This file is indexed.

/usr/share/Yap/clpq/bv_q.pl is in yap 6.2.2-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
/*  

    Part of CLP(Q) (Constraint Logic Programming over Rationals)

    Author:        Leslie De Koninck
    E-mail:        Leslie.DeKoninck@cs.kuleuven.be
    WWW:           http://www.swi-prolog.org
		   http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
    Copyright (C): 2006, K.U. Leuven and
		   1992-1995, Austrian Research Institute for
		              Artificial Intelligence (OFAI),
			      Vienna, Austria

    This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
    Prolog and distributed under the license details below with permission from
    all mentioned authors.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(bv_q,
	[
	    allvars/2,
	    backsubst/3,
	    backsubst_delta/4,
	    basis_add/2,
	    dec_step/2,
	    deref/2,
	    deref_var/2,
	    detach_bounds/1,
	    detach_bounds_vlv/5,
	    determine_active_dec/1,
	    determine_active_inc/1,
	    dump_var/6,
	    dump_nz/5,
	    export_binding/1,
	    get_or_add_class/2,
	    inc_step/2,
	    intro_at/3,
	    iterate_dec/2,
	    lb/3,
	    pivot_a/4,
	    pivot/5,
	    rcbl_status/6,
	    reconsider/1,
	    same_class/2,
	    solve/1,
	    solve_ord_x/3,
	    ub/3,
	    unconstrained/4,
	    var_intern/2,
	    var_intern/3,
	    var_with_def_assign/2,
	    var_with_def_intern/4,
	    maximize/1,
	    minimize/1,
	    sup/2,
	    sup/4,
	    inf/2,
	    inf/4,
	    'solve_<'/1,
	    'solve_=<'/1,
	    'solve_=\\='/1,
	    log_deref/4
	]).
:- use_module(store_q,
	[
	    add_linear_11/3,
	    add_linear_f1/4,
	    add_linear_ff/5,
	    delete_factor/4,
	    indep/2,
	    isolate/3,
	    nf2sum/3,
	    nf_rhs_x/4,
	    nf_substitute/4,
	    normalize_scalar/2,
	    mult_hom/3,
	    mult_linear_factor/3
	]).
:- use_module('../clpqr/class',
	[
	    class_allvars/2,
	    class_basis/2,
	    class_basis_add/3,
	    class_basis_drop/2,
	    class_basis_pivot/3,
	    class_new/5
	]).
:- use_module(ineq_q,
	[
	    ineq/4
	]).
:- use_module(nf_q,
	[
	    {}/1,
	    split/3,
	    wait_linear/3
	]).
:- use_module(bb_q,
	[
	    vertex_value/2
	]).
:- use_module(library(ordsets),
	[
	    ord_add_element/3
	]).

% For the rhs maint. the following events are important:
%
%	-) introduction of an indep var at active bound B
%	-) narrowing of active bound
%	-) swap active bound
%	-) pivot
%

% a variables bound (L/U) can have the states:
%
%	-) t_none	no bounds
%	-) t_l		inactive lower bound
%	-) t_u		inactive upper bound
%	-) t_L		active lower bound
%	-) t_U		active upper bound
%	-) t_lu		inactive lower and upper bound
%	-) t_Lu		active lower bound and inactive upper bound
%	-) t_lU		inactive lower bound and active upper bound

% ----------------------------------- deref -----------------------------------
%

% deref(Lin,Lind)
%
% Makes a linear equation of the form [v(I,[])|H] into a solvable linear
% equation.
% If the variables are new, they are initialized with the linear equation X=X.

deref(Lin,Lind) :-
	split(Lin,H,I),
	normalize_scalar(I,Nonvar),
	length(H,Len),
	log_deref(Len,H,[],Restd),
	add_linear_11(Nonvar,Restd,Lind).

% log_deref(Len,[Vs|VsTail],VsTail,Res)
%
% Logarithmically converts a linear equation in normal form ([v(_,_)|_]) into a
% linear equation in solver form ([I,R,K*X|_]). Res contains the result, Len is
% the length of the part to convert and [Vs|VsTail] is a difference list
% containing the equation in normal form.

log_deref(0,Vs,Vs,Lin) :-
	!,
	Lin = [0,0].
log_deref(1,[v(K,[X^1])|Vs],Vs,Lin) :-
	!,
	deref_var(X,Lx),
	mult_linear_factor(Lx,K,Lin).
log_deref(2,[v(Kx,[X^1]),v(Ky,[Y^1])|Vs],Vs,Lin) :-
	!,
	deref_var(X,Lx),
	deref_var(Y,Ly),
	add_linear_ff(Lx,Kx,Ly,Ky,Lin).
log_deref(N,V0,V2,Lin) :-
	P is N >> 1,
	Q is N - P,
	log_deref(P,V0,V1,Lp),
	log_deref(Q,V1,V2,Lq),
	add_linear_11(Lp,Lq,Lin).

% deref_var(X,Lin)
%
% Returns the equation of variable X. If X is a new variable, a new equation
% X = X is made.

deref_var(X,Lin) :-
	(   get_attr(X,itf,Att)
	->  (   \+ arg(1,Att,clpq)
	    ->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	    ;   arg(4,Att,lin(Lin))
	    ->  true
	    ;   setarg(2,Att,type(t_none)),
		setarg(3,Att,strictness(0)),
		Lin = [0,0,l(X*1,Ord)],
		setarg(4,Att,lin(Lin)),
		setarg(5,Att,order(Ord))
	    )
	;   Lin = [0,0,l(X*1,Ord)],
	    put_attr(X,itf,t(clpq,type(t_none),strictness(0),
		lin(Lin),order(Ord),n,n,n,n,n,n))
	).

% TODO
%
%

var_with_def_assign(Var,Lin) :-
	Lin = [I,_|Hom],
	(   Hom = []
	->  % X=k
	    Var = I
	;   Hom = [l(V*K,_)|Cs]
	->  (   Cs = [],
		K =:= 1,
		I =:= 0
	    ->	% X=Y
		Var = V
	    ;	% general case
		var_with_def_intern(t_none,Var,Lin,0)
	    )
	).

% var_with_def_intern(Type,Var,Lin,Strictness)
%
% Makes Lin the linear equation of new variable Var, makes all variables of
% Lin, and Var of the same class and bounds Var by type(Type) and
% strictness(Strictness)

var_with_def_intern(Type,Var,Lin,Strict) :-
	put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),lin(Lin),
	    order(_),n,n,n,n,n,n)),	% check uses
	Lin = [_,_|Hom],
	get_or_add_class(Var,Class),
	same_class(Hom,Class).

% TODO
%
%

var_intern(Type,Var,Strict) :-
	put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),
	    lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
	get_or_add_class(Var,_Class).

% TODO
%
%

var_intern(Var,Class) :-	% for ordered/1 but otherwise free vars
	get_attr(Var,itf,Att),
	arg(2,Att,type(_)),
	arg(4,Att,lin(_)),
	!,
	get_or_add_class(Var,Class).
var_intern(Var,Class) :-
	put_attr(Var,itf,t(clpq,type(t_none),strictness(0),
	    lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
	get_or_add_class(Var,Class).

% -----------------------------------------------------------------------------

% export_binding(Lst)
%
% Binds variables X to Y where Lst contains elements of the form [X-Y].

export_binding([]).
export_binding([X-Y|Gs]) :-
	Y = X,
	export_binding(Gs).

% 'solve_='(Nf)
%
% Solves linear equation Nf = 0 where Nf is in normal form.

'solve_='(Nf) :-
	deref(Nf,Nfd),	% dereferences and turns Nf into solvable form Nfd
	solve(Nfd).

% 'solve_=\\='(Nf)
%
% Solves linear inequality Nf =\= 0 where Nf is in normal form.

'solve_=\\='(Nf) :-
	deref(Nf,Lind),	% dereferences and turns Nf into solvable form Lind
	Lind = [Inhom,_|Hom],
	(   Hom = []
	->  Inhom =\= 0
	;   % make new variable Nz = Lind
	    var_with_def_intern(t_none,Nz,Lind,0),
	    % make Nz nonzero
	    get_attr(Nz,itf,Att),
	    setarg(8,Att,nonzero)
	).

% 'solve_<'(Nf)
%
% Solves linear inequality Nf < 0 where Nf is in normal form.

'solve_<'(Nf) :-
	split(Nf,H,I),
	ineq(H,I,Nf,strict).

% 'solve_=<'(Nf)
%
% Solves linear inequality Nf =< 0 where Nf is in normal form.

'solve_=<'(Nf) :-
	split(Nf,H,I),
	ineq(H,I,Nf,nonstrict).

maximize(Term) :-
	minimize(-Term).

%
% This is NOT coded as minimize(Expr) :- inf(Expr,Expr).
%
% because the new version of inf/2 only visits
% the vertex where the infimum is assumed and returns
% to the 'current' vertex via backtracking.
% The rationale behind this construction is to eliminate
% all garbage in the solver data structures produced by
% the pivots on the way to the extremal point caused by
% {inf,sup}/{2,4}.
%
% If we are after the infimum/supremum for minimizing/maximizing,
% this strategy may have adverse effects on performance because
% the simplex algorithm is forced to re-discover the
% extremal vertex through the equation {Inf =:= Expr}.
%
% Thus the extra code for {minimize,maximize}/1.
%
% In case someone comes up with an example where
%
%   inf(Expr,Expr)
%
% outperforms the provided formulation for minimize - so be it.
% Both forms are available to the user.
%
minimize(Term) :-
	wait_linear(Term,Nf,minimize_lin(Nf)).

% minimize_lin(Lin)
%
% Minimizes the linear expression Lin. It does so by making a new
% variable Dep and minimizes its value.

minimize_lin(Lin) :-
	deref(Lin,Lind),
	var_with_def_intern(t_none,Dep,Lind,0),
	determine_active_dec(Lind),
	iterate_dec(Dep,Inf),
	{ Dep =:= Inf }.

sup(Expression,Sup) :-
	sup(Expression,Sup,[],[]).

sup(Expression,Sup,Vector,Vertex) :-
	inf(-Expression,-Sup,Vector,Vertex).

inf(Expression,Inf) :-
	inf(Expression,Inf,[],[]).

inf(Expression,Inf,Vector,Vertex) :-
	% wait until Expression becomes linear, Nf contains linear Expression
	% in normal form
	wait_linear(Expression,Nf,inf_lin(Nf,Inf,Vector,Vertex)).

inf_lin(Lin,_,Vector,_) :-
	deref(Lin,Lind),
	var_with_def_intern(t_none,Dep,Lind,0),	% make new variable Dep = Lind
	determine_active_dec(Lind),	% minimizes Lind
	iterate_dec(Dep,Inf),
	vertex_value(Vector,Values),
	nb_setval(inf,[Inf|Values]),
	fail.
inf_lin(_,Infimum,_,Vertex) :-
	catch(nb_getval(inf,L),_,fail),
	nb_delete(inf),
	assign([Infimum|Vertex],L).

% assign(L1,L2)
%
% The elements of L1 are pairwise assigned to the elements of L2
% by means of asserting {X =:= Y} where X is an element of L1 and Y
% is the corresponding element of L2.

assign([],[]).
assign([X|Xs],[Y|Ys]) :-
	{X =:= Y},		  % more defensive/expressive than X=Y
	assign(Xs,Ys).

% --------------------------------- optimization ------------------------------
%
% The _sn(S) =< 0 row might be temporarily infeasible.
% We use reconsider/1 to fix this.
%
%   s(S) e [_,0] = d +xi ... -xj, Rhs > 0 so we want to decrease s(S)
%
%   positive xi would have to be moved towards their lower bound,
%   negative xj would have to be moved towards their upper bound,
%
%   the row s(S) does not limit the lower bound of xi
%   the row s(S) does not limit the upper bound of xj
%
%   a) if some other row R is limiting xk, we pivot(R,xk),
%      s(S) will decrease and get more feasible until (b)
%   b) if there is no limiting row for some xi: we pivot(s(S),xi)
%					    xj: we pivot(s(S),xj)
%      which cures the infeasibility in one step
%


% iterate_dec(OptVar,Opt)
%
% Decreases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.

iterate_dec(OptVar,Opt) :-
	get_attr(OptVar,itf,Att),
	arg(4,Att,lin([I,R|H])),
	dec_step(H,Status),
	(   Status = applied
	->  iterate_dec(OptVar,Opt)
	;   Status = optimum,
	    Opt is R + I
 	).

% iterate_inc(OptVar,Opt)
%
% Increases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.

iterate_inc(OptVar,Opt) :-
	get_attr(OptVar,itf,Att),
	arg(4,Att,lin([I,R|H])),
	inc_step(H,Status),
	(   Status = applied
	->  iterate_inc(OptVar,Opt)
	;   Status = optimum,
	    Opt is R + I
	).

%
% Status = {optimum,unlimited(Indep,DepT),applied}
% If Status = optimum, the tables have not been changed at all.
% Searches left to right, does not try to find the 'best' pivot
% Therefore we might discover unboundedness only after a few pivots
%


dec_step_cont([],optimum,Cont,Cont).
dec_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
	get_attr(V,itf,Att),
	arg(2,Att,type(W)),
	arg(6,Att,class(Class)),
	(   dec_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
	->  true
	;   dec_step_cont(Vs,Status,ContIn,ContOut)
	).

inc_step_cont([],optimum,Cont,Cont).
inc_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
	get_attr(V,itf,Att),
	arg(2,Att,type(W)),
	arg(6,Att,class(Class)),
	(   inc_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
	->  true
	;   inc_step_cont(Vs,Status,ContIn,ContOut)
	).

dec_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
	K > 0,
	(   lb(Class,OrdV,Vub-Vb-_)
	->  % found a lower bound
	    Status = applied,
	    pivot_a(Vub,V,Vb,t_u(U)),
	    replace_in_cont(ContIn,Vub,V,ContOut)
	;   Status = unlimited(V,t_u(U)),
	    ContIn = ContOut
	).
dec_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
	K > 0,
	Init is L - U,
	class_basis(Class,Deps),
	lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)),
	replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
	K < 0,
	(   ub(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_l(L)),
	    replace_in_cont(ContIn,Vub,V,ContOut)
	;   Status = unlimited(V,t_l(L)),
	    ContIn = ContOut
	).
dec_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
	K < 0,
	Init is U - L,
	class_basis(Class,Deps),
	ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)),
	replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).



inc_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
	K < 0,
	(   lb(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_u(U)),
	    replace_in_cont(ContIn,Vub,V,ContOut)
	;   Status = unlimited(V,t_u(U)),
	    ContIn = ContOut
	).
inc_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
	K < 0,
	Init is L - U,
	class_basis(Class,Deps),
	lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)),
	replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
	K > 0,
	(   ub(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_l(L)),
	    replace_in_cont(ContIn,Vub,V,ContOut)
	;   Status = unlimited(V,t_l(L)),
	    ContIn = ContOut
	).
inc_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
	K > 0,
	Init is U - L,
	class_basis(Class,Deps),
	ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)),
	replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).

replace_in_cont([],_,_,[]).
replace_in_cont([H1|T1],X,Y,[H2|T2]) :-
	(   H1 == X
	->  H2 = Y,
	    T1 = T2
	;   H2 = H1,
	    replace_in_cont(T1,X,Y,T2)
	).

dec_step([],optimum).
dec_step([l(V*K,OrdV)|Vs],Status) :-
	get_attr(V,itf,Att),
	arg(2,Att,type(W)),
	arg(6,Att,class(Class)),
	(   dec_step_2(W,l(V*K,OrdV),Class,Status)
	->  true
	;   dec_step(Vs,Status)
	).   

dec_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
	K > 0,
	(   lb(Class,OrdV,Vub-Vb-_)
	->  % found a lower bound
	    Status = applied,
	    pivot_a(Vub,V,Vb,t_u(U))
	;   Status = unlimited(V,t_u(U))
	).
dec_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
	K > 0,
	Init is L - U,
	class_basis(Class,Deps),
	lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
	K < 0,
	(   ub(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_l(L))
	;   Status = unlimited(V,t_l(L))
	).
dec_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
	K < 0,
	Init is U - L,
	class_basis(Class,Deps),
	ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).	

inc_step([],optimum).	% if status has not been set yet: no changes
inc_step([l(V*K,OrdV)|Vs],Status) :-
	get_attr(V,itf,Att),
	arg(2,Att,type(W)),
	arg(6,Att,class(Class)),
	(   inc_step_2(W,l(V*K,OrdV),Class,Status)
	->  true
	;   inc_step(Vs,Status)
	).

inc_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
	K < 0,
	(   lb(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_u(U))
	;   Status = unlimited(V,t_u(U))
	).
inc_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
	K < 0,
	Init is L - U,
	class_basis(Class,Deps),
	lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
	K > 0,
	(   ub(Class,OrdV,Vub-Vb-_)
	->  Status = applied,
	    pivot_a(Vub,V,Vb,t_l(L))
	;   Status = unlimited(V,t_l(L))
	).
inc_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
	K > 0,
	Init is U - L,
	class_basis(Class,Deps),
	ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
	pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).

% ------------------------- find the most constraining row --------------------
%
% The code for the lower and the upper bound are dual versions of each other.
% The only difference is in the orientation of the comparisons.
% Indeps are ruled out by their types.
% If there is no bound, this fails.
%
% *** The actual lb and ub on an indep variable X are [lu]b + b(X), where b(X)
% is the value of the active bound.
%
% Nota bene: We must NOT consider infeasible rows as candidates to
%	     leave the basis!
%
% ub(Class,OrdX,Ub)
%
% See lb/3: this is similar

ub(Class,OrdX,Ub) :-
	class_basis(Class,Deps),
	ub_first(Deps,OrdX,Ub).

% ub_first(Deps,X,Dep-W-Ub)
%
% Finds the tightest upperbound for variable X from the linear equations of
% basis variables Deps, and puts the resulting bound in Ub. Dep is the basis
% variable that generates the bound, and W is bound of that variable that has
% to be activated to achieve this.

ub_first([Dep|Deps],OrdX,Tightest) :-
	(   get_attr(Dep,itf,Att),
	    arg(2,Att,type(Type)),
	    arg(4,Att,lin(Lin)),
	    ub_inner(Type,OrdX,Lin,W,Ub),
	    Ub >= 0
	->  ub(Deps,OrdX,Dep-W-Ub,Tightest)
	;   ub_first(Deps,OrdX,Tightest)
	).

% ub(Deps,OrdX,TightestIn,TightestOut)
%
% See lb/4: this is similar

ub([],_,T0,T0).
ub([Dep|Deps],OrdX,T0,T1) :-
	(   get_attr(Dep,itf,Att),
	    arg(2,Att,type(Type)),
	    arg(4,Att,lin(Lin)),
	    ub_inner(Type,OrdX,Lin,W,Ub),
	    T0 = _-Ubb,
	    Ub < Ubb,
	    Ub >= 0
	->  ub(Deps,OrdX,Dep-W-Ub,T1)	% tighter bound, use new bound
	;   ub(Deps,OrdX,T0,T1)	% no tighter bound, keep current one
	).

% ub_inner(Type,OrdX,Lin,W,Ub)
%
% See lb_inner/5: this is similar

ub_inner(t_l(L),OrdX,Lin,t_L(L),Ub) :-
	nf_rhs_x(Lin,OrdX,Rhs,K), 
	K < 0,
	Ub is (L - Rhs) rdiv K.
ub_inner(t_u(U),OrdX,Lin,t_U(U),Ub) :-
	nf_rhs_x(Lin,OrdX,Rhs,K),
 	K > 0,
	Ub is (U - Rhs) rdiv K.
ub_inner(t_lu(L,U),OrdX,Lin,W,Ub) :-
	nf_rhs_x(Lin,OrdX,Rhs,K),
	(   K < 0 % use lowerbound
	->  W = t_Lu(L,U),
	    Ub = (L - Rhs) rdiv K
	;   K > 0 % use upperbound
	->  W = t_lU(L,U),
	    Ub = (U - Rhs) rdiv K
	).

% lb(Class,OrdX,Lb)
%
% Returns in Lb how much we can lower the upperbound of X without violating
% a bound of the basisvariables.
% Lb has the form Dep-W-Lb with Dep the variable whose bound is violated when
% lowering the bound for X more, W the actual bound that has to be activated
% and Lb the amount that the upperbound can be lowered.
% X has ordering OrdX and class Class.

lb(Class,OrdX,Lb) :-
	class_basis(Class,Deps),
	lb_first(Deps,OrdX,Lb).

% lb_first(Deps,OrdX,Tightest)
%
% Returns in Tightest how much we can lower the upperbound of X without
% violating a bound of Deps.
% Tightest has the form Dep-W-Lb with Dep the variable whose bound is violated
% when lowering the bound for X more, W the actual bound that has to be
% activated and Lb the amount that the upperbound can be lowered. X has
% ordering attribute OrdX.

lb_first([Dep|Deps],OrdX,Tightest) :-
	(   get_attr(Dep,itf,Att),
	    arg(2,Att,type(Type)),
	    arg(4,Att,lin(Lin)),
	    lb_inner(Type,OrdX,Lin,W,Lb),
	    Lb =< 0 % Lb > 0 means a violated bound
	->  lb(Deps,OrdX,Dep-W-Lb,Tightest)
	;   lb_first(Deps,OrdX,Tightest)
	).

% lb(Deps,OrdX,TightestIn,TightestOut)
%
% See lb_first/3: this one does the same thing, but is used for the steps after
% the first one and remembers the tightest bound so far.

lb([],_,T0,T0).
lb([Dep|Deps],OrdX,T0,T1) :-
	(   get_attr(Dep,itf,Att),
	    arg(2,Att,type(Type)),
	    arg(4,Att,lin(Lin)),
	    lb_inner(Type,OrdX,Lin,W,Lb),
	    T0 = _-Lbb,
	    Lb > Lbb,	% choose the least lowering, others might violate
			% bounds
	    Lb =< 0	% violation of a bound (without lowering)
	->  lb(Deps,OrdX,Dep-W-Lb,T1)
	;   lb(Deps,OrdX,T0,T1)
	).

% lb_inner(Type,X,Lin,W,Lb)
%
% Returns in Lb how much lower we can make X without violating a bound
% by using the linear equation Lin of basis variable B which has type
% Type and which has to activate a bound (type W) to do so.
%
% E.g. when B has a lowerbound L, then L should always be smaller than I + R.
% So a lowerbound of X (which has scalar K in Lin), could be at most
% (L-(I+R))/K lower than its upperbound (if K is positive).
% Also note that Lb should always be smaller than 0, otherwise the row is
% not feasible.
% X has ordering attribute OrdX.

lb_inner(t_l(L),OrdX,Lin,t_L(L),Lb) :-
	nf_rhs_x(Lin,OrdX,Rhs,K), % if linear equation Lin contains the term
				  % X*K, Rhs is the right hand side of that
				  % equation
	K > 0,
	Lb is (L - Rhs) rdiv K.
lb_inner(t_u(U),OrdX,Lin,t_U(U),Lb) :-
	nf_rhs_x(Lin,OrdX,Rhs,K),
	K < 0, % K < 0
	Lb is (U - Rhs) rdiv K.
lb_inner(t_lu(L,U),OrdX,Lin,W,Lb) :-
	nf_rhs_x(Lin,OrdX,Rhs,K),
	(   K < 0
	->  W = t_lU(L,U),
	    Lb is (U - Rhs) rdiv K
	;   K > 0
	->  W = t_Lu(L,U),
	    Lb is (L - Rhs) rdiv K
	).

% ---------------------------------- equations --------------------------------
%
% backsubstitution will not make the system infeasible, if the bounds on the
% indep vars are obeyed, but some implied values might pop up in rows where X
% occurs
%	-) special case X=Y during bs -> get rid of dependend var(s), alias
%

solve(Lin) :-
	Lin = [I,_|H],
	solve(H,Lin,I,Bindings,[]),
	export_binding(Bindings).

% solve(Hom,Lin,I,Bind,BindT)
%
% Solves a linear equation Lin = [I,_|H] = 0 and exports the generated bindings

solve([],_,I,Bind0,Bind0) :-
	!,
	I =:= 0.
solve(H,Lin,_,Bind0,BindT) :-
	sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT),
	get_attr(Selected,itf,Att),
	arg(5,Att,order(Ord)),
	isolate(Ord,Lin,Lin1),	% Lin = 0 => Selected = Lin1
	(   Category = 1 % classless variable, no bounds
	->  setarg(4,Att,lin(Lin1)),
	    Lin1 = [Inhom,_|Hom],
	    bs_collect_binding(Hom,Selected,Inhom,Bind0,BindT),
	    eq_classes(NV,NVT,ClassesUniq)
	;   Category = 2 % class variable, no bounds
	->  arg(6,Att,class(NewC)),
	    class_allvars(NewC,Deps),
 	    (   ClassesUniq = [_] % rank increasing
	    ->	bs_collect_bindings(Deps,Ord,Lin1,Bind0,BindT)
	    ;   Bind0 = BindT,
	    	bs(Deps,Ord,Lin1)
	    ),
	    eq_classes(NV,NVT,ClassesUniq)
	;   Category = 3 % classless variable, all variables in Lin and
			 % Selected are bounded
	->  arg(2,Att,type(Type)),
	    setarg(4,Att,lin(Lin1)),
	    deactivate_bound(Type,Selected),
	    eq_classes(NV,NVT,ClassesUniq),
	    basis_add(Selected,Basis),
	    undet_active(Lin1),	% we can't tell which bound will likely be a
				% problem at this point
	    Lin1 = [Inhom,_|Hom],
	    bs_collect_binding(Hom,Selected,Inhom,Bind0,Bind1),	% only if
								% Hom = []
	    rcbl(Basis,Bind1,BindT) % reconsider entire basis
	;   Category = 4 % class variable, all variables in Lin and Selected
			 % are bounded
	->  arg(2,Att,type(Type)),
	    arg(6,Att,class(NewC)),
	    class_allvars(NewC,Deps),
	    (   ClassesUniq = [_] % rank increasing
	    ->	bs_collect_bindings(Deps,Ord,Lin1,Bind0,Bind1)
	    ;   Bind0 = Bind1,
		bs(Deps,Ord,Lin1)
	    ),
	    deactivate_bound(Type,Selected),
	    basis_add(Selected,Basis),
	    % eq_classes( NV, NVT, ClassesUniq),
	    %  4 -> var(NV)
	    equate(ClassesUniq,_),
	    undet_active(Lin1),
	    rcbl(Basis,Bind1,BindT)
	).

%
% Much like solve, but we solve for a particular variable of type t_none
%

% solve_x(H,Lin,I,X,[Bind|BindT],BindT)
%
%

solve_x(Lin,X) :-
	Lin = [I,_|H],
	solve_x(H,Lin,I,X,Bindings,[]),
	export_binding(Bindings).

solve_x([],_,I,_,Bind0,Bind0) :-
	!,
	I =:= 0.
solve_x(H,Lin,_,X,Bind0,BindT) :-
	sd(H,[],ClassesUniq,9-9-0,_,NV,NVT),
	get_attr(X,itf,Att),
	arg(5,Att,order(OrdX)),
	isolate(OrdX,Lin,Lin1),
	(   arg(6,Att,class(NewC))
	->  class_allvars(NewC,Deps),
	    (   ClassesUniq = [_] % rank increasing
	    -> 	bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
	    ;   Bind0 = BindT,
		bs(Deps,OrdX,Lin1)
	    ),
	    eq_classes(NV,NVT,ClassesUniq)
	;   setarg(4,Att,lin(Lin1)),
	    Lin1 = [Inhom,_|Hom],
	    bs_collect_binding(Hom,X,Inhom,Bind0,BindT),
	    eq_classes(NV,NVT,ClassesUniq)
	).

% solve_ord_x(Lin,OrdX,ClassX)
%
% Does the same thing as solve_x/2, but has the ordering of X and its class as
% input. This also means that X has a class which is not sure in solve_x/2.

solve_ord_x(Lin,OrdX,ClassX) :-
	Lin = [I,_|H],
	solve_ord_x(H,Lin,I,OrdX,ClassX,Bindings,[]),
	export_binding(Bindings).

solve_ord_x([],_,I,_,_,Bind0,Bind0) :-
	I =:= 0.
solve_ord_x([_|_],Lin,_,OrdX,ClassX,Bind0,BindT) :-
	isolate(OrdX,Lin,Lin1),
	Lin1 = [_,_|H1],
	sd(H1,[],ClassesUniq1,9-9-0,_,NV,NVT), % do sd on Lin without X, then
					       % add class of X
	ord_add_element(ClassesUniq1,ClassX,ClassesUniq),
	class_allvars(ClassX,Deps),
	(   ClassesUniq = [_] % rank increasing
	->  bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
	;   Bind0 = BindT,
	    bs(Deps,OrdX,Lin1)
	),
	eq_classes(NV,NVT,ClassesUniq).

% sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT)

% sd(Hom,ClassesIn,ClassesOut,PreferenceIn,PreferenceOut,[NV|NVTail],NVTail)
%
% ClassesOut is a sorted list of the different classes that are either in
% ClassesIn or that are the classes of the variables in Hom. Variables that do
% not belong to a class yet, are put in the difference list NV.

sd([],Class0,Class0,Preference0,Preference0,NV0,NV0).
sd([l(X*K,_)|Xs],Class0,ClassN,Preference0,PreferenceN,NV0,NVt) :-
	get_attr(X,itf,Att),
	(   arg(6,Att,class(Xc)) % old: has class
	->  NV0 = NV1,
	    ord_add_element(Class0,Xc,Class1),
	    (   arg(2,Att,type(t_none))
	    ->  preference(Preference0,2-X-K,Preference1)
		    % has class, no bounds => category 2
	    ;   preference(Preference0,4-X-K,Preference1)
		    % has class, is bounded => category 4
	    )
  	;   % new: has no class
	    Class1 = Class0,
	    NV0 = [X|NV1], % X has no class yet, add to list of new variables
	    (   arg(2,Att,type(t_none))
	    ->  preference(Preference0,1-X-K,Preference1)
		    % no class, no bounds => category 1
	    ;   preference(Preference0,3-X-K,Preference1)
		    % no class, is bounded => category 3
	    )
  	),
	sd(Xs,Class1,ClassN,Preference1,PreferenceN,NV1,NVt).

%
% A is best sofar, B is current
% smallest prefered
preference(A,B,Pref) :-
	A = Px-_-_,
	B = Py-_-_,
	(   Px < Py
	->  Pref = A
  	;   Pref = B
	).

% eq_classes(NV,NVTail,Cs)
%
% Attaches all classless variables NV to a new class and equates all other
% classes with this class. The equate operation only happens after attach_class
% because the unification of classes can bind the tail of the AllVars attribute
% to a nonvar and then the attach_class operation wouldn't work.

eq_classes(NV,_,Cs) :-
	var(NV),
	!,
	equate(Cs,_).
eq_classes(NV,NVT,Cs) :-
	class_new(Su,clpq,NV,NVT,[]), % make a new class Su with NV as the variables
	attach_class(NV,Su), % attach the variables NV to Su
	equate(Cs,Su).

equate([],_).
equate([X|Xs],X) :- equate(Xs,X).

%
% assert: none of the Vars has a class attribute yet
%
attach_class(Xs,_) :-
	var(Xs), % Tail
	!.
attach_class([X|Xs],Class) :-
	get_attr(X,itf,Att),
	setarg(6,Att,class(Class)),
	attach_class(Xs,Class).

% unconstrained(Lin,Uc,Kuc,Rest)
%
% Finds an unconstrained variable Uc (type(t_none)) in Lin with scalar Kuc and
% removes it from Lin to return Rest.

unconstrained(Lin,Uc,Kuc,Rest) :-
	Lin = [_,_|H],
	sd(H,[],_,9-9-0,Category-Uc-_,_,_),
	Category =< 2,
	get_attr(Uc,itf,Att),
	arg(5,Att,order(OrdUc)),
	delete_factor(OrdUc,Lin,Rest,Kuc).

%
% point the vars in Lin into the same equivalence class
% maybe join some global data
%
same_class([],_).
same_class([l(X*_,_)|Xs],Class) :-
	get_or_add_class(X,Class),
	same_class(Xs,Class).

% get_or_add_class(X,Class)
%
% Returns in Class the class of X if X has one, or a new class where X now
% belongs to if X didn't have one.

get_or_add_class(X,Class) :-
	get_attr(X,itf,Att),
	arg(1,Att,CLP),
	(   arg(6,Att,class(ClassX))
	->  ClassX = Class
	;   setarg(6,Att,class(Class)),
	    class_new(Class,CLP,[X|Tail],Tail,[])
	).

% allvars(X,Allvars)
%
% Allvars is a list of all variables in the class to which X belongs.

allvars(X,Allvars) :-
	get_attr(X,itf,Att),
	arg(6,Att,class(C)),
	class_allvars(C,Allvars).

% deactivate_bound(Type,Variable)
%
% The Type of the variable is changed to reflect the deactivation of its
% bounds.
% t_L(_) becomes t_l(_), t_lU(_,_) becomes t_lu(_,_) and so on.

deactivate_bound(t_l(_),_).
deactivate_bound(t_u(_),_).
deactivate_bound(t_lu(_,_),_).
deactivate_bound(t_L(L),X) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_l(L))).
deactivate_bound(t_Lu(L,U),X) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_lu(L,U))).
deactivate_bound(t_U(U),X) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_u(U))).
deactivate_bound(t_lU(L,U),X) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_lu(L,U))).

% intro_at(X,Value,Type)
%
% Variable X gets new type Type which reflects the activation of a bound with
% value Value. In the linear equations of all the variables belonging to the
% same class as X, X is substituted by [0,Value,X] to reflect the new active
% bound.

intro_at(X,Value,Type) :-
	get_attr(X,itf,Att),
	arg(5,Att,order(Ord)),
	arg(6,Att,class(Class)),
	setarg(2,Att,type(Type)),
	(   Value =:= 0
	->  true
	;   backsubst_delta(Class,Ord,X,Value)
	).

% undet_active(Lin)
%
% For each variable in the homogene part of Lin, a bound is activated
% if an inactive bound exists. (t_l(L) becomes t_L(L) and so on)

undet_active([_,_|H]) :-
	undet_active_h(H).

% undet_active_h(Hom)
%
% For each variable in homogene part Hom, a bound is activated if an
% inactive bound exists (t_l(L) becomes t_L(L) and so on)

undet_active_h([]).
undet_active_h([l(X*_,_)|Xs]) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),
	undet_active(Type,X),
	undet_active_h(Xs).

% undet_active(Type,Var)
%
% An inactive bound of Var is activated if such exists
% t_lu(L,U) is arbitrarily chosen to become t_Lu(L,U)

undet_active(t_none,_).	% type_activity
undet_active(t_L(_),_).
undet_active(t_Lu(_,_),_).
undet_active(t_U(_),_).
undet_active(t_lU(_,_),_).
undet_active(t_l(L),X) :- intro_at(X,L,t_L(L)).
undet_active(t_u(U),X) :- intro_at(X,U,t_U(U)).
undet_active(t_lu(L,U),X) :- intro_at(X,L,t_Lu(L,U)).

% determine_active_dec(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as small as possible in order not to violate
% an upperbound (see reconsider/1)

determine_active_dec([_,_|H]) :-
	determine_active(H,-1).

% determine_active_inc(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as large as possible in order not to violate
% a lowerbound (see reconsider/1)

determine_active_inc([_,_|H]) :-
	determine_active(H,1).

% determine_active(Hom,S)
%
% For each variable in Hom, activates its bound if it is not yet activated.
% For the case of t_lu(_,_) the lower or upper bound is activated depending on
% K and S:
% If sign of K*S is negative, then lowerbound, otherwise upperbound.

determine_active([],_).
determine_active([l(X*K,_)|Xs],S) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),	
	determine_active(Type,X,K,S),
	determine_active(Xs,S).

determine_active(t_L(_),_,_,_).
determine_active(t_Lu(_,_),_,_,_).
determine_active(t_U(_),_,_,_).
determine_active(t_lU(_,_),_,_,_).
determine_active(t_l(L),X,_,_) :- intro_at(X,L,t_L(L)).
determine_active(t_u(U),X,_,_) :- intro_at(X,U,t_U(U)).
determine_active(t_lu(L,U),X,K,S) :-
	KS is K*S,
	(   KS < 0
	->  intro_at(X,L,t_Lu(L,U))	
	;   KS > 0
	->  intro_at(X,U,t_lU(L,U))
	).

%
% Careful when an indep turns into t_none !!!
%

detach_bounds(V) :-
	get_attr(V,itf,Att),
	arg(2,Att,type(Type)),
	arg(4,Att,lin(Lin)),
	arg(5,Att,order(OrdV)),
	arg(6,Att,class(Class)),
	setarg(2,Att,type(t_none)),
	setarg(3,Att,strictness(0)),
	(   indep(Lin,OrdV)
	->  (   ub(Class,OrdV,Vub-Vb-_)
	    ->	% exchange against thightest
		class_basis_drop(Class,Vub),
		pivot(Vub,Class,OrdV,Vb,Type)
	    ;   lb(Class,OrdV,Vlb-Vb-_)
	    ->  class_basis_drop(Class,Vlb),
		pivot(Vlb,Class,OrdV,Vb,Type)
	    ;   true
	    )
	;   class_basis_drop(Class,V)
	).

detach_bounds_vlv(OrdV,Lin,Class,Var,NewLin) :-
	(   indep(Lin,OrdV)
	->  Lin = [_,R|_],
	    (   ub(Class,OrdV,Vub-Vb-_)
	    ->  % in verify_lin, class might contain two occurrences of Var,
		% but it doesn't matter which one we delete
		class_basis_drop(Class,Var),
		pivot_vlv(Vub,Class,OrdV,Vb,R,NewLin)
	    ;   lb(Class,OrdV,Vlb-Vb-_)
	    ->  class_basis_drop(Class,Var),
		pivot_vlv(Vlb,Class,OrdV,Vb,R,NewLin)
	    ;   NewLin = Lin
	    )
	;   NewLin = Lin,
	    class_basis_drop(Class,Var)
	).

% ----------------------------- manipulate the basis --------------------------

% basis_drop(X)
%
% Removes X from the basis of the class to which X belongs.

basis_drop(X) :-
	get_attr(X,itf,Att),
	arg(6,Att,class(Cv)),
	class_basis_drop(Cv,X).

% basis(X,Basis)
% 
% Basis is the basis of the class to which X belongs.

basis(X,Basis) :-
	get_attr(X,itf,Att),
	arg(6,Att,class(Cv)),
	class_basis(Cv,Basis).

% basis_add(X,NewBasis)
%
% NewBasis is the result of adding X to the basis of the class to which X
% belongs.

basis_add(X,NewBasis) :-
	get_attr(X,itf,Att),
	arg(6,Att,class(Cv)),
	class_basis_add(Cv,X,NewBasis).

% basis_pivot(Leave,Enter)
%
% Removes Leave from the basis of the class to which it belongs, and adds
% Enter to that basis.

basis_pivot(Leave,Enter) :-
	get_attr(Leave,itf,Att),
	arg(6,Att,class(Cv)),
	class_basis_pivot(Cv,Enter,Leave).

% ----------------------------------- pivot -----------------------------------

% pivot(Dep,Indep)
%
% The linear equation of variable Dep, is transformed into one of variable 
% Indep, containing Dep. Then, all occurrences of Indep in linear equations are
% substituted by this new definition

%
% Pivot ignoring rhs and active states
%

pivot(Dep,Indep) :-
	get_attr(Dep,itf,AttD),
	arg(4,AttD,lin(H)),
	arg(5,AttD,order(OrdDep)),
	get_attr(Indep,itf,AttI),
	arg(5,AttI,order(Ord)),
	arg(5,AttI,class(Class)),
	delete_factor(Ord,H,H0,Coeff),
	K is -1 rdiv Coeff,
	add_linear_ff(H0,K,[0,0,l(Dep* -1,OrdDep)],K,Lin),
	backsubst(Class,Ord,Lin).

% pivot_a(Dep,Indep,IndepT,DepT)
%
% Removes Dep from the basis, puts Indep in, and pivots the equation of
% Dep to become one of Indep. The type of Dep becomes DepT (which means
% it gets deactivated), the type of Indep becomes IndepT (which means it
% gets activated)


pivot_a(Dep,Indep,Vb,Wd) :-
	basis_pivot(Dep,Indep),
	get_attr(Indep,itf,Att),
	arg(2,Att,type(Type)),
	arg(5,Att,order(Ord)),
	arg(6,Att,class(Class)),
	pivot(Dep,Class,Ord,Vb,Type),
	get_attr(Indep,itf,Att2), %changed?
	setarg(2,Att2,type(Wd)).

pivot_b(Vub,V,Vb,Wd) :-
	(   Vub == V
	->  get_attr(V,itf,Att),
	    arg(5,Att,order(Ord)),
	    arg(6,Att,class(Class)),
	    setarg(2,Att,type(Vb)),
	    pivot_b_delta(Vb,Delta), % nonzero(Delta)
	    backsubst_delta(Class,Ord,V,Delta)
	;   pivot_a(Vub,V,Vb,Wd)
	).

pivot_b_delta(t_Lu(L,U),Delta) :- Delta is L-U.
pivot_b_delta(t_lU(L,U),Delta) :- Delta is U-L.

% select_active_bound(Type,Bound)
%
% Returns the bound that is active in Type (if such exists, 0 otherwise)

select_active_bound(t_L(L),L).
select_active_bound(t_Lu(L,_),L).
select_active_bound(t_U(U),U).
select_active_bound(t_lU(_,U),U).
select_active_bound(t_none,0).
%
% for project.pl
%
select_active_bound(t_l(_),0).
select_active_bound(t_u(_),0).
select_active_bound(t_lu(_,_),0).


% pivot(Dep,Class,IndepOrd,DepAct,IndAct)
%
% See pivot/2.
% In addition, variable Indep with ordering IndepOrd has an active bound IndAct

%
%
% Pivot taking care of rhs and active states
%
pivot(Dep,Class,IndepOrd,DepAct,IndAct) :-
	get_attr(Dep,itf,Att),
	arg(4,Att,lin(H)),
	arg(5,Att,order(DepOrd)),
	setarg(2,Att,type(DepAct)),
	select_active_bound(DepAct,AbvD), % New current value for Dep
	select_active_bound(IndAct,AbvI), % Old current value of Indep
	delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
	AbvDm is -AbvD,
	AbvIm is -AbvI,
	add_linear_f1([0,AbvIm],Coeff,H0,H1),
	K is -1 rdiv Coeff,
	add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,H2),
	    % Indep = -1/Coeff*... + 1/Coeff*Dep
	add_linear_11(H2,[0,AbvIm],Lin),
	backsubst(Class,IndepOrd,Lin).

% Rewrite Dep = ... + Coeff*Indep + ...
% into Indep = ... + -1/Coeff*Dep + ...
% 
% For backsubstitution, old current value of Indep must be removed from RHS
% New current value of Dep must be added to RHS
% For solving: old current value of Indep should be out of RHS

pivot_vlv(Dep,Class,IndepOrd,DepAct,AbvI,Lin) :-
	get_attr(Dep,itf,Att),
	arg(4,Att,lin(H)),
	arg(5,Att,order(DepOrd)),
	setarg(2,Att,type(DepAct)),
	select_active_bound(DepAct,AbvD), % New current value for Dep 
	delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
	AbvDm is -AbvD,
	AbvIm is -AbvI,
	add_linear_f1([0,AbvIm],Coeff,H0,H1),
	K is -1 rdiv Coeff,
	add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,Lin),
	    % Indep = -1/Coeff*... + 1/Coeff*Dep
	add_linear_11(Lin,[0,AbvIm],SubstLin),
	backsubst(Class,IndepOrd,SubstLin).

% backsubst_delta(Class,OrdX,X,Delta)
%
% X with ordering attribute OrdX, is substituted in all linear equations of
% variables in the class Class, by linear equation [0,Delta,l(X*1,OrdX)]. This
% reflects the activation of a bound.

backsubst_delta(Class,OrdX,X,Delta) :-
	backsubst(Class,OrdX,[0,Delta,l(X*1,OrdX)]).

% backsubst(Class,OrdX,Lin)
%
% X with ordering OrdX is substituted in all linear equations of variables in
% the class Class, by linear equation Lin

backsubst(Class,OrdX,Lin) :-
	class_allvars(Class,Allvars),
	bs(Allvars,OrdX,Lin).

% bs(Vars,OrdV,Lin)
%
% In all linear equations of the variables Vars, variable V with ordering
% attribute OrdV is substituted by linear equation Lin.
%
% valid if nothing will go ground
%

bs(Xs,_,_) :-
	var(Xs),
	!.
bs([X|Xs],OrdV,Lin) :-
	(   get_attr(X,itf,Att),
	    arg(4,Att,lin(LinX)),
	    nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
	->  setarg(4,Att,lin(LinX1)),
	    bs(Xs,OrdV,Lin)
	;   bs(Xs,OrdV,Lin)
	).

%
% rank increasing backsubstitution
%

% bs_collect_bindings(Deps,SelectedOrd,Lin,Bind,BindT)
%
% Collects bindings (of the form [X-I] where X = I is the binding) by
% substituting Selected in all linear equations of the variables Deps (which
% are of the same class), by Lin. Selected has ordering attribute SelectedOrd.
%
% E.g. when V = 2X + 3Y + 4, X = 3V + 2Z and Y = 4X + 3
% we can substitute V in the linear equation of X: X = 6X + 9Y + 2Z + 12
% we can't substitute V in the linear equation of Y of course. 

bs_collect_bindings(Xs,_,_,Bind0,BindT) :-
	var(Xs),
	!,
	Bind0 = BindT.
bs_collect_bindings([X|Xs],OrdV,Lin,Bind0,BindT) :-
	(   get_attr(X,itf,Att),
	    arg(4,Att,lin(LinX)),
	    nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
	->  setarg(4,Att,lin(LinX1)),
	    LinX1 = [Inhom,_|Hom],
	    bs_collect_binding(Hom,X,Inhom,Bind0,Bind1),
	    bs_collect_bindings(Xs,OrdV,Lin,Bind1,BindT)
	;   bs_collect_bindings(Xs,OrdV,Lin,Bind0,BindT)
	).

% bs_collect_binding(Hom,Selected,Inhom,Bind,BindT)
%
% Collects binding following from Selected = Hom + Inhom.
% If Hom = [], returns the binding Selected-Inhom (=0)
%
bs_collect_binding([],X,Inhom) --> [X-Inhom].
bs_collect_binding([_|_],_,_) --> [].

%
% reconsider the basis
%

% rcbl(Basis,Bind,BindT)
%
%

rcbl([],Bind0,Bind0).
rcbl([X|Continuation],Bind0,BindT) :-
	(   rcb_cont(X,Status,Violated,Continuation,NewContinuation) % have a culprit
	->  rcbl_status(Status,X,NewContinuation,Bind0,BindT,Violated)
	;   rcbl(Continuation,Bind0,BindT)
	).
	
rcb_cont(X,Status,Violated,ContIn,ContOut) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),
	arg(4,Att,lin([I,R|H])),
	(   Type = t_l(L) % case 1: lowerbound: R + I should always be larger
			  % than the lowerbound
	->  R + I =< L,
	    Violated = l(L),
	    inc_step_cont(H,Status,ContIn,ContOut)
	;   Type = t_u(U) % case 2: upperbound: R + I should always be smaller
			  % than the upperbound
	->  R + I >= U,
	    Violated = u(U),
	    dec_step_cont(H,Status,ContIn,ContOut)
	;   Type = t_lu(L,U) % case 3: check both
	->  At is R + I,
	    (   At =< L
	    ->	Violated = l(L),
		inc_step_cont(H,Status,ContIn,ContOut)
	    ;   At >= U
	    ->	Violated = u(U),
		dec_step_cont(H,Status,ContIn,ContOut)
	    )
	). % other types imply nonbasic variable or unbounded variable



%
% reconsider one element of the basis
% later: lift the binds
%
reconsider(X) :-
	rcb(X,Status,Violated),
	!,
	rcbl_status(Status,X,[],Binds,[],Violated),
	export_binding(Binds).
reconsider(_).

%
% Find a basis variable out of its bound or at its bound
% Try to move it into whithin its bound
%   a) impossible -> fail
%   b) optimum at the bound -> implied value
%   c) else look at the remaining basis variables
%
%
% Idea: consider a variable V with linear equation Lin.
% When a bound on a variable X of Lin gets activated, its value, multiplied
% with the scalar of X, is added to the R component of Lin.
% When we consider the lowerbound of V, it must be smaller than R + I, since R
% contains at best the lowerbounds of the variables in Lin (but could contain
% upperbounds, which are of course larger). So checking this can show the
% violation of a bound of V. A similar case works for the upperbound.

rcb(X,Status,Violated) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),
	arg(4,Att,lin([I,R|H])),
	(   Type = t_l(L) % case 1: lowerbound: R + I should always be larger
			  % than the lowerbound
	->  R + I =< L,
	    Violated = l(L),
	    inc_step(H,Status)
	;   Type = t_u(U) % case 2: upperbound: R + I should always be smaller
			  % than the upperbound
	->  R + I >= U,
	    Violated = u(U),
	    dec_step(H,Status)
	;   Type = t_lu(L,U) % case 3: check both
	->  At is R + I,
	    (   At =< L
	    ->	Violated = l(L),
		inc_step(H,Status)
	    ;   At >= U
	    ->	Violated = u(U),
		dec_step(H,Status)
	    )
	). % other types imply nonbasic variable or unbounded variable

% rcbl_status(Status,X,Continuation,[Bind|BindT],BindT,Violated)
%
%

rcbl_status(optimum,X,Cont,B0,Bt,Violated) :- rcbl_opt(Violated,X,Cont,B0,Bt).
rcbl_status(applied,X,Cont,B0,Bt,Violated) :- rcbl_app(Violated,X,Cont,B0,Bt).
rcbl_status(unlimited(Indep,DepT),X,Cont,B0,Bt,Violated) :-
	rcbl_unl(Violated,X,Cont,B0,Bt,Indep,DepT).

%
% Might reach optimum immediately without changing the basis,
% but in general we must assume that there were pivots.
% If the optimum meets the bound, we backsubstitute the implied
% value, solve will call us again to check for further implied
% values or unsatisfiability in the rank increased system.
%
rcbl_opt(l(L),X,Continuation,B0,B1) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),
	arg(3,Att,strictness(Strict)),
	arg(4,Att,lin(Lin)),
	Lin = [I,R|_],
	Opt is R + I,
	(   L < Opt
	->  narrow_u(Type,X,Opt), % { X =< Opt }
	    rcbl(Continuation,B0,B1)
	;   L =:= Opt,
	    Strict /\ 2 =:= 0, % meets lower
	    Mop is -Opt,
	    normalize_scalar(Mop,MopN),
	    add_linear_11(MopN,Lin,Lin1),
	    Lin1 = [Inhom,_|Hom],
	    (   Hom = []
	    ->  rcbl(Continuation,B0,B1) % would not callback
	    ;   solve(Hom,Lin1,Inhom,B0,B1)
	    )
	).
rcbl_opt(u(U),X,Continuation,B0,B1) :-
	get_attr(X,itf,Att),
	arg(2,Att,type(Type)),
	arg(3,Att,strictness(Strict)),
	arg(4,Att,lin(Lin)),
	Lin = [I,R|_],
	Opt is R + I,
	(   U > Opt
	->  narrow_l(Type,X,Opt), % { X >= Opt }
	    rcbl(Continuation,B0,B1)
	;   U =:= Opt,
	    Strict /\ 1 =:= 0, % meets upper
	    Mop is -Opt,
	    normalize_scalar(Mop,MopN),
	    add_linear_11(MopN,Lin,Lin1),
	    Lin1 = [Inhom,_|Hom],
	    (   Hom = []
	    ->  rcbl(Continuation,B0,B1) % would not callback
	    ;   solve(Hom,Lin1,Inhom,B0,B1)
	    )
	).

%
% Basis has already changed when this is called
%
rcbl_app(l(L),X,Continuation,B0,B1) :-
	get_attr(X,itf,Att),
	arg(4,Att,lin([I,R|H])),
	(   R + I > L % within bound now
	->  rcbl(Continuation,B0,B1)
	;   inc_step(H,Status),
	    rcbl_status(Status,X,Continuation,B0,B1,l(L))
	).
rcbl_app(u(U),X,Continuation,B0,B1) :-
	get_attr(X,itf,Att),
	arg(4,Att,lin([I,R|H])),
	(   R + I < U % within bound now
	->  rcbl(Continuation,B0,B1)
	;   dec_step(H,Status),
	    rcbl_status(Status,X,Continuation,B0,B1,u(U))
	).
%
% This is never called for a t_lu culprit
%
rcbl_unl(l(L),X,Continuation,B0,B1,Indep,DepT) :-
	pivot_a(X,Indep,t_L(L),DepT), % changes the basis
	rcbl(Continuation,B0,B1).
rcbl_unl(u(U),X,Continuation,B0,B1,Indep,DepT) :-
	pivot_a(X,Indep,t_U(U),DepT), % changes the basis
	rcbl(Continuation,B0,B1).

% narrow_u(Type,X,U)
%
% Narrows down the upperbound of X (type Type) to U.
% Fails if Type is not t_u(_) or t_lu(_)

narrow_u(t_u(_),X,U) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_u(U))).
narrow_u(t_lu(L,_),X,U) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_lu(L,U))).

% narrow_l(Type,X,L)
%
% Narrows down the lowerbound of X (type Type) to L.
% Fails if Type is not t_l(_) or t_lu(_)

narrow_l( t_l(_),    X, L) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_l(L))).

narrow_l( t_lu(_,U), X, L) :-
	get_attr(X,itf,Att),
	setarg(2,Att,type(t_lu(L,U))).

% ----------------------------------- dump ------------------------------------

% dump_var(Type,Var,I,H,Dump,DumpTail)
%
% Returns in Dump a representation of the linear constraint on variable
% Var which has linear equation H + I and has type Type.

dump_var(t_none,V,I,H) --> 
	!,
	(   {
		H = [l(W*K,_)],
		V == W,
		I =:= 0,
		K =:= 1
	    }
	->  % indep var
	    []
	;   {nf2sum(H,I,Sum)},
	    [V = Sum]
	).
dump_var(t_L(L),V,I,H) -->
	!,
	dump_var(t_l(L),V,I,H).
% case lowerbound: V >= L or V > L
% say V >= L, and V = K*V1 + ... + I, then K*V1 + ... + I >= L
% and K*V1 + ... >= L-I and V1 + .../K = (L-I)/K
dump_var(t_l(L),V,I,H) -->
	!,
	{
	    H = [l(_*K,_)|_], % avoid 1 >= 0
	    get_attr(V,itf,Att),
	    arg(3,Att,strictness(Strict)),
	    Sm is Strict /\ 2,
	    Kr is 1 rdiv K,
	    Li is Kr*(L - I),
	    mult_hom(H,Kr,H1),
	    nf2sum(H1,0,Sum),
	    (   K > 0 % K > 0
	    ->	dump_strict(Sm,Sum >= Li,Sum > Li,Result)
	    ;   dump_strict(Sm,Sum =< Li,Sum < Li,Result)
	    )
	},
	[Result].
dump_var(t_U(U),V,I,H) -->
	!,
	dump_var(t_u(U),V,I,H).
dump_var(t_u(U),V,I,H) -->
	!,
	{
	    H = [l(_*K,_)|_], % avoid 0 =< 1
	    get_attr(V,itf,Att),
	    arg(3,Att,strictness(Strict)),
	    Sm is Strict /\ 1,
	    Kr is 1 rdiv K,
	    Ui is Kr*(U-I),
	    mult_hom(H,Kr,H1),
	    nf2sum(H1,0.0,Sum),
	    (   K > 0
	    ->	dump_strict(Sm,Sum =< Ui,Sum < Ui,Result)
	    ;   dump_strict(Sm,Sum >= Ui,Sum > Ui,Result)
	    )
	},
	[Result].
dump_var(t_Lu(L,U),V,I,H) -->
	!,
	dump_var(t_l(L),V,I,H),
	dump_var(t_u(U),V,I,H).
dump_var(t_lU(L,U),V,I,H) -->
	!,
	dump_var(t_l(L),V,I,H),
	dump_var(t_u(U),V,I,H).
dump_var(t_lu(L,U),V,I,H) -->
	!,
	dump_var(t_l(L),V,I,H),
	dump_var(t_U(U),V,I,H).
dump_var(T,V,I,H) --> % should not happen
	[V:T:I+H].

% dump_strict(FilteredStrictness,Nonstrict,Strict,Res)
%
% Unifies Res with either Nonstrict or Strict depending on FilteredStrictness.
% FilteredStrictness is the component of strictness related to the bound: 0
% means nonstrict, 1 means strict upperbound, 2 means strict lowerbound,
% 3 is filtered out to either 1 or 2.

dump_strict(0,Result,_,Result).
dump_strict(1,_,Result,Result).
dump_strict(2,_,Result,Result).

% dump_nz(V,H,I,Dump,DumpTail)
%
% Returns in Dump a representation of the nonzero constraint of variable V
% which has linear
% equation H + I.

dump_nz(_,H,I) -->
	{
	    H = [l(_*K,_)|_],
	    Kr is 1 rdiv K,
	    I1 is -Kr*I,
	    mult_hom(H,Kr,H1),
	    nf2sum(H1,0,Sum)
	},
	[Sum =\= I1].