This file is indexed.

/usr/share/yacas/scripts/examples/pi.ys is in yacas 1.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/* Calculating Pi to multiple precision using advanced methods */

/* Defined: PiMethod0(), PiMethod1(), PiMethod2(), PiBrentSalamin(), PiBorwein() */

// Reference method: just use Newton's method all the time, no complicated logic to select precision steps. Slightly slower than method 1 but a lot simpler. This is implemented in Internal'Pi()

PiMethod0() := [
	Local(result, delta, k, Epsilon, prec, prec1, curprec);
	prec := Builtin'Precision'Get();	// full required precision
	prec1 := Ceil(N(prec/3));	// precision of the last-but-one iteration

	/* initial approximation */
	result := 3.14159265358979323846;
	curprec := 20;
	Builtin'Precision'Set(curprec);
	For(k:=0, curprec < prec1, k:=k+1) [
		curprec := Min(prec1, curprec * 3);
		Builtin'Precision'Set(curprec);
		Echo({"Iteration ", k, " setting precision to ", curprec});
		result := Time(MathAdd(result, MathSin(result)));
	];
	// last iteration -- do by hand
	Builtin'Precision'Set(prec);	// restore full precision
	Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
	result := Time(MathAdd(result, MathSin(result)));
	Echo({"variable precision Newton's method: ", k, "iterations"}); 
	result;
];

/* Brute-force method 1: start near 3.14159... and iterate using Nth order
Newton method: x := x + ( sin(x) + 1/6*sin(x)^3 + 3/40*sin(x)^5 +
5/112*sin(x)^7 + ...) i.e. the Taylor series for arcsin but cut at a finite
point. Convergence is of order of the next term, i.e. x^9, but need to evaluate
Sin() at each step. However, we don't need to evaluate them to full precision
each time, because each iteration will correct any accumulated errors. In fact,
first iterations can be computed with significantly lower precision than the
final result. This makes method1 the fastest for Yacas internal math. */

PiMethod1() := [
	Local(result, delta, deltasq, k, Epsilon, prec, curprec);
	prec := Builtin'Precision'Get();
	N([
    /* initial approximation */
    curprec := 20;
    Builtin'Precision'Set(curprec);
    result := 3.14159265358979323846;
    /* right now we do all but the last iteration using the 8th order scheme, and the last iteration is done using the 2nd order scheme. However it would be faster to use a very high-order scheme first, then a smaller-order scheme, etc., because it's faster to do multiplications at low precision.
    */
    For(k:=0, curprec*3 < prec, k := k+1) [
      curprec := Min(Ceil((prec/3)), curprec * 9);
      Builtin'Precision'Set(curprec);
      Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
      delta := MathSin(result);
      deltasq := (delta*delta);
      result := Time(result + delta*(1 + deltasq*(1/6 + deltasq*(3/40 + deltasq*5/112))));
    ];
    // now do the last iteration
    Builtin'Precision'Set(prec);
    k := k+1;
    Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
    result := Time(MathAdd(result, MathSin(result)));
    Echo({"8th order Newton's method: ", k, "iterations"}); 
  ]);
	result;
];

/* Brute-force method 2: evaluate full series for arctan */
/* x0 := 3.14159... and Pi = x0 - ( tan(x0) - tan(x0)^3/3 + tan(x0)^5/5 +...) i.e. the Taylor series for arctan - go until it converges to Pi. Convergence is linear but unlike method 1, we don't need to evaluate Sin() and Cos() at every step, and we can start at a very good initial approximation to cut computing time.
*/

PiMethod2() := [
	Local(result, delta, tansq, k, Epsilon);
	N([
    Epsilon := (2*10 ^ (-Builtin'Precision'Get()));

    /* initial approximation */
    result := 3.141592653589793;
    delta := (-Tan(result));
    tansq := (delta^2);
    k := 0;
    
    While(Abs(delta) > Epsilon) [
  //		Echo(result);
      result := (result + delta/(2*k+1));
  //		Echo(delta, k);
      delta := (-delta * tansq);
      k := k+1;
    ];
    Echo({"Brute force method 2 (ArcTan series): ", k, "iterations"}); 
  ]);
	result;
];

/* Method due to Brent and Salamin (1976) */
PiBrentSalamin() := [
	Local(a, b, c, s, k, p, result, Epsilon);
	Epsilon := N(2*10 ^ (-Builtin'Precision'Get()));

	/* initialization */
	a := 1; b := N(1/Sqrt(2)); s := N(1/2); k := 0;
	/* this is just to make sure we stop - the algorithm does not require initialization of p */
	p := 0; result := 1;
	/* repeat until precision is saturated */
	While(Abs(p-result) >= Epsilon) [
		k := k+1;
		result := p;
		/* arithmetic and geometric mean */
		{a, b} := {N((a+b)/2), N(Sqrt(a*b))};
		/* difference between them is scaled by 2^k */
		s := N(s - 2^k*(a^2-b^2));
		p := N(2*a^2/s);
	];
	Echo({"Brent and Salamin's algorithm: ", k, "iterations"}); 
	
	result;
];

/* Method due to Borwein (c. 1988) -- "quartic" method */
PiBorwein() := [
	Local(a, y, y4s, k, result, Epsilon);
	Epsilon := N(2*10 ^ (-Builtin'Precision'Get()));

	/* initialization */
	a:=N(6-4*Sqrt(2)); y := N(Sqrt(2)-1); k := 0;
	result := 0;
	/* repeat until precision is saturated */
	While(Abs(a-result) >= Epsilon) [
		result := a;
		/* precompute (1-y^4)^(1/4) */
		y4s:=N(Sqrt(Sqrt(1-y^4)));
		/* black magic */
		y := N((1-y4s)/(1+y4s));
		/* more black magic */
		a := a*(1+y)^4-2^(2*k+3)*y*(1+y+y^2);
		k := k+1;
	];
	/* {a} will converge to 1/Pi */
	result := N(1/result);

	Echo({"Borwein's quartic algorithm: ", k, "iterations"}); 
	result;
];

// iterate x := x + Cos(x) + 1/6 *Cos(x)^3 + ... to converge to x=Pi/2
PiMethod3() :=
[
	Local(result, delta, deltasq, k, order, prec, curprec);
	order := 13;	// order of approximation
	prec := Builtin'Precision'Get();
  N([
    /* initial approximation */
    curprec := 20;
    Builtin'Precision'Set(curprec);
    result := 3.14159265358979323846*0.5;
    // find optimal initial precision
    For(k:=prec, k>=curprec, k:=Div(k,order)+2) True;
    If(k<5, curprec:=5, curprec:=k);
  //	Echo("initial precision", curprec);
    // now k is the iteration counter
    For(k:=0, curprec < prec, k := k+1) [
    // at this iteration we know the result to curprec digits
      curprec := Min(prec, curprec * order-2);	// 2 guard digits
      Builtin'Precision'Set(curprec+2);
      Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
  //		Echo("old result=", MathCos(result));
      Time([
      delta := MathCos(result);
      ]);
      Time([
      deltasq := MathMultiply(delta,delta);
      ]);
      result := Time(result + delta*(1 + deltasq*(1/6 + deltasq*(3/40 + deltasq*(5/112 + deltasq*(35/1152 + (deltasq*63)/2816))))));
    ];
    Echo({"Method 3, using Pi/2 and order", order, ":", k, "iterations"});
  ]);
	result*2;
];

PiChudnovsky() :=
[	// use the Ramanujan series found by Chudnovsky brothers
	Local(A, B, C, n, result, term);
	A:=13591409; B:=545140134; C:=640320; // black magic, Rama, Rama, Ramanujan
	prec := Builtin'Precision'Get();
  N([
    n:=Div(prec*479,6793)+1;	// n> P*Ln(10)/(3*Ln(C/12))
    Echo({"Method: Chudnovsky, using ", n, " terms"});
    Builtin'Precision'Set(prec+IntLog(n,10)+5);
    result := (A+n*B);
    While(n>0)
    [
  //	Echo(n,result);
      result := A+(n-1)*B-24*(6*n-1)*(2*n-1)*(6*n-5) /(C*n)^3 *result;
      n--;
    ];
    result := C/12*Sqrt(C)/Abs(result);
  ]);
	Builtin'Precision'Set(prec);
	RoundTo(result,prec);
];

BenchmarkPi(prec) :=
[
	Local(result);
	GlobalPush(Builtin'Precision'Get());
	Builtin'Precision'Set(prec);
	
	result := {
		Time(MathPi()),
		Time(PiMethod0()),
		Time(PiMethod1()),
		Time(PiMethod2()),
		Time(PiMethod3()),
//		Time(PiMethod4()),
		Time(PiChudnovsky()),
		Time(PiBrentSalamin()),
		Time(PiBorwein()),
	};
	result := N(Sin(result));
	Builtin'Precision'Set(GlobalPop());
	result;
];