This file is indexed.

/usr/share/pyshared/PIL/ImageOps.py is in python-imaging 1.1.7-4ubuntu0.12.04.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#
# The Python Imaging Library.
# $Id$
#
# standard image operations
#
# History:
# 2001-10-20 fl   Created
# 2001-10-23 fl   Added autocontrast operator
# 2001-12-18 fl   Added Kevin's fit operator
# 2004-03-14 fl   Fixed potential division by zero in equalize
# 2005-05-05 fl   Fixed equalize for low number of values
#
# Copyright (c) 2001-2004 by Secret Labs AB
# Copyright (c) 2001-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#

import Image
import operator

##
# (New in 1.1.3) The <b>ImageOps</b> module contains a number of
# 'ready-made' image processing operations.  This module is somewhat
# experimental, and most operators only work on L and RGB images.
#
# @since 1.1.3
##

#
# helpers

def _border(border):
    if type(border) is type(()):
        if len(border) == 2:
            left, top = right, bottom = border
        elif len(border) == 4:
            left, top, right, bottom = border
    else:
        left = top = right = bottom = border
    return left, top, right, bottom

def _color(color, mode):
    if Image.isStringType(color):
        import ImageColor
        color = ImageColor.getcolor(color, mode)
    return color

def _lut(image, lut):
    if image.mode == "P":
        # FIXME: apply to lookup table, not image data
        raise NotImplementedError("mode P support coming soon")
    elif image.mode in ("L", "RGB"):
        if image.mode == "RGB" and len(lut) == 256:
            lut = lut + lut + lut
        return image.point(lut)
    else:
        raise IOError, "not supported for this image mode"

#
# actions

##
# Maximize (normalize) image contrast.  This function calculates a
# histogram of the input image, removes <i>cutoff</i> percent of the
# lightest and darkest pixels from the histogram, and remaps the image
# so that the darkest pixel becomes black (0), and the lightest
# becomes white (255).
#
# @param image The image to process.
# @param cutoff How many percent to cut off from the histogram.
# @param ignore The background pixel value (use None for no background).
# @return An image.

def autocontrast(image, cutoff=0, ignore=None):
    "Maximize image contrast, based on histogram"
    histogram = image.histogram()
    lut = []
    for layer in range(0, len(histogram), 256):
        h = histogram[layer:layer+256]
        if ignore is not None:
            # get rid of outliers
            try:
                h[ignore] = 0
            except TypeError:
                # assume sequence
                for ix in ignore:
                    h[ix] = 0
        if cutoff:
            # cut off pixels from both ends of the histogram
            # get number of pixels
            n = 0
            for ix in range(256):
                n = n + h[ix]
            # remove cutoff% pixels from the low end
            cut = n * cutoff / 100
            for lo in range(256):
                if cut > h[lo]:
                    cut = cut - h[lo]
                    h[lo] = 0
                else:
                    h[lo] = h[lo] - cut
                    cut = 0
                if cut <= 0:
                    break
            # remove cutoff% samples from the hi end
            cut = n * cutoff / 100
            for hi in range(255, -1, -1):
                if cut > h[hi]:
                    cut = cut - h[hi]
                    h[hi] = 0
                else:
                    h[hi] = h[hi] - cut
                    cut = 0
                if cut <= 0:
                    break
        # find lowest/highest samples after preprocessing
        for lo in range(256):
            if h[lo]:
                break
        for hi in range(255, -1, -1):
            if h[hi]:
                break
        if hi <= lo:
            # don't bother
            lut.extend(range(256))
        else:
            scale = 255.0 / (hi - lo)
            offset = -lo * scale
            for ix in range(256):
                ix = int(ix * scale + offset)
                if ix < 0:
                    ix = 0
                elif ix > 255:
                    ix = 255
                lut.append(ix)
    return _lut(image, lut)

##
# Colorize grayscale image.  The <i>black</i> and <i>white</i>
# arguments should be RGB tuples; this function calculates a colour
# wedge mapping all black pixels in the source image to the first
# colour, and all white pixels to the second colour.
#
# @param image The image to colourize.
# @param black The colour to use for black input pixels.
# @param white The colour to use for white input pixels.
# @return An image.

def colorize(image, black, white):
    "Colorize a grayscale image"
    assert image.mode == "L"
    black = _color(black, "RGB")
    white = _color(white, "RGB")
    red = []; green = []; blue = []
    for i in range(256):
        red.append(black[0]+i*(white[0]-black[0])/255)
        green.append(black[1]+i*(white[1]-black[1])/255)
        blue.append(black[2]+i*(white[2]-black[2])/255)
    image = image.convert("RGB")
    return _lut(image, red + green + blue)

##
# Remove border from image.  The same amount of pixels are removed
# from all four sides.  This function works on all image modes.
#
# @param image The image to crop.
# @param border The number of pixels to remove.
# @return An image.
# @see Image#Image.crop

def crop(image, border=0):
    "Crop border off image"
    left, top, right, bottom = _border(border)
    return image.crop(
        (left, top, image.size[0]-right, image.size[1]-bottom)
        )

##
# Deform the image.
#
# @param image The image to deform.
# @param deformer A deformer object.  Any object that implements a
#     <b>getmesh</b> method can be used.
# @param resample What resampling filter to use.
# @return An image.

def deform(image, deformer, resample=Image.BILINEAR):
    "Deform image using the given deformer"
    return image.transform(
        image.size, Image.MESH, deformer.getmesh(image), resample
        )

##
# Equalize the image histogram.  This function applies a non-linear
# mapping to the input image, in order to create a uniform
# distribution of grayscale values in the output image.
#
# @param image The image to equalize.
# @param mask An optional mask.  If given, only the pixels selected by
#     the mask are included in the analysis.
# @return An image.

def equalize(image, mask=None):
    "Equalize image histogram"
    if image.mode == "P":
        image = image.convert("RGB")
    h = image.histogram(mask)
    lut = []
    for b in range(0, len(h), 256):
        histo = filter(None, h[b:b+256])
        if len(histo) <= 1:
            lut.extend(range(256))
        else:
            step = (reduce(operator.add, histo) - histo[-1]) / 255
            if not step:
                lut.extend(range(256))
            else:
                n = step / 2
                for i in range(256):
                    lut.append(n / step)
                    n = n + h[i+b]
    return _lut(image, lut)

##
# Add border to the image
#
# @param image The image to expand.
# @param border Border width, in pixels.
# @param fill Pixel fill value (a colour value).  Default is 0 (black).
# @return An image.

def expand(image, border=0, fill=0):
    "Add border to image"
    left, top, right, bottom = _border(border)
    width = left + image.size[0] + right
    height = top + image.size[1] + bottom
    out = Image.new(image.mode, (width, height), _color(fill, image.mode))
    out.paste(image, (left, top))
    return out

##
# Returns a sized and cropped version of the image, cropped to the
# requested aspect ratio and size.
# <p>
# The <b>fit</b> function was contributed by Kevin Cazabon.
#
# @param size The requested output size in pixels, given as a
#     (width, height) tuple.
# @param method What resampling method to use.  Default is Image.NEAREST.
# @param bleed Remove a border around the outside of the image (from all
#     four edges.  The value is a decimal percentage (use 0.01 for one
#     percent).  The default value is 0 (no border).
# @param centering Control the cropping position.  Use (0.5, 0.5) for
#     center cropping (e.g. if cropping the width, take 50% off of the
#     left side, and therefore 50% off the right side).  (0.0, 0.0)
#     will crop from the top left corner (i.e. if cropping the width,
#     take all of the crop off of the right side, and if cropping the
#     height, take all of it off the bottom).  (1.0, 0.0) will crop
#     from the bottom left corner, etc. (i.e. if cropping the width,
#     take all of the crop off the left side, and if cropping the height
#     take none from the top, and therefore all off the bottom).
# @return An image.

def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
    """
    This method returns a sized and cropped version of the image,
    cropped to the aspect ratio and size that you request.
    """

    # by Kevin Cazabon, Feb 17/2000
    # kevin@cazabon.com
    # http://www.cazabon.com

    # ensure inputs are valid
    if type(centering) != type([]):
        centering = [centering[0], centering[1]]

    if centering[0] > 1.0 or centering[0] < 0.0:
        centering [0] = 0.50
    if centering[1] > 1.0 or centering[1] < 0.0:
        centering[1] = 0.50

    if bleed > 0.49999 or bleed < 0.0:
        bleed = 0.0

    # calculate the area to use for resizing and cropping, subtracting
    # the 'bleed' around the edges

    # number of pixels to trim off on Top and Bottom, Left and Right
    bleedPixels = (
        int((float(bleed) * float(image.size[0])) + 0.5),
        int((float(bleed) * float(image.size[1])) + 0.5)
        )

    liveArea = (
        bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
        image.size[1] - bleedPixels[1] - 1
        )

    liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])

    # calculate the aspect ratio of the liveArea
    liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])

    # calculate the aspect ratio of the output image
    aspectRatio = float(size[0]) / float(size[1])

    # figure out if the sides or top/bottom will be cropped off
    if liveAreaAspectRatio >= aspectRatio:
        # liveArea is wider than what's needed, crop the sides
        cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
        cropHeight = liveSize[1]
    else:
        # liveArea is taller than what's needed, crop the top and bottom
        cropWidth = liveSize[0]
        cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)

    # make the crop
    leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
    if leftSide < 0:
        leftSide = 0
    topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
    if topSide < 0:
        topSide = 0

    out = image.crop(
        (leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
        )

    # resize the image and return it
    return out.resize(size, method)

##
# Flip the image vertically (top to bottom).
#
# @param image The image to flip.
# @return An image.

def flip(image):
    "Flip image vertically"
    return image.transpose(Image.FLIP_TOP_BOTTOM)

##
# Convert the image to grayscale.
#
# @param image The image to convert.
# @return An image.

def grayscale(image):
    "Convert to grayscale"
    return image.convert("L")

##
# Invert (negate) the image.
#
# @param image The image to invert.
# @return An image.

def invert(image):
    "Invert image (negate)"
    lut = []
    for i in range(256):
        lut.append(255-i)
    return _lut(image, lut)

##
# Flip image horizontally (left to right).
#
# @param image The image to mirror.
# @return An image.

def mirror(image):
    "Flip image horizontally"
    return image.transpose(Image.FLIP_LEFT_RIGHT)

##
# Reduce the number of bits for each colour channel.
#
# @param image The image to posterize.
# @param bits The number of bits to keep for each channel (1-8).
# @return An image.

def posterize(image, bits):
    "Reduce the number of bits per color channel"
    lut = []
    mask = ~(2**(8-bits)-1)
    for i in range(256):
        lut.append(i & mask)
    return _lut(image, lut)

##
# Invert all pixel values above a threshold.
#
# @param image The image to posterize.
# @param threshold All pixels above this greyscale level are inverted.
# @return An image.

def solarize(image, threshold=128):
    "Invert all values above threshold"
    lut = []
    for i in range(256):
        if i < threshold:
            lut.append(i)
        else:
            lut.append(255-i)
    return _lut(image, lut)

# --------------------------------------------------------------------
# PIL USM components, from Kevin Cazabon.

def gaussian_blur(im, radius=None):
    """ PIL_usm.gblur(im, [radius])"""

    if radius is None:
        radius = 5.0

    im.load()

    return im.im.gaussian_blur(radius)

gblur = gaussian_blur

def unsharp_mask(im, radius=None, percent=None, threshold=None):
    """ PIL_usm.usm(im, [radius, percent, threshold])"""

    if radius is None:
        radius = 5.0
    if percent is None:
        percent = 150
    if threshold is None:
        threshold = 3

    im.load()

    return im.im.unsharp_mask(radius, percent, threshold)

usm = unsharp_mask