/usr/lib/swi-prolog/library/terms.pl is in swi-prolog-nox 7.6.4+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2008-2016, University of Amsterdam, VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(terms,
[ term_hash/2, % @Term, -HashKey
term_hash/4, % @Term, +Depth, +Range, -HashKey
term_size/2, % @Term, -Size
term_variables/2, % @Term, -Variables
term_variables/3, % @Term, -Variables, +Tail
variant/2, % @Term1, @Term2
subsumes/2, % +Generic, @Specific
subsumes_chk/2, % +Generic, @Specific
cyclic_term/1, % @Term
acyclic_term/1, % @Term
term_subsumer/3, % +Special1, +Special2, -General
term_factorized/3 % +Term, -Skeleton, -Subsitution
]).
:- use_module(library(rbtrees)).
/** <module> Term manipulation
Compatibility library for term manipulation predicates. Most predicates
in this library are provided as SWI-Prolog built-ins.
@compat YAP, SICStus, Quintus. Not all versions of this library define
exactly the same set of predicates, but defined predicates are
compatible.
*/
%! term_size(@Term, -Size) is det.
%
% True if Size is the size in _cells_ occupied by Term on the
% global (term) stack. A _cell_ is 4 bytes on 32-bit machines and
% 8 bytes on 64-bit machines. The calculation does take _sharing_
% into account. For example:
%
% ```
% ?- A = a(1,2,3), term_size(A,S).
% S = 4.
% ?- A = a(1,2,3), term_size(a(A,A),S).
% S = 7.
% ?- term_size(a(a(1,2,3), a(1,2,3)), S).
% S = 11.
% ```
%
% Note that small objects such as atoms and small integers have a
% size 0. Space is allocated for floats, large integers, strings
% and compound terms.
term_size(Term, Size) :-
'$term_size'(Term, _, Size).
%! variant(@Term1, @Term2) is semidet.
%
% Same as SWI-Prolog =|Term1 =@= Term2|=.
variant(X, Y) :-
X =@= Y.
%! subsumes_chk(@Generic, @Specific)
%
% True if Generic can be made equivalent to Specific without
% changing Specific.
%
% @deprecated Replace by subsumes_term/2.
subsumes_chk(Generic, Specific) :-
subsumes_term(Generic, Specific).
%! subsumes(+Generic, @Specific)
%
% True if Generic is unified to Specific without changing
% Specific.
%
% @deprecated It turns out that calls to this predicate almost
% always should have used subsumes_term/2. Also the name is
% misleading. In case this is really needed, one is adviced to
% follow subsumes_term/2 with an explicit unification.
subsumes(Generic, Specific) :-
subsumes_term(Generic, Specific),
Generic = Specific.
%! term_subsumer(+Special1, +Special2, -General) is det.
%
% General is the most specific term that is a generalisation of
% Special1 and Special2. The implementation can handle cyclic
% terms.
%
% @compat SICStus
% @author Inspired by LOGIC.PRO by Stephen Muggleton
% It has been rewritten by Jan Wielemaker to use the YAP-based
% red-black-trees as mapping rather than flat lists and use arg/3
% to map compound terms rather than univ and lists.
term_subsumer(S1, S2, G) :-
cyclic_term(S1),
cyclic_term(S2),
!,
rb_empty(Map),
lgg_safe(S1, S2, G, Map, _).
term_subsumer(S1, S2, G) :-
rb_empty(Map),
lgg(S1, S2, G, Map, _).
lgg(S1, S2, G, Map0, Map) :-
( S1 == S2
-> G = S1,
Map = Map0
; compound(S1),
compound(S2),
functor(S1, Name, Arity),
functor(S2, Name, Arity)
-> functor(G, Name, Arity),
lgg(0, Arity, S1, S2, G, Map0, Map)
; rb_lookup(S1+S2, G0, Map0)
-> G = G0,
Map = Map0
; rb_insert(Map0, S1+S2, G, Map)
).
lgg(Arity, Arity, _, _, _, Map, Map) :- !.
lgg(I0, Arity, S1, S2, G, Map0, Map) :-
I is I0 + 1,
arg(I, S1, Sa1),
arg(I, S2, Sa2),
arg(I, G, Ga),
lgg(Sa1, Sa2, Ga, Map0, Map1),
lgg(I, Arity, S1, S2, G, Map1, Map).
%! lgg_safe(+S1, +S2, -G, +Map0, -Map) is det.
%
% Cycle-safe version of the above. The difference is that we
% insert compounds into the mapping table and check the mapping
% table before going into a compound.
lgg_safe(S1, S2, G, Map0, Map) :-
( S1 == S2
-> G = S1,
Map = Map0
; rb_lookup(S1+S2, G0, Map0)
-> G = G0,
Map = Map0
; compound(S1),
compound(S2),
functor(S1, Name, Arity),
functor(S2, Name, Arity)
-> functor(G, Name, Arity),
rb_insert(Map0, S1+S2, G, Map1),
lgg_safe(0, Arity, S1, S2, G, Map1, Map)
; rb_insert(Map0, S1+S2, G, Map)
).
lgg_safe(Arity, Arity, _, _, _, Map, Map) :- !.
lgg_safe(I0, Arity, S1, S2, G, Map0, Map) :-
I is I0 + 1,
arg(I, S1, Sa1),
arg(I, S2, Sa2),
arg(I, G, Ga),
lgg_safe(Sa1, Sa2, Ga, Map0, Map1),
lgg_safe(I, Arity, S1, S2, G, Map1, Map).
%! term_factorized(+Term, -Skeleton, -Substiution)
%
% Is true when Skeleton is Term where all subterms that appear
% multiple times are replaced by a variable and Substitution is a
% list of Var=Value that provides the subterm at the location Var.
% I.e., After unifying all substitutions in Substiutions, Term ==
% Skeleton. Term may be cyclic. For example:
%
% ==
% ?- X = a(X), term_factorized(b(X,X), Y, S).
% Y = b(_G255, _G255),
% S = [_G255=a(_G255)].
% ==
term_factorized(Term, Skeleton, Substitutions) :-
rb_new(Map0),
add_map(Term, Map0, Map),
rb_visit(Map, Counts),
common_terms(Counts, Common),
( Common == []
-> Skeleton = Term,
Substitutions = []
; ord_list_to_rbtree(Common, SubstAssoc),
insert_vars(Term, Skeleton, SubstAssoc),
mk_subst(Common, Substitutions, SubstAssoc)
).
add_map(Term, Map0, Map) :-
( primitive(Term)
-> Map = Map0
; rb_update(Map0, Term, Old, New, Map)
-> New is Old+1
; rb_insert(Map0, Term, 1, Map1),
assoc_arg_map(1, Term, Map1, Map)
).
assoc_arg_map(I, Term, Map0, Map) :-
arg(I, Term, Arg),
!,
add_map(Arg, Map0, Map1),
I2 is I + 1,
assoc_arg_map(I2, Term, Map1, Map).
assoc_arg_map(_, _, Map, Map).
primitive(Term) :-
var(Term),
!.
primitive(Term) :-
atomic(Term),
!.
primitive('$VAR'(_)).
common_terms([], []).
common_terms([H-Count|T], List) :-
!,
( Count == 1
-> common_terms(T, List)
; List = [H-_NewVar|Tail],
common_terms(T, Tail)
).
insert_vars(T0, T, _) :-
primitive(T0),
!,
T = T0.
insert_vars(T0, T, Subst) :-
rb_lookup(T0, S, Subst),
!,
T = S.
insert_vars(T0, T, Subst) :-
functor(T0, Name, Arity),
functor(T, Name, Arity),
insert_arg_vars(1, T0, T, Subst).
insert_arg_vars(I, T0, T, Subst) :-
arg(I, T0, A0),
!,
arg(I, T, A),
insert_vars(A0, A, Subst),
I2 is I + 1,
insert_arg_vars(I2, T0, T, Subst).
insert_arg_vars(_, _, _, _).
mk_subst([], [], _).
mk_subst([Val0-Var|T0], [Var=Val|T], Subst) :-
functor(Val0, Name, Arity),
functor(Val, Name, Arity),
insert_arg_vars(1, Val0, Val, Subst),
mk_subst(T0, T, Subst).
|