/usr/share/yacas/scripts/examples/pi.ys is in yacas 1.3.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | /* Calculating Pi to multiple precision using advanced methods */
/* Defined: PiMethod0(), PiMethod1(), PiMethod2(), PiBrentSalamin(), PiBorwein() */
// Reference method: just use Newton's method all the time, no complicated logic to select precision steps. Slightly slower than method 1 but a lot simpler. This is implemented in Internal'Pi()
PiMethod0() := [
Local(result, delta, k, Epsilon, prec, prec1, curprec);
prec := Builtin'Precision'Get(); // full required precision
prec1 := Ceil(N(prec/3)); // precision of the last-but-one iteration
/* initial approximation */
result := 3.14159265358979323846;
curprec := 20;
Builtin'Precision'Set(curprec);
For(k:=0, curprec < prec1, k:=k+1) [
curprec := Min(prec1, curprec * 3);
Builtin'Precision'Set(curprec);
Echo({"Iteration ", k, " setting precision to ", curprec});
result := Time(MathAdd(result, MathSin(result)));
];
// last iteration -- do by hand
Builtin'Precision'Set(prec); // restore full precision
Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
result := Time(MathAdd(result, MathSin(result)));
Echo({"variable precision Newton's method: ", k, "iterations"});
result;
];
/* Brute-force method 1: start near 3.14159... and iterate using Nth order
Newton method: x := x + ( sin(x) + 1/6*sin(x)^3 + 3/40*sin(x)^5 +
5/112*sin(x)^7 + ...) i.e. the Taylor series for arcsin but cut at a finite
point. Convergence is of order of the next term, i.e. x^9, but need to evaluate
Sin() at each step. However, we don't need to evaluate them to full precision
each time, because each iteration will correct any accumulated errors. In fact,
first iterations can be computed with significantly lower precision than the
final result. This makes method1 the fastest for Yacas internal math. */
PiMethod1() := [
Local(result, delta, deltasq, k, Epsilon, prec, curprec);
prec := Builtin'Precision'Get();
N([
/* initial approximation */
curprec := 20;
Builtin'Precision'Set(curprec);
result := 3.14159265358979323846;
/* right now we do all but the last iteration using the 8th order scheme, and the last iteration is done using the 2nd order scheme. However it would be faster to use a very high-order scheme first, then a smaller-order scheme, etc., because it's faster to do multiplications at low precision.
*/
For(k:=0, curprec*3 < prec, k := k+1) [
curprec := Min(Ceil((prec/3)), curprec * 9);
Builtin'Precision'Set(curprec);
Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
delta := MathSin(result);
deltasq := (delta*delta);
result := Time(result + delta*(1 + deltasq*(1/6 + deltasq*(3/40 + deltasq*5/112))));
];
// now do the last iteration
Builtin'Precision'Set(prec);
k := k+1;
Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
result := Time(MathAdd(result, MathSin(result)));
Echo({"8th order Newton's method: ", k, "iterations"});
]);
result;
];
/* Brute-force method 2: evaluate full series for arctan */
/* x0 := 3.14159... and Pi = x0 - ( tan(x0) - tan(x0)^3/3 + tan(x0)^5/5 +...) i.e. the Taylor series for arctan - go until it converges to Pi. Convergence is linear but unlike method 1, we don't need to evaluate Sin() and Cos() at every step, and we can start at a very good initial approximation to cut computing time.
*/
PiMethod2() := [
Local(result, delta, tansq, k, Epsilon);
N([
Epsilon := (2*10 ^ (-Builtin'Precision'Get()));
/* initial approximation */
result := 3.141592653589793;
delta := (-Tan(result));
tansq := (delta^2);
k := 0;
While(Abs(delta) > Epsilon) [
// Echo(result);
result := (result + delta/(2*k+1));
// Echo(delta, k);
delta := (-delta * tansq);
k := k+1;
];
Echo({"Brute force method 2 (ArcTan series): ", k, "iterations"});
]);
result;
];
/* Method due to Brent and Salamin (1976) */
PiBrentSalamin() := [
Local(a, b, c, s, k, p, result, Epsilon);
Epsilon := N(2*10 ^ (-Builtin'Precision'Get()));
/* initialization */
a := 1; b := N(1/Sqrt(2)); s := N(1/2); k := 0;
/* this is just to make sure we stop - the algorithm does not require initialization of p */
p := 0; result := 1;
/* repeat until precision is saturated */
While(Abs(p-result) >= Epsilon) [
k := k+1;
result := p;
/* arithmetic and geometric mean */
{a, b} := {N((a+b)/2), N(Sqrt(a*b))};
/* difference between them is scaled by 2^k */
s := N(s - 2^k*(a^2-b^2));
p := N(2*a^2/s);
];
Echo({"Brent and Salamin's algorithm: ", k, "iterations"});
result;
];
/* Method due to Borwein (c. 1988) -- "quartic" method */
PiBorwein() := [
Local(a, y, y4s, k, result, Epsilon);
Epsilon := N(2*10 ^ (-Builtin'Precision'Get()));
/* initialization */
a:=N(6-4*Sqrt(2)); y := N(Sqrt(2)-1); k := 0;
result := 0;
/* repeat until precision is saturated */
While(Abs(a-result) >= Epsilon) [
result := a;
/* precompute (1-y^4)^(1/4) */
y4s:=N(Sqrt(Sqrt(1-y^4)));
/* black magic */
y := N((1-y4s)/(1+y4s));
/* more black magic */
a := a*(1+y)^4-2^(2*k+3)*y*(1+y+y^2);
k := k+1;
];
/* {a} will converge to 1/Pi */
result := N(1/result);
Echo({"Borwein's quartic algorithm: ", k, "iterations"});
result;
];
// iterate x := x + Cos(x) + 1/6 *Cos(x)^3 + ... to converge to x=Pi/2
PiMethod3() :=
[
Local(result, delta, deltasq, k, order, prec, curprec);
order := 13; // order of approximation
prec := Builtin'Precision'Get();
N([
/* initial approximation */
curprec := 20;
Builtin'Precision'Set(curprec);
result := 3.14159265358979323846*0.5;
// find optimal initial precision
For(k:=prec, k>=curprec, k:=Div(k,order)+2) True;
If(k<5, curprec:=5, curprec:=k);
// Echo("initial precision", curprec);
// now k is the iteration counter
For(k:=0, curprec < prec, k := k+1) [
// at this iteration we know the result to curprec digits
curprec := Min(prec, curprec * order-2); // 2 guard digits
Builtin'Precision'Set(curprec+2);
Echo("Iteration ", k, " setting precision to ", Builtin'Precision'Get());
// Echo("old result=", MathCos(result));
Time([
delta := MathCos(result);
]);
Time([
deltasq := MathMultiply(delta,delta);
]);
result := Time(result + delta*(1 + deltasq*(1/6 + deltasq*(3/40 + deltasq*(5/112 + deltasq*(35/1152 + (deltasq*63)/2816))))));
];
Echo({"Method 3, using Pi/2 and order", order, ":", k, "iterations"});
]);
result*2;
];
PiChudnovsky() :=
[ // use the Ramanujan series found by Chudnovsky brothers
Local(A, B, C, n, result, term);
A:=13591409; B:=545140134; C:=640320; // black magic, Rama, Rama, Ramanujan
prec := Builtin'Precision'Get();
N([
n:=Div(prec*479,6793)+1; // n> P*Ln(10)/(3*Ln(C/12))
Echo({"Method: Chudnovsky, using ", n, " terms"});
Builtin'Precision'Set(prec+IntLog(n,10)+5);
result := (A+n*B);
While(n>0)
[
// Echo(n,result);
result := A+(n-1)*B-24*(6*n-1)*(2*n-1)*(6*n-5) /(C*n)^3 *result;
n--;
];
result := C/12*Sqrt(C)/Abs(result);
]);
Builtin'Precision'Set(prec);
RoundTo(result,prec);
];
BenchmarkPi(prec) :=
[
Local(result);
GlobalPush(Builtin'Precision'Get());
Builtin'Precision'Set(prec);
result := {
Time(MathPi()),
Time(PiMethod0()),
Time(PiMethod1()),
Time(PiMethod2()),
Time(PiMethod3()),
// Time(PiMethod4()),
Time(PiChudnovsky()),
Time(PiBrentSalamin()),
Time(PiBorwein()),
};
result := N(Sin(result));
Builtin'Precision'Set(GlobalPop());
result;
];
|