sets.
scanl/4 Left scan of list.
scanl/5 Left scan of list.
scanl/6 Left scan of list.
scanl/7 Left scan of list.
1188..22..33 lliibbrraarryy((aassssoocc))
assoc_to_list/2 Translate assoc into a pairs list
assoc_to_keys/2 Translate assoc into a key list
assoc_to_values/2 Translate assoc into a value list
empty_assoc/1 Test/create an empty assoc
gen_assoc/3 Non-deterministic enumeration of assoc
get_assoc/3 Get associated value
get_assoc/5 Get and replace associated value
list_to_assoc/2 Translate pair list to assoc
map_assoc/2 Test assoc values
map_assoc/3 Map assoc values
max_assoc/3 Max key-value of an assoc
min_assoc/3 Min key-value of an assoc
ord_list_to_assoc/2Translate ordered list into an assoc
put_assoc/4 Add association to an assoc
1188..22..44 lliibbrraarryy((bbrrooaaddccaasstt))
broadcast/1 Send event notification
broadcast_request/1 Request all agents
listen/2 Listen to event notifications
listen/3 Listen to event notifications
unlisten/1 Stop listening to event notifications
unlisten/2 Stop listening to event notifications
unlisten/3 Stop listening to event notifications
listening/3 Who is listening to event notifications?
1188..22..55 lliibbrraarryy((cchhaarrssiioo))
atom_to_chars/2 Convert Atom into a list of character codes.
atom_to_chars/3 Convert Atom into a difference list of character codes.
format_to_chars/3 Use format/2 to write to a list of character codes.
format_to_chars/4 Use format/2 to write to a difference list of character codes.
number_to_chars/2 Convert Atom into a list of character codes.
number_to_chars/3 Convert Number into a difference list of character codes.
open_chars_stream/2 Open Codes as an input stream.
read_from_chars/2 Read Codes into Term.
read_term_from_chars/3Read Codes into Term.
with_output_to_chars/2Run Goal as with once/1.
with_output_to_chars/3Run Goal as with once/1.
with_output_to_chars/4Same as with_output_to_chars/3 using an explicit stream.
write_to_chars/2 Write a term to a code list.
write_to_chars/3 Write a term to a code list.
1188..22..66 lliibbrraarryy((cchheecckk))
check/0 Run all consistency checks defined by checker/2.
checker/2 Register code validation routines.
list_autoload/0 Report predicates that may be auto-loaded.
list_redefined/0 Lists predicates that are defined in the global module =user= as well as in a normal module; that is, predicates for which the@
list_strings/0 List strings that appear in clauses.
list_strings/1 List strings that appear in clauses.
list_trivial_fails/0 List goals that trivially fail because there is no matching clause.
list_trivial_fails/1 List goals that trivially fail because there is no matching clause.
list_undefined/0 Report undefined predicates.
list_undefined/1 Report undefined predicates.
list_void_declarations/0 List predicates that have declared attributes, but no clauses.
string_predicate/1 Multifile hook to disable list_strings/0 on the given predicate.
trivial_fail_goal/1 Multifile hook that tells list_trivial_fails/0 to accept Goal as valid.
valid_string_goal/1 Multifile hook that qualifies Goal as valid for list_strings/0.
1188..22..77 lliibbrraarryy((ccllppbb))
labeling/1 Enumerate concrete solutions.
random_labeling/2 Select a single random solution.
sat/1 True iff Expr is a satisfiable Boolean expression.
sat_count/2 Count the number of admissible assignments.
taut/2 Tautology check.
weighted_maximum/3 Enumerate weighted optima over admissible assignments.
1188..22..88 lliibbrraarryy((ccllppffdd))
#/\/2 P and Q hold.
#</2 The arithmetic expression X is less than Y.
#<==/2 Q implies P.
#<==>/2 P and Q are equivalent.
#=/2 The arithmetic expression X equals Y.
#=</2 The arithmetic expression X is less than or equal to Y.
#==>/2 P implies Q.
#>/2 Same as Y #< X.
#>=/2 Same as Y #=< X.
#\/1 Q does _not_hold.
#\/2 Either P holds or Q holds, but not both.
#\//2 P or Q holds.
#\=/2 The arithmetic expressions X and Y evaluate to distinct integers.
all_different/1 Like all_distinct/1, but with weaker propagation.
all_distinct/1 True iff Vars are pairwise distinct.
automaton/3 Describes a list of finite domain variables with a finite automaton.
automaton/8 Describes a list of finite domain variables with a finite automaton.
chain/2 Zs form a chain with respect to Relation.
circuit/1 True iff the list Vs of finite domain variables induces a Hamiltonian circuit.
cumulative/1 Equivalent to cumulative(Tasks, [limit(1)]).
cumulative/2 Schedule with a limited resource.
disjoint2/1 True iff Rectangles are not overlapping.
element/3 The N-th element of the list of finite domain variables Vs is V.
fd_dom/2 Dom is the current domain (see in/2) of Var.
fd_inf/2 Inf is the infimum of the current domain of Var.
fd_size/2 Reflect the current size of a domain.
fd_sup/2 Sup is the supremum of the current domain of Var.
fd_var/1 True iff Var is a CLP(FD) variable.
global_cardinality/2 Global Cardinality constraint.
global_cardinality/3 Global Cardinality constraint.
in/2 Var is an element of Domain.
indomain/1 Bind Var to all feasible values of its domain on backtracking.
ins/2 The variables in the list Vars are elements of Domain.
label/1 Equivalent to labeling([], Vars).
labeling/2 Assign a value to each variable in Vars.
lex_chain/1 Lists are lexicographically non-decreasing.
scalar_product/4 True iff the scalar product of Cs and Vs is in relation Rel to Expr.
serialized/2 Describes a set of non-overlapping tasks.
sum/3 The sum of elements of the list Vars is in relation Rel to Expr.
transpose/2 Transpose a list of lists of the same length.
tuples_in/2 True iff all Tuples are elements of Relation.
zcompare/3 Analogous to compare/3, with finite domain variables A and B.
1188..22..99 lliibbrraarryy((ccllppqqrr))
entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb_inf/3 Infimum of expression for mixed-integer problems
bb_inf/4 Infimum of expression for mixed-integer problems
bb_inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables
1188..22..1100 lliibbrraarryy((ccssvv))
csv_options/2 Compiled is the compiled representation of the CSV processing options as they may be passed into csv//2, etc.
csv_read_file/2 Read a CSV file into a list of rows.
csv_read_file/3 Read a CSV file into a list of rows.
csv_read_file_row/3True when Row is a row in File.
csv_read_row/3 Read the next CSV record from Stream and unify the result with Row.
csv_write_file/2 Write a list of Prolog terms to a CSV file.
csv_write_file/3 Write a list of Prolog terms to a CSV file.
csv_write_stream/3 Write the rows in Data to Stream.
csv//1 Prolog DCG to `read/write' CSV data.
csv//2 Prolog DCG to `read/write' CSV data.
1188..22..1111 lliibbrraarryy((ddeebbuugg))
assertion/1 Acts similar to C assert() macro.
assertion_failed/2 This hook is called if the Goal of assertion/1 fails.
debug/1 Add/remove a topic from being printed.
debug/3 Format a message if debug topic is enabled.
debug_message_context/1 Specify additional context for debug messages.
debug_print_hook/3 Hook called by debug/3.
debugging/1 Examine debug topics.
debugging/2 Examine debug topics.
list_debug_topics/0 List currently known debug topics and their setting.
nodebug/1 Add/remove a topic from being printed.
1188..22..1122 lliibbrraarryy((eerrrroorr))
current_type/3 True when Type is a currently defined type and Var satisfies Type of the body term Body succeeds.
domain_error/2 The argument is of the proper type, but has a value that is outside the supported values.
existence_error/2 Term is of the correct type and correct domain, but there is no existing (external) resource that is represented by it.
existence_error/3 Term is of the correct type and correct domain, but there is no existing (external) resource that is represented by it in the p@
has_type/2 True if Term satisfies Type.
instantiation_error/1 An argument is under-instantiated.
is_of_type/2 True if Term satisfies Type.
must_be/2 True if Term satisfies the type constraints for Type.
permission_error/3 It is not allowed to perform Action on the object Term that is of the given Type.
representation_error/1 A representation error indicates a limitation of the implementation.
resource_error/1 A goal cannot be completed due to lack of resources.
syntax_error/1 A text has invalid syntax.
type_error/2 Tell the user that Term is not of the expected Type.
uninstantiation_error/1 An argument is over-instantiated.
1188..22..1133 lliibbrraarryy((iioossttrreeaamm))
1188..22..1144 lliibbrraarryy((ssuummmmaarriieess..dd//iioossttrreeaamm//tteexx))
1188..22..1155 lliibbrraarryy((lliissttss))
append/2 Concatenate a list of lists.
append/3 List1AndList2 is the concatenation of List1 and List2.
delete/3 Delete matching elements from a list.
flatten/2 Is true if FlatList is a non-nested version of NestedList.
intersection/3 True if Set3 unifies with the intersection of Set1 and Set2.
is_set/1 True if Set is a proper list without duplicates.
last/2 Succeeds when Last is the last element of List.
list_to_set/2 True when Set has the same elements as List in the same order.
max_list/2 True if Max is the largest number in List.
max_member/2 True when Max is the largest member in the standard order of terms.
member/2 True if Elem is a member of List.
min_list/2 True if Min is the smallest number in List.
min_member/2 True when Min is the smallest member in the standard order of terms.
nextto/3 True if Y directly follows X in List.
nth0/3 True when Elem is the Index'th element of List.
nth0/4 Select/insert element at index.
nth1/3 Is true when Elem is the Index'th element of List.
nth1/4 As nth0/4, but counting starts at 1.
numlist/3 List is a list [Low, Low+1, ... High].
permutation/2 True when Xs is a permutation of Ys.
prefix/2 True iff Part is a leading substring of Whole.
proper_length/2 True when Length is the number of elements in the proper list List.
reverse/2 Is true when the elements of List2 are in reverse order compared to List1.
same_length/2 Is true when List1 and List2 are lists with the same number of elements.
select/3 Is true when List1, with Elem removed, results in List2.
select/4 Select from two lists at the same positon.
selectchk/3 Semi-deterministic removal of first element in List that unifies with Elem.
selectchk/4 Semi-deterministic version of select/4.
subset/2 True if all elements of SubSet belong to Set as well.
subtract/3 Delete all elements in Delete from Set.
sum_list/2 Sum is the result of adding all numbers in List.
union/3 True if Set3 unifies with the union of the lists Set1 and Set2.
1188..22..1166 lliibbrraarryy((mmaaiinn))
argv_options/3 Generic transformation of long commandline arguments to options.
main/0 Call main/1 using the passed command-line arguments.
1188..22..1177 lliibbrraarryy((ooppttiioonn))
dict_options/2 Convert between an option list and a dictionary.
merge_options/3 Merge two option lists.
meta_options/3 Perform meta-expansion on options that are module-sensitive.
option/2 Get an Option from OptionList.
option/3 Get an Option from OptionList.
select_option/3 Get and remove Option from an option list.
select_option/4 Get and remove Option with default value.
1188..22..1188 lliibbrraarryy((ooppttppaarrssee))
opt_arguments/3 Extract commandline options according to a specification.
opt_help/2 True when Help is a help string synthesized from OptsSpec.
opt_parse/4 Equivalent to opt_parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
opt_parse/5 Parse the arguments Args (as list of atoms) according to OptsSpec.
parse_type/3 Hook to parse option text Codes to an object of type Type.
1188..22..1199 lliibbrraarryy((oorrddsseettss))
is_ordset/1 True if Term is an ordered set.
list_to_ord_set/2 Transform a list into an ordered set.
ord_add_element/3 Insert an element into the set.
ord_del_element/3 Delete an element from an ordered set.
ord_disjoint/2 True if Set1 and Set2 have no common elements.
ord_empty/1 True when List is the empty ordered set.
ord_intersect/2 True if both ordered sets have a non-empty intersection.
ord_intersect/3 Intersection holds the common elements of Set1 and Set2.
ord_intersection/2 Intersection of a powerset.
ord_intersection/3 Intersection holds the common elements of Set1 and Set2.
ord_intersection/4 Intersection and difference between two ordered sets.
ord_memberchk/2 True if Element is a member of OrdSet, compared using ==.
ord_selectchk/3 Selectchk/3, specialised for ordered sets.
ord_seteq/2 True if Set1 and Set2 have the same elements.
ord_subset/2 Is true if all elements of Sub are in Super.
ord_subtract/3 Diff is the set holding all elements of InOSet that are not in NotInOSet.
ord_symdiff/3 Is true when Difference is the symmetric difference of Set1 and Set2.
ord_union/2 True if Union is the union of all elements in the superset SetOfSets.
ord_union/3 Union is the union of Set1 and Set2.
ord_union/4 True iff ord_union(Set1, Set2, Union) and ord_subtract(Set2, Set1, New).
1188..22..2200 lliibbrraarryy((ppeerrssiisstteennccyy))
current_persistent_predicate/1 True if PI is a predicate that provides access to the persistent database DB.
db_attach/2 Use File as persistent database for the calling module.
db_attached/1 True if the context module attached to the persistent database File.
db_detach/0 Detach persistency from the calling module and delete all persistent clauses from the Prolog database.
db_sync/1 Synchronise database with the associated file.
db_sync_all/1 Sync all registered databases.
persistent/1 Declare dynamic database terms.
1188..22..2211 lliibbrraarryy((pprreeddiiccaattee__ooppttiioonnss))
assert_predicate_options/4 As predicate_options(:PI, +Arg, +Options).
check_predicate_option/3 Verify predicate options at runtime.
check_predicate_options/0 Analyse loaded program for erroneous options.
current_option_arg/2 True when Arg of PI processes predicate options.
current_predicate_option/3 True when Arg of PI processes Option.
current_predicate_options/3 True when Options is the current active option declaration for PI on Arg.
derive_predicate_options/0 Derive new predicate option declarations.
derived_predicate_options/1 Derive predicate option declarations for a module.
derived_predicate_options/3 Derive option arguments using static analysis.
predicate_options/3 Declare that the predicate PI processes options on Arg.
retractall_predicate_options/0 Remove all dynamically (derived) predicate options.
1188..22..2222 lliibbrraarryy((pprroollooggppaacckk))
environment/2 Hook to define the environment for building packs.
pack_info/1 Print more detailed information about Pack.
pack_install/1 Install a package.
pack_install/2 Install package Name.
pack_list/1 Query package server and installed packages and display results.
pack_list_installed/0 List currently installed packages.
pack_property/2 True when Property is a property of an installed Pack.
pack_rebuild/0 Rebuild foreign components of all packages.
pack_rebuild/1 Rebuilt possible foreign components of Pack.
pack_remove/1 Remove the indicated package.
pack_search/1 Query package server and installed packages and display results.
pack_upgrade/1 Try to upgrade the package Pack.
pack_url_file/2 True if File is a unique id for the referenced pack and version.
1188..22..2233 lliibbrraarryy((pprroollooggxxrreeff))
prolog:called_by/2 (hook) Extend cross-referencer
xref_built_in/1 Examine defined built-ins
xref_called/3 Examine called predicates
xref_clean/1 Remove analysis of source
xref_current_source/1 Examine cross-referenced sources
xref_defined/3 Examine defined predicates
xref_exported/2 Examine exported predicates
xref_module/2 Module defined by source
xref_source/1 Cross-reference analysis of source
1188..22..2244 lliibbrraarryy((ppaaiirrss))
group_pairs_by_key/2Group values with equivalent (==/2) consecutive keys.
map_list_to_pairs/3 Create a Key-Value list by mapping each element of List.
pairs_keys/2 Remove the values from a list of Key-Value pairs.
pairs_keys_values/3 True if Keys holds the keys of Pairs and Values the values.
pairs_values/2 Remove the keys from a list of Key-Value pairs.
transpose_pairs/2 Swap Key-Value to Value-Key.
1188..22..2255 lliibbrraarryy((ppiioo))
1188..22..2255..11 lliibbrraarryy((ppuurree__iinnppuutt))
phrase_from_file/2 Process the content of File using the DCG rule Grammar.
phrase_from_file/3 As phrase_from_file/2, providing additional Options.
phrase_from_stream/2 Run Grammer against the character codes on Stream.
stream_to_lazy_list/2 Create a lazy list representing the character codes in Stream.
lazy_list_character_count//1True when CharCount is the current character count in the Lazy list.
lazy_list_location//1 Determine current (error) location in a lazy list.
syntax_error//1 Throw the syntax error Error at the current location of the input.
1188..22..2266 lliibbrraarryy((rraannddoomm))
getrand/1 Query/set the state of the random generator.
maybe/0 Succeed/fail with equal probability (variant of maybe/1).
maybe/1 Succeed with probability P, fail with probability 1-P.
maybe/2 Succeed with probability K/N (variant of maybe/1).
random/1 Binds R to a new random float in the _open_interval (0.0,1.0).
random/3 Generate a random integer or float in a range.
random_between/3 Binds R to a random integer in [L,U] (i.e., including both L and U).
random_member/2 X is a random member of List.
random_perm2/4 Does X=A,Y=B or X=B,Y=A with equal probability.
random_permutation/2 Permutation is a random permutation of List.
random_select/3 Randomly select or insert an element.
randseq/3 S is a list of K unique random integers in the range 1..N.
randset/3 S is a sorted list of K unique random integers in the range 1..N.
setrand/1 Query/set the state of the random generator.
1188..22..2277 lliibbrraarryy((rreeaadduuttiill))
read_line_to_codes/2 Read line from a stream
read_line_to_codes/3 Read line from a stream
read_stream_to_codes/2Read contents of stream
read_stream_to_codes/3Read contents of stream
read_file_to_codes/3 Read contents of file
read_file_to_terms/3 Read contents of file to Prolog terms
1188..22..2288 lliibbrraarryy((rreeccoorrdd))
record/1 Define named fields in a term
1188..22..2299 lliibbrraarryy((rreeggiissttrryy))
This library is only available on Windows systems.
registry_get_key/2 Get principal value of key
registry_get_key/3 Get associated value of key
registry_set_key/2 Set principal value of key
registry_set_key/3 Set associated value of key
registry_delete_key/1 Remove a key
shell_register_file_type/4Register a file-type
shell_register_dde/6 Register DDE action
shell_register_prolog/1 Register Prolog
1188..22..3300 lliibbrraarryy((ssiimmpplleexx))
assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
constraint_add/4 Extend a named constraint
gen_state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow_price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable_value/3 Fetch value of variable in solved state
1188..22..3311 lliibbrraarryy((uuggrraapphhss))
vertices_edges_to_ugraph/3Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add_vertices/3 Add vertices to graph
del_vertices/3 Delete vertices from graph
add_edges/3 Add edges to graph
del_edges/3 Delete edges from graph
transpose_ugraph/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice
neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top_sort/2 Sort graph topologically
top_sort/3 Sort graph topologically
transitive_closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph_union/3 Union of two graphs
1188..22..3322 lliibbrraarryy((uurrll))
file_name_to_url/2 Translate between a filename and a file:// URL.
global_url/3 Translate a possibly relative URL into an absolute one.
http_location/2 Construct or analyze an HTTP location.
is_absolute_url/1 True if URL is an absolute URL.
parse_url/2 Construct or analyse a URL.
parse_url/3 Similar to parse_url/2 for relative URLs.
parse_url_search/2 Construct or analyze an HTTP search specification.
set_url_encoding/2 Query and set the encoding for URLs.
url_iri/2 Convert between a URL, encoding in US-ASCII and an IRI.
www_form_encode/2 En/decode to/from application/x-www-form-encoded.
1188..22..3333 lliibbrraarryy((wwwwww__bbrroowwsseerr))
www_open_url/1 Open a web-page in a browser
1188..22..3344 lliibbrraarryy((ssoolluuttiioonn__sseeqquueenncceess))
distinct/1 True if Goal is true and no previous solution of Goal bound Witness to the same value.
distinct/2 True if Goal is true and no previous solution of Goal bound Witness to the same value.
group_by/4 Group bindings of Template that have the same value for By.
limit/2 Limit the number of solutions.
offset/2 Ignore the first Count solutions.
order_by/2 Order solutions according to Spec.
reduced/1 Similar to distinct/1, but does not guarantee unique results in return for using a limited amount of memory.
reduced/3 Similar to distinct/1, but does not guarantee unique results in return for using a limited amount of memory.
1188..22..3355 lliibbrraarryy((tthhrreeaadd__ppooooll))
create_pool/1 Hook to create a thread pool lazily.
current_thread_pool/1 True if Name refers to a defined thread pool.
thread_create_in_pool/4Create a thread in Pool.
thread_pool_create/3 Create a pool of threads.
thread_pool_destroy/1 Destroy the thread pool named Name.
thread_pool_property/2 True if Property is a property of thread pool Name.
1188..22..3366 lliibbrraarryy((vvaarrnnuummbbeerrss))
max_var_number/3 True when Max is the max of Start and the highest numbered $VAR(N) term.
numbervars/1 Number variables in Term using $VAR(N).
varnumbers/2 Inverse of numbervars/1.
varnumbers/3 Inverse of numbervars/3.
varnumbers_names/3 If Term is a term with numbered and named variables using the reserved term '$VAR'(X), Copy is a copy of Term where each '$VAR'(X) i@
1188..22..3377 lliibbrraarryy((yyaallll))
//2 Shorthand for `Free/[]>>Lambda`.
//3 Shorthand for `Free/[]>>Lambda`.
//4 Shorthand for `Free/[]>>Lambda`.
//5 Shorthand for `Free/[]>>Lambda`.
//6 Shorthand for `Free/[]>>Lambda`.
//7 Shorthand for `Free/[]>>Lambda`.
//8 Shorthand for `Free/[]>>Lambda`.
//9 Shorthand for `Free/[]>>Lambda`.
>>/2 Calls a copy of Lambda.
>>/3 Calls a copy of Lambda.
>>/4 Calls a copy of Lambda.
>>/5 Calls a copy of Lambda.
>>/6 Calls a copy of Lambda.
>>/7 Calls a copy of Lambda.
>>/8 Calls a copy of Lambda.
>>/9 Calls a copy of Lambda.
is_lambda/1 True if Term is a valid Lambda expression.
lambda_calls/2 Goal is the goal called if call/N is applied to LambdaExpression, where ExtraArgs are the additional arguments to call/N.
lambda_calls/3 Goal is the goal called if call/N is applied to LambdaExpression, where ExtraArgs are the additional arguments to call/N.
1188..33 AArriitthhmmeettiicc FFuunnccttiioonnss
*/2 Multiplication
**/2 Power function
+/1 Unary plus (No-op)
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
^/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
acosh/1 Inverse hyperbolic cosine
asin/1 Inverse (arc) sine
asinh/1 Inverse (arc) sine
atan/1 Inverse hyperbolic sine
atan/2 Rectangular to polar conversion
atanh/1 Inverse hyperbolic tangent
atan2/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cosh/1 Hyperbolic cosine
copysign/2 Apply sign of N2 to N1
cputime/0 Get CPU time
div/2 Integer division
e/0 Mathematical constant
erf/1 Gauss error function
erfc/1 Complementary error function
epsilon/0 Floating point precision
eval/1 Evaluate term as expression
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float_fractional_part/1 Fractional part of a float
float_integer_part/1 Integer part of a float
floor/1 Largest integer below argument
gcd/2 Greatest common divisor
getbit/2 Get bit at index from large integer
inf/0 Positive infinity
integer/1 Round to nearest integer
lgamma/1 Log of gamma function
log/1 Natural logarithm
log10/1 10 base logarithm
lsb/1 Least significant bit
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
nan/0 Not a Number (NaN)
powm/3 Integer exponent and modulo
random/1 Generate random number
random_float/0 Generate random number
rational/1 Convert to rational number
rationalize/1 Convert to rational number
rdiv/2 Ration number division
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
popcount/1 Count 1s in a bitvector
sign/1 Extract sign of value
sin/1 Sine
sinh/1 Hyperbolic sine
sqrt/1 Square root
tan/1 Tangent
tanh/1 Hyperbolic tangent
xor/2 Bitwise exclusive or
1188..44 OOppeerraattoorrss
$ 1 fx Bind top-level variable
^ 200 xfy Existential qualification
^ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1105 xfy DCG disjunction
discontiguous 1150 fx Directive
dynamic 1150 fx Directive
module_transparent 1150 fx Directive
meta_predicate 1150 fx Head
multifile 1150 fx Directive
thread_local 1150 fx Directive
volatile 1150 fx Directive
initialization 1150 fx Directive
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator
Bibliography
[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker.
Extensible objects. ESPRIT Project
1098 Technical Report UvA-C1-TR-006a,
University of Amsterdam, March 1989.
[BIM, 1989] _B_I_M _P_r_o_l_o_g _r_e_l_e_a_s_e _2_._4. Everberg,
Belgium, 1989.
[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable
Prolog compiler. In L. M. Pereira,
editor, _P_r_o_c_e_e_d_i_n_g_s _o_f _t_h_e _L_o_g_i_n
_P_r_o_g_r_a_m_m_i_n_g _W_o_r_k_s_h_o_p _1_9_8_3, Lisabon,
Portugal, 1983. Universidade nova de
Lisboa.
[Bratko, 1986] I. Bratko. _P_r_o_l_o_g _P_r_o_g_r_a_m_m_i_n_g _f_o_r _A_r_-
_t_i_f_i_c_i_a_l _I_n_t_e_l_l_i_g_e_n_c_e. Addison-Wesley,
Reading, Massachusetts, 1986.
[Butenhof, 1997] David R. Butenhof. _P_r_o_g_r_a_m_m_i_n_g _w_i_t_h
_P_O_S_I_X _t_h_r_e_a_d_s. Addison-Wesley, Read-
ing, MA, USA, 1997.
[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.
_P_r_o_g_r_a_m_m_i_n_g _i_n _P_r_o_l_o_g. Springer-
Verlag, New York, Third, Revised and
Extended edition, 1987.
[Demoen, 2002] Bart Demoen. Dynamic attributes, their
hProlog implementation, and a first
evaluation. Report CW 350, Department
of Computer Science, K.U.Leuven,
Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.
[Deransart _e_t _a_l_., 1996] P. Deransart, A. Ed-Dbali, and
L. Cervoni. _P_r_o_l_o_g_: _T_h_e _S_t_a_n_d_a_r_d.
Springer-Verlag, New York, 1996.
[Fr"uhwirth, ] T. Fr"uhwirth. Thom Fruehwirth's
constraint handling rules web-
site. http://www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-
intro.html.
[Fr"uhwirth, 1998] T. Fr"uhwirth. Theory and Practice
of Constraint Handling Rules. In
P. Stuckey and K. Marriot, editors,
_S_p_e_c_i_a_l _I_s_s_u_e _o_n _C_o_n_s_t_r_a_i_n_t _L_o_g_i_c
_P_r_o_g_r_a_m_m_i_n_g, volume 37, October 1998.
[Graham _e_t _a_l_., 1982] Susan L. Graham, Peter B. Kessler, and
Marshall K. McKusick. gprof: a call
graph execution profiler. In _S_I_G_P_L_A_N
_S_y_m_p_o_s_i_u_m _o_n _C_o_m_p_i_l_e_r _C_o_n_s_t_r_u_c_t_i_o_n,
pages 120--126, 1982.
[Hodgson, 1998] Jonathan Hodgson. validation suite for
conformance with part 1 of the stan-
dard, 1998, http://www.sju.edu/{\tt\
string~}jhodgson/pub/suite.tar.gz.
[Holzbaur, 1990] Christian Holzbaur. Realization of
forward checking in logic program-
ming through extended unification.
Report TR-90-11, Oesterreichisches
Forschungsinstitut fuer Artificial In-
telligence, Wien, Austria, 1990.
[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. _T_h_e
_C _P_r_o_g_r_a_m_m_i_n_g _L_a_n_g_u_a_g_e. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.
[O'Keefe, 1990] R. A. O'Keefe. _T_h_e _C_r_a_f_t _o_f _P_r_o_l_o_g.
MIT Press, Massachussetts, 1990.
[Pereira, 1986] F. Pereira. _C_-_P_r_o_l_o_g _U_s_e_r_'_s _M_a_n_u_a_l,
1986.
[Qui, 1997] _Q_u_i_n_t_u_s _P_r_o_l_o_g_, _U_s_e_r _G_u_i_d_e _a_n_d
_R_e_f_e_r_e_n_c_e _M_a_n_u_a_l. Berkhamsted, UK,
1997.
[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. _T_h_e
_A_r_t _o_f _P_r_o_l_o_g. MIT Press, Cambridge,
Massachusetts, 1986.
1969
|