/usr/share/yacas/scripts/newly.rep/code.ys is in yacas 1.3.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | Nl():=
"
";
NewLine() := WriteN(Nl(),1);
NewLine(n):= WriteN(Nl(),n);
Space() := WriteN(" ",1);
Space(n):= WriteN(" ",n);
WriteN(string,n) :=
[
Local(i);
For(i:=1,i<=n,i++) WriteString(string);
True;
];
UniqueConstant() <--
[
Local(result);
result := String(LocalSymbols(C)(C));
Atom(StringMid'Get(2,Length(result)-1,result));
];
1 # IsFreeOf({},_expr) <-- True;
2 # IsFreeOf(var_IsList, _expr) <-- And(IsFreeOf(Head(var),expr), IsFreeOf(Tail(var),expr));
4 # IsFreeOf(_var,{}) <-- True;
5 # IsFreeOf(_var,expr_IsList) <-- And(IsFreeOf(var,Head(expr)), IsFreeOf(var,Tail(expr)));
/* Accept any variable. */
10 # IsFreeOf(_expr,_expr) <-- False;
/* Otherwise check all leafs of a function. */
11 # IsFreeOf(_var,expr_IsFunction) <-- IsFreeOf(var,Tail(Listify(expr)));
/* Else it doesn't depend on any variable. */
12 # IsFreeOf(_var,_expr) <-- True;
Function("IsZeroVector",{aList}) aList = ZeroVector(Length(aList));
TemplateFunction("WithValue",{var,val,expr})
[
If(IsList(var),
ApplyPure("MacroLocal",var),
MacroLocal(var)
);
ApplyPure(":=",{var,val});
Eval(expr);
];
Function("CharacteristicEquation",{matrix,var})
SymbolicDeterminant(matrix-var*Identity(Length(matrix)));
HoldArg("CharacteristicEquation",var);
// diagonal matrices will be caught by IsUpperTriangular
10 # EigenValues(_matrix)_(IsMatrix(matrix) And IsUpperTriangular(matrix)) <-- Diagonal(matrix);
10 # EigenValues(_matrix)_(IsMatrix(matrix) And IsLowerTriangular(matrix)) <-- Diagonal(matrix);
20 # EigenValues(matrix_IsMatrix) <-- [
Check(IsSquareMatrix(matrix), "EigenValues: Argument must be a square matrix");
Roots(CharacteristicEquation(matrix,xx));
];
EigenVectors(_matrix,_eigenvalues) <--
[
Local(result,n);
/* eigenvalues:=N(Eval(eigenvalues)); */
n:=Length(eigenvalues);
result:={};
ForEach(e,eigenvalues)
[
Local(possible);
/* Echo({"1...",result}); */
possible:=OldSolve(matrix*MakeVector(k,n)==e*MakeVector(k,n),MakeVector(k,n))[1];
/* Echo({"2..."}); */
/* Echo({"2..."}); */
If(Not(IsZeroVector(possible)),
DestructiveAppend(result,possible)
);
/* Echo({"3..."}); */
];
result;
];
Function("RationalizeNumber",{x})
[
Check(IsNumber(x),"RationalizeNumber: Error: " : (ToString()Write(x)) :" is not a number");
Local(n,i);
n:=1;
i:=0;
// We can not take for granted that the internal representation is rounded properly...
While(i<=Builtin'Precision'Get() And Not(FloatIsInt(x)))
[
n:=n*10; x:=x*10;
i:=i+1;
//Echo(x,"/",n);
];
Floor(x+0.5)/n; //FIXME forced thunking to string representation
];
Function("Rationalize",{a'number})
Substitute(a'number,{{x},IsNumber(x) And Not(IsInteger(x))},"RationalizeNumber");
10 # Decimal( n_IsInteger ) <-- {n,{0}};
10 # Decimal( (n_IsPositiveInteger) / (d_IsPositiveInteger) ) <--
[
Local(result,rev,first,period,repeat,static);
result:={Div(n,d)};
Decimal(result,Mod(n,d),d,350);
rev:=DecimalFindPeriod(result);
first:=rev[1];
period:=rev[2];
repeat:=result[first .. (first+period-1)];
static:=result[1 .. (first-1)];
DestructiveAppend(static,repeat);
];
20 # Decimal(_n/_m)_((n/m)<0) <-- "-":Decimal(-n/m);
10 # Decimal(_result , _n , _d,_count ) <--
[
While(count>0)
[
DestructiveAppend(result,Div(10*n,d));
n:=Mod(10*n,d);
count--;
];
];
DecimalFindPeriod(_list) <--
[
Local(period,nr,reversed,first,i);
reversed:=Tail(DestructiveReverse(FlatCopy(Tail(list))));
nr:=Length(reversed)>>1;
period:=1;
first:=reversed[1];
For(i:=1,i<nr,i++)
[
If(reversed[i+1] = first And DecimalMatches(reversed,i),
[
period:=i;
i:=nr;
]
);
];
first:=Length(list)-period;
While(first>1 And list[first] = list[first+period]) first--;
first++;
{first,period};
];
DecimalMatches(_reversed,_period) <--
[
Local(nr,matches,first);
nr:=0;
matches:=True;
first:=1;
While((nr<100) And matches)
[
matches := (matches And
(reversed[first .. (first+period-1)] = reversed[(first+period) .. (first+2*period-1)]));
first:=first+period;
nr:=nr+period;
];
matches;
];
LagrangeInt(_var,_list) <--
[
Local(nr);
nr:=Length(list);
Factorize(FillList(var,nr)-list);
];
LagrangeInterpolant(list_IsList,_values,_var) <--
[
Local(i,nr,sublist);
nr:=Length(list);
result:=0;
For(i:=1,i<=nr,i++)
[
sublist:=FlatCopy(list);
DestructiveDelete(sublist,i);
result:=result + values[i]*LagrangeInt(var,sublist)/LagrangeInt(list[i],sublist);
];
result;
];
/* Lagrangian power series reversion. Copied
from Knuth seminumerical algorithms */
ReversePoly(_f,_g,_var,_newvar,_degree) <--
[
Local(orig,origg,G,V,W,U,n,initval,firstder,j,k,newsum);
orig:=MakeUni(f,var);
origg:=MakeUni(g,var);
initval:=Coef(orig,0);
firstder:=Coef(orig,1);
V:=Coef(orig,1 .. Degree(orig));
V:=Concat(V,FillList(0,degree));
G:=Coef(origg,1 .. Degree(origg));
G:=Concat(G,FillList(0,degree));
W:=FillList(0,Length(V)+2);
W[1]:=G[1]/firstder;
U:=FillList(0,Length(V)+2);
U[1]:=1/firstder;
n:=1;
While(n<degree-1)
[
n++;
For(k:=0,k<n-1,k++)
[
newsum:=U[k+1];
For(j:=2,j<=k+1,j++)
[
newsum:=newsum-U[k+2-j]*V[j];
];
U[k+1]:=newsum/firstder;
];
newsum:=0;
For(k:=2,k<=n,k++)
[
newsum:=newsum - k*U[n+1-k]*V[k];
];
U[n]:=newsum/firstder;
newsum:=0;
For(k:=1,k<=n,k++)
[
newsum:=newsum + k*U[n+1-k]*G[k]/n;
];
W[n]:=newsum;
];
DestructiveInsert(W,1,Coef(origg,0));
Subst(newvar,newvar-initval)
NormalForm(UniVariate(newvar,0,W));
];
/* InverseTaylor : given a function y=f(x), determine the Taylor series
* expansion of the inverse f^-1(y)=x this function around y0=f(x0).
*
*/
Function("InverseTaylor",{var,val,degree,func})
[
Local(l1);
l1:=UniTaylor(func,var,val,degree);
val+ReversePoly(l1,var,var,var,degree+1);
];
/*
TRun(_f,_g,_degree)<--
[
Local(l2,l3,l4);
l2:=ReversePoly(f,g,t,z,degree);
l3:=Subst(z,f)l2;
l4:=BigOh(l3,t,degree);
Echo({g," == ",l4});
NewLine();
];
TRun(t+t^2,t,10);
TRun(t/2-t^2,t,10);
TRun(t/2-t^2,3+t+t^2/2,10);
TRun(2+t/2-t^2,t,10);
*/
/*
TRun(_f,_degree)<--
[
Local(l2,l3,l4);
l2:=InverseTaylor(t,0,degree)f;
l3:=Subst(t,Taylor(t,0,degree)f)l2;
l4:=BigOh(l3,t,degree);
Echo({t," == ",Simplify(l4)});
NewLine();
];
TRun(Sin(a*t),3);
TRun(a^t,3);
TRun(a^t,3);
TRun(t+t^2,10);
TRun(t/2-t^2,10);
TRun(t/2-t^2,10);
TRun(2+t/2-t^2,10);
*/
/////////////////////////////////////////////////
/// Continued fractions stuff
/////////////////////////////////////////////////
/// compute the list of continued fraction coefficients for a given number
/// if order is not given, computes to the end
10 # ContFracList(_n) <-- ContFracList(n, Infinity);
/// compute list of given length
10 # ContFracList(_n, _depth)_(depth <= 0) <-- {};
20 # ContFracList(n_IsInteger, _depth) <-- {n};
// prevent infinite loop when in numeric mode
30 # ContFracList(n_IsNumber, _depth) _InNumericMode() <-- NonN(ContFracList(Rationalize(n), depth));
40 # ContFracList(n_IsNumber, _depth) <-- ContFracList(Rationalize(n), depth);
/* n/m = Div(n,m) + 1/( m/Mod(n,m) ) */
35 # ContFracList((n_IsNegativeInteger) / (m_IsInteger), _depth) <-- Push( ContFracList(m/Mod(n,m), depth-1) , Div(n,m)-1);
40 # ContFracList((n_IsInteger) / (m_IsInteger), _depth) <-- Push( ContFracList(m/Mod(n,m), depth-1) , Div(n,m));
/// main interface
10 # ContFrac(_n) <-- ContFrac(n, 6);
50 # ContFrac(_n,_depth) <-- ContFracEval(ContFracList(n, depth), rest);
//////////////////////////////////////////////////
/// ContFracEval: evaluate continued fraction from the list of coefficients
//////////////////////////////////////////////////
/// Each coefficient is either a single expression or a list of 2 expressions, giving the term and the numerator of the current level in the fraction.
/// ContFracEval({{a0, b0}, {a1, b1}, ...}) = a0+b0/(a1+b1/(...))
/// ContFracEval({a0, a1, ...}) = a0+1/(a1+1/(...))
10 # ContFracEval({}, _rest) <-- rest;
// finish recursion here
10 # ContFracEval({{_n, _m}}, _rest) <-- n+m+rest;
15 # ContFracEval({_n}, _rest) <-- n+rest;
/// Continued fractions with nontrivial numerators
20 # ContFracEval(list_IsList, _rest)_(IsList(Head(list))) <-- Head(Head(list)) + Tail(Head(list)) / ContFracEval(Tail(list), rest);
/// Continued fractions with unit numerators
30 # ContFracEval(list_IsList, _rest) <-- Head(list) + 1 / ContFracEval(Tail(list), rest);
/// evaluate continued fraction: main interface
ContFracEval(list_IsList) <-- ContFracEval(list, 0);
//////////////////////////////////////////////////
/// continued fractions for polynomials
//////////////////////////////////////////////////
40 # ContFrac(n_CanBeUni,_depth)_(Length(VarList(n)) = 1) <--
[
ContFracDoPoly(n,depth,VarList(n)[1]);
];
5 # ContFracDoPoly(_exp,0,_var) <-- rest;
5 # ContFracDoPoly(0,0,_var) <-- rest;
10 # ContFracDoPoly(_exp,_depth,_var) <--
[
Local(content,exp2,first,second);
first:=Coef(exp,var,0);
exp:=exp-first;
content:=Content(exp);
exp2:=DivPoly(1,PrimitivePart(exp),var,5+3*depth)-1;
second:=Coef(exp2,0);
exp2 := exp2 - second;
first+content/((1+second)+ContFracDoPoly(exp2,depth-1,var));
];
//////////////////////////////////////////////////
/// NearRational, GuessRational
//////////////////////////////////////////////////
/// find rational number with smallest num./denom. near a given number x
/// See: HAKMEM, MIT AI Memo 239, 02/29/1972, Item 101C
NearRational(_x) <-- NearRational(x, Floor(1/2*Builtin'Precision'Get()));
NearRational(x_IsRationalOrNumber, prec_IsInteger) <-- [
Local(x1, x2, i, old'prec);
old'prec := Builtin'Precision'Get();
Builtin'Precision'Set(prec + 8); // 8 guard digits (?)
x1 := ContFracList(N(Eval(x+10^(-prec))));
x2 := ContFracList(N(Eval(x-10^(-prec))));
If(InVerboseMode(), Echo("NearRational: x = ", N(Eval(x ))));
If(InVerboseMode(), Echo("NearRational: xplus = ", N(Eval(x+10^(-prec)))));
If(InVerboseMode(), Echo("NearRational: xmin = ", N(Eval(x-10^(-prec)))));
If(InVerboseMode(), Echo("NearRational: Length(x1) = ", Length(x1)," ",x1));
If(InVerboseMode(), Echo("NearRational: Length(x2) = ", Length(x2)," ",x1));
// find where the continued fractions for "x1" and "x2" differ
// prepare result in "x1" and length of result in "i"
For (i:=1, i<=Length(x1) And i<=Length(x2) And x1[i]=x2[i], i++ ) True;
If(
i>Length(x1),
// "x1" ended but matched, so use "x2" as "x1"
x1:=x2,
If(
i>Length(x2),
// "x2" ended but matched, so use "x1"
True,
// neither "x1" nor "x2" ended and there is a mismatch at "i"
// apply recipe: select the smalest of the differing terms
x1[i]:=Min(x1[i],x2[i])
)
);
// recipe: x1dd 1 to the lx1st term unless it's the lx1st in the originx1l sequence
//Ayal added this line, i could become bigger than Length(x1)!
If(InVerboseMode(), Echo({"NearRational: using ", i, "terms of the continued fraction"}));
If(i>Length(x1),i:=Length(x1));
x1[i] := x1[i] + If(i=Length(x1), 0, 1);
Builtin'Precision'Set(old'prec);
ContFracEval(Take(x1, i));
];
/// guess the rational number behind an imprecise number
/// prec parameter is the max number of digits you can have in the denominator
GuessRational(_x) <-- GuessRational(x, Floor(1/2*Builtin'Precision'Get()));
GuessRational(x_IsRationalOrNumber, prec_IsInteger) <-- [
Local(denom'estimate, cf, i);
denom'estimate := 1;
cf := ContFracList(x);
For(i:=2, i<=Length(cf) And denom'estimate < 10^prec, i++)
[ // estimate the denominator
denom'estimate := denom'estimate * If(
cf[i] = 1,
If(
i+2<=Length(cf), // have at least two more terms, do a full estimate
RoundTo(N(Eval(cf[i]+1/(cf[i+1]+1/cf[i+2]))), 3),
// have only one more term
RoundTo(N(Eval(cf[i]+1/cf[i+1])), 3)
),
// term is not 1, use the simple estimate
cf[i]
);
];
If (denom'estimate < 10^prec,
If(InVerboseMode(), Echo({"GuessRational: all ", i, "terms are within limits"})),
i-- // do not use the last term
);
i--; // loop returns one more number
If(InVerboseMode(), Echo({"GuessRational: using ", i, "terms of the continued fraction"}));
ContFracEval(Take(cf, i));
];
//////////////////////////////////////////////////
/// BracketRational: find two rational approximations
//////////////////////////////////////////////////
/// Return a list of two rational numbers r1, r2 such that r1<r<r2 and |r2-r1| < eps*|r|
BracketRational(r,eps):=
[
Local(n,cflist, r1, r2);
cflist := ContFracList(r);
n:=2;
r1 := ContFracEval(Take(cflist,n));
r2 := -r1;
// find two successive approximations and check that they differ by less than |eps*r|
While (n<Length(cflist) And ( Abs(N(Eval(r2-r1))) > Abs(N(Eval(eps*r)) ) ) )
[
r2 := r1;
n++;
r1 := ContFracEval(Take(cflist,n));
];
// now r1 and r2 are some rational numbers.
// decide whether the search was successful.
If(
n=Length(cflist),
{}, // return empty list if not enough precision
If(N(Eval(r-r1))>0,
{r1, r2}, // successive approximations are always bracketing, we only need to decide their order
{r2, r1}
)
);
];
/** MatchLinear(variable,expression)
*/
LocalSymbols(a,b)[
10 # MatchLinear(var_IsAtom,expr_CanBeUni(var)) <--
[
Set(expr,MakeUni(expr,var));
MatchLinear(expr);
];
20 # MatchLinear(_var,_expr) <-- False;
10 # MatchLinear(_expr)_(Degree(expr,var)<2) <--
[
Check(IsUniVar(expr),ToString()Echo({"Incorrect argument ",expr," passed to MatchLinear"}));
//TODO if I enable these checks, then integration fails (only users of this function any way). Can this be removed? Where are these variables cleared any way?
// Check(a = Hold(a), ToString()(Echo({"Found bound variable a which should have been unbound, in MatchLinear: ", a, "=", Eval(a)})));
// Check(b = Hold(b), ToString()(Echo({"Found bound variable b which should have been unbound, in MatchLinear: ", b, "=", Eval(b)})));
a := Coef(expr,1);
b := Coef(expr,0);
True;
];
20 # MatchLinear(_expr) <-- False;
UnFence("MatchLinear",1);
UnFence("MatchLinear",2);
/** MatchPureSquared(variable,expression) - matches expressions
* of the form a*x^2+b.
*/
10 # MatchPureSquared(var_IsAtom,_sign2,_sign0,expr_CanBeUni(var)) <--
[
Set(expr,MakeUni(expr,var));
MatchPureSquared(expr,sign2,sign0);
];
20 # MatchPureSquared(_var,_sign2,_sign0,_expr) <-- False;
10 # MatchPureSquared(_expr,_sign2,_sign0)_(Degree(expr,var)=2 And
Coef(expr,1) = 0 And
IsNumber(Coef(expr,0)) And
IsNumber(Coef(expr,2)) And
Coef(expr,0)*sign0 > 0 And
Coef(expr,2)*sign2 > 0
) <--
[
Check(IsUniVar(expr),ToString()Echo({"Incorrect argument ",expr," passed to MatchLinear"}));
//TODO if I enable these checks, then integration fails (only users of this function any way). Can this be removed? Where are these variables cleared any way?
// Check(a = Hold(a), "Found bound variable which should have been unbound, in MatchLinear");
// Check(b = Hold(b), "Found bound variable which should have been unbound, in MatchLinear");
a := Coef(expr,2);
b := Coef(expr,0);
True;
];
20 # MatchPureSquared(_expr,_sign2,_sign0) <-- False;
UnFence("MatchPureSquared",3);
UnFence("MatchPureSquared",4);
Matched'a() := a;
Matched'b() := b;
]; // LocalSymbols a,b
StringReplace(from_IsString, to_IsString, s_IsString) <-- [
Local(i, m, n, r, d);
m := Length(from);
n := Length(s);
r := "";
For (i := 1, i <= n - m + 1, i := i + d)
If (s[i .. i + m - 1] = from, [ r := r : to; d := m; ], [ r := r : s[i]; d := 1; ]);
If (m > 1, r := r : s[n - m + 2 .. n]);
r;
];
// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Polynomial Pseudo-Division
PolyPseudoDivide(A_CanBeUni, B_CanBeUni, x_IsAtom) <-- [
Local(b, N, Q, R, delta);
b := LeadingCoef(B, x);
N := Degree(A, x) - Degree(B, x) + 1;
Q := 0;
R := A;
delta := Degree(R, x) - Degree(B, x);
While (R != 0 And delta >= 0) [
T := LeadingCoef(R,x)*x^delta;
N := N - 1;
Q := b * Q + T;
R := Expand(b * R - T * B);
delta := Degree(R, x) - Degree(B, x);
];
{NormalForm(MakeUni(b^N * Q, x)), NormalForm(MakeUni(b^N * R, x))};
];
// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Subresultant
SubResultant(A_CanBeUni, B_CanBeUni, x_IsAtom) <-- [
Local(R, i, j, k, gamma, delta, beta);
R := {A, B};
i := 1;
gamma := {-1};
delta := {Degree(A, x) - Degree(B, x)};
beta := {(-1)^(delta[1] + 1)};
r := {};
While (Not IsZero(R[i + 1])) [
DestructiveAppend(r, LeadingCoef(R[i + 1], x));
{Q, RR} := PolyPseudoDivide(R[i], R[i + 1], x);
DestructiveAppend(R, Expand(RR / beta[i]));
DestructiveAppend(gamma, (-r[i])^delta[i]*gamma[i]^(1-delta[i]));
i := i + 1;
DestructiveAppend(delta, Degree(R[i], x) - Degree(R[i + 1], x));
DestructiveAppend(beta, -r[i-1] * gamma[i]^delta[i]);
];
k := i - 1;
If (Degree(R[k + 1], x) > 0, [
{ 0, Append(R[1 .. k + 1], 0) };
], [
If (Degree(R[k], x) = 1, [
{ R[k + 1], { R[1 .. k + 1], 0} };
], [
Local(s, c);
s := 1;
c := 1;
For (j := 1, j < k, j++) [
If (IsOdd(Degree(R[j], x)) And IsOdd(Degree(R[j + 1], x)), s := -s);
c := c * (beta[j] / r[j]^(1 + delta[j]))^Degree(R[j + 1], x) * r[j]^(Degree(R[j], x) - Degree(R[j + 2], x));
];
{s * c * R[k + 1]^Degree(R[k], x), Append(R[1 .. k + 1], 0)};
]);
]);
];
// Manuel Bronstein, Symbolic Integration I: Transcendental Functions
// Hermite Reduction, Mack's linear version
HermiteReduce(A_CanBeUni, D_CanBeUni, x_IsAtom) <-- [
Local(g, Dm, Ds);
g := 0;
Dm := PolynomialGcd(D, Deriv(x)D);
Ds := Div(D, Dm);
While (Degree(Dm) > 0) [
Local(Dm2, Dms, B, C);
Dm2 := PolynomialGcd(Dm, Deriv(x)Dm);
Dms := Div(Dm, Dm2);
{B, C} := ExtendedEuclidean(Div(-Ds*Deriv(x)Dm, Dm), Dms, A);
A := C - Div((Deriv(x)B)*Ds, Dms);
g := g + B/Dm;
Dm := Dm2;
];
{g, A / Ds};
];
|