This file is indexed.

/usr/share/Yap/problog_lfi.yap is in yap 6.2.2-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
%%% -*- Mode: Prolog; -*-

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  $Date: 2011-12-05 14:07:19 +0100 (Mon, 05 Dec 2011) $
%  $Revision: 6766 $
%
%  This file is part of ProbLog
%  http://dtai.cs.kuleuven.be/problog
%
%  ProbLog was developed at Katholieke Universiteit Leuven
%                                                            
%  Copyright 2009
%  Angelika Kimmig, Vitor Santos Costa, Bernd Gutmann
%                                                              
%  Main author of this file:
%  Bernd Gutmann
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
% 
% Copyright (c) 2000-2006, The Perl Foundation.
% 
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed.  Preamble
% 
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
% 
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement.  Definitions
% 
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
% 
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
% 
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
% 
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
% 
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
% 
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
% 
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
% 
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
% 
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
% 
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
% 
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
% 
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
% 
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
% 
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
% 
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
% 
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version.  (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version.  (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
% 
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
% 
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
% 
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
% 
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
% 
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
% 
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
% 
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
% 
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
% 
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
% 
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:-source.
:- module(problog_lfi,[do_learning/1,
		       do_learning/2,
		       create_ground_tunable_fact/2,
		       reset_learning/0
		       ]).



% switch on all the checks to reduce bug searching time
:- style_check(all).
:- yap_flag(unknown,error).

% load modules from the YAP library
:- use_module(library(lists),[member/2,nth1/3,sum_list/2,min_list/2,max_list/2]).
:- use_module(library(system),[file_exists/1,exec/3,wait/2]).

% load our own modules
:- use_module('problog').
:- use_module('problog/logger').
:- use_module('problog/flags').
:- use_module('problog/os').
:- use_module('problog/completion').
:- use_module('problog/print_learning').
:- use_module('problog/utils_learning').
:- use_module('problog/utils').
:- use_module('problog/ad_converter').


% used to indicate the state of the system
:- dynamic(learning_initialized/0).
:- dynamic(current_iteration/1).
:- dynamic(query_all_scripts/2).
:- dynamic(last_llh/1).

:- discontiguous(user:myclause/1).
:- discontiguous(user:myclause/2).
:- discontiguous(user:known/3).
:- discontiguous(user:example/1).
:- discontiguous(user:test_example/1).

:- multifile(completion:bdd_cluster/2).
%:- multifile(completion:known_count/4).

user:term_expansion(myclause((Head<--Body)), C) :-
	prolog_load_context(module,Module),
	term_expansion_intern_ad((Head<--Body), Module,lfi_learning, C).

%========================================================================
%= Hack for Ingo, to allow tunable facts with body
%=
%= e.g. :- create_ground_tunable_fact( t(_) :: f(X), member(X,[a,b,c])).
%=  will create
%=   t(_) :: f(a).
%=   t(_) :: f(b).
%=   t(_) :: f(c).
%========================================================================

create_ground_tunable_fact(F,B) :-
	B,
	once(problog_assert(F)),
	fail.
create_ground_tunable_fact(_,_).


%========================================================================
%= store the facts with the learned probabilities to a file
%= if F is a variable, a filename based on the current iteration is used
%=
%========================================================================

save_model:-
	current_iteration(Iteration),
	create_factprobs_file_name(Iteration,Filename),
	open(Filename,'write',Handle),
	forall((current_predicate(user:ad_intern/3),user:ad_intern(Original,ID,Facts)),
	       print_ad_intern(Handle,Original,ID,Facts)
	       ),
	forall(probabilistic_fact(_,Goal,ID),
	       (
		array_element(factprob,ID,P),
		(
		is_mvs_aux_fact(Goal)
	       ->
		format(Handle,'%  ~10f :: ~q.   %ID=~q~n',[P,Goal,ID]);
		format(Handle   ,'~10f :: ~q.   %ID=~q~n',[P,Goal,ID])
	       )
	       )
	      ),
	close(Handle).

is_mvs_aux_fact(A) :-
	functor(A,B,_),
	atomic_concat(mvs_fact_,_,B).

print_ad_intern(Handle,(Head<--Body),_ID,Facts) :-
	format(Handle,'myclause( (',[]),
	print_ad_intern(Head,Facts,0.0,Handle),
	format(Handle,' <-- ~q) ).~n',[Body]).
print_ad_intern((A1;B1),[A2|B2],Mass,Handle) :-
	once(print_ad_intern_one(A1,A2,Mass,NewMass,Handle)),
	format(Handle,'; ',[]),
	print_ad_intern(B1,B2,NewMass,Handle).
print_ad_intern(_::Fact,[],Mass,Handle) :-
	P2 is 1.0 - Mass,
	format(Handle,'~f :: ~q',[P2,Fact]).
print_ad_intern_one(_::Fact,_::AuxFact,Mass,NewMass,Handle) :-
	% ask problog to get the fact_id 
	once(probabilistic_fact(_,AuxFact,FactID)),
	% look in our table for the probability
	array_element(factprob,FactID,P),
	P2 is P * (1-Mass),
	NewMass is Mass+P2,
	format(Handle,'~f :: ~q',[P2,Fact]).
%========================================================================
%= initialize everything and perform Iterations times EM
%= can be called several times
%========================================================================

do_learning(Iterations) :-
	do_learning(Iterations,-1).

do_learning(Iterations,Epsilon) :-
	integer(Iterations),
	number(Epsilon),
	Iterations>0,
	init_learning,
	!,
	do_learning_intern(Iterations,Epsilon),
	!,
	copy_back_fact_probabilities.

do_learning_intern(0,_) :-
	!.
do_learning_intern(Iterations,Epsilon) :-
	Iterations>0,
	logger_start_timer(duration),
	
	current_iteration(CurrentIteration),
	!,
	retractall(current_iteration(_)),
	!,
	NextIteration is CurrentIteration+1,
	assertz(current_iteration(NextIteration)),
	EndIteration is CurrentIteration+Iterations-1,
	
	format_learning(1,'~nIteration ~d of ~d~n',[CurrentIteration,EndIteration]),
	logger_set_variable(iteration,CurrentIteration),

	write_probabilities_file,

	once(llh_testset),

	once(ground_truth_difference),  
	once(em_one_iteration),

	problog_flag(log_frequency,Log_Frequency),
	(
	 ( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
	->
	 once(save_model);
	 true
	),
	!,

	(
	 last_llh(Last_LLH)
	->
	 (
	  retractall(last_llh(_)),
	  logger_get_variable(llh_training_set,Current_LLH),
	  assertz(last_llh(Current_LLH)),
	  !,
	  LLH_Diff is abs(Last_LLH-Current_LLH)
	 );  (
	      logger_get_variable(llh_training_set,Current_LLH),
	      assertz(last_llh(Current_LLH)), 
	      LLH_Diff is Epsilon+1
	     )
	),
	
	logger_stop_timer(duration),
	logger_write_data,
	RemainingIterations is Iterations-1,
	!,
	garbage_collect,
	!,

	(
	 LLH_Diff>Epsilon
	->
	 do_learning_intern(RemainingIterations,Epsilon);
	 true
	).


%========================================================================
%= find proofs and build bdds for all training and test examples
%=
%=
%========================================================================
init_learning :-
	learning_initialized,
	!.
init_learning :-
	convert_filename_to_problog_path('problogbdd_lfi', Path),
	(
	 file_exists(Path)
	->
	 true;
	 (
	  problog_path(PD),
	  format(user_error, 'WARNING: Can not find file: problogbdd_lfi. Please place file in problog path: ~q~n',[PD]),
	  fail
	 )
	),

	check_theory,

	
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Delete the stuff from the previous run 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	problog_flag(reuse_initialized_bdds,Re_Use_Flag),
		
	(
	 Re_Use_Flag==false
	->
	 empty_bdd_directory;
	 true
	),
	empty_output_directory,

	
	logger_write_header,

	format_learning(1,'Initializing everything~n',[]),

	(
	 current_predicate(user:test_example/1)
	->
	 (
	  succeeds_n_times(user:test_example(_),TestExampleCount),
	  format_learning(3,'~q test example(s)~n',[TestExampleCount])
	 );
	 true
	),

	succeeds_n_times(user:example(_),TrainingExampleCount),
	format_learning(3,'~q training example(s)~n',[TrainingExampleCount]),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% Create arrays for probabilties and counting tables
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	once(initialize_fact_probabilities),
	problog:probclause_id(N),
	static_array(factprob_temp,N,float),
	static_array(factusage,N,int),
	static_array(known_count_true_training,N,int),
	static_array(known_count_false_training,N,int),
	static_array(known_count_true_test,N,int),
	static_array(known_count_false_test,N,int),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% build BDD script for every example
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	once(init_queries),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% done
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	assertz(current_iteration(0)),
	assertz(learning_initialized),
        once(save_model),

	format_learning(1,'~n',[]),

	garbage_collect,
	garbage_collect_atoms.




%========================================================================
%= This predicate checks some aspects of the data given by the user.
%= You know folks: Garbage in, garbage out.
%= 
%========================================================================
check_theory :-
	 (
	  (user:myclause(Head,Body),P :: Head)
	 ->
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' The theory contains an atom that appears both as probabilistic~n',[]),
	   format(user_error,' fact and as head of an rule. This is not allowed.~2n',[]),
	   format(user_error,'    ~q~n',[P :: Head]),
	   format(user_error,'    ~q~2n',[myclause(Head,Body)]),
   	   format(user_error,'===============================================================~2n',[]),

	   throw(bad_theory(Head))
	  );
	  true
	 ),
	 
	 (
	  (current_predicate(user:example/1),user:example(_))
	 ->
	  true;
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' No training examples specified.~n',[]),
   	   format(user_error,'===============================================================~2n',[]),
	   throw(bad_theory(no_training_examples))
	  )
	 ),

	 (
	  ( current_predicate(user:test_example/1),user:example(ID), user:test_example(ID) )
	 ->
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' The example ~q appears both as test and as training example.~n',[ID]),
	   format(user_error,' Example IDs from test and training examples must be disjoint.~2n',[]),
	   format(user_error,' Do NOT bypass this test, since the implementation yields wrong resuls~n',[]),
	   format(user_error,' when an example ID appears both as test and training example.',[]),
   	   format(user_error,'===============================================================~2n',[]),

	   throw(bad_theory(double_id(ID)))
	  );
	  true
	 ),

	 (
	  (current_predicate(user:known/3),user:example(ID2),user:known(ID2,_,_))
	 ->
	  true;
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' No evidence specified.~n',[]),
   	   format(user_error,'===============================================================~2n',[]),
	   throw(bad_theory(no_evidence))
	  )
	 ),


	 (
	  (user:known(ID,Foo,Evidence), (Evidence\=true,Evidence\=false))
	 ->
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' Bad evidence for training example ~q: ~q.~n',[ID,known(ID,Foo,Evidence)]),
   	   format(user_error,'===============================================================~2n',[]),
	   throw(bad_theory(bad_evidence(ID)))
	  );
	  true
	 ),

	 (
	  (user:known(ID,Foo,true), user:known(ID,Foo,false))
	 ->
	  (
	   format(user_error,'===============================================================~n',[]),
	   format(user_error,' Bad evidence for training example ~q: ~q and ~q~n',[ID,known(ID,Foo,true),known(ID,Foo,false)]),
   	   format(user_error,'===============================================================~2n',[]),
	   throw(bad_theory(bad_evidence(ID)))
	  );
	  true
	 ).



%========================================================================
%= copy fact probabilities to array for speeding up the update
%=
%=
%========================================================================

initialize_fact_probabilities :-	
	problog:probclause_id(N),
	static_array(factprob,N,float),

	forall(get_fact_probability(FactID,P),
	       update_array(factprob,FactID,P)).

copy_back_fact_probabilities :-
	forall(tunable_fact(FactID,_),
	       (
		array_element(factprob,FactID,P),
		set_fact_probability(FactID,P)
	       )
	      ).



%========================================================================
%= This predicate goes over all training and test examples,
%= calls the inference method of ProbLog and stores the resulting
%= BDDs
%========================================================================


init_queries :-
	problog_flag(cluster_bdds,Cluster_BDDs),
	format_learning(2,'Build BDDs for examples~n',[]),
	forall(user:example(Training_ID),
	       (
		format_learning(3,'training example ~q: ',[Training_ID]),
		init_one_query(Training_ID,training)
	       )
	      ),

	forall(
	       (
		current_predicate(user:test_example/1),
		user:test_example(Test_ID)
	       ),
	       (
		format_learning(3,'test example ~q: ',[Test_ID]),
		init_one_query(Test_ID,test)
	       )
	      ),

	(
	 Cluster_BDDs==true
	->
	 (
	  format_learning(2,'Calculate MD5s for training example BDD scripts~n',[]),
	  create_training_query_cluster_list(Training_Set_Cluster_List),
	  format_learning(2,'Calculate MD5s for test example BDD scripts~n',[]),
	  create_test_query_cluster_list(Test_Set_Cluster_List)
	 );
	 (
	  findall( a(QueryID,ClusterID,1), (
					   current_predicate(user:test_example/1),
					   user:test_example(QueryID),
					   bdd_cluster(QueryID,ClusterIDs),
					   member(ClusterID,ClusterIDs)
					  ), Test_Set_Cluster_List),

	  findall( a(QueryID,ClusterID,1), (
					   user:example(QueryID),
					   bdd_cluster(QueryID,ClusterIDs),
					   member(ClusterID,ClusterIDs)
					  ), Training_Set_Cluster_List)
	 )
	),

	assertz(training_set_cluster_list(Training_Set_Cluster_List)),
	assertz(test_set_cluster_list(Test_Set_Cluster_List)).

%========================================================================
%= 
%========================================================================

init_one_query(QueryID,_Query_Type) :-
	create_known_values_file_name(QueryID,File_Name),
	file_exists(File_Name),
	!,
	format_learning(3,'Will reuse existing BDD script ~q for example ~q.~n',[File_Name,QueryID]),
	consult(File_Name).

	%FIXME

	% check whether we can read the BDD script for each cluster

init_one_query(QueryID,Query_Type) :-
	once(propagate_evidence(QueryID,Query_Type)),
	format_learning(3,'~n',[]),
	garbage_collect_atoms,
	garbage_collect.


create_test_query_cluster_list(L2) :-
	findall( a(QueryID,ClusterID), (
					 current_predicate(user:test_example/1),
					 user:test_example(QueryID),
					 bdd_cluster(QueryID,ClusterIDs),
					 member(ClusterID,ClusterIDs)
				      ), AllCluster),
	calc_all_md5(AllCluster,AllCluster2),
	findall(a(QueryID1,ClusterID1,Len),(bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),nth1(1,L,a(QueryID1,ClusterID1)),length(L,Len)),L2),
	!,

	length(AllCluster,Len1),
	length(L2,Len2),

	(
	 Len1>0
	->
	 (
	  Reduction is Len2/Len1,
	  format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction])
	 );
	 true
	).

calc_all_md5([],[]).
calc_all_md5([a(QueryID,ClusterID)|T],[a(QueryID,ClusterID,MD5)|T2]) :-
	create_bdd_file_name(QueryID,ClusterID,File_Name),
	calc_md5(File_Name,MD5),
	calc_all_md5(T,T2).

create_training_query_cluster_list(L2) :-
	findall( a(QueryID,ClusterID), (
					 user:example(QueryID),
					 bdd_cluster(QueryID,ClusterIDs),
					 member(ClusterID,ClusterIDs)
				      ), AllCluster),

	calc_all_md5(AllCluster,AllCluster2),

	
	findall(a(QueryID1,ClusterID1,Len),
		(
		 bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),
		 nth1(1,L,a(QueryID1,ClusterID1)),
		 length(L,Len)
		),L2),

	length(AllCluster,Len1),
	length(L2,Len2),

	Reduction is Len2/Len1,
	
	format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction]).


%========================================================================
%= 
%========================================================================

reset_learning :-
	(
	 learning_initialized
	->
	 (
	  retractall(current_iteration(_)),
	  retractall(learning_initialized),

	  retractall(training_set_cluster_list(_)),
	  retractall(test_set_cluster_list(_)),
	  close_static_array(factprob),
	  close_static_array(factprob_temp),
	  close_static_array(factusage),
	  
	  close_static_array(known_count_true_training),
	  close_static_array(known_count_false_training),
	  close_static_array(known_count_true_test),
	  close_static_array(known_count_false_test),

	  reset_completion,
	  empty_bdd_directory,
	  empty_output_directory,
	
	  logger_reset_all_variables
	 );
	 true
	).

%========================================================================
%= calculate the LLH on the test set and set the variable 
%= in the logger module
%========================================================================

llh_testset :-
	current_predicate(user:test_example/1),
	!,
	current_iteration(Iteration),
	create_test_predictions_file_name(Iteration,F),

	open(F,'write',Handle),

	catch(
	sum_forall(LProb,
		   (
		    probabilistic_fact(_,_,FactID),
		    array_element(factprob,FactID,PFact),
		    array_element(known_count_true_test,FactID,KK_True),
		    array_element(known_count_false_test,FactID,KK_False),

		    (
			KK_True>0
		    ->
		        Part1 is KK_True*log(PFact);
			Part1 is 0.0
		    ),
		    (
			KK_False>0
		    ->
		        LProb is Part1+KK_False*log(1-PFact);
			LProb is Part1
		    )
		   ),
		   PropagatedLLH
		  ),_,PropagatedLLH is 0.0/0.0),
	format(Handle,'prob_known_atoms(~15e).~n',[PropagatedLLH]),

	test_set_cluster_list(AllCluster),
	% deal with test examples where BDD needs to be evaluated
	problog_flag(parallel_processes,Parallel_Processes),
	once(evaluate_bdds(AllCluster,Handle,Parallel_Processes,'d',':',PropagatedLLH,LLH)),
	logger_set_variable(llh_test_set,LLH),
	close(Handle).
llh_testset :-
	true.





%========================================================================
%=
%=
%=
%========================================================================

% FIXME
ground_truth_difference :-
	findall(Diff,(tunable_fact(FactID,GroundTruth),
		      \+continuous_fact(FactID),
		      \+ var(GroundTruth),
		      array_element(factprob,FactID,Prob),
		      Diff is abs(GroundTruth-Prob)),AllDiffs),
	(
	 AllDiffs==[]
	->
	 (
	  MinDiff=0.0,
	  MaxDiff=0.0,
	  DiffMean=0.0
	 ) ;
	 (
	  length(AllDiffs,Len),
	  sum_list(AllDiffs,AllDiffsSum),
	  min_list(AllDiffs,MinDiff),
	  max_list(AllDiffs,MaxDiff),
	  DiffMean is AllDiffsSum/Len
	 )
	),

	logger_set_variable(ground_truth_diff,DiffMean),
	logger_set_variable(ground_truth_mindiff,MinDiff),
	logger_set_variable(ground_truth_maxdiff,MaxDiff).

%========================================================================
%=
%=
%========================================================================

write_probabilities_file :-
	current_iteration(Iteration),
	create_bdd_input_file_name(Iteration,Probabilities_File),
	open(Probabilities_File,'write',Handle),
	forall(get_fact_probability(ID,_),
	       (
		array_element(factprob,ID,Prob),
		
		(
		 non_ground_fact(ID)
		->
		 format(Handle,'@x~q_*~n~15e~n1~nx~q~N',[ID,Prob,ID]);
		 format(Handle,'@x~q~n~15e~n1~nx~q~N',[ID,Prob,ID])
		)
	       )
	      ),
	close(Handle).




%========================================================================
%=
%=
%=
%========================================================================

update_query(QueryID,ClusterID ,Method,Command,PID,Output_File_Name) :-
	current_iteration(Iteration),
	
	create_bdd_input_file_name(Iteration,Input_File_Name),
	create_bdd_output_file_name(QueryID,ClusterID,Iteration,Output_File_Name),
	create_bdd_file_name(QueryID,ClusterID,BDD_File_Name),

	problog_dir(PD),
	concat_path_with_filename(PD,'problogbdd_lfi',Absolute_Name),
	
	atomic_concat([Absolute_Name,
		       ' -i "', Input_File_Name, '"',
		       ' -l "', BDD_File_Name, '"',
		       ' -m ',Method, 
		       ' -id ', QueryID,
		       ' > "',
		       Output_File_Name,
		       '"'],Command),

	exec(Command,[std,std,std],PID).

update_query_wait(QueryID,_ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Probability) :-
	wait(PID,Error),
	format_learning(4,'~w',[Symbol]),
	(
	 Error \= 0
	->
	   (
	    format(user_error,'SimpleCUDD stopped with error code ~q.~n', [Error]),
	    format(user_error,'The command was~n  ~q~n',[Command]),
	    throw(bdd_error(QueryID,Error))
	   );
	 true
	),
	
	once(my_load_allinone(OutputFilename,QueryID,Count,BDD_Probability)),

	problog_flag(retain_bdd_output,Retain_BDD_Output),

	(
	 Retain_BDD_Output==true
	->
	 true;
	 delete_file_silently(OutputFilename)
	).


%========================================================================
%=
%=
%=
%========================================================================


my_load_allinone(File,QueryID,Count,BDD_Probability) :-
	open(File,'read',Handle),
	read(Handle,Atom),
	once(my_load_intern_allinone(Atom,Handle,QueryID,Count,error,BDD_Probability)),
	!,
	close(Handle).

my_load_allinone(File,QueryID,_,_,_,_) :-
	format(user_error,'Error at ~q.~2n',[my_load(File,QueryID)]),
	throw(error(my_load(File,QueryID))).

my_load_intern_allinone(end_of_file,_,_,_,BDD_Probability,BDD_Probability) :-
	!.
my_load_intern_allinone(query_probability(QueryID,Prob),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
	!,
	(
	 Old_BDD_Probability==error
	->
	 true;
	 throw(error(bdd_output_contains_prob_twice(query_probability(QueryID,Prob))))
	),
	Prob2 is Prob*Count,   % this is will throw an exception if simplecudd delivers non-number garbage
	read(Handle,X),
	my_load_intern_allinone(X,Handle,QueryID,Count,Prob2,BDD_Probability).
my_load_intern_allinone(ec(QueryID,VarName,Value),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
	!,
	split_atom_name(VarName,FactID,_GroundID),
	MultValue is Value*Count,
	add_to_array_element(factprob_temp,FactID,MultValue,_NewEC),
	add_to_array_element(factusage,FactID,Count,_NewDiv),
	read(Handle,X),
	my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).
my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
	format(user_error,'Unknown atom ~q in results file.~n',[X]),
	read(Handle,X2),
	my_load_intern_allinone(X2,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).

%========================================================================
%= Perform one iteration of EM
%========================================================================

my_reset_static_array(Name) :-
  %%% DELETE ME AFTER VITOR FIXED HIS BUG
        static_array_properties(Name,Size,Type),
	LastPos is Size-1,
	(
	    Type==int
	->
	    forall(between(0,LastPos,Pos), update_array(Name,Pos,0))
	;
	    Type==float
	->
  	    forall(between(0,LastPos,Pos), update_array(Name,Pos,0.0))
	;
	    fail
	).

em_one_iteration :-
	write_probabilities_file,
	my_reset_static_array(factprob_temp),
	my_reset_static_array(factusage),

	current_iteration(Iteration),
	create_training_predictions_file_name(Iteration,Name),

	open(Name,'write',Handle),


	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start calculate new values
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	% process known_count information
	bb_put(dummy,0.0),
	(
			% go over all tunable facts and get their current probability
		    tunable_fact(FactID,_),
		    array_element(factprob,FactID,P),
		    % get known counts

		    array_element(known_count_true_training,FactID,KK_True),
		    array_element(known_count_false_training,FactID,KK_False),
		    KK_Sum is KK_True+KK_False,

		    KK_Sum>0,
		    
		    % add counts
		    add_to_array_element(factprob_temp,FactID,KK_True,_NewValue),
		    add_to_array_element(factusage,FactID,KK_Sum,_NewCount),

		    % for LLH training set

		    (
			KK_True>0
		    ->
		        Part1 is KK_True*log(P);
			Part1 is 0.0
		    ),
		    (
			KK_False>0
		    ->
		        LProb is Part1 + KK_False*log(1-P);
			LProb is Part1
		    ),
		    
		    bb_get(dummy,Old),
	            New is Old+LProb,
		    bb_put(dummy,New),

	            fail;
	            true
	),
	bb_delete(dummy,LLH_From_True_BDDs),

	format(Handle,'propagatedprob(~15e).~n',[LLH_From_True_BDDs]),

	training_set_cluster_list(AllCluster),

	problog_flag(parallel_processes,Parallel_Processes),
	evaluate_bdds(AllCluster,Handle,Parallel_Processes,'e','.',LLH_From_True_BDDs,LLH),

	logger_set_variable(llh_training_set,LLH),
	
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop calculate new values
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	format_learning(2,'~n',[]),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% start copy new values
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
	problog_flag(pc_numerator,Pseudo_Counts_Numerator),
	problog_flag(pc_denominator,Pseudo_Counts_Denominator),

	forall(
	       (
		tunable_fact(FactID,_),
		array_element(factusage,FactID,Used),
		Used>0		% only update relevant facts
	       ),
	       (
		array_element(factprob_temp,FactID,NewValue),
		NewP is (NewValue+ Pseudo_Counts_Numerator) / (Used+Pseudo_Counts_Denominator),
		update_array(factprob,FactID,NewP)
	       )
	      ),

	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	% stop copy new values
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

	close(Handle).


%========================================================================
%= Call SimpleCUDD for each BDD Cluster script
%=   L      : a list containing 3-tuples a(QueryID,ClusterID,Count)
%=   H      : file handle for the log file
%=   P      : number of parallel SimpleCUDD processes
%=   T      : type of evaluation, either 'd' or 'e'
%=   S      : symbol to print after a process finished
%=   OldLLH : accumulator for LLH
%=   LLH    : resulting LLH
%= 
%=  evaluate_bdds(+L,+H,+P,+T,+S,+OldLLH,-LLH)
%========================================================================

evaluate_bdds([],_,_,_,_,LLH,LLH).
evaluate_bdds([H|T],Handle,Parallel_Processes,Type,Symbol,OldLLH,LLH) :-
	once(slice_n([H|T],Parallel_Processes,ForNow,Later)),
	logger_start_timer(bdd_evaluation),
	once(evaluate_bdds_start(ForNow,Type,ForNow_Jobs)),
	once(evaluate_bdds_stop(ForNow_Jobs,Handle,Symbol,OldLLH,NewLLH)),	
	logger_stop_timer(bdd_evaluation),
	evaluate_bdds(Later,Handle,Parallel_Processes,Type,Symbol,NewLLH,LLH).

evaluate_bdds_start([],_,[]).
evaluate_bdds_start([a(QueryID,ClusterID,Count)|T],Type,[job(QueryID,ClusterID,Count,Command,PID,OutputFilename)|T2]) :-
	once(update_query(QueryID,ClusterID,Type,Command,PID,OutputFilename)),
	evaluate_bdds_start(T,Type,T2).
evaluate_bdds_stop([],_,_,LLH,LLH).
evaluate_bdds_stop([job(ID,ClusterID,Count,Command,PID,OutputFilename)|T],Handle,Symbol,OldLLH,LLH) :-
	once(update_query_wait(ID,ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Prob)),
	format(Handle,'bdd_prob(~w,~w,~15e). % Count=~w~n',[ID,ClusterID,BDD_Prob,Count]),
	catch(NewLLH is OldLLH + Count*log(BDD_Prob),_Exception,NewLLH is 0.0/0.0),
	evaluate_bdds_stop(T,Handle,Symbol,NewLLH,LLH).


%========================================================================
%=
%=
%========================================================================



%========================================================================
%= initialize the logger module and set the flags for learning
%= don't change anything here! use set_learning_flag/2 instead
%========================================================================

init_flags :-
	prolog_file_name('queries',Queries_Folder), % get absolute file name for './queries'
	prolog_file_name('output',Output_Folder), % get absolute file name for './output'
	problog_define_flag(bdd_directory, problog_flag_validate_directory, 'directory for BDD scripts', Queries_Folder,learning_general),
	problog_define_flag(output_directory, problog_flag_validate_directory, 'directory for logfiles etc', Output_Folder,learning_general,flags:learning_output_dir_handler),
	problog_define_flag(retain_bdd_output,problog_flag_validate_boolean,'Keep output files from BDD tool',false,learning_general),
	problog_define_flag(log_frequency, problog_flag_validate_posint, 'log results every nth iteration', 1, learning_general),
	problog_define_flag(reuse_initialized_bdds,problog_flag_validate_boolean, 'Reuse BDDs from previous runs',false, learning_general),	
	problog_define_flag(pc_numerator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to numerator (Pseudocounts)',0.0,learning_general),
	problog_define_flag(pc_denominator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to denominator (Pseudocounts)',0.0,learning_general),
	problog_define_flag(parallel_processes,problog_flag_validate_posint,'Number of parallel BDD processes',8,learning_general),

	problog_define_flag(cluster_bdds,problog_flag_validate_boolean,'Cluster similar BDDs',true,learning_general).


init_logger :-
	logger_define_variable(iteration, int),
	logger_define_variable(duration,time),

	logger_define_variable(llh_training_set,float),
	logger_define_variable(llh_test_set,float),
	
	logger_define_variable(bdd_evaluation,time),

	logger_define_variable(ground_truth_diff,float),
	logger_define_variable(ground_truth_mindiff,float),
	logger_define_variable(ground_truth_maxdiff,float),

	logger_define_variable(train_bdd_script_generation,time),
	logger_define_variable(train_bdd_script_generation_grounding,time),
	logger_define_variable(train_bdd_script_generation_completion,time),
	logger_define_variable(train_bdd_script_generation_propagation,time),
	logger_define_variable(train_bdd_script_generation_splitting,time),
	logger_define_variable(train_bdd_script_generation_active_ground_atoms,int),
	logger_define_variable(train_bdd_script_generation_propagated_ground_atoms,int),

	logger_define_variable(test_bdd_script_generation,time),
	logger_define_variable(test_bdd_script_generation_grounding,time),
	logger_define_variable(test_bdd_script_generation_completion,time),
	logger_define_variable(test_bdd_script_generation_propagation,time),
	logger_define_variable(test_bdd_script_generation_splitting,time),
	logger_define_variable(test_bdd_script_generation_active_ground_atoms,int),
	logger_define_variable(test_bdd_script_generation_propagated_ground_atoms,int).

:- initialization(init_flags).
:- initialization(init_logger).