This file is indexed.

/usr/share/yacas/scripts/newly.rep/code.ys is in yacas 1.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
Nl():=
"
";

NewLine() := WriteN(Nl(),1);
NewLine(n):= WriteN(Nl(),n);
Space() := WriteN(" ",1);
Space(n):= WriteN(" ",n);

WriteN(string,n) :=
[
  Local(i);
  For(i:=1,i<=n,i++) WriteString(string);
  True;
];

UniqueConstant() <--
[
  Local(result);
  result := String(LocalSymbols(C)(C));
  Atom(StringMid'Get(2,Length(result)-1,result));
];


1 # IsFreeOf({},_expr) <-- True;
2 # IsFreeOf(var_IsList, _expr) <-- And(IsFreeOf(Head(var),expr), IsFreeOf(Tail(var),expr));

4 # IsFreeOf(_var,{}) <-- True;
5 # IsFreeOf(_var,expr_IsList) <-- And(IsFreeOf(var,Head(expr)), IsFreeOf(var,Tail(expr)));

/* Accept any variable. */
10 # IsFreeOf(_expr,_expr) <-- False;

/* Otherwise check all leafs of a function. */
11 # IsFreeOf(_var,expr_IsFunction) <-- IsFreeOf(var,Tail(Listify(expr)));

/* Else it doesn't depend on any variable. */
12 # IsFreeOf(_var,_expr) <-- True;


Function("IsZeroVector",{aList}) aList = ZeroVector(Length(aList));

TemplateFunction("WithValue",{var,val,expr})
[
  If(IsList(var),
     ApplyPure("MacroLocal",var),
     MacroLocal(var)
    );
  ApplyPure(":=",{var,val});
  Eval(expr);
];



Function("CharacteristicEquation",{matrix,var})
   SymbolicDeterminant(matrix-var*Identity(Length(matrix)));
HoldArg("CharacteristicEquation",var);

// diagonal matrices will be caught by IsUpperTriangular
10 # EigenValues(_matrix)_(IsMatrix(matrix) And IsUpperTriangular(matrix)) <-- Diagonal(matrix);
10 # EigenValues(_matrix)_(IsMatrix(matrix) And IsLowerTriangular(matrix)) <-- Diagonal(matrix);

20 # EigenValues(matrix_IsMatrix) <-- [
    Check(IsSquareMatrix(matrix), "EigenValues: Argument must be a square matrix");
    Roots(CharacteristicEquation(matrix,xx));
];

EigenVectors(_matrix,_eigenvalues) <--
[
  Local(result,n);
/*  eigenvalues:=N(Eval(eigenvalues));  */
  n:=Length(eigenvalues);
  result:={};
  ForEach(e,eigenvalues)
  [
    Local(possible);
/* Echo({"1...",result}); */
    possible:=OldSolve(matrix*MakeVector(k,n)==e*MakeVector(k,n),MakeVector(k,n))[1];
/* Echo({"2..."}); */
/* Echo({"2..."}); */

    If(Not(IsZeroVector(possible)),
      DestructiveAppend(result,possible)
      );
/* Echo({"3..."}); */
  ];
  result;
];



Function("RationalizeNumber",{x})
[
  Check(IsNumber(x),"RationalizeNumber: Error: " : (ToString()Write(x)) :" is not a number");
  Local(n,i);
  n:=1;
  i:=0;
  // We can not take for granted that the internal representation is rounded properly...
  While(i<=Builtin'Precision'Get() And Not(FloatIsInt(x)))
  [
    n:=n*10; x:=x*10;
    i:=i+1;
//Echo(x,"/",n);
  ];
  Floor(x+0.5)/n; //FIXME forced thunking to string representation
];

Function("Rationalize",{a'number})
  Substitute(a'number,{{x},IsNumber(x) And Not(IsInteger(x))},"RationalizeNumber");


10 # Decimal( n_IsInteger ) <-- {n,{0}};
10 # Decimal( (n_IsPositiveInteger) / (d_IsPositiveInteger) ) <--
[
  Local(result,rev,first,period,repeat,static);
  result:={Div(n,d)};
  Decimal(result,Mod(n,d),d,350);
  rev:=DecimalFindPeriod(result);
  first:=rev[1];
  period:=rev[2];
  repeat:=result[first .. (first+period-1)];
  static:=result[1 .. (first-1)];
  DestructiveAppend(static,repeat);
];
20 # Decimal(_n/_m)_((n/m)<0) <-- "-":Decimal(-n/m);

10 # Decimal(_result , _n , _d,_count ) <--
[
  While(count>0)
  [
    DestructiveAppend(result,Div(10*n,d));
    n:=Mod(10*n,d);
    count--;
  ];
];

DecimalFindPeriod(_list) <--
[
  Local(period,nr,reversed,first,i);
  reversed:=Tail(DestructiveReverse(FlatCopy(Tail(list))));
  nr:=Length(reversed)>>1;
  period:=1;
  first:=reversed[1];

  For(i:=1,i<nr,i++)
  [
    If(reversed[i+1] = first And DecimalMatches(reversed,i),
      [
        period:=i;
        i:=nr;
      ]
      );
  ];

  first:=Length(list)-period;
  While(first>1 And list[first] = list[first+period]) first--;
  first++;

  {first,period};
];

DecimalMatches(_reversed,_period) <--
[
  Local(nr,matches,first);
  nr:=0;
  matches:=True;
  first:=1;
  While((nr<100) And matches)
  [
    matches := (matches And
       (reversed[first .. (first+period-1)] = reversed[(first+period) .. (first+2*period-1)]));
    first:=first+period;
    nr:=nr+period;
  ];
  matches;
];






LagrangeInt(_var,_list) <--
[
  Local(nr);
  nr:=Length(list);
  Factorize(FillList(var,nr)-list);
];

LagrangeInterpolant(list_IsList,_values,_var) <--
[
  Local(i,nr,sublist);
  nr:=Length(list);
  result:=0;
  For(i:=1,i<=nr,i++)
  [
    sublist:=FlatCopy(list);
    DestructiveDelete(sublist,i);
    result:=result + values[i]*LagrangeInt(var,sublist)/LagrangeInt(list[i],sublist);
  ];
  result;
];


/* Lagrangian power series reversion. Copied
   from Knuth seminumerical algorithms */

ReversePoly(_f,_g,_var,_newvar,_degree) <--
[
  Local(orig,origg,G,V,W,U,n,initval,firstder,j,k,newsum);
  orig:=MakeUni(f,var);
  origg:=MakeUni(g,var);
  initval:=Coef(orig,0);
  firstder:=Coef(orig,1);
  V:=Coef(orig,1 .. Degree(orig));
  V:=Concat(V,FillList(0,degree));
  G:=Coef(origg,1 .. Degree(origg));
  G:=Concat(G,FillList(0,degree));
  W:=FillList(0,Length(V)+2);
  W[1]:=G[1]/firstder;
  U:=FillList(0,Length(V)+2);
  U[1]:=1/firstder;
  n:=1;
  While(n<degree-1)
  [
    n++;
    For(k:=0,k<n-1,k++)
    [
      newsum:=U[k+1];
      For(j:=2,j<=k+1,j++)
      [
        newsum:=newsum-U[k+2-j]*V[j];
      ];
      U[k+1]:=newsum/firstder;
    ];
    newsum:=0;
    For(k:=2,k<=n,k++)
    [
      newsum:=newsum - k*U[n+1-k]*V[k];
    ];
    U[n]:=newsum/firstder;
    newsum:=0;
    For(k:=1,k<=n,k++)
    [
      newsum:=newsum + k*U[n+1-k]*G[k]/n;
    ];
    W[n]:=newsum;
  ];
  DestructiveInsert(W,1,Coef(origg,0));
  Subst(newvar,newvar-initval)
    NormalForm(UniVariate(newvar,0,W));
];



/* InverseTaylor : given a function y=f(x), determine the Taylor series
 * expansion of the inverse f^-1(y)=x this function around y0=f(x0).
 *
 */
Function("InverseTaylor",{var,val,degree,func})
[
  Local(l1);
  l1:=UniTaylor(func,var,val,degree);
  val+ReversePoly(l1,var,var,var,degree+1);
];



/*
TRun(_f,_g,_degree)<--
[
  Local(l2,l3,l4);
  l2:=ReversePoly(f,g,t,z,degree);
  l3:=Subst(z,f)l2;
  l4:=BigOh(l3,t,degree);
  Echo({g," == ",l4});
  NewLine();
];

TRun(t+t^2,t,10);
TRun(t/2-t^2,t,10);
TRun(t/2-t^2,3+t+t^2/2,10);
TRun(2+t/2-t^2,t,10);
*/

/*
TRun(_f,_degree)<--
[
  Local(l2,l3,l4);
  l2:=InverseTaylor(t,0,degree)f;
  l3:=Subst(t,Taylor(t,0,degree)f)l2;
  l4:=BigOh(l3,t,degree);

  Echo({t," == ",Simplify(l4)});
  NewLine();
];
TRun(Sin(a*t),3);
TRun(a^t,3);
TRun(a^t,3);
TRun(t+t^2,10);
TRun(t/2-t^2,10);
TRun(t/2-t^2,10);
TRun(2+t/2-t^2,10);
*/

/////////////////////////////////////////////////
/// Continued fractions stuff
/////////////////////////////////////////////////

/// compute the list of continued fraction coefficients for a given number
/// if order is not given, computes to the end
10 # ContFracList(_n) <-- ContFracList(n, Infinity);
/// compute list of given length
10 # ContFracList(_n, _depth)_(depth <= 0) <-- {};
20 # ContFracList(n_IsInteger, _depth) <-- {n};
// prevent infinite loop when in numeric mode
30 # ContFracList(n_IsNumber, _depth) _InNumericMode() <-- NonN(ContFracList(Rationalize(n), depth));

40 # ContFracList(n_IsNumber, _depth) <-- ContFracList(Rationalize(n), depth);

/* n/m = Div(n,m) + 1/( m/Mod(n,m) ) */
35 # ContFracList((n_IsNegativeInteger) / (m_IsInteger), _depth) <-- Push( ContFracList(m/Mod(n,m), depth-1) , Div(n,m)-1);

40 # ContFracList((n_IsInteger) / (m_IsInteger), _depth) <-- Push( ContFracList(m/Mod(n,m), depth-1) , Div(n,m));

/// main interface
10 # ContFrac(_n) <-- ContFrac(n, 6);
50 # ContFrac(_n,_depth) <-- ContFracEval(ContFracList(n, depth), rest);

//////////////////////////////////////////////////
/// ContFracEval: evaluate continued fraction from the list of coefficients
//////////////////////////////////////////////////
/// Each coefficient is either a single expression or a list of 2 expressions, giving the term and the numerator of the current level in the fraction.
/// ContFracEval({{a0, b0}, {a1, b1}, ...}) = a0+b0/(a1+b1/(...))
/// ContFracEval({a0, a1, ...}) = a0+1/(a1+1/(...))

10 # ContFracEval({}, _rest) <-- rest;
// finish recursion here
10 # ContFracEval({{_n, _m}}, _rest) <-- n+m+rest;
15 # ContFracEval({_n}, _rest) <-- n+rest;
/// Continued fractions with nontrivial numerators
20 # ContFracEval(list_IsList, _rest)_(IsList(Head(list))) <-- Head(Head(list)) + Tail(Head(list)) / ContFracEval(Tail(list), rest);
/// Continued fractions with unit numerators
30 # ContFracEval(list_IsList, _rest) <-- Head(list) + 1 / ContFracEval(Tail(list), rest);

/// evaluate continued fraction: main interface
ContFracEval(list_IsList) <-- ContFracEval(list, 0);

//////////////////////////////////////////////////
/// continued fractions for polynomials
//////////////////////////////////////////////////

40 # ContFrac(n_CanBeUni,_depth)_(Length(VarList(n)) = 1) <--
[
  ContFracDoPoly(n,depth,VarList(n)[1]);
];

5  # ContFracDoPoly(_exp,0,_var) <-- rest;
5  # ContFracDoPoly(0,0,_var) <-- rest;
10 # ContFracDoPoly(_exp,_depth,_var) <--
[
  Local(content,exp2,first,second);
  first:=Coef(exp,var,0);
  exp:=exp-first;
  content:=Content(exp);
  exp2:=DivPoly(1,PrimitivePart(exp),var,5+3*depth)-1;
  second:=Coef(exp2,0);
  exp2 := exp2 - second;
  first+content/((1+second)+ContFracDoPoly(exp2,depth-1,var));
];


//////////////////////////////////////////////////
/// NearRational, GuessRational
//////////////////////////////////////////////////

/// find rational number with smallest num./denom. near a given number x
/// See: HAKMEM, MIT AI Memo 239, 02/29/1972, Item 101C
NearRational(_x) <-- NearRational(x, Floor(1/2*Builtin'Precision'Get()));
NearRational(x_IsRationalOrNumber, prec_IsInteger) <-- [
    Local(x1, x2, i,  old'prec);
    old'prec := Builtin'Precision'Get();
  Builtin'Precision'Set(prec + 8);  // 8 guard digits (?)
    x1 := ContFracList(N(Eval(x+10^(-prec))));
    x2 := ContFracList(N(Eval(x-10^(-prec))));

    If(InVerboseMode(), Echo("NearRational: x      = ", N(Eval(x           ))));
    If(InVerboseMode(), Echo("NearRational: xplus  = ", N(Eval(x+10^(-prec)))));
    If(InVerboseMode(), Echo("NearRational: xmin   = ", N(Eval(x-10^(-prec)))));

    If(InVerboseMode(), Echo("NearRational: Length(x1) = ", Length(x1)," ",x1));
    If(InVerboseMode(), Echo("NearRational: Length(x2) = ", Length(x2)," ",x1));
    // find where the continued fractions for "x1" and "x2" differ
    // prepare result in "x1" and length of result in "i"
    For (i:=1, i<=Length(x1) And i<=Length(x2) And x1[i]=x2[i], i++ ) True;
    If(
        i>Length(x1),
        // "x1" ended but matched, so use "x2" as "x1"
        x1:=x2,
        If(
            i>Length(x2),
        // "x2" ended but matched, so use "x1"
            True,
        // neither "x1" nor "x2" ended and there is a mismatch at "i"
        // apply recipe: select the smalest of the differing terms
            x1[i]:=Min(x1[i],x2[i])
        )
    );
    // recipe: x1dd 1 to the lx1st term unless it's the lx1st in the originx1l sequence
    //Ayal added this line, i could become bigger than Length(x1)!
    If(InVerboseMode(), Echo({"NearRational: using ", i, "terms of the continued fraction"}));
    If(i>Length(x1),i:=Length(x1));
    x1[i] := x1[i] + If(i=Length(x1), 0, 1);
    Builtin'Precision'Set(old'prec);
    ContFracEval(Take(x1, i));
];

/// guess the rational number behind an imprecise number
/// prec parameter is the max number of digits you can have in the denominator
GuessRational(_x) <-- GuessRational(x, Floor(1/2*Builtin'Precision'Get()));
GuessRational(x_IsRationalOrNumber, prec_IsInteger) <-- [
    Local(denom'estimate, cf, i);
    denom'estimate := 1;
    cf := ContFracList(x);
    For(i:=2, i<=Length(cf) And denom'estimate < 10^prec, i++)
        [   // estimate the denominator
            denom'estimate := denom'estimate * If(
                cf[i] = 1,
                If(
                    i+2<=Length(cf),    // have at least two more terms, do a full estimate
                    RoundTo(N(Eval(cf[i]+1/(cf[i+1]+1/cf[i+2]))), 3),
                    // have only one more term
                    RoundTo(N(Eval(cf[i]+1/cf[i+1])), 3)
                ),
                // term is not 1, use the simple estimate
                cf[i]
            );
        ];
    If (denom'estimate < 10^prec,
        If(InVerboseMode(), Echo({"GuessRational: all ", i, "terms are within limits"})),
        i-- // do not use the last term
    );
    i--;    // loop returns one more number
    If(InVerboseMode(), Echo({"GuessRational: using ", i, "terms of the continued fraction"}));
    ContFracEval(Take(cf, i));
];

//////////////////////////////////////////////////
/// BracketRational: find two rational approximations
//////////////////////////////////////////////////

/// Return a list of two rational numbers r1, r2 such that r1<r<r2 and |r2-r1| < eps*|r|
BracketRational(r,eps):=
[
    Local(n,cflist, r1, r2);
    cflist := ContFracList(r);
    n:=2;
    r1 := ContFracEval(Take(cflist,n));
    r2 := -r1;
    // find two successive approximations and check that they differ by less than |eps*r|
    While (n<Length(cflist) And ( Abs(N(Eval(r2-r1))) > Abs(N(Eval(eps*r)) ) ) )
    [
        r2 := r1;
        n++;
        r1 := ContFracEval(Take(cflist,n));
    ];
    // now r1 and r2 are some rational numbers.
    // decide whether the search was successful.
    If(
        n=Length(cflist),
        {}, // return empty list if not enough precision
        If(N(Eval(r-r1))>0,
            {r1, r2},   // successive approximations are always bracketing, we only need to decide their order
            {r2, r1}
        )
    );
];

/** MatchLinear(variable,expression)
 */
LocalSymbols(a,b)[

10 # MatchLinear(var_IsAtom,expr_CanBeUni(var)) <--
[
  Set(expr,MakeUni(expr,var));
  MatchLinear(expr);
];
20 # MatchLinear(_var,_expr) <-- False;

10 # MatchLinear(_expr)_(Degree(expr,var)<2) <--
[
  Check(IsUniVar(expr),ToString()Echo({"Incorrect argument ",expr," passed to MatchLinear"}));

//TODO if I enable these checks, then integration fails (only users of this function any way). Can this be removed? Where are these variables cleared any way?
//  Check(a = Hold(a), ToString()(Echo({"Found bound variable a which should have been unbound, in MatchLinear: ", a, "=", Eval(a)})));
//  Check(b = Hold(b), ToString()(Echo({"Found bound variable b which should have been unbound, in MatchLinear: ", b, "=", Eval(b)})));

  a := Coef(expr,1);
  b := Coef(expr,0);
  True;
];
20 # MatchLinear(_expr) <-- False;
UnFence("MatchLinear",1);
UnFence("MatchLinear",2);

/** MatchPureSquared(variable,expression) - matches expressions
 *  of the form a*x^2+b.
 */
10 # MatchPureSquared(var_IsAtom,_sign2,_sign0,expr_CanBeUni(var)) <--
[
  Set(expr,MakeUni(expr,var));
  MatchPureSquared(expr,sign2,sign0);
];
20 # MatchPureSquared(_var,_sign2,_sign0,_expr) <-- False;

10 # MatchPureSquared(_expr,_sign2,_sign0)_(Degree(expr,var)=2 And
                                    Coef(expr,1) = 0 And
                    IsNumber(Coef(expr,0)) And
                    IsNumber(Coef(expr,2)) And
                    Coef(expr,0)*sign0 > 0 And
                    Coef(expr,2)*sign2 > 0
                    ) <--
[
  Check(IsUniVar(expr),ToString()Echo({"Incorrect argument ",expr," passed to MatchLinear"}));
//TODO if I enable these checks, then integration fails (only users of this function any way). Can this be removed? Where are these variables cleared any way?
//  Check(a = Hold(a), "Found bound variable which should have been unbound, in MatchLinear");
//  Check(b = Hold(b), "Found bound variable which should have been unbound, in MatchLinear");
  a := Coef(expr,2);
  b := Coef(expr,0);
  True;
];
20 # MatchPureSquared(_expr,_sign2,_sign0) <-- False;
UnFence("MatchPureSquared",3);
UnFence("MatchPureSquared",4);

Matched'a() := a;
Matched'b() := b;



]; // LocalSymbols a,b

StringReplace(from_IsString, to_IsString, s_IsString) <-- [
    Local(i, m, n, r, d);

    m := Length(from);
    n := Length(s);

    r := "";

    For (i := 1, i <= n - m + 1, i := i + d)
        If (s[i .. i + m - 1] = from, [ r := r : to; d := m; ], [ r := r : s[i]; d := 1; ]);

    If (m > 1, r := r : s[n - m + 2 .. n]);

    r;
];

// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Polynomial Pseudo-Division
PolyPseudoDivide(A_CanBeUni, B_CanBeUni, x_IsAtom) <-- [
    Local(b, N, Q, R, delta);
    b := LeadingCoef(B, x);
    N := Degree(A, x) - Degree(B, x) + 1;
    Q := 0;
    R := A;
    delta := Degree(R, x) - Degree(B, x);
    While (R != 0 And delta >= 0) [
        T := LeadingCoef(R,x)*x^delta;
        N := N - 1;
        Q := b * Q + T;
        R := Expand(b * R - T * B);
        delta := Degree(R, x) - Degree(B, x);
    ];
    {NormalForm(MakeUni(b^N * Q, x)), NormalForm(MakeUni(b^N * R, x))};
];

// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Subresultant
SubResultant(A_CanBeUni, B_CanBeUni, x_IsAtom) <-- [
    Local(R, i, j, k, gamma, delta, beta);

    R := {A, B};
    i := 1;
    gamma := {-1};
    delta := {Degree(A, x) - Degree(B, x)};
    beta := {(-1)^(delta[1] + 1)};
    r := {};

    While (Not IsZero(R[i + 1])) [
        DestructiveAppend(r, LeadingCoef(R[i + 1], x));
        {Q, RR} := PolyPseudoDivide(R[i], R[i + 1], x);
        DestructiveAppend(R, Expand(RR / beta[i]));
        DestructiveAppend(gamma, (-r[i])^delta[i]*gamma[i]^(1-delta[i]));
        i := i + 1;
        DestructiveAppend(delta, Degree(R[i], x) - Degree(R[i + 1], x));
        DestructiveAppend(beta, -r[i-1] * gamma[i]^delta[i]);
    ];

    k := i - 1;
    If (Degree(R[k + 1], x) > 0, [
        { 0, Append(R[1 .. k + 1], 0) };
    ], [
        If (Degree(R[k], x) = 1, [
            { R[k + 1], { R[1 .. k + 1], 0} };
        ], [
            Local(s, c);
            s := 1;
            c := 1;
            For (j := 1, j < k, j++) [
                If (IsOdd(Degree(R[j], x)) And IsOdd(Degree(R[j + 1], x)), s := -s);
                c := c * (beta[j] / r[j]^(1 + delta[j]))^Degree(R[j + 1], x) * r[j]^(Degree(R[j], x) - Degree(R[j + 2], x));
            ];
            {s * c * R[k + 1]^Degree(R[k], x), Append(R[1 .. k + 1], 0)};
        ]);
    ]);
];


// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Hermite Reduction, Mack's linear version
HermiteReduce(A_CanBeUni, D_CanBeUni, x_IsAtom) <-- [
    Local(g, Dm, Ds);
    g := 0;

    Dm := PolynomialGcd(D, Deriv(x)D);
    Ds := Div(D, Dm);
    While (Degree(Dm) > 0) [
        Local(Dm2, Dms, B, C);
        Dm2 := PolynomialGcd(Dm, Deriv(x)Dm);
        Dms := Div(Dm, Dm2);
        {B, C} := ExtendedEuclidean(Div(-Ds*Deriv(x)Dm, Dm), Dms, A);
        A := C - Div((Deriv(x)B)*Ds, Dms);
        g := g + B/Dm;
        Dm := Dm2;
    ];
    {g, A / Ds};
];