This file is indexed.

/usr/lib/swi-prolog/library/terms.pl is in swi-prolog-nox 7.6.4+dfsg-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*  Part of SWI-Prolog

    Author:        Jan Wielemaker
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  2008-2016, University of Amsterdam, VU University Amsterdam
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(terms,
          [ term_hash/2,                % @Term, -HashKey
            term_hash/4,                % @Term, +Depth, +Range, -HashKey
            term_size/2,                % @Term, -Size
            term_variables/2,           % @Term, -Variables
            term_variables/3,           % @Term, -Variables, +Tail
            variant/2,                  % @Term1, @Term2
            subsumes/2,                 % +Generic, @Specific
            subsumes_chk/2,             % +Generic, @Specific
            cyclic_term/1,              % @Term
            acyclic_term/1,             % @Term
            term_subsumer/3,            % +Special1, +Special2, -General
            term_factorized/3           % +Term, -Skeleton, -Subsitution
          ]).
:- use_module(library(rbtrees)).

/** <module> Term manipulation

Compatibility library for term manipulation  predicates. Most predicates
in this library are provided as SWI-Prolog built-ins.

@compat YAP, SICStus, Quintus.  Not all versions of this library define
        exactly the same set of predicates, but defined predicates are
        compatible.
*/

%!  term_size(@Term, -Size) is det.
%
%   True if Size is the size  in   _cells_  occupied  by Term on the
%   global (term) stack. A _cell_ is 4  bytes on 32-bit machines and
%   8 bytes on 64-bit machines. The  calculation does take _sharing_
%   into account. For example:
%
%   ```
%   ?- A = a(1,2,3), term_size(A,S).
%   S = 4.
%   ?- A = a(1,2,3), term_size(a(A,A),S).
%   S = 7.
%   ?- term_size(a(a(1,2,3), a(1,2,3)), S).
%   S = 11.
%   ```
%
%   Note that small objects such as atoms  and small integers have a
%   size 0. Space is allocated for   floats, large integers, strings
%   and compound terms.

term_size(Term, Size) :-
    '$term_size'(Term, _, Size).

%!  variant(@Term1, @Term2) is semidet.
%
%   Same as SWI-Prolog =|Term1 =@= Term2|=.

variant(X, Y) :-
    X =@= Y.

%!  subsumes_chk(@Generic, @Specific)
%
%   True if Generic can be made equivalent to Specific without
%   changing Specific.
%
%   @deprecated Replace by subsumes_term/2.

subsumes_chk(Generic, Specific) :-
    subsumes_term(Generic, Specific).

%!  subsumes(+Generic, @Specific)
%
%   True  if  Generic  is  unified   to  Specific  without  changing
%   Specific.
%
%   @deprecated It turns out that calls to this predicate almost
%   always should have used subsumes_term/2.  Also the name is
%   misleading.  In case this is really needed, one is adviced to
%   follow subsumes_term/2 with an explicit unification.

subsumes(Generic, Specific) :-
    subsumes_term(Generic, Specific),
    Generic = Specific.

%!  term_subsumer(+Special1, +Special2, -General) is det.
%
%   General is the most specific term   that  is a generalisation of
%   Special1 and Special2. The  implementation   can  handle  cyclic
%   terms.
%
%   @compat SICStus
%   @author Inspired by LOGIC.PRO by Stephen Muggleton

%       It has been rewritten by  Jan   Wielemaker  to use the YAP-based
%       red-black-trees as mapping rather than flat  lists and use arg/3
%       to map compound terms rather than univ and lists.

term_subsumer(S1, S2, G) :-
    cyclic_term(S1),
    cyclic_term(S2),
    !,
    rb_empty(Map),
    lgg_safe(S1, S2, G, Map, _).
term_subsumer(S1, S2, G) :-
    rb_empty(Map),
    lgg(S1, S2, G, Map, _).

lgg(S1, S2, G, Map0, Map) :-
    (   S1 == S2
    ->  G = S1,
        Map = Map0
    ;   compound(S1),
        compound(S2),
        functor(S1, Name, Arity),
        functor(S2, Name, Arity)
    ->  functor(G, Name, Arity),
        lgg(0, Arity, S1, S2, G, Map0, Map)
    ;   rb_lookup(S1+S2, G0, Map0)
    ->  G = G0,
        Map = Map0
    ;   rb_insert(Map0, S1+S2, G, Map)
    ).

lgg(Arity, Arity, _, _, _, Map, Map) :- !.
lgg(I0, Arity, S1, S2, G, Map0, Map) :-
    I is I0 + 1,
    arg(I, S1, Sa1),
    arg(I, S2, Sa2),
    arg(I, G, Ga),
    lgg(Sa1, Sa2, Ga, Map0, Map1),
    lgg(I, Arity, S1, S2, G, Map1, Map).


%!  lgg_safe(+S1, +S2, -G, +Map0, -Map) is det.
%
%   Cycle-safe version of the  above.  The   difference  is  that we
%   insert compounds into the mapping table   and  check the mapping
%   table before going into a compound.

lgg_safe(S1, S2, G, Map0, Map) :-
    (   S1 == S2
    ->  G = S1,
        Map = Map0
    ;   rb_lookup(S1+S2, G0, Map0)
    ->  G = G0,
        Map = Map0
    ;   compound(S1),
        compound(S2),
        functor(S1, Name, Arity),
        functor(S2, Name, Arity)
    ->  functor(G, Name, Arity),
        rb_insert(Map0, S1+S2, G, Map1),
        lgg_safe(0, Arity, S1, S2, G, Map1, Map)
    ;   rb_insert(Map0, S1+S2, G, Map)
    ).

lgg_safe(Arity, Arity, _, _, _, Map, Map) :- !.
lgg_safe(I0, Arity, S1, S2, G, Map0, Map) :-
    I is I0 + 1,
    arg(I, S1, Sa1),
    arg(I, S2, Sa2),
    arg(I, G, Ga),
    lgg_safe(Sa1, Sa2, Ga, Map0, Map1),
    lgg_safe(I, Arity, S1, S2, G, Map1, Map).


%!  term_factorized(+Term, -Skeleton, -Substiution)
%
%   Is true when Skeleton is  Term   where  all subterms that appear
%   multiple times are replaced by a  variable and Substitution is a
%   list of Var=Value that provides the subterm at the location Var.
%   I.e., After unifying all substitutions  in Substiutions, Term ==
%   Skeleton. Term may be cyclic. For example:
%
%     ==
%     ?- X = a(X), term_factorized(b(X,X), Y, S).
%     Y = b(_G255, _G255),
%     S = [_G255=a(_G255)].
%     ==

term_factorized(Term, Skeleton, Substitutions) :-
    rb_new(Map0),
    add_map(Term, Map0, Map),
    rb_visit(Map, Counts),
    common_terms(Counts, Common),
    (   Common == []
    ->  Skeleton = Term,
        Substitutions = []
    ;   ord_list_to_rbtree(Common, SubstAssoc),
        insert_vars(Term, Skeleton, SubstAssoc),
        mk_subst(Common, Substitutions, SubstAssoc)
    ).

add_map(Term, Map0, Map) :-
    (   primitive(Term)
    ->  Map = Map0
    ;   rb_update(Map0, Term, Old, New, Map)
    ->  New is Old+1
    ;   rb_insert(Map0, Term, 1, Map1),
        assoc_arg_map(1, Term, Map1, Map)
    ).

assoc_arg_map(I, Term, Map0, Map) :-
    arg(I, Term, Arg),
    !,
    add_map(Arg, Map0, Map1),
    I2 is I + 1,
    assoc_arg_map(I2, Term, Map1, Map).
assoc_arg_map(_, _, Map, Map).

primitive(Term) :-
    var(Term),
    !.
primitive(Term) :-
    atomic(Term),
    !.
primitive('$VAR'(_)).

common_terms([], []).
common_terms([H-Count|T], List) :-
    !,
    (   Count == 1
    ->  common_terms(T, List)
    ;   List = [H-_NewVar|Tail],
        common_terms(T, Tail)
    ).

insert_vars(T0, T, _) :-
    primitive(T0),
    !,
    T = T0.
insert_vars(T0, T, Subst) :-
    rb_lookup(T0, S, Subst),
    !,
    T = S.
insert_vars(T0, T, Subst) :-
    functor(T0, Name, Arity),
    functor(T,  Name, Arity),
    insert_arg_vars(1, T0, T, Subst).

insert_arg_vars(I, T0, T, Subst) :-
    arg(I, T0, A0),
    !,
    arg(I, T,  A),
    insert_vars(A0, A, Subst),
    I2 is I + 1,
    insert_arg_vars(I2, T0, T, Subst).
insert_arg_vars(_, _, _, _).

mk_subst([], [], _).
mk_subst([Val0-Var|T0], [Var=Val|T], Subst) :-
    functor(Val0, Name, Arity),
    functor(Val,  Name, Arity),
    insert_arg_vars(1, Val0, Val, Subst),
    mk_subst(T0, T, Subst).