/usr/share/pyshared/PIL/ImageOps.py is in python-imaging 1.1.7-4ubuntu0.12.04.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | #
# The Python Imaging Library.
# $Id$
#
# standard image operations
#
# History:
# 2001-10-20 fl Created
# 2001-10-23 fl Added autocontrast operator
# 2001-12-18 fl Added Kevin's fit operator
# 2004-03-14 fl Fixed potential division by zero in equalize
# 2005-05-05 fl Fixed equalize for low number of values
#
# Copyright (c) 2001-2004 by Secret Labs AB
# Copyright (c) 2001-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
import Image
import operator
##
# (New in 1.1.3) The <b>ImageOps</b> module contains a number of
# 'ready-made' image processing operations. This module is somewhat
# experimental, and most operators only work on L and RGB images.
#
# @since 1.1.3
##
#
# helpers
def _border(border):
if type(border) is type(()):
if len(border) == 2:
left, top = right, bottom = border
elif len(border) == 4:
left, top, right, bottom = border
else:
left = top = right = bottom = border
return left, top, right, bottom
def _color(color, mode):
if Image.isStringType(color):
import ImageColor
color = ImageColor.getcolor(color, mode)
return color
def _lut(image, lut):
if image.mode == "P":
# FIXME: apply to lookup table, not image data
raise NotImplementedError("mode P support coming soon")
elif image.mode in ("L", "RGB"):
if image.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return image.point(lut)
else:
raise IOError, "not supported for this image mode"
#
# actions
##
# Maximize (normalize) image contrast. This function calculates a
# histogram of the input image, removes <i>cutoff</i> percent of the
# lightest and darkest pixels from the histogram, and remaps the image
# so that the darkest pixel becomes black (0), and the lightest
# becomes white (255).
#
# @param image The image to process.
# @param cutoff How many percent to cut off from the histogram.
# @param ignore The background pixel value (use None for no background).
# @return An image.
def autocontrast(image, cutoff=0, ignore=None):
"Maximize image contrast, based on histogram"
histogram = image.histogram()
lut = []
for layer in range(0, len(histogram), 256):
h = histogram[layer:layer+256]
if ignore is not None:
# get rid of outliers
try:
h[ignore] = 0
except TypeError:
# assume sequence
for ix in ignore:
h[ix] = 0
if cutoff:
# cut off pixels from both ends of the histogram
# get number of pixels
n = 0
for ix in range(256):
n = n + h[ix]
# remove cutoff% pixels from the low end
cut = n * cutoff / 100
for lo in range(256):
if cut > h[lo]:
cut = cut - h[lo]
h[lo] = 0
else:
h[lo] = h[lo] - cut
cut = 0
if cut <= 0:
break
# remove cutoff% samples from the hi end
cut = n * cutoff / 100
for hi in range(255, -1, -1):
if cut > h[hi]:
cut = cut - h[hi]
h[hi] = 0
else:
h[hi] = h[hi] - cut
cut = 0
if cut <= 0:
break
# find lowest/highest samples after preprocessing
for lo in range(256):
if h[lo]:
break
for hi in range(255, -1, -1):
if h[hi]:
break
if hi <= lo:
# don't bother
lut.extend(range(256))
else:
scale = 255.0 / (hi - lo)
offset = -lo * scale
for ix in range(256):
ix = int(ix * scale + offset)
if ix < 0:
ix = 0
elif ix > 255:
ix = 255
lut.append(ix)
return _lut(image, lut)
##
# Colorize grayscale image. The <i>black</i> and <i>white</i>
# arguments should be RGB tuples; this function calculates a colour
# wedge mapping all black pixels in the source image to the first
# colour, and all white pixels to the second colour.
#
# @param image The image to colourize.
# @param black The colour to use for black input pixels.
# @param white The colour to use for white input pixels.
# @return An image.
def colorize(image, black, white):
"Colorize a grayscale image"
assert image.mode == "L"
black = _color(black, "RGB")
white = _color(white, "RGB")
red = []; green = []; blue = []
for i in range(256):
red.append(black[0]+i*(white[0]-black[0])/255)
green.append(black[1]+i*(white[1]-black[1])/255)
blue.append(black[2]+i*(white[2]-black[2])/255)
image = image.convert("RGB")
return _lut(image, red + green + blue)
##
# Remove border from image. The same amount of pixels are removed
# from all four sides. This function works on all image modes.
#
# @param image The image to crop.
# @param border The number of pixels to remove.
# @return An image.
# @see Image#Image.crop
def crop(image, border=0):
"Crop border off image"
left, top, right, bottom = _border(border)
return image.crop(
(left, top, image.size[0]-right, image.size[1]-bottom)
)
##
# Deform the image.
#
# @param image The image to deform.
# @param deformer A deformer object. Any object that implements a
# <b>getmesh</b> method can be used.
# @param resample What resampling filter to use.
# @return An image.
def deform(image, deformer, resample=Image.BILINEAR):
"Deform image using the given deformer"
return image.transform(
image.size, Image.MESH, deformer.getmesh(image), resample
)
##
# Equalize the image histogram. This function applies a non-linear
# mapping to the input image, in order to create a uniform
# distribution of grayscale values in the output image.
#
# @param image The image to equalize.
# @param mask An optional mask. If given, only the pixels selected by
# the mask are included in the analysis.
# @return An image.
def equalize(image, mask=None):
"Equalize image histogram"
if image.mode == "P":
image = image.convert("RGB")
h = image.histogram(mask)
lut = []
for b in range(0, len(h), 256):
histo = filter(None, h[b:b+256])
if len(histo) <= 1:
lut.extend(range(256))
else:
step = (reduce(operator.add, histo) - histo[-1]) / 255
if not step:
lut.extend(range(256))
else:
n = step / 2
for i in range(256):
lut.append(n / step)
n = n + h[i+b]
return _lut(image, lut)
##
# Add border to the image
#
# @param image The image to expand.
# @param border Border width, in pixels.
# @param fill Pixel fill value (a colour value). Default is 0 (black).
# @return An image.
def expand(image, border=0, fill=0):
"Add border to image"
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
out = Image.new(image.mode, (width, height), _color(fill, image.mode))
out.paste(image, (left, top))
return out
##
# Returns a sized and cropped version of the image, cropped to the
# requested aspect ratio and size.
# <p>
# The <b>fit</b> function was contributed by Kevin Cazabon.
#
# @param size The requested output size in pixels, given as a
# (width, height) tuple.
# @param method What resampling method to use. Default is Image.NEAREST.
# @param bleed Remove a border around the outside of the image (from all
# four edges. The value is a decimal percentage (use 0.01 for one
# percent). The default value is 0 (no border).
# @param centering Control the cropping position. Use (0.5, 0.5) for
# center cropping (e.g. if cropping the width, take 50% off of the
# left side, and therefore 50% off the right side). (0.0, 0.0)
# will crop from the top left corner (i.e. if cropping the width,
# take all of the crop off of the right side, and if cropping the
# height, take all of it off the bottom). (1.0, 0.0) will crop
# from the bottom left corner, etc. (i.e. if cropping the width,
# take all of the crop off the left side, and if cropping the height
# take none from the top, and therefore all off the bottom).
# @return An image.
def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
"""
This method returns a sized and cropped version of the image,
cropped to the aspect ratio and size that you request.
"""
# by Kevin Cazabon, Feb 17/2000
# kevin@cazabon.com
# http://www.cazabon.com
# ensure inputs are valid
if type(centering) != type([]):
centering = [centering[0], centering[1]]
if centering[0] > 1.0 or centering[0] < 0.0:
centering [0] = 0.50
if centering[1] > 1.0 or centering[1] < 0.0:
centering[1] = 0.50
if bleed > 0.49999 or bleed < 0.0:
bleed = 0.0
# calculate the area to use for resizing and cropping, subtracting
# the 'bleed' around the edges
# number of pixels to trim off on Top and Bottom, Left and Right
bleedPixels = (
int((float(bleed) * float(image.size[0])) + 0.5),
int((float(bleed) * float(image.size[1])) + 0.5)
)
liveArea = (
bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
image.size[1] - bleedPixels[1] - 1
)
liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
# calculate the aspect ratio of the liveArea
liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
# calculate the aspect ratio of the output image
aspectRatio = float(size[0]) / float(size[1])
# figure out if the sides or top/bottom will be cropped off
if liveAreaAspectRatio >= aspectRatio:
# liveArea is wider than what's needed, crop the sides
cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
cropHeight = liveSize[1]
else:
# liveArea is taller than what's needed, crop the top and bottom
cropWidth = liveSize[0]
cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
# make the crop
leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
if leftSide < 0:
leftSide = 0
topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
if topSide < 0:
topSide = 0
out = image.crop(
(leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
)
# resize the image and return it
return out.resize(size, method)
##
# Flip the image vertically (top to bottom).
#
# @param image The image to flip.
# @return An image.
def flip(image):
"Flip image vertically"
return image.transpose(Image.FLIP_TOP_BOTTOM)
##
# Convert the image to grayscale.
#
# @param image The image to convert.
# @return An image.
def grayscale(image):
"Convert to grayscale"
return image.convert("L")
##
# Invert (negate) the image.
#
# @param image The image to invert.
# @return An image.
def invert(image):
"Invert image (negate)"
lut = []
for i in range(256):
lut.append(255-i)
return _lut(image, lut)
##
# Flip image horizontally (left to right).
#
# @param image The image to mirror.
# @return An image.
def mirror(image):
"Flip image horizontally"
return image.transpose(Image.FLIP_LEFT_RIGHT)
##
# Reduce the number of bits for each colour channel.
#
# @param image The image to posterize.
# @param bits The number of bits to keep for each channel (1-8).
# @return An image.
def posterize(image, bits):
"Reduce the number of bits per color channel"
lut = []
mask = ~(2**(8-bits)-1)
for i in range(256):
lut.append(i & mask)
return _lut(image, lut)
##
# Invert all pixel values above a threshold.
#
# @param image The image to posterize.
# @param threshold All pixels above this greyscale level are inverted.
# @return An image.
def solarize(image, threshold=128):
"Invert all values above threshold"
lut = []
for i in range(256):
if i < threshold:
lut.append(i)
else:
lut.append(255-i)
return _lut(image, lut)
# --------------------------------------------------------------------
# PIL USM components, from Kevin Cazabon.
def gaussian_blur(im, radius=None):
""" PIL_usm.gblur(im, [radius])"""
if radius is None:
radius = 5.0
im.load()
return im.im.gaussian_blur(radius)
gblur = gaussian_blur
def unsharp_mask(im, radius=None, percent=None, threshold=None):
""" PIL_usm.usm(im, [radius, percent, threshold])"""
if radius is None:
radius = 5.0
if percent is None:
percent = 150
if threshold is None:
threshold = 3
im.load()
return im.im.unsharp_mask(radius, percent, threshold)
usm = unsharp_mask
|