This file is indexed.

/usr/share/pyshared/PIL/ImageChops.py is in python-imaging 1.1.7-4ubuntu0.12.04.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#
# The Python Imaging Library.
# $Id$
#
# standard channel operations
#
# History:
# 1996-03-24 fl   Created
# 1996-08-13 fl   Added logical operations (for "1" images)
# 2000-10-12 fl   Added offset method (from Image.py)
#
# Copyright (c) 1997-2000 by Secret Labs AB
# Copyright (c) 1996-2000 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#

import Image

##
# The <b>ImageChops</b> module contains a number of arithmetical image
# operations, called <i>channel operations</i> ("chops"). These can be
# used for various purposes, including special effects, image
# compositions, algorithmic painting, and more.
# <p>
# At this time, channel operations are only implemented for 8-bit
# images (e.g. &quot;L&quot; and &quot;RGB&quot;).
# <p>
# Most channel operations take one or two image arguments and returns
# a new image.  Unless otherwise noted, the result of a channel
# operation is always clipped to the range 0 to MAX (which is 255 for
# all modes supported by the operations in this module).
##

##
# Return an image with the same size as the given image, but filled
# with the given pixel value.
#
# @param image Reference image.
# @param value Pixel value.
# @return An image object.

def constant(image, value):
    "Fill a channel with a given grey level"

    return Image.new("L", image.size, value)

##
# Copy image.
#
# @param image Source image.
# @return A copy of the source image.

def duplicate(image):
    "Create a copy of a channel"

    return image.copy()

##
# Inverts an image
# (MAX - image).
#
# @param image Source image.
# @return An image object.

def invert(image):
    "Invert a channel"

    image.load()
    return image._new(image.im.chop_invert())

##
# Compare images, and return lighter pixel value
# (max(image1, image2)).
# <p>
# Compares the two images, pixel by pixel, and returns a new image
# containing the lighter values.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def lighter(image1, image2):
    "Select the lighter pixels from each image"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_lighter(image2.im))

##
# Compare images, and return darker pixel value
# (min(image1, image2)).
# <p>
# Compares the two images, pixel by pixel, and returns a new image
# containing the darker values.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def darker(image1, image2):
    "Select the darker pixels from each image"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_darker(image2.im))

##
# Calculate absolute difference
# (abs(image1 - image2)).
# <p>
# Returns the absolute value of the difference between the two images.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def difference(image1, image2):
    "Subtract one image from another"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_difference(image2.im))

##
# Superimpose positive images
# (image1 * image2 / MAX).
# <p>
# Superimposes two images on top of each other. If you multiply an
# image with a solid black image, the result is black. If you multiply
# with a solid white image, the image is unaffected.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def multiply(image1, image2):
    "Superimpose two positive images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_multiply(image2.im))

##
# Superimpose negative images
# (MAX - ((MAX - image1) * (MAX - image2) / MAX)).
# <p>
# Superimposes two inverted images on top of each other.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def screen(image1, image2):
    "Superimpose two negative images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_screen(image2.im))

##
# Add images
# ((image1 + image2) / scale + offset).
# <p>
# Adds two images, dividing the result by scale and adding the
# offset. If omitted, scale defaults to 1.0, and offset to 0.0.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def add(image1, image2, scale=1.0, offset=0):
    "Add two images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_add(image2.im, scale, offset))

##
# Subtract images
# ((image1 - image2) / scale + offset).
# <p>
# Subtracts two images, dividing the result by scale and adding the
# offset. If omitted, scale defaults to 1.0, and offset to 0.0.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def subtract(image1, image2, scale=1.0, offset=0):
    "Subtract two images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_subtract(image2.im, scale, offset))

##
# Add images without clipping
# ((image1 + image2) % MAX).
# <p>
# Adds two images, without clipping the result.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def add_modulo(image1, image2):
    "Add two images without clipping"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_add_modulo(image2.im))

##
# Subtract images without clipping
# ((image1 - image2) % MAX).
# <p>
# Subtracts two images, without clipping the result.
#
# @param image1 First image.
# @param image1 Second image.
# @return An image object.

def subtract_modulo(image1, image2):
    "Subtract two images without clipping"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_subtract_modulo(image2.im))

##
# Logical AND
# (image1 and image2).

def logical_and(image1, image2):
    "Logical and between two images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_and(image2.im))

##
# Logical OR
# (image1 or image2).

def logical_or(image1, image2):
    "Logical or between two images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_or(image2.im))

##
# Logical XOR
# (image1 xor image2).

def logical_xor(image1, image2):
    "Logical xor between two images"

    image1.load()
    image2.load()
    return image1._new(image1.im.chop_xor(image2.im))

##
# Blend images using constant transparency weight.
# <p>
# Same as the <b>blend</b> function in the <b>Image</b> module.

def blend(image1, image2, alpha):
    "Blend two images using a constant transparency weight"

    return Image.blend(image1, image2, alpha)

##
# Create composite using transparency mask.
# <p>
# Same as the <b>composite</b> function in the <b>Image</b> module.

def composite(image1, image2, mask):
    "Create composite image by blending images using a transparency mask"

    return Image.composite(image1, image2, mask)

##
# Offset image data.
# <p>
# Returns a copy of the image where data has been offset by the given
# distances.  Data wraps around the edges.  If yoffset is omitted, it
# is assumed to be equal to xoffset.
#
# @param image Source image.
# @param xoffset The horizontal distance.
# @param yoffset The vertical distance.  If omitted, both
#    distances are set to the same value.
# @return An Image object.

def offset(image, xoffset, yoffset=None):
    "Offset image in horizontal and/or vertical direction"
    if yoffset is None:
        yoffset = xoffset
    image.load()
    return image._new(image.im.offset(xoffset, yoffset))