This file is indexed.

/usr/lib/python3.2/collections.py is in python3.2-minimal 3.2.3-0ubuntu3.8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
            'UserString', 'Counter', 'OrderedDict']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__

from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter
from keyword import iskeyword as _iskeyword
import sys as _sys
import heapq as _heapq
from weakref import proxy as _proxy
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
from reprlib import recursive_repr as _recursive_repr

################################################################################
### OrderedDict
################################################################################

class _Link(object):
    __slots__ = 'prev', 'next', 'key', '__weakref__'

class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
    # The prev links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.

    def __init__(self, *args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__hardroot = _Link()
            self.__root = root = _proxy(self.__hardroot)
            root.prev = root.next = root
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value,
                    dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            self.__map[key] = link = Link()
            root = self.__root
            last = root.prev
            link.prev, link.next, link.key = last, root, key
            last.next = link
            root.prev = proxy(link)
        dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link = self.__map.pop(key)
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root.next
        while curr is not root:
            yield curr.key
            curr = curr.next

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root.prev
        while curr is not root:
            yield curr.key
            curr = curr.prev

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value

    def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).

        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).

        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            last.next = root.prev = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            root.next = first.prev = link

    def __sizeof__(self):
        sizeof = _sys.getsizeof
        n = len(self) + 1                       # number of links including root
        size = sizeof(self.__dict__)            # instance dictionary
        size += sizeof(self.__map) * 2          # internal dict and inherited dict
        size += sizeof(self.__hardroot) * n     # link objects
        size += sizeof(self.__root) * n         # proxy objects
        return size

    update = __update = MutableMapping.update
    keys = MutableMapping.keys
    values = MutableMapping.values
    items = MutableMapping.items
    __ne__ = MutableMapping.__ne__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    @_recursive_repr()
    def __repr__(self):
        'od.__repr__() <==> repr(od)'
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))

    def __reduce__(self):
        'Return state information for pickling'
        items = [[k, self[k]] for k in self]
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return len(self)==len(other) and \
                   all(p==q for p, q in zip(self.items(), other.items()))
        return dict.__eq__(self, other)


################################################################################
### namedtuple
################################################################################

_class_template = '''\
from builtins import property as _property, tuple as _tuple
from operator import itemgetter as _itemgetter
from collections import OrderedDict

class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return self.__class__.__name__ + '({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    __dict__ = property(_asdict)

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % list(kwds))
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Parse and validate the field names.  Validation serves two purposes,
    # generating informative error messages and preventing template injection attacks.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
    field_names = list(map(str, field_names))
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: %r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name) for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )

    # Execute the template string in a temporary namespace and
    # support tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(__name__='namedtuple_%s' % typename)
    try:
        exec(class_definition, namespace)
    except SyntaxError as e:
        raise SyntaxError(e.msg + ':\n\n' + class_definition)
    result = namespace[typename]
    if verbose:
        print(class_definition)

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in enviroments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result


########################################################################
###  Counter
########################################################################

def _count_elements(mapping, iterable):
    'Tally elements from the iterable.'
    mapping_get = mapping.get
    for elem in iterable:
        mapping[elem] = mapping_get(elem, 0) + 1

try:                                    # Load C helper function if available
    from _collections import _count_elements
except ImportError:
    pass

class Counter(dict):
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abcdeabcdabcaba')  # count elements from a string

    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # total of all counts
    15

    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['b']                      # remove all 'b'
    >>> c['b']                          # now there are zero 'b'
    0

    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9

    >>> c.clear()                       # empty the counter
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]

    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3

    def __init__(self, iterable=None, **kwds):
        '''Create a new, empty Counter object.  And if given, count elements
        from an input iterable.  Or, initialize the count from another mapping
        of elements to their counts.

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args

        '''
        super().__init__()
        self.update(iterable, **kwds)

    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]

        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

    def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))

    # Override dict methods where necessary

    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

    def update(self, iterable=None, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.items():
                        self[elem] = count + self_get(elem, 0)
                else:
                    super().update(iterable) # fast path when counter is empty
            else:
                _count_elements(self, iterable)
        if kwds:
            self.update(kwds)

    def subtract(self, iterable=None, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1

        '''
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)

    def copy(self):
        'Return a shallow copy.'
        return self.__class__(self)

    def __reduce__(self):
        return self.__class__, (dict(self),)

    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            super().__delitem__(elem)

    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        try:
            items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
            return '%s({%s})' % (self.__class__.__name__, items)
        except TypeError:
            # handle case where values are not orderable
            return '{0}({1!r})'.format(self.__class__.__name__, dict(self))

    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()

    def __add__(self, other):
        '''Add counts from two counters.

        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count + other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.

        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count - other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count < 0:
                result[elem] = 0 - count
        return result

    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.

        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = other_count if count < other_count else count
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.

        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = count if count < other_count else other_count
            if newcount > 0:
                result[elem] = newcount
        return result


########################################################################
###  ChainMap (helper for configparser)
########################################################################

class _ChainMap(MutableMapping):
    ''' A ChainMap groups multiple dicts (or other mappings) together
    to create a single, updateable view.

    The underlying mappings are stored in a list.  That list is public and can
    accessed or updated using the *maps* attribute.  There is no other state.

    Lookups search the underlying mappings successively until a key is found.
    In contrast, writes, updates, and deletions only operate on the first
    mapping.

    '''

    def __init__(self, *maps):
        '''Initialize a ChainMap by setting *maps* to the given mappings.
        If no mappings are provided, a single empty dictionary is used.

        '''
        self.maps = list(maps) or [{}]          # always at least one map

    def __missing__(self, key):
        raise KeyError(key)

    def __getitem__(self, key):
        for mapping in self.maps:
            try:
                return mapping[key]             # can't use 'key in mapping' with defaultdict
            except KeyError:
                pass
        return self.__missing__(key)            # support subclasses that define __missing__

    def get(self, key, default=None):
        return self[key] if key in self else default

    def __len__(self):
        return len(set().union(*self.maps))     # reuses stored hash values if possible

    def __iter__(self):
        return iter(set().union(*self.maps))

    def __contains__(self, key):
        return any(key in m for m in self.maps)

    def __bool__(self):
        return any(self.maps)

    @_recursive_repr()
    def __repr__(self):
        return '{0.__class__.__name__}({1})'.format(
            self, ', '.join(map(repr, self.maps)))

    @classmethod
    def fromkeys(cls, iterable, *args):
        'Create a ChainMap with a single dict created from the iterable.'
        return cls(dict.fromkeys(iterable, *args))

    def copy(self):
        'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
        return self.__class__(self.maps[0].copy(), *self.maps[1:])

    __copy__ = copy

    def new_child(self):                        # like Django's Context.push()
        'New ChainMap with a new dict followed by all previous maps.'
        return self.__class__({}, *self.maps)

    @property
    def parents(self):                          # like Django's Context.pop()
        'New ChainMap from maps[1:].'
        return self.__class__(*self.maps[1:])

    def __setitem__(self, key, value):
        self.maps[0][key] = value

    def __delitem__(self, key):
        try:
            del self.maps[0][key]
        except KeyError:
            raise KeyError('Key not found in the first mapping: {!r}'.format(key))

    def popitem(self):
        'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
        try:
            return self.maps[0].popitem()
        except KeyError:
            raise KeyError('No keys found in the first mapping.')

    def pop(self, key, *args):
        'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
        try:
            return self.maps[0].pop(key, *args)
        except KeyError:
            raise KeyError('Key not found in the first mapping: {!r}'.format(key))

    def clear(self):
        'Clear maps[0], leaving maps[1:] intact.'
        self.maps[0].clear()


################################################################################
### UserDict
################################################################################

class UserDict(MutableMapping):

    # Start by filling-out the abstract methods
    def __init__(self, dict=None, **kwargs):
        self.data = {}
        if dict is not None:
            self.update(dict)
        if len(kwargs):
            self.update(kwargs)
    def __len__(self): return len(self.data)
    def __getitem__(self, key):
        if key in self.data:
            return self.data[key]
        if hasattr(self.__class__, "__missing__"):
            return self.__class__.__missing__(self, key)
        raise KeyError(key)
    def __setitem__(self, key, item): self.data[key] = item
    def __delitem__(self, key): del self.data[key]
    def __iter__(self):
        return iter(self.data)

    # Modify __contains__ to work correctly when __missing__ is present
    def __contains__(self, key):
        return key in self.data

    # Now, add the methods in dicts but not in MutableMapping
    def __repr__(self): return repr(self.data)
    def copy(self):
        if self.__class__ is UserDict:
            return UserDict(self.data.copy())
        import copy
        data = self.data
        try:
            self.data = {}
            c = copy.copy(self)
        finally:
            self.data = data
        c.update(self)
        return c
    @classmethod
    def fromkeys(cls, iterable, value=None):
        d = cls()
        for key in iterable:
            d[key] = value
        return d



################################################################################
### UserList
################################################################################

class UserList(MutableSequence):
    """A more or less complete user-defined wrapper around list objects."""
    def __init__(self, initlist=None):
        self.data = []
        if initlist is not None:
            # XXX should this accept an arbitrary sequence?
            if type(initlist) == type(self.data):
                self.data[:] = initlist
            elif isinstance(initlist, UserList):
                self.data[:] = initlist.data[:]
            else:
                self.data = list(initlist)
    def __repr__(self): return repr(self.data)
    def __lt__(self, other): return self.data <  self.__cast(other)
    def __le__(self, other): return self.data <= self.__cast(other)
    def __eq__(self, other): return self.data == self.__cast(other)
    def __ne__(self, other): return self.data != self.__cast(other)
    def __gt__(self, other): return self.data >  self.__cast(other)
    def __ge__(self, other): return self.data >= self.__cast(other)
    def __cast(self, other):
        return other.data if isinstance(other, UserList) else other
    def __contains__(self, item): return item in self.data
    def __len__(self): return len(self.data)
    def __getitem__(self, i): return self.data[i]
    def __setitem__(self, i, item): self.data[i] = item
    def __delitem__(self, i): del self.data[i]
    def __add__(self, other):
        if isinstance(other, UserList):
            return self.__class__(self.data + other.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(self.data + other)
        return self.__class__(self.data + list(other))
    def __radd__(self, other):
        if isinstance(other, UserList):
            return self.__class__(other.data + self.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(other + self.data)
        return self.__class__(list(other) + self.data)
    def __iadd__(self, other):
        if isinstance(other, UserList):
            self.data += other.data
        elif isinstance(other, type(self.data)):
            self.data += other
        else:
            self.data += list(other)
        return self
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __imul__(self, n):
        self.data *= n
        return self
    def append(self, item): self.data.append(item)
    def insert(self, i, item): self.data.insert(i, item)
    def pop(self, i=-1): return self.data.pop(i)
    def remove(self, item): self.data.remove(item)
    def count(self, item): return self.data.count(item)
    def index(self, item, *args): return self.data.index(item, *args)
    def reverse(self): self.data.reverse()
    def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
    def extend(self, other):
        if isinstance(other, UserList):
            self.data.extend(other.data)
        else:
            self.data.extend(other)



################################################################################
### UserString
################################################################################

class UserString(Sequence):
    def __init__(self, seq):
        if isinstance(seq, str):
            self.data = seq
        elif isinstance(seq, UserString):
            self.data = seq.data[:]
        else:
            self.data = str(seq)
    def __str__(self): return str(self.data)
    def __repr__(self): return repr(self.data)
    def __int__(self): return int(self.data)
    def __float__(self): return float(self.data)
    def __complex__(self): return complex(self.data)
    def __hash__(self): return hash(self.data)

    def __eq__(self, string):
        if isinstance(string, UserString):
            return self.data == string.data
        return self.data == string
    def __ne__(self, string):
        if isinstance(string, UserString):
            return self.data != string.data
        return self.data != string
    def __lt__(self, string):
        if isinstance(string, UserString):
            return self.data < string.data
        return self.data < string
    def __le__(self, string):
        if isinstance(string, UserString):
            return self.data <= string.data
        return self.data <= string
    def __gt__(self, string):
        if isinstance(string, UserString):
            return self.data > string.data
        return self.data > string
    def __ge__(self, string):
        if isinstance(string, UserString):
            return self.data >= string.data
        return self.data >= string

    def __contains__(self, char):
        if isinstance(char, UserString):
            char = char.data
        return char in self.data

    def __len__(self): return len(self.data)
    def __getitem__(self, index): return self.__class__(self.data[index])
    def __add__(self, other):
        if isinstance(other, UserString):
            return self.__class__(self.data + other.data)
        elif isinstance(other, str):
            return self.__class__(self.data + other)
        return self.__class__(self.data + str(other))
    def __radd__(self, other):
        if isinstance(other, str):
            return self.__class__(other + self.data)
        return self.__class__(str(other) + self.data)
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __mod__(self, args):
        return self.__class__(self.data % args)

    # the following methods are defined in alphabetical order:
    def capitalize(self): return self.__class__(self.data.capitalize())
    def center(self, width, *args):
        return self.__class__(self.data.center(width, *args))
    def count(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.count(sub, start, end)
    def encode(self, encoding=None, errors=None): # XXX improve this?
        if encoding:
            if errors:
                return self.__class__(self.data.encode(encoding, errors))
            return self.__class__(self.data.encode(encoding))
        return self.__class__(self.data.encode())
    def endswith(self, suffix, start=0, end=_sys.maxsize):
        return self.data.endswith(suffix, start, end)
    def expandtabs(self, tabsize=8):
        return self.__class__(self.data.expandtabs(tabsize))
    def find(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.find(sub, start, end)
    def format(self, *args, **kwds):
        return self.data.format(*args, **kwds)
    def index(self, sub, start=0, end=_sys.maxsize):
        return self.data.index(sub, start, end)
    def isalpha(self): return self.data.isalpha()
    def isalnum(self): return self.data.isalnum()
    def isdecimal(self): return self.data.isdecimal()
    def isdigit(self): return self.data.isdigit()
    def isidentifier(self): return self.data.isidentifier()
    def islower(self): return self.data.islower()
    def isnumeric(self): return self.data.isnumeric()
    def isspace(self): return self.data.isspace()
    def istitle(self): return self.data.istitle()
    def isupper(self): return self.data.isupper()
    def join(self, seq): return self.data.join(seq)
    def ljust(self, width, *args):
        return self.__class__(self.data.ljust(width, *args))
    def lower(self): return self.__class__(self.data.lower())
    def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
    def partition(self, sep):
        return self.data.partition(sep)
    def replace(self, old, new, maxsplit=-1):
        if isinstance(old, UserString):
            old = old.data
        if isinstance(new, UserString):
            new = new.data
        return self.__class__(self.data.replace(old, new, maxsplit))
    def rfind(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.rfind(sub, start, end)
    def rindex(self, sub, start=0, end=_sys.maxsize):
        return self.data.rindex(sub, start, end)
    def rjust(self, width, *args):
        return self.__class__(self.data.rjust(width, *args))
    def rpartition(self, sep):
        return self.data.rpartition(sep)
    def rstrip(self, chars=None):
        return self.__class__(self.data.rstrip(chars))
    def split(self, sep=None, maxsplit=-1):
        return self.data.split(sep, maxsplit)
    def rsplit(self, sep=None, maxsplit=-1):
        return self.data.rsplit(sep, maxsplit)
    def splitlines(self, keepends=0): return self.data.splitlines(keepends)
    def startswith(self, prefix, start=0, end=_sys.maxsize):
        return self.data.startswith(prefix, start, end)
    def strip(self, chars=None): return self.__class__(self.data.strip(chars))
    def swapcase(self): return self.__class__(self.data.swapcase())
    def title(self): return self.__class__(self.data.title())
    def translate(self, *args):
        return self.__class__(self.data.translate(*args))
    def upper(self): return self.__class__(self.data.upper())
    def zfill(self, width): return self.__class__(self.data.zfill(width))



################################################################################
### Simple tests
################################################################################

if __name__ == '__main__':
    # verify that instances can be pickled
    from pickle import loads, dumps
    Point = namedtuple('Point', 'x, y', True)
    p = Point(x=10, y=20)
    assert p == loads(dumps(p))

    # test and demonstrate ability to override methods
    class Point(namedtuple('Point', 'x y')):
        __slots__ = ()
        @property
        def hypot(self):
            return (self.x ** 2 + self.y ** 2) ** 0.5
        def __str__(self):
            return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    for p in Point(3, 4), Point(14, 5/7.):
        print (p)

    class Point(namedtuple('Point', 'x y')):
        'Point class with optimized _make() and _replace() without error-checking'
        __slots__ = ()
        _make = classmethod(tuple.__new__)
        def _replace(self, _map=map, **kwds):
            return self._make(_map(kwds.get, ('x', 'y'), self))

    print(Point(11, 22)._replace(x=100))

    Point3D = namedtuple('Point3D', Point._fields + ('z',))
    print(Point3D.__doc__)

    import doctest
    TestResults = namedtuple('TestResults', 'failed attempted')
    print(TestResults(*doctest.testmod()))