This file is indexed.

/usr/share/Yap/problog_learning.yap is in yap 6.2.2-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
%%% -*- Mode: Prolog; -*-

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  $Date: 2011-04-21 14:18:59 +0200 (Thu, 21 Apr 2011) $
%  $Revision: 6364 $
%
%  This file is part of ProbLog
%  http://dtai.cs.kuleuven.be/problog
%
%  ProbLog was developed at Katholieke Universiteit Leuven
%
%  Copyright 2008, 2009, 2010
%  Katholieke Universiteit Leuven
%
%  Main authors of this file:
%  Bernd Gutmann
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
% 
% Copyright (c) 2000-2006, The Perl Foundation.
% 
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed.  Preamble
% 
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
% 
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement.  Definitions
% 
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
% 
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
% 
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
% 
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
% 
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
% 
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
% 
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
% 
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
% 
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
% 
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
% 
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
% 
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
% 
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
% 
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
% 
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
% 
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version.  (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version.  (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
% 
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
% 
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
% 
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
% 
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
% 
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
% 
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
% 
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
% 
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
% 
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
% 
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


:- module(learning,[do_learning/1,
	            do_learning/2,
		    reset_learning/0
		    ]).

% switch on all the checks to reduce bug searching time
:- style_check(all).
:- yap_flag(unknown,error).

% load modules from the YAP library
:- use_module(library(lists), [max_list/2, min_list/2, sum_list/2]).
:- use_module(library(system), [file_exists/1, shell/2]).

% load our own modules
:- use_module(problog).
:- use_module('problog/logger').
:- use_module('problog/flags').
:- use_module('problog/os').
:- use_module('problog/print_learning').
:- use_module('problog/utils_learning').
:- use_module('problog/utils').
:- use_module('problog/tabling').

% used to indicate the state of the system
:- dynamic(values_correct/0).
:- dynamic(learning_initialized/0).
:- dynamic(current_iteration/1).
:- dynamic(example_count/1).
:- dynamic(query_probability_intern/2).
:- dynamic(query_gradient_intern/4).
:- dynamic(last_mse/1).
:- dynamic(query_is_similar/2).
:- dynamic(query_md5/2).


% used to identify queries which have identical proofs
:- dynamic(query_is_similar/2).
:- dynamic(query_md5/3).

:- multifile(user:example/4).
user:example(A,B,C,=) :-
	current_predicate(user:example/3),
	user:example(A,B,C).

:- multifile(user:test_example/4).
user:test_example(A,B,C,=) :-
	current_predicate(user:test_example/3),
	user:test_example(A,B,C).


%========================================================================
%= store the facts with the learned probabilities to a file
%========================================================================

save_model:-
	current_iteration(Iteration),
	create_factprobs_file_name(Iteration,Filename),
	export_facts(Filename).




%========================================================================
%= find out whether some example IDs are used more than once
%= if so, complain and stop
%=
%========================================================================

check_examples :-
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Check example IDs
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 (user:example(ID,_,_,_), \+ atomic(ID))
	->
	 (
	  format(user_error,'The example id of training example ~q ',[ID]),
	  format(user_error,'is not atomic (e.g foo42, 23, bar, ...).~n',[]),
	  throw(error(examples))
	 ); true
	),

	(
	 (user:test_example(ID,_,_,_), \+ atomic(ID))
	->
	 (
	  format(user_error,'The example id of test example ~q ',[ID]),
	  format(user_error,'is not atomic (e.g foo42, 23, bar, ...).~n',[]),
	  throw(error(examples))
	 ); true
	),
	
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Check example probabilities
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 (user:example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
	->
	 (
	  format(user_error,'The training example ~q does not have a valid probability value (~q).~n',[ID,P]),
	  throw(error(examples))
	 ); true
	),

	(
	 (user:test_example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
	->
	 (
	  format(user_error,'The test example ~q does not have a valid probability value (~q).~n',[ID,P]),
	  throw(error(examples))
	 ); true
	),


	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Check that no example ID is repeated,
	% and if it is repeated make sure the query is the same
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 (
	  (
	   user:example(ID,QueryA,_,_),
	   user:example(ID,QueryB,_,_),
	   QueryA \= QueryB
	  ) ;
	  
	  (
	   user:test_example(ID,QueryA,_,_),
	   user:test_example(ID,QueryB,_,_),
	   QueryA \= QueryB
	  );

	  (
	   user:example(ID,QueryA,_,_),
	   user:test_example(ID,QueryB,_,_),
	   QueryA \= QueryB
	  )
	 )
	->
	 (
	  format(user_error,'The example id ~q is used several times.~n',[ID]),
	  throw(error(examples))
	 ); true
	).
%========================================================================
%= 
%========================================================================

reset_learning :-
	retractall(learning_initialized),
	retractall(values_correct),
	retractall(current_iteration(_)),
	retractall(example_count(_)),
	retractall(query_probability_intern(_,_)),
	retractall(query_gradient_intern(_,_,_)),
	retractall(last_mse(_)),
	retractall(query_is_similar(_,_)),
	retractall(query_md5(_,_,_)),

	set_problog_flag(alpha,auto),
	set_problog_flag(learning_rate,examples),
	logger_reset_all_variables.



%========================================================================
%= initialize everything and perform Iterations times gradient descent
%= can be called several times
%= if it is called with an epsilon parameter, it stops when the change
%= in the MSE is smaller than epsilon
%========================================================================

do_learning(Iterations) :-
	do_learning(Iterations,-1).

do_learning(Iterations,Epsilon) :-
	current_predicate(user:example/4),
	!,
	integer(Iterations),
	number(Epsilon),
	Iterations>0,
	do_learning_intern(Iterations,Epsilon).
do_learning(_,_) :-
	format(user_error,'~n~Error: No training examples specified.~n~n',[]).


do_learning_intern(0,_) :-
	!.
do_learning_intern(Iterations,Epsilon) :-
	Iterations>0,
	
	init_learning,
	current_iteration(CurrentIteration),
	retractall(current_iteration(_)),
	NextIteration is CurrentIteration+1,
	assertz(current_iteration(NextIteration)),
	EndIteration is CurrentIteration+Iterations-1,
	
	format_learning(1,'~nIteration ~d of ~d~n',[CurrentIteration,EndIteration]),
	logger_set_variable(iteration,CurrentIteration),

	logger_start_timer(duration),
	mse_testset,
	ground_truth_difference,  
	gradient_descent,

	problog_flag(log_frequency,Log_Frequency),
	
	(
	 ( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
	->
	 once(save_model);
	 true
	),

	update_values,
	
	(
	 last_mse(Last_MSE)
	->
	 (
	  retractall(last_mse(_)),
	  logger_get_variable(mse_trainingset,Current_MSE),
	  assertz(last_mse(Current_MSE)),
	  !,
	  MSE_Diff is abs(Last_MSE-Current_MSE)
	 );  (
	      logger_get_variable(mse_trainingset,Current_MSE),
	      assertz(last_mse(Current_MSE)), 
	      MSE_Diff is Epsilon+1
	     )
	),

	(
	 (problog_flag(rebuild_bdds,BDDFreq),BDDFreq>0,0 =:= CurrentIteration mod BDDFreq)
	->
	 (
	  retractall(values_correct),
	  retractall(query_is_similar(_,_)),
	  retractall(query_md5(_,_,_)),
	  empty_bdd_directory,
	  init_queries
	 ); true
	),


	!,
	logger_stop_timer(duration),
	

	logger_write_data,



	RemainingIterations is Iterations-1,

	(
	 MSE_Diff>Epsilon
	->
	 do_learning_intern(RemainingIterations,Epsilon);
	 true
	).


%========================================================================
%= find proofs and build bdds for all training and test examples
%=
%=
%========================================================================
init_learning :-
	learning_initialized,
	!.
init_learning :-
	check_examples,
	
	empty_output_directory,
	logger_write_header,

	format_learning(1,'Initializing everything~n',[]),


        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Delete the BDDs from the previous run if they should
	% not be reused
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 (
	  problog_flag(reuse_initialized_bdds,true),
	  problog_flag(rebuild_bdds,0)
	 )
	->
	 true;
	 empty_bdd_directory
	),

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Check, if continuous facts are used.
	% if yes, switch to problog_exact 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	problog_flag(init_method,(_,_,_,_,OldCall)),
	(
	 (
	  continuous_fact(_),
	  OldCall\=problog_exact_save(_,_,_,_,_)
	 )
	->
	 (
	  format_learning(2,'Theory uses continuous facts.~nWill use problog_exact/3 as initalization method.~2n',[]),
	  set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile)))
	 );
	 true
	),

	(
	 problog_tabled(_)
	->
	 (
	  format_learning(2,'Theory uses tabling.~nWill use problog_exact/3 as initalization method.~2n',[]),
	  set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile)))
	 );
	 true
	),
	

	succeeds_n_times(user:test_example(_,_,_,_),TestExampleCount),
	format_learning(3,'~q test examples~n',[TestExampleCount]),

	succeeds_n_times(user:example(_,_,_,_),TrainingExampleCount),
	assertz(example_count(TrainingExampleCount)),
	format_learning(3,'~q training examples~n',[TrainingExampleCount]),


        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% set learning rate and alpha
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 problog_flag(learning_rate,examples)
	->
	 set_problog_flag(learning_rate,TrainingExampleCount);
	 true
	),

	(
	 problog_flag(alpha,auto)
	->
	 (
	  (user:example(_,_,P,_),P<1,P>0)
	 ->
	  set_problog_flag(alpha,1.0);
	  (
	   succeeds_n_times((user:example(_,_,P,=),P=:=1.0),Pos_Count),
	   succeeds_n_times((user:example(_,_,P,=),P=:=0.0),Neg_Count),
	   Alpha is Pos_Count/Neg_Count,
	   set_problog_flag(alpha,Alpha)
	  )
	 )
	),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% build BDD script for every example
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	once(init_queries),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% done
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	assertz(current_iteration(0)),
	assertz(learning_initialized),

	format_learning(1,'~n',[]).



%========================================================================
%= This predicate goes over all training and test examples,
%= calls the inference method of ProbLog and stores the resulting
%= BDDs
%========================================================================


init_queries :-
	format_learning(2,'Build BDDs for examples~n',[]),
	forall(user:test_example(ID,Query,_Prob,_),init_one_query(ID,Query,test)),
	forall(user:example(ID,Query,_Prob,_),init_one_query(ID,Query,training)).

bdd_input_file(Filename) :-
	problog_flag(output_directory,Dir),
	concat_path_with_filename(Dir,'input.txt',Filename).

init_one_query(QueryID,Query,Type) :-
	format_learning(3,' ~q example ~q: ~q~n',[Type,QueryID,Query]),

	bdd_input_file(Probabilities_File),
	problog_flag(bdd_directory,Query_Directory),

	atomic_concat(['query_',QueryID],Filename1),
	concat_path_with_filename(Query_Directory,Filename1,Filename),

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% if BDD file does not exist, call ProbLog
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 file_exists(Filename)
	->
	 format_learning(3,' Reuse existing BDD ~q~n~n',[Filename]);
	 (
	  problog_flag(init_method,(Query,_Prob,Filename,Probabilities_File,Call)),
	  once(Call),
	  delete_file_silently(Probabilities_File)
	 )
	),
    
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% check wether this BDD is similar to another BDD
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 problog_flag(check_duplicate_bdds,true)
	->
	 (
	  calc_md5(Filename,Query_MD5),
	  ( 
	    query_md5(OtherQueryID,Query_MD5,Type)
	  ->
	    ( 
	      assertz(query_is_similar(QueryID,OtherQueryID)),
	      format_learning(3, '~q is similar to ~q~2n', [QueryID,OtherQueryID])
	    );
	    assertz(query_md5(QueryID,Query_MD5,Type))
	  )
	 );

	 true
	),!,
	garbage_collect.




%========================================================================
%= updates all values of query_probability/2 and query_gradient/4
%= should be called always before these predicates are accessed
%= if the old values are still valid, nothing happens
%========================================================================

update_values :-
	values_correct,
	!.
update_values :-
	\+ values_correct,

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% delete old values
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	retractall(query_probability_intern(_,_)),
	retractall(query_gradient_intern(_,_,_,_)),	

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start write current probabilities to file
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	bdd_input_file(Probabilities_File),
	delete_file_silently(Probabilities_File),

	open(Probabilities_File,'write',Handle),

	forall(get_fact_probability(ID,Prob),
	       (
		(problog:dynamic_probability_fact(ID) ->
      get_fact(ID, Term),
      forall(grounding_is_known(Term, GID), (
        problog:dynamic_probability_fact_extract(Term, Prob2),
        inv_sigmoid(Prob2,Value),
        format(Handle, '@x~q_~q~n~10f~n', [ID,GID, Value])))
    ; non_ground_fact(ID) ->
      inv_sigmoid(Prob,Value),
		 format(Handle,'@x~q_*~n~10f~n',[ID,Value])
    ;
      inv_sigmoid(Prob,Value),
		 format(Handle,'@x~q~n~10f~n',[ID,Value])
		)
	       )),

	forall(get_continuous_fact_parameters(ID,gaussian(Mu,Sigma)),
	       format(Handle,'@x~q_*~n0~n0~n~10f;~10f~n',[ID,Mu,Sigma])),

	close(Handle),
	!,
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop write current probabilities to file
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	assertz(values_correct).



%========================================================================
%=
%=
%=
%========================================================================

update_query_cleanup(QueryID) :-
	(
	 (query_is_similar(QueryID,_) ; query_is_similar(_,QueryID))
	->
	    % either this query is similar to another or vice versa,
	    % therefore we don't delete anything
	 true;
	 retractall(query_gradient_intern(QueryID,_,_,_))
	).


update_query(QueryID,Symbol,What_To_Update) :-
	% fixme OS trouble
	problog_flag(output_directory,Output_Directory),
	problog_flag(bdd_directory,Query_Directory),
	bdd_input_file(Probabilities_File),
	(
	 query_is_similar(QueryID,_)
	->
				% we don't have to evaluate the BDD
	 format_learning(4,'#',[]);
	 (
	  problog_flag(sigmoid_slope,Slope),
	  problog_dir(PD),
	  ((What_To_Update=all;query_is_similar(_,QueryID)) -> Method='g' ; Method='l'),
	  atomic_concat([PD,
			 '/problogbdd',
			 ' -i "', Probabilities_File, '"',
			 ' -l "', Query_Directory,'/query_',QueryID, '"',
			 ' -m ', Method,
			 ' -id ', QueryID,
			 ' -sl ', Slope,
			 ' > "',
			 Output_Directory,
			 'values.pl"'],Command),
	  shell(Command,Error),
	 

	  (
	   Error = 2
	  ->
	   throw(error('SimpleCUDD has been interrupted.'));
	   true
	  ),
	  (
	   Error \= 0
	  ->
	   (
	   format(user_error,'SimpleCUDD stopped with error code ~q, command was ~q~n',[Error, shell(Command,Error)]),
	   throw(bdd_error(QueryID,Error)));
	   true
	  ),
	  atomic_concat([Output_Directory,'values.pl'],Values_Filename),
	  (
	   file_exists(Values_Filename)
	  ->
	   (
	    (
	     once(my_load(Values_Filename,QueryID))
	    ->
	     true;
	     (
	      format(user_error,'ERROR: Tried to read the file ~q but my_load/1 fails.~n~q.~2n',[Values_Filename,update_query(QueryID,Symbol,What_To_Update)]),
	      throw(error(my_load_fails))
	     )
	    );
	    (
	     format(user_error,'ERROR: Tried to read the file ~q but it does not exist.~n~q.~2n',[Values_Filename,update_query(QueryID,Symbol,What_To_Update)]),
	     throw(error(output_file_does_not_exist))
	    )
	   )
	  ),
	  
	  delete_file_silently(Values_Filename),
	  format_learning(4,'~w',[Symbol])
	 )
	).


%========================================================================
%= This predicate reads probability and gradient values from the file
%= the gradient ID is a mere check to uncover hidden bugs
%= +Filename +QueryID -QueryProbability
%========================================================================

my_load(File,QueryID) :-
	open(File,'read',Handle),
	read(Handle,Atom),
	once(my_load_intern(Atom,Handle,QueryID)),
	close(Handle).
my_load(File,QueryID) :-
	format(user_error,'Error at ~q.~2n',[my_load(File,QueryID)]),
	throw(error(my_load(File,QueryID))).

my_load_intern(end_of_file,_,_) :-
	!.
my_load_intern(query_probability(QueryID,Prob),Handle,QueryID) :-
	!,
	assertz(query_probability_intern(QueryID,Prob)),
	read(Handle,X),
	my_load_intern(X,Handle,QueryID).
my_load_intern(query_gradient(QueryID,XFactID,Type,Value),Handle,QueryID) :-
	!,
	atomic_concat(x,StringFactID,XFactID),
	atom_number(StringFactID,FactID),
	assertz(query_gradient_intern(QueryID,FactID,Type,Value)),
	read(Handle,X),
	my_load_intern(X,Handle,QueryID).
my_load_intern(X,Handle,QueryID) :-
	format(user_error,'Unknown atom ~q in results file.~n',[X]),
	read(Handle,X2),
	my_load_intern(X2,Handle,QueryID).




%========================================================================
%=
%=
%=
%========================================================================
query_probability(QueryID,Prob) :-
	(
	 query_probability_intern(QueryID,Prob)
	->
	 true;
	 (
	  query_is_similar(QueryID,OtherQueryID),
	  query_probability_intern(OtherQueryID,Prob)
	 )
	).
query_gradient(QueryID,Fact,Type,Value) :-
	(
	 query_gradient_intern(QueryID,Fact,Type,Value)
	->
	 true;
	 (
	  query_is_similar(QueryID,OtherQueryID),
	  query_gradient_intern(OtherQueryID,Fact,Type,Value)
	 )
	).

%========================================================================
%=
%=
%=
%========================================================================



% FIXME
ground_truth_difference :-
	findall(Diff,(tunable_fact(FactID,GroundTruth),
		      \+continuous_fact(FactID),
		      \+ var(GroundTruth),
		      get_fact_probability(FactID,Prob),
		      Diff is abs(GroundTruth-Prob)),AllDiffs),
	(
	 AllDiffs=[]
	->
	 (
	  MinDiff=0.0,
	  MaxDiff=0.0,
	  DiffMean=0.0
	 ) ;
	 (
	  length(AllDiffs,Len),
	  sum_list(AllDiffs,AllDiffsSum),
	  min_list(AllDiffs,MinDiff),
	  max_list(AllDiffs,MaxDiff),
	  DiffMean is AllDiffsSum/Len
	 )
	),

	logger_set_variable(ground_truth_diff,DiffMean),
	logger_set_variable(ground_truth_mindiff,MinDiff),
	logger_set_variable(ground_truth_maxdiff,MaxDiff).

%========================================================================
%= Calculates the mse of training and test data
%=
%= -Float
%========================================================================

mse_trainingset_only_for_linesearch(MSE) :-
	update_values,

	example_count(Example_Count),

	bb_put(error_train_line_search,0.0),
	forall(user:example(QueryID,_Query,QueryProb,Type),
	       (
		once(update_query(QueryID,'.',probability)),
		query_probability(QueryID,CurrentProb),
		once(update_query_cleanup(QueryID)),
		(
		 (Type == '='; (Type == '<', CurrentProb>QueryProb); (Type=='>',CurrentProb<QueryProb))
		->
		 (
		  bb_get(error_train_line_search,Old_Error),
		  New_Error is Old_Error + (CurrentProb-QueryProb)**2,
		  bb_put(error_train_line_search,New_Error)
		 );true
		)
	       )
	      ),
	bb_delete(error_train_line_search,Error),
	MSE is Error/Example_Count,
	format_learning(3,' (~8f)~n',[MSE]),
	retractall(values_correct).

mse_testset :-
	current_iteration(Iteration),
	create_test_predictions_file_name(Iteration,File_Name),
	open(File_Name,'write',Handle),
	format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
	format(Handle,"% Iteration, train/test, QueryID, Query, GroundTruth, Prediction %~n",[]),
	format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
	
	format_learning(2,'MSE_Test ',[]),
	update_values,
	bb_put(llh_test_queries,0.0),
	findall(SquaredError,
		(user:test_example(QueryID,Query,TrueQueryProb,Type),
		 once(update_query(QueryID,'+',probability)),
		 query_probability(QueryID,CurrentProb),
		 format(Handle,'ex(~q,test,~q,~q,~10f,~10f).~n',[Iteration,QueryID,Query,TrueQueryProb,CurrentProb]),
		 once(update_query_cleanup(QueryID)),
		 (
		  (Type == '='; (Type == '<', CurrentProb>QueryProb); (Type=='>',CurrentProb<QueryProb))
		 ->
		  SquaredError is (CurrentProb-TrueQueryProb)**2;
		  SquaredError = 0.0
		 ),
		 bb_get(llh_test_queries,Old_LLH_Test_Queries),
		 New_LLH_Test_Queries is Old_LLH_Test_Queries+log(CurrentProb),
		 bb_put(llh_test_queries,New_LLH_Test_Queries)
		),
		AllSquaredErrors),

        close(Handle),
	bb_delete(llh_test_queries,LLH_Test_Queries),

	length(AllSquaredErrors,Length),

	(
	 Length>0
	->
	 (
	  sum_list(AllSquaredErrors,SumAllSquaredErrors),
	  min_list(AllSquaredErrors,MinError),
	  max_list(AllSquaredErrors,MaxError),
	  MSE is SumAllSquaredErrors/Length
	 );(
	    MSE=0.0,
	    MinError=0.0,
	    MaxError=0.0
	   )
	),

	logger_set_variable(mse_testset,MSE),
	logger_set_variable(mse_min_testset,MinError),
	logger_set_variable(mse_max_testset,MaxError),
	logger_set_variable(llh_test_queries,LLH_Test_Queries),
	format_learning(2,' (~8f)~n',[MSE]).

%========================================================================
%= Calculates the sigmoid function respectivly the inverse of it
%= warning: applying inv_sigmoid to 0.0 or 1.0 will yield +/-inf
%=
%= +Float, -Float
%========================================================================

sigmoid(T,Sig) :-
	problog_flag(sigmoid_slope,Slope),
	Sig is 1/(1+exp(-T*Slope)).

inv_sigmoid(T,InvSig) :-
	problog_flag(sigmoid_slope,Slope),
	InvSig is -log(1/T-1)/Slope.






%========================================================================
%= Perform one iteration of gradient descent
%=
%= assumes that everything is initialized, if the current values
%= of query_probability/2 and query_gradient/4 are not up to date
%= they will be recalculated
%= finally, the values_correct/0 is retracted to signal that the
%= probabilities of the examples have to be recalculated
%========================================================================

save_old_probabilities :-
	forall(tunable_fact(FactID,_),
	       (
		continuous_fact(FactID)
	       ->
		(
		 get_continuous_fact_parameters(FactID,gaussian(OldMu,OldSigma)),
		 atomic_concat(['old_mu_',FactID],Key),
		 atomic_concat(['old_sigma_',FactID],Key2),
		 bb_put(Key,OldMu),
		 bb_put(Key2,OldSigma)
		);
		(
		 get_fact_probability(FactID,OldProbability),
		 atomic_concat(['old_prob_',FactID],Key),
		 bb_put(Key,OldProbability)
		)
	       )
	      ).



forget_old_probabilities :-
	forall(tunable_fact(FactID,_),
	       (
		continuous_fact(FactID)
	       ->
		(
		 atomic_concat(['old_mu_',FactID],Key),
		 atomic_concat(['old_sigma_',FactID],Key2),
		 atomic_concat(['grad_mu_',FactID],Key3),
		 atomic_concat(['grad_sigma_',FactID],Key4),
		 bb_delete(Key,_),
		 bb_delete(Key2,_),
		 bb_delete(Key3,_),
		 bb_delete(Key4,_)
		);
		(
		 atomic_concat(['old_prob_',FactID],Key),
		 atomic_concat(['grad_',FactID],Key2),
		 bb_delete(Key,_),
		 bb_delete(Key2,_)
		)
	       )
	      ).

add_gradient(Learning_Rate) :-
	forall(tunable_fact(FactID,_),
	       (
		continuous_fact(FactID)
	       ->
		(
		 atomic_concat(['old_mu_',FactID],Key),
		 atomic_concat(['old_sigma_',FactID],Key2),
		 atomic_concat(['grad_mu_',FactID],Key3),
		 atomic_concat(['grad_sigma_',FactID],Key4),
		 
		 bb_get(Key,Old_Mu),
		 bb_get(Key2,Old_Sigma),
		 bb_get(Key3,Grad_Mu),
		 bb_get(Key4,Grad_Sigma),

		 Mu is Old_Mu  -Learning_Rate* Grad_Mu,
		 Sigma is exp(log(Old_Sigma)  -Learning_Rate* Grad_Sigma),

		 set_continuous_fact_parameters(FactID,gaussian(Mu,Sigma))
		);
		(
		 atomic_concat(['old_prob_',FactID],Key),
		 atomic_concat(['grad_',FactID],Key2),
		 
		 bb_get(Key,OldProbability),
		 bb_get(Key2,GradValue),

		 inv_sigmoid(OldProbability,OldValue),
		 NewValue is OldValue -Learning_Rate*GradValue,
		 sigmoid(NewValue,NewProbability),

				% Prevent "inf" by using values too close to 1.0
		 Prob_Secure is min(0.999999999,max(0.000000001,NewProbability)),
		 set_fact_probability(FactID,Prob_Secure)
		)
	       )
	      ),
	retractall(values_correct).


gradient_descent :-
	current_iteration(Iteration),
	create_training_predictions_file_name(Iteration,File_Name),
	open(File_Name,'write',Handle),
	format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
	format(Handle,"% Iteration, train/test, QueryID, Query, GroundTruth, Prediction %~n",[]),
	format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
	
	format_learning(2,'Gradient ',[]),
	
	save_old_probabilities,
	update_values,

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start set gradient to zero
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	forall(tunable_fact(FactID,_),
	       (
		continuous_fact(FactID)
	       ->

		(
		 atomic_concat(['grad_mu_',FactID],Key),
		 atomic_concat(['grad_sigma_',FactID],Key2),
		 bb_put(Key,0.0),
		 bb_put(Key2,0.0)
		);
		(
		 atomic_concat(['grad_',FactID],Key),
		 bb_put(Key,0.0)
		)
	       )
	      ),
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop gradient to zero
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start calculate gradient
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	bb_put(mse_train_sum, 0.0),
	bb_put(mse_train_min, 0.0),
	bb_put(mse_train_max, 0.0),
	bb_put(llh_training_queries, 0.0),
	
	problog_flag(alpha,Alpha),
	logger_set_variable(alpha,Alpha),
	example_count(Example_Count),

	forall(user:example(QueryID,Query,QueryProb,Type),
	       (
		once(update_query(QueryID,'.',all)),
		query_probability(QueryID,BDDProb),
		format(Handle,'ex(~q,train,~q,~q,~10f,~10f).~n',[Iteration,QueryID,Query,QueryProb,BDDProb]),
		(
		 QueryProb=:=0.0
		->
		 Y2=Alpha;
		 Y2=1.0
		),
		(
		 (Type == '='; (Type == '<', BDDProb>QueryProb); (Type=='>',BDDProb<QueryProb))
		->
		 Y is Y2*2/Example_Count * (BDDProb-QueryProb);
		 Y=0.0
		),
	  
	  
				% first do the calculations for the MSE on training set
		(
		 (Type == '='; (Type == '<', BDDProb>QueryProb); (Type=='>',BDDProb<QueryProb))
		->
		 Squared_Error is (BDDProb-QueryProb)**2;
		 Squared_Error=0.0
		),
	 
		bb_get(mse_train_sum,Old_MSE_Train_Sum),
		bb_get(mse_train_min,Old_MSE_Train_Min),
		bb_get(mse_train_max,Old_MSE_Train_Max),
		bb_get(llh_training_queries,Old_LLH_Training_Queries),
		New_MSE_Train_Sum is Old_MSE_Train_Sum+Squared_Error,
		New_MSE_Train_Min is min(Old_MSE_Train_Min,Squared_Error),
		New_MSE_Train_Max is max(Old_MSE_Train_Max,Squared_Error),
		New_LLH_Training_Queries is Old_LLH_Training_Queries+log(BDDProb),
		bb_put(mse_train_sum,New_MSE_Train_Sum),
		bb_put(mse_train_min,New_MSE_Train_Min),
		bb_put(mse_train_max,New_MSE_Train_Max),
		bb_put(llh_training_queries,New_LLH_Training_Queries),
	  


		(		% go over all tunable facts
		  tunable_fact(FactID,_),
		  (
		   continuous_fact(FactID)
		  ->
		   (
		    atomic_concat(['grad_mu_',FactID],Key),
		    atomic_concat(['grad_sigma_',FactID],Key2),
	    
	      % if the following query fails,
	      % it means, the fact is not used in the proof
	      % of QueryID, and the gradient is 0.0 and will
	      % not contribute to NewValue either way
	      % DON'T FORGET THIS IF YOU CHANGE SOMETHING HERE!
		    query_gradient(QueryID,FactID,mu,GradValueMu),
		    query_gradient(QueryID,FactID,sigma,GradValueSigma),

		    bb_get(Key,OldValueMu),
		    bb_get(Key2,OldValueSigma),

		    NewValueMu is OldValueMu + Y*GradValueMu,
		    NewValueSigma is OldValueSigma + Y*GradValueSigma,

		    bb_put(Key,NewValueMu),
		    bb_put(Key2,NewValueSigma)
		   );
		   (
		    atomic_concat(['grad_',FactID],Key),
	    
	      % if the following query fails,
	      % it means, the fact is not used in the proof
	      % of QueryID, and the gradient is 0.0 and will
	      % not contribute to NewValue either way
	      % DON'T FORGET THIS IF YOU CHANGE SOMETHING HERE!
		    query_gradient(QueryID,FactID,p,GradValue),

		    bb_get(Key,OldValue),
		    NewValue is OldValue + Y*GradValue,
		    bb_put(Key,NewValue)
		   )
		  ),

				fail; % go to next fact
				true
		),
		
		once(update_query_cleanup(QueryID))
	       )),
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop calculate gradient
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	!,

	close(Handle),
	
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start statistics on gradient
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	findall(V, (
		    tunable_fact(FactID,_),
		    atomic_concat(['grad_',FactID],Key),
		    bb_get(Key,V)
		   ),Gradient_Values),

	(
	 Gradient_Values==[]
	->
	 (
	  logger_set_variable(gradient_mean,0.0),
	  logger_set_variable(gradient_min,0.0),
	  logger_set_variable(gradient_max,0.0)
	 );
	 (
	  sum_list(Gradient_Values,GradSum),
	  max_list(Gradient_Values,GradMax),
	  min_list(Gradient_Values,GradMin),
	  length(Gradient_Values,GradLength),
	  GradMean is GradSum/GradLength,

	  logger_set_variable(gradient_mean,GradMean),
	  logger_set_variable(gradient_min,GradMin),
	  logger_set_variable(gradient_max,GradMax)
	 )
	),
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop statistics on gradient
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	bb_delete(mse_train_sum,MSE_Train_Sum),
	bb_delete(mse_train_min,MSE_Train_Min),
	bb_delete(mse_train_max,MSE_Train_Max),
	bb_delete(llh_training_queries,LLH_Training_Queries),
	MSE is MSE_Train_Sum/Example_Count,

	logger_set_variable(mse_trainingset,MSE),
	logger_set_variable(mse_min_trainingset,MSE_Train_Min),
	logger_set_variable(mse_max_trainingset,MSE_Train_Max),
	logger_set_variable(llh_training_queries,LLH_Training_Queries),

	format_learning(2,'~n',[]),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start add gradient to current probabilities
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	    problog_flag(line_search,false)
	->
	    problog_flag(learning_rate,LearningRate);
	    lineSearch(LearningRate,_)
	),
	format_learning(3,'learning rate:~8f~n',[LearningRate]),
	add_gradient(LearningRate),
	logger_set_variable(learning_rate,LearningRate),
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop add gradient to current probabilities
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	!,
	forget_old_probabilities.

%========================================================================
%=
%=
%========================================================================

line_search_evaluate_point(Learning_Rate,MSE) :-
	add_gradient(Learning_Rate),
	format_learning(2,'Line search (h=~8f) ',[Learning_Rate]),
	mse_trainingset_only_for_linesearch(MSE).


lineSearch(Final_X,Final_Value) :-

	% Get Parameters for line search
	problog_flag(line_search_tolerance,Tol),
	problog_flag(line_search_tau,Tau),
	problog_flag(line_search_interval,(A,B)),

	format_learning(3,'Line search in interval (~4f,~4f)~n',[A,B]),
	
	% init values
	Acc is Tol * (B-A),
	InitRight is A + Tau*(B-A),
	InitLeft is B - Tau*(B-A),

	line_search_evaluate_point(A,Value_A),
	line_search_evaluate_point(B,Value_B),
	line_search_evaluate_point(InitRight,Value_InitRight),
	line_search_evaluate_point(InitLeft,Value_InitLeft),


	Parameters=ls(A,B,InitLeft,InitRight,Value_A,Value_B,Value_InitLeft,Value_InitRight,1),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	%%%% BEGIN BACK TRACKING
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(
	 repeat,

	 Parameters=ls(Ak,Bk,Left,Right,Fl,Fr,FLeft,FRight,Iteration),

	 (
		% check for infinity, if there is, go to the left
	  ( FLeft >= FRight, \+ FLeft = (+inf), \+ FRight = (+inf) ) 
	 ->
	  (
	   AkNew=Left,
	   FlNew=FLeft,
	   LeftNew=Right,
	   FLeftNew=FRight,
	   RightNew is Left + Bk - Right,
	   line_search_evaluate_point(RightNew,FRightNew),
	   BkNew=Bk,
	   FrNew=Fr,
	   Interval_Size is Bk-Left
	  );
	  (
	   BkNew=Right,
	   FrNew=FRight,
	   RightNew=Left,
	   FRightNew=FLeft,
	   LeftNew is Ak + Right - Left,

	   line_search_evaluate_point(LeftNew,FLeftNew),
	   AkNew=Ak,
	   FlNew=Fl,
	   Interval_Size is Right-Ak
	  )
	 ),

	 Next_Iteration is Iteration + 1,

	 nb_setarg(9,Parameters,Next_Iteration),
	 nb_setarg(1,Parameters,AkNew),
	 nb_setarg(2,Parameters,BkNew),
	 nb_setarg(3,Parameters,LeftNew),
	 nb_setarg(4,Parameters,RightNew),
	 nb_setarg(5,Parameters,FlNew),
	 nb_setarg(6,Parameters,FrNew),
	 nb_setarg(7,Parameters,FLeftNew),
	 nb_setarg(8,Parameters,FRightNew),

				% is the search interval smaller than the tolerance level?
	 Interval_Size<Acc,

	% apperantly it is, so get me out of here and
	% cut away the choice point from repeat
	 !  
	),
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	%%%% END BACK TRACKING
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    

	% it doesn't harm to check also the value in the middle
	% of the current search interval
	Middle is (AkNew + BkNew) / 2.0,
	line_search_evaluate_point(Middle,Value_Middle),	

	% return the optimal value
	my_5_min(Value_Middle,FlNew,FrNew,FLeftNew,FRightNew,
		 Middle,AkNew,BkNew,LeftNew,RightNew,
		 Optimal_Value,Optimal_X),

	line_search_postcheck(Optimal_Value,Optimal_X,Final_Value,Final_X).

line_search_postcheck(V,X,V,X) :-
	X>0,
	!.
line_search_postcheck(V,X,V,X) :-
	problog_flag(line_search_never_stop,false),
	!.
line_search_postcheck(_,_, LLH, FinalPosition) :-
	problog_flag(line_search_tolerance,Tolerance),
	problog_flag(line_search_interval,(Left,Right)),


	Offset is (Right - Left) * Tolerance,

	bb_put(line_search_offset,Offset),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	(

	 repeat,
	 
	 bb_get(line_search_offset,OldOffset),
	 NewOffset is OldOffset * Tolerance,
	 bb_put(line_search_offset,NewOffset),

	 Position is Left + NewOffset,
	 line_search_evaluate_point(Position,LLH),
	 bb_put(line_search_llh,LLH),

	 write(logAtom(lineSearchPostCheck(Position,LLH))),nl,


	 \+ LLH = (+inf),
	 !
	),  % cut away choice point from repeat
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	bb_delete(line_search_llh,LLH),
	bb_delete(line_search_offset,FinalOffset),
	FinalPosition is Left + FinalOffset.



my_5_min(V1,V2,V3,V4,V5,F1,F2,F3,F4,F5,VMin,FMin) :-
	(
	    V1<V2
	->
	 (VTemp1=V1,FTemp1=F1);
	 (VTemp1=V2,FTemp1=F2)
	),
	(
	 V3<V4
	->
	 (VTemp2=V3,FTemp2=F3);
	 (VTemp2=V4,FTemp2=F4)
	),
	(
	 VTemp1<VTemp2
	->
	 (VTemp3=VTemp1,FTemp3=FTemp1);
	 (VTemp3=VTemp2,FTemp3=FTemp2)
	),
	(
	 VTemp3<V5
	->
	 (VMin=VTemp3,FMin=FTemp3);
	 (VMin=V5,FMin=F5)
	).



%========================================================================
%= initialize the logger module and set the flags for learning
%= don't change anything here! use set_problog_flag/2 instead
%========================================================================

init_flags :-
	prolog_file_name('queries',Queries_Folder), % get absolute file name for './queries'
	prolog_file_name('output',Output_Folder), % get absolute file name for './output'
	problog_define_flag(bdd_directory, problog_flag_validate_directory, 'directory for BDD scripts', Queries_Folder,learning_general),
	problog_define_flag(output_directory, problog_flag_validate_directory, 'directory for logfiles etc', Output_Folder,learning_general,flags:learning_output_dir_handler),
	problog_define_flag(log_frequency, problog_flag_validate_posint, 'log results every nth iteration', 1, learning_general),
	problog_define_flag(rebuild_bdds, problog_flag_validate_nonegint, 'rebuild BDDs every nth iteration', 0, learning_general),
	problog_define_flag(reuse_initialized_bdds,problog_flag_validate_boolean, 'Reuse BDDs from previous runs',false, learning_general),	
	problog_define_flag(check_duplicate_bdds,problog_flag_validate_boolean,'Store intermediate results in hash table',true,learning_general),
	problog_define_flag(init_method,problog_flag_validate_dummy,'ProbLog predicate to search proofs',(Query,Probability,BDDFile,ProbFile,problog_kbest_save(Query,100,Probability,_Status,BDDFile,ProbFile)),learning_general,flags:learning_init_handler),
	problog_define_flag(alpha,problog_flag_validate_number,'weight of negative examples (auto=n_p/n_n)',auto,learning_general,flags:auto_handler),
	problog_define_flag(sigmoid_slope,problog_flag_validate_posnumber,'slope of sigmoid function',1.0,learning_general),

	problog_define_flag(learning_rate,problog_flag_validate_posnumber,'Default learning rate (If line_search=false)',examples,learning_line_search,flags:examples_handler),
	problog_define_flag(line_search, problog_flag_validate_boolean,'estimate learning rate by line search',false,learning_line_search),
	problog_define_flag(line_search_never_stop, problog_flag_validate_boolean,'make tiny step if line search returns 0',true,learning_line_search),
	problog_define_flag(line_search_tau, problog_flag_validate_indomain_0_1_open,'tau value for line search',0.618033988749,learning_line_search),
	problog_define_flag(line_search_tolerance,problog_flag_validate_posnumber,'tolerance value for line search',0.05,learning_line_search),
	problog_define_flag(line_search_interval, problog_flag_validate_dummy,'interval for line search',(0,100),learning_line_search,flags:linesearch_interval_handler).
	

init_logger :-
	logger_define_variable(iteration, int),
	logger_define_variable(duration,time),
	logger_define_variable(mse_trainingset,float),
	logger_define_variable(mse_min_trainingset,float),
	logger_define_variable(mse_max_trainingset,float),
	logger_define_variable(mse_testset,float),
	logger_define_variable(mse_min_testset,float),
	logger_define_variable(mse_max_testset,float),
	logger_define_variable(gradient_mean,float),
	logger_define_variable(gradient_min,float),
	logger_define_variable(gradient_max,float),
	logger_define_variable(ground_truth_diff,float),
	logger_define_variable(ground_truth_mindiff,float),
	logger_define_variable(ground_truth_maxdiff,float),
	logger_define_variable(learning_rate,float),
	logger_define_variable(alpha,float),
	logger_define_variable(llh_training_queries,float),
	logger_define_variable(llh_test_queries,float).

:- initialization(init_flags).
:- initialization(init_logger).