This file is indexed.

/usr/share/perl/5.14.2/pod/perltodo.pod is in perl-doc 5.14.2-6ubuntu2.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
=head1 NAME

perltodo - Perl TO-DO List

=head1 DESCRIPTION

This is a list of wishes for Perl. The most up to date version of this file
is at L<http://perl5.git.perl.org/perl.git/blob_plain/HEAD:/pod/perltodo.pod>

The tasks we think are smaller or easier are listed first. Anyone is welcome
to work on any of these, but it's a good idea to first contact
I<perl5-porters@perl.org> to avoid duplication of effort, and to learn from
any previous attempts. By all means contact a pumpking privately first if you
prefer.

Whilst patches to make the list shorter are most welcome, ideas to add to
the list are also encouraged. Check the perl5-porters archives for past
ideas, and any discussion about them. One set of archives may be found at
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/>

What can we offer you in return? Fame, fortune, and everlasting glory? Maybe
not, but if your patch is incorporated, then we'll add your name to the
F<AUTHORS> file, which ships in the official distribution. How many other
programming languages offer you 1 line of immortality?

=head1 Tasks that only need Perl knowledge

=head2 Migrate t/ from custom TAP generation

Many tests below F<t/> still generate TAP by "hand", rather than using library
functions. As explained in L<perlhack/TESTING>, tests in F<t/> are
written in a particular way to test that more complex constructions actually
work before using them routinely. Hence they don't use C<Test::More>, but
instead there is an intentionally simpler library, F<t/test.pl>. However,
quite a few tests in F<t/> have not been refactored to use it. Refactoring
any of these tests, one at a time, is a useful thing TODO.

The subdirectories F<base>, F<cmd> and F<comp>, that contain the most
basic tests, should be excluded from this task.

=head2 Automate perldelta generation

The perldelta file accompanying each release summaries the major changes.
It's mostly manually generated currently, but some of that could be
automated with a bit of perl, specifically the generation of

=over

=item Modules and Pragmata

=item New Documentation

=item New Tests

=back

See F<Porting/how_to_write_a_perldelta.pod> for details.

=head2 Remove duplication of test setup.

Schwern notes, that there's duplication of code - lots and lots of tests have
some variation on the big block of C<$Is_Foo> checks.  We can safely put this
into a file, change it to build an C<%Is> hash and require it.  Maybe just put
it into F<test.pl>. Throw in the handy tainting subroutines.

=head2 POD -E<gt> HTML conversion in the core still sucks

Which is crazy given just how simple POD purports to be, and how simple HTML
can be. It's not actually I<as> simple as it sounds, particularly with the
flexibility POD allows for C<=item>, but it would be good to improve the
visual appeal of the HTML generated, and to avoid it having any validation
errors. See also L</make HTML install work>, as the layout of installation tree
is needed to improve the cross-linking.

The addition of C<Pod::Simple> and its related modules may make this task
easier to complete.

=head2 Make ExtUtils::ParseXS use strict;

F<lib/ExtUtils/ParseXS.pm> contains this line

    # use strict;  # One of these days...

Simply uncomment it, and fix all the resulting issues :-)

The more practical approach, to break the task down into manageable chunks, is
to work your way though the code from bottom to top, or if necessary adding
extra C<{ ... }> blocks, and turning on strict within them.

=head2 Make Schwern poorer

We should have tests for everything. When all the core's modules are tested,
Schwern has promised to donate to $500 to TPF. We may need volunteers to
hold him upside down and shake vigorously in order to actually extract the
cash.

=head2 Improve the coverage of the core tests

Use Devel::Cover to ascertain the core modules' test coverage, then add
tests that are currently missing.

=head2 test B

A full test suite for the B module would be nice.

=head2 A decent benchmark

C<perlbench> seems impervious to any recent changes made to the perl core. It
would be useful to have a reasonable general benchmarking suite that roughly
represented what current perl programs do, and measurably reported whether
tweaks to the core improve, degrade or don't really affect performance, to
guide people attempting to optimise the guts of perl. Gisle would welcome
new tests for perlbench.

=head2 fix tainting bugs

Fix the bugs revealed by running the test suite with the C<-t> switch (via
C<make test.taintwarn>).

=head2 Dual life everything

As part of the "dists" plan, anything that doesn't belong in the smallest perl
distribution needs to be dual lifed. Anything else can be too. Figure out what
changes would be needed to package that module and its tests up for CPAN, and
do so. Test it with older perl releases, and fix the problems you find.

To make a minimal perl distribution, it's useful to look at
F<t/lib/commonsense.t>.

=head2 POSIX memory footprint

Ilya observed that use POSIX; eats memory like there's no tomorrow, and at
various times worked to cut it down. There is probably still fat to cut out -
for example POSIX passes Exporter some very memory hungry data structures.

=head2 embed.pl/makedef.pl

There is a script F<embed.pl> that generates several header files to prefix
all of Perl's symbols in a consistent way, to provide some semblance of
namespace support in C<C>. Functions are declared in F<embed.fnc>, variables
in F<interpvar.h>. Quite a few of the functions and variables
are conditionally declared there, using C<#ifdef>. However, F<embed.pl>
doesn't understand the C macros, so the rules about which symbols are present
when is duplicated in F<makedef.pl>. Writing things twice is bad, m'kay.
It would be good to teach C<embed.pl> to understand the conditional
compilation, and hence remove the duplication, and the mistakes it has caused.

=head2 use strict; and AutoLoad

Currently if you write

    package Whack;
    use AutoLoader 'AUTOLOAD';
    use strict;
    1;
    __END__
    sub bloop {
        print join (' ', No, strict, here), "!\n";
    }

then C<use strict;> isn't in force within the autoloaded subroutines. It would
be more consistent (and less surprising) to arrange for all lexical pragmas
in force at the __END__ block to be in force within each autoloaded subroutine.

There's a similar problem with SelfLoader.

=head2 profile installman

The F<installman> script is slow. All it is doing text processing, which we're
told is something Perl is good at. So it would be nice to know what it is doing
that is taking so much CPU, and where possible address it.

=head2 enable lexical enabling/disabling of individual warnings

Currently, warnings can only be enabled or disabled by category. There
are times when it would be useful to quash a single warning, not a
whole category.

=head1 Tasks that need a little sysadmin-type knowledge

Or if you prefer, tasks that you would learn from, and broaden your skills
base...

=head2 make HTML install work

There is an C<installhtml> target in the Makefile. It's marked as
"experimental". It would be good to get this tested, make it work reliably, and
remove the "experimental" tag. This would include

=over 4

=item 1

Checking that cross linking between various parts of the documentation works.
In particular that links work between the modules (files with POD in F<lib/>)
and the core documentation (files in F<pod/>)

=item 2

Work out how to split C<perlfunc> into chunks, preferably one per function
group, preferably with general case code that could be used elsewhere.
Challenges here are correctly identifying the groups of functions that go
together, and making the right named external cross-links point to the right
page. Things to be aware of are C<-X>, groups such as C<getpwnam> to
C<endservent>, two or more C<=items> giving the different parameter lists, such
as

    =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
    =item substr EXPR,OFFSET,LENGTH
    =item substr EXPR,OFFSET

and different parameter lists having different meanings. (eg C<select>)

=back

=head2 compressed man pages

Be able to install them. This would probably need a configure test to see how
the system does compressed man pages (same directory/different directory?
same filename/different filename), as well as tweaking the F<installman> script
to compress as necessary.

=head2 Add a code coverage target to the Makefile

Make it easy for anyone to run Devel::Cover on the core's tests. The steps
to do this manually are roughly

=over 4

=item *

do a normal C<Configure>, but include Devel::Cover as a module to install
(see L<INSTALL> for how to do this)

=item *

    make perl

=item *

    cd t; HARNESS_PERL_SWITCHES=-MDevel::Cover ./perl -I../lib harness

=item *

Process the resulting Devel::Cover database

=back

This just give you the coverage of the F<.pm>s. To also get the C level
coverage you need to

=over 4

=item *

Additionally tell C<Configure> to use the appropriate C compiler flags for
C<gcov>

=item *

    make perl.gcov

(instead of C<make perl>)

=item *

After running the tests run C<gcov> to generate all the F<.gcov> files.
(Including down in the subdirectories of F<ext/>

=item *

(From the top level perl directory) run C<gcov2perl> on all the C<.gcov> files
to get their stats into the cover_db directory.

=item *

Then process the Devel::Cover database

=back

It would be good to add a single switch to C<Configure> to specify that you
wanted to perform perl level coverage, and another to specify C level
coverage, and have C<Configure> and the F<Makefile> do all the right things
automatically.

=head2 Make Config.pm cope with differences between built and installed perl

Quite often vendors ship a perl binary compiled with their (pay-for)
compilers.  People install a free compiler, such as gcc. To work out how to
build extensions, Perl interrogates C<%Config>, so in this situation
C<%Config> describes compilers that aren't there, and extension building
fails. This forces people into choosing between re-compiling perl themselves
using the compiler they have, or only using modules that the vendor ships.

It would be good to find a way teach C<Config.pm> about the installation setup,
possibly involving probing at install time or later, so that the C<%Config> in
a binary distribution better describes the installed machine, when the
installed machine differs from the build machine in some significant way.

=head2 linker specification files

Some platforms mandate that you provide a list of a shared library's external
symbols to the linker, so the core already has the infrastructure in place to
do this for generating shared perl libraries. My understanding is that the
GNU toolchain can accept an optional linker specification file, and restrict
visibility just to symbols declared in that file. It would be good to extend
F<makedef.pl> to support this format, and to provide a means within
C<Configure> to enable it. This would allow Unix users to test that the
export list is correct, and to build a perl that does not pollute the global
namespace with private symbols, and will fail in the same way as msvc or mingw 
builds or when using PERL_DL_NONLAZY=1.

=head2 Cross-compile support

Currently C<Configure> understands C<-Dusecrosscompile> option. This option
arranges for building C<miniperl> for TARGET machine, so this C<miniperl> is
assumed then to be copied to TARGET machine and used as a replacement of full
C<perl> executable.

This could be done little differently. Namely C<miniperl> should be built for
HOST and then full C<perl> with extensions should be compiled for TARGET.
This, however, might require extra trickery for %Config: we have one config
first for HOST and then another for TARGET.  Tools like MakeMaker will be
mightily confused.  Having around two different types of executables and
libraries (HOST and TARGET) makes life interesting for Makefiles and
shell (and Perl) scripts.  There is $Config{run}, normally empty, which
can be used as an execution wrapper.  Also note that in some
cross-compilation/execution environments the HOST and the TARGET do
not see the same filesystem(s), the $Config{run} may need to do some
file/directory copying back and forth.

=head2 roffitall

Make F<pod/roffitall> be updated by F<pod/buildtoc>.

=head2 Split "linker" from "compiler"

Right now, Configure probes for two commands, and sets two variables:

=over 4

=item * C<cc> (in F<cc.U>)

This variable holds the name of a command to execute a C compiler which
can resolve multiple global references that happen to have the same
name.  Usual values are F<cc> and F<gcc>.
Fervent ANSI compilers may be called F<c89>.  AIX has F<xlc>.

=item * C<ld> (in F<dlsrc.U>)

This variable indicates the program to be used to link
libraries for dynamic loading.  On some systems, it is F<ld>.
On ELF systems, it should be C<$cc>.  Mostly, we'll try to respect
the hint file setting.

=back

There is an implicit historical assumption from around Perl5.000alpha
something, that C<$cc> is also the correct command for linking object files
together to make an executable. This may be true on Unix, but it's not true
on other platforms, and there are a maze of work arounds in other places (such
as F<Makefile.SH>) to cope with this.

Ideally, we should create a new variable to hold the name of the executable
linker program, probe for it in F<Configure>, and centralise all the special
case logic there or in hints files.

A small bikeshed issue remains - what to call it, given that C<$ld> is already
taken (arguably for the wrong thing now, but on SunOS 4.1 it is the command
for creating dynamically-loadable modules) and C<$link> could be confused with
the Unix command line executable of the same name, which does something
completely different. Andy Dougherty makes the counter argument "In parrot, I
tried to call the command used to link object files and  libraries into an
executable F<link>, since that's what my vaguely-remembered DOS and VMS
experience suggested. I don't think any real confusion has ensued, so it's
probably a reasonable name for perl5 to use."

"Alas, I've always worried that introducing it would make things worse, 
since now the module building utilities would have to look for 
C<$Config{link}> and institute a fall-back plan if it weren't found."
Although I can see that as confusing, given that C<$Config{d_link}> is true
when (hard) links are available.

=head2 Configure Windows using PowerShell

Currently, Windows uses hard-coded config files based to build the
config.h for compiling Perl.  Makefiles are also hard-coded and need to be 
hand edited prior to building Perl. While this makes it easy to create a perl.exe 
that works across multiple Windows versions, being able to accurately
configure a perl.exe for a specific Windows versions and VS C++ would be
a nice enhancement.  With PowerShell available on Windows XP and up, this 
may now be possible.  Step 1 might be to investigate whether this is possible
and use this to clean up our current makefile situation.  Step 2 would be to 
see if there would be a way to use our existing metaconfig units to configure a
Windows Perl or whether we go in a separate direction and make it so.  Of 
course, we all know what step 3 is.

=head2 decouple -g and -DDEBUGGING

Currently F<Configure> automatically adds C<-DDEBUGGING> to the C compiler
flags if it spots C<-g> in the optimiser flags. The pre-processor directive
C<DEBUGGING> enables F<perl>'s command line C<-D> options, but in the process
makes F<perl> slower. It would be good to disentangle this logic, so that
C-level debugging with C<-g> and Perl level debugging with C<-D> can easily
be enabled independently.

=head1 Tasks that need a little C knowledge

These tasks would need a little C knowledge, but don't need any specific
background or experience with XS, or how the Perl interpreter works

=head2 Weed out needless PERL_UNUSED_ARG

The C code uses the macro C<PERL_UNUSED_ARG> to stop compilers warning about
unused arguments. Often the arguments can't be removed, as there is an
external constraint that determines the prototype of the function, so this
approach is valid. However, there are some cases where C<PERL_UNUSED_ARG>
could be removed. Specifically

=over 4

=item *

The prototypes of (nearly all) static functions can be changed

=item *

Unused arguments generated by short cut macros are wasteful - the short cut
macro used can be changed.

=back

=head2 Modernize the order of directories in @INC

The way @INC is laid out by default, one cannot upgrade core (dual-life)
modules without overwriting files. This causes problems for binary
package builders.  One possible proposal is laid out in this
message:
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2002-04/msg02380.html>

=head2 -Duse32bit*

Natively 64-bit systems need neither -Duse64bitint nor -Duse64bitall.
On these systems, it might be the default compilation mode, and there
is currently no guarantee that passing no use64bitall option to the
Configure process will build a 32bit perl. Implementing -Duse32bit*
options would be nice for perl 5.14.

=head2 Profile Perl - am I hot or not?

The Perl source code is stable enough that it makes sense to profile it,
identify and optimise the hotspots. It would be good to measure the
performance of the Perl interpreter using free tools such as cachegrind,
gprof, and dtrace, and work to reduce the bottlenecks they reveal.

As part of this, the idea of F<pp_hot.c> is that it contains the I<hot> ops,
the ops that are most commonly used. The idea is that by grouping them, their
object code will be adjacent in the executable, so they have a greater chance
of already being in the CPU cache (or swapped in) due to being near another op
already in use.

Except that it's not clear if these really are the most commonly used ops. So
as part of exercising your skills with coverage and profiling tools you might
want to determine what ops I<really> are the most commonly used. And in turn
suggest evictions and promotions to achieve a better F<pp_hot.c>.

One piece of Perl code that might make a good testbed is F<installman>.

=head2 Allocate OPs from arenas

Currently all new OP structures are individually malloc()ed and free()d.
All C<malloc> implementations have space overheads, and are now as fast as
custom allocates so it would both use less memory and less CPU to allocate
the various OP structures from arenas. The SV arena code can probably be
re-used for this.

Note that Configuring perl with C<-Accflags=-DPL_OP_SLAB_ALLOC> will use
Perl_Slab_alloc() to pack optrees into a contiguous block, which is
probably superior to the use of OP arenas, esp. from a cache locality
standpoint.  See L<Profile Perl - am I hot or not?>.

=head2 Improve win32/wince.c

Currently, numerous functions look virtually, if not completely,
identical in both C<win32/wince.c> and C<win32/win32.c> files, which can't
be good.

=head2 Use secure CRT functions when building with VC8 on Win32

Visual C++ 2005 (VC++ 8.x) deprecated a number of CRT functions on the basis
that they were "unsafe" and introduced differently named secure versions of
them as replacements, e.g. instead of writing

    FILE* f = fopen(__FILE__, "r");

one should now write

    FILE* f;
    errno_t err = fopen_s(&f, __FILE__, "r"); 

Currently, the warnings about these deprecations have been disabled by adding
-D_CRT_SECURE_NO_DEPRECATE to the CFLAGS. It would be nice to remove that
warning suppressant and actually make use of the new secure CRT functions.

There is also a similar issue with POSIX CRT function names like fileno having
been deprecated in favour of ISO C++ conformant names like _fileno. These
warnings are also currently suppressed by adding -D_CRT_NONSTDC_NO_DEPRECATE. It
might be nice to do as Microsoft suggest here too, although, unlike the secure
functions issue, there is presumably little or no benefit in this case.

=head2 Fix POSIX::access() and chdir() on Win32

These functions currently take no account of DACLs and therefore do not behave
correctly in situations where access is restricted by DACLs (as opposed to the
read-only attribute).

Furthermore, POSIX::access() behaves differently for directories having the
read-only attribute set depending on what CRT library is being used. For
example, the _access() function in the VC6 and VC7 CRTs (wrongly) claim that
such directories are not writable, whereas in fact all directories are writable
unless access is denied by DACLs. (In the case of directories, the read-only
attribute actually only means that the directory cannot be deleted.) This CRT
bug is fixed in the VC8 and VC9 CRTs (but, of course, the directory may still
not actually be writable if access is indeed denied by DACLs).

For the chdir() issue, see ActiveState bug #74552:
L<http://bugs.activestate.com/show_bug.cgi?id=74552>

Therefore, DACLs should be checked both for consistency across CRTs and for
the correct answer.

(Note that perl's -w operator should not be modified to check DACLs. It has
been written so that it reflects the state of the read-only attribute, even
for directories (whatever CRT is being used), for symmetry with chmod().)

=head2 strcat(), strcpy(), strncat(), strncpy(), sprintf(), vsprintf()

Maybe create a utility that checks after each libperl.a creation that
none of the above (nor sprintf(), vsprintf(), or *SHUDDER* gets())
ever creep back to libperl.a.

  nm libperl.a | ./miniperl -alne '$o = $F[0] if /:$/; print "$o $F[1]" if $F[0] eq "U" && $F[1] =~ /^(?:strn?c(?:at|py)|v?sprintf|gets)$/'

Note, of course, that this will only tell whether B<your> platform
is using those naughty interfaces.

=head2 -D_FORTIFY_SOURCE=2, -fstack-protector

Recent glibcs support C<-D_FORTIFY_SOURCE=2> and recent gcc
(4.1 onwards?) supports C<-fstack-protector>, both of which give
protection against various kinds of buffer overflow problems.
These should probably be used for compiling Perl whenever available,
Configure and/or hints files should be adjusted to probe for the
availability of these features and enable them as appropriate.

=head2 Arenas for GPs? For MAGIC?

C<struct gp> and C<struct magic> are both currently allocated by C<malloc>.
It might be a speed or memory saving to change to using arenas. Or it might
not. It would need some suitable benchmarking first. In particular, C<GP>s
can probably be changed with minimal compatibility impact (probably nothing
outside of the core, or even outside of F<gv.c> allocates them), but they
probably aren't allocated/deallocated often enough for a speed saving. Whereas
C<MAGIC> is allocated/deallocated more often, but in turn, is also something
more externally visible, so changing the rules here may bite external code.

=head2 Shared arenas

Several SV body structs are now the same size, notably PVMG and PVGV, PVAV and
PVHV, and PVCV and PVFM. It should be possible to allocate and return same
sized bodies from the same actual arena, rather than maintaining one arena for
each. This could save 4-6K per thread, of memory no longer tied up in the
not-yet-allocated part of an arena.


=head1 Tasks that need a knowledge of XS

These tasks would need C knowledge, and roughly the level of knowledge of
the perl API that comes from writing modules that use XS to interface to
C.

=head2 Write an XS cookbook

Create pod/perlxscookbook.pod with short, task-focused 'recipes' in XS that
demonstrate common tasks and good practices.  (Some of these might be
extracted from perlguts.) The target audience should be XS novices, who need
more examples than perlguts but something less overwhelming than perlapi.
Recipes should provide "one pretty good way to do it" instead of TIMTOWTDI.

Rather than focusing on interfacing Perl to C libraries, such a cookbook
should probably focus on how to optimize Perl routines by re-writing them
in XS.  This will likely be more motivating to those who mostly work in
Perl but are looking to take the next step into XS.

Deconstructing and explaining some simpler XS modules could be one way to
bootstrap a cookbook.  (List::Util? Class::XSAccessor? Tree::Ternary_XS?)
Another option could be deconstructing the implementation of some simpler
functions in op.c.

=head2 Allow XSUBs to inline themselves as OPs

For a simple XSUB, often the subroutine dispatch takes more time than the
XSUB itself. The tokeniser already has the ability to inline constant
subroutines - it would be good to provide a way to inline other subroutines.

Specifically, simplest approach looks to be to allow an XSUB to provide an
alternative implementation of itself as a custom OP. A new flag bit in
C<CvFLAGS()> would signal to the peephole optimiser to take an optree
such as this:

    b  <@> leave[1 ref] vKP/REFC ->(end)
    1     <0> enter ->2
    2     <;> nextstate(main 1 -e:1) v:{ ->3
    a     <2> sassign vKS/2 ->b
    8        <1> entersub[t2] sKS/TARG,1 ->9
    -           <1> ex-list sK ->8
    3              <0> pushmark s ->4
    4              <$> const(IV 1) sM ->5
    6              <1> rv2av[t1] lKM/1 ->7
    5                 <$> gv(*a) s ->6
    -              <1> ex-rv2cv sK ->-
    7                 <$> gv(*x) s/EARLYCV ->8
    -        <1> ex-rv2sv sKRM*/1 ->a
    9           <$> gvsv(*b) s ->a

perform the symbol table lookup of C<rv2cv> and C<gv(*x)>, locate the
pointer to the custom OP that provides the direct implementation, and re-
write the optree something like:

    b  <@> leave[1 ref] vKP/REFC ->(end)
    1     <0> enter ->2
    2     <;> nextstate(main 1 -e:1) v:{ ->3
    a     <2> sassign vKS/2 ->b
    7        <1> custom_x -> 8
    -           <1> ex-list sK ->7
    3              <0> pushmark s ->4
    4              <$> const(IV 1) sM ->5
    6              <1> rv2av[t1] lKM/1 ->7
    5                 <$> gv(*a) s ->6
    -              <1> ex-rv2cv sK ->-
    -                 <$> ex-gv(*x) s/EARLYCV ->7
    -        <1> ex-rv2sv sKRM*/1 ->a
    8           <$> gvsv(*b) s ->a

I<i.e.> the C<gv(*)> OP has been nulled and spliced out of the execution
path, and the C<entersub> OP has been replaced by the custom op.

This approach should provide a measurable speed up to simple XSUBs inside
tight loops. Initially one would have to write the OP alternative
implementation by hand, but it's likely that this should be reasonably
straightforward for the type of XSUB that would benefit the most. Longer
term, once the run-time implementation is proven, it should be possible to
progressively update ExtUtils::ParseXS to generate OP implementations for
some XSUBs.

=head2 Remove the use of SVs as temporaries in dump.c

F<dump.c> contains debugging routines to dump out the contains of perl data
structures, such as C<SV>s, C<AV>s and C<HV>s. Currently, the dumping code
B<uses> C<SV>s for its temporary buffers, which was a logical initial
implementation choice, as they provide ready made memory handling.

However, they also lead to a lot of confusion when it happens that what you're
trying to debug is seen by the code in F<dump.c>, correctly or incorrectly, as
a temporary scalar it can use for a temporary buffer. It's also not possible
to dump scalars before the interpreter is properly set up, such as during
ithreads cloning. It would be good to progressively replace the use of scalars
as string accumulation buffers with something much simpler, directly allocated
by C<malloc>. The F<dump.c> code is (or should be) only producing 7 bit
US-ASCII, so output character sets are not an issue.

Producing and proving an internal simple buffer allocation would make it easier
to re-write the internals of the PerlIO subsystem to avoid using C<SV>s for
B<its> buffers, use of which can cause problems similar to those of F<dump.c>,
at similar times.

=head2 safely supporting POSIX SA_SIGINFO

Some years ago Jarkko supplied patches to provide support for the POSIX
SA_SIGINFO feature in Perl, passing the extra data to the Perl signal handler.

Unfortunately, it only works with "unsafe" signals, because under safe
signals, by the time Perl gets to run the signal handler, the extra
information has been lost. Moreover, it's not easy to store it somewhere,
as you can't call mutexs, or do anything else fancy, from inside a signal
handler.

So it strikes me that we could provide safe SA_SIGINFO support

=over 4

=item 1

Provide global variables for two file descriptors

=item 2

When the first request is made via C<sigaction> for C<SA_SIGINFO>, create a
pipe, store the reader in one, the writer in the other

=item 3

In the "safe" signal handler (C<Perl_csighandler()>/C<S_raise_signal()>), if
the C<siginfo_t> pointer non-C<NULL>, and the writer file handle is open,

=over 8

=item 1

serialise signal number, C<struct siginfo_t> (or at least the parts we care
about) into a small auto char buff

=item 2

C<write()> that (non-blocking) to the writer fd

=over 12

=item 1

if it writes 100%, flag the signal in a counter of "signals on the pipe" akin
to the current per-signal-number counts

=item 2

if it writes 0%, assume the pipe is full. Flag the data as lost?

=item 3

if it writes partially, croak a panic, as your OS is broken.

=back

=back

=item 4

in the regular C<PERL_ASYNC_CHECK()> processing, if there are "signals on
the pipe", read the data out, deserialise, build the Perl structures on
the stack (code in C<Perl_sighandler()>, the "unsafe" handler), and call as
usual.

=back

I think that this gets us decent C<SA_SIGINFO> support, without the current risk
of running Perl code inside the signal handler context. (With all the dangers
of things like C<malloc> corruption that that currently offers us)

For more information see the thread starting with this message:
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2008-03/msg00305.html>

=head2 autovivification

Make all autovivification consistent w.r.t LVALUE/RVALUE and strict/no strict;

This task is incremental - even a little bit of work on it will help.

=head2 Unicode in Filenames

chdir, chmod, chown, chroot, exec, glob, link, lstat, mkdir, open,
opendir, qx, readdir, readlink, rename, rmdir, stat, symlink, sysopen,
system, truncate, unlink, utime, -X.  All these could potentially accept
Unicode filenames either as input or output (and in the case of system
and qx Unicode in general, as input or output to/from the shell).
Whether a filesystem - an operating system pair understands Unicode in
filenames varies.

Known combinations that have some level of understanding include
Microsoft NTFS, Apple HFS+ (In Mac OS 9 and X) and Apple UFS (in Mac
OS X), NFS v4 is rumored to be Unicode, and of course Plan 9.  How to
create Unicode filenames, what forms of Unicode are accepted and used
(UCS-2, UTF-16, UTF-8), what (if any) is the normalization form used,
and so on, varies.  Finding the right level of interfacing to Perl
requires some thought.  Remember that an OS does not implicate a
filesystem.

(The Windows -C command flag "wide API support" has been at least
temporarily retired in 5.8.1, and the -C has been repurposed, see
L<perlrun>.)

Most probably the right way to do this would be this:
L</"Virtualize operating system access">.

=head2 Unicode in %ENV

Currently the %ENV entries are always byte strings.
See L</"Virtualize operating system access">.

=head2 Unicode and glob()

Currently glob patterns and filenames returned from File::Glob::glob()
are always byte strings.  See L</"Virtualize operating system access">.

=head2 use less 'memory'

Investigate trade offs to switch out perl's choices on memory usage.
Particularly perl should be able to give memory back.

This task is incremental - even a little bit of work on it will help.

=head2 Re-implement C<:unique> in a way that is actually thread-safe

The old implementation made bad assumptions on several levels. A good 90%
solution might be just to make C<:unique> work to share the string buffer
of SvPVs. That way large constant strings can be shared between ithreads,
such as the configuration information in F<Config>.

=head2 Make tainting consistent

Tainting would be easier to use if it didn't take documented shortcuts and
allow taint to "leak" everywhere within an expression.

=head2 readpipe(LIST)

system() accepts a LIST syntax (and a PROGRAM LIST syntax) to avoid
running a shell. readpipe() (the function behind qx//) could be similarly
extended.

=head2 Audit the code for destruction ordering assumptions

Change 25773 notes

    /* Need to check SvMAGICAL, as during global destruction it may be that
       AvARYLEN(av) has been freed before av, and hence the SvANY() pointer
       is now part of the linked list of SV heads, rather than pointing to
       the original body.  */
    /* FIXME - audit the code for other bugs like this one.  */

adding the C<SvMAGICAL> check to

    if (AvARYLEN(av) && SvMAGICAL(AvARYLEN(av))) {
        MAGIC *mg = mg_find (AvARYLEN(av), PERL_MAGIC_arylen);

Go through the core and look for similar assumptions that SVs have particular
types, as all bets are off during global destruction.

=head2 Extend PerlIO and PerlIO::Scalar

PerlIO::Scalar doesn't know how to truncate().  Implementing this
would require extending the PerlIO vtable.

Similarly the PerlIO vtable doesn't know about formats (write()), or
about stat(), or chmod()/chown(), utime(), or flock().

(For PerlIO::Scalar it's hard to see what e.g. mode bits or ownership
would mean.)

PerlIO doesn't do directories or symlinks, either: mkdir(), rmdir(),
opendir(), closedir(), seekdir(), rewinddir(), glob(); symlink(),
readlink().

See also L</"Virtualize operating system access">.

=head2 -C on the #! line

It should be possible to make -C work correctly if found on the #! line,
given that all perl command line options are strict ASCII, and -C changes
only the interpretation of non-ASCII characters, and not for the script file
handle. To make it work needs some investigation of the ordering of function
calls during startup, and (by implication) a bit of tweaking of that order.

=head2 Organize error messages

Perl's diagnostics (error messages, see L<perldiag>) could use
reorganizing and formalizing so that each error message has its
stable-for-all-eternity unique id, categorized by severity, type, and
subsystem.  (The error messages would be listed in a datafile outside
of the Perl source code, and the source code would only refer to the
messages by the id.)  This clean-up and regularizing should apply
for all croak() messages.

This would enable all sorts of things: easier translation/localization
of the messages (though please do keep in mind the caveats of
L<Locale::Maketext> about too straightforward approaches to
translation), filtering by severity, and instead of grepping for a
particular error message one could look for a stable error id.  (Of
course, changing the error messages by default would break all the
existing software depending on some particular error message...)

This kind of functionality is known as I<message catalogs>.  Look for
inspiration for example in the catgets() system, possibly even use it
if available-- but B<only> if available, all platforms will B<not>
have catgets().

For the really pure at heart, consider extending this item to cover
also the warning messages (see L<perllexwarn>, C<warnings.pl>).

=head1 Tasks that need a knowledge of the interpreter

These tasks would need C knowledge, and knowledge of how the interpreter works,
or a willingness to learn.

=head2 forbid labels with keyword names

Currently C<goto keyword> "computes" the label value:

    $ perl -e 'goto print'
    Can't find label 1 at -e line 1.

It is controversial if the right way to avoid the confusion is to forbid
labels with keyword names, or if it would be better to always treat
bareword expressions after a "goto" as a label and never as a keyword.

=head2 truncate() prototype

The prototype of truncate() is currently C<$$>. It should probably
be C<*$> instead. (This is changed in F<opcode.pl>)

=head2 decapsulation of smart match argument

Currently C<$foo ~~ $object> will die with the message "Smart matching a
non-overloaded object breaks encapsulation". It would be nice to allow
to bypass this by using explicitly the syntax C<$foo ~~ %$object> or
C<$foo ~~ @$object>.

=head2 error reporting of [$a ; $b]

Using C<;> inside brackets is a syntax error, and we don't propose to change
that by giving it any meaning. However, it's not reported very helpfully:

    $ perl -e '$a = [$b; $c];'
    syntax error at -e line 1, near "$b;"
    syntax error at -e line 1, near "$c]"
    Execution of -e aborted due to compilation errors.

It should be possible to hook into the tokeniser or the lexer, so that when a
C<;> is parsed where it is not legal as a statement terminator (ie inside
C<{}> used as a hashref, C<[]> or C<()>) it issues an error something like
I<';' isn't legal inside an expression - if you need multiple statements use a
do {...} block>. See the thread starting at
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2008-09/msg00573.html>

=head2 lexicals used only once

This warns:

    $ perl -we '$pie = 42'
    Name "main::pie" used only once: possible typo at -e line 1.

This does not:

    $ perl -we 'my $pie = 42'

Logically all lexicals used only once should warn, if the user asks for
warnings.  An unworked RT ticket (#5087) has been open for almost seven
years for this discrepancy.

=head2 UTF-8 revamp

The handling of Unicode is unclean in many places.  In the regex engine
there are especially many problems.  The swash data structure could be
replaced my something better.  Inversion lists and maps are likely
candidates.  The whole Unicode database could be placed in-core for a
huge speed-up.  Only minimal work was done on the optimizer when utf8
was added, with the result that the synthetic start class often will
fail to narrow down the possible choices when given non-Latin1 input.

=head2 Properly Unicode safe tokeniser and pads.

The tokeniser isn't actually very UTF-8 clean. C<use utf8;> is a hack -
variable names are stored in stashes as raw bytes, without the utf-8 flag
set. The pad API only takes a C<char *> pointer, so that's all bytes too. The
tokeniser ignores the UTF-8-ness of C<PL_rsfp>, or any SVs returned from
source filters.  All this could be fixed.

=head2 state variable initialization in list context

Currently this is illegal:

    state ($a, $b) = foo(); 

In Perl 6, C<state ($a) = foo();> and C<(state $a) = foo();> have different
semantics, which is tricky to implement in Perl 5 as currently they produce
the same opcode trees. The Perl 6 design is firm, so it would be good to
implement the necessary code in Perl 5. There are comments in
C<Perl_newASSIGNOP()> that show the code paths taken by various assignment
constructions involving state variables.

=head2 Implement $value ~~ 0 .. $range

It would be nice to extend the syntax of the C<~~> operator to also
understand numeric (and maybe alphanumeric) ranges.

=head2 A does() built-in

Like ref(), only useful. It would call the C<DOES> method on objects; it
would also tell whether something can be dereferenced as an
array/hash/etc., or used as a regexp, etc.
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-03/msg00481.html>

=head2 Tied filehandles and write() don't mix

There is no method on tied filehandles to allow them to be called back by
formats.

=head2 Propagate compilation hints to the debugger

Currently a debugger started with -dE on the command-line doesn't see the
features enabled by -E. More generally hints (C<$^H> and C<%^H>) aren't
propagated to the debugger. Probably it would be a good thing to propagate
hints from the innermost non-C<DB::> scope: this would make code eval'ed
in the debugger see the features (and strictures, etc.) currently in
scope.

=head2 Attach/detach debugger from running program

The old perltodo notes "With C<gdb>, you can attach the debugger to a running
program if you pass the process ID. It would be good to do this with the Perl
debugger on a running Perl program, although I'm not sure how it would be
done." ssh and screen do this with named pipes in /tmp. Maybe we can too.

=head2 LVALUE functions for lists

The old perltodo notes that lvalue functions don't work for list or hash
slices. This would be good to fix.

=head2 regexp optimiser optional

The regexp optimiser is not optional. It should configurable to be, to allow
its performance to be measured, and its bugs to be easily demonstrated.

=head2 C</w> regex modifier

That flag would enable to match whole words, and also to interpolate
arrays as alternations. With it, C</P/w> would be roughly equivalent to:

    do { local $"='|'; /\b(?:P)\b/ }

See
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-01/msg00400.html>
for the discussion.

=head2 optional optimizer

Make the peephole optimizer optional. Currently it performs two tasks as
it walks the optree - genuine peephole optimisations, and necessary fixups of
ops. It would be good to find an efficient way to switch out the
optimisations whilst keeping the fixups.

=head2 You WANT *how* many

Currently contexts are void, scalar and list. split has a special mechanism in
place to pass in the number of return values wanted. It would be useful to
have a general mechanism for this, backwards compatible and little speed hit.
This would allow proposals such as short circuiting sort to be implemented
as a module on CPAN.

=head2 lexical aliases

Allow lexical aliases (maybe via the syntax C<my \$alias = \$foo>.

=head2 entersub XS vs Perl

At the moment pp_entersub is huge, and has code to deal with entering both
perl and XS subroutines. Subroutine implementations rarely change between 
perl and XS at run time, so investigate using 2 ops to enter subs (one for
XS, one for perl) and swap between if a sub is redefined.

=head2 Self-ties

Self-ties are currently illegal because they caused too many segfaults. Maybe
the causes of these could be tracked down and self-ties on all types
reinstated.

=head2 Optimize away @_

The old perltodo notes "Look at the "reification" code in C<av.c>".

=head2 Virtualize operating system access

Implement a set of "vtables" that virtualizes operating system access
(open(), mkdir(), unlink(), readdir(), getenv(), etc.)  At the very
least these interfaces should take SVs as "name" arguments instead of
bare char pointers; probably the most flexible and extensible way
would be for the Perl-facing interfaces to accept HVs.  The system
needs to be per-operating-system and per-file-system
hookable/filterable, preferably both from XS and Perl level
(L<perlport/"Files and Filesystems"> is good reading at this point,
in fact, all of L<perlport> is.)

This has actually already been implemented (but only for Win32),
take a look at F<iperlsys.h> and F<win32/perlhost.h>.  While all Win32
variants go through a set of "vtables" for operating system access,
non-Win32 systems currently go straight for the POSIX/Unix-style
system/library call.  Similar system as for Win32 should be
implemented for all platforms.  The existing Win32 implementation
probably does not need to survive alongside this proposed new
implementation, the approaches could be merged.

What would this give us?  One often-asked-for feature this would
enable is using Unicode for filenames, and other "names" like %ENV,
usernames, hostnames, and so forth.
(See L<perlunicode/"When Unicode Does Not Happen">.)

But this kind of virtualization would also allow for things like
virtual filesystems, virtual networks, and "sandboxes" (though as long
as dynamic loading of random object code is allowed, not very safe
sandboxes since external code of course know not of Perl's vtables).
An example of a smaller "sandbox" is that this feature can be used to
implement per-thread working directories: Win32 already does this.

See also L</"Extend PerlIO and PerlIO::Scalar">.

=head2 Investigate PADTMP hash pessimisation

The peephole optimiser converts constants used for hash key lookups to shared
hash key scalars. Under ithreads, something is undoing this work.
See
L<http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2007-09/msg00793.html>

=head2 Store the current pad in the OP slab allocator

=for clarification
I hope that I got that "current pad" part correct

Currently we leak ops in various cases of parse failure. I suggested that we
could solve this by always using the op slab allocator, and walking it to
free ops. Dave comments that as some ops are already freed during optree
creation one would have to mark which ops are freed, and not double free them
when walking the slab. He notes that one problem with this is that for some ops
you have to know which pad was current at the time of allocation, which does
change. I suggested storing a pointer to the current pad in the memory allocated
for the slab, and swapping to a new slab each time the pad changes. Dave thinks
that this would work.

=head2 repack the optree

Repacking the optree after execution order is determined could allow
removal of NULL ops, and optimal ordering of OPs with respect to cache-line
filling.  The slab allocator could be reused for this purpose.  I think that
the best way to do this is to make it an optional step just before the
completed optree is attached to anything else, and to use the slab allocator
unchanged, so that freeing ops is identical whether or not this step runs.
Note that the slab allocator allocates ops downwards in memory, so one would
have to actually "allocate" the ops in reverse-execution order to get them
contiguous in memory in execution order.

See
L<http://www.nntp.perl.org/group/perl.perl5.porters/2007/12/msg131975.html>

Note that running this copy, and then freeing all the old location ops would
cause their slabs to be freed, which would eliminate possible memory wastage if
the previous suggestion is implemented, and we swap slabs more frequently.

=head2 eliminate incorrect line numbers in warnings

This code

    use warnings;
    my $undef;
    
    if ($undef == 3) {
    } elsif ($undef == 0) {
    }

used to produce this output:

    Use of uninitialized value in numeric eq (==) at wrong.pl line 4.
    Use of uninitialized value in numeric eq (==) at wrong.pl line 4.

where the line of the second warning was misreported - it should be line 5.
Rafael fixed this - the problem arose because there was no nextstate OP
between the execution of the C<if> and the C<elsif>, hence C<PL_curcop> still
reports that the currently executing line is line 4. The solution was to inject
a nextstate OPs for each C<elsif>, although it turned out that the nextstate
OP needed to be a nulled OP, rather than a live nextstate OP, else other line
numbers became misreported. (Jenga!)

The problem is more general than C<elsif> (although the C<elsif> case is the
most common and the most confusing). Ideally this code

    use warnings;
    my $undef;
    
    my $a = $undef + 1;
    my $b
      = $undef
      + 1;

would produce this output

    Use of uninitialized value $undef in addition (+) at wrong.pl line 4.
    Use of uninitialized value $undef in addition (+) at wrong.pl line 7.

(rather than lines 4 and 5), but this would seem to require every OP to carry
(at least) line number information.

What might work is to have an optional line number in memory just before the
BASEOP structure, with a flag bit in the op to say whether it's present.
Initially during compile every OP would carry its line number. Then add a late
pass to the optimiser (potentially combined with L</repack the optree>) which
looks at the two ops on every edge of the graph of the execution path. If
the line number changes, flags the destination OP with this information.
Once all paths are traced, replace every op with the flag with a
nextstate-light op (that just updates C<PL_curcop>), which in turn then passes
control on to the true op. All ops would then be replaced by variants that
do not store the line number. (Which, logically, why it would work best in
conjunction with L</repack the optree>, as that is already copying/reallocating
all the OPs)

(Although I should note that we're not certain that doing this for the general
case is worth it)

=head2 optimize tail-calls

Tail-calls present an opportunity for broadly applicable optimization;
anywhere that C<< return foo(...) >> is called, the outer return can
be replaced by a goto, and foo will return directly to the outer
caller, saving (conservatively) 25% of perl's call&return cost, which
is relatively higher than in C.  The scheme language is known to do
this heavily.  B::Concise provides good insight into where this
optimization is possible, ie anywhere entersub,leavesub op-sequence
occurs.

 perl -MO=Concise,-exec,a,b,-main -e 'sub a{ 1 }; sub b {a()}; b(2)'

Bottom line on this is probably a new pp_tailcall function which
combines the code in pp_entersub, pp_leavesub.  This should probably
be done 1st in XS, and using B::Generate to patch the new OP into the
optrees.

=head2 Add C<00dddd>

It has been proposed that octal constants be specifiable through the syntax
C<0oddddd>, parallel to the existing construct to specify hex constants
C<0xddddd>

=head1 Big projects

Tasks that will get your name mentioned in the description of the "Highlights
of 5.14"

=head2 make ithreads more robust

Generally make ithreads more robust. See also L</iCOW>

This task is incremental - even a little bit of work on it will help, and
will be greatly appreciated.

One bit would be to determine how to clone directory handles on systems
without a C<fchdir> function (in sv.c:Perl_dirp_dup).

Fix Perl_sv_dup, et al so that threads can return objects.

=head2 iCOW

Sarathy and Arthur have a proposal for an improved Copy On Write which
specifically will be able to COW new ithreads. If this can be implemented
it would be a good thing.

=head2 (?{...}) closures in regexps

Fix (or rewrite) the implementation of the C</(?{...})/> closures.

=head2 Add class set operations to regexp engine

Apparently these are quite useful. Anyway, Jeffery Friedl wants them.

demerphq has this on his todo list, but right at the bottom.  


=head1 Tasks for microperl


[ Each and every one of these may be obsolete, but they were listed
  in the old Todo.micro file]


=head2 make creating uconfig.sh automatic 

=head2 make creating Makefile.micro automatic

=head2 do away with fork/exec/wait?

(system, popen should be enough?)

=head2 some of the uconfig.sh really needs to be probed (using cc) in buildtime:

(uConfigure? :-) native datatype widths and endianness come to mind