This file is indexed.

/usr/share/yacas/scripts/logic.rep/code.ys is in yacas 1.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/* Tests on logic */

/* Small theorem prover for propositional logic, based on the
 * resolution principle.
 * Written by Ayal Pinkus, based on the simple theorem prover from "Prolog, Ivan Bratko, chapter 20"
 * Version 0.1 initial implementation.
 *
 *
 * Examples:
CanProve(( (a=>b) And (b=>c)=>(a=>c) ))  <-- True
CanProve(a  Or   Not a)                  <-- True
CanProve(True  Or  a)                    <-- True
CanProve(False  Or  a)                   <-- a
CanProve(a  And   Not a)                 <-- False
CanProve(a  Or b Or (a And b))           <-- a Or b
 */

RuleBase("=>",{a,b});


/*
   Simplify a boolean expression. CNF is responsible
   for converting an expression to the following form:
        (p1  Or  p2  Or  ...)  And  (q1  Or  q2  Or  ...)  And ...
   That is, a conjunction of disjunctions.
*/


// Trivial simplifications
10  # CNF( Not  True)                  <-- False;
11  # CNF( Not  False)                 <-- True;
12  # CNF(True   And  (_x))            <-- CNF(x);
13  # CNF(False  And  (_x))            <-- False;
14  # CNF(_x   And  True)              <-- CNF(x);
15  # CNF(_x  And  False)              <-- False;
16  # CNF(True   Or  (_x))             <-- True;
17  # CNF(False  Or  (_x))             <-- CNF(x);
18  # CNF((_x)  Or  True )             <-- True;
19  # CNF((_x)  Or  False)             <-- CNF(x);

// A bit more complext
21  # CNF(_x  Or  _x)                  <-- CNF(x);
22  # CNF(_x  And  _x)                 <-- CNF(x);
23  # CNF(_x  Or Not (_x))             <-- True;
14  # CNF(Not (_x)  Or _x)             <-- True;
25  # CNF(_x  And Not (_x))            <-- False;
26  # CNF(Not (_x)  And _x)            <-- False;

// Simplifications that deal with (in)equalities
25  # CNF(((_x) == (_y))   Or  ((_x) !== (_y)))   <-- True;
25  # CNF(((_x) !== (_y))  Or  ((_x) == (_y)))    <-- True;
26  # CNF(((_x) == (_y))   And ((_x) !== (_y)))   <-- False;
26  # CNF(((_x) !== (_y))  And ((_x) == (_y)))    <-- False;

27  # CNF(((_x) >= (_y))   And ((_x) < (_y)))     <-- False;
27  # CNF(((_x) < (_y))    And ((_x) >= (_y)))    <-- False;
28  # CNF(((_x) >= (_y))   Or  ((_x) < (_y)))     <-- True;
28  # CNF(((_x) < (_y))    Or  ((_x) >= (_y)))    <-- True;

// some things that are more complex
120  # CNF((_x)  Or  (_y))            <-- LogOr(x, y, CNF(x), CNF(y));
10 # LogOr(_x,_y,_x,_y)               <-- x Or y;
20 # LogOr(_x,_y,_u,_v)               <-- CNF(u Or v);

130  # CNF( Not  (_x))                <-- LogNot(x, CNF(x));
10 # LogNot(_x, _x)                   <-- Not (x);
20 # LogNot(_x, _y)                   <-- CNF(Not (y));

40 # CNF( Not ( Not  (_x)))           <-- CNF(x);                           // eliminate double negation
45 # CNF((_x)=>(_y))                  <-- CNF((Not (x))  Or  (y));              // eliminate implication

50 # CNF( Not ((_x)  And  (_y)))      <-- CNF((Not x) Or (Not y));          // De Morgan's law
60 # CNF( Not ((_x)  Or  (_y)))       <-- CNF(Not (x)) And CNF(Not (y));        // De Morgan's law

/*
70 # CNF((_x) And ((_y)  Or  (_z)))   <-- CNF(x And y) Or CNF(x And z);
70 # CNF(((_x) Or (_y)) And (_z))     <-- CNF(x And z) Or CNF(y And z);

80 # CNF((_x)  Or  ((_y)  And  (_z))) <-- CNF(x Or y) And CNF(x Or z);
80 # CNF(((_x)  And  (_y)) Or (_z))   <-- CNF(x Or z) And CNF(y Or z);
*/

70 # CNF(((_x)  And  (_y))  Or  (_z)) <-- CNF(x Or z) And CNF(y Or z);      // Distributing Or over And
80 # CNF((_x)  Or  ((_y)  And  (_z))) <-- CNF(x Or y) And CNF(x Or z);

90 # CNF((_x)  And  (_y))             <-- CNF(x) And CNF(y);                // Transform subexpression

101 # CNF( (_x) < (_y) )              <-- Not CNFInEq(x >=  y);
102 # CNF( (_x) > (_y) )              <-- CNFInEq(x >   y);
103 # CNF( (_x) >= (_y) )             <-- CNFInEq(x >=  y);
104 # CNF( (_x) <= (_y) )             <-- Not CNFInEq(x >  y);
105 # CNF( (_x) == (_y) )             <-- CNFInEq(x ==  y);
106 # CNF( (_x) !== (_y) )            <-- Not CNFInEq(x == y);

111 # CNF( Not((_x) <  (_y)) )        <-- CNFInEq( x >= y );
113 # CNF( Not((_x) <= (_y)) )        <-- CNFInEq( x > y );
116 # CNF( Not((_x) !== (_y)) )       <-- CNFInEq( x == y );

/* Accept as fully simplified, fallthrough case */
200 # CNF(_x)                         <-- x;

20 # CNFInEq((_xex) == (_yex))        <-- (CNFInEqSimplify(xex-yex) ==  0);
20 # CNFInEq((_xex) > (_yex))         <-- (CNFInEqSimplify(xex-yex) >   0);
20 # CNFInEq((_xex) >= (_yex))        <-- (CNFInEqSimplify(xex-yex) >=  0);
30 # CNFInEq(_exp)                    <-- (CNFInEqSimplify(exp));

10 # CNFInEqSimplify((_x) - (_x))     <-- 0;        // strictly speaking, this is not always valid, i.e. 1/0 - 1/0 != 0...
100# CNFInEqSimplify(_x)              <-- [/*Echo({"Hit the bottom of CNFInEqSimplify with ", x, Nl()});*/ x;];
                                                    // former "Simplify";

// Some shortcuts to match prev interface
CanProveAux(_proposition)                           <-- LogicSimplify(proposition, 3);
10 # LogicSimplify(_proposition, _level)_(level<2)  <-- CNF(proposition);

20 # LogicSimplify(_proposition, _level) <--
[
  Local(cnf, list, clauses);
  Check(level > 1, "Wrong level");
  // First get the CNF version of the proposition
  Set(cnf, CNF(proposition));

  If(level <= 1, cnf, [
    Set(list, Flatten(cnf, "And"));
    Set(clauses, {});
    ForEach(clause, list)
    [
      Local(newclause);
      //newclause := BubbleSort(LogicRemoveTautologies(Flatten(clause, "Or")), LessThan);
      Set(newclause, LogicRemoveTautologies(Flatten(clause, "Or")));
      If(newclause != {True}, DestructiveAppend(clauses, newclause));
    ];

    /*
        Note that we sort each of the clauses so that they look the same,
        i.e. if we have (A And B) And ( B And A), only the first one will
        persist.
    */
    Set(clauses, RemoveDuplicates(clauses));

    If(Equals(level, 3) And (Length(clauses) != 0), [
        Set(clauses, DoUnitSubsumptionAndResolution(clauses));
        Set(clauses, LogicCombine(clauses));
    ]);

    Set(clauses, RemoveDuplicates(clauses));

    If(Equals(Length(clauses), 0), True, [
        /* assemble the result back into a boolean expression */
        Local(result);
        Set(result, True);
        ForEach(item,clauses)
        [
            Set(result, result And UnFlatten(item, "Or", False));
        ];

        result;
    ]);
  ]);
];

/* CanProve tries to prove that the negation of the negation of
   the proposition is true. Negating twice is just a trick to
   allow all the simplification rules a la De Morgan to operate
 */
/*CanProve(_proposition)    <-- CanProveAux( Not CanProveAux( Not proposition));*/

CanProve(_proposition)      <-- CanProveAux( proposition );

1 # SimpleNegate(Not (_x))  <-- x;
2 # SimpleNegate(_x)        <-- Not(x);

/* LogicRemoveTautologies scans a list representing e1 Or e2 Or ... to find
   if there are elements p and  Not p in the list. This signifies p Or Not p,
   which is always True. These pairs are removed. Another function that is used
   is RemoveDuplicates, which converts p Or p into p.
*/

/* this can be optimized to walk through the lists a bit more efficiently and also take
care of duplicates in one pass */
LocalCmp(_e1, _e2)                  <-- LessThan(ToString() Write(e1), ToString() Write(e2));

// we may want to add other expression simplifers for new expression types
100 # SimplifyExpression(_x)        <-- x;

// Return values:
//  {True} means True
//  {} means False
LogicRemoveTautologies(_e) <--
[
  Local(i, len, negationfound); Set(len, Length(e));
  Set(negationfound, False);

  //Echo(e);
  e := BubbleSort(e, "LocalCmp");

  For(Set(i, 1), (i <= len) And (Not negationfound), i++)
  [
    Local(x, n, j);
    // we can register other simplification rules for expressions
    //e[i] := MathNth(e,i) /:: {gamma(_y) <- SimplifyExpression(gamma(y))};
    Set(x, MathNth(e,i));
    Set(n, SimpleNegate(x));                    /* this is all we have to do because of
                                                the kind of expressions we can have coming in */

    For(Set(j, i+1), (j <= len) And (Not negationfound), j++) [
        Local(y);
        Set(y, MathNth(e,j));

        If(Equals(y, n),
            [
                //Echo({"Deleting from ", e, " i=", i, ", j=", j, Nl()});

                Set(negationfound, True);
                //Echo({"Removing clause ", i, Nl()});
            ],
        If(Equals(y, x),
            [
                //Echo({"Deleting from ", e, " j=", j, Nl()});
                DestructiveDelete(e, j);
                Set(len,MathSubtract(len,1));
            ])
        );
    ];
    Check(len = Length(e), "The length computation is incorrect");
  ];

  If(negationfound, {True}, e);            /* note that a list is returned */
];

10 # Contradict((_x) - (_y) == 0, (_x) - (_z) == 0)_(y != z)     <-- True;
12 # Contradict((_x) == (_y), (_x) == (_z))_(y != z)             <-- True;
13 # Contradict((_x) - (_y) == 0, (_x) - (_z) >= 0)_(z > y)      <-- True;
14 # Contradict((_x) - (_y) == 0, (_x) - (_z) >  0)_(z > y)      <-- True;
14 # Contradict(Not (_x) - (_y) >= 0, (_x) - (_z) >  0)_(z > y)  <-- True;
15 # Contradict(_a, _b)                                          <-- Equals(SimpleNegate(a), b);

/* find the number of the list that contains n in it, a pointer to a list of lists in passed */
LogicFindWith(_list, _i, _n) <--
[
  Local(result, index, j);
  Set(result, -1); Set(index, -1);

  For(j := i+1, (result<0) And (j <= Length(list)), j++)
  [
    Local(k, len); Set(len, Length(list[j]));
    For(k := 1, (result<0) And (k<=len), k++)
    [
      Local(el); Set(el, list[j][k]);

      If(Contradict(n, el),
        [Set(result, j); Set(index, k);]);
    ];
  ];
  {result, index};
];

/* LogicCombine is responsible for scanning a list of lists, which represent
   a form (p1  Or  p2  Or  ...)  And  (q1  Or  q2  Or  ...)  And ... by scanning the lists
   for combinations x Or Y  And   Not x Or Z <-- Y Or Z . If Y Or Z is empty then this clause
   is false, and thus the entire proposition is false.
*/
LogicCombine(_list) <--
[
  Local(i, j);
  For(Set(i,1), i<=Length(list), Set(i,MathAdd(i,1)))
  [
    //Echo({"list[", i, "/", Length(list), "]: ", list[i], Nl()});

    For(j := 1, (j<=Length(list[i])), j++)
    [
      Local(tocombine, n, k);
      Set(n, list[i][j]);

      {tocombine, k} := LogicFindWith(list, i, n);// search forward for n, tocombine is the list we
                                                  // will combine the current one with
      If(tocombine != -1,
      [
        Local(combination);
        Check(k != -1, "k is -1");

        Set(combination, LogicRemoveTautologies(Concat(list[i], list[tocombine])));
        If(combination = {},                      // the combined clause is false, so the whole thing is false
          [Set(list, {{}}); Set(i, Length(list)+1);], [/*Set(i, 0);*/]);
      ]);
    ];
  ];
  list;
];

10 # Subsumes((_x) - (_y) == 0, Not ((_x) - (_z)==0))_(y!=z)    <-- True;
// suif_tmp0_127_1-72==0 And 78-suif_tmp0_127_1>=0
20 # Subsumes((_x) - (_y) == 0, (_z) - (_x) >= 0)_(z>=y)        <-- True;
20 # Subsumes((_x) - (_y) == 0, (_z) - (_x) >  0)_(z>y)         <-- True;
// suif_tmp0_127_1-72==0 And suif_tmp0_127_1-63>=0
30 # Subsumes((_x) - (_y) == 0, (_x) - (_z) >= 0)_(y>=z)        <-- True;
30 # Subsumes((_x) - (_y) == 0, (_x) - (_z) > 0)_(y>z)          <-- True;

90 # Subsumes((_x), (_x))                                       <-- True;

100# Subsumes((_x), (_y))                                       <-- False;


// perform unit subsumption and resolutiuon for a unit clause # i
// a boolean indicated whether there was a change is returned
DoUnitSubsumptionAndResolution(_list) <--
[
    Local(i, j, k, isFalse, isTrue, changed);
    Set(isFalse, False);
    Set(isTrue,  False);
    Set(changed, True);

    //Echo({"In DoUnitSubsumptionAndResolution", Nl()});

    While(changed) [
      Set(changed, False);

      For(i:=1, (Not isFalse And Not isTrue) And i <= Length(list), i++)
      [
        If(Length(list[i]) = 1, [
          Local(x); Set(x, list[i][1]); //n := SimpleNegate(x);
          //Echo({"Unit clause ", x, Nl()});

          // found a unit clause, {x}, not use it to modify other clauses
          For(j:=1, (Not isFalse And Not isTrue) And j <= Length(list), j++)
          [
              If(i !=j, [
                Local(deletedClause); Set(deletedClause, False);
                For(k:=1, (Not isFalse And Not isTrue And Not deletedClause) And k <= Length(list[j]),  k++)
                [
                    // In both of these, if a clause becomes empty, the whole thing is False

                    //Echo({"   ", x, " subsumes ", list[j][k], i,j, Subsumes(x, list[j][k]), Nl()});

                    // unit subsumption -- this kills clause j
                    If(Subsumes(x, list[j][k]), [
                        // delete this clause
                        DestructiveDelete(list, j);
                        j--;
                        If(i>j, i--);   // i also needs to be decremented
                        Set(deletedClause, True);
                        Set(changed, True);
                        If(Length(list) = 0, [Set(isTrue, True);]);
                    ],
                      // else, try unit resolution
                    If(Contradict(x, list[j][k]), [
                        //Echo({x, " contradicts", list[j][k], Nl()});
                        DestructiveDelete(list[j], k);
                        k--;
                        Set(changed, True);
                        If(Length(list[j]) = 0, [Set(isFalse, True);]);
                    ])
                    );
                ];
              ]);
          ];
        ]);
      ];
    ];

    list;
];