/usr/share/pyshared/PIL/ImageChops.py is in python-imaging 1.1.7-4ubuntu0.12.04.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | #
# The Python Imaging Library.
# $Id$
#
# standard channel operations
#
# History:
# 1996-03-24 fl Created
# 1996-08-13 fl Added logical operations (for "1" images)
# 2000-10-12 fl Added offset method (from Image.py)
#
# Copyright (c) 1997-2000 by Secret Labs AB
# Copyright (c) 1996-2000 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
import Image
##
# The <b>ImageChops</b> module contains a number of arithmetical image
# operations, called <i>channel operations</i> ("chops"). These can be
# used for various purposes, including special effects, image
# compositions, algorithmic painting, and more.
# <p>
# At this time, channel operations are only implemented for 8-bit
# images (e.g. "L" and "RGB").
# <p>
# Most channel operations take one or two image arguments and returns
# a new image. Unless otherwise noted, the result of a channel
# operation is always clipped to the range 0 to MAX (which is 255 for
# all modes supported by the operations in this module).
##
##
# Return an image with the same size as the given image, but filled
# with the given pixel value.
#
# @param image Reference image.
# @param value Pixel value.
# @return An image object.
def constant(image, value):
"Fill a channel with a given grey level"
return Image.new("L", image.size, value)
##
# Copy image.
#
# @param image Source image.
# @return A copy of the source image.
def duplicate(image):
"Create a copy of a channel"
return image.copy()
##
# Inverts an image
# (MAX - image).
#
# @param image Source image.
# @return An image object.
def invert(image):
"Invert a channel"
image.load()
return image._new(image.im.chop_invert())
##
# Compare images, and return lighter pixel value
# (max(image1, image2)).
# <p>
# Compares the two images, pixel by pixel, and returns a new image
# containing the lighter values.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def lighter(image1, image2):
"Select the lighter pixels from each image"
image1.load()
image2.load()
return image1._new(image1.im.chop_lighter(image2.im))
##
# Compare images, and return darker pixel value
# (min(image1, image2)).
# <p>
# Compares the two images, pixel by pixel, and returns a new image
# containing the darker values.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def darker(image1, image2):
"Select the darker pixels from each image"
image1.load()
image2.load()
return image1._new(image1.im.chop_darker(image2.im))
##
# Calculate absolute difference
# (abs(image1 - image2)).
# <p>
# Returns the absolute value of the difference between the two images.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def difference(image1, image2):
"Subtract one image from another"
image1.load()
image2.load()
return image1._new(image1.im.chop_difference(image2.im))
##
# Superimpose positive images
# (image1 * image2 / MAX).
# <p>
# Superimposes two images on top of each other. If you multiply an
# image with a solid black image, the result is black. If you multiply
# with a solid white image, the image is unaffected.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def multiply(image1, image2):
"Superimpose two positive images"
image1.load()
image2.load()
return image1._new(image1.im.chop_multiply(image2.im))
##
# Superimpose negative images
# (MAX - ((MAX - image1) * (MAX - image2) / MAX)).
# <p>
# Superimposes two inverted images on top of each other.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def screen(image1, image2):
"Superimpose two negative images"
image1.load()
image2.load()
return image1._new(image1.im.chop_screen(image2.im))
##
# Add images
# ((image1 + image2) / scale + offset).
# <p>
# Adds two images, dividing the result by scale and adding the
# offset. If omitted, scale defaults to 1.0, and offset to 0.0.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def add(image1, image2, scale=1.0, offset=0):
"Add two images"
image1.load()
image2.load()
return image1._new(image1.im.chop_add(image2.im, scale, offset))
##
# Subtract images
# ((image1 - image2) / scale + offset).
# <p>
# Subtracts two images, dividing the result by scale and adding the
# offset. If omitted, scale defaults to 1.0, and offset to 0.0.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def subtract(image1, image2, scale=1.0, offset=0):
"Subtract two images"
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
##
# Add images without clipping
# ((image1 + image2) % MAX).
# <p>
# Adds two images, without clipping the result.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def add_modulo(image1, image2):
"Add two images without clipping"
image1.load()
image2.load()
return image1._new(image1.im.chop_add_modulo(image2.im))
##
# Subtract images without clipping
# ((image1 - image2) % MAX).
# <p>
# Subtracts two images, without clipping the result.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.
def subtract_modulo(image1, image2):
"Subtract two images without clipping"
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract_modulo(image2.im))
##
# Logical AND
# (image1 and image2).
def logical_and(image1, image2):
"Logical and between two images"
image1.load()
image2.load()
return image1._new(image1.im.chop_and(image2.im))
##
# Logical OR
# (image1 or image2).
def logical_or(image1, image2):
"Logical or between two images"
image1.load()
image2.load()
return image1._new(image1.im.chop_or(image2.im))
##
# Logical XOR
# (image1 xor image2).
def logical_xor(image1, image2):
"Logical xor between two images"
image1.load()
image2.load()
return image1._new(image1.im.chop_xor(image2.im))
##
# Blend images using constant transparency weight.
# <p>
# Same as the <b>blend</b> function in the <b>Image</b> module.
def blend(image1, image2, alpha):
"Blend two images using a constant transparency weight"
return Image.blend(image1, image2, alpha)
##
# Create composite using transparency mask.
# <p>
# Same as the <b>composite</b> function in the <b>Image</b> module.
def composite(image1, image2, mask):
"Create composite image by blending images using a transparency mask"
return Image.composite(image1, image2, mask)
##
# Offset image data.
# <p>
# Returns a copy of the image where data has been offset by the given
# distances. Data wraps around the edges. If yoffset is omitted, it
# is assumed to be equal to xoffset.
#
# @param image Source image.
# @param xoffset The horizontal distance.
# @param yoffset The vertical distance. If omitted, both
# distances are set to the same value.
# @return An Image object.
def offset(image, xoffset, yoffset=None):
"Offset image in horizontal and/or vertical direction"
if yoffset is None:
yoffset = xoffset
image.load()
return image._new(image.im.offset(xoffset, yoffset))
|