This file is indexed.

/usr/share/pyshared/Crypto/PublicKey/RSA.py is in python-crypto 2.4.1-1ubuntu0.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding: utf-8 -*-
#
#  PublicKey/RSA.py : RSA public key primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""RSA public-key cryptography algorithm."""

__revision__ = "$Id$"

__all__ = ['generate', 'construct', 'error', 'importKey' ]

import sys
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
    from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *


from Crypto.Util.number import getRandomRange

from Crypto.PublicKey import _RSA, _slowmath, pubkey
from Crypto import Random

from Crypto.Util.asn1 import DerObject, DerSequence
import binascii

from Crypto.Util.number import inverse

try:
    from Crypto.PublicKey import _fastmath
except ImportError:
    _fastmath = None

class _RSAobj(pubkey.pubkey):
    keydata = ['n', 'e', 'd', 'p', 'q', 'u']

    def __init__(self, implementation, key, randfunc=None):
        self.implementation = implementation
        self.key = key
        if randfunc is None:
            randfunc = Random.new().read
        self._randfunc = randfunc

    def __getattr__(self, attrname):
        if attrname in self.keydata:
            # For backward compatibility, allow the user to get (not set) the
            # RSA key parameters directly from this object.
            return getattr(self.key, attrname)
        else:
            raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))

    def _encrypt(self, c, K):
        return (self.key._encrypt(c),)

    def _decrypt(self, c):
        #(ciphertext,) = c
        (ciphertext,) = c[:1]  # HACK - We should use the previous line
                               # instead, but this is more compatible and we're
                               # going to replace the Crypto.PublicKey API soon
                               # anyway.

        # Blinded RSA decryption (to prevent timing attacks):
        # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
        r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
        # Step 2: Compute c' = c * r**e mod n
        cp = self.key._blind(ciphertext, r)
        # Step 3: Compute m' = c'**d mod n       (ordinary RSA decryption)
        mp = self.key._decrypt(cp)
        # Step 4: Compute m = m**(r-1) mod n
        return self.key._unblind(mp, r)

    def _blind(self, m, r):
        return self.key._blind(m, r)

    def _unblind(self, m, r):
        return self.key._unblind(m, r)

    def _sign(self, m, K=None):
        return (self.key._sign(m),)

    def _verify(self, m, sig):
        #(s,) = sig
        (s,) = sig[:1]  # HACK - We should use the previous line instead, but
                        # this is more compatible and we're going to replace
                        # the Crypto.PublicKey API soon anyway.
        return self.key._verify(m, s)

    def has_private(self):
        return self.key.has_private()

    def size(self):
        return self.key.size()

    def can_blind(self):
        return True

    def can_encrypt(self):
        return True

    def can_sign(self):
        return True

    def publickey(self):
        return self.implementation.construct((self.key.n, self.key.e))

    def __getstate__(self):
        d = {}
        for k in self.keydata:
            try:
                d[k] = getattr(self.key, k)
            except AttributeError:
                pass
        return d

    def __setstate__(self, d):
        if not hasattr(self, 'implementation'):
            self.implementation = RSAImplementation()
        t = []
        for k in self.keydata:
            if not d.has_key(k):
                break
            t.append(d[k])
        self.key = self.implementation._math.rsa_construct(*tuple(t))

    def __repr__(self):
        attrs = []
        for k in self.keydata:
            if k == 'n':
                attrs.append("n(%d)" % (self.size()+1,))
            elif hasattr(self.key, k):
                attrs.append(k)
        if self.has_private():
            attrs.append("private")
        # PY3K: This is meant to be text, do not change to bytes (data)
        return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))

    def exportKey(self, format='PEM'):
        """Export the RSA key. A string is returned
        with the encoded public or the private half
        under the selected format.

        format:		'DER' (PKCS#1) or 'PEM' (RFC1421)
        """
        der = DerSequence()
        if self.has_private():
            keyType = "RSA PRIVATE"
            der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
                   self.d % (self.p-1), self.d % (self.q-1),
                   inverse(self.q, self.p) ]
        else:
            keyType = "PUBLIC"
            der.append(b('\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00'))
            bitmap = DerObject('BIT STRING')
            derPK = DerSequence()
            derPK[:] = [ self.n, self.e ]
            bitmap.payload = b('\x00') + derPK.encode()
            der.append(bitmap.encode())
        if format=='DER':
            return der.encode()
        if format=='PEM':
            pem = b("-----BEGIN %s KEY-----\n" % keyType)
            binaryKey = der.encode()
            # Each BASE64 line can take up to 64 characters (=48 bytes of data)
            chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
            pem += b('').join(chunks)
            pem += b("-----END %s KEY-----" % keyType)
            return pem
        return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)

class RSAImplementation(object):
    def __init__(self, **kwargs):
        # 'use_fast_math' parameter:
        #   None (default) - Use fast math if available; Use slow math if not.
        #   True - Use fast math, and raise RuntimeError if it's not available.
        #   False - Use slow math.
        use_fast_math = kwargs.get('use_fast_math', None)
        if use_fast_math is None:   # Automatic
            if _fastmath is not None:
                self._math = _fastmath
            else:
                self._math = _slowmath

        elif use_fast_math:     # Explicitly select fast math
            if _fastmath is not None:
                self._math = _fastmath
            else:
                raise RuntimeError("fast math module not available")

        else:   # Explicitly select slow math
            self._math = _slowmath

        self.error = self._math.error

        # 'default_randfunc' parameter:
        #   None (default) - use Random.new().read
        #   not None       - use the specified function
        self._default_randfunc = kwargs.get('default_randfunc', None)
        self._current_randfunc = None

    def _get_randfunc(self, randfunc):
        if randfunc is not None:
            return randfunc
        elif self._current_randfunc is None:
            self._current_randfunc = Random.new().read
        return self._current_randfunc

    def generate(self, bits, randfunc=None, progress_func=None):
        if bits < 1024 or (bits & 0xff) != 0:
            # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
            raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
        rf = self._get_randfunc(randfunc)
        obj = _RSA.generate_py(bits, rf, progress_func)    # TODO: Don't use legacy _RSA module
        key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
        return _RSAobj(self, key)

    def construct(self, tup):
        key = self._math.rsa_construct(*tup)
        return _RSAobj(self, key)

    def _importKeyDER(self, externKey):
        der = DerSequence()
        der.decode(externKey, True)
        if len(der)==9 and der.hasOnlyInts() and der[0]==0:
            # ASN.1 RSAPrivateKey element
            del der[6:]	# Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
            der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
            del der[0]	# Remove version
            return self.construct(der[:])
        if len(der)==2:
            # The DER object is a SEQUENCE with two elements:
            # a SubjectPublicKeyInfo SEQUENCE and an opaque BIT STRING.
            #
            # The first element is always the same:
            # 0x30 0x0D     SEQUENCE, 12 bytes of payload
            #   0x06 0x09   OBJECT IDENTIFIER, 9 bytes of payload
            #     0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
            #               rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
            #   0x05 0x00   NULL
            #
            # The second encapsulates the actual ASN.1 RSAPublicKey element.
            if der[0]==b('\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00'):
                bitmap = DerObject()
                bitmap.decode(der[1], True)
                if bitmap.typeTag==b('\x03')[0] and bitmap.payload[0]==b('\x00')[0]:
                    der.decode(bitmap.payload[1:], True)
                    if len(der)==2 and der.hasOnlyInts():
                        return self.construct(der[:])
        raise ValueError("RSA key format is not supported")

    def importKey(self, externKey):
        """Import an RSA key (public or private half).

        externKey:	the RSA key to import, encoded as bytes.
                The key can be in DER (PKCS#1) or in unencrypted
                PEM format (RFC1421).

        Raises a ValueError/IndexError if the given key cannot be parsed.
        """
        if isinstance(externKey, unicode) and externKey.startswith("-----"):
            # Convert unicode to bytes for PEM encoded keys
            externKey = externKey.encode('ascii')
        if externKey.startswith(b('-----')):
            # This is probably a PEM encoded key
            lines = externKey.replace(b(" "),b('')).split()
            der = binascii.a2b_base64(b('').join(lines[1:-1]))
            return self._importKeyDER(der)
        if externKey[0]==b('\x30')[0]:
            # This is probably a DER encoded key
            return self._importKeyDER(externKey)
        raise ValueError("RSA key format is not supported")

_impl = RSAImplementation()
generate = _impl.generate
construct = _impl.construct
importKey = _impl.importKey
error = _impl.error

# vim:set ts=4 sw=4 sts=4 expandtab: