/usr/share/doc/gcc-4.4-base/gcc.html is in gcc-4.4-doc 4.4.7-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 | <html lang="en">
<head>
<title>Using the GNU Compiler Collection (GCC)</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Using the GNU Compiler Collection (GCC)">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="top" href="#Top">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
"GNU Free Documentation License".
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
This file documents the use of the GNU compilers.
<pre class="sp">
</pre>
Copyright © 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008 Free Software Foundation, Inc.
<p>Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being “Funding Free Software”, the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
“GNU Free Documentation License”.
<p>(a) The FSF's Front-Cover Text is:
<p>A GNU Manual
<p>(b) The FSF's Back-Cover Text is:
<p>You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
<pre class="sp">
</pre>
<div class="shortcontents">
<h2>Short Contents</h2>
<ul>
<li><a href="#toc_Top">Introduction</a></li>
<li><a href="#toc_G_002b_002b-and-GCC">1 Programming Languages Supported by GCC</a></li>
<li><a href="#toc_Standards">2 Language Standards Supported by GCC</a></li>
<li><a href="#toc_Invoking-GCC">3 GCC Command Options</a></li>
<li><a href="#toc_C-Implementation">4 C Implementation-defined behavior</a></li>
<li><a href="#toc_C-Extensions">5 Extensions to the C Language Family</a></li>
<li><a href="#toc_C_002b_002b-Extensions">6 Extensions to the C++ Language</a></li>
<li><a href="#toc_Objective_002dC">7 GNU Objective-C runtime features</a></li>
<li><a href="#toc_Compatibility">8 Binary Compatibility</a></li>
<li><a href="#toc_Gcov">9 <samp><span class="command">gcov</span></samp>—a Test Coverage Program</a></li>
<li><a href="#toc_Trouble">10 Known Causes of Trouble with GCC</a></li>
<li><a href="#toc_Bugs">11 Reporting Bugs</a></li>
<li><a href="#toc_Service">12 How To Get Help with GCC</a></li>
<li><a href="#toc_Contributing">13 Contributing to GCC Development</a></li>
<li><a href="#toc_Funding">Funding Free Software</a></li>
<li><a href="#toc_GNU-Project">The GNU Project and GNU/Linux</a></li>
<li><a href="#toc_Copying">GNU General Public License</a></li>
<li><a href="#toc_GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#toc_Contributors">Contributors to GCC</a></li>
<li><a href="#toc_Option-Index">Option Index</a></li>
<li><a href="#toc_Keyword-Index">Keyword Index</a></li>
</ul>
</div>
<div class="contents">
<h2>Table of Contents</h2>
<ul>
<li><a name="toc_Top" href="#Top">Introduction</a>
<li><a name="toc_G_002b_002b-and-GCC" href="#G_002b_002b-and-GCC">1 Programming Languages Supported by GCC</a>
<li><a name="toc_Standards" href="#Standards">2 Language Standards Supported by GCC</a>
<ul>
<li><a href="#Standards">2.1 C language</a>
<li><a href="#Standards">2.2 C++ language</a>
<li><a href="#Standards">2.3 Objective-C and Objective-C++ languages</a>
</li></ul>
<li><a name="toc_Invoking-GCC" href="#Invoking-GCC">3 GCC Command Options</a>
<ul>
<li><a href="#Option-Summary">3.1 Option Summary</a>
<li><a href="#Overall-Options">3.2 Options Controlling the Kind of Output</a>
<li><a href="#Invoking-G_002b_002b">3.3 Compiling C++ Programs</a>
<li><a href="#C-Dialect-Options">3.4 Options Controlling C Dialect</a>
<li><a href="#C_002b_002b-Dialect-Options">3.5 Options Controlling C++ Dialect</a>
<li><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">3.6 Options Controlling Objective-C and Objective-C++ Dialects</a>
<li><a href="#Language-Independent-Options">3.7 Options to Control Diagnostic Messages Formatting</a>
<li><a href="#Warning-Options">3.8 Options to Request or Suppress Warnings</a>
<li><a href="#Debugging-Options">3.9 Options for Debugging Your Program or GCC</a>
<li><a href="#Optimize-Options">3.10 Options That Control Optimization</a>
<li><a href="#Preprocessor-Options">3.11 Options Controlling the Preprocessor</a>
<li><a href="#Assembler-Options">3.12 Passing Options to the Assembler</a>
<li><a href="#Link-Options">3.13 Options for Linking</a>
<li><a href="#Directory-Options">3.14 Options for Directory Search</a>
<li><a href="#Spec-Files">3.15 Specifying subprocesses and the switches to pass to them</a>
<li><a href="#Target-Options">3.16 Specifying Target Machine and Compiler Version</a>
<li><a href="#Submodel-Options">3.17 Hardware Models and Configurations</a>
<ul>
<li><a href="#ARC-Options">3.17.1 ARC Options</a>
<li><a href="#ARM-Options">3.17.2 ARM Options</a>
<li><a href="#AVR-Options">3.17.3 AVR Options</a>
<li><a href="#Blackfin-Options">3.17.4 Blackfin Options</a>
<li><a href="#CRIS-Options">3.17.5 CRIS Options</a>
<li><a href="#CRX-Options">3.17.6 CRX Options</a>
<li><a href="#Darwin-Options">3.17.7 Darwin Options</a>
<li><a href="#DEC-Alpha-Options">3.17.8 DEC Alpha Options</a>
<li><a href="#DEC-Alpha_002fVMS-Options">3.17.9 DEC Alpha/VMS Options</a>
<li><a href="#FR30-Options">3.17.10 FR30 Options</a>
<li><a href="#FRV-Options">3.17.11 FRV Options</a>
<li><a href="#GNU_002fLinux-Options">3.17.12 GNU/Linux Options</a>
<li><a href="#H8_002f300-Options">3.17.13 H8/300 Options</a>
<li><a href="#HPPA-Options">3.17.14 HPPA Options</a>
<li><a href="#i386-and-x86_002d64-Options">3.17.15 Intel 386 and AMD x86-64 Options</a>
<li><a href="#i386-and-x86_002d64-Windows-Options">3.17.16 i386 and x86-64 Windows Options</a>
<li><a href="#IA_002d64-Options">3.17.17 IA-64 Options</a>
<li><a href="#M32C-Options">3.17.18 M32C Options</a>
<li><a href="#M32R_002fD-Options">3.17.19 M32R/D Options</a>
<li><a href="#M680x0-Options">3.17.20 M680x0 Options</a>
<li><a href="#M68hc1x-Options">3.17.21 M68hc1x Options</a>
<li><a href="#MCore-Options">3.17.22 MCore Options</a>
<li><a href="#MIPS-Options">3.17.23 MIPS Options</a>
<li><a href="#MMIX-Options">3.17.24 MMIX Options</a>
<li><a href="#MN10300-Options">3.17.25 MN10300 Options</a>
<li><a href="#PDP_002d11-Options">3.17.26 PDP-11 Options</a>
<li><a href="#picoChip-Options">3.17.27 picoChip Options</a>
<li><a href="#PowerPC-Options">3.17.28 PowerPC Options</a>
<li><a href="#RS_002f6000-and-PowerPC-Options">3.17.29 IBM RS/6000 and PowerPC Options</a>
<li><a href="#S_002f390-and-zSeries-Options">3.17.30 S/390 and zSeries Options</a>
<li><a href="#Score-Options">3.17.31 Score Options</a>
<li><a href="#SH-Options">3.17.32 SH Options</a>
<li><a href="#SPARC-Options">3.17.33 SPARC Options</a>
<li><a href="#SPU-Options">3.17.34 SPU Options</a>
<li><a href="#System-V-Options">3.17.35 Options for System V</a>
<li><a href="#V850-Options">3.17.36 V850 Options</a>
<li><a href="#VAX-Options">3.17.37 VAX Options</a>
<li><a href="#VxWorks-Options">3.17.38 VxWorks Options</a>
<li><a href="#x86_002d64-Options">3.17.39 x86-64 Options</a>
<li><a href="#Xstormy16-Options">3.17.40 Xstormy16 Options</a>
<li><a href="#Xtensa-Options">3.17.41 Xtensa Options</a>
<li><a href="#zSeries-Options">3.17.42 zSeries Options</a>
</li></ul>
<li><a href="#Code-Gen-Options">3.18 Options for Code Generation Conventions</a>
<li><a href="#Environment-Variables">3.19 Environment Variables Affecting GCC</a>
<li><a href="#Precompiled-Headers">3.20 Using Precompiled Headers</a>
<li><a href="#Running-Protoize">3.21 Running Protoize</a>
</li></ul>
<li><a name="toc_C-Implementation" href="#C-Implementation">4 C Implementation-defined behavior</a>
<ul>
<li><a href="#Translation-implementation">4.1 Translation</a>
<li><a href="#Environment-implementation">4.2 Environment</a>
<li><a href="#Identifiers-implementation">4.3 Identifiers</a>
<li><a href="#Characters-implementation">4.4 Characters</a>
<li><a href="#Integers-implementation">4.5 Integers</a>
<li><a href="#Floating-point-implementation">4.6 Floating point</a>
<li><a href="#Arrays-and-pointers-implementation">4.7 Arrays and pointers</a>
<li><a href="#Hints-implementation">4.8 Hints</a>
<li><a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">4.9 Structures, unions, enumerations, and bit-fields</a>
<li><a href="#Qualifiers-implementation">4.10 Qualifiers</a>
<li><a href="#Declarators-implementation">4.11 Declarators</a>
<li><a href="#Statements-implementation">4.12 Statements</a>
<li><a href="#Preprocessing-directives-implementation">4.13 Preprocessing directives</a>
<li><a href="#Library-functions-implementation">4.14 Library functions</a>
<li><a href="#Architecture-implementation">4.15 Architecture</a>
<li><a href="#Locale_002dspecific-behavior-implementation">4.16 Locale-specific behavior</a>
</li></ul>
<li><a name="toc_C-Extensions" href="#C-Extensions">5 Extensions to the C Language Family</a>
<ul>
<li><a href="#Statement-Exprs">5.1 Statements and Declarations in Expressions</a>
<li><a href="#Local-Labels">5.2 Locally Declared Labels</a>
<li><a href="#Labels-as-Values">5.3 Labels as Values</a>
<li><a href="#Nested-Functions">5.4 Nested Functions</a>
<li><a href="#Constructing-Calls">5.5 Constructing Function Calls</a>
<li><a href="#Typeof">5.6 Referring to a Type with <code>typeof</code></a>
<li><a href="#Conditionals">5.7 Conditionals with Omitted Operands</a>
<li><a href="#Long-Long">5.8 Double-Word Integers</a>
<li><a href="#Complex">5.9 Complex Numbers</a>
<li><a href="#Floating-Types">5.10 Additional Floating Types</a>
<li><a href="#Half_002dPrecision">5.11 Half-Precision Floating Point</a>
<li><a href="#Decimal-Float">5.12 Decimal Floating Types</a>
<li><a href="#Hex-Floats">5.13 Hex Floats</a>
<li><a href="#Fixed_002dPoint">5.14 Fixed-Point Types</a>
<li><a href="#Zero-Length">5.15 Arrays of Length Zero</a>
<li><a href="#Empty-Structures">5.16 Structures With No Members</a>
<li><a href="#Variable-Length">5.17 Arrays of Variable Length</a>
<li><a href="#Variadic-Macros">5.18 Macros with a Variable Number of Arguments.</a>
<li><a href="#Escaped-Newlines">5.19 Slightly Looser Rules for Escaped Newlines</a>
<li><a href="#Subscripting">5.20 Non-Lvalue Arrays May Have Subscripts</a>
<li><a href="#Pointer-Arith">5.21 Arithmetic on <code>void</code>- and Function-Pointers</a>
<li><a href="#Initializers">5.22 Non-Constant Initializers</a>
<li><a href="#Compound-Literals">5.23 Compound Literals</a>
<li><a href="#Designated-Inits">5.24 Designated Initializers</a>
<li><a href="#Case-Ranges">5.25 Case Ranges</a>
<li><a href="#Cast-to-Union">5.26 Cast to a Union Type</a>
<li><a href="#Mixed-Declarations">5.27 Mixed Declarations and Code</a>
<li><a href="#Function-Attributes">5.28 Declaring Attributes of Functions</a>
<li><a href="#Attribute-Syntax">5.29 Attribute Syntax</a>
<li><a href="#Function-Prototypes">5.30 Prototypes and Old-Style Function Definitions</a>
<li><a href="#C_002b_002b-Comments">5.31 C++ Style Comments</a>
<li><a href="#Dollar-Signs">5.32 Dollar Signs in Identifier Names</a>
<li><a href="#Character-Escapes">5.33 The Character <ESC> in Constants</a>
<li><a href="#Variable-Attributes">5.34 Specifying Attributes of Variables</a>
<ul>
<li><a href="#Variable-Attributes">5.34.1 Blackfin Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.2 M32R/D Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.3 i386 Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.4 PowerPC Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.5 SPU Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.6 Xstormy16 Variable Attributes</a>
<li><a href="#Variable-Attributes">5.34.7 AVR Variable Attributes</a>
</li></ul>
<li><a href="#Type-Attributes">5.35 Specifying Attributes of Types</a>
<ul>
<li><a href="#Type-Attributes">5.35.1 ARM Type Attributes</a>
<li><a href="#Type-Attributes">5.35.2 i386 Type Attributes</a>
<li><a href="#Type-Attributes">5.35.3 PowerPC Type Attributes</a>
<li><a href="#Type-Attributes">5.35.4 SPU Type Attributes</a>
</li></ul>
<li><a href="#Alignment">5.36 Inquiring on Alignment of Types or Variables</a>
<li><a href="#Inline">5.37 An Inline Function is As Fast As a Macro</a>
<li><a href="#Extended-Asm">5.38 Assembler Instructions with C Expression Operands</a>
<ul>
<li><a href="#Extended-Asm">5.38.1 Size of an <code>asm</code></a>
<li><a href="#Extended-Asm">5.38.2 i386 floating point asm operands</a>
</li></ul>
<li><a href="#Constraints">5.39 Constraints for <code>asm</code> Operands</a>
<ul>
<li><a href="#Simple-Constraints">5.39.1 Simple Constraints</a>
<li><a href="#Multi_002dAlternative">5.39.2 Multiple Alternative Constraints</a>
<li><a href="#Modifiers">5.39.3 Constraint Modifier Characters</a>
<li><a href="#Machine-Constraints">5.39.4 Constraints for Particular Machines</a>
</li></ul>
<li><a href="#Asm-Labels">5.40 Controlling Names Used in Assembler Code</a>
<li><a href="#Explicit-Reg-Vars">5.41 Variables in Specified Registers</a>
<ul>
<li><a href="#Global-Reg-Vars">5.41.1 Defining Global Register Variables</a>
<li><a href="#Local-Reg-Vars">5.41.2 Specifying Registers for Local Variables</a>
</li></ul>
<li><a href="#Alternate-Keywords">5.42 Alternate Keywords</a>
<li><a href="#Incomplete-Enums">5.43 Incomplete <code>enum</code> Types</a>
<li><a href="#Function-Names">5.44 Function Names as Strings</a>
<li><a href="#Return-Address">5.45 Getting the Return or Frame Address of a Function</a>
<li><a href="#Vector-Extensions">5.46 Using vector instructions through built-in functions</a>
<li><a href="#Offsetof">5.47 Offsetof</a>
<li><a href="#Atomic-Builtins">5.48 Built-in functions for atomic memory access</a>
<li><a href="#Object-Size-Checking">5.49 Object Size Checking Builtins</a>
<li><a href="#Other-Builtins">5.50 Other built-in functions provided by GCC</a>
<li><a href="#Target-Builtins">5.51 Built-in Functions Specific to Particular Target Machines</a>
<ul>
<li><a href="#Alpha-Built_002din-Functions">5.51.1 Alpha Built-in Functions</a>
<li><a href="#ARM-iWMMXt-Built_002din-Functions">5.51.2 ARM iWMMXt Built-in Functions</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3 ARM NEON Intrinsics</a>
<ul>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.1 Addition</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.2 Multiplication</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.3 Multiply-accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.4 Multiply-subtract</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.5 Subtraction</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.6 Comparison (equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.7 Comparison (greater-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.8 Comparison (less-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.9 Comparison (greater-than)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.10 Comparison (less-than)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.11 Comparison (absolute greater-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.12 Comparison (absolute less-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.13 Comparison (absolute greater-than)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.14 Comparison (absolute less-than)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.15 Test bits</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.16 Absolute difference</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.17 Absolute difference and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.18 Maximum</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.19 Minimum</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.20 Pairwise add</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.21 Pairwise add, single_opcode widen and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.22 Folding maximum</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.23 Folding minimum</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.24 Reciprocal step</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.25 Vector shift left</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.26 Vector shift left by constant</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.27 Vector shift right by constant</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.28 Vector shift right by constant and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.29 Vector shift right and insert</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.30 Vector shift left and insert</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.31 Absolute value</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.32 Negation</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.33 Bitwise not</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.34 Count leading sign bits</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.35 Count leading zeros</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.36 Count number of set bits</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.37 Reciprocal estimate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.38 Reciprocal square-root estimate</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.39 Get lanes from a vector</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.40 Set lanes in a vector</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.41 Create vector from literal bit pattern</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.42 Set all lanes to the same value</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.43 Combining vectors</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.44 Splitting vectors</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.45 Conversions</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.46 Move, single_opcode narrowing</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.47 Move, single_opcode long</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.48 Table lookup</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.49 Extended table lookup</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.50 Multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.51 Long multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.52 Saturating doubling long multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.53 Saturating doubling multiply high, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.54 Multiply-accumulate, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.55 Multiply-subtract, lane</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.56 Vector multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.57 Vector long multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.58 Vector saturating doubling long multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.59 Vector saturating doubling multiply high by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.60 Vector multiply-accumulate by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.61 Vector multiply-subtract by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.62 Vector extract</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.63 Reverse elements</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.64 Bit selection</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.65 Transpose elements</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.66 Zip elements</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.67 Unzip elements</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.68 Element/structure loads, VLD1 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.69 Element/structure stores, VST1 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.70 Element/structure loads, VLD2 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.71 Element/structure stores, VST2 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.72 Element/structure loads, VLD3 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.73 Element/structure stores, VST3 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.74 Element/structure loads, VLD4 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.75 Element/structure stores, VST4 variants</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.76 Logical operations (AND)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.77 Logical operations (OR)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.78 Logical operations (exclusive OR)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.79 Logical operations (AND-NOT)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.80 Logical operations (OR-NOT)</a>
<li><a href="#ARM-NEON-Intrinsics">5.51.3.81 Reinterpret casts</a>
</li></ul>
<li><a href="#Blackfin-Built_002din-Functions">5.51.4 Blackfin Built-in Functions</a>
<li><a href="#FR_002dV-Built_002din-Functions">5.51.5 FR-V Built-in Functions</a>
<ul>
<li><a href="#Argument-Types">5.51.5.1 Argument Types</a>
<li><a href="#Directly_002dmapped-Integer-Functions">5.51.5.2 Directly-mapped Integer Functions</a>
<li><a href="#Directly_002dmapped-Media-Functions">5.51.5.3 Directly-mapped Media Functions</a>
<li><a href="#Raw-read_002fwrite-Functions">5.51.5.4 Raw read/write Functions</a>
<li><a href="#Other-Built_002din-Functions">5.51.5.5 Other Built-in Functions</a>
</li></ul>
<li><a href="#X86-Built_002din-Functions">5.51.6 X86 Built-in Functions</a>
<li><a href="#MIPS-DSP-Built_002din-Functions">5.51.7 MIPS DSP Built-in Functions</a>
<li><a href="#MIPS-Paired_002dSingle-Support">5.51.8 MIPS Paired-Single Support</a>
<li><a href="#MIPS-Loongson-Built_002din-Functions">5.51.9 MIPS Loongson Built-in Functions</a>
<ul>
<li><a href="#Paired_002dSingle-Arithmetic">5.51.9.1 Paired-Single Arithmetic</a>
<li><a href="#Paired_002dSingle-Built_002din-Functions">5.51.9.2 Paired-Single Built-in Functions</a>
<li><a href="#MIPS_002d3D-Built_002din-Functions">5.51.9.3 MIPS-3D Built-in Functions</a>
</li></ul>
<li><a href="#picoChip-Built_002din-Functions">5.51.10 picoChip Built-in Functions</a>
<li><a href="#Other-MIPS-Built_002din-Functions">5.51.11 Other MIPS Built-in Functions</a>
<li><a href="#PowerPC-AltiVec-Built_002din-Functions">5.51.12 PowerPC AltiVec Built-in Functions</a>
<li><a href="#SPARC-VIS-Built_002din-Functions">5.51.13 SPARC VIS Built-in Functions</a>
<li><a href="#SPU-Built_002din-Functions">5.51.14 SPU Built-in Functions</a>
</li></ul>
<li><a href="#Target-Format-Checks">5.52 Format Checks Specific to Particular Target Machines</a>
<ul>
<li><a href="#Solaris-Format-Checks">5.52.1 Solaris Format Checks</a>
</li></ul>
<li><a href="#Pragmas">5.53 Pragmas Accepted by GCC</a>
<ul>
<li><a href="#ARM-Pragmas">5.53.1 ARM Pragmas</a>
<li><a href="#M32C-Pragmas">5.53.2 M32C Pragmas</a>
<li><a href="#RS_002f6000-and-PowerPC-Pragmas">5.53.3 RS/6000 and PowerPC Pragmas</a>
<li><a href="#Darwin-Pragmas">5.53.4 Darwin Pragmas</a>
<li><a href="#Solaris-Pragmas">5.53.5 Solaris Pragmas</a>
<li><a href="#Symbol_002dRenaming-Pragmas">5.53.6 Symbol-Renaming Pragmas</a>
<li><a href="#Structure_002dPacking-Pragmas">5.53.7 Structure-Packing Pragmas</a>
<li><a href="#Weak-Pragmas">5.53.8 Weak Pragmas</a>
<li><a href="#Diagnostic-Pragmas">5.53.9 Diagnostic Pragmas</a>
<li><a href="#Visibility-Pragmas">5.53.10 Visibility Pragmas</a>
<li><a href="#Push_002fPop-Macro-Pragmas">5.53.11 Push/Pop Macro Pragmas</a>
<li><a href="#Function-Specific-Option-Pragmas">5.53.12 Function Specific Option Pragmas</a>
</li></ul>
<li><a href="#Unnamed-Fields">5.54 Unnamed struct/union fields within structs/unions</a>
<li><a href="#Thread_002dLocal">5.55 Thread-Local Storage</a>
<ul>
<li><a href="#C99-Thread_002dLocal-Edits">5.55.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</a>
<li><a href="#C_002b_002b98-Thread_002dLocal-Edits">5.55.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</a>
</li></ul>
<li><a href="#Binary-constants">5.56 Binary constants using the ‘<samp><span class="samp">0b</span></samp>’ prefix</a>
</li></ul>
<li><a name="toc_C_002b_002b-Extensions" href="#C_002b_002b-Extensions">6 Extensions to the C++ Language</a>
<ul>
<li><a href="#Volatiles">6.1 When is a Volatile Object Accessed?</a>
<li><a href="#Restricted-Pointers">6.2 Restricting Pointer Aliasing</a>
<li><a href="#Vague-Linkage">6.3 Vague Linkage</a>
<li><a href="#C_002b_002b-Interface">6.4 #pragma interface and implementation</a>
<li><a href="#Template-Instantiation">6.5 Where's the Template?</a>
<li><a href="#Bound-member-functions">6.6 Extracting the function pointer from a bound pointer to member function</a>
<li><a href="#C_002b_002b-Attributes">6.7 C++-Specific Variable, Function, and Type Attributes</a>
<li><a href="#Namespace-Association">6.8 Namespace Association</a>
<li><a href="#Type-Traits">6.9 Type Traits</a>
<li><a href="#Java-Exceptions">6.10 Java Exceptions</a>
<li><a href="#Deprecated-Features">6.11 Deprecated Features</a>
<li><a href="#Backwards-Compatibility">6.12 Backwards Compatibility</a>
</li></ul>
<li><a name="toc_Objective_002dC" href="#Objective_002dC">7 GNU Objective-C runtime features</a>
<ul>
<li><a href="#Executing-code-before-main">7.1 <code>+load</code>: Executing code before main</a>
<ul>
<li><a href="#What-you-can-and-what-you-cannot-do-in-_002bload">7.1.1 What you can and what you cannot do in <code>+load</code></a>
</li></ul>
<li><a href="#Type-encoding">7.2 Type encoding</a>
<li><a href="#Garbage-Collection">7.3 Garbage Collection</a>
<li><a href="#Constant-string-objects">7.4 Constant string objects</a>
<li><a href="#compatibility_005falias">7.5 compatibility_alias</a>
</li></ul>
<li><a name="toc_Compatibility" href="#Compatibility">8 Binary Compatibility</a>
<li><a name="toc_Gcov" href="#Gcov">9 <samp><span class="command">gcov</span></samp>—a Test Coverage Program</a>
<ul>
<li><a href="#Gcov-Intro">9.1 Introduction to <samp><span class="command">gcov</span></samp></a>
<li><a href="#Invoking-Gcov">9.2 Invoking <samp><span class="command">gcov</span></samp></a>
<li><a href="#Gcov-and-Optimization">9.3 Using <samp><span class="command">gcov</span></samp> with GCC Optimization</a>
<li><a href="#Gcov-Data-Files">9.4 Brief description of <samp><span class="command">gcov</span></samp> data files</a>
<li><a href="#Cross_002dprofiling">9.5 Data file relocation to support cross-profiling</a>
</li></ul>
<li><a name="toc_Trouble" href="#Trouble">10 Known Causes of Trouble with GCC</a>
<ul>
<li><a href="#Actual-Bugs">10.1 Actual Bugs We Haven't Fixed Yet</a>
<li><a href="#Cross_002dCompiler-Problems">10.2 Cross-Compiler Problems</a>
<li><a href="#Interoperation">10.3 Interoperation</a>
<li><a href="#Incompatibilities">10.4 Incompatibilities of GCC</a>
<li><a href="#Fixed-Headers">10.5 Fixed Header Files</a>
<li><a href="#Standard-Libraries">10.6 Standard Libraries</a>
<li><a href="#Disappointments">10.7 Disappointments and Misunderstandings</a>
<li><a href="#C_002b_002b-Misunderstandings">10.8 Common Misunderstandings with GNU C++</a>
<ul>
<li><a href="#Static-Definitions">10.8.1 Declare <em>and</em> Define Static Members</a>
<li><a href="#Name-lookup">10.8.2 Name lookup, templates, and accessing members of base classes</a>
<li><a href="#Temporaries">10.8.3 Temporaries May Vanish Before You Expect</a>
<li><a href="#Copy-Assignment">10.8.4 Implicit Copy-Assignment for Virtual Bases</a>
</li></ul>
<li><a href="#Protoize-Caveats">10.9 Caveats of using <samp><span class="command">protoize</span></samp></a>
<li><a href="#Non_002dbugs">10.10 Certain Changes We Don't Want to Make</a>
<li><a href="#Warnings-and-Errors">10.11 Warning Messages and Error Messages</a>
</li></ul>
<li><a name="toc_Bugs" href="#Bugs">11 Reporting Bugs</a>
<ul>
<li><a href="#Bug-Criteria">11.1 Have You Found a Bug?</a>
<li><a href="#Bug-Reporting">11.2 How and where to Report Bugs</a>
</li></ul>
<li><a name="toc_Service" href="#Service">12 How To Get Help with GCC</a>
<li><a name="toc_Contributing" href="#Contributing">13 Contributing to GCC Development</a>
<li><a name="toc_Funding" href="#Funding">Funding Free Software</a>
<li><a name="toc_GNU-Project" href="#GNU-Project">The GNU Project and GNU/Linux</a>
<li><a name="toc_Copying" href="#Copying">GNU General Public License</a>
<li><a name="toc_GNU-Free-Documentation-License" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>
<ul>
<li><a href="#GNU-Free-Documentation-License">ADDENDUM: How to use this License for your documents</a>
</li></ul>
<li><a name="toc_Contributors" href="#Contributors">Contributors to GCC</a>
<li><a name="toc_Option-Index" href="#Option-Index">Option Index</a>
<li><a name="toc_Keyword-Index" href="#Keyword-Index">Keyword Index</a>
</li></ul>
</div>
<div class="node">
<a name="Top"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#G_002b_002b-and-GCC">G++ and GCC</a>,
Up: <a rel="up" accesskey="u" href="#DIR">(DIR)</a>
</div>
<h2 class="unnumbered">Introduction</h2>
<p><a name="index-introduction-1"></a>
This manual documents how to use the GNU compilers,
as well as their features and incompatibilities, and how to report
bugs. It corresponds to the compilers
(Ubuntu/Linaro 4.4.7-1ubuntu2)
version 4.4.7.
The internals of the GNU compilers, including how to port them to new
targets and some information about how to write front ends for new
languages, are documented in a separate manual. See <a href="{No value for `fngccint'}.html#Top">Introduction</a>.
<ul class="menu">
<li><a accesskey="1" href="#G_002b_002b-and-GCC">G++ and GCC</a>: You can compile C or C++ programs.
<li><a accesskey="2" href="#Standards">Standards</a>: Language standards supported by GCC.
<li><a accesskey="3" href="#Invoking-GCC">Invoking GCC</a>: Command options supported by ‘<samp><span class="samp">gcc</span></samp>’.
<li><a accesskey="4" href="#C-Implementation">C Implementation</a>: How GCC implements the ISO C specification.
<li><a accesskey="5" href="#C-Extensions">C Extensions</a>: GNU extensions to the C language family.
<li><a accesskey="6" href="#C_002b_002b-Extensions">C++ Extensions</a>: GNU extensions to the C++ language.
<li><a accesskey="7" href="#Objective_002dC">Objective-C</a>: GNU Objective-C runtime features.
<li><a accesskey="8" href="#Compatibility">Compatibility</a>: Binary Compatibility
<li><a accesskey="9" href="#Gcov">Gcov</a>: <samp><span class="command">gcov</span></samp>---a test coverage program.
<li><a href="#Trouble">Trouble</a>: If you have trouble using GCC.
<li><a href="#Bugs">Bugs</a>: How, why and where to report bugs.
<li><a href="#Service">Service</a>: How to find suppliers of support for GCC.
<li><a href="#Contributing">Contributing</a>: How to contribute to testing and developing GCC.
<li><a href="#Funding">Funding</a>: How to help assure funding for free software.
<li><a href="#GNU-Project">GNU Project</a>: The GNU Project and GNU/Linux.
<li><a href="#Copying">Copying</a>: GNU General Public License says
how you can copy and share GCC.
<li><a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>: How you can copy and share this manual.
<li><a href="#Contributors">Contributors</a>: People who have contributed to GCC.
<li><a href="#Option-Index">Option Index</a>: Index to command line options.
<li><a href="#Keyword-Index">Keyword Index</a>: Index of concepts and symbol names.
</ul>
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2004, 2008 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="G++-and-GCC"></a>
<a name="G_002b_002b-and-GCC"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Standards">Standards</a>,
Previous: <a rel="previous" accesskey="p" href="#Top">Top</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">1 Programming Languages Supported by GCC</h2>
<p><a name="index-GCC-2"></a><a name="index-GNU-Compiler-Collection-3"></a><a name="index-GNU-C-Compiler-4"></a><a name="index-Ada-5"></a><a name="index-Fortran-6"></a><a name="index-Java-7"></a><a name="index-Objective_002dC-8"></a><a name="index-Objective_002dC_002b_002b-9"></a>GCC stands for “GNU Compiler Collection”. GCC is an integrated
distribution of compilers for several major programming languages. These
languages currently include C, C++, Objective-C, Objective-C++, Java,
Fortran, and Ada.
<p>The abbreviation <dfn>GCC</dfn> has multiple meanings in common use. The
current official meaning is “GNU Compiler Collection”, which refers
generically to the complete suite of tools. The name historically stood
for “GNU C Compiler”, and this usage is still common when the emphasis
is on compiling C programs. Finally, the name is also used when speaking
of the <dfn>language-independent</dfn> component of GCC: code shared among the
compilers for all supported languages.
<p>The language-independent component of GCC includes the majority of the
optimizers, as well as the “back ends” that generate machine code for
various processors.
<p><a name="index-COBOL-10"></a><a name="index-Mercury-11"></a><a name="index-Pascal-12"></a>The part of a compiler that is specific to a particular language is
called the “front end”. In addition to the front ends that are
integrated components of GCC, there are several other front ends that
are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with
GCC proper.
<p><a name="index-C_002b_002b-13"></a><a name="index-G_002b_002b-14"></a><a name="index-Ada-15"></a><a name="index-GNAT-16"></a>Most of the compilers for languages other than C have their own names.
The C++ compiler is G++, the Ada compiler is GNAT, and so on. When we
talk about compiling one of those languages, we might refer to that
compiler by its own name, or as GCC. Either is correct.
<p><a name="index-compiler-compared-to-C_002b_002b-preprocessor-17"></a><a name="index-intermediate-C-version_002c-nonexistent-18"></a><a name="index-C-intermediate-output_002c-nonexistent-19"></a>Historically, compilers for many languages, including C++ and Fortran,
have been implemented as “preprocessors” which emit another high
level language such as C. None of the compilers included in GCC are
implemented this way; they all generate machine code directly. This
sort of preprocessor should not be confused with the <dfn>C
preprocessor</dfn>, which is an integral feature of the C, C++, Objective-C
and Objective-C++ languages.
<!-- Copyright (C) 2000, 2001, 2002, 2004, 2006, 2007, 2008 Free Software Foundation, -->
<!-- Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Standards"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Invoking-GCC">Invoking GCC</a>,
Previous: <a rel="previous" accesskey="p" href="#G_002b_002b-and-GCC">G++ and GCC</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">2 Language Standards Supported by GCC</h2>
<p>For each language compiled by GCC for which there is a standard, GCC
attempts to follow one or more versions of that standard, possibly
with some exceptions, and possibly with some extensions.
<h3 class="section">2.1 C language</h3>
<p><a name="index-C-standard-20"></a><a name="index-C-standards-21"></a><a name="index-ANSI-C-standard-22"></a><a name="index-ANSI-C-23"></a><a name="index-ANSI-C89-24"></a><a name="index-C89-25"></a><a name="index-ANSI-X3_002e159_002d1989-26"></a><a name="index-X3_002e159_002d1989-27"></a><a name="index-ISO-C-standard-28"></a><a name="index-ISO-C-29"></a><a name="index-ISO-C90-30"></a><a name="index-ISO_002fIEC-9899-31"></a><a name="index-ISO-9899-32"></a><a name="index-C90-33"></a><a name="index-ISO-C94-34"></a><a name="index-C94-35"></a><a name="index-ISO-C95-36"></a><a name="index-C95-37"></a><a name="index-ISO-C99-38"></a><a name="index-C99-39"></a><a name="index-ISO-C9X-40"></a><a name="index-C9X-41"></a><a name="index-Technical-Corrigenda-42"></a><a name="index-TC1-43"></a><a name="index-Technical-Corrigendum-1-44"></a><a name="index-TC2-45"></a><a name="index-Technical-Corrigendum-2-46"></a><a name="index-TC3-47"></a><a name="index-Technical-Corrigendum-3-48"></a><a name="index-AMD1-49"></a><a name="index-freestanding-implementation-50"></a><a name="index-freestanding-environment-51"></a><a name="index-hosted-implementation-52"></a><a name="index-hosted-environment-53"></a><a name="index-g_t_005f_005fSTDC_005fHOSTED_005f_005f-54"></a>
GCC supports three versions of the C standard, although support for
the most recent version is not yet complete.
<p><a name="index-std-55"></a><a name="index-ansi-56"></a><a name="index-pedantic-57"></a><a name="index-pedantic_002derrors-58"></a>The original ANSI C standard (X3.159-1989) was ratified in 1989 and
published in 1990. This standard was ratified as an ISO standard
(ISO/IEC 9899:1990) later in 1990. There were no technical
differences between these publications, although the sections of the
ANSI standard were renumbered and became clauses in the ISO standard.
This standard, in both its forms, is commonly known as <dfn>C89</dfn>, or
occasionally as <dfn>C90</dfn>, from the dates of ratification. The ANSI
standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options
<samp><span class="option">-ansi</span></samp>, <samp><span class="option">-std=c89</span></samp> or <samp><span class="option">-std=iso9899:1990</span></samp>; to obtain
all the diagnostics required by the standard, you should also specify
<samp><span class="option">-pedantic</span></samp> (or <samp><span class="option">-pedantic-errors</span></samp> if you want them to be
errors rather than warnings). See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<p>Errors in the 1990 ISO C standard were corrected in two Technical
Corrigenda published in 1994 and 1996. GCC does not support the
uncorrected version.
<p>An amendment to the 1990 standard was published in 1995. This
amendment added digraphs and <code>__STDC_VERSION__</code> to the language,
but otherwise concerned the library. This amendment is commonly known
as <dfn>AMD1</dfn>; the amended standard is sometimes known as <dfn>C94</dfn> or
<dfn>C95</dfn>. To select this standard in GCC, use the option
<samp><span class="option">-std=iso9899:199409</span></samp> (with, as for other standard versions,
<samp><span class="option">-pedantic</span></samp> to receive all required diagnostics).
<p>A new edition of the ISO C standard was published in 1999 as ISO/IEC
9899:1999, and is commonly known as <dfn>C99</dfn>. GCC has incomplete
support for this standard version; see
<a href="http://gcc.gnu.org/gcc-4.4/c99status.html">http://gcc.gnu.org/gcc-4.4/c99status.html</a> for details. To select this
standard, use <samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=iso9899:1999</span></samp>. (While in
development, drafts of this standard version were referred to as
<dfn>C9X</dfn>.)
<p>Errors in the 1999 ISO C standard were corrected in three Technical
Corrigenda published in 2001, 2004 and 2007. GCC does not support the
uncorrected version.
<p>By default, GCC provides some extensions to the C language that on
rare occasions conflict with the C standard. See <a href="#C-Extensions">Extensions to the C Language Family</a>. Use of the
<samp><span class="option">-std</span></samp> options listed above will disable these extensions where
they conflict with the C standard version selected. You may also
select an extended version of the C language explicitly with
<samp><span class="option">-std=gnu89</span></samp> (for C89 with GNU extensions) or <samp><span class="option">-std=gnu99</span></samp>
(for C99 with GNU extensions). The default, if no C language dialect
options are given, is <samp><span class="option">-std=gnu89</span></samp>; this will change to
<samp><span class="option">-std=gnu99</span></samp> in some future release when the C99 support is
complete. Some features that are part of the C99 standard are
accepted as extensions in C89 mode.
<p>The ISO C standard defines (in clause 4) two classes of conforming
implementation. A <dfn>conforming hosted implementation</dfn> supports the
whole standard including all the library facilities; a <dfn>conforming
freestanding implementation</dfn> is only required to provide certain
library facilities: those in <code><float.h></code>, <code><limits.h></code>,
<code><stdarg.h></code>, and <code><stddef.h></code>; since AMD1, also those in
<code><iso646.h></code>; and in C99, also those in <code><stdbool.h></code> and
<code><stdint.h></code>. In addition, complex types, added in C99, are not
required for freestanding implementations. The standard also defines
two environments for programs, a <dfn>freestanding environment</dfn>,
required of all implementations and which may not have library
facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are
implementation-defined, and a <dfn>hosted environment</dfn>, which is not
required, in which all the library facilities are provided and startup
is through a function <code>int main (void)</code> or <code>int main (int,
char *[])</code>. An OS kernel would be a freestanding environment; a
program using the facilities of an operating system would normally be
in a hosted implementation.
<p><a name="index-ffreestanding-59"></a>GCC aims towards being usable as a conforming freestanding
implementation, or as the compiler for a conforming hosted
implementation. By default, it will act as the compiler for a hosted
implementation, defining <code>__STDC_HOSTED__</code> as <code>1</code> and
presuming that when the names of ISO C functions are used, they have
the semantics defined in the standard. To make it act as a conforming
freestanding implementation for a freestanding environment, use the
option <samp><span class="option">-ffreestanding</span></samp>; it will then define
<code>__STDC_HOSTED__</code> to <code>0</code> and not make assumptions about the
meanings of function names from the standard library, with exceptions
noted below. To build an OS kernel, you may well still need to make
your own arrangements for linking and startup.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<p>GCC does not provide the library facilities required only of hosted
implementations, nor yet all the facilities required by C99 of
freestanding implementations; to use the facilities of a hosted
environment, you will need to find them elsewhere (for example, in the
GNU C library). See <a href="#Standard-Libraries">Standard Libraries</a>.
<p>Most of the compiler support routines used by GCC are present in
<samp><span class="file">libgcc</span></samp>, but there are a few exceptions. GCC requires the
freestanding environment provide <code>memcpy</code>, <code>memmove</code>,
<code>memset</code> and <code>memcmp</code>.
Finally, if <code>__builtin_trap</code> is used, and the target does
not implement the <code>trap</code> pattern, then GCC will emit a call
to <code>abort</code>.
<p>For references to Technical Corrigenda, Rationale documents and
information concerning the history of C that is available online, see
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>
<h3 class="section">2.2 C++ language</h3>
<p>GCC supports the ISO C++ standard (1998) and contains experimental
support for the upcoming ISO C++ standard (200x).
<p>The original ISO C++ standard was published as the ISO standard (ISO/IEC
14882:1998) and amended by a Technical Corrigenda published in 2003
(ISO/IEC 14882:2003). These standards are referred to as C++98 and
C++03, respectively. GCC implements the majority of C++98 (<code>export</code>
is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options <samp><span class="option">-ansi</span></samp> or
<samp><span class="option">-std=c++98</span></samp>; to obtain all the diagnostics required by the
standard, you should also specify <samp><span class="option">-pedantic</span></samp> (or
<samp><span class="option">-pedantic-errors</span></samp> if you want them to be errors rather than
warnings).
<p>The ISO C++ committee is working on a new ISO C++ standard, dubbed
C++0x, that is intended to be published by 2009. C++0x contains several
changes to the C++ language, some of which have been implemented in an
experimental C++0x mode in GCC. The C++0x mode in GCC tracks the draft
working paper for the C++0x standard; the latest working paper is
available on the ISO C++ committee's web site at
<a href="http://www.open-std.org/jtc1/sc22/wg21/">http://www.open-std.org/jtc1/sc22/wg21/</a>. For information
regarding the C++0x features available in the experimental C++0x mode,
see <a href="http://gcc.gnu.org/projects/cxx0x.html">http://gcc.gnu.org/projects/cxx0x.html</a>. To select this
standard in GCC, use the option <samp><span class="option">-std=c++0x</span></samp>; to obtain all the
diagnostics required by the standard, you should also specify
<samp><span class="option">-pedantic</span></samp> (or <samp><span class="option">-pedantic-errors</span></samp> if you want them to be
errors rather than warnings).
<p>By default, GCC provides some extensions to the C++ language; See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>. Use of the
<samp><span class="option">-std</span></samp> option listed above will disable these extensions. You
may also select an extended version of the C++ language explicitly with
<samp><span class="option">-std=gnu++98</span></samp> (for C++98 with GNU extensions) or
<samp><span class="option">-std=gnu++0x</span></samp> (for C++0x with GNU extensions). The default, if
no C++ language dialect options are given, is <samp><span class="option">-std=gnu++98</span></samp>.
<h3 class="section">2.3 Objective-C and Objective-C++ languages</h3>
<p><a name="index-Objective_002dC-60"></a><a name="index-Objective_002dC_002b_002b-61"></a>
There is no formal written standard for Objective-C or Objective-C++. The most
authoritative manual is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:
<ul>
<li><a href="http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/">http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/</a>
is a recent (and periodically updated) version;
<li><a href="http://www.toodarkpark.org/computers/objc/">http://www.toodarkpark.org/computers/objc/</a>
is an older example;
<li><a href="http://www.gnustep.org">http://www.gnustep.org</a>
and
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>
have additional useful information.
</ul>
<p>See <a href="gnat_rm.html#Top">GNAT Reference Manual</a>, for information on standard
conformance and compatibility of the Ada compiler.
<p>See <a href="{No value for `fngfortran'}.html#Standards">Standards</a>, for details
of standards supported by GNU Fortran.
<p>See <a href="{No value for `fngcj'}.html#Compatibility">Compatibility with the Java Platform</a>,
for details of compatibility between <samp><span class="command">gcj</span></samp> and the Java Platform.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, -->
<!-- 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Invoking-GCC"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-Implementation">C Implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Standards">Standards</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">3 GCC Command Options</h2>
<p><a name="index-GCC-command-options-62"></a><a name="index-command-options-63"></a><a name="index-options_002c-GCC-command-64"></a>
<!-- man begin DESCRIPTION -->
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking. The “overall options” allow you to stop this
process at an intermediate stage. For example, the <samp><span class="option">-c</span></samp> option
says not to run the linker. Then the output consists of object files
output by the assembler.
<p>Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
<p><a name="index-C-compilation-options-65"></a>Most of the command line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.
<p><a name="index-C_002b_002b-compilation-options-66"></a>See <a href="#Invoking-G_002b_002b">Compiling C++ Programs</a>, for a summary of special
options for compiling C++ programs.
<p><a name="index-grouping-options-67"></a><a name="index-options_002c-grouping-68"></a>The <samp><span class="command">gcc</span></samp> program accepts options and file names as operands. Many
options have multi-letter names; therefore multiple single-letter options
may <em>not</em> be grouped: <samp><span class="option">-dv</span></samp> is very different from ‘<samp><span class="samp">-d -v</span></samp>’<!-- /@w -->.
<p><a name="index-order-of-options-69"></a><a name="index-options_002c-order-70"></a>You can mix options and other arguments. For the most part, the order
you use doesn't matter. Order does matter when you use several
options of the same kind; for example, if you specify <samp><span class="option">-L</span></samp> more
than once, the directories are searched in the order specified. Also,
the placement of the <samp><span class="option">-l</span></samp> option is significant.
<p>Many options have long names starting with ‘<samp><span class="samp">-f</span></samp>’ or with
‘<samp><span class="samp">-W</span></samp>’—for example,
<samp><span class="option">-fmove-loop-invariants</span></samp>, <samp><span class="option">-Wformat</span></samp> and so on. Most of
these have both positive and negative forms; the negative form of
<samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>. This manual documents
only one of these two forms, whichever one is not the default.
<!-- man end -->
<p>See <a href="#Option-Index">Option Index</a>, for an index to GCC's options.
<ul class="menu">
<li><a accesskey="1" href="#Option-Summary">Option Summary</a>: Brief list of all options, without explanations.
<li><a accesskey="2" href="#Overall-Options">Overall Options</a>: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
<li><a accesskey="3" href="#Invoking-G_002b_002b">Invoking G++</a>: Compiling C++ programs.
<li><a accesskey="4" href="#C-Dialect-Options">C Dialect Options</a>: Controlling the variant of C language compiled.
<li><a accesskey="5" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>: Variations on C++.
<li><a accesskey="6" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>: Variations on Objective-C
and Objective-C++.
<li><a accesskey="7" href="#Language-Independent-Options">Language Independent Options</a>: Controlling how diagnostics should be
formatted.
<li><a accesskey="8" href="#Warning-Options">Warning Options</a>: How picky should the compiler be?
<li><a accesskey="9" href="#Debugging-Options">Debugging Options</a>: Symbol tables, measurements, and debugging dumps.
<li><a href="#Optimize-Options">Optimize Options</a>: How much optimization?
<li><a href="#Preprocessor-Options">Preprocessor Options</a>: Controlling header files and macro definitions.
Also, getting dependency information for Make.
<li><a href="#Assembler-Options">Assembler Options</a>: Passing options to the assembler.
<li><a href="#Link-Options">Link Options</a>: Specifying libraries and so on.
<li><a href="#Directory-Options">Directory Options</a>: Where to find header files and libraries.
Where to find the compiler executable files.
<li><a href="#Spec-Files">Spec Files</a>: How to pass switches to sub-processes.
<li><a href="#Target-Options">Target Options</a>: Running a cross-compiler, or an old version of GCC.
<li><a href="#Submodel-Options">Submodel Options</a>: Specifying minor hardware or convention variations,
such as 68010 vs 68020.
<li><a href="#Code-Gen-Options">Code Gen Options</a>: Specifying conventions for function calls, data layout
and register usage.
<li><a href="#Environment-Variables">Environment Variables</a>: Env vars that affect GCC.
<li><a href="#Precompiled-Headers">Precompiled Headers</a>: Compiling a header once, and using it many times.
<li><a href="#Running-Protoize">Running Protoize</a>: Automatically adding or removing function prototypes.
</ul>
<!-- man begin OPTIONS -->
<div class="node">
<a name="Option-Summary"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Overall-Options">Overall Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.1 Option Summary</h3>
<p>Here is a summary of all the options, grouped by type. Explanations are
in the following sections.
<dl>
<dt><em>Overall Options</em><dd>See <a href="#Overall-Options">Options Controlling the Kind of Output</a>.
<pre class="smallexample"> -c -S -E -o <var>file</var> -combine -pipe -pass-exit-codes
-x <var>language</var> -v -### --help<span class="roman">[</span>=<var>class</var><span class="roman">[</span>,...<span class="roman">]]</span> --target-help
--version -wrapper@<var>file</var>
</pre>
<br><dt><em>C Language Options</em><dd>See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<pre class="smallexample"> -ansi -std=<var>standard</var> -fgnu89-inline
-aux-info <var>filename</var>
-fno-asm -fno-builtin -fno-builtin-<var>function</var>
-fhosted -ffreestanding -fopenmp -fms-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
</pre>
<br><dt><em>C++ Language Options</em><dd>See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.
<pre class="smallexample"> -fabi-version=<var>n</var> -fno-access-control -fcheck-new
-fconserve-space -ffriend-injection
-fno-elide-constructors
-fno-enforce-eh-specs
-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive
-frepo -fno-rtti -fstats -ftemplate-depth-<var>n</var>
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-fvisibility-ms-compat
-Wabi -Wctor-dtor-privacy
-Wnon-virtual-dtor -Wreorder
-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo
</pre>
<br><dt><em>Objective-C and Objective-C++ Language Options</em><dd>See <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Options Controlling Objective-C and Objective-C++ Dialects</a>.
<pre class="smallexample"> -fconstant-string-class=<var>class-name</var>
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector
</pre>
<br><dt><em>Language Independent Options</em><dd>See <a href="#Language-Independent-Options">Options to Control Diagnostic Messages Formatting</a>.
<pre class="smallexample"> -fmessage-length=<var>n</var>
-fdiagnostics-show-location=<span class="roman">[</span>once<span class="roman">|</span>every-line<span class="roman">]</span>
-fdiagnostics-show-option
</pre>
<br><dt><em>Warning Options</em><dd>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>.
<pre class="smallexample"> -fsyntax-only -pedantic -pedantic-errors
-w -Wextra -Wall -Waddress -Waggregate-return -Warray-bounds
-Wno-attributes -Wno-builtin-macro-redefined
-Wc++-compat -Wc++0x-compat -Wcast-align -Wcast-qual
-Wchar-subscripts -Wclobbered -Wcomment
-Wconversion -Wcoverage-mismatch -Wno-deprecated
-Wno-deprecated-declarations -Wdisabled-optimization
-Wno-div-by-zero -Wempty-body -Wenum-compare -Wno-endif-labels
-Werror -Werror=*
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k
-Wframe-larger-than=<var>len</var> -Wignored-qualifiers
-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Winit-self -Winline
-Wno-int-to-pointer-cast -Wno-invalid-offsetof
-Winvalid-pch -Wlarger-than=<var>len</var> -Wunsafe-loop-optimizations
-Wlogical-op -Wlong-long
-Wmain -Wmissing-braces -Wmissing-field-initializers
-Wmissing-format-attribute -Wmissing-include-dirs
-Wmissing-noreturn -Wno-mudflap
-Wno-multichar -Wnonnull -Wno-overflow
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-to-int-cast
-Wno-poison-system-directories
-Wredundant-decls
-Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wsign-conversion -Wstack-protector
-Wstrict-aliasing -Wstrict-aliasing=n
-Wstrict-overflow -Wstrict-overflow=<var>n</var>
-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand
-Wsystem-headers -Wtrigraphs -Wtype-limits -Wundef -Wuninitialized
-Wunknown-pragmas -Wno-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wno-unused-result -Wunused-value -Wunused-variable
-Wvariadic-macros -Wvla
-Wvolatile-register-var -Wwrite-strings
</pre>
<br><dt><em>C and Objective-C-only Warning Options</em><dd>
<pre class="smallexample"> -Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign
</pre>
<br><dt><em>Debugging Options</em><dd>See <a href="#Debugging-Options">Options for Debugging Your Program or GCC</a>.
<pre class="smallexample"> -d<var>letters</var> -dumpspecs -dumpmachine -dumpversion
-fdbg-cnt-list -fdbg-cnt=<var>counter-value-list</var>
-fdump-noaddr -fdump-unnumbered
-fdump-translation-unit<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-class-hierarchy<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-statistics
-fdump-tree-all
-fdump-tree-original<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-optimized<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch
-fdump-tree-ssa<span class="roman">[</span>-<var>n</var><span class="roman">]</span> -fdump-tree-pre<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-ccp<span class="roman">[</span>-<var>n</var><span class="roman">]</span> -fdump-tree-dce<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-gimple<span class="roman">[</span>-raw<span class="roman">]</span> -fdump-tree-mudflap<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-dom<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-dse<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-phiopt<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-forwprop<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-copyrename<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-nrv -fdump-tree-vect
-fdump-tree-sink
-fdump-tree-sra<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-fre<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-fdump-tree-vrp<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-ftree-vectorizer-verbose=<var>n</var>
-fdump-tree-storeccp<span class="roman">[</span>-<var>n</var><span class="roman">]</span>
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-frandom-seed=<var>string</var> -fsched-verbose=<var>n</var>
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-ftest-coverage -ftime-report -fvar-tracking
-g -g<var>level</var> -gcoff -gdwarf-2
-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=<var>old</var>=<var>new</var>
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed<span class="roman">[</span>=<var>spec-list</var><span class="roman">]</span>
-p -pg -print-file-name=<var>library</var> -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-prog-name=<var>program</var> -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix
-save-temps -time
</pre>
<br><dt><em>Optimization Options</em><dd>See <a href="#Optimize-Options">Options that Control Optimization</a>.
<pre class="smallexample"> -falign-arrays -falign-functions[=<var>n</var>] -falign-jumps[=<var>n</var>]
-falign-labels[=<var>n</var>] -falign-loops[=<var>n</var>] -fassociative-math
-fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves
-fcheck-data-deps -fconserve-stack -fcprop-registers -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules -fcx-limited-range
-fdata-sections -fdce -fdce
-fdelayed-branch -fdelete-null-pointer-checks -fdse -fdse
-fearly-inlining -fexpensive-optimizations -ffast-math
-ffinite-math-only -ffloat-store -fforward-propagate
-ffunction-sections -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm
-fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining
-finline-functions -finline-functions-called-once -finline-limit=<var>n</var>
-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg -fipa-pta
-fipa-pure-const -fipa-reference -fipa-struct-reorg
-fipa-type-escape -fira-algorithm=<var>algorithm</var>
-fira-region=<var>region</var> -fira-coalesce -fno-ira-share-save-slots
-fno-ira-share-spill-slots -fira-verbose=<var>n</var>
-fivopts -fkeep-inline-functions -fkeep-static-consts
-floop-block -floop-interchange -floop-strip-mine
-fmerge-all-constants -fmerge-constants -fmodulo-sched
-fmodulo-sched-allow-regmoves -fmove-loop-invariants -fmudflap
-fmudflapir -fmudflapth -fno-branch-count-reg -fno-default-inline
-fno-defer-pop -fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls
-fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays
-fprofile-correction -fprofile-dir=<var>path</var> -fprofile-generate
-fprofile-generate=<var>path</var>
-fprofile-use -fprofile-use=<var>path</var> -fprofile-values
-freciprocal-math -fregmove -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -frtl-abstract-sequences -fsched2-use-superblocks
-fsched2-use-traces -fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=<var>n</var>] -fsched-stalled-insns[=<var>n</var>]
-fschedule-insns -fschedule-insns2 -fsection-anchors -fsee
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller
-fsplit-wide-types -fstack-protector -fstack-protector-all
-fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer
-ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-copy-prop
-ftree-copyrename -ftree-dce
-ftree-dominator-opts -ftree-dse -ftree-fre -ftree-loop-im
-ftree-loop-distribution
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=<var>n</var> -ftree-pre -ftree-reassoc
-ftree-sink -ftree-sra -ftree-switch-conversion
-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fuse-ld
--param <var>name</var>=<var>value</var>
-O -O0 -O1 -O2 -O3 -Os
</pre>
<br><dt><em>Preprocessor Options</em><dd>See <a href="#Preprocessor-Options">Options Controlling the Preprocessor</a>.
<pre class="smallexample"> -A<var>question</var>=<var>answer</var>
-A-<var>question</var><span class="roman">[</span>=<var>answer</var><span class="roman">]</span>
-C -dD -dI -dM -dN
-D<var>macro</var><span class="roman">[</span>=<var>defn</var><span class="roman">]</span> -E -H
-idirafter <var>dir</var>
-include <var>file</var> -imacros <var>file</var>
-iprefix <var>file</var> -iwithprefix <var>dir</var>
-iwithprefixbefore <var>dir</var> -isystem <var>dir</var>
-imultilib <var>dir</var> -isysroot <var>dir</var>
-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -U<var>macro</var> -Wp,<var>option</var>
-Xpreprocessor <var>option</var>
</pre>
<br><dt><em>Assembler Option</em><dd>See <a href="#Assembler-Options">Passing Options to the Assembler</a>.
<pre class="smallexample"> -Wa,<var>option</var> -Xassembler <var>option</var>
</pre>
<br><dt><em>Linker Options</em><dd>See <a href="#Link-Options">Options for Linking</a>.
<pre class="smallexample"> <var>object-file-name</var> -l<var>library</var>
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-T <var>script</var> -Wl,<var>option</var> -Xlinker <var>option</var>
-u <var>symbol</var>
</pre>
<br><dt><em>Directory Options</em><dd>See <a href="#Directory-Options">Options for Directory Search</a>.
<pre class="smallexample"> -B<var>prefix</var> -I<var>dir</var> -iquote<var>dir</var> -L<var>dir</var>
-specs=<var>file</var> -I- --sysroot=<var>dir</var>
</pre>
<br><dt><em>Target Options</em><dd><!-- I wrote this xref this way to avoid overfull hbox. - rms -->
See <a href="#Target-Options">Target Options</a>.
<pre class="smallexample"> -V <var>version</var> -b <var>machine</var>
</pre>
<br><dt><em>Machine Dependent Options</em><dd>See <a href="#Submodel-Options">Hardware Models and Configurations</a>.
<!-- This list is ordered alphanumerically by subsection name. -->
<!-- Try and put the significant identifier (CPU or system) first, -->
<!-- so users have a clue at guessing where the ones they want will be. -->
<p><em>ARC Options</em>
<pre class="smallexample"> -EB -EL
-mmangle-cpu -mcpu=<var>cpu</var> -mtext=<var>text-section</var>
-mdata=<var>data-section</var> -mrodata=<var>readonly-data-section</var>
</pre>
<p><em>ARM Options</em>
<pre class="smallexample"> -mapcs-frame -mno-apcs-frame
-mabi=<var>name</var>
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=<var>name</var> -msoft-float -mhard-float -mfpe
-mfp16-format=<var>name</var>
-mthumb-interwork -mno-thumb-interwork
-mfix-janus-2cc
-mcpu=<var>name</var> -march=<var>name</var> -mfpu=<var>name</var>
-mmarvell-div
-mstructure-size-boundary=<var>n</var>
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=<var>reg</var>
-mnop-fun-dllimport
-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=<var>name</var>
-mlow-irq-latency
-mword-relocations
-mfix-cortex-m3-ldrd
</pre>
<p><em>AVR Options</em>
<pre class="smallexample"> -mmcu=<var>mcu</var> -msize -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack -mint8
</pre>
<p><em>Blackfin Options</em>
<pre class="smallexample"> -mcpu=<var>cpu</var><span class="roman">[</span>-<var>sirevision</var><span class="roman">]</span>
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library
-mno-id-shared-library -mshared-library-id=<var>n</var>
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb
</pre>
<p><em>CRIS Options</em>
<pre class="smallexample"> -mcpu=<var>cpu</var> -march=<var>cpu</var> -mtune=<var>cpu</var>
-mmax-stack-frame=<var>n</var> -melinux-stacksize=<var>n</var>
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround
</pre>
<p><em>CRX Options</em>
<pre class="smallexample"> -mmac -mpush-args
</pre>
<p><em>Darwin Options</em>
<pre class="smallexample"> -all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip
-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list
-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -seg1addr
-sectcreate -sectobjectsymbols -sectorder
-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=<var>version</var>
-mkernel -mone-byte-bool
</pre>
<p><em>DEC Alpha Options</em>
<pre class="smallexample"> -mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=<var>mode</var> -mfp-rounding-mode=<var>mode</var>
-mtrap-precision=<var>mode</var> -mbuild-constants
-mcpu=<var>cpu-type</var> -mtune=<var>cpu-type</var>
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=<var>time</var>
</pre>
<p><em>DEC Alpha/VMS Options</em>
<pre class="smallexample"> -mvms-return-codes
</pre>
<p><em>FR30 Options</em>
<pre class="smallexample"> -msmall-model -mno-lsim
</pre>
<p><em>FRV Options</em>
<pre class="smallexample"> -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=<var>cpu</var>
</pre>
<p><em>GNU/Linux Options</em>
<pre class="smallexample"> -muclibc
</pre>
<p><em>H8/300 Options</em>
<pre class="smallexample"> -mrelax -mh -ms -mn -mint32 -malign-300
</pre>
<p><em>HPPA Options</em>
<pre class="smallexample"> -march=<var>architecture-type</var>
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
-mfixed-range=<var>register-range</var>
-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=<var>cpu-type</var> -mspace-regs -msio -mwsio
-munix=<var>unix-std</var> -nolibdld -static -threads
</pre>
<p><em>i386 and x86-64 Options</em>
<pre class="smallexample"> -mtune=<var>cpu-type</var> -march=<var>cpu-type</var>
-mfpmath=<var>unit</var>
-masm=<var>dialect</var> -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=<var>num</var>
-mincoming-stack-boundary=<var>num</var>
-mcld -mcx16 -msahf -mmovbe -mrecip
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx
-maes -mpclmul
-msse4a -m3dnow -mpopcnt -mabm -msse5
-mthreads -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=<var>alg</var>
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=<var>num</var> -msseregparm
-mveclibabi=<var>type</var> -mpc32 -mpc64 -mpc80 -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=<var>code-model</var> -mabi=<var>name</var>
-m32 -m64 -mlarge-data-threshold=<var>num</var>
-mfused-madd -mno-fused-madd -msse2avx
</pre>
<p><em>i386 and x86-64 Windows Options</em>
<pre class="smallexample"> -mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread -mwin32 -mwindows
</pre>
<p><em>IA-64 Options</em>
<pre class="smallexample"> -mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-float-divide-min-latency
-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-dwarf2-asm -mearly-stop-bits
-mfixed-range=<var>register-range</var> -mtls-size=<var>tls-size</var>
-mtune=<var>cpu-type</var> -mt -pthread -milp32 -mlp64
-mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose
-mno-sched-prefer-non-data-spec-insns
-mno-sched-prefer-non-control-spec-insns
-mno-sched-count-spec-in-critical-path
</pre>
<p><em>M32R/D Options</em>
<pre class="smallexample"> -m32r2 -m32rx -m32r
-mdebug
-malign-loops -mno-align-loops
-missue-rate=<var>number</var>
-mbranch-cost=<var>number</var>
-mmodel=<var>code-size-model-type</var>
-msdata=<var>sdata-type</var>
-mno-flush-func -mflush-func=<var>name</var>
-mno-flush-trap -mflush-trap=<var>number</var>
-G <var>num</var>
</pre>
<p><em>M32C Options</em>
<pre class="smallexample"> -mcpu=<var>cpu</var> -msim -memregs=<var>number</var>
</pre>
<p><em>M680x0 Options</em>
<pre class="smallexample"> -march=<var>arch</var> -mcpu=<var>cpu</var> -mtune=<var>tune</var>
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407
-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot
</pre>
<p><em>M68hc1x Options</em>
<pre class="smallexample"> -m6811 -m6812 -m68hc11 -m68hc12 -m68hcs12
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=<var>count</var>
</pre>
<p><em>MCore Options</em>
<pre class="smallexample"> -mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment
</pre>
<p><em>MIPS Options</em>
<pre class="smallexample"> -EL -EB -march=<var>arch</var> -mtune=<var>arch</var>
-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2
-mips64 -mips64r2
-mips16 -mips16e -mno-mips16 -mflip-mips16
-minterlink-mips16 -mno-interlink-mips16
-mabi=<var>abi</var> -mabicalls -mno-abicalls
-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2
-mmicromips -mno-micromips -mmcu -mmno-mcu
-mfpu=<var>fpu-type</var>
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32
-G<var>num</var> -mlocal-sdata -mno-local-sdata
-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=<var>setting</var>
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mjals -mno-jals
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1
-mflush-func=<var>func</var> -mno-flush-func
-mbranch-cost=<var>num</var> -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align
</pre>
<p><em>MMIX Options</em>
<pre class="smallexample"> -mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
</pre>
<p><em>MN10300 Options</em>
<pre class="smallexample"> -mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mreturn-pointer-on-d0
-mno-crt0 -mrelax
</pre>
<p><em>PDP-11 Options</em>
<pre class="smallexample"> -mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-int16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap
-msplit -mno-split -munix-asm -mdec-asm
</pre>
<p><em>picoChip Options</em>
<pre class="smallexample"> -mae=<var>ae_type</var> -mvliw-lookahead=<var>N</var>
-msymbol-as-address -mno-inefficient-warnings
</pre>
<p><em>PowerPC Options</em>
See RS/6000 and PowerPC Options.
<p><em>RS/6000 and PowerPC Options</em>
<pre class="smallexample"> -mcpu=<var>cpu-type</var>
-mtune=<var>cpu-type</var>
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mpowerpc64 -mno-powerpc
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mnew-mnemonics -mold-mnemonics
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu
-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv
-mprioritize-restricted-insns=<var>priority</var>
-msched-costly-dep=<var>dependence_type</var>
-minsert-sched-nops=<var>scheme</var>
-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=<var>abi-type</var> -msecure-plt -mbss-plt
-misel -mno-isel
-misel=yes -misel=no
-mspe -mno-spe
-mspe=yes -mspe=no
-mpaired
-mgen-cell-microcode -mwarn-cell-microcode
-mvrsave -mno-vrsave
-mmulhw -mno-mulhw
-mdlmzb -mno-dlmzb
-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=<var>opt</var> -mvxworks -G <var>num</var> -pthread
</pre>
<p><em>S/390 and zSeries Options</em>
<pre class="smallexample"> -mtune=<var>cpu-type</var> -march=<var>cpu-type</var>
-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle
-m64 -m31 -mdebug -mno-debug -mesa -mzarch
-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
</pre>
<p><em>Score Options</em>
<pre class="smallexample"> -meb -mel
-mnhwloop
-muls
-mmac
-mscore5 -mscore5u -mscore7 -mscore7d
</pre>
<p><em>SH Options</em>
<pre class="smallexample"> -m1 -m2 -m2e -m3 -m3e
-m4-nofpu -m4-single-only -m4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al
-m5-64media -m5-64media-nofpu
-m5-32media -m5-32media-nofpu
-m5-compact -m5-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mbitops -misize -minline-ic_invalidate -mpadstruct -mspace
-mprefergot -musermode -multcost=<var>number</var> -mdiv=<var>strategy</var>
-mdivsi3_libfunc=<var>name</var> -mfixed-range=<var>register-range</var>
-madjust-unroll -mindexed-addressing -mgettrcost=<var>number</var> -mpt-fixed
-minvalid-symbols -mfdpic
</pre>
<p><em>SPARC Options</em>
<pre class="smallexample"> -mcpu=<var>cpu-type</var>
-mtune=<var>cpu-type</var>
-mcmodel=<var>code-model</var>
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis
-threads -pthreads -pthread
</pre>
<p><em>SPU Options</em>
<pre class="smallexample"> -mwarn-reloc -merror-reloc
-msafe-dma -munsafe-dma
-mbranch-hints
-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=<var>register-range</var>
</pre>
<p><em>System V Options</em>
<pre class="smallexample"> -Qy -Qn -YP,<var>paths</var> -Ym,<var>dir</var>
</pre>
<p><em>V850 Options</em>
<pre class="smallexample"> -mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=<var>n</var> -msda=<var>n</var> -mzda=<var>n</var>
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e1
-mv850e
-mv850 -mbig-switch
</pre>
<p><em>VAX Options</em>
<pre class="smallexample"> -mg -mgnu -munix
</pre>
<p><em>VxWorks Options</em>
<pre class="smallexample"> -mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
</pre>
<p><em>x86-64 Options</em>
See i386 and x86-64 Options.
<p><em>Xstormy16 Options</em>
<pre class="smallexample"> -msim
</pre>
<p><em>Xtensa Options</em>
<pre class="smallexample"> -mconst16 -mno-const16
-mfused-madd -mno-fused-madd
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls
</pre>
<p><em>zSeries Options</em>
See S/390 and zSeries Options.
<br><dt><em>Code Generation Options</em><dd>See <a href="#Code-Gen-Options">Options for Code Generation Conventions</a>.
<pre class="smallexample"> -fcall-saved-<var>reg</var> -fcall-used-<var>reg</var>
-ffixed-<var>reg</var> -fexceptions
-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables
-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=<var>sym</var>,<var>sym</var>,...
-finstrument-functions-exclude-file-list=<var>file</var>,<var>file</var>,...
-fno-common -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables
-frecord-gcc-switches
-freg-struct-return -fshort-enums
-fshort-double -fshort-wchar
-fverbose-asm -fpack-struct[=<var>n</var>] -fstack-check
-fstack-limit-register=<var>reg</var> -fstack-limit-symbol=<var>sym</var>
-fno-stack-limit -fargument-alias -fargument-noalias
-fargument-noalias-global -fargument-noalias-anything
-fleading-underscore -ftls-model=<var>model</var>
-ftrapv -fwrapv -fbounds-check
-fvisibility
</pre>
</dl>
<ul class="menu">
<li><a accesskey="1" href="#Overall-Options">Overall Options</a>: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
<li><a accesskey="2" href="#C-Dialect-Options">C Dialect Options</a>: Controlling the variant of C language compiled.
<li><a accesskey="3" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>: Variations on C++.
<li><a accesskey="4" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>: Variations on Objective-C
and Objective-C++.
<li><a accesskey="5" href="#Language-Independent-Options">Language Independent Options</a>: Controlling how diagnostics should be
formatted.
<li><a accesskey="6" href="#Warning-Options">Warning Options</a>: How picky should the compiler be?
<li><a accesskey="7" href="#Debugging-Options">Debugging Options</a>: Symbol tables, measurements, and debugging dumps.
<li><a accesskey="8" href="#Optimize-Options">Optimize Options</a>: How much optimization?
<li><a accesskey="9" href="#Preprocessor-Options">Preprocessor Options</a>: Controlling header files and macro definitions.
Also, getting dependency information for Make.
<li><a href="#Assembler-Options">Assembler Options</a>: Passing options to the assembler.
<li><a href="#Link-Options">Link Options</a>: Specifying libraries and so on.
<li><a href="#Directory-Options">Directory Options</a>: Where to find header files and libraries.
Where to find the compiler executable files.
<li><a href="#Spec-Files">Spec Files</a>: How to pass switches to sub-processes.
<li><a href="#Target-Options">Target Options</a>: Running a cross-compiler, or an old version of GCC.
</ul>
<div class="node">
<a name="Overall-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Invoking-G_002b_002b">Invoking G++</a>,
Previous: <a rel="previous" accesskey="p" href="#Option-Summary">Option Summary</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.2 Options Controlling the Kind of Output</h3>
<p>Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.
<p><a name="index-file-name-suffix-71"></a>For any given input file, the file name suffix determines what kind of
compilation is done:
<dl>
<dt><var>file</var><code>.c</code><dd>C source code which must be preprocessed.
<br><dt><var>file</var><code>.i</code><dd>C source code which should not be preprocessed.
<br><dt><var>file</var><code>.ii</code><dd>C++ source code which should not be preprocessed.
<br><dt><var>file</var><code>.m</code><dd>Objective-C source code. Note that you must link with the <samp><span class="file">libobjc</span></samp>
library to make an Objective-C program work.
<br><dt><var>file</var><code>.mi</code><dd>Objective-C source code which should not be preprocessed.
<br><dt><var>file</var><code>.mm</code><dt><var>file</var><code>.M</code><dd>Objective-C++ source code. Note that you must link with the <samp><span class="file">libobjc</span></samp>
library to make an Objective-C++ program work. Note that ‘<samp><span class="samp">.M</span></samp>’ refers
to a literal capital M.
<br><dt><var>file</var><code>.mii</code><dd>Objective-C++ source code which should not be preprocessed.
<br><dt><var>file</var><code>.h</code><dd>C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header.
<br><dt><var>file</var><code>.cc</code><dt><var>file</var><code>.cp</code><dt><var>file</var><code>.cxx</code><dt><var>file</var><code>.cpp</code><dt><var>file</var><code>.CPP</code><dt><var>file</var><code>.c++</code><dt><var>file</var><code>.C</code><dd>C++ source code which must be preprocessed. Note that in ‘<samp><span class="samp">.cxx</span></samp>’,
the last two letters must both be literally ‘<samp><span class="samp">x</span></samp>’. Likewise,
‘<samp><span class="samp">.C</span></samp>’ refers to a literal capital C.
<br><dt><var>file</var><code>.mm</code><dt><var>file</var><code>.M</code><dd>Objective-C++ source code which must be preprocessed.
<br><dt><var>file</var><code>.mii</code><dd>Objective-C++ source code which should not be preprocessed.
<br><dt><var>file</var><code>.hh</code><dt><var>file</var><code>.H</code><dt><var>file</var><code>.hp</code><dt><var>file</var><code>.hxx</code><dt><var>file</var><code>.hpp</code><dt><var>file</var><code>.HPP</code><dt><var>file</var><code>.h++</code><dt><var>file</var><code>.tcc</code><dd>C++ header file to be turned into a precompiled header.
<br><dt><var>file</var><code>.f</code><dt><var>file</var><code>.for</code><dt><var>file</var><code>.ftn</code><dd>Fixed form Fortran source code which should not be preprocessed.
<br><dt><var>file</var><code>.F</code><dt><var>file</var><code>.FOR</code><dt><var>file</var><code>.fpp</code><dt><var>file</var><code>.FPP</code><dt><var>file</var><code>.FTN</code><dd>Fixed form Fortran source code which must be preprocessed (with the traditional
preprocessor).
<br><dt><var>file</var><code>.f90</code><dt><var>file</var><code>.f95</code><dt><var>file</var><code>.f03</code><dt><var>file</var><code>.f08</code><dd>Free form Fortran source code which should not be preprocessed.
<br><dt><var>file</var><code>.F90</code><dt><var>file</var><code>.F95</code><dt><var>file</var><code>.F03</code><dt><var>file</var><code>.F08</code><dd>Free form Fortran source code which must be preprocessed (with the
traditional preprocessor).
<!-- FIXME: Descriptions of Java file types. -->
<!-- @var{file}.java -->
<!-- @var{file}.class -->
<!-- @var{file}.zip -->
<!-- @var{file}.jar -->
<br><dt><var>file</var><code>.ads</code><dd>Ada source code file which contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also
called <dfn>specs</dfn>.
<br><dt><var>file</var><code>.adb</code><dd>Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called <dfn>bodies</dfn>.
<!-- GCC also knows about some suffixes for languages not yet included: -->
<!-- Pascal: -->
<!-- @var{file}.p -->
<!-- @var{file}.pas -->
<!-- Ratfor: -->
<!-- @var{file}.r -->
<br><dt><var>file</var><code>.s</code><dd>Assembler code.
<br><dt><var>file</var><code>.S</code><dt><var>file</var><code>.sx</code><dd>Assembler code which must be preprocessed.
<br><dt><var>other</var><dd>An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
</dl>
<p><a name="index-x-72"></a>You can specify the input language explicitly with the <samp><span class="option">-x</span></samp> option:
<dl>
<dt><code>-x </code><var>language</var><dd>Specify explicitly the <var>language</var> for the following input files
(rather than letting the compiler choose a default based on the file
name suffix). This option applies to all following input files until
the next <samp><span class="option">-x</span></samp> option. Possible values for <var>language</var> are:
<pre class="smallexample"> c c-header c-cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
f77 f77-cpp-input f95 f95-cpp-input
java
</pre>
<br><dt><code>-x none</code><dd>Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if <samp><span class="option">-x</span></samp>
has not been used at all).
<br><dt><code>-pass-exit-codes</code><dd><a name="index-pass_002dexit_002dcodes-73"></a>Normally the <samp><span class="command">gcc</span></samp> program will exit with the code of 1 if any
phase of the compiler returns a non-success return code. If you specify
<samp><span class="option">-pass-exit-codes</span></samp>, the <samp><span class="command">gcc</span></samp> program will instead return with
numerically highest error produced by any phase that returned an error
indication. The C, C++, and Fortran frontends return 4, if an internal
compiler error is encountered.
</dl>
<p>If you only want some of the stages of compilation, you can use
<samp><span class="option">-x</span></samp> (or filename suffixes) to tell <samp><span class="command">gcc</span></samp> where to start, and
one of the options <samp><span class="option">-c</span></samp>, <samp><span class="option">-S</span></samp>, or <samp><span class="option">-E</span></samp> to say where
<samp><span class="command">gcc</span></samp> is to stop. Note that some combinations (for example,
‘<samp><span class="samp">-x cpp-output -E</span></samp>’) instruct <samp><span class="command">gcc</span></samp> to do nothing at all.
<dl>
<dt><code>-c</code><dd><a name="index-c-74"></a>Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
<p>By default, the object file name for a source file is made by replacing
the suffix ‘<samp><span class="samp">.c</span></samp>’, ‘<samp><span class="samp">.i</span></samp>’, ‘<samp><span class="samp">.s</span></samp>’, etc., with ‘<samp><span class="samp">.o</span></samp>’.
<p>Unrecognized input files, not requiring compilation or assembly, are
ignored.
<br><dt><code>-S</code><dd><a name="index-S-75"></a>Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each non-assembler input
file specified.
<p>By default, the assembler file name for a source file is made by
replacing the suffix ‘<samp><span class="samp">.c</span></samp>’, ‘<samp><span class="samp">.i</span></samp>’, etc., with ‘<samp><span class="samp">.s</span></samp>’.
<p>Input files that don't require compilation are ignored.
<br><dt><code>-E</code><dd><a name="index-E-76"></a>Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
<p>Input files which don't require preprocessing are ignored.
<p><a name="index-output-file-option-77"></a><br><dt><code>-o </code><var>file</var><dd><a name="index-o-78"></a>Place output in file <var>file</var>. This applies regardless to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.
<p>If <samp><span class="option">-o</span></samp> is not specified, the default is to put an executable
file in <samp><span class="file">a.out</span></samp>, the object file for
<samp><var>source</var><span class="file">.</span><var>suffix</var></samp> in <samp><var>source</var><span class="file">.o</span></samp>, its
assembler file in <samp><var>source</var><span class="file">.s</span></samp>, a precompiled header file in
<samp><var>source</var><span class="file">.</span><var>suffix</var><span class="file">.gch</span></samp>, and all preprocessed C source on
standard output.
<br><dt><code>-v</code><dd><a name="index-v-79"></a>Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
<br><dt><code>-###</code><dd><a name="index-g_t_0023_0023_0023-80"></a>Like <samp><span class="option">-v</span></samp> except the commands are not executed and all command
arguments are quoted. This is useful for shell scripts to capture the
driver-generated command lines.
<br><dt><code>-pipe</code><dd><a name="index-pipe-81"></a>Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.
<br><dt><code>-combine</code><dd><a name="index-combine-82"></a>If you are compiling multiple source files, this option tells the driver
to pass all the source files to the compiler at once (for those
languages for which the compiler can handle this). This will allow
intermodule analysis (IMA) to be performed by the compiler. Currently the only
language for which this is supported is C. If you pass source files for
multiple languages to the driver, using this option, the driver will invoke
the compiler(s) that support IMA once each, passing each compiler all the
source files appropriate for it. For those languages that do not support
IMA this option will be ignored, and the compiler will be invoked once for
each source file in that language. If you use this option in conjunction
with <samp><span class="option">-save-temps</span></samp>, the compiler will generate multiple
pre-processed files
(one for each source file), but only one (combined) <samp><span class="file">.o</span></samp> or
<samp><span class="file">.s</span></samp> file.
<br><dt><code>--help</code><dd><a name="index-help-83"></a>Print (on the standard output) a description of the command line options
understood by <samp><span class="command">gcc</span></samp>. If the <samp><span class="option">-v</span></samp> option is also specified
then <samp><span class="option">--help</span></samp> will also be passed on to the various processes
invoked by <samp><span class="command">gcc</span></samp>, so that they can display the command line options
they accept. If the <samp><span class="option">-Wextra</span></samp> option has also been specified
(prior to the <samp><span class="option">--help</span></samp> option), then command line options which
have no documentation associated with them will also be displayed.
<br><dt><code>--target-help</code><dd><a name="index-target_002dhelp-84"></a>Print (on the standard output) a description of target-specific command
line options for each tool. For some targets extra target-specific
information may also be printed.
<br><dt><code>--help={</code><var>class</var><span class="roman">|[</span><code>^</code><span class="roman">]</span><var>qualifier</var><code>}</code><span class="roman">[</span><code>,...</code><span class="roman">]</span><dd>Print (on the standard output) a description of the command line
options understood by the compiler that fit into all specified classes
and qualifiers. These are the supported classes:
<dl>
<dt>‘<samp><span class="samp">optimizers</span></samp>’<dd>This will display all of the optimization options supported by the
compiler.
<br><dt>‘<samp><span class="samp">warnings</span></samp>’<dd>This will display all of the options controlling warning messages
produced by the compiler.
<br><dt>‘<samp><span class="samp">target</span></samp>’<dd>This will display target-specific options. Unlike the
<samp><span class="option">--target-help</span></samp> option however, target-specific options of the
linker and assembler will not be displayed. This is because those
tools do not currently support the extended <samp><span class="option">--help=</span></samp> syntax.
<br><dt>‘<samp><span class="samp">params</span></samp>’<dd>This will display the values recognized by the <samp><span class="option">--param</span></samp>
option.
<br><dt><var>language</var><dd>This will display the options supported for <var>language</var>, where
<var>language</var> is the name of one of the languages supported in this
version of GCC.
<br><dt>‘<samp><span class="samp">common</span></samp>’<dd>This will display the options that are common to all languages.
</dl>
<p>These are the supported qualifiers:
<dl>
<dt>‘<samp><span class="samp">undocumented</span></samp>’<dd>Display only those options which are undocumented.
<br><dt>‘<samp><span class="samp">joined</span></samp>’<dd>Display options which take an argument that appears after an equal
sign in the same continuous piece of text, such as:
‘<samp><span class="samp">--help=target</span></samp>’.
<br><dt>‘<samp><span class="samp">separate</span></samp>’<dd>Display options which take an argument that appears as a separate word
following the original option, such as: ‘<samp><span class="samp">-o output-file</span></samp>’.
</dl>
<p>Thus for example to display all the undocumented target-specific
switches supported by the compiler the following can be used:
<pre class="smallexample"> --help=target,undocumented
</pre>
<p>The sense of a qualifier can be inverted by prefixing it with the
‘<samp><span class="samp">^</span></samp>’ character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument), which have a description the following can be used:
<pre class="smallexample"> --help=warnings,^joined,^undocumented
</pre>
<p>The argument to <samp><span class="option">--help=</span></samp> should not consist solely of inverted
qualifiers.
<p>Combining several classes is possible, although this usually
restricts the output by so much that there is nothing to display. One
case where it does work however is when one of the classes is
<var>target</var>. So for example to display all the target-specific
optimization options the following can be used:
<pre class="smallexample"> --help=target,optimizers
</pre>
<p>The <samp><span class="option">--help=</span></samp> option can be repeated on the command line. Each
successive use will display its requested class of options, skipping
those that have already been displayed.
<p>If the <samp><span class="option">-Q</span></samp> option appears on the command line before the
<samp><span class="option">--help=</span></samp> option, then the descriptive text displayed by
<samp><span class="option">--help=</span></samp> is changed. Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the <samp><span class="option">--help=</span></samp> option is used).
<p>Here is a truncated example from the ARM port of <samp><span class="command">gcc</span></samp>:
<pre class="smallexample"> % gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]
</pre>
<p>The output is sensitive to the effects of previous command line
options, so for example it is possible to find out which optimizations
are enabled at <samp><span class="option">-O2</span></samp> by using:
<pre class="smallexample"> -Q -O2 --help=optimizers
</pre>
<p>Alternatively you can discover which binary optimizations are enabled
by <samp><span class="option">-O3</span></samp> by using:
<pre class="smallexample"> gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
</pre>
<br><dt><code>--version</code><dd><a name="index-version-85"></a>Display the version number and copyrights of the invoked GCC.
<br><dt><code>-wrapper</code><dd><a name="index-wrapper-86"></a>Invoke all subcommands under a wrapper program. It takes a single
comma separated list as an argument, which will be used to invoke
the wrapper:
<pre class="smallexample"> gcc -c t.c -wrapper gdb,--args
</pre>
<p>This will invoke all subprograms of gcc under "gdb –args",
thus cc1 invocation will be "gdb –args cc1 ...".
<!-- This file is designed to be included in manuals that use -->
<!-- expandargv. -->
<br><dt><code>@</code><var>file</var><dd>Read command-line options from <var>file</var>. The options read are
inserted in place of the original @<var>file</var> option. If <var>file</var>
does not exist, or cannot be read, then the option will be treated
literally, and not removed.
<p>Options in <var>file</var> are separated by whitespace. A whitespace
character may be included in an option by surrounding the entire
option in either single or double quotes. Any character (including a
backslash) may be included by prefixing the character to be included
with a backslash. The <var>file</var> may itself contain additional
@<var>file</var> options; any such options will be processed recursively.
</dl>
<div class="node">
<a name="Invoking-G++"></a>
<a name="Invoking-G_002b_002b"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-Dialect-Options">C Dialect Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Overall-Options">Overall Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.3 Compiling C++ Programs</h3>
<p><a name="index-suffixes-for-C_002b_002b-source-87"></a><a name="index-C_002b_002b-source-file-suffixes-88"></a>C++ source files conventionally use one of the suffixes ‘<samp><span class="samp">.C</span></samp>’,
‘<samp><span class="samp">.cc</span></samp>’, ‘<samp><span class="samp">.cpp</span></samp>’, ‘<samp><span class="samp">.CPP</span></samp>’, ‘<samp><span class="samp">.c++</span></samp>’, ‘<samp><span class="samp">.cp</span></samp>’, or
‘<samp><span class="samp">.cxx</span></samp>’; C++ header files often use ‘<samp><span class="samp">.hh</span></samp>’, ‘<samp><span class="samp">.hpp</span></samp>’,
‘<samp><span class="samp">.H</span></samp>’, or (for shared template code) ‘<samp><span class="samp">.tcc</span></samp>’; and
preprocessed C++ files use the suffix ‘<samp><span class="samp">.ii</span></samp>’. GCC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name <samp><span class="command">gcc</span></samp>).
<p><a name="index-g_002b_002b-89"></a><a name="index-c_002b_002b-90"></a>However, the use of <samp><span class="command">gcc</span></samp> does not add the C++ library.
<samp><span class="command">g++</span></samp> is a program that calls GCC and treats ‘<samp><span class="samp">.c</span></samp>’,
‘<samp><span class="samp">.h</span></samp>’ and ‘<samp><span class="samp">.i</span></samp>’ files as C++ source files instead of C source
files unless <samp><span class="option">-x</span></samp> is used, and automatically specifies linking
against the C++ library. This program is also useful when
precompiling a C header file with a ‘<samp><span class="samp">.h</span></samp>’ extension for use in C++
compilations. On many systems, <samp><span class="command">g++</span></samp> is also installed with
the name <samp><span class="command">c++</span></samp>.
<p><a name="index-invoking-_0040command_007bg_002b_002b_007d-91"></a>When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>, for
explanations of options for languages related to C.
See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>, for
explanations of options that are meaningful only for C++ programs.
<div class="node">
<a name="C-Dialect-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Invoking-G_002b_002b">Invoking G++</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.4 Options Controlling C Dialect</h3>
<p><a name="index-dialect-options-92"></a><a name="index-language-dialect-options-93"></a><a name="index-options_002c-dialect-94"></a>
The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:
<a name="index-ANSI-support-95"></a>
<a name="index-ISO-support-96"></a>
<dl><dt><code>-ansi</code><dd><a name="index-ansi-97"></a>In C mode, this is equivalent to ‘<samp><span class="samp">-std=c89</span></samp>’. In C++ mode, it is
equivalent to ‘<samp><span class="samp">-std=c++98</span></samp>’.
<p>This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the <code>asm</code> and <code>typeof</code> keywords, and
predefined macros such as <code>unix</code> and <code>vax</code> that identify the
type of system you are using. It also enables the undesirable and
rarely used ISO trigraph feature. For the C compiler,
it disables recognition of C++ style ‘<samp><span class="samp">//</span></samp>’ comments as well as
the <code>inline</code> keyword.
<p>The alternate keywords <code>__asm__</code>, <code>__extension__</code>,
<code>__inline__</code> and <code>__typeof__</code> continue to work despite
<samp><span class="option">-ansi</span></samp>. You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with <samp><span class="option">-ansi</span></samp>. Alternate predefined macros
such as <code>__unix__</code> and <code>__vax__</code> are also available, with or
without <samp><span class="option">-ansi</span></samp>.
<p>The <samp><span class="option">-ansi</span></samp> option does not cause non-ISO programs to be
rejected gratuitously. For that, <samp><span class="option">-pedantic</span></samp> is required in
addition to <samp><span class="option">-ansi</span></samp>. See <a href="#Warning-Options">Warning Options</a>.
<p>The macro <code>__STRICT_ANSI__</code> is predefined when the <samp><span class="option">-ansi</span></samp>
option is used. Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.
<p>Functions that would normally be built in but do not have semantics
defined by ISO C (such as <code>alloca</code> and <code>ffs</code>) are not built-in
functions when <samp><span class="option">-ansi</span></samp> is used. See <a href="#Other-Builtins">Other built-in functions provided by GCC</a>, for details of the functions
affected.
<br><dt><code>-std=</code><dd><a name="index-std-98"></a>Determine the language standard. See <a href="#Standards">Language Standards Supported by GCC</a>, for details of these standard versions. This option
is currently only supported when compiling C or C++.
<p>The compiler can accept several base standards, such as ‘<samp><span class="samp">c89</span></samp>’ or
‘<samp><span class="samp">c++98</span></samp>’, and GNU dialects of those standards, such as
‘<samp><span class="samp">gnu89</span></samp>’ or ‘<samp><span class="samp">gnu++98</span></samp>’. By specifying a base standard, the
compiler will accept all programs following that standard and those
using GNU extensions that do not contradict it. For example,
‘<samp><span class="samp">-std=c89</span></samp>’ turns off certain features of GCC that are
incompatible with ISO C90, such as the <code>asm</code> and <code>typeof</code>
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a <code>?:</code>
expression. On the other hand, by specifying a GNU dialect of a
standard, all features the compiler support are enabled, even when
those features change the meaning of the base standard and some
strict-conforming programs may be rejected. The particular standard
is used by <samp><span class="option">-pedantic</span></samp> to identify which features are GNU
extensions given that version of the standard. For example
‘<samp><span class="samp">-std=gnu89 -pedantic</span></samp>’ would warn about C++ style ‘<samp><span class="samp">//</span></samp>’
comments, while ‘<samp><span class="samp">-std=gnu99 -pedantic</span></samp>’ would not.
<p>A value for this option must be provided; possible values are
<dl>
<dt>‘<samp><span class="samp">c89</span></samp>’<dt>‘<samp><span class="samp">iso9899:1990</span></samp>’<dd>Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as <samp><span class="option">-ansi</span></samp> for C code.
<br><dt>‘<samp><span class="samp">iso9899:199409</span></samp>’<dd>ISO C90 as modified in amendment 1.
<br><dt>‘<samp><span class="samp">c99</span></samp>’<dt>‘<samp><span class="samp">c9x</span></samp>’<dt>‘<samp><span class="samp">iso9899:1999</span></samp>’<dt>‘<samp><span class="samp">iso9899:199x</span></samp>’<dd>ISO C99. Note that this standard is not yet fully supported; see
<a href="http://gcc.gnu.org/gcc-4.4/c99status.html">http://gcc.gnu.org/gcc-4.4/c99status.html</a><!-- /@w --> for more information. The
names ‘<samp><span class="samp">c9x</span></samp>’ and ‘<samp><span class="samp">iso9899:199x</span></samp>’ are deprecated.
<br><dt>‘<samp><span class="samp">gnu89</span></samp>’<dd>GNU dialect of ISO C90 (including some C99 features). This
is the default for C code.
<br><dt>‘<samp><span class="samp">gnu99</span></samp>’<dt>‘<samp><span class="samp">gnu9x</span></samp>’<dd>GNU dialect of ISO C99. When ISO C99 is fully implemented in GCC,
this will become the default. The name ‘<samp><span class="samp">gnu9x</span></samp>’ is deprecated.
<br><dt>‘<samp><span class="samp">c++98</span></samp>’<dd>The 1998 ISO C++ standard plus amendments. Same as <samp><span class="option">-ansi</span></samp> for
C++ code.
<br><dt>‘<samp><span class="samp">gnu++98</span></samp>’<dd>GNU dialect of <samp><span class="option">-std=c++98</span></samp>. This is the default for
C++ code.
<br><dt>‘<samp><span class="samp">c++0x</span></samp>’<dd>The working draft of the upcoming ISO C++0x standard. This option
enables experimental features that are likely to be included in
C++0x. The working draft is constantly changing, and any feature that is
enabled by this flag may be removed from future versions of GCC if it is
not part of the C++0x standard.
<br><dt>‘<samp><span class="samp">gnu++0x</span></samp>’<dd>GNU dialect of <samp><span class="option">-std=c++0x</span></samp>. This option enables
experimental features that may be removed in future versions of GCC.
</dl>
<br><dt><code>-fgnu89-inline</code><dd><a name="index-fgnu89_002dinline-99"></a>The option <samp><span class="option">-fgnu89-inline</span></samp> tells GCC to use the traditional
GNU semantics for <code>inline</code> functions when in C99 mode.
See <a href="#Inline">An Inline Function is As Fast As a Macro</a>. This option
is accepted and ignored by GCC versions 4.1.3 up to but not including
4.3. In GCC versions 4.3 and later it changes the behavior of GCC in
C99 mode. Using this option is roughly equivalent to adding the
<code>gnu_inline</code> function attribute to all inline functions
(see <a href="#Function-Attributes">Function Attributes</a>).
<p>The option <samp><span class="option">-fno-gnu89-inline</span></samp> explicitly tells GCC to use the
C99 semantics for <code>inline</code> when in C99 or gnu99 mode (i.e., it
specifies the default behavior). This option was first supported in
GCC 4.3. This option is not supported in C89 or gnu89 mode.
<p>The preprocessor macros <code>__GNUC_GNU_INLINE__</code> and
<code>__GNUC_STDC_INLINE__</code> may be used to check which semantics are
in effect for <code>inline</code> functions. See <a href="cpp.html#Common-Predefined-Macros">Common Predefined Macros</a>.
<br><dt><code>-aux-info </code><var>filename</var><dd><a name="index-aux_002dinfo-100"></a>Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C.
<p>Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (‘<samp><span class="samp">I</span></samp>’, ‘<samp><span class="samp">N</span></samp>’ for new or
‘<samp><span class="samp">O</span></samp>’ for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (‘<samp><span class="samp">C</span></samp>’ or ‘<samp><span class="samp">F</span></samp>’, respectively, in the following
character). In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
<br><dt><code>-fno-asm</code><dd><a name="index-fno_002dasm-101"></a>Do not recognize <code>asm</code>, <code>inline</code> or <code>typeof</code> as a
keyword, so that code can use these words as identifiers. You can use
the keywords <code>__asm__</code>, <code>__inline__</code> and <code>__typeof__</code>
instead. <samp><span class="option">-ansi</span></samp> implies <samp><span class="option">-fno-asm</span></samp>.
<p>In C++, this switch only affects the <code>typeof</code> keyword, since
<code>asm</code> and <code>inline</code> are standard keywords. You may want to
use the <samp><span class="option">-fno-gnu-keywords</span></samp> flag instead, which has the same
effect. In C99 mode (<samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=gnu99</span></samp>), this
switch only affects the <code>asm</code> and <code>typeof</code> keywords, since
<code>inline</code> is a standard keyword in ISO C99.
<br><dt><code>-fno-builtin</code><dt><code>-fno-builtin-</code><var>function</var><dd><a name="index-fno_002dbuiltin-102"></a><a name="index-built_002din-functions-103"></a>Don't recognize built-in functions that do not begin with
‘<samp><span class="samp">__builtin_</span></samp>’ as prefix. See <a href="#Other-Builtins">Other built-in functions provided by GCC</a>, for details of the functions affected,
including those which are not built-in functions when <samp><span class="option">-ansi</span></samp> or
<samp><span class="option">-std</span></samp> options for strict ISO C conformance are used because they
do not have an ISO standard meaning.
<p>GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to <code>alloca</code> may become single
instructions that adjust the stack directly, and calls to <code>memcpy</code>
may become inline copy loops. The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example,
warnings are given with <samp><span class="option">-Wformat</span></samp> for bad calls to
<code>printf</code>, when <code>printf</code> is built in, and <code>strlen</code> is
known not to modify global memory.
<p>With the <samp><span class="option">-fno-builtin-</span><var>function</var></samp> option
only the built-in function <var>function</var> is
disabled. <var>function</var> must not begin with ‘<samp><span class="samp">__builtin_</span></samp>’. If a
function is named that is not built-in in this version of GCC, this
option is ignored. There is no corresponding
<samp><span class="option">-fbuiltin-</span><var>function</var></samp> option; if you wish to enable
built-in functions selectively when using <samp><span class="option">-fno-builtin</span></samp> or
<samp><span class="option">-ffreestanding</span></samp>, you may define macros such as:
<pre class="smallexample"> #define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
</pre>
<br><dt><code>-fhosted</code><dd><a name="index-fhosted-104"></a><a name="index-hosted-environment-105"></a>
Assert that compilation takes place in a hosted environment. This implies
<samp><span class="option">-fbuiltin</span></samp>. A hosted environment is one in which the
entire standard library is available, and in which <code>main</code> has a return
type of <code>int</code>. Examples are nearly everything except a kernel.
This is equivalent to <samp><span class="option">-fno-freestanding</span></samp>.
<br><dt><code>-ffreestanding</code><dd><a name="index-ffreestanding-106"></a><a name="index-hosted-environment-107"></a>
Assert that compilation takes place in a freestanding environment. This
implies <samp><span class="option">-fno-builtin</span></samp>. A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at <code>main</code>. The most obvious example is an OS kernel.
This is equivalent to <samp><span class="option">-fno-hosted</span></samp>.
<p>See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
freestanding and hosted environments.
<br><dt><code>-fopenmp</code><dd><a name="index-fopenmp-108"></a><a name="index-openmp-parallel-109"></a>Enable handling of OpenMP directives <code>#pragma omp</code> in C/C++ and
<code>!$omp</code> in Fortran. When <samp><span class="option">-fopenmp</span></samp> is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v2.5 <a href="http://www.openmp.org/">http://www.openmp.org/</a><!-- /@w -->. This option
implies <samp><span class="option">-pthread</span></samp>, and thus is only supported on targets that
have support for <samp><span class="option">-pthread</span></samp>.
<br><dt><code>-fms-extensions</code><dd><a name="index-fms_002dextensions-110"></a>Accept some non-standard constructs used in Microsoft header files.
<p>Some cases of unnamed fields in structures and unions are only
accepted with this option. See <a href="#Unnamed-Fields">Unnamed struct/union fields within structs/unions</a>, for details.
<br><dt><code>-trigraphs</code><dd><a name="index-trigraphs-111"></a>Support ISO C trigraphs. The <samp><span class="option">-ansi</span></samp> option (and <samp><span class="option">-std</span></samp>
options for strict ISO C conformance) implies <samp><span class="option">-trigraphs</span></samp>.
<br><dt><code>-no-integrated-cpp</code><dd><a name="index-no_002dintegrated_002dcpp-112"></a>Performs a compilation in two passes: preprocessing and compiling. This
option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
<samp><span class="option">-B</span></samp> option. The user supplied compilation step can then add in
an additional preprocessing step after normal preprocessing but before
compiling. The default is to use the integrated cpp (internal cpp)
<p>The semantics of this option will change if "cc1", "cc1plus", and
"cc1obj" are merged.
<p><a name="index-traditional-C-language-113"></a><a name="index-C-language_002c-traditional-114"></a><br><dt><code>-traditional</code><dt><code>-traditional-cpp</code><dd><a name="index-traditional_002dcpp-115"></a><a name="index-traditional-116"></a>Formerly, these options caused GCC to attempt to emulate a pre-standard
C compiler. They are now only supported with the <samp><span class="option">-E</span></samp> switch.
The preprocessor continues to support a pre-standard mode. See the GNU
CPP manual for details.
<br><dt><code>-fcond-mismatch</code><dd><a name="index-fcond_002dmismatch-117"></a>Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option
is not supported for C++.
<br><dt><code>-flax-vector-conversions</code><dd><a name="index-flax_002dvector_002dconversions-118"></a>Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be
used for new code.
<br><dt><code>-funsigned-char</code><dd><a name="index-funsigned_002dchar-119"></a>Let the type <code>char</code> be unsigned, like <code>unsigned char</code>.
<p>Each kind of machine has a default for what <code>char</code> should
be. It is either like <code>unsigned char</code> by default or like
<code>signed char</code> by default.
<p>Ideally, a portable program should always use <code>signed char</code> or
<code>unsigned char</code> when it depends on the signedness of an object.
But many programs have been written to use plain <code>char</code> and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let you
make such a program work with the opposite default.
<p>The type <code>char</code> is always a distinct type from each of
<code>signed char</code> or <code>unsigned char</code>, even though its behavior
is always just like one of those two.
<br><dt><code>-fsigned-char</code><dd><a name="index-fsigned_002dchar-120"></a>Let the type <code>char</code> be signed, like <code>signed char</code>.
<p>Note that this is equivalent to <samp><span class="option">-fno-unsigned-char</span></samp>, which is
the negative form of <samp><span class="option">-funsigned-char</span></samp>. Likewise, the option
<samp><span class="option">-fno-signed-char</span></samp> is equivalent to <samp><span class="option">-funsigned-char</span></samp>.
<br><dt><code>-fsigned-bitfields</code><dt><code>-funsigned-bitfields</code><dt><code>-fno-signed-bitfields</code><dt><code>-fno-unsigned-bitfields</code><dd><a name="index-fsigned_002dbitfields-121"></a><a name="index-funsigned_002dbitfields-122"></a><a name="index-fno_002dsigned_002dbitfields-123"></a><a name="index-fno_002dunsigned_002dbitfields-124"></a>These options control whether a bit-field is signed or unsigned, when the
declaration does not use either <code>signed</code> or <code>unsigned</code>. By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as <code>int</code> are signed types.
</dl>
<div class="node">
<a name="C++-Dialect-Options"></a>
<a name="C_002b_002b-Dialect-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>,
Previous: <a rel="previous" accesskey="p" href="#C-Dialect-Options">C Dialect Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.5 Options Controlling C++ Dialect</h3>
<p><a name="index-compiler-options_002c-C_002b_002b-125"></a><a name="index-C_002b_002b-options_002c-command-line-126"></a><a name="index-options_002c-C_002b_002b-127"></a>This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in. For example, you
might compile a file <code>firstClass.C</code> like this:
<pre class="smallexample"> g++ -g -frepo -O -c firstClass.C
</pre>
<p class="noindent">In this example, only <samp><span class="option">-frepo</span></samp> is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC.
<p>Here is a list of options that are <em>only</em> for compiling C++ programs:
<dl>
<dt><code>-fabi-version=</code><var>n</var><dd><a name="index-fabi_002dversion-128"></a>Use version <var>n</var> of the C++ ABI. Version 2 is the version of the
C++ ABI that first appeared in G++ 3.4. Version 1 is the version of
the C++ ABI that first appeared in G++ 3.2. Version 0 will always be
the version that conforms most closely to the C++ ABI specification.
Therefore, the ABI obtained using version 0 will change as ABI bugs
are fixed.
<p>The default is version 2.
<br><dt><code>-fno-access-control</code><dd><a name="index-fno_002daccess_002dcontrol-129"></a>Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
<br><dt><code>-fcheck-new</code><dd><a name="index-fcheck_002dnew-130"></a>Check that the pointer returned by <code>operator new</code> is non-null
before attempting to modify the storage allocated. This check is
normally unnecessary because the C++ standard specifies that
<code>operator new</code> will only return <code>0</code> if it is declared
‘<samp><span class="samp">throw()</span></samp>’, in which case the compiler will always check the
return value even without this option. In all other cases, when
<code>operator new</code> has a non-empty exception specification, memory
exhaustion is signalled by throwing <code>std::bad_alloc</code>. See also
‘<samp><span class="samp">new (nothrow)</span></samp>’.
<br><dt><code>-fconserve-space</code><dd><a name="index-fconserve_002dspace-131"></a>Put uninitialized or runtime-initialized global variables into the
common segment, as C does. This saves space in the executable at the
cost of not diagnosing duplicate definitions. If you compile with this
flag and your program mysteriously crashes after <code>main()</code> has
completed, you may have an object that is being destroyed twice because
two definitions were merged.
<p>This option is no longer useful on most targets, now that support has
been added for putting variables into BSS without making them common.
<br><dt><code>-fno-deduce-init-list</code><dd><a name="index-fno_002ddeduce_002dinit_002dlist-132"></a>Disable deduction of a template type parameter as
std::initializer_list from a brace-enclosed initializer list, i.e.
<pre class="smallexample"> template <class T> auto forward(T t) -> decltype (realfn (t))
{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
}
</pre>
<p>This option is present because this deduction is an extension to the
current specification in the C++0x working draft, and there was
some concern about potential overload resolution problems.
<br><dt><code>-ffriend-injection</code><dd><a name="index-ffriend_002dinjection-133"></a>Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared.
Friend functions were documented to work this way in the old Annotated
C++ Reference Manual, and versions of G++ before 4.1 always worked
that way. However, in ISO C++ a friend function which is not declared
in an enclosing scope can only be found using argument dependent
lookup. This option causes friends to be injected as they were in
earlier releases.
<p>This option is for compatibility, and may be removed in a future
release of G++.
<br><dt><code>-fno-elide-constructors</code><dd><a name="index-fno_002delide_002dconstructors-134"></a>The C++ standard allows an implementation to omit creating a temporary
which is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases.
<br><dt><code>-fno-enforce-eh-specs</code><dd><a name="index-fno_002denforce_002deh_002dspecs-135"></a>Don't generate code to check for violation of exception specifications
at runtime. This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
‘<samp><span class="samp">NDEBUG</span></samp>’. This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
will still optimize based on the specifications, so throwing an
unexpected exception will result in undefined behavior.
<br><dt><code>-ffor-scope</code><dt><code>-fno-for-scope</code><dd><a name="index-ffor_002dscope-136"></a><a name="index-fno_002dfor_002dscope-137"></a>If <samp><span class="option">-ffor-scope</span></samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> is limited to the ‘<samp><span class="samp">for</span></samp>’ loop itself,
as specified by the C++ standard.
If <samp><span class="option">-fno-for-scope</span></samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of C++.
<p>The default if neither flag is given to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.
<br><dt><code>-fno-gnu-keywords</code><dd><a name="index-fno_002dgnu_002dkeywords-138"></a>Do not recognize <code>typeof</code> as a keyword, so that code can use this
word as an identifier. You can use the keyword <code>__typeof__</code> instead.
<samp><span class="option">-ansi</span></samp> implies <samp><span class="option">-fno-gnu-keywords</span></samp>.
<br><dt><code>-fno-implicit-templates</code><dd><a name="index-fno_002dimplicit_002dtemplates-139"></a>Never emit code for non-inline templates which are instantiated
implicitly (i.e. by use); only emit code for explicit instantiations.
See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.
<br><dt><code>-fno-implicit-inline-templates</code><dd><a name="index-fno_002dimplicit_002dinline_002dtemplates-140"></a>Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization will need the same set of explicit instantiations.
<br><dt><code>-fno-implement-inlines</code><dd><a name="index-fno_002dimplement_002dinlines-141"></a>To save space, do not emit out-of-line copies of inline functions
controlled by ‘<samp><span class="samp">#pragma implementation</span></samp>’. This will cause linker
errors if these functions are not inlined everywhere they are called.
<br><dt><code>-fms-extensions</code><dd><a name="index-fms_002dextensions-142"></a>Disable pedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.
<br><dt><code>-fno-nonansi-builtins</code><dd><a name="index-fno_002dnonansi_002dbuiltins-143"></a>Disable built-in declarations of functions that are not mandated by
ANSI/ISO C. These include <code>ffs</code>, <code>alloca</code>, <code>_exit</code>,
<code>index</code>, <code>bzero</code>, <code>conjf</code>, and other related functions.
<br><dt><code>-fno-operator-names</code><dd><a name="index-fno_002doperator_002dnames-144"></a>Do not treat the operator name keywords <code>and</code>, <code>bitand</code>,
<code>bitor</code>, <code>compl</code>, <code>not</code>, <code>or</code> and <code>xor</code> as
synonyms as keywords.
<br><dt><code>-fno-optional-diags</code><dd><a name="index-fno_002doptional_002ddiags-145"></a>Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.
<br><dt><code>-fpermissive</code><dd><a name="index-fpermissive-146"></a>Downgrade some diagnostics about nonconformant code from errors to
warnings. Thus, using <samp><span class="option">-fpermissive</span></samp> will allow some
nonconforming code to compile.
<br><dt><code>-frepo</code><dd><a name="index-frepo-147"></a>Enable automatic template instantiation at link time. This option also
implies <samp><span class="option">-fno-implicit-templates</span></samp>. See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.
<br><dt><code>-fno-rtti</code><dd><a name="index-fno_002drtti-148"></a>Disable generation of information about every class with virtual
functions for use by the C++ runtime type identification features
(‘<samp><span class="samp">dynamic_cast</span></samp>’ and ‘<samp><span class="samp">typeid</span></samp>’). If you don't use those parts
of the language, you can save some space by using this flag. Note that
exception handling uses the same information, but it will generate it as
needed. The ‘<samp><span class="samp">dynamic_cast</span></samp>’ operator can still be used for casts that
do not require runtime type information, i.e. casts to <code>void *</code> or to
unambiguous base classes.
<br><dt><code>-fstats</code><dd><a name="index-fstats-149"></a>Emit statistics about front-end processing at the end of the compilation.
This information is generally only useful to the G++ development team.
<br><dt><code>-ftemplate-depth-</code><var>n</var><dd><a name="index-ftemplate_002ddepth-150"></a>Set the maximum instantiation depth for template classes to <var>n</var>.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation. ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17.
<br><dt><code>-fno-threadsafe-statics</code><dd><a name="index-fno_002dthreadsafe_002dstatics-151"></a>Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics. You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.
<br><dt><code>-fuse-cxa-atexit</code><dd><a name="index-fuse_002dcxa_002datexit-152"></a>Register destructors for objects with static storage duration with the
<code>__cxa_atexit</code> function rather than the <code>atexit</code> function.
This option is required for fully standards-compliant handling of static
destructors, but will only work if your C library supports
<code>__cxa_atexit</code>.
<br><dt><code>-fno-use-cxa-get-exception-ptr</code><dd><a name="index-fno_002duse_002dcxa_002dget_002dexception_002dptr-153"></a>Don't use the <code>__cxa_get_exception_ptr</code> runtime routine. This
will cause <code>std::uncaught_exception</code> to be incorrect, but is necessary
if the runtime routine is not available.
<br><dt><code>-fvisibility-inlines-hidden</code><dd><a name="index-fvisibility_002dinlines_002dhidden-154"></a>This switch declares that the user does not attempt to compare
pointers to inline methods where the addresses of the two functions
were taken in different shared objects.
<p>The effect of this is that GCC may, effectively, mark inline methods with
<code>__attribute__ ((visibility ("hidden")))</code> so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO. Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.
<p>The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.
<p>You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method. For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility. Marking the enclosing class with explicit
visibility will have no effect.
<p>Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
See <a href="#Template-Instantiation">Template Instantiation</a>.
<br><dt><code>-fvisibility-ms-compat</code><dd><a name="index-fvisibility_002dms_002dcompat-155"></a>This flag attempts to use visibility settings to make GCC's C++
linkage model compatible with that of Microsoft Visual Studio.
<p>The flag makes these changes to GCC's linkage model:
<ol type=1 start=1>
<li>It sets the default visibility to <code>hidden</code>, like
<samp><span class="option">-fvisibility=hidden</span></samp>.
<li>Types, but not their members, are not hidden by default.
<li>The One Definition Rule is relaxed for types without explicit
visibility specifications which are defined in more than one different
shared object: those declarations are permitted if they would have
been permitted when this option was not used.
</ol>
<p>In new code it is better to use <samp><span class="option">-fvisibility=hidden</span></samp> and
export those classes which are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.
<p>Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects will be different, so changing one will not change the other;
and that pointers to function members defined in different shared
objects may not compare equal. When this flag is given, it is a
violation of the ODR to define types with the same name differently.
<br><dt><code>-fno-weak</code><dd><a name="index-fno_002dweak-156"></a>Do not use weak symbol support, even if it is provided by the linker.
By default, G++ will use weak symbols if they are available. This
option exists only for testing, and should not be used by end-users;
it will result in inferior code and has no benefits. This option may
be removed in a future release of G++.
<br><dt><code>-nostdinc++</code><dd><a name="index-nostdinc_002b_002b-157"></a>Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories. (This option
is used when building the C++ library.)
</dl>
<p>In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:
<dl>
<dt><code>-fno-default-inline</code><dd><a name="index-fno_002ddefault_002dinline-158"></a>Do not assume ‘<samp><span class="samp">inline</span></samp>’ for functions defined inside a class scope.
See <a href="#Optimize-Options">Options That Control Optimization</a>. Note that these
functions will have linkage like inline functions; they just won't be
inlined by default.
<br><dt><code>-Wabi </code><span class="roman">(C, Objective-C, C++ and Objective-C++ only)</span><dd><a name="index-Wabi-159"></a><a name="index-Wno_002dabi-160"></a>Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code. There may also be
cases where warnings are emitted even though the code that is generated
will be compatible.
<p>You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.
<p>The known incompatibilities at this point include:
<ul>
<li>Incorrect handling of tail-padding for bit-fields. G++ may attempt to
pack data into the same byte as a base class. For example:
<pre class="smallexample"> struct A { virtual void f(); int f1 : 1; };
struct B : public A { int f2 : 1; };
</pre>
<p class="noindent">In this case, G++ will place <code>B::f2</code> into the same byte
as<code>A::f1</code>; other compilers will not. You can avoid this problem
by explicitly padding <code>A</code> so that its size is a multiple of the
byte size on your platform; that will cause G++ and other compilers to
layout <code>B</code> identically.
<li>Incorrect handling of tail-padding for virtual bases. G++ does not use
tail padding when laying out virtual bases. For example:
<pre class="smallexample"> struct A { virtual void f(); char c1; };
struct B { B(); char c2; };
struct C : public A, public virtual B {};
</pre>
<p class="noindent">In this case, G++ will not place <code>B</code> into the tail-padding for
<code>A</code>; other compilers will. You can avoid this problem by
explicitly padding <code>A</code> so that its size is a multiple of its
alignment (ignoring virtual base classes); that will cause G++ and other
compilers to layout <code>C</code> identically.
<li>Incorrect handling of bit-fields with declared widths greater than that
of their underlying types, when the bit-fields appear in a union. For
example:
<pre class="smallexample"> union U { int i : 4096; };
</pre>
<p class="noindent">Assuming that an <code>int</code> does not have 4096 bits, G++ will make the
union too small by the number of bits in an <code>int</code>.
<li>Empty classes can be placed at incorrect offsets. For example:
<pre class="smallexample"> struct A {};
struct B {
A a;
virtual void f ();
};
struct C : public B, public A {};
</pre>
<p class="noindent">G++ will place the <code>A</code> base class of <code>C</code> at a nonzero offset;
it should be placed at offset zero. G++ mistakenly believes that the
<code>A</code> data member of <code>B</code> is already at offset zero.
<li>Names of template functions whose types involve <code>typename</code> or
template template parameters can be mangled incorrectly.
<pre class="smallexample"> template <typename Q>
void f(typename Q::X) {}
template <template <typename> class Q>
void f(typename Q<int>::X) {}
</pre>
<p class="noindent">Instantiations of these templates may be mangled incorrectly.
</ul>
<p>It also warns psABI related changes. The known psABI changes at this
point include:
<ul>
<li>For SYSV/x86-64, when passing union with long double, it is changed to
pass in memory as specified in psABI. For example:
<pre class="smallexample"> union U {
long double ld;
int i;
};
</pre>
<p class="noindent"><code>union U</code> will always be passed in memory.
</ul>
<br><dt><code>-Wctor-dtor-privacy </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wctor_002ddtor_002dprivacy-161"></a><a name="index-Wno_002dctor_002ddtor_002dprivacy-162"></a>Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions.
<br><dt><code>-Wnon-virtual-dtor </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wnon_002dvirtual_002ddtor-163"></a><a name="index-Wno_002dnon_002dvirtual_002ddtor-164"></a>Warn when a class has virtual functions and accessible non-virtual
destructor, in which case it would be possible but unsafe to delete
an instance of a derived class through a pointer to the base class.
This warning is also enabled if -Weffc++ is specified.
<br><dt><code>-Wreorder </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wreorder-165"></a><a name="index-Wno_002dreorder-166"></a><a name="index-reordering_002c-warning-167"></a><a name="index-warning-for-reordering-of-member-initializers-168"></a>Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
<pre class="smallexample"> struct A {
int i;
int j;
A(): j (0), i (1) { }
};
</pre>
<p>The compiler will rearrange the member initializers for ‘<samp><span class="samp">i</span></samp>’
and ‘<samp><span class="samp">j</span></samp>’ to match the declaration order of the members, emitting
a warning to that effect. This warning is enabled by <samp><span class="option">-Wall</span></samp>.
</dl>
<p>The following <samp><span class="option">-W...</span></samp> options are not affected by <samp><span class="option">-Wall</span></samp>.
<dl>
<dt><code>-Weffc++ </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Weffc_002b_002b-169"></a><a name="index-Wno_002deffc_002b_002b-170"></a>Warn about violations of the following style guidelines from Scott Meyers'
<cite>Effective C++</cite> book:
<ul>
<li>Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.
<li>Item 12: Prefer initialization to assignment in constructors.
<li>Item 14: Make destructors virtual in base classes.
<li>Item 15: Have <code>operator=</code> return a reference to <code>*this</code>.
<li>Item 23: Don't try to return a reference when you must return an object.
</ul>
<p>Also warn about violations of the following style guidelines from
Scott Meyers' <cite>More Effective C++</cite> book:
<ul>
<li>Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.
<li>Item 7: Never overload <code>&&</code>, <code>||</code>, or <code>,</code>.
</ul>
<p>When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use ‘<samp><span class="samp">grep -v</span></samp>’
to filter out those warnings.
<br><dt><code>-Wstrict-null-sentinel </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wstrict_002dnull_002dsentinel-171"></a><a name="index-Wno_002dstrict_002dnull_002dsentinel-172"></a>Warn also about the use of an uncasted <code>NULL</code> as sentinel. When
compiling only with GCC this is a valid sentinel, as <code>NULL</code> is defined
to <code>__null</code>. Although it is a null pointer constant not a null pointer,
it is guaranteed to be of the same size as a pointer. But this use is
not portable across different compilers.
<br><dt><code>-Wno-non-template-friend </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dnon_002dtemplate_002dfriend-173"></a><a name="index-Wnon_002dtemplate_002dfriend-174"></a>Disable warnings when non-templatized friend functions are declared
within a template. Since the advent of explicit template specification
support in G++, if the name of the friend is an unqualified-id (i.e.,
‘<samp><span class="samp">friend foo(int)</span></samp>’), the C++ language specification demands that the
friend declare or define an ordinary, nontemplate function. (Section
14.5.3). Before G++ implemented explicit specification, unqualified-ids
could be interpreted as a particular specialization of a templatized
function. Because this non-conforming behavior is no longer the default
behavior for G++, <samp><span class="option">-Wnon-template-friend</span></samp> allows the compiler to
check existing code for potential trouble spots and is on by default.
This new compiler behavior can be turned off with
<samp><span class="option">-Wno-non-template-friend</span></samp> which keeps the conformant compiler code
but disables the helpful warning.
<br><dt><code>-Wold-style-cast </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wold_002dstyle_002dcast-175"></a><a name="index-Wno_002dold_002dstyle_002dcast-176"></a>Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘<samp><span class="samp">dynamic_cast</span></samp>’,
‘<samp><span class="samp">static_cast</span></samp>’, ‘<samp><span class="samp">reinterpret_cast</span></samp>’, and ‘<samp><span class="samp">const_cast</span></samp>’) are
less vulnerable to unintended effects and much easier to search for.
<br><dt><code>-Woverloaded-virtual </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Woverloaded_002dvirtual-177"></a><a name="index-Wno_002doverloaded_002dvirtual-178"></a><a name="index-overloaded-virtual-fn_002c-warning-179"></a><a name="index-warning-for-overloaded-virtual-fn-180"></a>Warn when a function declaration hides virtual functions from a
base class. For example, in:
<pre class="smallexample"> struct A {
virtual void f();
};
struct B: public A {
void f(int);
};
</pre>
<p>the <code>A</code> class version of <code>f</code> is hidden in <code>B</code>, and code
like:
<pre class="smallexample"> B* b;
b->f();
</pre>
<p>will fail to compile.
<br><dt><code>-Wno-pmf-conversions </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dpmf_002dconversions-181"></a><a name="index-Wpmf_002dconversions-182"></a>Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
<br><dt><code>-Wsign-promo </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wsign_002dpromo-183"></a><a name="index-Wno_002dsign_002dpromo-184"></a>Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ would try to preserve
unsignedness, but the standard mandates the current behavior.
<pre class="smallexample"> struct A {
operator int ();
A& operator = (int);
};
main ()
{
A a,b;
a = b;
}
</pre>
<p>In this example, G++ will synthesize a default ‘<samp><span class="samp">A& operator =
(const A&);</span></samp>’, while cfront will use the user-defined ‘<samp><span class="samp">operator =</span></samp>’.
</dl>
<div class="node">
<a name="Objective-C-and-Objective-C++-Dialect-Options"></a>
<a name="Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Language-Independent-Options">Language Independent Options</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.6 Options Controlling Objective-C and Objective-C++ Dialects</h3>
<p><a name="index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-185"></a><a name="index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command-line-186"></a><a name="index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-187"></a>(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves. See See <a href="#Standards">Language Standards Supported by GCC</a>, for references.)
<p>This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs, but you can also use most of
the language-independent GNU compiler options.
For example, you might compile a file <code>some_class.m</code> like this:
<pre class="smallexample"> gcc -g -fgnu-runtime -O -c some_class.m
</pre>
<p class="noindent">In this example, <samp><span class="option">-fgnu-runtime</span></samp> is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC.
<p>Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
<samp><span class="option">-Wtraditional</span></samp>). Similarly, Objective-C++ compilations may use
C++-specific options (e.g., <samp><span class="option">-Wabi</span></samp>).
<p>Here is a list of options that are <em>only</em> for compiling Objective-C
and Objective-C++ programs:
<dl>
<dt><code>-fconstant-string-class=</code><var>class-name</var><dd><a name="index-fconstant_002dstring_002dclass-188"></a>Use <var>class-name</var> as the name of the class to instantiate for each
literal string specified with the syntax <code>@"..."</code>. The default
class name is <code>NXConstantString</code> if the GNU runtime is being used, and
<code>NSConstantString</code> if the NeXT runtime is being used (see below). The
<samp><span class="option">-fconstant-cfstrings</span></samp> option, if also present, will override the
<samp><span class="option">-fconstant-string-class</span></samp> setting and cause <code>@"..."</code> literals
to be laid out as constant CoreFoundation strings.
<br><dt><code>-fgnu-runtime</code><dd><a name="index-fgnu_002druntime-189"></a>Generate object code compatible with the standard GNU Objective-C
runtime. This is the default for most types of systems.
<br><dt><code>-fnext-runtime</code><dd><a name="index-fnext_002druntime-190"></a>Generate output compatible with the NeXT runtime. This is the default
for NeXT-based systems, including Darwin and Mac OS X. The macro
<code>__NEXT_RUNTIME__</code> is predefined if (and only if) this option is
used.
<br><dt><code>-fno-nil-receivers</code><dd><a name="index-fno_002dnil_002dreceivers-191"></a>Assume that all Objective-C message dispatches (e.g.,
<code>[receiver message:arg]</code>) in this translation unit ensure that the receiver
is not <code>nil</code>. This allows for more efficient entry points in the runtime
to be used. Currently, this option is only available in conjunction with
the NeXT runtime on Mac OS X 10.3 and later.
<br><dt><code>-fobjc-call-cxx-cdtors</code><dd><a name="index-fobjc_002dcall_002dcxx_002dcdtors-192"></a>For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor. If so, synthesize a
special <code>- (id) .cxx_construct</code> instance method that will run
non-trivial default constructors on any such instance variables, in order,
and then return <code>self</code>. Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special <code>- (void) .cxx_destruct</code> method that will run
all such default destructors, in reverse order.
<p>The <code>- (id) .cxx_construct</code> and/or <code>- (void) .cxx_destruct</code> methods
thusly generated will only operate on instance variables declared in the
current Objective-C class, and not those inherited from superclasses. It
is the responsibility of the Objective-C runtime to invoke all such methods
in an object's inheritance hierarchy. The <code>- (id) .cxx_construct</code> methods
will be invoked by the runtime immediately after a new object
instance is allocated; the <code>- (void) .cxx_destruct</code> methods will
be invoked immediately before the runtime deallocates an object instance.
<p>As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the <code>- (id) .cxx_construct</code> and
<code>- (void) .cxx_destruct</code> methods.
<br><dt><code>-fobjc-direct-dispatch</code><dd><a name="index-fobjc_002ddirect_002ddispatch-193"></a>Allow fast jumps to the message dispatcher. On Darwin this is
accomplished via the comm page.
<br><dt><code>-fobjc-exceptions</code><dd><a name="index-fobjc_002dexceptions-194"></a>Enable syntactic support for structured exception handling in Objective-C,
similar to what is offered by C++ and Java. This option is
unavailable in conjunction with the NeXT runtime on Mac OS X 10.2 and
earlier.
<pre class="smallexample"> @try {
...
@throw expr;
...
}
@catch (AnObjCClass *exc) {
...
@throw expr;
...
@throw;
...
}
@catch (AnotherClass *exc) {
...
}
@catch (id allOthers) {
...
}
@finally {
...
@throw expr;
...
}
</pre>
<p>The <code>@throw</code> statement may appear anywhere in an Objective-C or
Objective-C++ program; when used inside of a <code>@catch</code> block, the
<code>@throw</code> may appear without an argument (as shown above), in which case
the object caught by the <code>@catch</code> will be rethrown.
<p>Note that only (pointers to) Objective-C objects may be thrown and
caught using this scheme. When an object is thrown, it will be caught
by the nearest <code>@catch</code> clause capable of handling objects of that type,
analogously to how <code>catch</code> blocks work in C++ and Java. A
<code>@catch(id ...)</code> clause (as shown above) may also be provided to catch
any and all Objective-C exceptions not caught by previous <code>@catch</code>
clauses (if any).
<p>The <code>@finally</code> clause, if present, will be executed upon exit from the
immediately preceding <code>@try ... @catch</code> section. This will happen
regardless of whether any exceptions are thrown, caught or rethrown
inside the <code>@try ... @catch</code> section, analogously to the behavior
of the <code>finally</code> clause in Java.
<p>There are several caveats to using the new exception mechanism:
<ul>
<li>Although currently designed to be binary compatible with <code>NS_HANDLER</code>-style
idioms provided by the <code>NSException</code> class, the new
exceptions can only be used on Mac OS X 10.3 (Panther) and later
systems, due to additional functionality needed in the (NeXT) Objective-C
runtime.
<li>As mentioned above, the new exceptions do not support handling
types other than Objective-C objects. Furthermore, when used from
Objective-C++, the Objective-C exception model does not interoperate with C++
exceptions at this time. This means you cannot <code>@throw</code> an exception
from Objective-C and <code>catch</code> it in C++, or vice versa
(i.e., <code>throw ... @catch</code>).
</ul>
<p>The <samp><span class="option">-fobjc-exceptions</span></samp> switch also enables the use of synchronization
blocks for thread-safe execution:
<pre class="smallexample"> @synchronized (ObjCClass *guard) {
...
}
</pre>
<p>Upon entering the <code>@synchronized</code> block, a thread of execution shall
first check whether a lock has been placed on the corresponding <code>guard</code>
object by another thread. If it has, the current thread shall wait until
the other thread relinquishes its lock. Once <code>guard</code> becomes available,
the current thread will place its own lock on it, execute the code contained in
the <code>@synchronized</code> block, and finally relinquish the lock (thereby
making <code>guard</code> available to other threads).
<p>Unlike Java, Objective-C does not allow for entire methods to be marked
<code>@synchronized</code>. Note that throwing exceptions out of
<code>@synchronized</code> blocks is allowed, and will cause the guarding object
to be unlocked properly.
<br><dt><code>-fobjc-gc</code><dd><a name="index-fobjc_002dgc-195"></a>Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
<br><dt><code>-freplace-objc-classes</code><dd><a name="index-freplace_002dobjc_002dclasses-196"></a>Emit a special marker instructing <samp><span class="command">ld(1)</span></samp> not to statically link in
the resulting object file, and allow <samp><span class="command">dyld(1)</span></samp> to load it in at
run time instead. This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself. Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.
<br><dt><code>-fzero-link</code><dd><a name="index-fzero_002dlink-197"></a>When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to <code>objc_getClass("...")</code> (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance. Specifying the <samp><span class="option">-fzero-link</span></samp> flag
suppresses this behavior and causes calls to <code>objc_getClass("...")</code>
to be retained. This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.
<br><dt><code>-gen-decls</code><dd><a name="index-gen_002ddecls-198"></a>Dump interface declarations for all classes seen in the source file to a
file named <samp><var>sourcename</var><span class="file">.decl</span></samp>.
<br><dt><code>-Wassign-intercept </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wassign_002dintercept-199"></a><a name="index-Wno_002dassign_002dintercept-200"></a>Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
<br><dt><code>-Wno-protocol </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wno_002dprotocol-201"></a><a name="index-Wprotocol-202"></a>If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the <samp><span class="option">-Wno-protocol</span></samp> option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
<br><dt><code>-Wselector </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wselector-203"></a><a name="index-Wno_002dselector-204"></a>Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods
in the final stage of compilation. Additionally, a check is performed
for each selector appearing in a <code>@selector(...)</code>
expression, and a corresponding method for that selector has been found
during compilation. Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the <samp><span class="option">-fsyntax-only</span></samp> option is
being used.
<br><dt><code>-Wstrict-selector-match </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wstrict_002dselector_002dmatch-205"></a><a name="index-Wno_002dstrict_002dselector_002dmatch-206"></a>Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type <code>id</code> or <code>Class</code>. When this flag
is off (which is the default behavior), the compiler will omit such warnings
if any differences found are confined to types which share the same size
and alignment.
<br><dt><code>-Wundeclared-selector </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wundeclared_002dselector-207"></a><a name="index-Wno_002dundeclared_002dselector-208"></a>Warn if a <code>@selector(...)</code> expression referring to an
undeclared selector is found. A selector is considered undeclared if no
method with that name has been declared before the
<code>@selector(...)</code> expression, either explicitly in an
<code>@interface</code> or <code>@protocol</code> declaration, or implicitly in
an <code>@implementation</code> section. This option always performs its
checks as soon as a <code>@selector(...)</code> expression is found,
while <samp><span class="option">-Wselector</span></samp> only performs its checks in the final stage of
compilation. This also enforces the coding style convention
that methods and selectors must be declared before being used.
<br><dt><code>-print-objc-runtime-info</code><dd><a name="index-print_002dobjc_002druntime_002dinfo-209"></a>Generate C header describing the largest structure that is passed by
value, if any.
</dl>
<div class="node">
<a name="Language-Independent-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Warning-Options">Warning Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.7 Options to Control Diagnostic Messages Formatting</h3>
<p><a name="index-options-to-control-diagnostics-formatting-210"></a><a name="index-diagnostic-messages-211"></a><a name="index-message-formatting-212"></a>
Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g. its width, <small class="dots">...</small>). The options described
below can be used to control the diagnostic messages formatting
algorithm, e.g. how many characters per line, how often source location
information should be reported. Right now, only the C++ front end can
honor these options. However it is expected, in the near future, that
the remaining front ends would be able to digest them correctly.
<dl>
<dt><code>-fmessage-length=</code><var>n</var><dd><a name="index-fmessage_002dlength-213"></a>Try to format error messages so that they fit on lines of about <var>n</var>
characters. The default is 72 characters for <samp><span class="command">g++</span></samp> and 0 for the rest of
the front ends supported by GCC. If <var>n</var> is zero, then no
line-wrapping will be done; each error message will appear on a single
line.
<p><a name="index-fdiagnostics_002dshow_002dlocation-214"></a><br><dt><code>-fdiagnostics-show-location=once</code><dd>Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit <em>once</em> source location information; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines. This is the default
behavior.
<br><dt><code>-fdiagnostics-show-location=every-line</code><dd>Only meaningful in line-wrapping mode. Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.
<br><dt><code>-fdiagnostics-show-option</code><dd><a name="index-fdiagnostics_002dshow_002doption-215"></a>This option instructs the diagnostic machinery to add text to each
diagnostic emitted, which indicates which command line option directly
controls that diagnostic, when such an option is known to the
diagnostic machinery.
<br><dt><code>-Wcoverage-mismatch</code><dd><a name="index-Wcoverage_002dmismatch-216"></a>Warn if feedback profiles do not match when using the
<samp><span class="option">-fprofile-use</span></samp> option.
If a source file was changed between <samp><span class="option">-fprofile-gen</span></samp> and
<samp><span class="option">-fprofile-use</span></samp>, the files with the profile feedback can fail
to match the source file and GCC can not use the profile feedback
information. By default, GCC emits an error message in this case.
The option <samp><span class="option">-Wcoverage-mismatch</span></samp> emits a warning instead of an
error. GCC does not use appropriate feedback profiles, so using this
option can result in poorly optimized code. This option is useful
only in the case of very minor changes such as bug fixes to an
existing code-base.
</dl>
<div class="node">
<a name="Warning-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Debugging-Options">Debugging Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Language-Independent-Options">Language Independent Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.8 Options to Request or Suppress Warnings</h3>
<p><a name="index-options-to-control-warnings-217"></a><a name="index-warning-messages-218"></a><a name="index-messages_002c-warning-219"></a><a name="index-suppressing-warnings-220"></a>
Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there
may have been an error.
<p>The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC.
<a name="index-syntax-checking-221"></a>
<dl><dt><code>-fsyntax-only</code><dd><a name="index-fsyntax_002donly-222"></a>Check the code for syntax errors, but don't do anything beyond that.
<br><dt><code>-w</code><dd><a name="index-w-223"></a>Inhibit all warning messages.
<br><dt><code>-Werror</code><dd><a name="index-Werror-224"></a><a name="index-Wno_002derror-225"></a>Make all warnings into errors.
<br><dt><code>-Werror=</code><dd><a name="index-Werror_003d-226"></a><a name="index-Wno_002derror_003d-227"></a>Make the specified warning into an error. The specifier for a warning
is appended, for example <samp><span class="option">-Werror=switch</span></samp> turns the warnings
controlled by <samp><span class="option">-Wswitch</span></samp> into errors. This switch takes a
negative form, to be used to negate <samp><span class="option">-Werror</span></samp> for specific
warnings, for example <samp><span class="option">-Wno-error=switch</span></samp> makes
<samp><span class="option">-Wswitch</span></samp> warnings not be errors, even when <samp><span class="option">-Werror</span></samp>
is in effect. You can use the <samp><span class="option">-fdiagnostics-show-option</span></samp>
option to have each controllable warning amended with the option which
controls it, to determine what to use with this option.
<p>Note that specifying <samp><span class="option">-Werror=</span></samp><var>foo</var> automatically implies
<samp><span class="option">-W</span></samp><var>foo</var>. However, <samp><span class="option">-Wno-error=</span></samp><var>foo</var> does not
imply anything.
<br><dt><code>-Wfatal-errors</code><dd><a name="index-Wfatal_002derrors-228"></a><a name="index-Wno_002dfatal_002derrors-229"></a>This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
</dl>
<p>You can request many specific warnings with options beginning
‘<samp><span class="samp">-W</span></samp>’, for example <samp><span class="option">-Wimplicit</span></samp> to request warnings on
implicit declarations. Each of these specific warning options also
has a negative form beginning ‘<samp><span class="samp">-Wno-</span></samp>’ to turn off warnings; for
example, <samp><span class="option">-Wno-implicit</span></samp>. This manual lists only one of the
two forms, whichever is not the default. For further,
language-specific options also refer to <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and
<a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.
<dl>
<dt><code>-pedantic</code><dd><a name="index-pedantic-230"></a>Issue all the warnings demanded by strict ISO C and ISO C++;
reject all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++. For ISO C, follows the
version of the ISO C standard specified by any <samp><span class="option">-std</span></samp> option used.
<p>Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require <samp><span class="option">-ansi</span></samp> or a
<samp><span class="option">-std</span></samp> option specifying the required version of ISO C). However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well. With this option, they are rejected.
<p><samp><span class="option">-pedantic</span></samp> does not cause warning messages for use of the
alternate keywords whose names begin and end with ‘<samp><span class="samp">__</span></samp>’. Pedantic
warnings are also disabled in the expression that follows
<code>__extension__</code>. However, only system header files should use
these escape routes; application programs should avoid them.
See <a href="#Alternate-Keywords">Alternate Keywords</a>.
<p>Some users try to use <samp><span class="option">-pedantic</span></samp> to check programs for strict ISO
C conformance. They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all—only those for which
ISO C <em>requires</em> a diagnostic, and some others for which
diagnostics have been added.
<p>A feature to report any failure to conform to ISO C might be useful in
some instances, but would require considerable additional work and would
be quite different from <samp><span class="option">-pedantic</span></samp>. We don't have plans to
support such a feature in the near future.
<p>Where the standard specified with <samp><span class="option">-std</span></samp> represents a GNU
extended dialect of C, such as ‘<samp><span class="samp">gnu89</span></samp>’ or ‘<samp><span class="samp">gnu99</span></samp>’, there is a
corresponding <dfn>base standard</dfn>, the version of ISO C on which the GNU
extended dialect is based. Warnings from <samp><span class="option">-pedantic</span></samp> are given
where they are required by the base standard. (It would not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
<br><dt><code>-pedantic-errors</code><dd><a name="index-pedantic_002derrors-231"></a>Like <samp><span class="option">-pedantic</span></samp>, except that errors are produced rather than
warnings.
<br><dt><code>-Wall</code><dd><a name="index-Wall-232"></a><a name="index-Wno_002dall-233"></a>This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.
<p><samp><span class="option">-Wall</span></samp> turns on the following warning flags:
<pre class="smallexample"> -Waddress
-Warray-bounds <span class="roman">(only with</span> <samp><span class="option">-O2</span></samp><span class="roman">)</span>
-Wc++0x-compat
-Wchar-subscripts
-Wimplicit-int
-Wimplicit-function-declaration
-Wcomment
-Wformat
-Wmain <span class="roman">(only for C/ObjC and unless</span> <samp><span class="option">-ffreestanding</span></samp><span class="roman">)</span>
-Wmissing-braces
-Wnonnull
-Wparentheses
-Wpointer-sign
-Wreorder
-Wreturn-type
-Wsequence-point
-Wsign-compare <span class="roman">(only in C++)</span>
-Wstrict-aliasing
-Wstrict-overflow=1
-Wswitch
-Wtrigraphs
-Wuninitialized
-Wunknown-pragmas
-Wunused-function
-Wunused-label
-Wunused-value
-Wunused-variable
-Wvolatile-register-var
</pre>
<p>Note that some warning flags are not implied by <samp><span class="option">-Wall</span></samp>. Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by <samp><span class="option">-Wextra</span></samp> but many of
them must be enabled individually.
<br><dt><code>-Wextra</code><dd><a name="index-W-234"></a><a name="index-Wextra-235"></a><a name="index-Wno_002dextra-236"></a>This enables some extra warning flags that are not enabled by
<samp><span class="option">-Wall</span></samp>. (This option used to be called <samp><span class="option">-W</span></samp>. The older
name is still supported, but the newer name is more descriptive.)
<pre class="smallexample"> -Wclobbered
-Wempty-body
-Wignored-qualifiers
-Wmissing-field-initializers
-Wmissing-parameter-type <span class="roman">(C only)</span>
-Wold-style-declaration <span class="roman">(C only)</span>
-Woverride-init
-Wsign-compare
-Wtype-limits
-Wuninitialized
-Wunused-parameter <span class="roman">(only with</span> <samp><span class="option">-Wunused</span></samp> <span class="roman">or</span> <samp><span class="option">-Wall</span></samp><span class="roman">)</span>
</pre>
<p>The option <samp><span class="option">-Wextra</span></samp> also prints warning messages for the
following cases:
<ul>
<li>A pointer is compared against integer zero with ‘<samp><span class="samp"><</span></samp>’, ‘<samp><span class="samp"><=</span></samp>’,
‘<samp><span class="samp">></span></samp>’, or ‘<samp><span class="samp">>=</span></samp>’.
<li>(C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.
<li>(C++ only) Ambiguous virtual bases.
<li>(C++ only) Subscripting an array which has been declared ‘<samp><span class="samp">register</span></samp>’.
<li>(C++ only) Taking the address of a variable which has been declared
‘<samp><span class="samp">register</span></samp>’.
<li>(C++ only) A base class is not initialized in a derived class' copy
constructor.
</ul>
<br><dt><code>-Wchar-subscripts</code><dd><a name="index-Wchar_002dsubscripts-237"></a><a name="index-Wno_002dchar_002dsubscripts-238"></a>Warn if an array subscript has type <code>char</code>. This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wcomment</code><dd><a name="index-Wcomment-239"></a><a name="index-Wno_002dcomment-240"></a>Warn whenever a comment-start sequence ‘<samp><span class="samp">/*</span></samp>’ appears in a ‘<samp><span class="samp">/*</span></samp>’
comment, or whenever a Backslash-Newline appears in a ‘<samp><span class="samp">//</span></samp>’ comment.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wformat</code><dd><a name="index-Wformat-241"></a><a name="index-Wno_002dformat-242"></a><a name="index-ffreestanding-243"></a><a name="index-fno_002dbuiltin-244"></a>Check calls to <code>printf</code> and <code>scanf</code>, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense. This includes standard functions, and others specified by format
attributes (see <a href="#Function-Attributes">Function Attributes</a>), in the <code>printf</code>,
<code>scanf</code>, <code>strftime</code> and <code>strfmon</code> (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp>.
<p>The formats are checked against the format features supported by GNU
libc version 2.2. These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions. Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations. However, if <samp><span class="option">-pedantic</span></samp> is used
with <samp><span class="option">-Wformat</span></samp>, warnings will be given about format features not
in the selected standard version (but not for <code>strfmon</code> formats,
since those are not in any version of the C standard). See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<p>Since <samp><span class="option">-Wformat</span></samp> also checks for null format arguments for
several functions, <samp><span class="option">-Wformat</span></samp> also implies <samp><span class="option">-Wnonnull</span></samp>.
<p><samp><span class="option">-Wformat</span></samp> is included in <samp><span class="option">-Wall</span></samp>. For more control over some
aspects of format checking, the options <samp><span class="option">-Wformat-y2k</span></samp>,
<samp><span class="option">-Wno-format-extra-args</span></samp>, <samp><span class="option">-Wno-format-zero-length</span></samp>,
<samp><span class="option">-Wformat-nonliteral</span></samp>, <samp><span class="option">-Wformat-security</span></samp>, and
<samp><span class="option">-Wformat=2</span></samp> are available, but are not included in <samp><span class="option">-Wall</span></samp>.
<p>NOTE: In Ubuntu 8.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++. To disable, use <samp><span class="option">-Wformat=0</span></samp>.
<br><dt><code>-Wformat-y2k</code><dd><a name="index-Wformat_002dy2k-245"></a><a name="index-Wno_002dformat_002dy2k-246"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn about <code>strftime</code>
formats which may yield only a two-digit year.
<br><dt><code>-Wno-format-contains-nul</code><dd><a name="index-Wno_002dformat_002dcontains_002dnul-247"></a><a name="index-Wformat_002dcontains_002dnul-248"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about format strings that
contain NUL bytes.
<br><dt><code>-Wno-format-extra-args</code><dd><a name="index-Wno_002dformat_002dextra_002dargs-249"></a><a name="index-Wformat_002dextra_002dargs-250"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about excess arguments to a
<code>printf</code> or <code>scanf</code> format function. The C standard specifies
that such arguments are ignored.
<p>Where the unused arguments lie between used arguments that are
specified with ‘<samp><span class="samp">$</span></samp>’ operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to <code>va_arg</code> to skip the unused arguments. However,
in the case of <code>scanf</code> formats, this option will suppress the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.
<br><dt><code>-Wno-format-zero-length </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wno_002dformat_002dzero_002dlength-251"></a><a name="index-Wformat_002dzero_002dlength-252"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
<br><dt><code>-Wformat-nonliteral</code><dd><a name="index-Wformat_002dnonliteral-253"></a><a name="index-Wno_002dformat_002dnonliteral-254"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a <code>va_list</code>.
<br><dt><code>-Wformat-security</code><dd><a name="index-Wformat_002dsecurity-255"></a><a name="index-Wno_002dformat_002dsecurity-256"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn about uses of format
functions that represent possible security problems. At present, this
warns about calls to <code>printf</code> and <code>scanf</code> functions where the
format string is not a string literal and there are no format arguments,
as in <code>printf (foo);</code>. This may be a security hole if the format
string came from untrusted input and contains ‘<samp><span class="samp">%n</span></samp>’. (This is
currently a subset of what <samp><span class="option">-Wformat-nonliteral</span></samp> warns about, but
in future warnings may be added to <samp><span class="option">-Wformat-security</span></samp> that are not
included in <samp><span class="option">-Wformat-nonliteral</span></samp>.)
<p>NOTE: In Ubuntu 8.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++. To disable, use <samp><span class="option">-Wno-format-security</span></samp>,
or disable all format warnings with <samp><span class="option">-Wformat=0</span></samp>. To make format
security warnings fatal, specify <samp><span class="option">-Werror=format-security</span></samp>.
<br><dt><code>-Wformat=2</code><dd><a name="index-Wformat_003d2-257"></a><a name="index-Wno_002dformat_003d2-258"></a>Enable <samp><span class="option">-Wformat</span></samp> plus format checks not included in
<samp><span class="option">-Wformat</span></samp>. Currently equivalent to ‘<samp><span class="samp">-Wformat
-Wformat-nonliteral -Wformat-security -Wformat-y2k</span></samp>’.
<br><dt><code>-Wnonnull </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wnonnull-259"></a><a name="index-Wno_002dnonnull-260"></a>Warn about passing a null pointer for arguments marked as
requiring a non-null value by the <code>nonnull</code> function attribute.
<p><samp><span class="option">-Wnonnull</span></samp> is included in <samp><span class="option">-Wall</span></samp> and <samp><span class="option">-Wformat</span></samp>. It
can be disabled with the <samp><span class="option">-Wno-nonnull</span></samp> option.
<br><dt><code>-Winit-self </code><span class="roman">(C, C++, Objective-C and Objective-C++ only)</span><dd><a name="index-Winit_002dself-261"></a><a name="index-Wno_002dinit_002dself-262"></a>Warn about uninitialized variables which are initialized with themselves.
Note this option can only be used with the <samp><span class="option">-Wuninitialized</span></samp> option.
<p>For example, GCC will warn about <code>i</code> being uninitialized in the
following snippet only when <samp><span class="option">-Winit-self</span></samp> has been specified:
<pre class="smallexample"> int f()
{
int i = i;
return i;
}
</pre>
<br><dt><code>-Wimplicit-int </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wimplicit_002dint-263"></a><a name="index-Wno_002dimplicit_002dint-264"></a>Warn when a declaration does not specify a type.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wimplicit-function-declaration </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wimplicit_002dfunction_002ddeclaration-265"></a><a name="index-Wno_002dimplicit_002dfunction_002ddeclaration-266"></a>Give a warning whenever a function is used before being declared. In
C99 mode (<samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=gnu99</span></samp>), this warning is
enabled by default and it is made into an error by
<samp><span class="option">-pedantic-errors</span></samp>. This warning is also enabled by
<samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wimplicit</code><dd><a name="index-Wimplicit-267"></a><a name="index-Wno_002dimplicit-268"></a>Same as <samp><span class="option">-Wimplicit-int</span></samp> and <samp><span class="option">-Wimplicit-function-declaration</span></samp>.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wignored-qualifiers </code><span class="roman">(C and C++ only)</span><dd><a name="index-Wignored_002dqualifiers-269"></a><a name="index-Wno_002dignored_002dqualifiers-270"></a>Warn if the return type of a function has a type qualifier
such as <code>const</code>. For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or <code>void</code>.
ISO C prohibits qualified <code>void</code> return types on function
definitions, so such return types always receive a warning
even without this option.
<p>This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wmain</code><dd><a name="index-Wmain-271"></a><a name="index-Wno_002dmain-272"></a>Warn if the type of ‘<samp><span class="samp">main</span></samp>’ is suspicious. ‘<samp><span class="samp">main</span></samp>’ should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning
is enabled by default in C++ and is enabled by either <samp><span class="option">-Wall</span></samp>
or <samp><span class="option">-pedantic</span></samp>.
<br><dt><code>-Wmissing-braces</code><dd><a name="index-Wmissing_002dbraces-273"></a><a name="index-Wno_002dmissing_002dbraces-274"></a>Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for ‘<samp><span class="samp">a</span></samp>’ is not fully
bracketed, but that for ‘<samp><span class="samp">b</span></samp>’ is fully bracketed.
<pre class="smallexample"> int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };
</pre>
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wmissing-include-dirs </code><span class="roman">(C, C++, Objective-C and Objective-C++ only)</span><dd><a name="index-Wmissing_002dinclude_002ddirs-275"></a><a name="index-Wno_002dmissing_002dinclude_002ddirs-276"></a>Warn if a user-supplied include directory does not exist.
<br><dt><code>-Wparentheses</code><dd><a name="index-Wparentheses-277"></a><a name="index-Wno_002dparentheses-278"></a>Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
<p>Also warn if a comparison like ‘<samp><span class="samp">x<=y<=z</span></samp>’ appears; this is
equivalent to ‘<samp><span class="samp">(x<=y ? 1 : 0) <= z</span></samp>’, which is a different
interpretation from that of ordinary mathematical notation.
<p>Also warn about constructions where there may be confusion to which
<code>if</code> statement an <code>else</code> branch belongs. Here is an example of
such a case:
<pre class="smallexample"> {
if (a)
if (b)
foo ();
else
bar ();
}
</pre>
<p>In C/C++, every <code>else</code> branch belongs to the innermost possible
<code>if</code> statement, which in this example is <code>if (b)</code>. This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose. When there is the
potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around
the innermost <code>if</code> statement so there is no way the <code>else</code>
could belong to the enclosing <code>if</code>. The resulting code would
look like this:
<pre class="smallexample"> {
if (a)
{
if (b)
foo ();
else
bar ();
}
}
</pre>
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wsequence-point</code><dd><a name="index-Wsequence_002dpoint-279"></a><a name="index-Wno_002dsequence_002dpoint-280"></a>Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.
<p>The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of <dfn>sequence points</dfn>, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it. These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
<code>&&</code>, <code>||</code>, <code>? :</code> or <code>,</code> (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified. All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified. However, the standards committee have
ruled that function calls do not overlap.
<p>It is not specified when between sequence points modifications to the
values of objects take effect. Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that “Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.”. If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.
<p>Examples of code with undefined behavior are <code>a = a++;</code>, <code>a[n]
= b[n++]</code> and <code>a[i++] = i;</code>. Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.
<p>The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a><!-- /@w -->.
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp> for C and C++.
<br><dt><code>-Wreturn-type</code><dd><a name="index-Wreturn_002dtype-281"></a><a name="index-Wno_002dreturn_002dtype-282"></a>Warn whenever a function is defined with a return-type that defaults
to <code>int</code>. Also warn about any <code>return</code> statement with no
return-value in a function whose return-type is not <code>void</code>
(falling off the end of the function body is considered returning
without a value), and about a <code>return</code> statement with a
expression in a function whose return-type is <code>void</code>.
<p>For C++, a function without return type always produces a diagnostic
message, even when <samp><span class="option">-Wno-return-type</span></samp> is specified. The only
exceptions are ‘<samp><span class="samp">main</span></samp>’ and functions defined in system headers.
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wswitch</code><dd><a name="index-Wswitch-283"></a><a name="index-Wno_002dswitch-284"></a>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration. (The presence of a <code>default</code> label prevents this
warning.) <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wswitch-default</code><dd><a name="index-Wswitch_002ddefault-285"></a><a name="index-Wno_002dswitch_002ddefault-286"></a>Warn whenever a <code>switch</code> statement does not have a <code>default</code>
case.
<br><dt><code>-Wswitch-enum</code><dd><a name="index-Wswitch_002denum-287"></a><a name="index-Wno_002dswitch_002denum-288"></a>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration. <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used.
<br><dt><code>-Wsync-nand </code><span class="roman">(C and C++ only)</span><dd><a name="index-Wsync_002dnand-289"></a><a name="index-Wno_002dsync_002dnand-290"></a>Warn when <code>__sync_fetch_and_nand</code> and <code>__sync_nand_and_fetch</code>
built-in functions are used. These functions changed semantics in GCC 4.4.
<br><dt><code>-Wtrigraphs</code><dd><a name="index-Wtrigraphs-291"></a><a name="index-Wno_002dtrigraphs-292"></a>Warn if any trigraphs are encountered that might change the meaning of
the program (trigraphs within comments are not warned about).
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wunused-function</code><dd><a name="index-Wunused_002dfunction-293"></a><a name="index-Wno_002dunused_002dfunction-294"></a>Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wunused-label</code><dd><a name="index-Wunused_002dlabel-295"></a><a name="index-Wno_002dunused_002dlabel-296"></a>Warn whenever a label is declared but not used.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<p>To suppress this warning use the ‘<samp><span class="samp">unused</span></samp>’ attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
<br><dt><code>-Wunused-parameter</code><dd><a name="index-Wunused_002dparameter-297"></a><a name="index-Wno_002dunused_002dparameter-298"></a>Warn whenever a function parameter is unused aside from its declaration.
<p>To suppress this warning use the ‘<samp><span class="samp">unused</span></samp>’ attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
<br><dt><code>-Wno-unused-result</code><dd><a name="index-Wunused_002dresult-299"></a><a name="index-Wno_002dunused_002dresult-300"></a>Do not warn if a caller of a function marked with attribute
<code>warn_unused_result</code> (see <a href="#Variable-Attributes">Variable Attributes</a>) does not use
its return value. The default is <samp><span class="option">-Wunused-result</span></samp>.
<br><dt><code>-Wunused-variable</code><dd><a name="index-Wunused_002dvariable-301"></a><a name="index-Wno_002dunused_002dvariable-302"></a>Warn whenever a local variable or non-constant static variable is unused
aside from its declaration.
This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<p>To suppress this warning use the ‘<samp><span class="samp">unused</span></samp>’ attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).
<br><dt><code>-Wunused-value</code><dd><a name="index-Wunused_002dvalue-303"></a><a name="index-Wno_002dunused_002dvalue-304"></a>Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
‘<samp><span class="samp">void</span></samp>’. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as ‘<samp><span class="samp">x[i,j]</span></samp>’ will cause a warning, while
‘<samp><span class="samp">x[(void)i,j]</span></samp>’ will not.
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wunused</code><dd><a name="index-Wunused-305"></a><a name="index-Wno_002dunused-306"></a>All the above <samp><span class="option">-Wunused</span></samp> options combined.
<p>In order to get a warning about an unused function parameter, you must
either specify ‘<samp><span class="samp">-Wextra -Wunused</span></samp>’ (note that ‘<samp><span class="samp">-Wall</span></samp>’ implies
‘<samp><span class="samp">-Wunused</span></samp>’), or separately specify <samp><span class="option">-Wunused-parameter</span></samp>.
<br><dt><code>-Wuninitialized</code><dd><a name="index-Wuninitialized-307"></a><a name="index-Wno_002duninitialized-308"></a>Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a <code>setjmp</code> call. In C++,
warn if a non-static reference or non-static ‘<samp><span class="samp">const</span></samp>’ member
appears in a class without constructors.
<p>If you want to warn about code which uses the uninitialized value of the
variable in its own initializer, use the <samp><span class="option">-Winit-self</span></samp> option.
<p>These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables which are uninitialized or clobbered as a whole. They do
not occur for variables or elements declared <code>volatile</code>. Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings will depend on the precise optimization
options and version of GCC used.
<p>Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
<p>These warnings are made optional because GCC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error. Here is one example of how
this can happen:
<pre class="smallexample"> {
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}
</pre>
<p class="noindent">If the value of <code>y</code> is always 1, 2 or 3, then <code>x</code> is
always initialized, but GCC doesn't know this. Here is
another common case:
<pre class="smallexample"> {
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;
}
</pre>
<p class="noindent">This has no bug because <code>save_y</code> is used only if it is set.
<p><a name="index-g_t_0040code_007blongjmp_007d-warnings-309"></a>This option also warns when a non-volatile automatic variable might be
changed by a call to <code>longjmp</code>. These warnings as well are possible
only in optimizing compilation.
<p>The compiler sees only the calls to <code>setjmp</code>. It cannot know
where <code>longjmp</code> will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a warning
even when there is in fact no problem because <code>longjmp</code> cannot
in fact be called at the place which would cause a problem.
<p>Some spurious warnings can be avoided if you declare all the functions
you use that never return as <code>noreturn</code>. See <a href="#Function-Attributes">Function Attributes</a>.
<p>This warning is enabled by <samp><span class="option">-Wall</span></samp> or <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wunknown-pragmas</code><dd><a name="index-Wunknown_002dpragmas-310"></a><a name="index-Wno_002dunknown_002dpragmas-311"></a><a name="index-warning-for-unknown-pragmas-312"></a><a name="index-unknown-pragmas_002c-warning-313"></a><a name="index-pragmas_002c-warning-of-unknown-314"></a>Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued
for unknown pragmas in system header files. This is not the case if
the warnings were only enabled by the <samp><span class="option">-Wall</span></samp> command line option.
<br><dt><code>-Wno-pragmas</code><dd><a name="index-Wno_002dpragmas-315"></a><a name="index-Wpragmas-316"></a>Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
‘<samp><span class="samp">-Wunknown-pragmas</span></samp>’.
<br><dt><code>-Wstrict-aliasing</code><dd><a name="index-Wstrict_002daliasing-317"></a><a name="index-Wno_002dstrict_002daliasing-318"></a>This option is only active when <samp><span class="option">-fstrict-aliasing</span></samp> is active.
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all
cases, but does attempt to catch the more common pitfalls. It is
included in <samp><span class="option">-Wall</span></samp>.
It is equivalent to <samp><span class="option">-Wstrict-aliasing=3</span></samp>
<br><dt><code>-Wstrict-aliasing=n</code><dd><a name="index-Wstrict_002daliasing_003dn-319"></a><a name="index-Wno_002dstrict_002daliasing_003dn-320"></a>This option is only active when <samp><span class="option">-fstrict-aliasing</span></samp> is active.
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way -O works.
<samp><span class="option">-Wstrict-aliasing</span></samp> is equivalent to <samp><span class="option">-Wstrict-aliasing=n</span></samp>,
with n=3.
<p>Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but -fstrict-aliasing still breaks the code, as it has very few
false negatives. However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced. Runs in the frontend only.
<p>Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken. Warns about
incomplete types. Runs in the frontend only.
<p>Level 3 (default for <samp><span class="option">-Wstrict-aliasing</span></samp>):
Should have very few false positives and few false
negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common punn+dereference pattern in the frontend:
<code>*(int*)&some_float</code>.
If optimization is enabled, it also runs in the backend, where it deals
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.
<br><dt><code>-Wstrict-overflow</code><dt><code>-Wstrict-overflow=</code><var>n</var><dd><a name="index-Wstrict_002doverflow-321"></a><a name="index-Wno_002dstrict_002doverflow-322"></a>This option is only active when <samp><span class="option">-fstrict-overflow</span></samp> is active.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur. Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization. Thus
this warning depends on the optimization level.
<p>An optimization which assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code which is not
actually a problem. To help focus on important issues, several
warning levels are defined. No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
will require, in particular when determining whether a loop will be
executed at all.
<dl>
<dt><code>-Wstrict-overflow=1</code><dd>Warn about cases which are both questionable and easy to avoid. For
example: <code>x + 1 > x</code>; with <samp><span class="option">-fstrict-overflow</span></samp>, the
compiler will simplify this to <code>1</code>. This level of
<samp><span class="option">-Wstrict-overflow</span></samp> is enabled by <samp><span class="option">-Wall</span></samp>; higher levels
are not, and must be explicitly requested.
<br><dt><code>-Wstrict-overflow=2</code><dd>Also warn about other cases where a comparison is simplified to a
constant. For example: <code>abs (x) >= 0</code>. This can only be
simplified when <samp><span class="option">-fstrict-overflow</span></samp> is in effect, because
<code>abs (INT_MIN)</code> overflows to <code>INT_MIN</code>, which is less than
zero. <samp><span class="option">-Wstrict-overflow</span></samp> (with no level) is the same as
<samp><span class="option">-Wstrict-overflow=2</span></samp>.
<br><dt><code>-Wstrict-overflow=3</code><dd>Also warn about other cases where a comparison is simplified. For
example: <code>x + 1 > 1</code> will be simplified to <code>x > 0</code>.
<br><dt><code>-Wstrict-overflow=4</code><dd>Also warn about other simplifications not covered by the above cases.
For example: <code>(x * 10) / 5</code> will be simplified to <code>x * 2</code>.
<br><dt><code>-Wstrict-overflow=5</code><dd>Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: <code>x + 2 > y</code> will
be simplified to <code>x + 1 >= y</code>. This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level will give a very large number of
false positives.
</dl>
<br><dt><code>-Warray-bounds</code><dd><a name="index-Wno_002darray_002dbounds-323"></a><a name="index-Warray_002dbounds-324"></a>This option is only active when <samp><span class="option">-ftree-vrp</span></samp> is active
(default for -O2 and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wno-div-by-zero</code><dd><a name="index-Wno_002ddiv_002dby_002dzero-325"></a><a name="index-Wdiv_002dby_002dzero-326"></a>Do not warn about compile-time integer division by zero. Floating point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
<br><dt><code>-Wsystem-headers</code><dd><a name="index-Wsystem_002dheaders-327"></a><a name="index-Wno_002dsystem_002dheaders-328"></a><a name="index-warnings-from-system-headers-329"></a><a name="index-system-headers_002c-warnings-from-330"></a>Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command line option tells
GCC to emit warnings from system headers as if they occurred in user
code. However, note that using <samp><span class="option">-Wall</span></samp> in conjunction with this
option will <em>not</em> warn about unknown pragmas in system
headers—for that, <samp><span class="option">-Wunknown-pragmas</span></samp> must also be used.
<br><dt><code>-Wno-poison-system-directories</code><dd><a name="index-Wno_002dpoison_002dsystem_002ddirectories-331"></a>Do not warn for <samp><span class="option">-I</span></samp> or <samp><span class="option">-L</span></samp> options using system
directories such as <samp><span class="file">/usr/include</span></samp> when cross compiling. This
option is intended for use in chroot environments when such
directories contain the correct headers and libraries for the target
system rather than the host.
<br><dt><code>-Wfloat-equal</code><dd><a name="index-Wfloat_002dequal-332"></a><a name="index-Wno_002dfloat_002dequal-333"></a>Warn if floating point values are used in equality comparisons.
<p>The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem). In particular, instead of testing for equality, you
would check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
<br><dt><code>-Wtraditional </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wtraditional-334"></a><a name="index-Wno_002dtraditional-335"></a>Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs which should be avoided.
<ul>
<li>Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but does not in ISO C.
<li>In traditional C, some preprocessor directives did not exist.
Traditional preprocessors would only consider a line to be a directive
if the ‘<samp><span class="samp">#</span></samp>’ appeared in column 1 on the line. Therefore
<samp><span class="option">-Wtraditional</span></samp> warns about directives that traditional C
understands but would ignore because the ‘<samp><span class="samp">#</span></samp>’ does not appear as the
first character on the line. It also suggests you hide directives like
‘<samp><span class="samp">#pragma</span></samp>’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘<samp><span class="samp">#elif</span></samp>’, so it
suggests avoiding it altogether.
<li>A function-like macro that appears without arguments.
<li>The unary plus operator.
<li>The ‘<samp><span class="samp">U</span></samp>’ integer constant suffix, or the ‘<samp><span class="samp">F</span></samp>’ or ‘<samp><span class="samp">L</span></samp>’ floating point
constant suffixes. (Traditional C does support the ‘<samp><span class="samp">L</span></samp>’ suffix on integer
constants.) Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g. the ‘<samp><span class="samp">_MIN</span></samp>’/‘<samp><span class="samp">_MAX</span></samp>’ macros in <code><limits.h></code>.
Use of these macros in user code might normally lead to spurious
warnings, however GCC's integrated preprocessor has enough context to
avoid warning in these cases.
<li>A function declared external in one block and then used after the end of
the block.
<li>A <code>switch</code> statement has an operand of type <code>long</code>.
<li>A non-<code>static</code> function declaration follows a <code>static</code> one.
This construct is not accepted by some traditional C compilers.
<li>The ISO type of an integer constant has a different width or
signedness from its traditional type. This warning is only issued if
the base of the constant is ten. I.e. hexadecimal or octal values, which
typically represent bit patterns, are not warned about.
<li>Usage of ISO string concatenation is detected.
<li>Initialization of automatic aggregates.
<li>Identifier conflicts with labels. Traditional C lacks a separate
namespace for labels.
<li>Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g. <code>__STDC__</code> to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.
<li>Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional
C would cause serious problems. This is a subset of the possible
conversion warnings, for the full set use <samp><span class="option">-Wtraditional-conversion</span></samp>.
<li>Use of ISO C style function definitions. This warning intentionally is
<em>not</em> issued for prototype declarations or variadic functions
because these ISO C features will appear in your code when using
libiberty's traditional C compatibility macros, <code>PARAMS</code> and
<code>VPARAMS</code>. This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.
</ul>
<br><dt><code>-Wtraditional-conversion </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wtraditional_002dconversion-336"></a><a name="index-Wno_002dtraditional_002dconversion-337"></a>Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed point argument
except when the same as the default promotion.
<br><dt><code>-Wdeclaration-after-statement </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wdeclaration_002dafter_002dstatement-338"></a><a name="index-Wno_002ddeclaration_002dafter_002dstatement-339"></a>Warn when a declaration is found after a statement in a block. This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC. It is not supported by ISO C90 and was not supported by
GCC versions before GCC 3.0. See <a href="#Mixed-Declarations">Mixed Declarations</a>.
<br><dt><code>-Wundef</code><dd><a name="index-Wundef-340"></a><a name="index-Wno_002dundef-341"></a>Warn if an undefined identifier is evaluated in an ‘<samp><span class="samp">#if</span></samp>’ directive.
<br><dt><code>-Wno-endif-labels</code><dd><a name="index-Wno_002dendif_002dlabels-342"></a><a name="index-Wendif_002dlabels-343"></a>Do not warn whenever an ‘<samp><span class="samp">#else</span></samp>’ or an ‘<samp><span class="samp">#endif</span></samp>’ are followed by text.
<br><dt><code>-Wshadow</code><dd><a name="index-Wshadow-344"></a><a name="index-Wno_002dshadow-345"></a>Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.
<br><dt><code>-Wlarger-than=</code><var>len</var><dd><a name="index-Wlarger_002dthan_003d_0040var_007blen_007d-346"></a><a name="index-Wlarger_002dthan_002d_0040var_007blen_007d-347"></a>Warn whenever an object of larger than <var>len</var> bytes is defined.
<br><dt><code>-Wframe-larger-than=</code><var>len</var><dd><a name="index-Wframe_002dlarger_002dthan-348"></a>Warn if the size of a function frame is larger than <var>len</var> bytes.
The computation done to determine the stack frame size is approximate
and not conservative.
The actual requirements may be somewhat greater than <var>len</var>
even if you do not get a warning. In addition, any space allocated
via <code>alloca</code>, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.
<br><dt><code>-Wunsafe-loop-optimizations</code><dd><a name="index-Wunsafe_002dloop_002doptimizations-349"></a><a name="index-Wno_002dunsafe_002dloop_002doptimizations-350"></a>Warn if the loop cannot be optimized because the compiler could not
assume anything on the bounds of the loop indices. With
<samp><span class="option">-funsafe-loop-optimizations</span></samp> warn if the compiler made
such assumptions.
<br><dt><code>-Wno-pedantic-ms-format </code><span class="roman">(MinGW targets only)</span><dd><a name="index-Wno_002dpedantic_002dms_002dformat-351"></a><a name="index-Wpedantic_002dms_002dformat-352"></a>Disables the warnings about non-ISO <code>printf</code> / <code>scanf</code> format
width specifiers <code>I32</code>, <code>I64</code>, and <code>I</code> used on Windows targets
depending on the MS runtime, when you are using the options <samp><span class="option">-Wformat</span></samp>
and <samp><span class="option">-pedantic</span></samp> without gnu-extensions.
<br><dt><code>-Wpointer-arith</code><dd><a name="index-Wpointer_002darith-353"></a><a name="index-Wno_002dpointer_002darith-354"></a>Warn about anything that depends on the “size of” a function type or
of <code>void</code>. GNU C assigns these types a size of 1, for
convenience in calculations with <code>void *</code> pointers and pointers
to functions. In C++, warn also when an arithmetic operation involves
<code>NULL</code>. This warning is also enabled by <samp><span class="option">-pedantic</span></samp>.
<br><dt><code>-Wtype-limits</code><dd><a name="index-Wtype_002dlimits-355"></a><a name="index-Wno_002dtype_002dlimits-356"></a>Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions. For
example, warn if an unsigned variable is compared against zero with
‘<samp><span class="samp"><</span></samp>’ or ‘<samp><span class="samp">>=</span></samp>’. This warning is also enabled by
<samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wbad-function-cast </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wbad_002dfunction_002dcast-357"></a><a name="index-Wno_002dbad_002dfunction_002dcast-358"></a>Warn whenever a function call is cast to a non-matching type.
For example, warn if <code>int malloc()</code> is cast to <code>anything *</code>.
<br><dt><code>-Wc++-compat </code><span class="roman">(C and Objective-C only)</span><dd>Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g. request for implicit conversion from
<code>void *</code> to a pointer to non-<code>void</code> type.
<br><dt><code>-Wc++0x-compat </code><span class="roman">(C++ and Objective-C++ only)</span><dd>Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 200x, e.g., identifiers in ISO C++ 1998 that will become keywords
in ISO C++ 200x. This warning is enabled by <samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wcast-qual</code><dd><a name="index-Wcast_002dqual-359"></a><a name="index-Wno_002dcast_002dqual-360"></a>Warn whenever a pointer is cast so as to remove a type qualifier from
the target type. For example, warn if a <code>const char *</code> is cast
to an ordinary <code>char *</code>.
<br><dt><code>-Wcast-align</code><dd><a name="index-Wcast_002dalign-361"></a><a name="index-Wno_002dcast_002dalign-362"></a>Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a <code>char *</code> is cast to
an <code>int *</code> on machines where integers can only be accessed at
two- or four-byte boundaries.
<br><dt><code>-Wwrite-strings</code><dd><a name="index-Wwrite_002dstrings-363"></a><a name="index-Wno_002dwrite_002dstrings-364"></a>When compiling C, give string constants the type <code>const
char[</code><var>length</var><code>]</code> so that copying the address of one into a
non-<code>const</code> <code>char *</code> pointer will get a warning. These
warnings will help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using <code>const</code> in declarations and prototypes. Otherwise, it will
just be a nuisance. This is why we did not make <samp><span class="option">-Wall</span></samp> request
these warnings.
<p>When compiling C++, warn about the deprecated conversion from string
literals to <code>char *</code>. This warning is enabled by default for C++
programs.
<br><dt><code>-Wclobbered</code><dd><a name="index-Wclobbered-365"></a><a name="index-Wno_002dclobbered-366"></a>Warn for variables that might be changed by ‘<samp><span class="samp">longjmp</span></samp>’ or
‘<samp><span class="samp">vfork</span></samp>’. This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wconversion</code><dd><a name="index-Wconversion-367"></a><a name="index-Wno_002dconversion-368"></a>Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like <code>abs (x)</code> when
<code>x</code> is <code>double</code>; conversions between signed and unsigned,
like <code>unsigned ui = -1</code>; and conversions to smaller types, like
<code>sqrtf (M_PI)</code>. Do not warn for explicit casts like <code>abs
((int) x)</code> and <code>ui = (unsigned) -1</code>, or if the value is not
changed by the conversion like in <code>abs (2.0)</code>. Warnings about
conversions between signed and unsigned integers can be disabled by
using <samp><span class="option">-Wno-sign-conversion</span></samp>.
<p>For C++, also warn for conversions between <code>NULL</code> and non-pointer
types; confusing overload resolution for user-defined conversions; and
conversions that will never use a type conversion operator:
conversions to <code>void</code>, the same type, a base class or a reference
to them. Warnings about conversions between signed and unsigned
integers are disabled by default in C++ unless
<samp><span class="option">-Wsign-conversion</span></samp> is explicitly enabled.
<br><dt><code>-Wempty-body</code><dd><a name="index-Wempty_002dbody-369"></a><a name="index-Wno_002dempty_002dbody-370"></a>Warn if an empty body occurs in an ‘<samp><span class="samp">if</span></samp>’, ‘<samp><span class="samp">else</span></samp>’ or ‘<samp><span class="samp">do
while</span></samp>’ statement. This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wenum-compare </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wenum_002dcompare-371"></a><a name="index-Wno_002denum_002dcompare-372"></a>Warn about a comparison between values of different enum types. This
warning is enabled by default.
<br><dt><code>-Wsign-compare</code><dd><a name="index-Wsign_002dcompare-373"></a><a name="index-Wno_002dsign_002dcompare-374"></a><a name="index-warning-for-comparison-of-signed-and-unsigned-values-375"></a><a name="index-comparison-of-signed-and-unsigned-values_002c-warning-376"></a><a name="index-signed-and-unsigned-values_002c-comparison-warning-377"></a>Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned.
This warning is also enabled by <samp><span class="option">-Wextra</span></samp>; to get the other warnings
of <samp><span class="option">-Wextra</span></samp> without this warning, use ‘<samp><span class="samp">-Wextra -Wno-sign-compare</span></samp>’.
<br><dt><code>-Wsign-conversion</code><dd><a name="index-Wsign_002dconversion-378"></a><a name="index-Wno_002dsign_002dconversion-379"></a>Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by <samp><span class="option">-Wconversion</span></samp>.
<br><dt><code>-Waddress</code><dd><a name="index-Waddress-380"></a><a name="index-Wno_002daddress-381"></a>Warn about suspicious uses of memory addresses. These include using
the address of a function in a conditional expression, such as
<code>void func(void); if (func)</code>, and comparisons against the memory
address of a string literal, such as <code>if (x == "abc")</code>. Such
uses typically indicate a programmer error: the address of a function
always evaluates to true, so their use in a conditional usually
indicate that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified
behavior and are not portable in C, so they usually indicate that the
programmer intended to use <code>strcmp</code>. This warning is enabled by
<samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wlogical-op</code><dd><a name="index-Wlogical_002dop-382"></a><a name="index-Wno_002dlogical_002dop-383"></a>Warn about suspicious uses of logical operators in expressions.
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected.
<br><dt><code>-Waggregate-return</code><dd><a name="index-Waggregate_002dreturn-384"></a><a name="index-Wno_002daggregate_002dreturn-385"></a>Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits
a warning.)
<br><dt><code>-Wno-attributes</code><dd><a name="index-Wno_002dattributes-386"></a><a name="index-Wattributes-387"></a>Do not warn if an unexpected <code>__attribute__</code> is used, such as
unrecognized attributes, function attributes applied to variables,
etc. This will not stop errors for incorrect use of supported
attributes.
<br><dt><code>-Wno-builtin-macro-redefined</code><dd><a name="index-Wno_002dbuiltin_002dmacro_002dredefined-388"></a><a name="index-Wbuiltin_002dmacro_002dredefined-389"></a>Do not warn if certain built-in macros are redefined. This suppresses
warnings for redefinition of <code>__TIMESTAMP__</code>, <code>__TIME__</code>,
<code>__DATE__</code>, <code>__FILE__</code>, and <code>__BASE_FILE__</code>.
<br><dt><code>-Wstrict-prototypes </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wstrict_002dprototypes-390"></a><a name="index-Wno_002dstrict_002dprototypes-391"></a>Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted without
a warning if preceded by a declaration which specifies the argument
types.)
<br><dt><code>-Wold-style-declaration </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wold_002dstyle_002ddeclaration-392"></a><a name="index-Wno_002dold_002dstyle_002ddeclaration-393"></a>Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
<code>static</code> are not the first things in a declaration. This warning
is also enabled by <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wold-style-definition </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wold_002dstyle_002ddefinition-394"></a><a name="index-Wno_002dold_002dstyle_002ddefinition-395"></a>Warn if an old-style function definition is used. A warning is given
even if there is a previous prototype.
<br><dt><code>-Wmissing-parameter-type </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wmissing_002dparameter_002dtype-396"></a><a name="index-Wno_002dmissing_002dparameter_002dtype-397"></a>A function parameter is declared without a type specifier in K&R-style
functions:
<pre class="smallexample"> void foo(bar) { }
</pre>
<p>This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.
<br><dt><code>-Wmissing-prototypes </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wmissing_002dprototypes-398"></a><a name="index-Wno_002dmissing_002dprototypes-399"></a>Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. The aim is to detect global functions that fail
to be declared in header files.
<br><dt><code>-Wmissing-declarations</code><dd><a name="index-Wmissing_002ddeclarations-400"></a><a name="index-Wno_002dmissing_002ddeclarations-401"></a>Warn if a global function is defined without a previous declaration.
Do so even if the definition itself provides a prototype.
Use this option to detect global functions that are not declared in
header files. In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.
<br><dt><code>-Wmissing-field-initializers</code><dd><a name="index-Wmissing_002dfield_002dinitializers-402"></a><a name="index-Wno_002dmissing_002dfield_002dinitializers-403"></a><a name="index-W-404"></a><a name="index-Wextra-405"></a><a name="index-Wno_002dextra-406"></a>Warn if a structure's initializer has some fields missing. For
example, the following code would cause such a warning, because
<code>x.h</code> is implicitly zero:
<pre class="smallexample"> struct s { int f, g, h; };
struct s x = { 3, 4 };
</pre>
<p>This option does not warn about designated initializers, so the following
modification would not trigger a warning:
<pre class="smallexample"> struct s { int f, g, h; };
struct s x = { .f = 3, .g = 4 };
</pre>
<p>This warning is included in <samp><span class="option">-Wextra</span></samp>. To get other <samp><span class="option">-Wextra</span></samp>
warnings without this one, use ‘<samp><span class="samp">-Wextra -Wno-missing-field-initializers</span></samp>’.
<br><dt><code>-Wmissing-noreturn</code><dd><a name="index-Wmissing_002dnoreturn-407"></a><a name="index-Wno_002dmissing_002dnoreturn-408"></a>Warn about functions which might be candidates for attribute <code>noreturn</code>.
Note these are only possible candidates, not absolute ones. Care should
be taken to manually verify functions actually do not ever return before
adding the <code>noreturn</code> attribute, otherwise subtle code generation
bugs could be introduced. You will not get a warning for <code>main</code> in
hosted C environments.
<br><dt><code>-Wmissing-format-attribute</code><dd><a name="index-Wmissing_002dformat_002dattribute-409"></a><a name="index-Wno_002dmissing_002dformat_002dattribute-410"></a><a name="index-Wformat-411"></a><a name="index-Wno_002dformat-412"></a>Warn about function pointers which might be candidates for <code>format</code>
attributes. Note these are only possible candidates, not absolute ones.
GCC will guess that function pointers with <code>format</code> attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding <code>format</code> attribute in the
resulting type. I.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a <code>format</code>
attribute to avoid the warning.
<p>GCC will also warn about function definitions which might be
candidates for <code>format</code> attributes. Again, these are only
possible candidates. GCC will guess that <code>format</code> attributes
might be appropriate for any function that calls a function like
<code>vprintf</code> or <code>vscanf</code>, but this might not always be the
case, and some functions for which <code>format</code> attributes are
appropriate may not be detected.
<br><dt><code>-Wno-multichar</code><dd><a name="index-Wno_002dmultichar-413"></a><a name="index-Wmultichar-414"></a>Do not warn if a multicharacter constant (‘<samp><span class="samp">'FOOF'</span></samp>’) is used.
Usually they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable code.
<br><dt><code>-Wnormalized=<none|id|nfc|nfkc></code><dd><a name="index-Wnormalized_003d-415"></a><a name="index-NFC-416"></a><a name="index-NFKC-417"></a><a name="index-character-set_002c-input-normalization-418"></a>In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters. However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same. To avoid confusion,
the ISO 10646 standard sets out some <dfn>normalization rules</dfn> which
when applied ensure that two sequences that look the same are turned into
the same sequence. GCC can warn you if you are using identifiers which
have not been normalized; this option controls that warning.
<p>There are four levels of warning that GCC supports. The default is
<samp><span class="option">-Wnormalized=nfc</span></samp>, which warns about any identifier which is
not in the ISO 10646 “C” normalized form, <dfn>NFC</dfn>. NFC is the
recommended form for most uses.
<p>Unfortunately, there are some characters which ISO C and ISO C++ allow
in identifiers that when turned into NFC aren't allowable as
identifiers. That is, there's no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC.
<samp><span class="option">-Wnormalized=id</span></samp> suppresses the warning for these characters.
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
<p>You can switch the warning off for all characters by writing
<samp><span class="option">-Wnormalized=none</span></samp>. You would only want to do this if you
were using some other normalization scheme (like “D”), because
otherwise you can easily create bugs that are literally impossible to see.
<p>Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied. For instance <code>\u207F</code>, “SUPERSCRIPT LATIN SMALL
LETTER N”, will display just like a regular <code>n</code> which has been
placed in a superscript. ISO 10646 defines the <dfn>NFKC</dfn>
normalization scheme to convert all these into a standard form as
well, and GCC will warn if your code is not in NFKC if you use
<samp><span class="option">-Wnormalized=nfkc</span></samp>. This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment is
unable to be fixed to display these characters distinctly.
<br><dt><code>-Wno-deprecated</code><dd><a name="index-Wno_002ddeprecated-419"></a><a name="index-Wdeprecated-420"></a>Do not warn about usage of deprecated features. See <a href="#Deprecated-Features">Deprecated Features</a>.
<br><dt><code>-Wno-deprecated-declarations</code><dd><a name="index-Wno_002ddeprecated_002ddeclarations-421"></a><a name="index-Wdeprecated_002ddeclarations-422"></a>Do not warn about uses of functions (see <a href="#Function-Attributes">Function Attributes</a>),
variables (see <a href="#Variable-Attributes">Variable Attributes</a>), and types (see <a href="#Type-Attributes">Type Attributes</a>) marked as deprecated by using the <code>deprecated</code>
attribute.
<br><dt><code>-Wno-overflow</code><dd><a name="index-Wno_002doverflow-423"></a><a name="index-Woverflow-424"></a>Do not warn about compile-time overflow in constant expressions.
<br><dt><code>-Woverride-init </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Woverride_002dinit-425"></a><a name="index-Wno_002doverride_002dinit-426"></a><a name="index-W-427"></a><a name="index-Wextra-428"></a><a name="index-Wno_002dextra-429"></a>Warn if an initialized field without side effects is overridden when
using designated initializers (see <a href="#Designated-Inits">Designated Initializers</a>).
<p>This warning is included in <samp><span class="option">-Wextra</span></samp>. To get other
<samp><span class="option">-Wextra</span></samp> warnings without this one, use ‘<samp><span class="samp">-Wextra
-Wno-override-init</span></samp>’.
<br><dt><code>-Wpacked</code><dd><a name="index-Wpacked-430"></a><a name="index-Wno_002dpacked-431"></a>Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure.
Such structures may be mis-aligned for little benefit. For
instance, in this code, the variable <code>f.x</code> in <code>struct bar</code>
will be misaligned even though <code>struct bar</code> does not itself
have the packed attribute:
<pre class="smallexample"> struct foo {
int x;
char a, b, c, d;
} __attribute__((packed));
struct bar {
char z;
struct foo f;
};
</pre>
<br><dt><code>-Wpacked-bitfield-compat</code><dd><a name="index-Wpacked_002dbitfield_002dcompat-432"></a><a name="index-Wno_002dpacked_002dbitfield_002dcompat-433"></a>The 4.1, 4.2 and 4.3 series of GCC ignore the <code>packed</code> attribute
on bit-fields of type <code>char</code>. This has been fixed in GCC 4.4 but
the change can lead to differences in the structure layout. GCC
informs you when the offset of such a field has changed in GCC 4.4.
For example there is no longer a 4-bit padding between field <code>a</code>
and <code>b</code> in this structure:
<pre class="smallexample"> struct foo
{
char a:4;
char b:8;
} __attribute__ ((packed));
</pre>
<p>This warning is enabled by default. Use
<samp><span class="option">-Wno-packed-bitfield-compat</span></samp> to disable this warning.
<br><dt><code>-Wpadded</code><dd><a name="index-Wpadded-434"></a><a name="index-Wno_002dpadded-435"></a>Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure. Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.
<br><dt><code>-Wredundant-decls</code><dd><a name="index-Wredundant_002ddecls-436"></a><a name="index-Wno_002dredundant_002ddecls-437"></a>Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.
<br><dt><code>-Wnested-externs </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wnested_002dexterns-438"></a><a name="index-Wno_002dnested_002dexterns-439"></a>Warn if an <code>extern</code> declaration is encountered within a function.
<br><dt><code>-Wunreachable-code</code><dd><a name="index-Wunreachable_002dcode-440"></a><a name="index-Wno_002dunreachable_002dcode-441"></a>Warn if the compiler detects that code will never be executed.
<p>This option is intended to warn when the compiler detects that at
least a whole line of source code will never be executed, because
some condition is never satisfied or because it is after a
procedure that never returns.
<p>It is possible for this option to produce a warning even though there
are circumstances under which part of the affected line can be executed,
so care should be taken when removing apparently-unreachable code.
<p>For instance, when a function is inlined, a warning may mean that the
line is unreachable in only one inlined copy of the function.
<p>This option is not made part of <samp><span class="option">-Wall</span></samp> because in a debugging
version of a program there is often substantial code which checks
correct functioning of the program and is, hopefully, unreachable
because the program does work. Another common use of unreachable
code is to provide behavior which is selectable at compile-time.
<br><dt><code>-Winline</code><dd><a name="index-Winline-442"></a><a name="index-Wno_002dinline-443"></a>Warn if a function can not be inlined and it was declared as inline.
Even with this option, the compiler will not warn about failures to
inline functions declared in system headers.
<p>The compiler uses a variety of heuristics to determine whether or not
to inline a function. For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function. Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by <samp><span class="option">-Winline</span></samp> to appear or disappear.
<br><dt><code>-Wno-invalid-offsetof </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dinvalid_002doffsetof-444"></a><a name="index-Winvalid_002doffsetof-445"></a>Suppress warnings from applying the ‘<samp><span class="samp">offsetof</span></samp>’ macro to a non-POD
type. According to the 1998 ISO C++ standard, applying ‘<samp><span class="samp">offsetof</span></samp>’
to a non-POD type is undefined. In existing C++ implementations,
however, ‘<samp><span class="samp">offsetof</span></samp>’ typically gives meaningful results even when
applied to certain kinds of non-POD types. (Such as a simple
‘<samp><span class="samp">struct</span></samp>’ that fails to be a POD type only by virtue of having a
constructor.) This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.
<p>The restrictions on ‘<samp><span class="samp">offsetof</span></samp>’ may be relaxed in a future version
of the C++ standard.
<br><dt><code>-Wno-int-to-pointer-cast </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wno_002dint_002dto_002dpointer_002dcast-446"></a><a name="index-Wint_002dto_002dpointer_002dcast-447"></a>Suppress warnings from casts to pointer type of an integer of a
different size.
<br><dt><code>-Wno-pointer-to-int-cast </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wno_002dpointer_002dto_002dint_002dcast-448"></a><a name="index-Wpointer_002dto_002dint_002dcast-449"></a>Suppress warnings from casts from a pointer to an integer type of a
different size.
<br><dt><code>-Winvalid-pch</code><dd><a name="index-Winvalid_002dpch-450"></a><a name="index-Wno_002dinvalid_002dpch-451"></a>Warn if a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) is found in
the search path but can't be used.
<br><dt><code>-Wlong-long</code><dd><a name="index-Wlong_002dlong-452"></a><a name="index-Wno_002dlong_002dlong-453"></a>Warn if ‘<samp><span class="samp">long long</span></samp>’ type is used. This is default. To inhibit
the warning messages, use <samp><span class="option">-Wno-long-long</span></samp>. Flags
<samp><span class="option">-Wlong-long</span></samp> and <samp><span class="option">-Wno-long-long</span></samp> are taken into account
only when <samp><span class="option">-pedantic</span></samp> flag is used.
<br><dt><code>-Wvariadic-macros</code><dd><a name="index-Wvariadic_002dmacros-454"></a><a name="index-Wno_002dvariadic_002dmacros-455"></a>Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default.
To inhibit the warning messages, use <samp><span class="option">-Wno-variadic-macros</span></samp>.
<br><dt><code>-Wvla</code><dd><a name="index-Wvla-456"></a><a name="index-Wno_002dvla-457"></a>Warn if variable length array is used in the code.
<samp><span class="option">-Wno-vla</span></samp> will prevent the <samp><span class="option">-pedantic</span></samp> warning of
the variable length array.
<br><dt><code>-Wvolatile-register-var</code><dd><a name="index-Wvolatile_002dregister_002dvar-458"></a><a name="index-Wno_002dvolatile_002dregister_002dvar-459"></a>Warn if a register variable is declared volatile. The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables. This warning is enabled by
<samp><span class="option">-Wall</span></samp>.
<br><dt><code>-Wdisabled-optimization</code><dd><a name="index-Wdisabled_002doptimization-460"></a><a name="index-Wno_002ddisabled_002doptimization-461"></a>Warn if a requested optimization pass is disabled. This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC's optimizers were unable to handle the code
effectively. Often, the problem is that your code is too big or too
complex; GCC will refuse to optimize programs when the optimization
itself is likely to take inordinate amounts of time.
<br><dt><code>-Wpointer-sign </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wpointer_002dsign-462"></a><a name="index-Wno_002dpointer_002dsign-463"></a>Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by
<samp><span class="option">-Wall</span></samp> and by <samp><span class="option">-pedantic</span></samp>, which can be disabled with
<samp><span class="option">-Wno-pointer-sign</span></samp>.
<br><dt><code>-Wstack-protector</code><dd><a name="index-Wstack_002dprotector-464"></a><a name="index-Wno_002dstack_002dprotector-465"></a>This option is only active when <samp><span class="option">-fstack-protector</span></samp> is active. It
warns about functions that will not be protected against stack smashing.
<br><dt><code>-Wno-mudflap</code><dd><a name="index-Wno_002dmudflap-466"></a>Suppress warnings about constructs that cannot be instrumented by
<samp><span class="option">-fmudflap</span></samp>.
<br><dt><code>-Woverlength-strings</code><dd><a name="index-Woverlength_002dstrings-467"></a><a name="index-Wno_002doverlength_002dstrings-468"></a>Warn about string constants which are longer than the “minimum
maximum” length specified in the C standard. Modern compilers
generally allow string constants which are much longer than the
standard's minimum limit, but very portable programs should avoid
using longer strings.
<p>The limit applies <em>after</em> string constant concatenation, and does
not count the trailing NUL. In C89, the limit was 509 characters; in
C99, it was raised to 4095. C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++.
<p>This option is implied by <samp><span class="option">-pedantic</span></samp>, and can be disabled with
<samp><span class="option">-Wno-overlength-strings</span></samp>.
</dl>
<div class="node">
<a name="Debugging-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Optimize-Options">Optimize Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Warning-Options">Warning Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.9 Options for Debugging Your Program or GCC</h3>
<p><a name="index-options_002c-debugging-469"></a><a name="index-debugging-information-options-470"></a>
GCC has various special options that are used for debugging
either your program or GCC:
<dl>
<dt><code>-g</code><dd><a name="index-g-471"></a>Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging
information.
<p>On most systems that use stabs format, <samp><span class="option">-g</span></samp> enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but will probably make other debuggers
crash or
refuse to read the program. If you want to control for certain whether
to generate the extra information, use <samp><span class="option">-gstabs+</span></samp>, <samp><span class="option">-gstabs</span></samp>,
<samp><span class="option">-gxcoff+</span></samp>, <samp><span class="option">-gxcoff</span></samp>, or <samp><span class="option">-gvms</span></samp> (see below).
<p>GCC allows you to use <samp><span class="option">-g</span></samp> with
<samp><span class="option">-O</span></samp>. The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values were already at hand; some statements may
execute in different places because they were moved out of loops.
<p>Nevertheless it proves possible to debug optimized output. This makes
it reasonable to use the optimizer for programs that might have bugs.
<p>The following options are useful when GCC is generated with the
capability for more than one debugging format.
<br><dt><code>-ggdb</code><dd><a name="index-ggdb-472"></a>Produce debugging information for use by GDB. This means to use the
most expressive format available (DWARF 2, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.
<br><dt><code>-gstabs</code><dd><a name="index-gstabs-473"></a>Produce debugging information in stabs format (if that is supported),
without GDB extensions. This is the format used by DBX on most BSD
systems. On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output which is not understood by DBX or SDB.
On System V Release 4 systems this option requires the GNU assembler.
<br><dt><code>-feliminate-unused-debug-symbols</code><dd><a name="index-feliminate_002dunused_002ddebug_002dsymbols-474"></a>Produce debugging information in stabs format (if that is supported),
for only symbols that are actually used.
<br><dt><code>-femit-class-debug-always</code><dd>Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class. This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option will increase the size of debugging information by as much as a
factor of two.
<br><dt><code>-gstabs+</code><dd><a name="index-gstabs_002b-475"></a>Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The
use of these extensions is likely to make other debuggers crash or
refuse to read the program.
<br><dt><code>-gcoff</code><dd><a name="index-gcoff-476"></a>Produce debugging information in COFF format (if that is supported).
This is the format used by SDB on most System V systems prior to
System V Release 4.
<br><dt><code>-gxcoff</code><dd><a name="index-gxcoff-477"></a>Produce debugging information in XCOFF format (if that is supported).
This is the format used by the DBX debugger on IBM RS/6000 systems.
<br><dt><code>-gxcoff+</code><dd><a name="index-gxcoff_002b-478"></a>Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The
use of these extensions is likely to make other debuggers crash or
refuse to read the program, and may cause assemblers other than the GNU
assembler (GAS) to fail with an error.
<br><dt><code>-gdwarf-2</code><dd><a name="index-gdwarf_002d2-479"></a>Produce debugging information in DWARF version 2 format (if that is
supported). This is the format used by DBX on IRIX 6. With this
option, GCC uses features of DWARF version 3 when they are useful;
version 3 is upward compatible with version 2, but may still cause
problems for older debuggers.
<br><dt><code>-gvms</code><dd><a name="index-gvms-480"></a>Produce debugging information in VMS debug format (if that is
supported). This is the format used by DEBUG on VMS systems.
<br><dt><code>-g</code><var>level</var><dt><code>-ggdb</code><var>level</var><dt><code>-gstabs</code><var>level</var><dt><code>-gcoff</code><var>level</var><dt><code>-gxcoff</code><var>level</var><dt><code>-gvms</code><var>level</var><dd>Request debugging information and also use <var>level</var> to specify how
much information. The default level is 2.
<p>Level 0 produces no debug information at all. Thus, <samp><span class="option">-g0</span></samp> negates
<samp><span class="option">-g</span></samp>.
<p>Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don't plan to debug. This includes
descriptions of functions and external variables, but no information
about local variables and no line numbers.
<p>Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when
you use <samp><span class="option">-g3</span></samp>.
<p><samp><span class="option">-gdwarf-2</span></samp> does not accept a concatenated debug level, because
GCC used to support an option <samp><span class="option">-gdwarf</span></samp> that meant to generate
debug information in version 1 of the DWARF format (which is very
different from version 2), and it would have been too confusing. That
debug format is long obsolete, but the option cannot be changed now.
Instead use an additional <samp><span class="option">-g</span><var>level</var></samp> option to change the
debug level for DWARF2.
<br><dt><code>-feliminate-dwarf2-dups</code><dd><a name="index-feliminate_002ddwarf2_002ddups-481"></a>Compress DWARF2 debugging information by eliminating duplicated
information about each symbol. This option only makes sense when
generating DWARF2 debugging information with <samp><span class="option">-gdwarf-2</span></samp>.
<br><dt><code>-femit-struct-debug-baseonly</code><dd>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct was defined.
<p>This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See <samp><span class="option">-femit-struct-debug-reduced</span></samp> for a less aggressive option.
See <samp><span class="option">-femit-struct-debug-detailed</span></samp> for more detailed control.
<p>This option works only with DWARF 2.
<br><dt><code>-femit-struct-debug-reduced</code><dd>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type was defined,
unless the struct is a template or defined in a system header.
<p>This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger.
See <samp><span class="option">-femit-struct-debug-baseonly</span></samp> for a more aggressive option.
See <samp><span class="option">-femit-struct-debug-detailed</span></samp> for more detailed control.
<p>This option works only with DWARF 2.
<br><dt><code>-femit-struct-debug-detailed</code><span class="roman">[</span><code>=</code><var>spec-list</var><span class="roman">]</span><dd>Specify the struct-like types
for which the compiler will generate debug information.
The intent is to reduce duplicate struct debug information
between different object files within the same program.
<p>This option is a detailed version of
<samp><span class="option">-femit-struct-debug-reduced</span></samp> and <samp><span class="option">-femit-struct-debug-baseonly</span></samp>,
which will serve for most needs.
<p>A specification has the syntax
[‘<samp><span class="samp">dir:</span></samp>’|‘<samp><span class="samp">ind:</span></samp>’][‘<samp><span class="samp">ord:</span></samp>’|‘<samp><span class="samp">gen:</span></samp>’](‘<samp><span class="samp">any</span></samp>’|‘<samp><span class="samp">sys</span></samp>’|‘<samp><span class="samp">base</span></samp>’|‘<samp><span class="samp">none</span></samp>’)
<p>The optional first word limits the specification to
structs that are used directly (‘<samp><span class="samp">dir:</span></samp>’) or used indirectly (‘<samp><span class="samp">ind:</span></samp>’).
A struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct would be legal, the use is indirect.
An example is
‘<samp><span class="samp">struct one direct; struct two * indirect;</span></samp>’.
<p>The optional second word limits the specification to
ordinary structs (‘<samp><span class="samp">ord:</span></samp>’) or generic structs (‘<samp><span class="samp">gen:</span></samp>’).
Generic structs are a bit complicated to explain.
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above.
Other programming languages have generics,
but ‘<samp><span class="samp">-femit-struct-debug-detailed</span></samp>’ does not yet implement them.
<p>The third word specifies the source files for those
structs for which the compiler will emit debug information.
The values ‘<samp><span class="samp">none</span></samp>’ and ‘<samp><span class="samp">any</span></samp>’ have the normal meaning.
The value ‘<samp><span class="samp">base</span></samp>’ means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file.
In practice, this means that
types declared in <samp><span class="file">foo.c</span></samp> and <samp><span class="file">foo.h</span></samp> will have debug information,
but types declared in other header will not.
The value ‘<samp><span class="samp">sys</span></samp>’ means those types satisfying ‘<samp><span class="samp">base</span></samp>’
or declared in system or compiler headers.
<p>You may need to experiment to determine the best settings for your application.
<p>The default is ‘<samp><span class="samp">-femit-struct-debug-detailed=all</span></samp>’.
<p>This option works only with DWARF 2.
<br><dt><code>-fno-merge-debug-strings</code><dd><a name="index-fmerge_002ddebug_002dstrings-482"></a><a name="index-fno_002dmerge_002ddebug_002dstrings-483"></a>Direct the linker to not merge together strings in the debugging
information which are identical in different object files. Merging is
not supported by all assemblers or linkers. Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time. Merging is enabled by default.
<br><dt><code>-fdebug-prefix-map=</code><var>old</var><code>=</code><var>new</var><dd><a name="index-fdebug_002dprefix_002dmap-484"></a>When compiling files in directory <samp><var>old</var></samp>, record debugging
information describing them as in <samp><var>new</var></samp> instead.
<br><dt><code>-fno-dwarf2-cfi-asm</code><dd><a name="index-fdwarf2_002dcfi_002dasm-485"></a><a name="index-fno_002ddwarf2_002dcfi_002dasm-486"></a>Emit DWARF 2 unwind info as compiler generated <code>.eh_frame</code> section
instead of using GAS <code>.cfi_*</code> directives.
<p><a name="index-g_t_0040command_007bprof_007d-487"></a><br><dt><code>-p</code><dd><a name="index-p-488"></a>Generate extra code to write profile information suitable for the
analysis program <samp><span class="command">prof</span></samp>. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
<p><a name="index-g_t_0040command_007bgprof_007d-489"></a><br><dt><code>-pg</code><dd><a name="index-pg-490"></a>Generate extra code to write profile information suitable for the
analysis program <samp><span class="command">gprof</span></samp>. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
<br><dt><code>-Q</code><dd><a name="index-Q-491"></a>Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.
<br><dt><code>-ftime-report</code><dd><a name="index-ftime_002dreport-492"></a>Makes the compiler print some statistics about the time consumed by each
pass when it finishes.
<br><dt><code>-fmem-report</code><dd><a name="index-fmem_002dreport-493"></a>Makes the compiler print some statistics about permanent memory
allocation when it finishes.
<br><dt><code>-fpre-ipa-mem-report</code><dd><a name="index-fpre_002dipa_002dmem_002dreport-494"></a><br><dt><code>-fpost-ipa-mem-report</code><dd><a name="index-fpost_002dipa_002dmem_002dreport-495"></a>Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.
<br><dt><code>-fprofile-arcs</code><dd><a name="index-fprofile_002darcs-496"></a>Add code so that program flow <dfn>arcs</dfn> are instrumented. During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns. When the compiled
program exits it saves this data to a file called
<samp><var>auxname</var><span class="file">.gcda</span></samp> for each source file. The data may be used for
profile-directed optimizations (<samp><span class="option">-fbranch-probabilities</span></samp>), or for
test coverage analysis (<samp><span class="option">-ftest-coverage</span></samp>). Each object file's
<var>auxname</var> is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file. In both cases any suffix is removed
(e.g. <samp><span class="file">foo.gcda</span></samp> for input file <samp><span class="file">dir/foo.c</span></samp>, or
<samp><span class="file">dir/foo.gcda</span></samp> for output file specified as <samp><span class="option">-o dir/foo.o</span></samp>).
See <a href="#Cross_002dprofiling">Cross-profiling</a>.
<p><a name="index-g_t_0040command_007bgcov_007d-497"></a><br><dt><code>--coverage</code><dd><a name="index-coverage-498"></a>
This option is used to compile and link code instrumented for coverage
analysis. The option is a synonym for <samp><span class="option">-fprofile-arcs</span></samp>
<samp><span class="option">-ftest-coverage</span></samp> (when compiling) and <samp><span class="option">-lgcov</span></samp> (when
linking). See the documentation for those options for more details.
<ul>
<li>Compile the source files with <samp><span class="option">-fprofile-arcs</span></samp> plus optimization
and code generation options. For test coverage analysis, use the
additional <samp><span class="option">-ftest-coverage</span></samp> option. You do not need to profile
every source file in a program.
<li>Link your object files with <samp><span class="option">-lgcov</span></samp> or <samp><span class="option">-fprofile-arcs</span></samp>
(the latter implies the former).
<li>Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also
<code>fork</code> calls are detected and correctly handled (double counting
will not happen).
<li>For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
<samp><span class="option">-fbranch-probabilities</span></samp> (see <a href="#Optimize-Options">Options that Control Optimization</a>).
<li>For test coverage analysis, use <samp><span class="command">gcov</span></samp> to produce human readable
information from the <samp><span class="file">.gcno</span></samp> and <samp><span class="file">.gcda</span></samp> files. Refer to the
<samp><span class="command">gcov</span></samp> documentation for further information.
</ul>
<p>With <samp><span class="option">-fprofile-arcs</span></samp>, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph.
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.
<br><dt><code>-ftest-coverage</code><dd><a name="index-ftest_002dcoverage-499"></a>Produce a notes file that the <samp><span class="command">gcov</span></samp> code-coverage utility
(see <a href="#Gcov"><samp><span class="command">gcov</span></samp>—a Test Coverage Program</a>) can use to
show program coverage. Each source file's note file is called
<samp><var>auxname</var><span class="file">.gcno</span></samp>. Refer to the <samp><span class="option">-fprofile-arcs</span></samp> option
above for a description of <var>auxname</var> and instructions on how to
generate test coverage data. Coverage data will match the source files
more closely, if you do not optimize.
<br><dt><code>-fdbg-cnt-list</code><dd><a name="index-fdbg_002dcnt_002dlist-500"></a>Print the name and the counter upperbound for all debug counters.
<br><dt><code>-fdbg-cnt=</code><var>counter-value-list</var><dd><a name="index-fdbg_002dcnt-501"></a>Set the internal debug counter upperbound. <var>counter-value-list</var>
is a comma-separated list of <var>name</var>:<var>value</var> pairs
which sets the upperbound of each debug counter <var>name</var> to <var>value</var>.
All debug counters have the initial upperbound of <var>UINT_MAX</var>,
thus dbg_cnt() returns true always unless the upperbound is set by this option.
e.g. With -fdbg-cnt=dce:10,tail_call:0
dbg_cnt(dce) will return true only for first 10 invocations
and dbg_cnt(tail_call) will return false always.
<br><dt><code>-d</code><var>letters</var><dt><code>-fdump-rtl-</code><var>pass</var><dd><a name="index-d-502"></a>Says to make debugging dumps during compilation at times specified by
<var>letters</var>. This is used for debugging the RTL-based passes of the
compiler. The file names for most of the dumps are made by appending a
pass number and a word to the <var>dumpname</var>. <var>dumpname</var> is generated
from the name of the output file, if explicitly specified and it is not
an executable, otherwise it is the basename of the source file. These
switches may have different effects when <samp><span class="option">-E</span></samp> is used for
preprocessing.
<p>Debug dumps can be enabled with a <samp><span class="option">-fdump-rtl</span></samp> switch or some
<samp><span class="option">-d</span></samp> option <var>letters</var>. Here are the possible
letters for use in <var>pass</var> and <var>letters</var>, and their meanings:
<dl>
<dt><code>-fdump-rtl-alignments</code><dd><a name="index-fdump_002drtl_002dalignments-503"></a>Dump after branch alignments have been computed.
<br><dt><code>-fdump-rtl-asmcons</code><dd><a name="index-fdump_002drtl_002dasmcons-504"></a>Dump after fixing rtl statements that have unsatisfied in/out constraints.
<br><dt><code>-fdump-rtl-auto_inc_dec</code><dd><a name="index-fdump_002drtl_002dauto_005finc_005fdec-505"></a>Dump after auto-inc-dec discovery. This pass is only run on
architectures that have auto inc or auto dec instructions.
<br><dt><code>-fdump-rtl-barriers</code><dd><a name="index-fdump_002drtl_002dbarriers-506"></a>Dump after cleaning up the barrier instructions.
<br><dt><code>-fdump-rtl-bbpart</code><dd><a name="index-fdump_002drtl_002dbbpart-507"></a>Dump after partitioning hot and cold basic blocks.
<br><dt><code>-fdump-rtl-bbro</code><dd><a name="index-fdump_002drtl_002dbbro-508"></a>Dump after block reordering.
<br><dt><code>-fdump-rtl-btl1</code><dt><code>-fdump-rtl-btl2</code><dd><a name="index-fdump_002drtl_002dbtl2-509"></a><a name="index-fdump_002drtl_002dbtl2-510"></a><samp><span class="option">-fdump-rtl-btl1</span></samp> and <samp><span class="option">-fdump-rtl-btl2</span></samp> enable dumping
after the two branch
target load optimization passes.
<br><dt><code>-fdump-rtl-bypass</code><dd><a name="index-fdump_002drtl_002dbypass-511"></a>Dump after jump bypassing and control flow optimizations.
<br><dt><code>-fdump-rtl-combine</code><dd><a name="index-fdump_002drtl_002dcombine-512"></a>Dump after the RTL instruction combination pass.
<br><dt><code>-fdump-rtl-compgotos</code><dd><a name="index-fdump_002drtl_002dcompgotos-513"></a>Dump after duplicating the computed gotos.
<br><dt><code>-fdump-rtl-ce1</code><dt><code>-fdump-rtl-ce2</code><dt><code>-fdump-rtl-ce3</code><dd><a name="index-fdump_002drtl_002dce1-514"></a><a name="index-fdump_002drtl_002dce2-515"></a><a name="index-fdump_002drtl_002dce3-516"></a><samp><span class="option">-fdump-rtl-ce1</span></samp>, <samp><span class="option">-fdump-rtl-ce2</span></samp>, and
<samp><span class="option">-fdump-rtl-ce3</span></samp> enable dumping after the three
if conversion passes.
<dt><code>-fdump-rtl-cprop_hardreg</code><dd><a name="index-fdump_002drtl_002dcprop_005fhardreg-517"></a>Dump after hard register copy propagation.
<dt><code>-fdump-rtl-csa</code><dd><a name="index-fdump_002drtl_002dcsa-518"></a>Dump after combining stack adjustments.
<br><dt><code>-fdump-rtl-cse1</code><dt><code>-fdump-rtl-cse2</code><dd><a name="index-fdump_002drtl_002dcse1-519"></a><a name="index-fdump_002drtl_002dcse2-520"></a><samp><span class="option">-fdump-rtl-cse1</span></samp> and <samp><span class="option">-fdump-rtl-cse2</span></samp> enable dumping after
the two common sub-expression elimination passes.
<dt><code>-fdump-rtl-dce</code><dd><a name="index-fdump_002drtl_002ddce-521"></a>Dump after the standalone dead code elimination passes.
<dt><code>-fdump-rtl-dbr</code><dd><a name="index-fdump_002drtl_002ddbr-522"></a>Dump after delayed branch scheduling.
<br><dt><code>-fdump-rtl-dce1</code><dt><code>-fdump-rtl-dce2</code><dd><a name="index-fdump_002drtl_002ddce1-523"></a><a name="index-fdump_002drtl_002ddce2-524"></a><samp><span class="option">-fdump-rtl-dce1</span></samp> and <samp><span class="option">-fdump-rtl-dce2</span></samp> enable dumping after
the two dead store elimination passes.
<br><dt><code>-fdump-rtl-eh</code><dd><a name="index-fdump_002drtl_002deh-525"></a>Dump after finalization of EH handling code.
<br><dt><code>-fdump-rtl-eh_ranges</code><dd><a name="index-fdump_002drtl_002deh_005franges-526"></a>Dump after conversion of EH handling range regions.
<br><dt><code>-fdump-rtl-expand</code><dd><a name="index-fdump_002drtl_002dexpand-527"></a>Dump after RTL generation.
<br><dt><code>-fdump-rtl-fwprop1</code><dt><code>-fdump-rtl-fwprop2</code><dd><a name="index-fdump_002drtl_002dfwprop1-528"></a><a name="index-fdump_002drtl_002dfwprop2-529"></a><samp><span class="option">-fdump-rtl-fwprop1</span></samp> and <samp><span class="option">-fdump-rtl-fwprop2</span></samp> enable
dumping after the two forward propagation passes.
<br><dt><code>-fdump-rtl-gcse1</code><dt><code>-fdump-rtl-gcse2</code><dd><a name="index-fdump_002drtl_002dgcse1-530"></a><a name="index-fdump_002drtl_002dgcse2-531"></a><samp><span class="option">-fdump-rtl-gcse1</span></samp> and <samp><span class="option">-fdump-rtl-gcse2</span></samp> enable dumping
after global common subexpression elimination.
<br><dt><code>-fdump-rtl-init-regs</code><dd><a name="index-fdump_002drtl_002dinit_002dregs-532"></a>Dump after the initialization of the registers.
<br><dt><code>-fdump-rtl-initvals</code><dd><a name="index-fdump_002drtl_002dinitvals-533"></a>Dump after the computation of the initial value sets.
<dt><code>-fdump-rtl-into_cfglayout</code><dd><a name="index-fdump_002drtl_002dinto_005fcfglayout-534"></a>Dump after converting to cfglayout mode.
<br><dt><code>-fdump-rtl-ira</code><dd><a name="index-fdump_002drtl_002dira-535"></a>Dump after iterated register allocation.
<br><dt><code>-fdump-rtl-jump</code><dd><a name="index-fdump_002drtl_002djump-536"></a>Dump after the second jump optimization.
<br><dt><code>-fdump-rtl-loop2</code><dd><a name="index-fdump_002drtl_002dloop2-537"></a><samp><span class="option">-fdump-rtl-loop2</span></samp> enables dumping after the rtl
loop optimization passes.
<br><dt><code>-fdump-rtl-mach</code><dd><a name="index-fdump_002drtl_002dmach-538"></a>Dump after performing the machine dependent reorganization pass, if that
pass exists.
<br><dt><code>-fdump-rtl-mode_sw</code><dd><a name="index-fdump_002drtl_002dmode_005fsw-539"></a>Dump after removing redundant mode switches.
<br><dt><code>-fdump-rtl-rnreg</code><dd><a name="index-fdump_002drtl_002drnreg-540"></a>Dump after register renumbering.
<dt><code>-fdump-rtl-outof_cfglayout</code><dd><a name="index-fdump_002drtl_002doutof_005fcfglayout-541"></a>Dump after converting from cfglayout mode.
<br><dt><code>-fdump-rtl-peephole2</code><dd><a name="index-fdump_002drtl_002dpeephole2-542"></a>Dump after the peephole pass.
<br><dt><code>-fdump-rtl-postreload</code><dd><a name="index-fdump_002drtl_002dpostreload-543"></a>Dump after post-reload optimizations.
<dt><code>-fdump-rtl-pro_and_epilogue</code><dd><a name="index-fdump_002drtl_002dpro_005fand_005fepilogue-544"></a>Dump after generating the function pro and epilogues.
<br><dt><code>-fdump-rtl-regmove</code><dd><a name="index-fdump_002drtl_002dregmove-545"></a>Dump after the register move pass.
<br><dt><code>-fdump-rtl-sched1</code><dt><code>-fdump-rtl-sched2</code><dd><a name="index-fdump_002drtl_002dsched1-546"></a><a name="index-fdump_002drtl_002dsched2-547"></a><samp><span class="option">-fdump-rtl-sched1</span></samp> and <samp><span class="option">-fdump-rtl-sched2</span></samp> enable dumping
after the basic block scheduling passes.
<br><dt><code>-fdump-rtl-see</code><dd><a name="index-fdump_002drtl_002dsee-548"></a>Dump after sign extension elimination.
<br><dt><code>-fdump-rtl-seqabstr</code><dd><a name="index-fdump_002drtl_002dseqabstr-549"></a>Dump after common sequence discovery.
<br><dt><code>-fdump-rtl-shorten</code><dd><a name="index-fdump_002drtl_002dshorten-550"></a>Dump after shortening branches.
<br><dt><code>-fdump-rtl-sibling</code><dd><a name="index-fdump_002drtl_002dsibling-551"></a>Dump after sibling call optimizations.
<br><dt><code>-fdump-rtl-split1</code><dt><code>-fdump-rtl-split2</code><dt><code>-fdump-rtl-split3</code><dt><code>-fdump-rtl-split4</code><dt><code>-fdump-rtl-split5</code><dd><a name="index-fdump_002drtl_002dsplit1-552"></a><a name="index-fdump_002drtl_002dsplit2-553"></a><a name="index-fdump_002drtl_002dsplit3-554"></a><a name="index-fdump_002drtl_002dsplit4-555"></a><a name="index-fdump_002drtl_002dsplit5-556"></a><samp><span class="option">-fdump-rtl-split1</span></samp>, <samp><span class="option">-fdump-rtl-split2</span></samp>,
<samp><span class="option">-fdump-rtl-split3</span></samp>, <samp><span class="option">-fdump-rtl-split4</span></samp> and
<samp><span class="option">-fdump-rtl-split5</span></samp> enable dumping after five rounds of
instruction splitting.
<br><dt><code>-fdump-rtl-sms</code><dd><a name="index-fdump_002drtl_002dsms-557"></a>Dump after modulo scheduling. This pass is only run on some
architectures.
<br><dt><code>-fdump-rtl-stack</code><dd><a name="index-fdump_002drtl_002dstack-558"></a>Dump after conversion from GCC's "flat register file" registers to the
x87's stack-like registers. This pass is only run on x86 variants.
<br><dt><code>-fdump-rtl-subreg1</code><dt><code>-fdump-rtl-subreg2</code><dd><a name="index-fdump_002drtl_002dsubreg1-559"></a><a name="index-fdump_002drtl_002dsubreg2-560"></a><samp><span class="option">-fdump-rtl-subreg1</span></samp> and <samp><span class="option">-fdump-rtl-subreg2</span></samp> enable dumping after
the two subreg expansion passes.
<br><dt><code>-fdump-rtl-unshare</code><dd><a name="index-fdump_002drtl_002dunshare-561"></a>Dump after all rtl has been unshared.
<br><dt><code>-fdump-rtl-vartrack</code><dd><a name="index-fdump_002drtl_002dvartrack-562"></a>Dump after variable tracking.
<br><dt><code>-fdump-rtl-vregs</code><dd><a name="index-fdump_002drtl_002dvregs-563"></a>Dump after converting virtual registers to hard registers.
<br><dt><code>-fdump-rtl-web</code><dd><a name="index-fdump_002drtl_002dweb-564"></a>Dump after live range splitting.
<br><dt><code>-fdump-rtl-regclass</code><dt><code>-fdump-rtl-subregs_of_mode_init</code><dt><code>-fdump-rtl-subregs_of_mode_finish</code><dt><code>-fdump-rtl-dfinit</code><dt><code>-fdump-rtl-dfinish</code><dd><a name="index-fdump_002drtl_002dregclass-565"></a><a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit-566"></a><a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish-567"></a><a name="index-fdump_002drtl_002ddfinit-568"></a><a name="index-fdump_002drtl_002ddfinish-569"></a>These dumps are defined but always produce empty files.
<br><dt><code>-fdump-rtl-all</code><dd><a name="index-fdump_002drtl_002dall-570"></a>Produce all the dumps listed above.
<br><dt><code>-dA</code><dd><a name="index-dA-571"></a>Annotate the assembler output with miscellaneous debugging information.
<br><dt><code>-dD</code><dd><a name="index-dD-572"></a>Dump all macro definitions, at the end of preprocessing, in addition to
normal output.
<br><dt><code>-dH</code><dd><a name="index-dH-573"></a>Produce a core dump whenever an error occurs.
<br><dt><code>-dm</code><dd><a name="index-dm-574"></a>Print statistics on memory usage, at the end of the run, to
standard error.
<br><dt><code>-dp</code><dd><a name="index-dp-575"></a>Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.
<br><dt><code>-dP</code><dd><a name="index-dP-576"></a>Dump the RTL in the assembler output as a comment before each instruction.
Also turns on <samp><span class="option">-dp</span></samp> annotation.
<br><dt><code>-dv</code><dd><a name="index-dv-577"></a>For each of the other indicated dump files (<samp><span class="option">-fdump-rtl-</span><var>pass</var></samp>),
dump a representation of the control flow graph suitable for viewing with VCG
to <samp><var>file</var><span class="file">.</span><var>pass</var><span class="file">.vcg</span></samp>.
<br><dt><code>-dx</code><dd><a name="index-dx-578"></a>Just generate RTL for a function instead of compiling it. Usually used
with <samp><span class="option">-fdump-rtl-expand</span></samp>.
<br><dt><code>-dy</code><dd><a name="index-dy-579"></a>Dump debugging information during parsing, to standard error.
</dl>
<br><dt><code>-fdump-noaddr</code><dd><a name="index-fdump_002dnoaddr-580"></a>When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.
<br><dt><code>-fdump-unnumbered</code><dd><a name="index-fdump_002dunnumbered-581"></a>When doing debugging dumps, suppress instruction numbers and address output.
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
<samp><span class="option">-g</span></samp>.
<br><dt><code>-fdump-translation-unit </code><span class="roman">(C++ only)</span><dt><code>-fdump-translation-unit-</code><var>options</var> <span class="roman">(C++ only)</span><dd><a name="index-fdump_002dtranslation_002dunit-582"></a>Dump a representation of the tree structure for the entire translation
unit to a file. The file name is made by appending <samp><span class="file">.tu</span></samp> to the
source file name. If the ‘<samp><span class="samp">-</span><var>options</var></samp>’ form is used, <var>options</var>
controls the details of the dump as described for the
<samp><span class="option">-fdump-tree</span></samp> options.
<br><dt><code>-fdump-class-hierarchy </code><span class="roman">(C++ only)</span><dt><code>-fdump-class-hierarchy-</code><var>options</var> <span class="roman">(C++ only)</span><dd><a name="index-fdump_002dclass_002dhierarchy-583"></a>Dump a representation of each class's hierarchy and virtual function
table layout to a file. The file name is made by appending <samp><span class="file">.class</span></samp>
to the source file name. If the ‘<samp><span class="samp">-</span><var>options</var></samp>’ form is used,
<var>options</var> controls the details of the dump as described for the
<samp><span class="option">-fdump-tree</span></samp> options.
<br><dt><code>-fdump-ipa-</code><var>switch</var><dd><a name="index-fdump_002dipa-584"></a>Control the dumping at various stages of inter-procedural analysis
language tree to a file. The file name is generated by appending a switch
specific suffix to the source file name. The following dumps are possible:
<dl>
<dt>‘<samp><span class="samp">all</span></samp>’<dd>Enables all inter-procedural analysis dumps.
<br><dt>‘<samp><span class="samp">cgraph</span></samp>’<dd>Dumps information about call-graph optimization, unused function removal,
and inlining decisions.
<br><dt>‘<samp><span class="samp">inline</span></samp>’<dd>Dump after function inlining.
</dl>
<br><dt><code>-fdump-statistics-</code><var>option</var><dd><a name="index-g_t_002dfdump_002dstatistics-585"></a>Enable and control dumping of pass statistics in a separate file. The
file name is generated by appending a suffix ending in ‘<samp><span class="samp">.statistics</span></samp>’
to the source file name. If the ‘<samp><span class="samp">-</span><var>option</var></samp>’ form is used,
‘<samp><span class="samp">-stats</span></samp>’ will cause counters to be summed over the whole compilation unit
while ‘<samp><span class="samp">-details</span></samp>’ will dump every event as the passes generate them.
The default with no option is to sum counters for each function compiled.
<br><dt><code>-fdump-tree-</code><var>switch</var><dt><code>-fdump-tree-</code><var>switch</var><code>-</code><var>options</var><dd><a name="index-fdump_002dtree-586"></a>Control the dumping at various stages of processing the intermediate
language tree to a file. The file name is generated by appending a switch
specific suffix to the source file name. If the ‘<samp><span class="samp">-</span><var>options</var></samp>’
form is used, <var>options</var> is a list of ‘<samp><span class="samp">-</span></samp>’ separated options that
control the details of the dump. Not all options are applicable to all
dumps, those which are not meaningful will be ignored. The following
options are available
<dl>
<dt>‘<samp><span class="samp">address</span></samp>’<dd>Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.
<br><dt>‘<samp><span class="samp">slim</span></samp>’<dd>Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when they
are directly reachable by some other path. When dumping pretty-printed
trees, this option inhibits dumping the bodies of control structures.
<br><dt>‘<samp><span class="samp">raw</span></samp>’<dd>Print a raw representation of the tree. By default, trees are
pretty-printed into a C-like representation.
<br><dt>‘<samp><span class="samp">details</span></samp>’<dd>Enable more detailed dumps (not honored by every dump option).
<br><dt>‘<samp><span class="samp">stats</span></samp>’<dd>Enable dumping various statistics about the pass (not honored by every dump
option).
<br><dt>‘<samp><span class="samp">blocks</span></samp>’<dd>Enable showing basic block boundaries (disabled in raw dumps).
<br><dt>‘<samp><span class="samp">vops</span></samp>’<dd>Enable showing virtual operands for every statement.
<br><dt>‘<samp><span class="samp">lineno</span></samp>’<dd>Enable showing line numbers for statements.
<br><dt>‘<samp><span class="samp">uid</span></samp>’<dd>Enable showing the unique ID (<code>DECL_UID</code>) for each variable.
<br><dt>‘<samp><span class="samp">verbose</span></samp>’<dd>Enable showing the tree dump for each statement.
<br><dt>‘<samp><span class="samp">all</span></samp>’<dd>Turn on all options, except <samp><span class="option">raw</span></samp>, <samp><span class="option">slim</span></samp>, <samp><span class="option">verbose</span></samp>
and <samp><span class="option">lineno</span></samp>.
</dl>
<p>The following tree dumps are possible:
<dl>
<dt>‘<samp><span class="samp">original</span></samp>’<dd>Dump before any tree based optimization, to <samp><var>file</var><span class="file">.original</span></samp>.
<br><dt>‘<samp><span class="samp">optimized</span></samp>’<dd>Dump after all tree based optimization, to <samp><var>file</var><span class="file">.optimized</span></samp>.
<br><dt>‘<samp><span class="samp">gimple</span></samp>’<dd><a name="index-fdump_002dtree_002dgimple-587"></a>Dump each function before and after the gimplification pass to a file. The
file name is made by appending <samp><span class="file">.gimple</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">cfg</span></samp>’<dd><a name="index-fdump_002dtree_002dcfg-588"></a>Dump the control flow graph of each function to a file. The file name is
made by appending <samp><span class="file">.cfg</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">vcg</span></samp>’<dd><a name="index-fdump_002dtree_002dvcg-589"></a>Dump the control flow graph of each function to a file in VCG format. The
file name is made by appending <samp><span class="file">.vcg</span></samp> to the source file name. Note
that if the file contains more than one function, the generated file cannot
be used directly by VCG. You will need to cut and paste each function's
graph into its own separate file first.
<br><dt>‘<samp><span class="samp">ch</span></samp>’<dd><a name="index-fdump_002dtree_002dch-590"></a>Dump each function after copying loop headers. The file name is made by
appending <samp><span class="file">.ch</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">ssa</span></samp>’<dd><a name="index-fdump_002dtree_002dssa-591"></a>Dump SSA related information to a file. The file name is made by appending
<samp><span class="file">.ssa</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">alias</span></samp>’<dd><a name="index-fdump_002dtree_002dalias-592"></a>Dump aliasing information for each function. The file name is made by
appending <samp><span class="file">.alias</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">ccp</span></samp>’<dd><a name="index-fdump_002dtree_002dccp-593"></a>Dump each function after CCP. The file name is made by appending
<samp><span class="file">.ccp</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">storeccp</span></samp>’<dd><a name="index-fdump_002dtree_002dstoreccp-594"></a>Dump each function after STORE-CCP. The file name is made by appending
<samp><span class="file">.storeccp</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">pre</span></samp>’<dd><a name="index-fdump_002dtree_002dpre-595"></a>Dump trees after partial redundancy elimination. The file name is made
by appending <samp><span class="file">.pre</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">fre</span></samp>’<dd><a name="index-fdump_002dtree_002dfre-596"></a>Dump trees after full redundancy elimination. The file name is made
by appending <samp><span class="file">.fre</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">copyprop</span></samp>’<dd><a name="index-fdump_002dtree_002dcopyprop-597"></a>Dump trees after copy propagation. The file name is made
by appending <samp><span class="file">.copyprop</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">store_copyprop</span></samp>’<dd><a name="index-fdump_002dtree_002dstore_005fcopyprop-598"></a>Dump trees after store copy-propagation. The file name is made
by appending <samp><span class="file">.store_copyprop</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">dce</span></samp>’<dd><a name="index-fdump_002dtree_002ddce-599"></a>Dump each function after dead code elimination. The file name is made by
appending <samp><span class="file">.dce</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">mudflap</span></samp>’<dd><a name="index-fdump_002dtree_002dmudflap-600"></a>Dump each function after adding mudflap instrumentation. The file name is
made by appending <samp><span class="file">.mudflap</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">sra</span></samp>’<dd><a name="index-fdump_002dtree_002dsra-601"></a>Dump each function after performing scalar replacement of aggregates. The
file name is made by appending <samp><span class="file">.sra</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">sink</span></samp>’<dd><a name="index-fdump_002dtree_002dsink-602"></a>Dump each function after performing code sinking. The file name is made
by appending <samp><span class="file">.sink</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">dom</span></samp>’<dd><a name="index-fdump_002dtree_002ddom-603"></a>Dump each function after applying dominator tree optimizations. The file
name is made by appending <samp><span class="file">.dom</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">dse</span></samp>’<dd><a name="index-fdump_002dtree_002ddse-604"></a>Dump each function after applying dead store elimination. The file
name is made by appending <samp><span class="file">.dse</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">phiopt</span></samp>’<dd><a name="index-fdump_002dtree_002dphiopt-605"></a>Dump each function after optimizing PHI nodes into straightline code. The file
name is made by appending <samp><span class="file">.phiopt</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">forwprop</span></samp>’<dd><a name="index-fdump_002dtree_002dforwprop-606"></a>Dump each function after forward propagating single use variables. The file
name is made by appending <samp><span class="file">.forwprop</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">copyrename</span></samp>’<dd><a name="index-fdump_002dtree_002dcopyrename-607"></a>Dump each function after applying the copy rename optimization. The file
name is made by appending <samp><span class="file">.copyrename</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">nrv</span></samp>’<dd><a name="index-fdump_002dtree_002dnrv-608"></a>Dump each function after applying the named return value optimization on
generic trees. The file name is made by appending <samp><span class="file">.nrv</span></samp> to the source
file name.
<br><dt>‘<samp><span class="samp">vect</span></samp>’<dd><a name="index-fdump_002dtree_002dvect-609"></a>Dump each function after applying vectorization of loops. The file name is
made by appending <samp><span class="file">.vect</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">vrp</span></samp>’<dd><a name="index-fdump_002dtree_002dvrp-610"></a>Dump each function after Value Range Propagation (VRP). The file name
is made by appending <samp><span class="file">.vrp</span></samp> to the source file name.
<br><dt>‘<samp><span class="samp">all</span></samp>’<dd><a name="index-fdump_002dtree_002dall-611"></a>Enable all the available tree dumps with the flags provided in this option.
</dl>
<br><dt><code>-ftree-vectorizer-verbose=</code><var>n</var><dd><a name="index-ftree_002dvectorizer_002dverbose-612"></a>This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless
<samp><span class="option">-fdump-tree-all</span></samp> or <samp><span class="option">-fdump-tree-vect</span></samp> is specified,
in which case it is output to the usual dump listing file, <samp><span class="file">.vect</span></samp>.
For <var>n</var>=0 no diagnostic information is reported.
If <var>n</var>=1 the vectorizer reports each loop that got vectorized,
and the total number of loops that got vectorized.
If <var>n</var>=2 the vectorizer also reports non-vectorized loops that passed
the first analysis phase (vect_analyze_loop_form) - i.e. countable,
inner-most, single-bb, single-entry/exit loops. This is the same verbosity
level that <samp><span class="option">-fdump-tree-vect-stats</span></samp> uses.
Higher verbosity levels mean either more information dumped for each
reported loop, or same amount of information reported for more loops:
If <var>n</var>=3, alignment related information is added to the reports.
If <var>n</var>=4, data-references related information (e.g. memory dependences,
memory access-patterns) is added to the reports.
If <var>n</var>=5, the vectorizer reports also non-vectorized inner-most loops
that did not pass the first analysis phase (i.e., may not be countable, or
may have complicated control-flow).
If <var>n</var>=6, the vectorizer reports also non-vectorized nested loops.
For <var>n</var>=7, all the information the vectorizer generates during its
analysis and transformation is reported. This is the same verbosity level
that <samp><span class="option">-fdump-tree-vect-details</span></samp> uses.
<br><dt><code>-frandom-seed=</code><var>string</var><dd><a name="index-frandom_002dstring-613"></a>This option provides a seed that GCC uses when it would otherwise use
random numbers. It is used to generate certain symbol names
that have to be different in every compiled file. It is also used to
place unique stamps in coverage data files and the object files that
produce them. You can use the <samp><span class="option">-frandom-seed</span></samp> option to produce
reproducibly identical object files.
<p>The <var>string</var> should be different for every file you compile.
<br><dt><code>-fsched-verbose=</code><var>n</var><dd><a name="index-fsched_002dverbose-614"></a>On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints. This information is
written to standard error, unless <samp><span class="option">-fdump-rtl-sched1</span></samp> or
<samp><span class="option">-fdump-rtl-sched2</span></samp> is specified, in which case it is output
to the usual dump listing file, <samp><span class="file">.sched</span></samp> or <samp><span class="file">.sched2</span></samp>
respectively. However for <var>n</var> greater than nine, the output is
always printed to standard error.
<p>For <var>n</var> greater than zero, <samp><span class="option">-fsched-verbose</span></samp> outputs the
same information as <samp><span class="option">-fdump-rtl-sched1</span></samp> and <samp><span class="option">-fdump-rtl-sched2</span></samp>.
For <var>n</var> greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info. For <var>n</var> greater
than two, it includes RTL at abort point, control-flow and regions info.
And for <var>n</var> over four, <samp><span class="option">-fsched-verbose</span></samp> also includes
dependence info.
<br><dt><code>-save-temps</code><dd><a name="index-save_002dtemps-615"></a>Store the usual “temporary” intermediate files permanently; place them
in the current directory and name them based on the source file. Thus,
compiling <samp><span class="file">foo.c</span></samp> with ‘<samp><span class="samp">-c -save-temps</span></samp>’ would produce files
<samp><span class="file">foo.i</span></samp> and <samp><span class="file">foo.s</span></samp>, as well as <samp><span class="file">foo.o</span></samp>. This creates a
preprocessed <samp><span class="file">foo.i</span></samp> output file even though the compiler now
normally uses an integrated preprocessor.
<p>When used in combination with the <samp><span class="option">-x</span></samp> command line option,
<samp><span class="option">-save-temps</span></samp> is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file.
The corresponding intermediate file may be obtained by renaming the
source file before using <samp><span class="option">-save-temps</span></samp>.
<br><dt><code>-time</code><dd><a name="index-time-616"></a>Report the CPU time taken by each subprocess in the compilation
sequence. For C source files, this is the compiler proper and assembler
(plus the linker if linking is done). The output looks like this:
<pre class="smallexample"> # cc1 0.12 0.01
# as 0.00 0.01
</pre>
<p>The first number on each line is the “user time”, that is time spent
executing the program itself. The second number is “system time”,
time spent executing operating system routines on behalf of the program.
Both numbers are in seconds.
<br><dt><code>-fvar-tracking</code><dd><a name="index-fvar_002dtracking-617"></a>Run variable tracking pass. It computes where variables are stored at each
position in code. Better debugging information is then generated
(if the debugging information format supports this information).
<p>It is enabled by default when compiling with optimization (<samp><span class="option">-Os</span></samp>,
<samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <small class="dots">...</small>), debugging information (<samp><span class="option">-g</span></samp>) and
the debug info format supports it.
<br><dt><code>-print-file-name=</code><var>library</var><dd><a name="index-print_002dfile_002dname-618"></a>Print the full absolute name of the library file <var>library</var> that
would be used when linking—and don't do anything else. With this
option, GCC does not compile or link anything; it just prints the
file name.
<br><dt><code>-print-multi-directory</code><dd><a name="index-print_002dmulti_002ddirectory-619"></a>Print the directory name corresponding to the multilib selected by any
other switches present in the command line. This directory is supposed
to exist in <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.
<br><dt><code>-print-multi-lib</code><dd><a name="index-print_002dmulti_002dlib-620"></a>Print the mapping from multilib directory names to compiler switches
that enable them. The directory name is separated from the switches by
‘<samp><span class="samp">;</span></samp>’, and each switch starts with an ‘<samp><span class="samp">@</span></samp>’ instead of the
‘<samp><span class="samp">-</span></samp>’, without spaces between multiple switches. This is supposed to
ease shell-processing.
<br><dt><code>-print-prog-name=</code><var>program</var><dd><a name="index-print_002dprog_002dname-621"></a>Like <samp><span class="option">-print-file-name</span></samp>, but searches for a program such as ‘<samp><span class="samp">cpp</span></samp>’.
<br><dt><code>-print-libgcc-file-name</code><dd><a name="index-print_002dlibgcc_002dfile_002dname-622"></a>Same as <samp><span class="option">-print-file-name=libgcc.a</span></samp>.
<p>This is useful when you use <samp><span class="option">-nostdlib</span></samp> or <samp><span class="option">-nodefaultlibs</span></samp>
but you do want to link with <samp><span class="file">libgcc.a</span></samp>. You can do
<pre class="smallexample"> gcc -nostdlib <var>files</var>... `gcc -print-libgcc-file-name`
</pre>
<br><dt><code>-print-search-dirs</code><dd><a name="index-print_002dsearch_002ddirs-623"></a>Print the name of the configured installation directory and a list of
program and library directories <samp><span class="command">gcc</span></samp> will search—and don't do anything else.
<p>This is useful when <samp><span class="command">gcc</span></samp> prints the error message
‘<samp><span class="samp">installation problem, cannot exec cpp0: No such file or directory</span></samp>’.
To resolve this you either need to put <samp><span class="file">cpp0</span></samp> and the other compiler
components where <samp><span class="command">gcc</span></samp> expects to find them, or you can set the environment
variable <samp><span class="env">GCC_EXEC_PREFIX</span></samp> to the directory where you installed them.
Don't forget the trailing ‘<samp><span class="samp">/</span></samp>’.
See <a href="#Environment-Variables">Environment Variables</a>.
<br><dt><code>-print-sysroot</code><dd><a name="index-print_002dsysroot-624"></a>Print the target sysroot directory that will be used during
compilation. This is the target sysroot specified either at configure
time or using the <samp><span class="option">--sysroot</span></samp> option, possibly with an extra
suffix that depends on compilation options. If no target sysroot is
specified, the option prints nothing.
<br><dt><code>-print-sysroot-headers-suffix</code><dd><a name="index-print_002dsysroot_002dheaders_002dsuffix-625"></a>Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix—and don't do anything else.
<br><dt><code>-dumpmachine</code><dd><a name="index-dumpmachine-626"></a>Print the compiler's target machine (for example,
‘<samp><span class="samp">i686-pc-linux-gnu</span></samp>’)—and don't do anything else.
<br><dt><code>-dumpversion</code><dd><a name="index-dumpversion-627"></a>Print the compiler version (for example, ‘<samp><span class="samp">3.0</span></samp>’)—and don't do
anything else.
<br><dt><code>-dumpspecs</code><dd><a name="index-dumpspecs-628"></a>Print the compiler's built-in specs—and don't do anything else. (This
is used when GCC itself is being built.) See <a href="#Spec-Files">Spec Files</a>.
<br><dt><code>-feliminate-unused-debug-types</code><dd><a name="index-feliminate_002dunused_002ddebug_002dtypes-629"></a>Normally, when producing DWARF2 output, GCC will emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit. Sometimes this is useful, such as
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared). More often,
however, this results in a significant amount of wasted space.
With this option, GCC will avoid producing debug symbol output
for types that are nowhere used in the source file being compiled.
</dl>
<div class="node">
<a name="Optimize-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Preprocessor-Options">Preprocessor Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Debugging-Options">Debugging Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.10 Options That Control Optimization</h3>
<p><a name="index-optimize-options-630"></a><a name="index-options_002c-optimization-631"></a>
These options control various sorts of optimizations.
<p>Without any optimization option, the compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you would expect from the source
code.
<p>Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.
<p>The compiler performs optimization based on the knowledge it has of the
program. Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.
<p>Not all optimizations are controlled directly by a flag. Only
optimizations that have a flag are listed in this section.
<p>Depending on the target and how GCC was configured, a slightly different
set of optimizations may be enabled at each <samp><span class="option">-O</span></samp> level than
those listed here. You can invoke GCC with ‘<samp><span class="samp">-Q --help=optimizers</span></samp>’
to find out the exact set of optimizations that are enabled at each level.
See <a href="#Overall-Options">Overall Options</a>, for examples.
<dl>
<dt><code>-O</code><dt><code>-O1</code><dd><a name="index-O-632"></a><a name="index-O1-633"></a>Optimize. Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.
<p>With <samp><span class="option">-O</span></samp>, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.
<p><samp><span class="option">-O</span></samp> turns on the following optimization flags:
<pre class="smallexample"> -fauto-inc-dec
-fcprop-registers
-fdce
-fdefer-pop
-fdelayed-branch
-fdse
-fguess-branch-probability
-fif-conversion2
-fif-conversion
-finline-small-functions
-fipa-pure-const
-fipa-reference
-fmerge-constants
-fsplit-wide-types
-ftree-builtin-call-dce
-ftree-ccp
-ftree-ch
-ftree-copyrename
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-fre
-ftree-sra
-ftree-ter
-funit-at-a-time
</pre>
<p><samp><span class="option">-O</span></samp> also turns on <samp><span class="option">-fomit-frame-pointer</span></samp> on machines
where doing so does not interfere with debugging.
<br><dt><code>-O2</code><dd><a name="index-O2-634"></a>Optimize even more. GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff.
As compared to <samp><span class="option">-O</span></samp>, this option increases both compilation time
and the performance of the generated code.
<p><samp><span class="option">-O2</span></samp> turns on all optimization flags specified by <samp><span class="option">-O</span></samp>. It
also turns on the following optimization flags:
<pre class="smallexample"> -fthread-jumps
-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcaller-saves
-fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fexpensive-optimizations
-fgcse -fgcse-lm
-findirect-inlining
-foptimize-sibling-calls
-fpeephole2
-fregmove
-freorder-blocks -freorder-functions
-frerun-cse-after-loop
-fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2
-fstrict-aliasing -fstrict-overflow
-ftree-switch-conversion
-ftree-pre
-ftree-vrp
</pre>
<p>Please note the warning under <samp><span class="option">-fgcse</span></samp> about
invoking <samp><span class="option">-O2</span></samp> on programs that use computed gotos.
<p>NOTE: In Ubuntu 8.10 and later versions, <samp><span class="option">-D_FORTIFY_SOURCE=2</span></samp> is
set by default, and is activated when <samp><span class="option">-O</span></samp> is set to 2 or higher.
This enables additional compile-time and run-time checks for several libc
functions. To disable, specify either <samp><span class="option">-U_FORTIFY_SOURCE</span></samp> or
<samp><span class="option">-D_FORTIFY_SOURCE=0</span></samp>.
<br><dt><code>-O3</code><dd><a name="index-O3-635"></a>Optimize yet more. <samp><span class="option">-O3</span></samp> turns on all optimizations specified
by <samp><span class="option">-O2</span></samp> and also turns on the <samp><span class="option">-finline-functions</span></samp>,
<samp><span class="option">-funswitch-loops</span></samp>, <samp><span class="option">-fpredictive-commoning</span></samp>,
<samp><span class="option">-fgcse-after-reload</span></samp>, <samp><span class="option">-ftree-vectorize</span></samp> and
<samp><span class="option">-fipa-cp-clone</span></samp> options.
<br><dt><code>-O0</code><dd><a name="index-O0-636"></a>Reduce compilation time and make debugging produce the expected
results. This is the default.
<br><dt><code>-Os</code><dd><a name="index-Os-637"></a>Optimize for size. <samp><span class="option">-Os</span></samp> enables all <samp><span class="option">-O2</span></samp> optimizations that
do not typically increase code size. It also performs further
optimizations designed to reduce code size.
<p><samp><span class="option">-Os</span></samp> disables the following optimization flags:
<pre class="smallexample"> -falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version
</pre>
<p>If you use multiple <samp><span class="option">-O</span></samp> options, with or without level numbers,
the last such option is the one that is effective.
</dl>
<p>Options of the form <samp><span class="option">-f</span><var>flag</var></samp> specify machine-independent
flags. Most flags have both positive and negative forms; the negative
form of <samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>. In the table
below, only one of the forms is listed—the one you typically will
use. You can figure out the other form by either removing ‘<samp><span class="samp">no-</span></samp>’
or adding it.
<p>The following options control specific optimizations. They are either
activated by <samp><span class="option">-O</span></samp> options or are related to ones that are. You
can use the following flags in the rare cases when “fine-tuning” of
optimizations to be performed is desired.
<dl>
<dt><code>-fno-default-inline</code><dd><a name="index-fno_002ddefault_002dinline-638"></a>Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you specify
<samp><span class="option">-O</span></samp><!-- /@w -->, member functions defined inside class scope are compiled
inline by default; i.e., you don't need to add ‘<samp><span class="samp">inline</span></samp>’ in front of
the member function name.
<br><dt><code>-fno-defer-pop</code><dd><a name="index-fno_002ddefer_002dpop-639"></a>Always pop the arguments to each function call as soon as that function
returns. For machines which must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.
<p>Disabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fforward-propagate</code><dd><a name="index-fforward_002dpropagate-640"></a>Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.
<p>This option is enabled by default at optimization levels <samp><span class="option">-O2</span></samp>,
<samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fomit-frame-pointer</code><dd><a name="index-fomit_002dframe_002dpointer-641"></a>Don't keep the frame pointer in a register for functions that
don't need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions. <strong>It also makes debugging impossible on
some machines.</strong>
<p>On some machines, such as the VAX, this flag has no effect, because
the standard calling sequence automatically handles the frame pointer
and nothing is saved by pretending it doesn't exist. The
machine-description macro <code>FRAME_POINTER_REQUIRED</code> controls
whether a target machine supports this flag. See <a href="gccint.html#Registers">Register Usage</a>.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-foptimize-sibling-calls</code><dd><a name="index-foptimize_002dsibling_002dcalls-642"></a>Optimize sibling and tail recursive calls.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fno-inline</code><dd><a name="index-fno_002dinline-643"></a>Don't pay attention to the <code>inline</code> keyword. Normally this option
is used to keep the compiler from expanding any functions inline.
Note that if you are not optimizing, no functions can be expanded inline.
<br><dt><code>-finline-small-functions</code><dd><a name="index-finline_002dsmall_002dfunctions-644"></a>Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way.
<p>Enabled at level <samp><span class="option">-O2</span></samp>.
<br><dt><code>-findirect-inlining</code><dd><a name="index-findirect_002dinlining-645"></a>Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining. This option has any effect only
when inlining itself is turned on by the <samp><span class="option">-finline-functions</span></samp>
or <samp><span class="option">-finline-small-functions</span></samp> options.
<p>Enabled at level <samp><span class="option">-O2</span></samp>.
<br><dt><code>-finline-functions</code><dd><a name="index-finline_002dfunctions-646"></a>Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.
<p>If all calls to a given function are integrated, and the function is
declared <code>static</code>, then the function is normally not output as
assembler code in its own right.
<p>Enabled at level <samp><span class="option">-O3</span></samp>.
<br><dt><code>-finline-functions-called-once</code><dd><a name="index-finline_002dfunctions_002dcalled_002donce-647"></a>Consider all <code>static</code> functions called once for inlining into their
caller even if they are not marked <code>inline</code>. If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.
<p>Enabled at levels <samp><span class="option">-O1</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp> and <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fearly-inlining</code><dd><a name="index-fearly_002dinlining-648"></a>Inline functions marked by <code>always_inline</code> and functions whose body seems
smaller than the function call overhead early before doing
<samp><span class="option">-fprofile-generate</span></samp> instrumentation and real inlining pass. Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.
<p>Enabled by default.
<br><dt><code>-finline-limit=</code><var>n</var><dd><a name="index-finline_002dlimit-649"></a>By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. <var>n</var> is the size of functions that
can be inlined in number of pseudo instructions.
<p>Inlining is actually controlled by a number of parameters, which may be
specified individually by using <samp><span class="option">--param </span><var>name</var><span class="option">=</span><var>value</var></samp>.
The <samp><span class="option">-finline-limit=</span><var>n</var></samp> option sets some of these parameters
as follows:
<dl>
<dt><code>max-inline-insns-single</code><dd>is set to <var>n</var>/2.
<br><dt><code>max-inline-insns-auto</code><dd>is set to <var>n</var>/2.
</dl>
<p>See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.
<p><em>Note:</em> there may be no value to <samp><span class="option">-finline-limit</span></samp> that results
in default behavior.
<p><em>Note:</em> pseudo instruction represents, in this particular context, an
abstract measurement of function's size. In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.
<br><dt><code>-fkeep-inline-functions</code><dd><a name="index-fkeep_002dinline_002dfunctions-650"></a>In C, emit <code>static</code> functions that are declared <code>inline</code>
into the object file, even if the function has been inlined into all
of its callers. This switch does not affect functions using the
<code>extern inline</code> extension in GNU C89. In C++, emit any and all
inline functions into the object file.
<br><dt><code>-fkeep-static-consts</code><dd><a name="index-fkeep_002dstatic_002dconsts-651"></a>Emit variables declared <code>static const</code> when optimization isn't turned
on, even if the variables aren't referenced.
<p>GCC enables this option by default. If you want to force the compiler to
check if the variable was referenced, regardless of whether or not
optimization is turned on, use the <samp><span class="option">-fno-keep-static-consts</span></samp> option.
<br><dt><code>-fmerge-constants</code><dd><a name="index-fmerge_002dconstants-652"></a>Attempt to merge identical constants (string constants and floating point
constants) across compilation units.
<p>This option is the default for optimized compilation if the assembler and
linker support it. Use <samp><span class="option">-fno-merge-constants</span></samp> to inhibit this
behavior.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fmerge-all-constants</code><dd><a name="index-fmerge_002dall_002dconstants-653"></a>Attempt to merge identical constants and identical variables.
<p>This option implies <samp><span class="option">-fmerge-constants</span></samp>. In addition to
<samp><span class="option">-fmerge-constants</span></samp> this considers e.g. even constant initialized
arrays or initialized constant variables with integral or floating point
types. Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option will result in non-conforming
behavior.
<br><dt><code>-fmodulo-sched</code><dd><a name="index-fmodulo_002dsched-654"></a>Perform swing modulo scheduling immediately before the first scheduling
pass. This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.
<br><dt><code>-fmodulo-sched-allow-regmoves</code><dd><a name="index-fmodulo_002dsched_002dallow_002dregmoves-655"></a>Perform more aggressive SMS based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges will be
deleted which will trigger the generation of reg-moves based on the
life-range analysis. This option is effective only with
<samp><span class="option">-fmodulo-sched</span></samp> enabled.
<br><dt><code>-fno-branch-count-reg</code><dd><a name="index-fno_002dbranch_002dcount_002dreg-656"></a>Do not use “decrement and branch” instructions on a count register,
but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result.
This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390.
<p>The default is <samp><span class="option">-fbranch-count-reg</span></samp>.
<br><dt><code>-fno-function-cse</code><dd><a name="index-fno_002dfunction_002dcse-657"></a>Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.
<p>This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.
<p>The default is <samp><span class="option">-ffunction-cse</span></samp>
<br><dt><code>-fno-zero-initialized-in-bss</code><dd><a name="index-fno_002dzero_002dinitialized_002din_002dbss-658"></a>If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS. This can save space in the resulting
code.
<p>This option turns off this behavior because some programs explicitly
rely on variables going to the data section. E.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.
<p>The default is <samp><span class="option">-fzero-initialized-in-bss</span></samp>.
<br><dt><code>-fmudflap -fmudflapth -fmudflapir</code><dd><a name="index-fmudflap-659"></a><a name="index-fmudflapth-660"></a><a name="index-fmudflapir-661"></a><a name="index-bounds-checking-662"></a><a name="index-mudflap-663"></a>For front-ends that support it (C and C++), instrument all risky
pointer/array dereferencing operations, some standard library
string/heap functions, and some other associated constructs with
range/validity tests. Modules so instrumented should be immune to
buffer overflows, invalid heap use, and some other classes of C/C++
programming errors. The instrumentation relies on a separate runtime
library (<samp><span class="file">libmudflap</span></samp>), which will be linked into a program if
<samp><span class="option">-fmudflap</span></samp> is given at link time. Run-time behavior of the
instrumented program is controlled by the <samp><span class="env">MUDFLAP_OPTIONS</span></samp>
environment variable. See <code>env MUDFLAP_OPTIONS=-help a.out</code>
for its options.
<p>Use <samp><span class="option">-fmudflapth</span></samp> instead of <samp><span class="option">-fmudflap</span></samp> to compile and to
link if your program is multi-threaded. Use <samp><span class="option">-fmudflapir</span></samp>, in
addition to <samp><span class="option">-fmudflap</span></samp> or <samp><span class="option">-fmudflapth</span></samp>, if
instrumentation should ignore pointer reads. This produces less
instrumentation (and therefore faster execution) and still provides
some protection against outright memory corrupting writes, but allows
erroneously read data to propagate within a program.
<br><dt><code>-fthread-jumps</code><dd><a name="index-fthread_002djumps-664"></a>Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found. If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fsplit-wide-types</code><dd><a name="index-fsplit_002dwide_002dtypes-665"></a>When using a type that occupies multiple registers, such as <code>long
long</code> on a 32-bit system, split the registers apart and allocate them
independently. This normally generates better code for those types,
but may make debugging more difficult.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>,
<samp><span class="option">-Os</span></samp>.
<br><dt><code>-fcse-follow-jumps</code><dd><a name="index-fcse_002dfollow_002djumps-666"></a>In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an <code>if</code> statement with an
<code>else</code> clause, CSE will follow the jump when the condition
tested is false.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fcse-skip-blocks</code><dd><a name="index-fcse_002dskip_002dblocks-667"></a>This is similar to <samp><span class="option">-fcse-follow-jumps</span></samp>, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple <code>if</code> statement with no else clause,
<samp><span class="option">-fcse-skip-blocks</span></samp> causes CSE to follow the jump around the
body of the <code>if</code>.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-frerun-cse-after-loop</code><dd><a name="index-frerun_002dcse_002dafter_002dloop-668"></a>Re-run common subexpression elimination after loop optimizations has been
performed.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fgcse</code><dd><a name="index-fgcse-669"></a>Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.
<p><em>Note:</em> When compiling a program using computed gotos, a GCC
extension, you may get better runtime performance if you disable
the global common subexpression elimination pass by adding
<samp><span class="option">-fno-gcse</span></samp> to the command line.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fgcse-lm</code><dd><a name="index-fgcse_002dlm-670"></a>When <samp><span class="option">-fgcse-lm</span></samp> is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
<p>Enabled by default when gcse is enabled.
<br><dt><code>-fgcse-sm</code><dd><a name="index-fgcse_002dsm-671"></a>When <samp><span class="option">-fgcse-sm</span></samp> is enabled, a store motion pass is run after
global common subexpression elimination. This pass will attempt to move
stores out of loops. When used in conjunction with <samp><span class="option">-fgcse-lm</span></samp>,
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.
<p>Not enabled at any optimization level.
<br><dt><code>-fgcse-las</code><dd><a name="index-fgcse_002dlas-672"></a>When <samp><span class="option">-fgcse-las</span></samp> is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
<p>Not enabled at any optimization level.
<br><dt><code>-fgcse-after-reload</code><dd><a name="index-fgcse_002dafter_002dreload-673"></a>When <samp><span class="option">-fgcse-after-reload</span></samp> is enabled, a redundant load elimination
pass is performed after reload. The purpose of this pass is to cleanup
redundant spilling.
<br><dt><code>-funsafe-loop-optimizations</code><dd><a name="index-funsafe_002dloop_002doptimizations-674"></a>If given, the loop optimizer will assume that loop indices do not
overflow, and that the loops with nontrivial exit condition are not
infinite. This enables a wider range of loop optimizations even if
the loop optimizer itself cannot prove that these assumptions are valid.
Using <samp><span class="option">-Wunsafe-loop-optimizations</span></samp>, the compiler will warn you
if it finds this kind of loop.
<br><dt><code>-fcrossjumping</code><dd><a name="index-fcrossjumping-675"></a>Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The
resulting code may or may not perform better than without cross-jumping.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fauto-inc-dec</code><dd><a name="index-fauto_002dinc_002ddec-676"></a>Combine increments or decrements of addresses with memory accesses.
This pass is always skipped on architectures that do not have
instructions to support this. Enabled by default at <samp><span class="option">-O</span></samp> and
higher on architectures that support this.
<br><dt><code>-fdce</code><dd><a name="index-fdce-677"></a>Perform dead code elimination (DCE) on RTL.
Enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-fdse</code><dd><a name="index-fdse-678"></a>Perform dead store elimination (DSE) on RTL.
Enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-fif-conversion</code><dd><a name="index-fif_002dconversion-679"></a>Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by <code>if-conversion2</code>.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fif-conversion2</code><dd><a name="index-fif_002dconversion2-680"></a>Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fdelete-null-pointer-checks</code><dd><a name="index-fdelete_002dnull_002dpointer_002dchecks-681"></a>Use global dataflow analysis to identify and eliminate useless checks
for null pointers. The compiler assumes that dereferencing a null
pointer would have halted the program. If a pointer is checked after
it has already been dereferenced, it cannot be null.
<p>In some environments, this assumption is not true, and programs can
safely dereference null pointers. Use
<samp><span class="option">-fno-delete-null-pointer-checks</span></samp> to disable this optimization
for programs which depend on that behavior.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fexpensive-optimizations</code><dd><a name="index-fexpensive_002doptimizations-682"></a>Perform a number of minor optimizations that are relatively expensive.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-foptimize-register-move</code><dt><code>-fregmove</code><dd><a name="index-foptimize_002dregister_002dmove-683"></a><a name="index-fregmove-684"></a>Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the amount of
register tying. This is especially helpful on machines with two-operand
instructions.
<p>Note <samp><span class="option">-fregmove</span></samp> and <samp><span class="option">-foptimize-register-move</span></samp> are the same
optimization.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fira-algorithm=</code><var>algorithm</var><dd>Use specified coloring algorithm for the integrated register
allocator. The <var>algorithm</var> argument should be <code>priority</code> or
<code>CB</code>. The first algorithm specifies Chow's priority coloring,
the second one specifies Chaitin-Briggs coloring. The second
algorithm can be unimplemented for some architectures. If it is
implemented, it is the default because Chaitin-Briggs coloring as a
rule generates a better code.
<br><dt><code>-fira-region=</code><var>region</var><dd>Use specified regions for the integrated register allocator. The
<var>region</var> argument should be one of <code>all</code>, <code>mixed</code>, or
<code>one</code>. The first value means using all loops as register
allocation regions, the second value which is the default means using
all loops except for loops with small register pressure as the
regions, and third one means using all function as a single region.
The first value can give best result for machines with small size and
irregular register set, the third one results in faster and generates
decent code and the smallest size code, and the default value usually
give the best results in most cases and for most architectures.
<br><dt><code>-fira-coalesce</code><dd><a name="index-fira_002dcoalesce-685"></a>Do optimistic register coalescing. This option might be profitable for
architectures with big regular register files.
<br><dt><code>-fno-ira-share-save-slots</code><dd><a name="index-fno_002dira_002dshare_002dsave_002dslots-686"></a>Switch off sharing stack slots used for saving call used hard
registers living through a call. Each hard register will get a
separate stack slot and as a result function stack frame will be
bigger.
<br><dt><code>-fno-ira-share-spill-slots</code><dd><a name="index-fno_002dira_002dshare_002dspill_002dslots-687"></a>Switch off sharing stack slots allocated for pseudo-registers. Each
pseudo-register which did not get a hard register will get a separate
stack slot and as a result function stack frame will be bigger.
<br><dt><code>-fira-verbose=</code><var>n</var><dd><a name="index-fira_002dverbose-688"></a>Set up how verbose dump file for the integrated register allocator
will be. Default value is 5. If the value is greater or equal to 10,
the dump file will be stderr as if the value were <var>n</var> minus 10.
<br><dt><code>-fdelayed-branch</code><dd><a name="index-fdelayed_002dbranch-689"></a>If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fschedule-insns</code><dd><a name="index-fschedule_002dinsns-690"></a>If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating point instruction is required.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-fschedule-insns2</code><dd><a name="index-fschedule_002dinsns2-691"></a>Similar to <samp><span class="option">-fschedule-insns</span></samp>, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fno-sched-interblock</code><dd><a name="index-fno_002dsched_002dinterblock-692"></a>Don't schedule instructions across basic blocks. This is normally
enabled by default when scheduling before register allocation, i.e.
with <samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fno-sched-spec</code><dd><a name="index-fno_002dsched_002dspec-693"></a>Don't allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e.
with <samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fsched-spec-load</code><dd><a name="index-fsched_002dspec_002dload-694"></a>Allow speculative motion of some load instructions. This only makes
sense when scheduling before register allocation, i.e. with
<samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fsched-spec-load-dangerous</code><dd><a name="index-fsched_002dspec_002dload_002ddangerous-695"></a>Allow speculative motion of more load instructions. This only makes
sense when scheduling before register allocation, i.e. with
<samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fsched-stalled-insns</code><dt><code>-fsched-stalled-insns=</code><var>n</var><dd><a name="index-fsched_002dstalled_002dinsns-696"></a>Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list, during the second scheduling pass.
<samp><span class="option">-fno-sched-stalled-insns</span></samp> means that no insns will be moved
prematurely, <samp><span class="option">-fsched-stalled-insns=0</span></samp> means there is no limit
on how many queued insns can be moved prematurely.
<samp><span class="option">-fsched-stalled-insns</span></samp> without a value is equivalent to
<samp><span class="option">-fsched-stalled-insns=1</span></samp>.
<br><dt><code>-fsched-stalled-insns-dep</code><dt><code>-fsched-stalled-insns-dep=</code><var>n</var><dd><a name="index-fsched_002dstalled_002dinsns_002ddep-697"></a>Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue
of stalled insns. This has an effect only during the second scheduling pass,
and only if <samp><span class="option">-fsched-stalled-insns</span></samp> is used.
<samp><span class="option">-fno-sched-stalled-insns-dep</span></samp> is equivalent to
<samp><span class="option">-fsched-stalled-insns-dep=0</span></samp>.
<samp><span class="option">-fsched-stalled-insns-dep</span></samp> without a value is equivalent to
<samp><span class="option">-fsched-stalled-insns-dep=1</span></samp>.
<br><dt><code>-fsched2-use-superblocks</code><dd><a name="index-fsched2_002duse_002dsuperblocks-698"></a>When scheduling after register allocation, do use superblock scheduling
algorithm. Superblock scheduling allows motion across basic block boundaries
resulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
<p>This only makes sense when scheduling after register allocation, i.e. with
<samp><span class="option">-fschedule-insns2</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fsched2-use-traces</code><dd><a name="index-fsched2_002duse_002dtraces-699"></a>Use <samp><span class="option">-fsched2-use-superblocks</span></samp> algorithm when scheduling after register
allocation and additionally perform code duplication in order to increase the
size of superblocks using tracer pass. See <samp><span class="option">-ftracer</span></samp> for details on
trace formation.
<p>This mode should produce faster but significantly longer programs. Also
without <samp><span class="option">-fbranch-probabilities</span></samp> the traces constructed may not
match the reality and hurt the performance. This only makes
sense when scheduling after register allocation, i.e. with
<samp><span class="option">-fschedule-insns2</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.
<br><dt><code>-fsee</code><dd><a name="index-fsee-700"></a>Eliminate redundant sign extension instructions and move the non-redundant
ones to optimal placement using lazy code motion (LCM).
<br><dt><code>-freschedule-modulo-scheduled-loops</code><dd><a name="index-freschedule_002dmodulo_002dscheduled_002dloops-701"></a>The modulo scheduling comes before the traditional scheduling, if a loop
was modulo scheduled we may want to prevent the later scheduling passes
from changing its schedule, we use this option to control that.
<br><dt><code>-fselective-scheduling</code><dd><a name="index-fselective_002dscheduling-702"></a>Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the first scheduler pass.
<br><dt><code>-fselective-scheduling2</code><dd><a name="index-fselective_002dscheduling2-703"></a>Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the second scheduler pass.
<br><dt><code>-fsel-sched-pipelining</code><dd><a name="index-fsel_002dsched_002dpipelining-704"></a>Enable software pipelining of innermost loops during selective scheduling.
This option has no effect until one of <samp><span class="option">-fselective-scheduling</span></samp> or
<samp><span class="option">-fselective-scheduling2</span></samp> is turned on.
<br><dt><code>-fsel-sched-pipelining-outer-loops</code><dd><a name="index-fsel_002dsched_002dpipelining_002douter_002dloops-705"></a>When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect until <samp><span class="option">-fsel-sched-pipelining</span></samp> is turned on.
<br><dt><code>-fcaller-saves</code><dd><a name="index-fcaller_002dsaves-706"></a>Enable values to be allocated in registers that will be clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code than would otherwise be produced.
<p>This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fconserve-stack</code><dd><a name="index-fconserve_002dstack-707"></a>Attempt to minimize stack usage. The compiler will attempt to use less
stack space, even if that makes the program slower. This option
implies setting the <samp><span class="option">large-stack-frame</span></samp> parameter to 100
and the <samp><span class="option">large-stack-frame-growth</span></samp> parameter to 400.
<br><dt><code>-ftree-reassoc</code><dd><a name="index-ftree_002dreassoc-708"></a>Perform reassociation on trees. This flag is enabled by default
at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-pre</code><dd><a name="index-ftree_002dpre-709"></a>Perform partial redundancy elimination (PRE) on trees. This flag is
enabled by default at <samp><span class="option">-O2</span></samp> and <samp><span class="option">-O3</span></samp>.
<br><dt><code>-ftree-fre</code><dd><a name="index-ftree_002dfre-710"></a>Perform full redundancy elimination (FRE) on trees. The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation.
This analysis is faster than PRE, though it exposes fewer redundancies.
This flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-copy-prop</code><dd><a name="index-ftree_002dcopy_002dprop-711"></a>Perform copy propagation on trees. This pass eliminates unnecessary
copy operations. This flag is enabled by default at <samp><span class="option">-O</span></samp> and
higher.
<br><dt><code>-fipa-pure-const</code><dd><a name="index-fipa_002dpure_002dconst-712"></a>Discover which functions are pure or constant.
Enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-fipa-reference</code><dd><a name="index-fipa_002dreference-713"></a>Discover which static variables do not escape cannot escape the
compilation unit.
Enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-fipa-struct-reorg</code><dd><a name="index-fipa_002dstruct_002dreorg-714"></a>Perform structure reorganization optimization, that change C-like structures
layout in order to better utilize spatial locality. This transformation is
effective for programs containing arrays of structures. Available in two
compilation modes: profile-based (enabled with <samp><span class="option">-fprofile-generate</span></samp>)
or static (which uses built-in heuristics). Require <samp><span class="option">-fipa-type-escape</span></samp>
to provide the safety of this transformation. It works only in whole program
mode, so it requires <samp><span class="option">-fwhole-program</span></samp> and <samp><span class="option">-combine</span></samp> to be
enabled. Structures considered ‘<samp><span class="samp">cold</span></samp>’ by this transformation are not
affected (see <samp><span class="option">--param struct-reorg-cold-struct-ratio=</span><var>value</var></samp>).
<p>With this flag, the program debug info reflects a new structure layout.
<br><dt><code>-fipa-pta</code><dd><a name="index-fipa_002dpta-715"></a>Perform interprocedural pointer analysis. This option is experimental
and does not affect generated code.
<br><dt><code>-fipa-cp</code><dd><a name="index-fipa_002dcp-716"></a>Perform interprocedural constant propagation.
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly.
This optimization can substantially increase performance
if the application has constants passed to functions.
This flag is enabled by default at <samp><span class="option">-O2</span></samp>, <samp><span class="option">-Os</span></samp> and <samp><span class="option">-O3</span></samp>.
<br><dt><code>-fipa-cp-clone</code><dd><a name="index-fipa_002dcp_002dclone-717"></a>Perform function cloning to make interprocedural constant propagation stronger.
When enabled, interprocedural constant propagation will perform function cloning
when externally visible function can be called with constant arguments.
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see <samp><span class="option">--param ipcp-unit-growth=</span><var>value</var></samp>).
This flag is enabled by default at <samp><span class="option">-O3</span></samp>.
<br><dt><code>-fipa-matrix-reorg</code><dd><a name="index-fipa_002dmatrix_002dreorg-718"></a>Perform matrix flattening and transposing.
Matrix flattening tries to replace a m-dimensional matrix
with its equivalent n-dimensional matrix, where n < m.
This reduces the level of indirection needed for accessing the elements
of the matrix. The second optimization is matrix transposing that
attempts to change the order of the matrix's dimensions in order to
improve cache locality.
Both optimizations need the <samp><span class="option">-fwhole-program</span></samp> flag.
Transposing is enabled only if profiling information is available.
<br><dt><code>-ftree-sink</code><dd><a name="index-ftree_002dsink-719"></a>Perform forward store motion on trees. This flag is
enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-ccp</code><dd><a name="index-ftree_002dccp-720"></a>Perform sparse conditional constant propagation (CCP) on trees. This
pass only operates on local scalar variables and is enabled by default
at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-switch-conversion</code><dd>Perform conversion of simple initializations in a switch to
initializations from a scalar array. This flag is enabled by default
at <samp><span class="option">-O2</span></samp> and higher.
<br><dt><code>-ftree-dce</code><dd><a name="index-ftree_002ddce-721"></a>Perform dead code elimination (DCE) on trees. This flag is enabled by
default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-builtin-call-dce</code><dd><a name="index-ftree_002dbuiltin_002dcall_002ddce-722"></a>Perform conditional dead code elimination (DCE) for calls to builtin functions
that may set <code>errno</code> but are otherwise side-effect free. This flag is
enabled by default at <samp><span class="option">-O2</span></samp> and higher if <samp><span class="option">-Os</span></samp> is not also
specified.
<br><dt><code>-ftree-dominator-opts</code><dd><a name="index-ftree_002ddominator_002dopts-723"></a>Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal. This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-dse</code><dd><a name="index-ftree_002ddse-724"></a>Perform dead store elimination (DSE) on trees. A dead store is a store into
a memory location which will later be overwritten by another store without
any intervening loads. In this case the earlier store can be deleted. This
flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-ch</code><dd><a name="index-ftree_002dch-725"></a>Perform loop header copying on trees. This is beneficial since it increases
effectiveness of code motion optimizations. It also saves one jump. This flag
is enabled by default at <samp><span class="option">-O</span></samp> and higher. It is not enabled
for <samp><span class="option">-Os</span></samp>, since it usually increases code size.
<br><dt><code>-ftree-loop-optimize</code><dd><a name="index-ftree_002dloop_002doptimize-726"></a>Perform loop optimizations on trees. This flag is enabled by default
at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-loop-linear</code><dd><a name="index-ftree_002dloop_002dlinear-727"></a>Perform linear loop transformations on tree. This flag can improve cache
performance and allow further loop optimizations to take place.
<br><dt><code>-floop-interchange</code><dd>Perform loop interchange transformations on loops. Interchanging two
nested loops switches the inner and outer loops. For example, given a
loop like:
<pre class="smallexample"> DO J = 1, M
DO I = 1, N
A(J, I) = A(J, I) * C
ENDDO
ENDDO
</pre>
<p>loop interchange will transform the loop as if the user had written:
<pre class="smallexample"> DO I = 1, N
DO J = 1, M
A(J, I) = A(J, I) * C
ENDDO
ENDDO
</pre>
<p>which can be beneficial when <code>N</code> is larger than the caches,
because in Fortran, the elements of an array are stored in memory
contiguously by column, and the original loop iterates over rows,
potentially creating at each access a cache miss. This optimization
applies to all the languages supported by GCC and is not limited to
Fortran. To use this code transformation, GCC has to be configured
with <samp><span class="option">--with-ppl</span></samp> and <samp><span class="option">--with-cloog</span></samp> to enable the
Graphite loop transformation infrastructure.
<br><dt><code>-floop-strip-mine</code><dd>Perform loop strip mining transformations on loops. Strip mining
splits a loop into two nested loops. The outer loop has strides
equal to the strip size and the inner loop has strides of the
original loop within a strip. For example, given a loop like:
<pre class="smallexample"> DO I = 1, N
A(I) = A(I) + C
ENDDO
</pre>
<p>loop strip mining will transform the loop as if the user had written:
<pre class="smallexample"> DO II = 1, N, 4
DO I = II, min (II + 3, N)
A(I) = A(I) + C
ENDDO
ENDDO
</pre>
<p>This optimization applies to all the languages supported by GCC and is
not limited to Fortran. To use this code transformation, GCC has to
be configured with <samp><span class="option">--with-ppl</span></samp> and <samp><span class="option">--with-cloog</span></samp> to
enable the Graphite loop transformation infrastructure.
<br><dt><code>-floop-block</code><dd>Perform loop blocking transformations on loops. Blocking strip mines
each loop in the loop nest such that the memory accesses of the
element loops fit inside caches. For example, given a loop like:
<pre class="smallexample"> DO I = 1, N
DO J = 1, M
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
</pre>
<p>loop blocking will transform the loop as if the user had written:
<pre class="smallexample"> DO II = 1, N, 64
DO JJ = 1, M, 64
DO I = II, min (II + 63, N)
DO J = JJ, min (JJ + 63, M)
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
ENDDO
ENDDO
</pre>
<p>which can be beneficial when <code>M</code> is larger than the caches,
because the innermost loop will iterate over a smaller amount of data
that can be kept in the caches. This optimization applies to all the
languages supported by GCC and is not limited to Fortran. To use this
code transformation, GCC has to be configured with <samp><span class="option">--with-ppl</span></samp>
and <samp><span class="option">--with-cloog</span></samp> to enable the Graphite loop transformation
infrastructure.
<br><dt><code>-fcheck-data-deps</code><dd><a name="index-fcheck_002ddata_002ddeps-728"></a>Compare the results of several data dependence analyzers. This option
is used for debugging the data dependence analyzers.
<br><dt><code>-ftree-loop-distribution</code><dd>Perform loop distribution. This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place. For example, the loop
<pre class="smallexample"> DO I = 1, N
A(I) = B(I) + C
D(I) = E(I) * F
ENDDO
</pre>
<p>is transformed to
<pre class="smallexample"> DO I = 1, N
A(I) = B(I) + C
ENDDO
DO I = 1, N
D(I) = E(I) * F
ENDDO
</pre>
<br><dt><code>-ftree-loop-im</code><dd><a name="index-ftree_002dloop_002dim-729"></a>Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns). With <samp><span class="option">-funswitch-loops</span></samp> it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.
<br><dt><code>-ftree-loop-ivcanon</code><dd><a name="index-ftree_002dloop_002divcanon-730"></a>Create a canonical counter for number of iterations in the loop for that
determining number of iterations requires complicated analysis. Later
optimizations then may determine the number easily. Useful especially
in connection with unrolling.
<br><dt><code>-fivopts</code><dd><a name="index-fivopts-731"></a>Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.
<br><dt><code>-ftree-parallelize-loops=n</code><dd><a name="index-ftree_002dparallelize_002dloops-732"></a>Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered. The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g. by memory bandwidth. This option
implies <samp><span class="option">-pthread</span></samp>, and thus is only supported on targets
that have support for <samp><span class="option">-pthread</span></samp>.
<br><dt><code>-ftree-sra</code><dd><a name="index-ftree_002dsra-733"></a>Perform scalar replacement of aggregates. This pass replaces structure
references with scalars to prevent committing structures to memory too
early. This flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-copyrename</code><dd><a name="index-ftree_002dcopyrename-734"></a>Perform copy renaming on trees. This pass attempts to rename compiler
temporaries to other variables at copy locations, usually resulting in
variable names which more closely resemble the original variables. This flag
is enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-ter</code><dd><a name="index-ftree_002dter-735"></a>Perform temporary expression replacement during the SSA->normal phase. Single
use/single def temporaries are replaced at their use location with their
defining expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This is
enabled by default at <samp><span class="option">-O</span></samp> and higher.
<br><dt><code>-ftree-vectorize</code><dd><a name="index-ftree_002dvectorize-736"></a>Perform loop vectorization on trees. This flag is enabled by default at
<samp><span class="option">-O3</span></samp>.
<br><dt><code>-ftree-vect-loop-version</code><dd><a name="index-ftree_002dvect_002dloop_002dversion-737"></a>Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence cannot
be determined at compile time then vectorized and non-vectorized versions of
the loop are generated along with runtime checks for alignment or dependence
to control which version is executed. This option is enabled by default
except at level <samp><span class="option">-Os</span></samp> where it is disabled.
<br><dt><code>-fvect-cost-model</code><dd><a name="index-fvect_002dcost_002dmodel-738"></a>Enable cost model for vectorization.
<br><dt><code>-ftree-vrp</code><dd><a name="index-ftree_002dvrp-739"></a>Perform Value Range Propagation on trees. This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated. This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks. This is
enabled by default at <samp><span class="option">-O2</span></samp> and higher. Null pointer check
elimination is only done if <samp><span class="option">-fdelete-null-pointer-checks</span></samp> is
enabled.
<br><dt><code>-ftracer</code><dd><a name="index-ftracer-740"></a>Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.
<br><dt><code>-funroll-loops</code><dd><a name="index-funroll_002dloops-741"></a>Unroll loops whose number of iterations can be determined at compile
time or upon entry to the loop. <samp><span class="option">-funroll-loops</span></samp> implies
<samp><span class="option">-frerun-cse-after-loop</span></samp>. This option makes code larger,
and may or may not make it run faster.
<br><dt><code>-funroll-all-loops</code><dd><a name="index-funroll_002dall_002dloops-742"></a>Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
<samp><span class="option">-funroll-all-loops</span></samp> implies the same options as
<samp><span class="option">-funroll-loops</span></samp>,
<br><dt><code>-fsplit-ivs-in-unroller</code><dd><a name="index-fsplit_002divs_002din_002dunroller-743"></a>Enables expressing of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration. This breaks
long dependency chains, thus improving efficiency of the scheduling passes.
<p>Combination of <samp><span class="option">-fweb</span></samp> and CSE is often sufficient to obtain the
same effect. However in cases the loop body is more complicated than
a single basic block, this is not reliable. It also does not work at all
on some of the architectures due to restrictions in the CSE pass.
<p>This optimization is enabled by default.
<br><dt><code>-fvariable-expansion-in-unroller</code><dd><a name="index-fvariable_002dexpansion_002din_002dunroller-744"></a>With this option, the compiler will create multiple copies of some
local variables when unrolling a loop which can result in superior code.
<br><dt><code>-fpredictive-commoning</code><dd><a name="index-fpredictive_002dcommoning-745"></a>Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.
<p>This option is enabled at level <samp><span class="option">-O3</span></samp>.
<br><dt><code>-fprefetch-loop-arrays</code><dd><a name="index-fprefetch_002dloop_002darrays-746"></a>If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.
<p>This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.
<p>Disabled at level <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fno-peephole</code><dt><code>-fno-peephole2</code><dd><a name="index-fno_002dpeephole-747"></a><a name="index-fno_002dpeephole2-748"></a>Disable any machine-specific peephole optimizations. The difference
between <samp><span class="option">-fno-peephole</span></samp> and <samp><span class="option">-fno-peephole2</span></samp> is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.
<p><samp><span class="option">-fpeephole</span></samp> is enabled by default.
<samp><span class="option">-fpeephole2</span></samp> enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fno-guess-branch-probability</code><dd><a name="index-fno_002dguess_002dbranch_002dprobability-749"></a>Do not guess branch probabilities using heuristics.
<p>GCC will use heuristics to guess branch probabilities if they are
not provided by profiling feedback (<samp><span class="option">-fprofile-arcs</span></samp>). These
heuristics are based on the control flow graph. If some branch probabilities
are specified by ‘<samp><span class="samp">__builtin_expect</span></samp>’, then the heuristics will be
used to guess branch probabilities for the rest of the control flow graph,
taking the ‘<samp><span class="samp">__builtin_expect</span></samp>’ info into account. The interactions
between the heuristics and ‘<samp><span class="samp">__builtin_expect</span></samp>’ can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of ‘<samp><span class="samp">__builtin_expect</span></samp>’ are easier to understand.
<p>The default is <samp><span class="option">-fguess-branch-probability</span></samp> at levels
<samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-freorder-blocks</code><dd><a name="index-freorder_002dblocks-750"></a>Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-freorder-blocks-and-partition</code><dd><a name="index-freorder_002dblocks_002dand_002dpartition-751"></a>In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and .o files, to improve
paging and cache locality performance.
<p>This optimization is automatically turned off in the presence of
exception handling, for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections.
<br><dt><code>-freorder-functions</code><dd><a name="index-freorder_002dfunctions-752"></a>Reorder functions in the object file in order to
improve code locality. This is implemented by using special
subsections <code>.text.hot</code> for most frequently executed functions and
<code>.text.unlikely</code> for unlikely executed functions. Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.
<p>Also profile feedback must be available in to make this option effective. See
<samp><span class="option">-fprofile-arcs</span></samp> for details.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fstrict-aliasing</code><dd><a name="index-fstrict_002daliasing-753"></a>Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates
optimizations based on the type of expressions. In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For
example, an <code>unsigned int</code> can alias an <code>int</code>, but not a
<code>void*</code> or a <code>double</code>. A character type may alias any other
type.
<p><a name="Type_002dpunning"></a>Pay special attention to code like this:
<pre class="smallexample"> union a_union {
int i;
double d;
};
int f() {
union a_union t;
t.d = 3.0;
return t.i;
}
</pre>
<p>The practice of reading from a different union member than the one most
recently written to (called “type-punning”) is common. Even with
<samp><span class="option">-fstrict-aliasing</span></samp>, type-punning is allowed, provided the memory
is accessed through the union type. So, the code above will work as
expected. See <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>. However, this code might not:
<pre class="smallexample"> int f() {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
}
</pre>
<p>Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
<pre class="smallexample"> int f() {
double d = 3.0;
return ((union a_union *) &d)->i;
}
</pre>
<p>The <samp><span class="option">-fstrict-aliasing</span></samp> option is enabled at levels
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fstrict-overflow</code><dd><a name="index-fstrict_002doverflow-754"></a>Allow the compiler to assume strict signed overflow rules, depending
on the language being compiled. For C (and C++) this means that
overflow when doing arithmetic with signed numbers is undefined, which
means that the compiler may assume that it will not happen. This
permits various optimizations. For example, the compiler will assume
that an expression like <code>i + 10 > i</code> will always be true for
signed <code>i</code>. This assumption is only valid if signed overflow is
undefined, as the expression is false if <code>i + 10</code> overflows when
using twos complement arithmetic. When this option is in effect any
attempt to determine whether an operation on signed numbers will
overflow must be written carefully to not actually involve overflow.
<p>This option also allows the compiler to assume strict pointer
semantics: given a pointer to an object, if adding an offset to that
pointer does not produce a pointer to the same object, the addition is
undefined. This permits the compiler to conclude that <code>p + u >
p</code> is always true for a pointer <code>p</code> and unsigned integer
<code>u</code>. This assumption is only valid because pointer wraparound is
undefined, as the expression is false if <code>p + u</code> overflows using
twos complement arithmetic.
<p>See also the <samp><span class="option">-fwrapv</span></samp> option. Using <samp><span class="option">-fwrapv</span></samp> means
that integer signed overflow is fully defined: it wraps. When
<samp><span class="option">-fwrapv</span></samp> is used, there is no difference between
<samp><span class="option">-fstrict-overflow</span></samp> and <samp><span class="option">-fno-strict-overflow</span></samp> for
integers. With <samp><span class="option">-fwrapv</span></samp> certain types of overflow are
permitted. For example, if the compiler gets an overflow when doing
arithmetic on constants, the overflowed value can still be used with
<samp><span class="option">-fwrapv</span></samp>, but not otherwise.
<p>The <samp><span class="option">-fstrict-overflow</span></samp> option is enabled at levels
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-falign-arrays</code><dd><a name="index-falign_002darrays-755"></a>Set the minimum alignment for array variables to be the largest power
of two less than or equal to their total storage size, or the biggest
alignment used on the machine, whichever is smaller. This option may be
helpful when compiling legacy code that uses type punning on arrays that
does not strictly conform to the C standard.
<br><dt><code>-falign-functions</code><dt><code>-falign-functions=</code><var>n</var><dd><a name="index-falign_002dfunctions-756"></a>Align the start of functions to the next power-of-two greater than
<var>n</var>, skipping up to <var>n</var> bytes. For instance,
<samp><span class="option">-falign-functions=32</span></samp> aligns functions to the next 32-byte
boundary, but <samp><span class="option">-falign-functions=24</span></samp> would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
<p><samp><span class="option">-fno-align-functions</span></samp> and <samp><span class="option">-falign-functions=1</span></samp> are
equivalent and mean that functions will not be aligned.
<p>Some assemblers only support this flag when <var>n</var> is a power of two;
in that case, it is rounded up.
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-falign-labels</code><dt><code>-falign-labels=</code><var>n</var><dd><a name="index-falign_002dlabels-757"></a>Align all branch targets to a power-of-two boundary, skipping up to
<var>n</var> bytes like <samp><span class="option">-falign-functions</span></samp>. This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
<p><samp><span class="option">-fno-align-labels</span></samp> and <samp><span class="option">-falign-labels=1</span></samp> are
equivalent and mean that labels will not be aligned.
<p>If <samp><span class="option">-falign-loops</span></samp> or <samp><span class="option">-falign-jumps</span></samp> are applicable and
are greater than this value, then their values are used instead.
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default
which is very likely to be ‘<samp><span class="samp">1</span></samp>’, meaning no alignment.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-falign-loops</code><dt><code>-falign-loops=</code><var>n</var><dd><a name="index-falign_002dloops-758"></a>Align loops to a power-of-two boundary, skipping up to <var>n</var> bytes
like <samp><span class="option">-falign-functions</span></samp>. The hope is that the loop will be
executed many times, which will make up for any execution of the dummy
operations.
<p><samp><span class="option">-fno-align-loops</span></samp> and <samp><span class="option">-falign-loops=1</span></samp> are
equivalent and mean that loops will not be aligned.
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-falign-jumps</code><dt><code>-falign-jumps=</code><var>n</var><dd><a name="index-falign_002djumps-759"></a>Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to <var>n</var>
bytes like <samp><span class="option">-falign-functions</span></samp>. In this case, no dummy operations
need be executed.
<p><samp><span class="option">-fno-align-jumps</span></samp> and <samp><span class="option">-falign-jumps=1</span></samp> are
equivalent and mean that loops will not be aligned.
<p>If <var>n</var> is not specified or is zero, use a machine-dependent default.
<p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.
<br><dt><code>-funit-at-a-time</code><dd><a name="index-funit_002dat_002da_002dtime-760"></a>This option is left for compatibility reasons. <samp><span class="option">-funit-at-a-time</span></samp>
has no effect, while <samp><span class="option">-fno-unit-at-a-time</span></samp> implies
<samp><span class="option">-fno-toplevel-reorder</span></samp> and <samp><span class="option">-fno-section-anchors</span></samp>.
<p>Enabled by default.
<br><dt><code>-fno-toplevel-reorder</code><dd><a name="index-fno_002dtoplevel_002dreorder-761"></a>Do not reorder top-level functions, variables, and <code>asm</code>
statements. Output them in the same order that they appear in the
input file. When this option is used, unreferenced static variables
will not be removed. This option is intended to support existing code
which relies on a particular ordering. For new code, it is better to
use attributes.
<p>Enabled at level <samp><span class="option">-O0</span></samp>. When disabled explicitly, it also imply
<samp><span class="option">-fno-section-anchors</span></samp> that is otherwise enabled at <samp><span class="option">-O0</span></samp> on some
targets.
<br><dt><code>-fweb</code><dd><a name="index-fweb-762"></a>Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.
<p>Enabled by default with <samp><span class="option">-funroll-loops</span></samp>.
<br><dt><code>-fwhole-program</code><dd><a name="index-fwhole_002dprogram-763"></a>Assume that the current compilation unit represents whole program being
compiled. All public functions and variables with the exception of <code>main</code>
and those merged by attribute <code>externally_visible</code> become static functions
and in a affect gets more aggressively optimized by interprocedural optimizers.
While this option is equivalent to proper use of <code>static</code> keyword for
programs consisting of single file, in combination with option
<samp><span class="option">--combine</span></samp> this flag can be used to compile most of smaller scale C
programs since the functions and variables become local for the whole combined
compilation unit, not for the single source file itself.
<p>This option is not supported for Fortran programs.
<br><dt><code>-fuse-ld=gold</code><dd>Use the <samp><span class="command">gold</span></samp> linker instead of the default linker.
This option is only necessary if GCC has been configured with
<samp><span class="option">--enable-gold=both</span></samp> or <samp><span class="option">--enable-gold=both/ld</span></samp>.
Note: Backported for Debian/Ubuntu from GCC 4.5.
<br><dt><code>-fuse-ld=bfd</code><dd>Use the <samp><span class="command">ld.bfd</span></samp> linker instead of the default linker.
This option is only necessary if GCC has been configured with
<samp><span class="option">--enable-gold=both/gold</span></samp>.
Note: Backported for Debian/Ubuntu from GCC 4.5.
<br><dt><code>-fcprop-registers</code><dd><a name="index-fcprop_002dregisters-764"></a>After register allocation and post-register allocation instruction splitting,
we perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.
<p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.
<br><dt><code>-fprofile-correction</code><dd><a name="index-fprofile_002dcorrection-765"></a>Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC will use heuristics to correct or smooth out such inconsistencies. By
default, GCC will emit an error message when an inconsistent profile is detected.
<br><dt><code>-fprofile-dir=</code><var>path</var><dd><a name="index-fprofile_002ddir-766"></a>
Set the directory to search the profile data files in to <var>path</var>.
This option affects only the profile data generated by
<samp><span class="option">-fprofile-generate</span></samp>, <samp><span class="option">-ftest-coverage</span></samp>, <samp><span class="option">-fprofile-arcs</span></samp>
and used by <samp><span class="option">-fprofile-use</span></samp> and <samp><span class="option">-fbranch-probabilities</span></samp>
and its related options.
By default, GCC will use the current directory as <var>path</var>
thus the profile data file will appear in the same directory as the object file.
<br><dt><code>-fprofile-generate</code><dt><code>-fprofile-generate=</code><var>path</var><dd><a name="index-fprofile_002dgenerate-767"></a>
Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use <samp><span class="option">-fprofile-generate</span></samp> both when
compiling and when linking your program.
<p>The following options are enabled: <code>-fprofile-arcs</code>, <code>-fprofile-values</code>, <code>-fvpt</code>.
<p>If <var>path</var> is specified, GCC will look at the <var>path</var> to find
the profile feedback data files. See <samp><span class="option">-fprofile-dir</span></samp>.
<br><dt><code>-fprofile-use</code><dt><code>-fprofile-use=</code><var>path</var><dd><a name="index-fprofile_002duse-768"></a>Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.
<p>The following options are enabled: <code>-fbranch-probabilities</code>, <code>-fvpt</code>,
<code>-funroll-loops</code>, <code>-fpeel-loops</code>, <code>-ftracer</code>
<p>By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
<samp><span class="option">-Wcoverage-mismatch</span></samp>. Note this may result in poorly optimized
code.
<p>If <var>path</var> is specified, GCC will look at the <var>path</var> to find
the profile feedback data files. See <samp><span class="option">-fprofile-dir</span></samp>.
</dl>
<p>The following options control compiler behavior regarding floating
point arithmetic. These options trade off between speed and
correctness. All must be specifically enabled.
<dl>
<dt><code>-ffloat-store</code><dd><a name="index-ffloat_002dstore-769"></a>Do not store floating point variables in registers, and inhibit other
options that might change whether a floating point value is taken from a
register or memory.
<p><a name="index-floating-point-precision-770"></a>This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a <code>double</code> is supposed to have. Similarly for the
x86 architecture. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point. Use <samp><span class="option">-ffloat-store</span></samp> for such programs, after modifying
them to store all pertinent intermediate computations into variables.
<br><dt><code>-ffast-math</code><dd><a name="index-ffast_002dmath-771"></a>Sets <samp><span class="option">-fno-math-errno</span></samp>, <samp><span class="option">-funsafe-math-optimizations</span></samp>,
<samp><span class="option">-ffinite-math-only</span></samp>, <samp><span class="option">-fno-rounding-math</span></samp>,
<samp><span class="option">-fno-signaling-nans</span></samp> and <samp><span class="option">-fcx-limited-range</span></samp>.
<p>This option causes the preprocessor macro <code>__FAST_MATH__</code> to be defined.
<p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
<br><dt><code>-fno-math-errno</code><dd><a name="index-fno_002dmath_002derrno-772"></a>Do not set ERRNO after calling math functions that are executed
with a single instruction, e.g., sqrt. A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.
<p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
<p>The default is <samp><span class="option">-fmath-errno</span></samp>.
<p>On Darwin systems, the math library never sets <code>errno</code>. There is
therefore no reason for the compiler to consider the possibility that
it might, and <samp><span class="option">-fno-math-errno</span></samp> is the default.
<br><dt><code>-funsafe-math-optimizations</code><dd><a name="index-funsafe_002dmath_002doptimizations-773"></a>
Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards. When used at link-time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.
<p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
Enables <samp><span class="option">-fno-signed-zeros</span></samp>, <samp><span class="option">-fno-trapping-math</span></samp>,
<samp><span class="option">-fassociative-math</span></samp> and <samp><span class="option">-freciprocal-math</span></samp>.
<p>The default is <samp><span class="option">-fno-unsafe-math-optimizations</span></samp>.
<br><dt><code>-fassociative-math</code><dd><a name="index-fassociative_002dmath-774"></a>
Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result. NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on a code which relies on rounding behavior like
<code>(x + 2**52) - 2**52)</code>. May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required.
This option requires that both <samp><span class="option">-fno-signed-zeros</span></samp> and
<samp><span class="option">-fno-trapping-math</span></samp> be in effect. Moreover, it doesn't make
much sense with <samp><span class="option">-frounding-math</span></samp>.
<p>The default is <samp><span class="option">-fno-associative-math</span></samp>.
<br><dt><code>-freciprocal-math</code><dd><a name="index-freciprocal_002dmath-775"></a>
Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations. For example <code>x / y</code>
can be replaced with <code>x * (1/y)</code> which is useful if <code>(1/y)</code>
is subject to common subexpression elimination. Note that this loses
precision and increases the number of flops operating on the value.
<p>The default is <samp><span class="option">-fno-reciprocal-math</span></samp>.
<br><dt><code>-ffinite-math-only</code><dd><a name="index-ffinite_002dmath_002donly-776"></a>Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.
<p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
<p>The default is <samp><span class="option">-fno-finite-math-only</span></samp>.
<br><dt><code>-fno-signed-zeros</code><dd><a name="index-fno_002dsigned_002dzeros-777"></a>Allow optimizations for floating point arithmetic that ignore the
signedness of zero. IEEE arithmetic specifies the behavior of
distinct +0.0 and −0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with <samp><span class="option">-ffinite-math-only</span></samp>).
This option implies that the sign of a zero result isn't significant.
<p>The default is <samp><span class="option">-fsigned-zeros</span></samp>.
<br><dt><code>-fno-trapping-math</code><dd><a name="index-fno_002dtrapping_002dmath-778"></a>Compile code assuming that floating-point operations cannot generate
user-visible traps. These traps include division by zero, overflow,
underflow, inexact result and invalid operation. This option requires
that <samp><span class="option">-fno-signaling-nans</span></samp> be in effect. Setting this option may
allow faster code if one relies on “non-stop” IEEE arithmetic, for example.
<p>This option should never be turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions.
<p>The default is <samp><span class="option">-ftrapping-math</span></samp>.
<br><dt><code>-frounding-math</code><dd><a name="index-frounding_002dmath-779"></a>Disable transformations and optimizations that assume default floating
point rounding behavior. This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations. This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode. This option disables constant folding of
floating point expressions at compile-time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.
<p>The default is <samp><span class="option">-fno-rounding-math</span></samp>.
<p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting
using C99's <code>FENV_ACCESS</code> pragma. This command line option
will be used to specify the default state for <code>FENV_ACCESS</code>.
<br><dt><code>-frtl-abstract-sequences</code><dd><a name="index-frtl_002dabstract_002dsequences-780"></a>It is a size optimization method. This option is to find identical
sequences of code, which can be turned into pseudo-procedures and
then replace all occurrences with calls to the newly created
subroutine. It is kind of an opposite of <samp><span class="option">-finline-functions</span></samp>.
This optimization runs at RTL level.
<br><dt><code>-fsignaling-nans</code><dd><a name="index-fsignaling_002dnans-781"></a>Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs. This option implies <samp><span class="option">-ftrapping-math</span></samp>.
<p>This option causes the preprocessor macro <code>__SUPPORT_SNAN__</code> to
be defined.
<p>The default is <samp><span class="option">-fno-signaling-nans</span></samp>.
<p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.
<br><dt><code>-fsingle-precision-constant</code><dd><a name="index-fsingle_002dprecision_002dconstant-782"></a>Treat floating point constant as single precision constant instead of
implicitly converting it to double precision constant.
<br><dt><code>-fcx-limited-range</code><dd><a name="index-fcx_002dlimited_002drange-783"></a>When enabled, this option states that a range reduction step is not
needed when performing complex division. Also, there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case. The
default is <samp><span class="option">-fno-cx-limited-range</span></samp>, but is enabled by
<samp><span class="option">-ffast-math</span></samp>.
<p>This option controls the default setting of the ISO C99
<code>CX_LIMITED_RANGE</code> pragma. Nevertheless, the option applies to
all languages.
<br><dt><code>-fcx-fortran-rules</code><dd><a name="index-fcx_002dfortran_002drules-784"></a>Complex multiplication and division follow Fortran rules. Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case.
<p>The default is <samp><span class="option">-fno-cx-fortran-rules</span></samp>.
</dl>
<p>The following options control optimizations that may improve
performance, but are not enabled by any <samp><span class="option">-O</span></samp> options. This
section includes experimental options that may produce broken code.
<dl>
<dt><code>-fbranch-probabilities</code><dd><a name="index-fbranch_002dprobabilities-785"></a>After running a program compiled with <samp><span class="option">-fprofile-arcs</span></samp>
(see <a href="#Debugging-Options">Options for Debugging Your Program or <samp><span class="command">gcc</span></samp></a>), you can compile it a second time using
<samp><span class="option">-fbranch-probabilities</span></samp>, to improve optimizations based on
the number of times each branch was taken. When the program
compiled with <samp><span class="option">-fprofile-arcs</span></samp> exits it saves arc execution
counts to a file called <samp><var>sourcename</var><span class="file">.gcda</span></samp> for each source
file. The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.
<p>With <samp><span class="option">-fbranch-probabilities</span></samp>, GCC puts a
‘<samp><span class="samp">REG_BR_PROB</span></samp>’ note on each ‘<samp><span class="samp">JUMP_INSN</span></samp>’ and ‘<samp><span class="samp">CALL_INSN</span></samp>’.
These can be used to improve optimization. Currently, they are only
used in one place: in <samp><span class="file">reorg.c</span></samp>, instead of guessing which path a
branch is mostly to take, the ‘<samp><span class="samp">REG_BR_PROB</span></samp>’ values are used to
exactly determine which path is taken more often.
<br><dt><code>-fprofile-values</code><dd><a name="index-fprofile_002dvalues-786"></a>If combined with <samp><span class="option">-fprofile-arcs</span></samp>, it adds code so that some
data about values of expressions in the program is gathered.
<p>With <samp><span class="option">-fbranch-probabilities</span></samp>, it reads back the data gathered
from profiling values of expressions and adds ‘<samp><span class="samp">REG_VALUE_PROFILE</span></samp>’
notes to instructions for their later usage in optimizations.
<p>Enabled with <samp><span class="option">-fprofile-generate</span></samp> and <samp><span class="option">-fprofile-use</span></samp>.
<br><dt><code>-fvpt</code><dd><a name="index-fvpt-787"></a>If combined with <samp><span class="option">-fprofile-arcs</span></samp>, it instructs the compiler to add
a code to gather information about values of expressions.
<p>With <samp><span class="option">-fbranch-probabilities</span></samp>, it reads back the data gathered
and actually performs the optimizations based on them.
Currently the optimizations include specialization of division operation
using the knowledge about the value of the denominator.
<br><dt><code>-frename-registers</code><dd><a name="index-frename_002dregisters-788"></a>Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation. This optimization
will most benefit processors with lots of registers. Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables will no longer stay in
a “home register”.
<p>Enabled by default with <samp><span class="option">-funroll-loops</span></samp>.
<br><dt><code>-ftracer</code><dd><a name="index-ftracer-789"></a>Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.
<p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.
<br><dt><code>-funroll-loops</code><dd><a name="index-funroll_002dloops-790"></a>Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. <samp><span class="option">-funroll-loops</span></samp> implies
<samp><span class="option">-frerun-cse-after-loop</span></samp>, <samp><span class="option">-fweb</span></samp> and <samp><span class="option">-frename-registers</span></samp>.
It also turns on complete loop peeling (i.e. complete removal of loops with
small constant number of iterations). This option makes code larger, and may
or may not make it run faster.
<p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.
<br><dt><code>-funroll-all-loops</code><dd><a name="index-funroll_002dall_002dloops-791"></a>Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
<samp><span class="option">-funroll-all-loops</span></samp> implies the same options as
<samp><span class="option">-funroll-loops</span></samp>.
<br><dt><code>-fpeel-loops</code><dd><a name="index-fpeel_002dloops-792"></a>Peels the loops for that there is enough information that they do not
roll much (from profile feedback). It also turns on complete loop peeling
(i.e. complete removal of loops with small constant number of iterations).
<p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.
<br><dt><code>-fmove-loop-invariants</code><dd><a name="index-fmove_002dloop_002dinvariants-793"></a>Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
at level <samp><span class="option">-O1</span></samp>
<br><dt><code>-funswitch-loops</code><dd><a name="index-funswitch_002dloops-794"></a>Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).
<br><dt><code>-ffunction-sections</code><dt><code>-fdata-sections</code><dd><a name="index-ffunction_002dsections-795"></a><a name="index-fdata_002dsections-796"></a>Place each function or data item into its own section in the output
file if the target supports arbitrary sections. The name of the
function or the name of the data item determines the section's name
in the output file.
<p>Use these options on systems where the linker can perform optimizations
to improve locality of reference in the instruction space. Most systems
using the ELF object format and SPARC processors running Solaris 2 have
linkers with such optimizations. AIX may have these optimizations in
the future.
<p>Only use these options when there are significant benefits from doing
so. When you specify these options, the assembler and linker will
create larger object and executable files and will also be slower.
You will not be able to use <code>gprof</code> on all systems if you
specify this option and you may have problems with debugging if
you specify both this option and <samp><span class="option">-g</span></samp>.
<br><dt><code>-fbranch-target-load-optimize</code><dd><a name="index-fbranch_002dtarget_002dload_002doptimize-797"></a>Perform branch target register load optimization before prologue / epilogue
threading.
The use of target registers can typically be exposed only during reload,
thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.
<br><dt><code>-fbranch-target-load-optimize2</code><dd><a name="index-fbranch_002dtarget_002dload_002doptimize2-798"></a>Perform branch target register load optimization after prologue / epilogue
threading.
<br><dt><code>-fbtr-bb-exclusive</code><dd><a name="index-fbtr_002dbb_002dexclusive-799"></a>When performing branch target register load optimization, don't reuse
branch target registers in within any basic block.
<br><dt><code>-fstack-protector</code><dd><a name="index-fstack_002dprotector-800"></a>Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call alloca, and
functions with buffers larger than 8 bytes. The guards are initialized
when a function is entered and then checked when the function exits.
If a guard check fails, an error message is printed and the program exits.
<p>NOTE: In Ubuntu 6.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++, if neither <samp><span class="option">-fno-stack-protector</span></samp>
nor <samp><span class="option">-nostdlib</span></samp> are found.
<br><dt><code>-fstack-protector-all</code><dd><a name="index-fstack_002dprotector_002dall-801"></a>Like <samp><span class="option">-fstack-protector</span></samp> except that all functions are protected.
<br><dt><code>-fsection-anchors</code><dd><a name="index-fsection_002danchors-802"></a>Try to reduce the number of symbolic address calculations by using
shared “anchor” symbols to address nearby objects. This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.
<p>For example, the implementation of the following function <code>foo</code>:
<pre class="smallexample"> static int a, b, c;
int foo (void) { return a + b + c; }
</pre>
<p>would usually calculate the addresses of all three variables, but if you
compile it with <samp><span class="option">-fsection-anchors</span></samp>, it will access the variables
from a common anchor point instead. The effect is similar to the
following pseudocode (which isn't valid C):
<pre class="smallexample"> int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
}
</pre>
<p>Not all targets support this option.
<br><dt><code>-fremove-local-statics</code><dd><a name="index-fremove_002dlocal_002dstatics-803"></a>Converts function-local static variables to automatic variables when it
is safe to do so. This transformation can reduce the number of
instructions executed due to automatic variables being cheaper to
read/write than static variables.
<br><dt><code>-fpromote-loop-indices</code><dd><a name="index-fpromote_002dloop_002dindices-804"></a>Converts loop indices that have a type shorter than the word size to
word-sized quantities. This transformation can reduce the overhead
associated with sign/zero-extension and truncation of such variables.
Using <samp><span class="option">-funsafe-loop-optimizations</span></samp> with this option may result
in more effective optimization.
<br><dt><code>--param </code><var>name</var><code>=</code><var>value</var><dd><a name="index-param-805"></a>In some places, GCC uses various constants to control the amount of
optimization that is done. For example, GCC will not inline functions
that contain more that a certain number of instructions. You can
control some of these constants on the command-line using the
<samp><span class="option">--param</span></samp> option.
<p>The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.
<p>In each case, the <var>value</var> is an integer. The allowable choices for
<var>name</var> are given in the following table:
<dl>
<dt><code>sra-max-structure-size</code><dd>The maximum structure size, in bytes, at which the scalar replacement
of aggregates (SRA) optimization will perform block copies. The
default value, 0, implies that GCC will select the most appropriate
size itself.
<br><dt><code>sra-field-structure-ratio</code><dd>The threshold ratio (as a percentage) between instantiated fields and
the complete structure size. We say that if the ratio of the number
of bytes in instantiated fields to the number of bytes in the complete
structure exceeds this parameter, then block copies are not used. The
default is 75.
<br><dt><code>struct-reorg-cold-struct-ratio</code><dd>The threshold ratio (as a percentage) between a structure frequency
and the frequency of the hottest structure in the program. This parameter
is used by struct-reorg optimization enabled by <samp><span class="option">-fipa-struct-reorg</span></samp>.
We say that if the ratio of a structure frequency, calculated by profiling,
to the hottest structure frequency in the program is less than this
parameter, then structure reorganization is not applied to this structure.
The default is 10.
<br><dt><code>predictable-branch-cost-outcome</code><dd>When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable. The default is 10.
<br><dt><code>max-crossjump-edges</code><dd>The maximum number of incoming edges to consider for crossjumping.
The algorithm used by <samp><span class="option">-fcrossjumping</span></samp> is O(N^2) in
the number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compile time increase with
probably small improvement in executable size.
<br><dt><code>min-crossjump-insns</code><dd>The minimum number of instructions which must be matched at the end
of two blocks before crossjumping will be performed on them. This
value is ignored in the case where all instructions in the block being
crossjumped from are matched. The default value is 5.
<br><dt><code>max-grow-copy-bb-insns</code><dd>The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.
<br><dt><code>max-goto-duplication-insns</code><dd>The maximum number of instructions to duplicate to a block that jumps
to a computed goto. To avoid O(N^2) behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible. Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored. The default value is 8.
<br><dt><code>max-delay-slot-insn-search</code><dd>The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions is searched, the time savings from filling the delay slot
will be minimal so stop searching. Increasing values mean more
aggressive optimization, making the compile time increase with probably
small improvement in executable run time.
<br><dt><code>max-delay-slot-live-search</code><dd>When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.
<br><dt><code>max-gcse-memory</code><dd>The approximate maximum amount of memory that will be allocated in
order to perform the global common subexpression elimination
optimization. If more memory than specified is required, the
optimization will not be done.
<br><dt><code>max-gcse-passes</code><dd>The maximum number of passes of GCSE to run. The default is 1.
<br><dt><code>max-pending-list-length</code><dd>The maximum number of pending dependencies scheduling will allow
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.
<br><dt><code>max-inline-insns-single</code><dd>Several parameters control the tree inliner used in gcc.
This number sets the maximum number of instructions (counted in GCC's
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared
inline and methods implemented in a class declaration (C++).
The default value is 450.
<br><dt><code>max-inline-insns-auto</code><dd>When you use <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>),
a lot of functions that would otherwise not be considered for inlining
by the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied.
The default value is 90.
<br><dt><code>large-function-insns</code><dd>The limit specifying really large functions. For functions larger than this
limit after inlining, inlining is constrained by
<samp><span class="option">--param large-function-growth</span></samp>. This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
backend.
The default value is 2700.
<br><dt><code>large-function-growth</code><dd>Specifies maximal growth of large function caused by inlining in percents.
The default value is 100 which limits large function growth to 2.0 times
the original size.
<br><dt><code>large-unit-insns</code><dd>The limit specifying large translation unit. Growth caused by inlining of
units larger than this limit is limited by <samp><span class="option">--param inline-unit-growth</span></samp>.
For small units this might be too tight (consider unit consisting of function A
that is inline and B that just calls A three time. If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlineable functions however the overall unit
growth limit is needed to avoid exponential explosion of code size. Thus for
smaller units, the size is increased to <samp><span class="option">--param large-unit-insns</span></samp>
before applying <samp><span class="option">--param inline-unit-growth</span></samp>. The default is 10000
<br><dt><code>inline-unit-growth</code><dd>Specifies maximal overall growth of the compilation unit caused by inlining.
The default value is 30 which limits unit growth to 1.3 times the original
size.
<br><dt><code>ipcp-unit-growth</code><dd>Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation. The default value is 10 which limits
unit growth to 1.1 times the original size.
<br><dt><code>large-stack-frame</code><dd>The limit specifying large stack frames. While inlining the algorithm is trying
to not grow past this limit too much. Default value is 256 bytes.
<br><dt><code>large-stack-frame-growth</code><dd>Specifies maximal growth of large stack frames caused by inlining in percents.
The default value is 1000 which limits large stack frame growth to 11 times
the original size.
<br><dt><code>max-inline-insns-recursive</code><dt><code>max-inline-insns-recursive-auto</code><dd>Specifies maximum number of instructions out-of-line copy of self recursive inline
function can grow into by performing recursive inlining.
<p>For functions declared inline <samp><span class="option">--param max-inline-insns-recursive</span></samp> is
taken into account. For function not declared inline, recursive inlining
happens only when <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>) is
enabled and <samp><span class="option">--param max-inline-insns-recursive-auto</span></samp> is used. The
default value is 450.
<br><dt><code>max-inline-recursive-depth</code><dt><code>max-inline-recursive-depth-auto</code><dd>Specifies maximum recursion depth used by the recursive inlining.
<p>For functions declared inline <samp><span class="option">--param max-inline-recursive-depth</span></samp> is
taken into account. For function not declared inline, recursive inlining
happens only when <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>) is
enabled and <samp><span class="option">--param max-inline-recursive-depth-auto</span></samp> is used. The
default value is 8.
<br><dt><code>min-inline-recursive-probability</code><dd>Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.
<p>When profile feedback is available (see <samp><span class="option">-fprofile-generate</span></samp>) the actual
recursion depth can be guessed from probability that function will recurse via
given call expression. This parameter limits inlining only to call expression
whose probability exceeds given threshold (in percents). The default value is
10.
<br><dt><code>inline-call-cost</code><dd>Specify cost of call instruction relative to simple arithmetics operations
(having cost of 1). Increasing this cost disqualifies inlining of non-leaf
functions and at the same time increases size of leaf function that is believed to
reduce function size by being inlined. In effect it increases amount of
inlining for code having large abstraction penalty (many functions that just
pass the arguments to other functions) and decrease inlining for code with low
abstraction penalty. The default value is 12.
<br><dt><code>min-vect-loop-bound</code><dd>The minimum number of iterations under which a loop will not get vectorized
when <samp><span class="option">-ftree-vectorize</span></samp> is used. The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization. The default value is 0.
<br><dt><code>max-unrolled-insns</code><dd>The maximum number of instructions that a loop should have if that loop
is unrolled, and if the loop is unrolled, it determines how many times
the loop code is unrolled.
<br><dt><code>max-average-unrolled-insns</code><dd>The maximum number of instructions biased by probabilities of their execution
that a loop should have if that loop is unrolled, and if the loop is unrolled,
it determines how many times the loop code is unrolled.
<br><dt><code>max-unroll-times</code><dd>The maximum number of unrollings of a single loop.
<br><dt><code>max-peeled-insns</code><dd>The maximum number of instructions that a loop should have if that loop
is peeled, and if the loop is peeled, it determines how many times
the loop code is peeled.
<br><dt><code>max-peel-times</code><dd>The maximum number of peelings of a single loop.
<br><dt><code>max-completely-peeled-insns</code><dd>The maximum number of insns of a completely peeled loop.
<br><dt><code>max-completely-peel-times</code><dd>The maximum number of iterations of a loop to be suitable for complete peeling.
<br><dt><code>max-completely-peel-loop-nest-depth</code><dd>The maximum depth of a loop nest suitable for complete peeling.
<br><dt><code>max-unswitch-insns</code><dd>The maximum number of insns of an unswitched loop.
<br><dt><code>max-unswitch-level</code><dd>The maximum number of branches unswitched in a single loop.
<br><dt><code>lim-expensive</code><dd>The minimum cost of an expensive expression in the loop invariant motion.
<br><dt><code>iv-consider-all-candidates-bound</code><dd>Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable
optimizations. Only the most relevant candidates are considered
if there are more candidates, to avoid quadratic time complexity.
<br><dt><code>iv-max-considered-uses</code><dd>The induction variable optimizations give up on loops that contain more
induction variable uses.
<br><dt><code>iv-always-prune-cand-set-bound</code><dd>If number of candidates in the set is smaller than this value,
we always try to remove unnecessary ivs from the set during its
optimization when a new iv is added to the set.
<br><dt><code>scev-max-expr-size</code><dd>Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.
<br><dt><code>omega-max-vars</code><dd>The maximum number of variables in an Omega constraint system.
The default value is 128.
<br><dt><code>omega-max-geqs</code><dd>The maximum number of inequalities in an Omega constraint system.
The default value is 256.
<br><dt><code>omega-max-eqs</code><dd>The maximum number of equalities in an Omega constraint system.
The default value is 128.
<br><dt><code>omega-max-wild-cards</code><dd>The maximum number of wildcard variables that the Omega solver will
be able to insert. The default value is 18.
<br><dt><code>omega-hash-table-size</code><dd>The size of the hash table in the Omega solver. The default value is
550.
<br><dt><code>omega-max-keys</code><dd>The maximal number of keys used by the Omega solver. The default
value is 500.
<br><dt><code>omega-eliminate-redundant-constraints</code><dd>When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.
<br><dt><code>vect-max-version-for-alignment-checks</code><dd>The maximum number of runtime checks that can be performed when
doing loop versioning for alignment in the vectorizer. See option
ftree-vect-loop-version for more information.
<br><dt><code>vect-max-version-for-alias-checks</code><dd>The maximum number of runtime checks that can be performed when
doing loop versioning for alias in the vectorizer. See option
ftree-vect-loop-version for more information.
<br><dt><code>max-iterations-to-track</code><dd>
The maximum number of iterations of a loop the brute force algorithm
for analysis of # of iterations of the loop tries to evaluate.
<br><dt><code>hot-bb-count-fraction</code><dd>Select fraction of the maximal count of repetitions of basic block in program
given basic block needs to have to be considered hot.
<br><dt><code>hot-bb-frequency-fraction</code><dd>Select fraction of the maximal frequency of executions of basic block in
function given basic block needs to have to be considered hot
<br><dt><code>max-predicted-iterations</code><dd>The maximum number of loop iterations we predict statically. This is useful
in cases where function contain single loop with known bound and other loop
with unknown. We predict the known number of iterations correctly, while
the unknown number of iterations average to roughly 10. This means that the
loop without bounds would appear artificially cold relative to the other one.
<br><dt><code>align-threshold</code><dd>
Select fraction of the maximal frequency of executions of basic block in
function given basic block will get aligned.
<br><dt><code>align-loop-iterations</code><dd>
A loop expected to iterate at lest the selected number of iterations will get
aligned.
<br><dt><code>tracer-dynamic-coverage</code><dt><code>tracer-dynamic-coverage-feedback</code><dd>
This value is used to limit superblock formation once the given percentage of
executed instructions is covered. This limits unnecessary code size
expansion.
<p>The <samp><span class="option">tracer-dynamic-coverage-feedback</span></samp> is used only when profile
feedback is available. The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.
<br><dt><code>tracer-max-code-growth</code><dd>Stop tail duplication once code growth has reached given percentage. This is
rather hokey argument, as most of the duplicates will be eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.
<br><dt><code>tracer-min-branch-ratio</code><dd>
Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).
<br><dt><code>tracer-min-branch-ratio</code><dt><code>tracer-min-branch-ratio-feedback</code><dd>
Stop forward growth if the best edge do have probability lower than this
threshold.
<p>Similarly to <samp><span class="option">tracer-dynamic-coverage</span></samp> two values are present, one for
compilation for profile feedback and one for compilation without. The value
for compilation with profile feedback needs to be more conservative (higher) in
order to make tracer effective.
<br><dt><code>max-cse-path-length</code><dd>
Maximum number of basic blocks on path that cse considers. The default is 10.
<br><dt><code>max-cse-insns</code><dd>The maximum instructions CSE process before flushing. The default is 1000.
<br><dt><code>max-aliased-vops</code><dd>
Maximum number of virtual operands per function allowed to represent
aliases before triggering the alias partitioning heuristic. Alias
partitioning reduces compile times and memory consumption needed for
aliasing at the expense of precision loss in alias information. The
default value for this parameter is 100 for -O1, 500 for -O2 and 1000
for -O3.
<p>Notice that if a function contains more memory statements than the
value of this parameter, it is not really possible to achieve this
reduction. In this case, the compiler will use the number of memory
statements as the value for <samp><span class="option">max-aliased-vops</span></samp>.
<br><dt><code>avg-aliased-vops</code><dd>
Average number of virtual operands per statement allowed to represent
aliases before triggering the alias partitioning heuristic. This
works in conjunction with <samp><span class="option">max-aliased-vops</span></samp>. If a function
contains more than <samp><span class="option">max-aliased-vops</span></samp> virtual operators, then
memory symbols will be grouped into memory partitions until either the
total number of virtual operators is below <samp><span class="option">max-aliased-vops</span></samp>
or the average number of virtual operators per memory statement is
below <samp><span class="option">avg-aliased-vops</span></samp>. The default value for this parameter
is 1 for -O1 and -O2, and 3 for -O3.
<br><dt><code>ggc-min-expand</code><dd>
GCC uses a garbage collector to manage its own memory allocation. This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections.
Tuning this may improve compilation speed; it has no effect on code
generation.
<p>The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM >= 1GB. If <code>getrlimit</code> is available, the notion of "RAM" is
the smallest of actual RAM and <code>RLIMIT_DATA</code> or <code>RLIMIT_AS</code>. If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used. Setting this parameter and
<samp><span class="option">ggc-min-heapsize</span></samp> to zero causes a full collection to occur at
every opportunity. This is extremely slow, but can be useful for
debugging.
<br><dt><code>ggc-min-heapsize</code><dd>
Minimum size of the garbage collector's heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands
by <samp><span class="option">ggc-min-expand</span></samp>% beyond <samp><span class="option">ggc-min-heapsize</span></samp>. Again,
tuning this may improve compilation speed, and has no effect on code
generation.
<p>The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes). If GCC is not able to calculate RAM on a
particular platform, the lower bound is used. Setting this parameter
very large effectively disables garbage collection. Setting this
parameter and <samp><span class="option">ggc-min-expand</span></samp> to zero causes a full collection
to occur at every opportunity.
<br><dt><code>max-reload-search-insns</code><dd>The maximum number of instruction reload should look backward for equivalent
register. Increasing values mean more aggressive optimization, making the
compile time increase with probably slightly better performance. The default
value is 100.
<br><dt><code>max-cselib-memory-locations</code><dd>The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the compile time
increase with probably slightly better performance. The default value is 500.
<br><dt><code>reorder-blocks-duplicate</code><dt><code>reorder-blocks-duplicate-feedback</code><dd>
Used by basic block reordering pass to decide whether to use unconditional
branch or duplicate the code on its destination. Code is duplicated when its
estimated size is smaller than this value multiplied by the estimated size of
unconditional jump in the hot spots of the program.
<p>The <samp><span class="option">reorder-block-duplicate-feedback</span></samp> is used only when profile
feedback is available and may be set to higher values than
<samp><span class="option">reorder-block-duplicate</span></samp> since information about the hot spots is more
accurate.
<br><dt><code>max-sched-ready-insns</code><dd>The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass. Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit. The default value is 100.
<br><dt><code>max-sched-region-blocks</code><dd>The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.
<br><dt><code>max-pipeline-region-blocks</code><dd>The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.
<br><dt><code>max-sched-region-insns</code><dd>The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.
<br><dt><code>max-pipeline-region-insns</code><dd>The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.
<br><dt><code>min-spec-prob</code><dd>The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.
<br><dt><code>max-sched-extend-regions-iters</code><dd>The maximum number of iterations through CFG to extend regions.
0 - disable region extension,
N - do at most N iterations.
The default value is 0.
<br><dt><code>max-sched-insn-conflict-delay</code><dd>The maximum conflict delay for an insn to be considered for speculative motion.
The default value is 3.
<br><dt><code>sched-spec-prob-cutoff</code><dd>The minimal probability of speculation success (in percents), so that
speculative insn will be scheduled.
The default value is 40.
<br><dt><code>sched-mem-true-dep-cost</code><dd>Minimal distance (in CPU cycles) between store and load targeting same
memory locations. The default value is 1.
<br><dt><code>selsched-max-lookahead</code><dd>The maximum size of the lookahead window of selective scheduling. It is a
depth of search for available instructions.
The default value is 50.
<br><dt><code>selsched-max-sched-times</code><dd>The maximum number of times that an instruction will be scheduled during
selective scheduling. This is the limit on the number of iterations
through which the instruction may be pipelined. The default value is 2.
<br><dt><code>selsched-max-insns-to-rename</code><dd>The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler. The default value is 2.
<br><dt><code>max-last-value-rtl</code><dd>The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register. The default
is 10000.
<br><dt><code>integer-share-limit</code><dd>Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed. This sets the maximum
value of a shared integer constant. The default value is 256.
<br><dt><code>min-virtual-mappings</code><dd>Specifies the minimum number of virtual mappings in the incremental
SSA updater that should be registered to trigger the virtual mappings
heuristic defined by virtual-mappings-ratio. The default value is
100.
<br><dt><code>virtual-mappings-ratio</code><dd>If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incremental
SSA updater switches to a full update for those symbols. The default
ratio is 3.
<br><dt><code>ssp-buffer-size</code><dd>The minimum size of buffers (i.e. arrays) that will receive stack smashing
protection when <samp><span class="option">-fstack-protection</span></samp> is used.
<br><dt><code>max-jump-thread-duplication-stmts</code><dd>Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.
<br><dt><code>max-fields-for-field-sensitive</code><dd>Maximum number of fields in a structure we will treat in
a field sensitive manner during pointer analysis. The default is zero
for -O0, and -O1 and 100 for -Os, -O2, and -O3.
<br><dt><code>prefetch-latency</code><dd>Estimate on average number of instructions that are executed before
prefetch finishes. The distance we prefetch ahead is proportional
to this constant. Increasing this number may also lead to less
streams being prefetched (see <samp><span class="option">simultaneous-prefetches</span></samp>).
<br><dt><code>simultaneous-prefetches</code><dd>Maximum number of prefetches that can run at the same time.
<br><dt><code>l1-cache-line-size</code><dd>The size of cache line in L1 cache, in bytes.
<br><dt><code>l1-cache-size</code><dd>The size of L1 cache, in kilobytes.
<br><dt><code>l2-cache-size</code><dd>The size of L2 cache, in kilobytes.
<br><dt><code>use-canonical-types</code><dd>Whether the compiler should use the “canonical” type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.
<br><dt><code>switch-conversion-max-branch-ratio</code><dd>Switch initialization conversion will refuse to create arrays that are
bigger than <samp><span class="option">switch-conversion-max-branch-ratio</span></samp> times the number of
branches in the switch.
<br><dt><code>max-partial-antic-length</code><dd>Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (<samp><span class="option">-ftree-pre</span></samp>) when
optimizing at <samp><span class="option">-O3</span></samp> and above. For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for
this parameter will allow an unlimited set length.
<br><dt><code>sccvn-max-scc-size</code><dd>Maximum size of a strongly connected component (SCC) during SCCVN
processing. If this limit is hit, SCCVN processing for the whole
function will not be done and optimizations depending on it will
be disabled. The default maximum SCC size is 10000.
<br><dt><code>ira-max-loops-num</code><dd>IRA uses a regional register allocation by default. If a function
contains loops more than number given by the parameter, only at most
given number of the most frequently executed loops will form regions
for the regional register allocation. The default value of the
parameter is 100.
<br><dt><code>ira-max-conflict-table-size</code><dd>Although IRA uses a sophisticated algorithm of compression conflict
table, the table can be still big for huge functions. If the conflict
table for a function could be more than size in MB given by the
parameter, the conflict table is not built and faster, simpler, and
lower quality register allocation algorithm will be used. The
algorithm do not use pseudo-register conflicts. The default value of
the parameter is 2000.
<br><dt><code>loop-invariant-max-bbs-in-loop</code><dd>Loop invariant motion can be very expensive, both in compile time and
in amount of needed compile time memory, with very large loops. Loops
with more basic blocks than this parameter won't have loop invariant
motion optimization performed on them. The default value of the
parameter is 1000 for -O1 and 10000 for -O2 and above.
</dl>
</dl>
<div class="node">
<a name="Preprocessor-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Assembler-Options">Assembler Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Optimize-Options">Optimize Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.11 Options Controlling the Preprocessor</h3>
<p><a name="index-preprocessor-options-806"></a><a name="index-options_002c-preprocessor-807"></a>
These options control the C preprocessor, which is run on each C source
file before actual compilation.
<p>If you use the <samp><span class="option">-E</span></samp> option, nothing is done except preprocessing.
Some of these options make sense only together with <samp><span class="option">-E</span></samp> because
they cause the preprocessor output to be unsuitable for actual
compilation.
<dl>
<dt><code>-Wp,</code><var>option</var><dd><a name="index-Wp-808"></a>You can use <samp><span class="option">-Wp,</span><var>option</var></samp> to bypass the compiler driver
and pass <var>option</var> directly through to the preprocessor. If
<var>option</var> contains commas, it is split into multiple options at the
commas. However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
<samp><span class="option">-Wp</span></samp> forcibly bypasses this phase. The preprocessor's direct
interface is undocumented and subject to change, so whenever possible
you should avoid using <samp><span class="option">-Wp</span></samp> and let the driver handle the
options instead.
<br><dt><code>-Xpreprocessor </code><var>option</var><dd><a name="index-Xpreprocessor-809"></a>Pass <var>option</var> as an option to the preprocessor. You can use this to
supply system-specific preprocessor options which GCC does not know how to
recognize.
<p>If you want to pass an option that takes an argument, you must use
<samp><span class="option">-Xpreprocessor</span></samp> twice, once for the option and once for the argument.
</dl>
<!-- Copyright (c) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the CPP and GCC manuals. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- Options affecting the preprocessor -->
<!-- -->
<!-- If this file is included with the flag ``cppmanual'' set, it is -->
<!-- formatted for inclusion in the CPP manual; otherwise the main GCC manual. -->
<dl>
<dt><code>-D </code><var>name</var><dd><a name="index-D-810"></a>Predefine <var>name</var> as a macro, with definition <code>1</code>.
<br><dt><code>-D </code><var>name</var><code>=</code><var>definition</var><dd>The contents of <var>definition</var> are tokenized and processed as if
they appeared during translation phase three in a ‘<samp><span class="samp">#define</span></samp>’
directive. In particular, the definition will be truncated by
embedded newline characters.
<p>If you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell's quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax.
<p>If you wish to define a function-like macro on the command line, write
its argument list with surrounding parentheses before the equals sign
(if any). Parentheses are meaningful to most shells, so you will need
to quote the option. With <samp><span class="command">sh</span></samp> and <samp><span class="command">csh</span></samp>,
<samp><span class="option">-D'</span><var>name</var><span class="option">(</span><var>args<small class="dots">...</small></var><span class="option">)=</span><var>definition</var><span class="option">'</span></samp> works.
<p><samp><span class="option">-D</span></samp> and <samp><span class="option">-U</span></samp> options are processed in the order they
are given on the command line. All <samp><span class="option">-imacros </span><var>file</var></samp> and
<samp><span class="option">-include </span><var>file</var></samp> options are processed after all
<samp><span class="option">-D</span></samp> and <samp><span class="option">-U</span></samp> options.
<br><dt><code>-U </code><var>name</var><dd><a name="index-U-811"></a>Cancel any previous definition of <var>name</var>, either built in or
provided with a <samp><span class="option">-D</span></samp> option.
<br><dt><code>-undef</code><dd><a name="index-undef-812"></a>Do not predefine any system-specific or GCC-specific macros. The
standard predefined macros remain defined.
<br><dt><code>-I </code><var>dir</var><dd><a name="index-I-813"></a>Add the directory <var>dir</var> to the list of directories to be searched
for header files.
Directories named by <samp><span class="option">-I</span></samp> are searched before the standard
system include directories. If the directory <var>dir</var> is a standard
system include directory, the option is ignored to ensure that the
default search order for system directories and the special treatment
of system headers are not defeated
.
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.
<br><dt><code>-o </code><var>file</var><dd><a name="index-o-814"></a>Write output to <var>file</var>. This is the same as specifying <var>file</var>
as the second non-option argument to <samp><span class="command">cpp</span></samp>. <samp><span class="command">gcc</span></samp> has a
different interpretation of a second non-option argument, so you must
use <samp><span class="option">-o</span></samp> to specify the output file.
<br><dt><code>-Wall</code><dd><a name="index-Wall-815"></a>Turns on all optional warnings which are desirable for normal code.
At present this is <samp><span class="option">-Wcomment</span></samp>, <samp><span class="option">-Wtrigraphs</span></samp>,
<samp><span class="option">-Wmultichar</span></samp> and a warning about integer promotion causing a
change of sign in <code>#if</code> expressions. Note that many of the
preprocessor's warnings are on by default and have no options to
control them.
<br><dt><code>-Wcomment</code><dt><code>-Wcomments</code><dd><a name="index-Wcomment-816"></a><a name="index-Wcomments-817"></a>Warn whenever a comment-start sequence ‘<samp><span class="samp">/*</span></samp>’ appears in a ‘<samp><span class="samp">/*</span></samp>’
comment, or whenever a backslash-newline appears in a ‘<samp><span class="samp">//</span></samp>’ comment.
(Both forms have the same effect.)
<br><dt><code>-Wtrigraphs</code><dd><a name="index-Wtrigraphs-818"></a><a name="Wtrigraphs"></a>Most trigraphs in comments cannot affect the meaning of the program.
However, a trigraph that would form an escaped newline (‘<samp><span class="samp">??/</span></samp>’ at
the end of a line) can, by changing where the comment begins or ends.
Therefore, only trigraphs that would form escaped newlines produce
warnings inside a comment.
<p>This option is implied by <samp><span class="option">-Wall</span></samp>. If <samp><span class="option">-Wall</span></samp> is not
given, this option is still enabled unless trigraphs are enabled. To
get trigraph conversion without warnings, but get the other
<samp><span class="option">-Wall</span></samp> warnings, use ‘<samp><span class="samp">-trigraphs -Wall -Wno-trigraphs</span></samp>’.
<br><dt><code>-Wtraditional</code><dd><a name="index-Wtraditional-819"></a>Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and problematic constructs which should be avoided.
<br><dt><code>-Wundef</code><dd><a name="index-Wundef-820"></a>Warn whenever an identifier which is not a macro is encountered in an
‘<samp><span class="samp">#if</span></samp>’ directive, outside of ‘<samp><span class="samp">defined</span></samp>’. Such identifiers are
replaced with zero.
<br><dt><code>-Wunused-macros</code><dd><a name="index-Wunused_002dmacros-821"></a>Warn about macros defined in the main file that are unused. A macro
is <dfn>used</dfn> if it is expanded or tested for existence at least once.
The preprocessor will also warn if the macro has not been used at the
time it is redefined or undefined.
<p>Built-in macros, macros defined on the command line, and macros
defined in include files are not warned about.
<p><em>Note:</em> If a macro is actually used, but only used in skipped
conditional blocks, then CPP will report it as unused. To avoid the
warning in such a case, you might improve the scope of the macro's
definition by, for example, moving it into the first skipped block.
Alternatively, you could provide a dummy use with something like:
<pre class="smallexample"> #if defined the_macro_causing_the_warning
#endif
</pre>
<br><dt><code>-Wendif-labels</code><dd><a name="index-Wendif_002dlabels-822"></a>Warn whenever an ‘<samp><span class="samp">#else</span></samp>’ or an ‘<samp><span class="samp">#endif</span></samp>’ are followed by text.
This usually happens in code of the form
<pre class="smallexample"> #if FOO
...
#else FOO
...
#endif FOO
</pre>
<p class="noindent">The second and third <code>FOO</code> should be in comments, but often are not
in older programs. This warning is on by default.
<br><dt><code>-Werror</code><dd><a name="index-Werror-823"></a>Make all warnings into hard errors. Source code which triggers warnings
will be rejected.
<br><dt><code>-Wsystem-headers</code><dd><a name="index-Wsystem_002dheaders-824"></a>Issue warnings for code in system headers. These are normally unhelpful
in finding bugs in your own code, therefore suppressed. If you are
responsible for the system library, you may want to see them.
<br><dt><code>-w</code><dd><a name="index-w-825"></a>Suppress all warnings, including those which GNU CPP issues by default.
<br><dt><code>-pedantic</code><dd><a name="index-pedantic-826"></a>Issue all the mandatory diagnostics listed in the C standard. Some of
them are left out by default, since they trigger frequently on harmless
code.
<br><dt><code>-pedantic-errors</code><dd><a name="index-pedantic_002derrors-827"></a>Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues
without ‘<samp><span class="samp">-pedantic</span></samp>’ but treats as warnings.
<br><dt><code>-M</code><dd><a name="index-M-828"></a><a name="index-make-829"></a><a name="index-dependencies_002c-make-830"></a>Instead of outputting the result of preprocessing, output a rule
suitable for <samp><span class="command">make</span></samp> describing the dependencies of the main
source file. The preprocessor outputs one <samp><span class="command">make</span></samp> rule containing
the object file name for that source file, a colon, and the names of all
the included files, including those coming from <samp><span class="option">-include</span></samp> or
<samp><span class="option">-imacros</span></samp> command line options.
<p>Unless specified explicitly (with <samp><span class="option">-MT</span></samp> or <samp><span class="option">-MQ</span></samp>), the
object file name consists of the name of the source file with any
suffix replaced with object file suffix and with any leading directory
parts removed. If there are many included files then the rule is
split into several lines using ‘<samp><span class="samp">\</span></samp>’-newline. The rule has no
commands.
<p>This option does not suppress the preprocessor's debug output, such as
<samp><span class="option">-dM</span></samp>. To avoid mixing such debug output with the dependency
rules you should explicitly specify the dependency output file with
<samp><span class="option">-MF</span></samp>, or use an environment variable like
<samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> (see <a href="#Environment-Variables">Environment Variables</a>). Debug output
will still be sent to the regular output stream as normal.
<p>Passing <samp><span class="option">-M</span></samp> to the driver implies <samp><span class="option">-E</span></samp>, and suppresses
warnings with an implicit <samp><span class="option">-w</span></samp>.
<br><dt><code>-MM</code><dd><a name="index-MM-831"></a>Like <samp><span class="option">-M</span></samp> but do not mention header files that are found in
system header directories, nor header files that are included,
directly or indirectly, from such a header.
<p>This implies that the choice of angle brackets or double quotes in an
‘<samp><span class="samp">#include</span></samp>’ directive does not in itself determine whether that
header will appear in <samp><span class="option">-MM</span></samp> dependency output. This is a
slight change in semantics from GCC versions 3.0 and earlier.
<p><a name="dashMF"></a><br><dt><code>-MF </code><var>file</var><dd><a name="index-MF-832"></a>When used with <samp><span class="option">-M</span></samp> or <samp><span class="option">-MM</span></samp>, specifies a
file to write the dependencies to. If no <samp><span class="option">-MF</span></samp> switch is given
the preprocessor sends the rules to the same place it would have sent
preprocessed output.
<p>When used with the driver options <samp><span class="option">-MD</span></samp> or <samp><span class="option">-MMD</span></samp>,
<samp><span class="option">-MF</span></samp> overrides the default dependency output file.
<br><dt><code>-MG</code><dd><a name="index-MG-833"></a>In conjunction with an option such as <samp><span class="option">-M</span></samp> requesting
dependency generation, <samp><span class="option">-MG</span></samp> assumes missing header files are
generated files and adds them to the dependency list without raising
an error. The dependency filename is taken directly from the
<code>#include</code> directive without prepending any path. <samp><span class="option">-MG</span></samp>
also suppresses preprocessed output, as a missing header file renders
this useless.
<p>This feature is used in automatic updating of makefiles.
<br><dt><code>-MP</code><dd><a name="index-MP-834"></a>This option instructs CPP to add a phony target for each dependency
other than the main file, causing each to depend on nothing. These
dummy rules work around errors <samp><span class="command">make</span></samp> gives if you remove header
files without updating the <samp><span class="file">Makefile</span></samp> to match.
<p>This is typical output:
<pre class="smallexample"> test.o: test.c test.h
test.h:
</pre>
<br><dt><code>-MT </code><var>target</var><dd><a name="index-MT-835"></a>
Change the target of the rule emitted by dependency generation. By
default CPP takes the name of the main input file, deletes any
directory components and any file suffix such as ‘<samp><span class="samp">.c</span></samp>’, and
appends the platform's usual object suffix. The result is the target.
<p>An <samp><span class="option">-MT</span></samp> option will set the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a single
argument to <samp><span class="option">-MT</span></samp>, or use multiple <samp><span class="option">-MT</span></samp> options.
<p>For example, <samp><span class="option">-MT '$(objpfx)foo.o'<!-- /@w --></span></samp> might give
<pre class="smallexample"> $(objpfx)foo.o: foo.c
</pre>
<br><dt><code>-MQ </code><var>target</var><dd><a name="index-MQ-836"></a>
Same as <samp><span class="option">-MT</span></samp>, but it quotes any characters which are special to
Make. <samp><span class="option">-MQ '$(objpfx)foo.o'<!-- /@w --></span></samp> gives
<pre class="smallexample"> $$(objpfx)foo.o: foo.c
</pre>
<p>The default target is automatically quoted, as if it were given with
<samp><span class="option">-MQ</span></samp>.
<br><dt><code>-MD</code><dd><a name="index-MD-837"></a><samp><span class="option">-MD</span></samp> is equivalent to <samp><span class="option">-M -MF </span><var>file</var></samp>, except that
<samp><span class="option">-E</span></samp> is not implied. The driver determines <var>file</var> based on
whether an <samp><span class="option">-o</span></samp> option is given. If it is, the driver uses its
argument but with a suffix of <samp><span class="file">.d</span></samp>, otherwise it takes the name
of the input file, removes any directory components and suffix, and
applies a <samp><span class="file">.d</span></samp> suffix.
<p>If <samp><span class="option">-MD</span></samp> is used in conjunction with <samp><span class="option">-E</span></samp>, any
<samp><span class="option">-o</span></samp> switch is understood to specify the dependency output file
(see <a href="#dashMF">-MF</a>), but if used without <samp><span class="option">-E</span></samp>, each <samp><span class="option">-o</span></samp>
is understood to specify a target object file.
<p>Since <samp><span class="option">-E</span></samp> is not implied, <samp><span class="option">-MD</span></samp> can be used to generate
a dependency output file as a side-effect of the compilation process.
<br><dt><code>-MMD</code><dd><a name="index-MMD-838"></a>Like <samp><span class="option">-MD</span></samp> except mention only user header files, not system
header files.
<br><dt><code>-fpch-deps</code><dd><a name="index-fpch_002ddeps-839"></a>When using precompiled headers (see <a href="#Precompiled-Headers">Precompiled Headers</a>), this flag
will cause the dependency-output flags to also list the files from the
precompiled header's dependencies. If not specified only the
precompiled header would be listed and not the files that were used to
create it because those files are not consulted when a precompiled
header is used.
<br><dt><code>-fpch-preprocess</code><dd><a name="index-fpch_002dpreprocess-840"></a>This option allows use of a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) together with <samp><span class="option">-E</span></samp>. It inserts a special <code>#pragma</code>,
<code>#pragma GCC pch_preprocess "<filename>"</code> in the output to mark
the place where the precompiled header was found, and its filename. When
<samp><span class="option">-fpreprocessed</span></samp> is in use, GCC recognizes this <code>#pragma</code> and
loads the PCH.
<p>This option is off by default, because the resulting preprocessed output
is only really suitable as input to GCC. It is switched on by
<samp><span class="option">-save-temps</span></samp>.
<p>You should not write this <code>#pragma</code> in your own code, but it is
safe to edit the filename if the PCH file is available in a different
location. The filename may be absolute or it may be relative to GCC's
current directory.
<br><dt><code>-x c</code><dt><code>-x c++</code><dt><code>-x objective-c</code><dt><code>-x assembler-with-cpp</code><dd><a name="index-x-841"></a>Specify the source language: C, C++, Objective-C, or assembly. This has
nothing to do with standards conformance or extensions; it merely
selects which base syntax to expect. If you give none of these options,
cpp will deduce the language from the extension of the source file:
‘<samp><span class="samp">.c</span></samp>’, ‘<samp><span class="samp">.cc</span></samp>’, ‘<samp><span class="samp">.m</span></samp>’, or ‘<samp><span class="samp">.S</span></samp>’. Some other common
extensions for C++ and assembly are also recognized. If cpp does not
recognize the extension, it will treat the file as C; this is the most
generic mode.
<p><em>Note:</em> Previous versions of cpp accepted a <samp><span class="option">-lang</span></samp> option
which selected both the language and the standards conformance level.
This option has been removed, because it conflicts with the <samp><span class="option">-l</span></samp>
option.
<br><dt><code>-std=</code><var>standard</var><dt><code>-ansi</code><dd><a name="index-ansi-842"></a><a name="index-std_003d-843"></a>Specify the standard to which the code should conform. Currently CPP
knows about C and C++ standards; others may be added in the future.
<p><var>standard</var>
may be one of:
<dl>
<dt><code>iso9899:1990</code><dt><code>c89</code><dd>The ISO C standard from 1990. ‘<samp><span class="samp">c89</span></samp>’ is the customary shorthand for
this version of the standard.
<p>The <samp><span class="option">-ansi</span></samp> option is equivalent to <samp><span class="option">-std=c89</span></samp>.
<br><dt><code>iso9899:199409</code><dd>The 1990 C standard, as amended in 1994.
<br><dt><code>iso9899:1999</code><dt><code>c99</code><dt><code>iso9899:199x</code><dt><code>c9x</code><dd>The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.
<br><dt><code>gnu89</code><dd>The 1990 C standard plus GNU extensions. This is the default.
<br><dt><code>gnu99</code><dt><code>gnu9x</code><dd>The 1999 C standard plus GNU extensions.
<br><dt><code>c++98</code><dd>The 1998 ISO C++ standard plus amendments.
<br><dt><code>gnu++98</code><dd>The same as <samp><span class="option">-std=c++98</span></samp> plus GNU extensions. This is the
default for C++ code.
</dl>
<br><dt><code>-I-</code><dd><a name="index-I_002d-844"></a>Split the include path. Any directories specified with <samp><span class="option">-I</span></samp>
options before <samp><span class="option">-I-</span></samp> are searched only for headers requested with
<code>#include "</code><var>file</var><code>"<!-- /@w --></code>; they are not searched for
<code>#include <</code><var>file</var><code>><!-- /@w --></code>. If additional directories are
specified with <samp><span class="option">-I</span></samp> options after the <samp><span class="option">-I-</span></samp>, those
directories are searched for all ‘<samp><span class="samp">#include</span></samp>’ directives.
<p>In addition, <samp><span class="option">-I-</span></samp> inhibits the use of the directory of the current
file directory as the first search directory for <code>#include "</code><var>file</var><code>"<!-- /@w --></code>.
This option has been deprecated.
<br><dt><code>-nostdinc</code><dd><a name="index-nostdinc-845"></a>Do not search the standard system directories for header files.
Only the directories you have specified with <samp><span class="option">-I</span></samp> options
(and the directory of the current file, if appropriate) are searched.
<br><dt><code>-nostdinc++</code><dd><a name="index-nostdinc_002b_002b-846"></a>Do not search for header files in the C++-specific standard directories,
but do still search the other standard directories. (This option is
used when building the C++ library.)
<br><dt><code>-include </code><var>file</var><dd><a name="index-include-847"></a>Process <var>file</var> as if <code>#include "file"</code> appeared as the first
line of the primary source file. However, the first directory searched
for <var>file</var> is the preprocessor's working directory <em>instead of</em>
the directory containing the main source file. If not found there, it
is searched for in the remainder of the <code>#include "..."</code> search
chain as normal.
<p>If multiple <samp><span class="option">-include</span></samp> options are given, the files are included
in the order they appear on the command line.
<br><dt><code>-imacros </code><var>file</var><dd><a name="index-imacros-848"></a>Exactly like <samp><span class="option">-include</span></samp>, except that any output produced by
scanning <var>file</var> is thrown away. Macros it defines remain defined.
This allows you to acquire all the macros from a header without also
processing its declarations.
<p>All files specified by <samp><span class="option">-imacros</span></samp> are processed before all files
specified by <samp><span class="option">-include</span></samp>.
<br><dt><code>-idirafter </code><var>dir</var><dd><a name="index-idirafter-849"></a>Search <var>dir</var> for header files, but do it <em>after</em> all
directories specified with <samp><span class="option">-I</span></samp> and the standard system directories
have been exhausted. <var>dir</var> is treated as a system include directory.
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.
<br><dt><code>-iprefix </code><var>prefix</var><dd><a name="index-iprefix-850"></a>Specify <var>prefix</var> as the prefix for subsequent <samp><span class="option">-iwithprefix</span></samp>
options. If the prefix represents a directory, you should include the
final ‘<samp><span class="samp">/</span></samp>’.
<br><dt><code>-iwithprefix </code><var>dir</var><dt><code>-iwithprefixbefore </code><var>dir</var><dd><a name="index-iwithprefix-851"></a><a name="index-iwithprefixbefore-852"></a>Append <var>dir</var> to the prefix specified previously with
<samp><span class="option">-iprefix</span></samp>, and add the resulting directory to the include search
path. <samp><span class="option">-iwithprefixbefore</span></samp> puts it in the same place <samp><span class="option">-I</span></samp>
would; <samp><span class="option">-iwithprefix</span></samp> puts it where <samp><span class="option">-idirafter</span></samp> would.
<br><dt><code>-isysroot </code><var>dir</var><dd><a name="index-isysroot-853"></a>This option is like the <samp><span class="option">--sysroot</span></samp> option, but applies only to
header files. See the <samp><span class="option">--sysroot</span></samp> option for more information.
<br><dt><code>-imultilib </code><var>dir</var><dd><a name="index-imultilib-854"></a>Use <var>dir</var> as a subdirectory of the directory containing
target-specific C++ headers.
<br><dt><code>-isystem </code><var>dir</var><dd><a name="index-isystem-855"></a>Search <var>dir</var> for header files, after all directories specified by
<samp><span class="option">-I</span></samp> but before the standard system directories. Mark it
as a system directory, so that it gets the same special treatment as
is applied to the standard system directories.
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.
<br><dt><code>-iquote </code><var>dir</var><dd><a name="index-iquote-856"></a>Search <var>dir</var> only for header files requested with
<code>#include "</code><var>file</var><code>"<!-- /@w --></code>; they are not searched for
<code>#include <</code><var>file</var><code>><!-- /@w --></code>, before all directories specified by
<samp><span class="option">-I</span></samp> and before the standard system directories.
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.
<br><dt><code>-fdirectives-only</code><dd><a name="index-fdirectives_002donly-857"></a>When preprocessing, handle directives, but do not expand macros.
<p>The option's behavior depends on the <samp><span class="option">-E</span></samp> and <samp><span class="option">-fpreprocessed</span></samp>
options.
<p>With <samp><span class="option">-E</span></samp>, preprocessing is limited to the handling of directives
such as <code>#define</code>, <code>#ifdef</code>, and <code>#error</code>. Other
preprocessor operations, such as macro expansion and trigraph
conversion are not performed. In addition, the <samp><span class="option">-dD</span></samp> option is
implicitly enabled.
<p>With <samp><span class="option">-fpreprocessed</span></samp>, predefinition of command line and most
builtin macros is disabled. Macros such as <code>__LINE__</code>, which are
contextually dependent, are handled normally. This enables compilation of
files previously preprocessed with <code>-E -fdirectives-only</code>.
<p>With both <samp><span class="option">-E</span></samp> and <samp><span class="option">-fpreprocessed</span></samp>, the rules for
<samp><span class="option">-fpreprocessed</span></samp> take precedence. This enables full preprocessing of
files previously preprocessed with <code>-E -fdirectives-only</code>.
<br><dt><code>-fdollars-in-identifiers</code><dd><a name="index-fdollars_002din_002didentifiers-858"></a><a name="fdollars_002din_002didentifiers"></a>Accept ‘<samp><span class="samp">$</span></samp>’ in identifiers.
<br><dt><code>-fextended-identifiers</code><dd><a name="index-fextended_002didentifiers-859"></a>Accept universal character names in identifiers. This option is
experimental; in a future version of GCC, it will be enabled by
default for C99 and C++.
<br><dt><code>-fpreprocessed</code><dd><a name="index-fpreprocessed-860"></a>Indicate to the preprocessor that the input file has already been
preprocessed. This suppresses things like macro expansion, trigraph
conversion, escaped newline splicing, and processing of most directives.
The preprocessor still recognizes and removes comments, so that you can
pass a file preprocessed with <samp><span class="option">-C</span></samp> to the compiler without
problems. In this mode the integrated preprocessor is little more than
a tokenizer for the front ends.
<p><samp><span class="option">-fpreprocessed</span></samp> is implicit if the input file has one of the
extensions ‘<samp><span class="samp">.i</span></samp>’, ‘<samp><span class="samp">.ii</span></samp>’ or ‘<samp><span class="samp">.mi</span></samp>’. These are the
extensions that GCC uses for preprocessed files created by
<samp><span class="option">-save-temps</span></samp>.
<br><dt><code>-ftabstop=</code><var>width</var><dd><a name="index-ftabstop-861"></a>Set the distance between tab stops. This helps the preprocessor report
correct column numbers in warnings or errors, even if tabs appear on the
line. If the value is less than 1 or greater than 100, the option is
ignored. The default is 8.
<br><dt><code>-fexec-charset=</code><var>charset</var><dd><a name="index-fexec_002dcharset-862"></a><a name="index-character-set_002c-execution-863"></a>Set the execution character set, used for string and character
constants. The default is UTF-8. <var>charset</var> can be any encoding
supported by the system's <code>iconv</code> library routine.
<br><dt><code>-fwide-exec-charset=</code><var>charset</var><dd><a name="index-fwide_002dexec_002dcharset-864"></a><a name="index-character-set_002c-wide-execution-865"></a>Set the wide execution character set, used for wide string and
character constants. The default is UTF-32 or UTF-16, whichever
corresponds to the width of <code>wchar_t</code>. As with
<samp><span class="option">-fexec-charset</span></samp>, <var>charset</var> can be any encoding supported
by the system's <code>iconv</code> library routine; however, you will have
problems with encodings that do not fit exactly in <code>wchar_t</code>.
<br><dt><code>-finput-charset=</code><var>charset</var><dd><a name="index-finput_002dcharset-866"></a><a name="index-character-set_002c-input-867"></a>Set the input character set, used for translation from the character
set of the input file to the source character set used by GCC. If the
locale does not specify, or GCC cannot get this information from the
locale, the default is UTF-8. This can be overridden by either the locale
or this command line option. Currently the command line option takes
precedence if there's a conflict. <var>charset</var> can be any encoding
supported by the system's <code>iconv</code> library routine.
<br><dt><code>-fworking-directory</code><dd><a name="index-fworking_002ddirectory-868"></a><a name="index-fno_002dworking_002ddirectory-869"></a>Enable generation of linemarkers in the preprocessor output that will
let the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor will
emit, after the initial linemarker, a second linemarker with the
current working directory followed by two slashes. GCC will use this
directory, when it's present in the preprocessed input, as the
directory emitted as the current working directory in some debugging
information formats. This option is implicitly enabled if debugging
information is enabled, but this can be inhibited with the negated
form <samp><span class="option">-fno-working-directory</span></samp>. If the <samp><span class="option">-P</span></samp> flag is
present in the command line, this option has no effect, since no
<code>#line</code> directives are emitted whatsoever.
<br><dt><code>-fno-show-column</code><dd><a name="index-fno_002dshow_002dcolumn-870"></a>Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as <samp><span class="command">dejagnu</span></samp>.
<br><dt><code>-A </code><var>predicate</var><code>=</code><var>answer</var><dd><a name="index-A-871"></a>Make an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>. This form is preferred to the older form <samp><span class="option">-A
</span><var>predicate</var><span class="option">(</span><var>answer</var><span class="option">)</span></samp>, which is still supported, because
it does not use shell special characters.
<br><dt><code>-A -</code><var>predicate</var><code>=</code><var>answer</var><dd>Cancel an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>.
<br><dt><code>-dCHARS</code><dd><var>CHARS</var> is a sequence of one or more of the following characters,
and must not be preceded by a space. Other characters are interpreted
by the compiler proper, or reserved for future versions of GCC, and so
are silently ignored. If you specify characters whose behavior
conflicts, the result is undefined.
<dl>
<dt>‘<samp><span class="samp">M</span></samp>’<dd><a name="index-dM-872"></a>Instead of the normal output, generate a list of ‘<samp><span class="samp">#define</span></samp>’
directives for all the macros defined during the execution of the
preprocessor, including predefined macros. This gives you a way of
finding out what is predefined in your version of the preprocessor.
Assuming you have no file <samp><span class="file">foo.h</span></samp>, the command
<pre class="smallexample"> touch foo.h; cpp -dM foo.h
</pre>
<p class="noindent">will show all the predefined macros.
<p>If you use <samp><span class="option">-dM</span></samp> without the <samp><span class="option">-E</span></samp> option, <samp><span class="option">-dM</span></samp> is
interpreted as a synonym for <samp><span class="option">-fdump-rtl-mach</span></samp>.
See <a href="gcc.html#Debugging-Options">Debugging Options</a>.
<br><dt>‘<samp><span class="samp">D</span></samp>’<dd><a name="index-dD-873"></a>Like ‘<samp><span class="samp">M</span></samp>’ except in two respects: it does <em>not</em> include the
predefined macros, and it outputs <em>both</em> the ‘<samp><span class="samp">#define</span></samp>’
directives and the result of preprocessing. Both kinds of output go to
the standard output file.
<br><dt>‘<samp><span class="samp">N</span></samp>’<dd><a name="index-dN-874"></a>Like ‘<samp><span class="samp">D</span></samp>’, but emit only the macro names, not their expansions.
<br><dt>‘<samp><span class="samp">I</span></samp>’<dd><a name="index-dI-875"></a>Output ‘<samp><span class="samp">#include</span></samp>’ directives in addition to the result of
preprocessing.
<br><dt>‘<samp><span class="samp">U</span></samp>’<dd><a name="index-dU-876"></a>Like ‘<samp><span class="samp">D</span></samp>’ except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and
‘<samp><span class="samp">#undef</span></samp>’ directives are also output for macros tested but
undefined at the time.
</dl>
<br><dt><code>-P</code><dd><a name="index-P-877"></a>Inhibit generation of linemarkers in the output from the preprocessor.
This might be useful when running the preprocessor on something that is
not C code, and will be sent to a program which might be confused by the
linemarkers.
<br><dt><code>-C</code><dd><a name="index-C-878"></a>Do not discard comments. All comments are passed through to the output
file, except for comments in processed directives, which are deleted
along with the directive.
<p>You should be prepared for side effects when using <samp><span class="option">-C</span></samp>; it
causes the preprocessor to treat comments as tokens in their own right.
For example, comments appearing at the start of what would be a
directive line have the effect of turning that line into an ordinary
source line, since the first token on the line is no longer a ‘<samp><span class="samp">#</span></samp>’.
<br><dt><code>-CC</code><dd>Do not discard comments, including during macro expansion. This is
like <samp><span class="option">-C</span></samp>, except that comments contained within macros are
also passed through to the output file where the macro is expanded.
<p>In addition to the side-effects of the <samp><span class="option">-C</span></samp> option, the
<samp><span class="option">-CC</span></samp> option causes all C++-style comments inside a macro
to be converted to C-style comments. This is to prevent later use
of that macro from inadvertently commenting out the remainder of
the source line.
<p>The <samp><span class="option">-CC</span></samp> option is generally used to support lint comments.
<br><dt><code>-traditional-cpp</code><dd><a name="index-traditional_002dcpp-879"></a>Try to imitate the behavior of old-fashioned C preprocessors, as
opposed to ISO C preprocessors.
<br><dt><code>-trigraphs</code><dd><a name="index-trigraphs-880"></a>Process trigraph sequences.
These are three-character sequences, all starting with ‘<samp><span class="samp">??</span></samp>’, that
are defined by ISO C to stand for single characters. For example,
‘<samp><span class="samp">??/</span></samp>’ stands for ‘<samp><span class="samp">\</span></samp>’, so ‘<samp><span class="samp">'??/n'</span></samp>’ is a character
constant for a newline. By default, GCC ignores trigraphs, but in
standard-conforming modes it converts them. See the <samp><span class="option">-std</span></samp> and
<samp><span class="option">-ansi</span></samp> options.
<p>The nine trigraphs and their replacements are
<pre class="smallexample"> Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
Replacement: [ ] { } # \ ^ | ~
</pre>
<br><dt><code>-remap</code><dd><a name="index-remap-881"></a>Enable special code to work around file systems which only permit very
short file names, such as MS-DOS.
<dt><code>--help</code><dt><code>--target-help</code><dd><a name="index-help-882"></a><a name="index-target_002dhelp-883"></a>Print text describing all the command line options instead of
preprocessing anything.
<br><dt><code>-v</code><dd><a name="index-v-884"></a>Verbose mode. Print out GNU CPP's version number at the beginning of
execution, and report the final form of the include path.
<br><dt><code>-H</code><dd><a name="index-H-885"></a>Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the
‘<samp><span class="samp">#include</span></samp>’ stack it is. Precompiled header files are also
printed, even if they are found to be invalid; an invalid precompiled
header file is printed with ‘<samp><span class="samp">...x</span></samp>’ and a valid one with ‘<samp><span class="samp">...!</span></samp>’ .
<br><dt><code>-version</code><dt><code>--version</code><dd><a name="index-version-886"></a>Print out GNU CPP's version number. With one dash, proceed to
preprocess as normal. With two dashes, exit immediately.
</dl>
<div class="node">
<a name="Assembler-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Link-Options">Link Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Preprocessor-Options">Preprocessor Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.12 Passing Options to the Assembler</h3>
<!-- prevent bad page break with this line -->
<p>You can pass options to the assembler.
<dl>
<dt><code>-Wa,</code><var>option</var><dd><a name="index-Wa-887"></a>Pass <var>option</var> as an option to the assembler. If <var>option</var>
contains commas, it is split into multiple options at the commas.
<br><dt><code>-Xassembler </code><var>option</var><dd><a name="index-Xassembler-888"></a>Pass <var>option</var> as an option to the assembler. You can use this to
supply system-specific assembler options which GCC does not know how to
recognize.
<p>If you want to pass an option that takes an argument, you must use
<samp><span class="option">-Xassembler</span></samp> twice, once for the option and once for the argument.
</dl>
<div class="node">
<a name="Link-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Directory-Options">Directory Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Assembler-Options">Assembler Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.13 Options for Linking</h3>
<p><a name="index-link-options-889"></a><a name="index-options_002c-linking-890"></a>
These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is
not doing a link step.
<a name="index-file-names-891"></a>
<dl><dt><var>object-file-name</var><dd>A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as input
to the linker.
<br><dt><code>-c</code><dt><code>-S</code><dt><code>-E</code><dd><a name="index-c-892"></a><a name="index-S-893"></a><a name="index-E-894"></a>If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. See <a href="#Overall-Options">Overall Options</a>.
<p><a name="index-Libraries-895"></a><br><dt><code>-l</code><var>library</var><dt><code>-l </code><var>library</var><dd><a name="index-l-896"></a>Search the library named <var>library</var> when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
<p>It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified. Thus, ‘<samp><span class="samp">foo.o -lz bar.o</span></samp>’ searches library ‘<samp><span class="samp">z</span></samp>’
after file <samp><span class="file">foo.o</span></samp> but before <samp><span class="file">bar.o</span></samp>. If <samp><span class="file">bar.o</span></samp> refers
to functions in ‘<samp><span class="samp">z</span></samp>’, those functions may not be loaded.
<p>The linker searches a standard list of directories for the library,
which is actually a file named <samp><span class="file">lib</span><var>library</var><span class="file">.a</span></samp>. The linker
then uses this file as if it had been specified precisely by name.
<p>The directories searched include several standard system directories
plus any that you specify with <samp><span class="option">-L</span></samp>.
<p>Normally the files found this way are library files—archive files
whose members are object files. The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an <samp><span class="option">-l</span></samp> option and specifying a file name
is that <samp><span class="option">-l</span></samp> surrounds <var>library</var> with ‘<samp><span class="samp">lib</span></samp>’ and ‘<samp><span class="samp">.a</span></samp>’
and searches several directories.
<br><dt><code>-lobjc</code><dd><a name="index-lobjc-897"></a>You need this special case of the <samp><span class="option">-l</span></samp> option in order to
link an Objective-C or Objective-C++ program.
<br><dt><code>-nostartfiles</code><dd><a name="index-nostartfiles-898"></a>Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless <samp><span class="option">-nostdlib</span></samp>
or <samp><span class="option">-nodefaultlibs</span></samp> is used.
<br><dt><code>-nodefaultlibs</code><dd><a name="index-nodefaultlibs-899"></a>Do not use the standard system libraries when linking.
Only the libraries you specify will be passed to the linker.
The standard startup files are used normally, unless <samp><span class="option">-nostartfiles</span></samp>
is used. The compiler may generate calls to <code>memcmp</code>,
<code>memset</code>, <code>memcpy</code> and <code>memmove</code>.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
<br><dt><code>-nostdlib</code><dd><a name="index-nostdlib-900"></a>Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify will be passed to
the linker. The compiler may generate calls to <code>memcmp</code>, <code>memset</code>,
<code>memcpy</code> and <code>memmove</code>.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
<p><a name="index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnostdlib_007d-901"></a><a name="index-g_t_0040option_007b_002dnostdlib_007d-and-unresolved-references-902"></a><a name="index-unresolved-references-and-_0040option_007b_002dnostdlib_007d-903"></a><a name="index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnodefaultlibs_007d-904"></a><a name="index-g_t_0040option_007b_002dnodefaultlibs_007d-and-unresolved-references-905"></a><a name="index-unresolved-references-and-_0040option_007b_002dnodefaultlibs_007d-906"></a>One of the standard libraries bypassed by <samp><span class="option">-nostdlib</span></samp> and
<samp><span class="option">-nodefaultlibs</span></samp> is <samp><span class="file">libgcc.a</span></samp>, a library of internal subroutines
that GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(See <a href="{No value for `fngccint'}.html#Interface">Interfacing to GCC Output</a>,
for more discussion of <samp><span class="file">libgcc.a</span></samp>.)
In most cases, you need <samp><span class="file">libgcc.a</span></samp> even when you want to avoid
other standard libraries. In other words, when you specify <samp><span class="option">-nostdlib</span></samp>
or <samp><span class="option">-nodefaultlibs</span></samp> you should usually specify <samp><span class="option">-lgcc</span></samp> as well.
This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘<samp><span class="samp">__main</span></samp>’, used to ensure C++
constructors will be called; see <a href="{No value for `fngccint'}.html#Collect2"><code>collect2</code></a>.)
<br><dt><code>-pie</code><dd><a name="index-pie-907"></a>Produce a position independent executable on targets which support it.
For predictable results, you must also specify the same set of options
that were used to generate code (<samp><span class="option">-fpie</span></samp>, <samp><span class="option">-fPIE</span></samp>,
or model suboptions) when you specify this option.
<br><dt><code>-rdynamic</code><dd><a name="index-rdynamic-908"></a>Pass the flag <samp><span class="option">-export-dynamic</span></samp> to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of <code>dlopen</code> or to allow obtaining backtraces
from within a program.
<br><dt><code>-s</code><dd><a name="index-s-909"></a>Remove all symbol table and relocation information from the executable.
<br><dt><code>-static</code><dd><a name="index-static-910"></a>On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.
<br><dt><code>-shared</code><dd><a name="index-shared-911"></a>Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options that were used to
generate code (<samp><span class="option">-fpic</span></samp>, <samp><span class="option">-fPIC</span></samp>, or model suboptions)
when you specify this option.<a rel="footnote" href="#fn-1" name="fnd-1"><sup>1</sup></a>
<br><dt><code>-shared-libgcc</code><dt><code>-static-libgcc</code><dd><a name="index-shared_002dlibgcc-912"></a><a name="index-static_002dlibgcc-913"></a>On systems that provide <samp><span class="file">libgcc</span></samp> as a shared library, these options
force the use of either the shared or static version respectively.
If no shared version of <samp><span class="file">libgcc</span></samp> was built when the compiler was
configured, these options have no effect.
<p>There are several situations in which an application should use the
shared <samp><span class="file">libgcc</span></samp> instead of the static version. The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries
as well as the application itself should use the shared <samp><span class="file">libgcc</span></samp>.
<p>Therefore, the G++ and GCJ drivers automatically add
<samp><span class="option">-shared-libgcc</span></samp> whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.
<p>If, instead, you use the GCC driver to create shared libraries, you may
find that they will not always be linked with the shared <samp><span class="file">libgcc</span></samp>.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option <samp><span class="option">--eh-frame-hdr</span></samp>,
it will link the shared version of <samp><span class="file">libgcc</span></samp> into shared libraries
by default. Otherwise, it will take advantage of the linker and optimize
away the linking with the shared version of <samp><span class="file">libgcc</span></samp>, linking with
the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.
<p>However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
<samp><span class="option">-shared-libgcc</span></samp>, such that it is linked with the shared
<samp><span class="file">libgcc</span></samp>.
<br><dt><code>-symbolic</code><dd><a name="index-symbolic-914"></a>Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option ‘<samp><span class="samp">-Xlinker -z -Xlinker defs</span></samp>’). Only a few systems support
this option.
<br><dt><code>-T </code><var>script</var><dd><a name="index-T-915"></a><a name="index-linker-script-916"></a>Use <var>script</var> as the linker script. This option is supported by most
systems using the GNU linker. On some targets, such as bare-board
targets without an operating system, the <samp><span class="option">-T</span></samp> option may be required
when linking to avoid references to undefined symbols.
<br><dt><code>-Xlinker </code><var>option</var><dd><a name="index-Xlinker-917"></a>Pass <var>option</var> as an option to the linker. You can use this to
supply system-specific linker options which GCC does not know how to
recognize.
<p>If you want to pass an option that takes a separate argument, you must use
<samp><span class="option">-Xlinker</span></samp> twice, once for the option and once for the argument.
For example, to pass <samp><span class="option">-assert definitions</span></samp>, you must write
‘<samp><span class="samp">-Xlinker -assert -Xlinker definitions</span></samp>’. It does not work to write
<samp><span class="option">-Xlinker "-assert definitions"</span></samp>, because this passes the entire
string as a single argument, which is not what the linker expects.
<p>When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the <samp><var>option</var><span class="option">=</span><var>value</var></samp>
syntax than as separate arguments. For example, you can specify
‘<samp><span class="samp">-Xlinker -Map=output.map</span></samp>’ rather than
‘<samp><span class="samp">-Xlinker -Map -Xlinker output.map</span></samp>’. Other linkers may not support
this syntax for command-line options.
<br><dt><code>-Wl,</code><var>option</var><dd><a name="index-Wl-918"></a>Pass <var>option</var> as an option to the linker. If <var>option</var> contains
commas, it is split into multiple options at the commas. You can use this
syntax to pass an argument to the option.
For example, ‘<samp><span class="samp">-Wl,-Map,output.map</span></samp>’ passes ‘<samp><span class="samp">-Map output.map</span></samp>’ to the
linker. When using the GNU linker, you can also get the same effect with
‘<samp><span class="samp">-Wl,-Map=output.map</span></samp>’.
<p>NOTE: In Ubuntu 8.10 and later versions, for LDFLAGS, the option
<samp><span class="option">-Wl,-z,relro</span></samp> is used. To disable, use <samp><span class="option">-Wl,-z,norelro</span></samp>.
<br><dt><code>-u </code><var>symbol</var><dd><a name="index-u-919"></a>Pretend the symbol <var>symbol</var> is undefined, to force linking of
library modules to define it. You can use <samp><span class="option">-u</span></samp> multiple times with
different symbols to force loading of additional library modules.
</dl>
<div class="node">
<a name="Directory-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Spec-Files">Spec Files</a>,
Previous: <a rel="previous" accesskey="p" href="#Link-Options">Link Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.14 Options for Directory Search</h3>
<p><a name="index-directory-options-920"></a><a name="index-options_002c-directory-search-921"></a><a name="index-search-path-922"></a>
These options specify directories to search for header files, for
libraries and for parts of the compiler:
<dl>
<dt><code>-I</code><var>dir</var><dd><a name="index-I-923"></a>Add the directory <var>dir</var> to the head of the list of directories to be
searched for header files. This can be used to override a system header
file, substituting your own version, since these directories are
searched before the system header file directories. However, you should
not use this option to add directories that contain vendor-supplied
system header files (use <samp><span class="option">-isystem</span></samp> for that). If you use more than
one <samp><span class="option">-I</span></samp> option, the directories are scanned in left-to-right
order; the standard system directories come after.
<p>If a standard system include directory, or a directory specified with
<samp><span class="option">-isystem</span></samp>, is also specified with <samp><span class="option">-I</span></samp>, the <samp><span class="option">-I</span></samp>
option will be ignored. The directory will still be searched but as a
system directory at its normal position in the system include chain.
This is to ensure that GCC's procedure to fix buggy system headers and
the ordering for the include_next directive are not inadvertently changed.
If you really need to change the search order for system directories,
use the <samp><span class="option">-nostdinc</span></samp> and/or <samp><span class="option">-isystem</span></samp> options.
<br><dt><code>-iquote</code><var>dir</var><dd><a name="index-iquote-924"></a>Add the directory <var>dir</var> to the head of the list of directories to
be searched for header files only for the case of ‘<samp><span class="samp">#include
"</span><var>file</var><span class="samp">"</span></samp>’; they are not searched for ‘<samp><span class="samp">#include <</span><var>file</var><span class="samp">></span></samp>’,
otherwise just like <samp><span class="option">-I</span></samp>.
<br><dt><code>-L</code><var>dir</var><dd><a name="index-L-925"></a>Add directory <var>dir</var> to the list of directories to be searched
for <samp><span class="option">-l</span></samp>.
<br><dt><code>-B</code><var>prefix</var><dd><a name="index-B-926"></a>This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
<p>The compiler driver program runs one or more of the subprograms
<samp><span class="file">cpp</span></samp>, <samp><span class="file">cc1</span></samp>, <samp><span class="file">as</span></samp> and <samp><span class="file">ld</span></samp>. It tries
<var>prefix</var> as a prefix for each program it tries to run, both with and
without ‘<samp><var>machine</var><span class="samp">/</span><var>version</var><span class="samp">/</span></samp>’ (see <a href="#Target-Options">Target Options</a>).
<p>For each subprogram to be run, the compiler driver first tries the
<samp><span class="option">-B</span></samp> prefix, if any. If that name is not found, or if <samp><span class="option">-B</span></samp>
was not specified, the driver tries two standard prefixes, which are
<samp><span class="file">/usr/lib/gcc/</span></samp> and <samp><span class="file">/usr/local/lib/gcc/</span></samp>. If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
<samp><span class="env">PATH</span></samp> environment variable.
<p>The compiler will check to see if the path provided by the <samp><span class="option">-B</span></samp>
refers to a directory, and if necessary it will add a directory
separator character at the end of the path.
<p><samp><span class="option">-B</span></samp> prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into <samp><span class="option">-L</span></samp> options for the linker. They also apply to
includes files in the preprocessor, because the compiler translates these
options into <samp><span class="option">-isystem</span></samp> options for the preprocessor. In this case,
the compiler appends ‘<samp><span class="samp">include</span></samp>’ to the prefix.
<p>The run-time support file <samp><span class="file">libgcc.a</span></samp> can also be searched for using
the <samp><span class="option">-B</span></samp> prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is left
out of the link if it is not found by those means.
<p>Another way to specify a prefix much like the <samp><span class="option">-B</span></samp> prefix is to use
the environment variable <samp><span class="env">GCC_EXEC_PREFIX</span></samp>. See <a href="#Environment-Variables">Environment Variables</a>.
<p>As a special kludge, if the path provided by <samp><span class="option">-B</span></samp> is
<samp><span class="file">[dir/]stage</span><var>N</var><span class="file">/</span></samp>, where <var>N</var> is a number in the range 0 to
9, then it will be replaced by <samp><span class="file">[dir/]include</span></samp>. This is to help
with boot-strapping the compiler.
<br><dt><code>-specs=</code><var>file</var><dd><a name="index-specs-927"></a>Process <var>file</var> after the compiler reads in the standard <samp><span class="file">specs</span></samp>
file, in order to override the defaults that the <samp><span class="file">gcc</span></samp> driver
program uses when determining what switches to pass to <samp><span class="file">cc1</span></samp>,
<samp><span class="file">cc1plus</span></samp>, <samp><span class="file">as</span></samp>, <samp><span class="file">ld</span></samp>, etc. More than one
<samp><span class="option">-specs=</span><var>file</var></samp> can be specified on the command line, and they
are processed in order, from left to right.
<br><dt><code>--sysroot=</code><var>dir</var><dd><a name="index-sysroot-928"></a>Use <var>dir</var> as the logical root directory for headers and libraries.
For example, if the compiler would normally search for headers in
<samp><span class="file">/usr/include</span></samp> and libraries in <samp><span class="file">/usr/lib</span></samp>, it will instead
search <samp><var>dir</var><span class="file">/usr/include</span></samp> and <samp><var>dir</var><span class="file">/usr/lib</span></samp>.
<p>If you use both this option and the <samp><span class="option">-isysroot</span></samp> option, then
the <samp><span class="option">--sysroot</span></samp> option will apply to libraries, but the
<samp><span class="option">-isysroot</span></samp> option will apply to header files.
<p>The GNU linker (beginning with version 2.16) has the necessary support
for this option. If your linker does not support this option, the
header file aspect of <samp><span class="option">--sysroot</span></samp> will still work, but the
library aspect will not.
<br><dt><code>-I-</code><dd><a name="index-I_002d-929"></a>This option has been deprecated. Please use <samp><span class="option">-iquote</span></samp> instead for
<samp><span class="option">-I</span></samp> directories before the <samp><span class="option">-I-</span></samp> and remove the <samp><span class="option">-I-</span></samp>.
Any directories you specify with <samp><span class="option">-I</span></samp> options before the <samp><span class="option">-I-</span></samp>
option are searched only for the case of ‘<samp><span class="samp">#include "</span><var>file</var><span class="samp">"</span></samp>’;
they are not searched for ‘<samp><span class="samp">#include <</span><var>file</var><span class="samp">></span></samp>’.
<p>If additional directories are specified with <samp><span class="option">-I</span></samp> options after
the <samp><span class="option">-I-</span></samp>, these directories are searched for all ‘<samp><span class="samp">#include</span></samp>’
directives. (Ordinarily <em>all</em> <samp><span class="option">-I</span></samp> directories are used
this way.)
<p>In addition, the <samp><span class="option">-I-</span></samp> option inhibits the use of the current
directory (where the current input file came from) as the first search
directory for ‘<samp><span class="samp">#include "</span><var>file</var><span class="samp">"</span></samp>’. There is no way to
override this effect of <samp><span class="option">-I-</span></samp>. With <samp><span class="option">-I.</span></samp> you can specify
searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor does
by default, but it is often satisfactory.
<p><samp><span class="option">-I-</span></samp> does not inhibit the use of the standard system directories
for header files. Thus, <samp><span class="option">-I-</span></samp> and <samp><span class="option">-nostdinc</span></samp> are
independent.
</dl>
<!-- man end -->
<div class="node">
<a name="Spec-Files"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Target-Options">Target Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Directory-Options">Directory Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.15 Specifying subprocesses and the switches to pass to them</h3>
<p><a name="index-Spec-Files-930"></a>
<samp><span class="command">gcc</span></samp> is a driver program. It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking. GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled
by <dfn>spec strings</dfn>. In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior. The spec strings built into GCC can
be overridden by using the <samp><span class="option">-specs=</span></samp> command-line switch to specify
a spec file.
<p><dfn>Spec files</dfn> are plaintext files that are used to construct spec
strings. They consist of a sequence of directives separated by blank
lines. The type of directive is determined by the first non-whitespace
character on the line and it can be one of the following:
<dl>
<dt><code>%</code><var>command</var><dd>Issues a <var>command</var> to the spec file processor. The commands that can
appear here are:
<dl>
<dt><code>%include <</code><var>file</var><code>></code><dd><a name="index-g_t_0025include-931"></a>Search for <var>file</var> and insert its text at the current point in the
specs file.
<br><dt><code>%include_noerr <</code><var>file</var><code>></code><dd><a name="index-g_t_0025include_005fnoerr-932"></a>Just like ‘<samp><span class="samp">%include</span></samp>’, but do not generate an error message if the include
file cannot be found.
<br><dt><code>%rename </code><var>old_name</var> <var>new_name</var><dd><a name="index-g_t_0025rename-933"></a>Rename the spec string <var>old_name</var> to <var>new_name</var>.
</dl>
<br><dt><code>*[</code><var>spec_name</var><code>]:</code><dd>This tells the compiler to create, override or delete the named spec
string. All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string. If this
results in an empty string then the spec will be deleted. (Or, if the
spec did not exist, then nothing will happened.) Otherwise, if the spec
does not currently exist a new spec will be created. If the spec does
exist then its contents will be overridden by the text of this
directive, unless the first character of that text is the ‘<samp><span class="samp">+</span></samp>’
character, in which case the text will be appended to the spec.
<br><dt><code>[</code><var>suffix</var><code>]:</code><dd>Creates a new ‘<samp><span class="samp">[</span><var>suffix</var><span class="samp">] spec</span></samp>’ pair. All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix. When the compiler encounters an
input file with the named suffix, it will processes the spec string in
order to work out how to compile that file. For example:
<pre class="smallexample"> .ZZ:
z-compile -input %i
</pre>
<p>This says that any input file whose name ends in ‘<samp><span class="samp">.ZZ</span></samp>’ should be
passed to the program ‘<samp><span class="samp">z-compile</span></samp>’, which should be invoked with the
command-line switch <samp><span class="option">-input</span></samp> and with the result of performing the
‘<samp><span class="samp">%i</span></samp>’ substitution. (See below.)
<p>As an alternative to providing a spec string, the text that follows a
suffix directive can be one of the following:
<dl>
<dt><code>@</code><var>language</var><dd>This says that the suffix is an alias for a known <var>language</var>. This is
similar to using the <samp><span class="option">-x</span></samp> command-line switch to GCC to specify a
language explicitly. For example:
<pre class="smallexample"> .ZZ:
@c++
</pre>
<p>Says that .ZZ files are, in fact, C++ source files.
<br><dt><code>#</code><var>name</var><dd>This causes an error messages saying:
<pre class="smallexample"> <var>name</var> compiler not installed on this system.
</pre>
</dl>
<p>GCC already has an extensive list of suffixes built into it.
This directive will add an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.
</dl>
<p>GCC has the following spec strings built into it. Spec files can
override these strings or create their own. Note that individual
targets can also add their own spec strings to this list.
<pre class="smallexample"> asm Options to pass to the assembler
asm_final Options to pass to the assembler post-processor
cpp Options to pass to the C preprocessor
cc1 Options to pass to the C compiler
cc1plus Options to pass to the C++ compiler
endfile Object files to include at the end of the link
link Options to pass to the linker
lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker
predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether <code>char</code> is signed
by default
startfile Object files to include at the start of the link
</pre>
<p>Here is a small example of a spec file:
<pre class="smallexample"> %rename lib old_lib
*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)
</pre>
<p>This example renames the spec called ‘<samp><span class="samp">lib</span></samp>’ to ‘<samp><span class="samp">old_lib</span></samp>’ and
then overrides the previous definition of ‘<samp><span class="samp">lib</span></samp>’ with a new one.
The new definition adds in some extra command-line options before
including the text of the old definition.
<p><dfn>Spec strings</dfn> are a list of command-line options to be passed to their
corresponding program. In addition, the spec strings can contain
‘<samp><span class="samp">%</span></samp>’-prefixed sequences to substitute variable text or to
conditionally insert text into the command line. Using these constructs
it is possible to generate quite complex command lines.
<p>Here is a table of all defined ‘<samp><span class="samp">%</span></samp>’-sequences for spec
strings. Note that spaces are not generated automatically around the
results of expanding these sequences. Therefore you can concatenate them
together or combine them with constant text in a single argument.
<dl>
<dt><code>%%</code><dd>Substitute one ‘<samp><span class="samp">%</span></samp>’ into the program name or argument.
<br><dt><code>%i</code><dd>Substitute the name of the input file being processed.
<br><dt><code>%b</code><dd>Substitute the basename of the input file being processed.
This is the substring up to (and not including) the last period
and not including the directory.
<br><dt><code>%B</code><dd>This is the same as ‘<samp><span class="samp">%b</span></samp>’, but include the file suffix (text after
the last period).
<br><dt><code>%d</code><dd>Marks the argument containing or following the ‘<samp><span class="samp">%d</span></samp>’ as a
temporary file name, so that that file will be deleted if GCC exits
successfully. Unlike ‘<samp><span class="samp">%g</span></samp>’, this contributes no text to the
argument.
<br><dt><code>%g</code><var>suffix</var><dd>Substitute a file name that has suffix <var>suffix</var> and is chosen
once per compilation, and mark the argument in the same way as
‘<samp><span class="samp">%d</span></samp>’. To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known. For example, ‘<samp><span class="samp">%g.s ... %g.o ... %g.s</span></samp>’
might turn into ‘<samp><span class="samp">ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s</span></samp>’. <var>suffix</var> matches
the regexp ‘<samp><span class="samp">[.A-Za-z]*</span></samp>’ or the special string ‘<samp><span class="samp">%O</span></samp>’, which is
treated exactly as if ‘<samp><span class="samp">%O</span></samp>’ had been preprocessed. Previously, ‘<samp><span class="samp">%g</span></samp>’
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.
<br><dt><code>%u</code><var>suffix</var><dd>Like ‘<samp><span class="samp">%g</span></samp>’, but generates a new temporary file name even if
‘<samp><span class="samp">%u</span><var>suffix</var></samp>’ was already seen.
<br><dt><code>%U</code><var>suffix</var><dd>Substitutes the last file name generated with ‘<samp><span class="samp">%u</span><var>suffix</var></samp>’, generating a
new one if there is no such last file name. In the absence of any
‘<samp><span class="samp">%u</span><var>suffix</var></samp>’, this is just like ‘<samp><span class="samp">%g</span><var>suffix</var></samp>’, except they don't share
the same suffix <em>space</em>, so ‘<samp><span class="samp">%g.s ... %U.s ... %g.s ... %U.s</span></samp>’
would involve the generation of two distinct file names, one
for each ‘<samp><span class="samp">%g.s</span></samp>’ and another for each ‘<samp><span class="samp">%U.s</span></samp>’. Previously, ‘<samp><span class="samp">%U</span></samp>’ was
simply substituted with a file name chosen for the previous ‘<samp><span class="samp">%u</span></samp>’,
without regard to any appended suffix.
<br><dt><code>%j</code><var>suffix</var><dd>Substitutes the name of the <code>HOST_BIT_BUCKET</code>, if any, and if it is
writable, and if save-temps is off; otherwise, substitute the name
of a temporary file, just like ‘<samp><span class="samp">%u</span></samp>’. This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.
<br><dt><code>%|</code><var>suffix</var><dt><code>%m</code><var>suffix</var><dd>Like ‘<samp><span class="samp">%g</span></samp>’, except if <samp><span class="option">-pipe</span></samp> is in effect. In that case
‘<samp><span class="samp">%|</span></samp>’ substitutes a single dash and ‘<samp><span class="samp">%m</span></samp>’ substitutes nothing at
all. These are the two most common ways to instruct a program that it
should read from standard input or write to standard output. If you
need something more elaborate you can use an ‘<samp><span class="samp">%{pipe:</span><code>X</code><span class="samp">}</span></samp>’
construct: see for example <samp><span class="file">f/lang-specs.h</span></samp>.
<br><dt><code>%.</code><var>SUFFIX</var><dd>Substitutes <var>.SUFFIX</var> for the suffixes of a matched switch's args
when it is subsequently output with ‘<samp><span class="samp">%*</span></samp>’. <var>SUFFIX</var> is
terminated by the next space or %.
<br><dt><code>%w</code><dd>Marks the argument containing or following the ‘<samp><span class="samp">%w</span></samp>’ as the
designated output file of this compilation. This puts the argument
into the sequence of arguments that ‘<samp><span class="samp">%o</span></samp>’ will substitute later.
<br><dt><code>%o</code><dd>Substitutes the names of all the output files, with spaces
automatically placed around them. You should write spaces
around the ‘<samp><span class="samp">%o</span></samp>’ as well or the results are undefined.
‘<samp><span class="samp">%o</span></samp>’ is for use in the specs for running the linker.
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they will
be linked.
<br><dt><code>%O</code><dd>Substitutes the suffix for object files. Note that this is
handled specially when it immediately follows ‘<samp><span class="samp">%g, %u, or %U</span></samp>’,
because of the need for those to form complete file names. The
handling is such that ‘<samp><span class="samp">%O</span></samp>’ is treated exactly as if it had already
been substituted, except that ‘<samp><span class="samp">%g, %u, and %U</span></samp>’ do not currently
support additional <var>suffix</var> characters following ‘<samp><span class="samp">%O</span></samp>’ as they would
following, for example, ‘<samp><span class="samp">.o</span></samp>’.
<br><dt><code>%p</code><dd>Substitutes the standard macro predefinitions for the
current target machine. Use this when running <code>cpp</code>.
<br><dt><code>%P</code><dd>Like ‘<samp><span class="samp">%p</span></samp>’, but puts ‘<samp><span class="samp">__</span></samp>’ before and after the name of each
predefined macro, except for macros that start with ‘<samp><span class="samp">__</span></samp>’ or with
‘<samp><span class="samp">_</span><var>L</var></samp>’, where <var>L</var> is an uppercase letter. This is for ISO
C.
<br><dt><code>%I</code><dd>Substitute any of <samp><span class="option">-iprefix</span></samp> (made from <samp><span class="env">GCC_EXEC_PREFIX</span></samp>),
<samp><span class="option">-isysroot</span></samp> (made from <samp><span class="env">TARGET_SYSTEM_ROOT</span></samp>),
<samp><span class="option">-isystem</span></samp> (made from <samp><span class="env">COMPILER_PATH</span></samp> and <samp><span class="option">-B</span></samp> options)
and <samp><span class="option">-imultilib</span></samp> as necessary.
<br><dt><code>%s</code><dd>Current argument is the name of a library or startup file of some sort.
Search for that file in a standard list of directories and substitute
the full name found.
<br><dt><code>%e</code><var>str</var><dd>Print <var>str</var> as an error message. <var>str</var> is terminated by a newline.
Use this when inconsistent options are detected.
<br><dt><code>%(</code><var>name</var><code>)</code><dd>Substitute the contents of spec string <var>name</var> at this point.
<br><dt><code>%[</code><var>name</var><code>]</code><dd>Like ‘<samp><span class="samp">%(...)</span></samp>’ but put ‘<samp><span class="samp">__</span></samp>’ around <samp><span class="option">-D</span></samp> arguments.
<br><dt><code>%x{</code><var>option</var><code>}</code><dd>Accumulate an option for ‘<samp><span class="samp">%X</span></samp>’.
<br><dt><code>%X</code><dd>Output the accumulated linker options specified by <samp><span class="option">-Wl</span></samp> or a ‘<samp><span class="samp">%x</span></samp>’
spec string.
<br><dt><code>%Y</code><dd>Output the accumulated assembler options specified by <samp><span class="option">-Wa</span></samp>.
<br><dt><code>%Z</code><dd>Output the accumulated preprocessor options specified by <samp><span class="option">-Wp</span></samp>.
<br><dt><code>%a</code><dd>Process the <code>asm</code> spec. This is used to compute the
switches to be passed to the assembler.
<br><dt><code>%A</code><dd>Process the <code>asm_final</code> spec. This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.
<br><dt><code>%l</code><dd>Process the <code>link</code> spec. This is the spec for computing the
command line passed to the linker. Typically it will make use of the
‘<samp><span class="samp">%L %G %S %D and %E</span></samp>’ sequences.
<br><dt><code>%D</code><dd>Dump out a <samp><span class="option">-L</span></samp> option for each directory that GCC believes might
contain startup files. If the target supports multilibs then the
current multilib directory will be prepended to each of these paths.
<br><dt><code>%L</code><dd>Process the <code>lib</code> spec. This is a spec string for deciding which
libraries should be included on the command line to the linker.
<br><dt><code>%G</code><dd>Process the <code>libgcc</code> spec. This is a spec string for deciding
which GCC support library should be included on the command line to the linker.
<br><dt><code>%S</code><dd>Process the <code>startfile</code> spec. This is a spec for deciding which
object files should be the first ones passed to the linker. Typically
this might be a file named <samp><span class="file">crt0.o</span></samp>.
<br><dt><code>%E</code><dd>Process the <code>endfile</code> spec. This is a spec string that specifies
the last object files that will be passed to the linker.
<br><dt><code>%C</code><dd>Process the <code>cpp</code> spec. This is used to construct the arguments
to be passed to the C preprocessor.
<br><dt><code>%1</code><dd>Process the <code>cc1</code> spec. This is used to construct the options to be
passed to the actual C compiler (‘<samp><span class="samp">cc1</span></samp>’).
<br><dt><code>%2</code><dd>Process the <code>cc1plus</code> spec. This is used to construct the options to be
passed to the actual C++ compiler (‘<samp><span class="samp">cc1plus</span></samp>’).
<br><dt><code>%*</code><dd>Substitute the variable part of a matched option. See below.
Note that each comma in the substituted string is replaced by
a single space.
<br><dt><code>%<S</code><dd>Remove all occurrences of <code>-S</code> from the command line. Note—this
command is position dependent. ‘<samp><span class="samp">%</span></samp>’ commands in the spec string
before this one will see <code>-S</code>, ‘<samp><span class="samp">%</span></samp>’ commands in the spec string
after this one will not.
<br><dt><code>%:</code><var>function</var><code>(</code><var>args</var><code>)</code><dd>Call the named function <var>function</var>, passing it <var>args</var>.
<var>args</var> is first processed as a nested spec string, then split
into an argument vector in the usual fashion. The function returns
a string which is processed as if it had appeared literally as part
of the current spec.
<p>The following built-in spec functions are provided:
<dl>
<dt><code>getenv</code><dd>The <code>getenv</code> spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if <samp><span class="env">TOPDIR</span></samp> is defined as <samp><span class="file">/path/to/top</span></samp>, then:
<pre class="smallexample"> %:getenv(TOPDIR /include)
</pre>
<p>expands to <samp><span class="file">/path/to/top/include</span></samp>.
<br><dt><code>if-exists</code><dd>The <code>if-exists</code> spec function takes one argument, an absolute
pathname to a file. If the file exists, <code>if-exists</code> returns the
pathname. Here is a small example of its usage:
<pre class="smallexample"> *startfile:
crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
</pre>
<br><dt><code>if-exists-else</code><dd>The <code>if-exists-else</code> spec function is similar to the <code>if-exists</code>
spec function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, <code>if-exists-else</code>
returns the pathname. If it does not exist, it returns the second argument.
This way, <code>if-exists-else</code> can be used to select one file or another,
based on the existence of the first. Here is a small example of its usage:
<pre class="smallexample"> *startfile:
crt0%O%s %:if-exists(crti%O%s) \
%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
</pre>
<br><dt><code>replace-outfile</code><dd>The <code>replace-outfile</code> spec function takes two arguments. It looks for the
first argument in the outfiles array and replaces it with the second argument. Here
is a small example of its usage:
<pre class="smallexample"> %{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}
</pre>
<br><dt><code>print-asm-header</code><dd>The <code>print-asm-header</code> function takes no arguments and simply
prints a banner like:
<pre class="smallexample"> Assembler options
=================
Use "-Wa,OPTION" to pass "OPTION" to the assembler.
</pre>
<p>It is used to separate compiler options from assembler options
in the <samp><span class="option">--target-help</span></samp> output.
</dl>
<br><dt><code>%{S}</code><dd>Substitutes the <code>-S</code> switch, if that switch was given to GCC.
If that switch was not specified, this substitutes nothing. Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed. Thus the spec
string ‘<samp><span class="samp">%{foo}</span></samp>’ would match the command-line option <samp><span class="option">-foo</span></samp>
and would output the command line option <samp><span class="option">-foo</span></samp>.
<br><dt><code>%W{S}</code><dd>Like %{<code>S</code>} but mark last argument supplied within as a file to be
deleted on failure.
<br><dt><code>%{S*}</code><dd>Substitutes all the switches specified to GCC whose names start
with <code>-S</code>, but which also take an argument. This is used for
switches like <samp><span class="option">-o</span></samp>, <samp><span class="option">-D</span></samp>, <samp><span class="option">-I</span></samp>, etc.
GCC considers <samp><span class="option">-o foo</span></samp> as being
one switch whose names starts with ‘<samp><span class="samp">o</span></samp>’. %{o*} would substitute this
text, including the space. Thus two arguments would be generated.
<br><dt><code>%{S*&T*}</code><dd>Like %{<code>S</code>*}, but preserve order of <code>S</code> and <code>T</code> options
(the order of <code>S</code> and <code>T</code> in the spec is not significant).
There can be any number of ampersand-separated variables; for each the
wild card is optional. Useful for CPP as ‘<samp><span class="samp">%{D*&U*&A*}</span></samp>’.
<br><dt><code>%{S:X}</code><dd>Substitutes <code>X</code>, if the ‘<samp><span class="samp">-S</span></samp>’ switch was given to GCC.
<br><dt><code>%{!S:X}</code><dd>Substitutes <code>X</code>, if the ‘<samp><span class="samp">-S</span></samp>’ switch was <em>not</em> given to GCC.
<br><dt><code>%{S*:X}</code><dd>Substitutes <code>X</code> if one or more switches whose names start with
<code>-S</code> are specified to GCC. Normally <code>X</code> is substituted only
once, no matter how many such switches appeared. However, if <code>%*</code>
appears somewhere in <code>X</code>, then <code>X</code> will be substituted once
for each matching switch, with the <code>%*</code> replaced by the part of
that switch that matched the <code>*</code>.
<br><dt><code>%{.S:X}</code><dd>Substitutes <code>X</code>, if processing a file with suffix <code>S</code>.
<br><dt><code>%{!.S:X}</code><dd>Substitutes <code>X</code>, if <em>not</em> processing a file with suffix <code>S</code>.
<br><dt><code>%{,S:X}</code><dd>Substitutes <code>X</code>, if processing a file for language <code>S</code>.
<br><dt><code>%{!,S:X}</code><dd>Substitutes <code>X</code>, if not processing a file for language <code>S</code>.
<br><dt><code>%{S|P:X}</code><dd>Substitutes <code>X</code> if either <code>-S</code> or <code>-P</code> was given to
GCC. This may be combined with ‘<samp><span class="samp">!</span></samp>’, ‘<samp><span class="samp">.</span></samp>’, ‘<samp><span class="samp">,</span></samp>’, and
<code>*</code> sequences as well, although they have a stronger binding than
the ‘<samp><span class="samp">|</span></samp>’. If <code>%*</code> appears in <code>X</code>, all of the
alternatives must be starred, and only the first matching alternative
is substituted.
<p>For example, a spec string like this:
<pre class="smallexample"> %{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
</pre>
<p>will output the following command-line options from the following input
command-line options:
<pre class="smallexample"> fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle
</pre>
<br><dt><code>%{S:X; T:Y; :D}</code><dd>
If <code>S</code> was given to GCC, substitutes <code>X</code>; else if <code>T</code> was
given to GCC, substitutes <code>Y</code>; else substitutes <code>D</code>. There can
be as many clauses as you need. This may be combined with <code>.</code>,
<code>,</code>, <code>!</code>, <code>|</code>, and <code>*</code> as needed.
<br><dt><code>-mlow-irq-latency</code><dd><a name="index-mlow_002dirq_002dlatency-934"></a>Avoid instructions with high interrupt latency when generating
code. This can increase code size and reduce performance.
The option is off by default.
</dl>
<p>The conditional text <code>X</code> in a %{<code>S</code>:<code>X</code>} or similar
construct may contain other nested ‘<samp><span class="samp">%</span></samp>’ constructs or spaces, or
even newlines. They are processed as usual, as described above.
Trailing white space in <code>X</code> is ignored. White space may also
appear anywhere on the left side of the colon in these constructs,
except between <code>.</code> or <code>*</code> and the corresponding word.
<p>The <samp><span class="option">-O</span></samp>, <samp><span class="option">-f</span></samp>, <samp><span class="option">-m</span></samp>, and <samp><span class="option">-W</span></samp> switches are
handled specifically in these constructs. If another value of
<samp><span class="option">-O</span></samp> or the negated form of a <samp><span class="option">-f</span></samp>, <samp><span class="option">-m</span></samp>, or
<samp><span class="option">-W</span></samp> switch is found later in the command line, the earlier
switch value is ignored, except with {<code>S</code>*} where <code>S</code> is
just one letter, which passes all matching options.
<p>The character ‘<samp><span class="samp">|</span></samp>’ at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if <samp><span class="option">-pipe</span></samp> is specified.
<p>It is built into GCC which switches take arguments and which do not.
(You might think it would be useful to generalize this to allow each
compiler's spec to say which switches take arguments. But this cannot
be done in a consistent fashion. GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).
<p>GCC also knows implicitly that arguments starting in <samp><span class="option">-l</span></samp> are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.
<!-- man begin OPTIONS -->
<div class="node">
<a name="Target-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Submodel-Options">Submodel Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Spec-Files">Spec Files</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.16 Specifying Target Machine and Compiler Version</h3>
<p><a name="index-target-options-935"></a><a name="index-cross-compiling-936"></a><a name="index-specifying-machine-version-937"></a><a name="index-specifying-compiler-version-and-target-machine-938"></a><a name="index-compiler-version_002c-specifying-939"></a><a name="index-target-machine_002c-specifying-940"></a>
The usual way to run GCC is to run the executable called <samp><span class="file">gcc</span></samp>, or
<samp><span class="file"><machine>-gcc</span></samp> when cross-compiling, or
<samp><span class="file"><machine>-gcc-<version></span></samp> to run a version other than the one that
was installed last. Sometimes this is inconvenient, so GCC provides
options that will switch to another cross-compiler or version.
<dl>
<dt><code>-b </code><var>machine</var><dd><a name="index-b-941"></a>The argument <var>machine</var> specifies the target machine for compilation.
<p>The value to use for <var>machine</var> is the same as was specified as the
machine type when configuring GCC as a cross-compiler. For
example, if a cross-compiler was configured with ‘<samp><span class="samp">configure
arm-elf</span></samp>’, meaning to compile for an arm processor with elf binaries,
then you would specify <samp><span class="option">-b arm-elf</span></samp> to run that cross compiler.
Because there are other options beginning with <samp><span class="option">-b</span></samp>, the
configuration must contain a hyphen, or <samp><span class="option">-b</span></samp> alone should be one
argument followed by the configuration in the next argument.
<br><dt><code>-V </code><var>version</var><dd><a name="index-V-942"></a>The argument <var>version</var> specifies which version of GCC to run.
This is useful when multiple versions are installed. For example,
<var>version</var> might be ‘<samp><span class="samp">4.0</span></samp>’, meaning to run GCC version 4.0.
</dl>
<p>The <samp><span class="option">-V</span></samp> and <samp><span class="option">-b</span></samp> options work by running the
<samp><span class="file"><machine>-gcc-<version></span></samp> executable, so there's no real reason to
use them if you can just run that directly.
<div class="node">
<a name="Submodel-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Code-Gen-Options">Code Gen Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Options">Target Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.17 Hardware Models and Configurations</h3>
<p><a name="index-submodel-options-943"></a><a name="index-specifying-hardware-config-944"></a><a name="index-hardware-models-and-configurations_002c-specifying-945"></a><a name="index-machine-dependent-options-946"></a>
Earlier we discussed the standard option <samp><span class="option">-b</span></samp> which chooses among
different installed compilers for completely different target
machines, such as VAX vs. 68000 vs. 80386.
<p>In addition, each of these target machine types can have its own
special options, starting with ‘<samp><span class="samp">-m</span></samp>’, to choose among various
hardware models or configurations—for example, 68010 vs 68020,
floating coprocessor or none. A single installed version of the
compiler can compile for any model or configuration, according to the
options specified.
<p>Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.
<!-- This list is ordered alphanumerically by subsection name. -->
<!-- It should be the same order and spelling as these options are listed -->
<!-- in Machine Dependent Options -->
<ul class="menu">
<li><a accesskey="1" href="#ARC-Options">ARC Options</a>
<li><a accesskey="2" href="#ARM-Options">ARM Options</a>
<li><a accesskey="3" href="#AVR-Options">AVR Options</a>
<li><a accesskey="4" href="#Blackfin-Options">Blackfin Options</a>
<li><a accesskey="5" href="#CRIS-Options">CRIS Options</a>
<li><a accesskey="6" href="#CRX-Options">CRX Options</a>
<li><a accesskey="7" href="#Darwin-Options">Darwin Options</a>
<li><a accesskey="8" href="#DEC-Alpha-Options">DEC Alpha Options</a>
<li><a accesskey="9" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>
<li><a href="#FR30-Options">FR30 Options</a>
<li><a href="#FRV-Options">FRV Options</a>
<li><a href="#GNU_002fLinux-Options">GNU/Linux Options</a>
<li><a href="#H8_002f300-Options">H8/300 Options</a>
<li><a href="#HPPA-Options">HPPA Options</a>
<li><a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>
<li><a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>
<li><a href="#IA_002d64-Options">IA-64 Options</a>
<li><a href="#M32C-Options">M32C Options</a>
<li><a href="#M32R_002fD-Options">M32R/D Options</a>
<li><a href="#M680x0-Options">M680x0 Options</a>
<li><a href="#M68hc1x-Options">M68hc1x Options</a>
<li><a href="#MCore-Options">MCore Options</a>
<li><a href="#MIPS-Options">MIPS Options</a>
<li><a href="#MMIX-Options">MMIX Options</a>
<li><a href="#MN10300-Options">MN10300 Options</a>
<li><a href="#PDP_002d11-Options">PDP-11 Options</a>
<li><a href="#picoChip-Options">picoChip Options</a>
<li><a href="#PowerPC-Options">PowerPC Options</a>
<li><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>
<li><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>
<li><a href="#Score-Options">Score Options</a>
<li><a href="#SH-Options">SH Options</a>
<li><a href="#SPARC-Options">SPARC Options</a>
<li><a href="#SPU-Options">SPU Options</a>
<li><a href="#System-V-Options">System V Options</a>
<li><a href="#V850-Options">V850 Options</a>
<li><a href="#VAX-Options">VAX Options</a>
<li><a href="#VxWorks-Options">VxWorks Options</a>
<li><a href="#x86_002d64-Options">x86-64 Options</a>
<li><a href="#Xstormy16-Options">Xstormy16 Options</a>
<li><a href="#Xtensa-Options">Xtensa Options</a>
<li><a href="#zSeries-Options">zSeries Options</a>
</ul>
<div class="node">
<a name="ARC-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ARM-Options">ARM Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.1 ARC Options</h4>
<p><a name="index-ARC-Options-947"></a>
These options are defined for ARC implementations:
<dl>
<dt><code>-EL</code><dd><a name="index-EL-948"></a>Compile code for little endian mode. This is the default.
<br><dt><code>-EB</code><dd><a name="index-EB-949"></a>Compile code for big endian mode.
<br><dt><code>-mmangle-cpu</code><dd><a name="index-mmangle_002dcpu-950"></a>Prepend the name of the cpu to all public symbol names.
In multiple-processor systems, there are many ARC variants with different
instruction and register set characteristics. This flag prevents code
compiled for one cpu to be linked with code compiled for another.
No facility exists for handling variants that are “almost identical”.
This is an all or nothing option.
<br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-951"></a>Compile code for ARC variant <var>cpu</var>.
Which variants are supported depend on the configuration.
All variants support <samp><span class="option">-mcpu=base</span></samp>, this is the default.
<br><dt><code>-mtext=</code><var>text-section</var><dt><code>-mdata=</code><var>data-section</var><dt><code>-mrodata=</code><var>readonly-data-section</var><dd><a name="index-mtext-952"></a><a name="index-mdata-953"></a><a name="index-mrodata-954"></a>Put functions, data, and readonly data in <var>text-section</var>,
<var>data-section</var>, and <var>readonly-data-section</var> respectively
by default. This can be overridden with the <code>section</code> attribute.
See <a href="#Variable-Attributes">Variable Attributes</a>.
<br><dt><code>-mfix-cortex-m3-ldrd</code><dd><a name="index-mfix_002dcortex_002dm3_002dldrd-955"></a>Some Cortex-M3 cores can cause data corruption when <code>ldrd</code> instructions
with overlapping destination and base registers are used. This option avoids
generating these instructions. This option is enabled by default when
<samp><span class="option">-mcpu=cortex-m3</span></samp> is specified.
</dl>
<div class="node">
<a name="ARM-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#AVR-Options">AVR Options</a>,
Previous: <a rel="previous" accesskey="p" href="#ARC-Options">ARC Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.2 ARM Options</h4>
<p><a name="index-ARM-options-956"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for Advanced RISC Machines (ARM)
architectures:
<dl>
<dt><code>-mabi=</code><var>name</var><dd><a name="index-mabi-957"></a>Generate code for the specified ABI. Permissible values are: ‘<samp><span class="samp">apcs-gnu</span></samp>’,
‘<samp><span class="samp">atpcs</span></samp>’, ‘<samp><span class="samp">aapcs</span></samp>’, ‘<samp><span class="samp">aapcs-linux</span></samp>’ and ‘<samp><span class="samp">iwmmxt</span></samp>’.
<br><dt><code>-mapcs-frame</code><dd><a name="index-mapcs_002dframe-958"></a>Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code. Specifying <samp><span class="option">-fomit-frame-pointer</span></samp>
with this option will cause the stack frames not to be generated for
leaf functions. The default is <samp><span class="option">-mno-apcs-frame</span></samp>.
<br><dt><code>-mapcs</code><dd><a name="index-mapcs-959"></a>This is a synonym for <samp><span class="option">-mapcs-frame</span></samp>.
<br><dt><code>-mthumb-interwork</code><dd><a name="index-mthumb_002dinterwork-960"></a>Generate code which supports calling between the ARM and Thumb
instruction sets. Without this option the two instruction sets cannot
be reliably used inside one program. The default is
<samp><span class="option">-mno-thumb-interwork</span></samp>, since slightly larger code is generated
when <samp><span class="option">-mthumb-interwork</span></samp> is specified.
<br><dt><code>-mno-sched-prolog</code><dd><a name="index-mno_002dsched_002dprolog-961"></a>Prevent the reordering of instructions in the function prolog, or the
merging of those instruction with the instructions in the function's
body. This means that all functions will start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start if functions inside an executable piece of code. The
default is <samp><span class="option">-msched-prolog</span></samp>.
<br><dt><code>-mfloat-abi=</code><var>name</var><dd><a name="index-mfloat_002dabi-962"></a>Specifies which floating-point ABI to use. Permissible values
are: ‘<samp><span class="samp">soft</span></samp>’, ‘<samp><span class="samp">softfp</span></samp>’ and ‘<samp><span class="samp">hard</span></samp>’.
<p>Specifying ‘<samp><span class="samp">soft</span></samp>’ causes GCC to generate output containing
library calls for floating-point operations.
‘<samp><span class="samp">softfp</span></samp>’ allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
‘<samp><span class="samp">hard</span></samp>’ allows generation of floating-point instructions
and uses FPU-specific calling conventions.
<p>The default depends on the specific target configuration. Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.
<br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-963"></a>Equivalent to <samp><span class="option">-mfloat-abi=hard</span></samp>.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-964"></a>Equivalent to <samp><span class="option">-mfloat-abi=soft</span></samp>.
<br><dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-965"></a>Generate code for a processor running in little-endian mode. This is
the default for all standard configurations.
<br><dt><code>-mbig-endian</code><dd><a name="index-mbig_002dendian-966"></a>Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.
<br><dt><code>-mwords-little-endian</code><dd><a name="index-mwords_002dlittle_002dendian-967"></a>This option only applies when generating code for big-endian processors.
Generate code for a little-endian word order but a big-endian byte
order. That is, a byte order of the form ‘<samp><span class="samp">32107654</span></samp>’. Note: this
option should only be used if you require compatibility with code for
big-endian ARM processors generated by versions of the compiler prior to
2.8.
<br><dt><code>-mcpu=</code><var>name</var><dd><a name="index-mcpu-968"></a>This specifies the name of the target ARM processor. GCC uses this name
to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: ‘<samp><span class="samp">arm2</span></samp>’, ‘<samp><span class="samp">arm250</span></samp>’,
‘<samp><span class="samp">arm3</span></samp>’, ‘<samp><span class="samp">arm6</span></samp>’, ‘<samp><span class="samp">arm60</span></samp>’, ‘<samp><span class="samp">arm600</span></samp>’, ‘<samp><span class="samp">arm610</span></samp>’,
‘<samp><span class="samp">arm620</span></samp>’, ‘<samp><span class="samp">arm7</span></samp>’, ‘<samp><span class="samp">arm7m</span></samp>’, ‘<samp><span class="samp">arm7d</span></samp>’, ‘<samp><span class="samp">arm7dm</span></samp>’,
‘<samp><span class="samp">arm7di</span></samp>’, ‘<samp><span class="samp">arm7dmi</span></samp>’, ‘<samp><span class="samp">arm70</span></samp>’, ‘<samp><span class="samp">arm700</span></samp>’,
‘<samp><span class="samp">arm700i</span></samp>’, ‘<samp><span class="samp">arm710</span></samp>’, ‘<samp><span class="samp">arm710c</span></samp>’, ‘<samp><span class="samp">arm7100</span></samp>’,
‘<samp><span class="samp">arm720</span></samp>’,
‘<samp><span class="samp">arm7500</span></samp>’, ‘<samp><span class="samp">arm7500fe</span></samp>’, ‘<samp><span class="samp">arm7tdmi</span></samp>’, ‘<samp><span class="samp">arm7tdmi-s</span></samp>’,
‘<samp><span class="samp">arm710t</span></samp>’, ‘<samp><span class="samp">arm720t</span></samp>’, ‘<samp><span class="samp">arm740t</span></samp>’,
‘<samp><span class="samp">strongarm</span></samp>’, ‘<samp><span class="samp">strongarm110</span></samp>’, ‘<samp><span class="samp">strongarm1100</span></samp>’,
‘<samp><span class="samp">strongarm1110</span></samp>’,
‘<samp><span class="samp">arm8</span></samp>’, ‘<samp><span class="samp">arm810</span></samp>’, ‘<samp><span class="samp">arm9</span></samp>’, ‘<samp><span class="samp">arm9e</span></samp>’, ‘<samp><span class="samp">arm920</span></samp>’,
‘<samp><span class="samp">arm920t</span></samp>’, ‘<samp><span class="samp">arm922t</span></samp>’, ‘<samp><span class="samp">arm946e-s</span></samp>’, ‘<samp><span class="samp">arm966e-s</span></samp>’,
‘<samp><span class="samp">arm968e-s</span></samp>’, ‘<samp><span class="samp">arm926ej-s</span></samp>’, ‘<samp><span class="samp">arm940t</span></samp>’, ‘<samp><span class="samp">arm9tdmi</span></samp>’,
‘<samp><span class="samp">arm10tdmi</span></samp>’, ‘<samp><span class="samp">arm1020t</span></samp>’, ‘<samp><span class="samp">arm1026ej-s</span></samp>’,
‘<samp><span class="samp">arm10e</span></samp>’, ‘<samp><span class="samp">arm1020e</span></samp>’, ‘<samp><span class="samp">arm1022e</span></samp>’,
‘<samp><span class="samp">arm1136j-s</span></samp>’, ‘<samp><span class="samp">arm1136jf-s</span></samp>’, ‘<samp><span class="samp">mpcore</span></samp>’, ‘<samp><span class="samp">mpcorenovfp</span></samp>’,
‘<samp><span class="samp">arm1156t2-s</span></samp>’, ‘<samp><span class="samp">arm1176jz-s</span></samp>’, ‘<samp><span class="samp">arm1176jzf-s</span></samp>’,
‘<samp><span class="samp">cortex-a5</span></samp>’, ‘<samp><span class="samp">cortex-a8</span></samp>’, ‘<samp><span class="samp">cortex-a9</span></samp>’,
‘<samp><span class="samp">cortex-r4</span></samp>’, ‘<samp><span class="samp">cortex-r4f</span></samp>’, ‘<samp><span class="samp">cortex-m4</span></samp>’, ‘<samp><span class="samp">cortex-m3</span></samp>’,
‘<samp><span class="samp">cortex-m1</span></samp>’, ‘<samp><span class="samp">cortex-m0</span></samp>’,
‘<samp><span class="samp">xscale</span></samp>’, ‘<samp><span class="samp">iwmmxt</span></samp>’, ‘<samp><span class="samp">iwmmxt2</span></samp>’, ‘<samp><span class="samp">ep9312</span></samp>’, ‘<samp><span class="samp">marvell-f</span></samp>’.
<br><dt><code>-mtune=</code><var>name</var><dd><a name="index-mtune-969"></a>This option is very similar to the <samp><span class="option">-mcpu=</span></samp> option, except that
instead of specifying the actual target processor type, and hence
restricting which instructions can be used, it specifies that GCC should
tune the performance of the code as if the target were of the type
specified in this option, but still choosing the instructions that it
will generate based on the cpu specified by a <samp><span class="option">-mcpu=</span></samp> option.
For some ARM implementations better performance can be obtained by using
this option.
<br><dt><code>-march=</code><var>name</var><dd><a name="index-march-970"></a>This specifies the name of the target ARM architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. This option can be used in conjunction with or instead
of the <samp><span class="option">-mcpu=</span></samp> option. Permissible names are: ‘<samp><span class="samp">armv2</span></samp>’,
‘<samp><span class="samp">armv2a</span></samp>’, ‘<samp><span class="samp">armv3</span></samp>’, ‘<samp><span class="samp">armv3m</span></samp>’, ‘<samp><span class="samp">armv4</span></samp>’, ‘<samp><span class="samp">armv4t</span></samp>’,
‘<samp><span class="samp">armv5</span></samp>’, ‘<samp><span class="samp">armv5t</span></samp>’, ‘<samp><span class="samp">armv5e</span></samp>’, ‘<samp><span class="samp">armv5te</span></samp>’,
‘<samp><span class="samp">armv6</span></samp>’, ‘<samp><span class="samp">armv6j</span></samp>’,
‘<samp><span class="samp">armv6t2</span></samp>’, ‘<samp><span class="samp">armv6z</span></samp>’, ‘<samp><span class="samp">armv6zk</span></samp>’, ‘<samp><span class="samp">armv6-m</span></samp>’,
‘<samp><span class="samp">armv7</span></samp>’, ‘<samp><span class="samp">armv7-a</span></samp>’, ‘<samp><span class="samp">armv7-r</span></samp>’, ‘<samp><span class="samp">armv7-m</span></samp>’,
‘<samp><span class="samp">iwmmxt</span></samp>’, ‘<samp><span class="samp">iwmmxt2</span></samp>’, ‘<samp><span class="samp">ep9312</span></samp>’.
<br><dt><code>-mfpu=</code><var>name</var><dt><code>-mfpe=</code><var>number</var><dt><code>-mfp=</code><var>number</var><dd><a name="index-mfpu-971"></a><a name="index-mfpe-972"></a><a name="index-mfp-973"></a>This specifies what floating point hardware (or hardware emulation) is
available on the target. Permissible names are: ‘<samp><span class="samp">fpa</span></samp>’, ‘<samp><span class="samp">fpe2</span></samp>’,
‘<samp><span class="samp">fpe3</span></samp>’, ‘<samp><span class="samp">maverick</span></samp>’, ‘<samp><span class="samp">vfp</span></samp>’, ‘<samp><span class="samp">vfpv3</span></samp>’, ‘<samp><span class="samp">vfpv3-fp16</span></samp>’,
‘<samp><span class="samp">vfpv3-d16</span></samp>’, ‘<samp><span class="samp">vfpv3-d16-fp16</span></samp>’, ‘<samp><span class="samp">vfpv4</span></samp>’, ‘<samp><span class="samp">vfpv4-d16</span></samp>’, ‘<samp><span class="samp">neon</span></samp>’, ‘<samp><span class="samp">neon-fp16</span></samp>’ and ‘<samp><span class="samp">neon-vfpv4</span></samp>’.
<samp><span class="option">-mfp</span></samp> and <samp><span class="option">-mfpe</span></samp>
are synonyms for <samp><span class="option">-mfpu</span></samp>=‘<samp><span class="samp">fpe</span></samp>’<var>number</var>, for compatibility
with older versions of GCC.
<p>If <samp><span class="option">-msoft-float</span></samp> is specified this specifies the format of
floating point values.
<br><dt><code>-mfp16-format=</code><var>name</var><dd><a name="index-mfp16_002dformat-974"></a>Specify the format of the <code>__fp16</code> half-precision floating-point type.
Permissible names are ‘<samp><span class="samp">none</span></samp>’, ‘<samp><span class="samp">ieee</span></samp>’, and ‘<samp><span class="samp">alternative</span></samp>’;
the default is ‘<samp><span class="samp">none</span></samp>’, in which case the <code>__fp16</code> type is not
defined. See <a href="#Half_002dPrecision">Half-Precision</a>, for more information.
<br><dt><code>-mmarvell-div</code><dd><a name="index-mmarvell_002ddiv-975"></a>Generate hardware integer division instructions supported by some Marvell cores.
<br><dt><code>-mstructure-size-boundary=</code><var>n</var><dd><a name="index-mstructure_002dsize_002dboundary-976"></a>The size of all structures and unions will be rounded up to a multiple
of the number of bits set by this option. Permissible values are 8, 32
and 64. The default value varies for different toolchains. For the COFF
targeted toolchain the default value is 8. A value of 64 is only allowed
if the underlying ABI supports it.
<p>Specifying the larger number can produce faster, more efficient code, but
can also increase the size of the program. Different values are potentially
incompatible. Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.
<br><dt><code>-mabort-on-noreturn</code><dd><a name="index-mabort_002don_002dnoreturn-977"></a>Generate a call to the function <code>abort</code> at the end of a
<code>noreturn</code> function. It will be executed if the function tries to
return.
<br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-978"></a><a name="index-mno_002dlong_002dcalls-979"></a>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
will lie outside of the 64 megabyte addressing range of the offset based
version of subroutine call instruction.
<p>Even if this switch is enabled, not all function calls will be turned
into long calls. The heuristic is that static functions, functions
which have the ‘<samp><span class="samp">short-call</span></samp>’ attribute, functions that are inside
the scope of a ‘<samp><span class="samp">#pragma no_long_calls</span></samp>’ directive and functions whose
definitions have already been compiled within the current compilation
unit, will not be turned into long calls. The exception to this rule is
that weak function definitions, functions with the ‘<samp><span class="samp">long-call</span></samp>’
attribute or the ‘<samp><span class="samp">section</span></samp>’ attribute, and functions that are within
the scope of a ‘<samp><span class="samp">#pragma long_calls</span></samp>’ directive, will always be
turned into long calls.
<p>This feature is not enabled by default. Specifying
<samp><span class="option">-mno-long-calls</span></samp> will restore the default behavior, as will
placing the function calls within the scope of a ‘<samp><span class="samp">#pragma
long_calls_off</span></samp>’ directive. Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.
<br><dt><code>-msingle-pic-base</code><dd><a name="index-msingle_002dpic_002dbase-980"></a>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The run-time system is
responsible for initializing this register with an appropriate value
before execution begins.
<br><dt><code>-mpic-register=</code><var>reg</var><dd><a name="index-mpic_002dregister-981"></a>Specify the register to be used for PIC addressing. The default is R10
unless stack-checking is enabled, when R9 is used.
<br><dt><code>-mcirrus-fix-invalid-insns</code><dd><a name="index-mcirrus_002dfix_002dinvalid_002dinsns-982"></a><a name="index-mno_002dcirrus_002dfix_002dinvalid_002dinsns-983"></a>Insert NOPs into the instruction stream to in order to work around
problems with invalid Maverick instruction combinations. This option
is only valid if the <samp><span class="option">-mcpu=ep9312</span></samp> option has been used to
enable generation of instructions for the Cirrus Maverick floating
point co-processor. This option is not enabled by default, since the
problem is only present in older Maverick implementations. The default
can be re-enabled by use of the <samp><span class="option">-mno-cirrus-fix-invalid-insns</span></samp>
switch.
<br><dt><code>-mpoke-function-name</code><dd><a name="index-mpoke_002dfunction_002dname-984"></a>Write the name of each function into the text section, directly
preceding the function prologue. The generated code is similar to this:
<pre class="smallexample"> t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - t0)
arm_poke_function_name
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
</pre>
<p>When performing a stack backtrace, code can inspect the value of
<code>pc</code> stored at <code>fp + 0</code>. If the trace function then looks at
location <code>pc - 12</code> and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length <code>((pc[-3]) & 0xff000000)</code>.
<br><dt><code>-mthumb</code><dd><a name="index-mthumb-985"></a>Generate code for the Thumb instruction set. The default is to
use the 32-bit ARM instruction set.
This option automatically enables either 16-bit Thumb-1 or
mixed 16/32-bit Thumb-2 instructions based on the <samp><span class="option">-mcpu=</span><var>name</var></samp>
and <samp><span class="option">-march=</span><var>name</var></samp> options.
<br><dt><code>-mfix-janus-2cc</code><dd><a name="index-mfix_002djanus_002d2cc-986"></a>Work around hardware errata for Avalent Janus 2CC cores.
<br><dt><code>-mtpcs-frame</code><dd><a name="index-mtpcs_002dframe-987"></a>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions. (A leaf function is one that does
not call any other functions.) The default is <samp><span class="option">-mno-tpcs-frame</span></samp>.
<br><dt><code>-mtpcs-leaf-frame</code><dd><a name="index-mtpcs_002dleaf_002dframe-988"></a>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions. (A leaf function is one that does
not call any other functions.) The default is <samp><span class="option">-mno-apcs-leaf-frame</span></samp>.
<br><dt><code>-mcallee-super-interworking</code><dd><a name="index-mcallee_002dsuper_002dinterworking-989"></a>Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function. This allows these functions to be called from
non-interworking code.
<br><dt><code>-mcaller-super-interworking</code><dd><a name="index-mcaller_002dsuper_002dinterworking-990"></a>Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not. There is a small overhead in the cost
of executing a function pointer if this option is enabled.
<br><dt><code>-mtp=</code><var>name</var><dd><a name="index-mtp-991"></a>Specify the access model for the thread local storage pointer. The valid
models are <samp><span class="option">soft</span></samp>, which generates calls to <code>__aeabi_read_tp</code>,
<samp><span class="option">cp15</span></samp>, which fetches the thread pointer from <code>cp15</code> directly
(supported in the arm6k architecture), and <samp><span class="option">auto</span></samp>, which uses the
best available method for the selected processor. The default setting is
<samp><span class="option">auto</span></samp>.
<br><dt><code>-mword-relocations</code><dd><a name="index-mword_002drelocations-992"></a>Only generate absolute relocations on word sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp>
is specified.
</dl>
<div class="node">
<a name="AVR-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Blackfin-Options">Blackfin Options</a>,
Previous: <a rel="previous" accesskey="p" href="#ARM-Options">ARM Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.3 AVR Options</h4>
<p><a name="index-AVR-Options-993"></a>
These options are defined for AVR implementations:
<dl>
<dt><code>-mmcu=</code><var>mcu</var><dd><a name="index-mmcu-994"></a>Specify ATMEL AVR instruction set or MCU type.
<p>Instruction set avr1 is for the minimal AVR core, not supported by the C
compiler, only for assembler programs (MCU types: at90s1200, attiny10,
attiny11, attiny12, attiny15, attiny28).
<p>Instruction set avr2 (default) is for the classic AVR core with up to
8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
at90c8534, at90s8535).
<p>Instruction set avr3 is for the classic AVR core with up to 128K program
memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).
<p>Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).
<p>Instruction set avr5 is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
atmega64, atmega128, at43usb355, at94k).
<br><dt><code>-msize</code><dd><a name="index-msize-995"></a>Output instruction sizes to the asm file.
<br><dt><code>-mno-interrupts</code><dd><a name="index-mno_002dinterrupts-996"></a>Generated code is not compatible with hardware interrupts.
Code size will be smaller.
<br><dt><code>-mcall-prologues</code><dd><a name="index-mcall_002dprologues-997"></a>Functions prologues/epilogues expanded as call to appropriate
subroutines. Code size will be smaller.
<br><dt><code>-mno-tablejump</code><dd><a name="index-mno_002dtablejump-998"></a>Do not generate tablejump insns which sometimes increase code size.
The option is now deprecated in favor of the equivalent
<samp><span class="option">-fno-jump-tables</span></samp>
<br><dt><code>-mtiny-stack</code><dd><a name="index-mtiny_002dstack-999"></a>Change only the low 8 bits of the stack pointer.
<br><dt><code>-mint8</code><dd><a name="index-mint8-1000"></a>Assume int to be 8 bit integer. This affects the sizes of all types: A
char will be 1 byte, an int will be 1 byte, an long will be 2 bytes
and long long will be 4 bytes. Please note that this option does not
comply to the C standards, but it will provide you with smaller code
size.
</dl>
<div class="node">
<a name="Blackfin-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#CRIS-Options">CRIS Options</a>,
Previous: <a rel="previous" accesskey="p" href="#AVR-Options">AVR Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.4 Blackfin Options</h4>
<p><a name="index-Blackfin-Options-1001"></a>
<dl>
<dt><code>-mcpu=</code><var>cpu</var><span class="roman">[</span><code>-</code><var>sirevision</var><span class="roman">]</span><dd><a name="index-mcpu_003d-1002"></a>Specifies the name of the target Blackfin processor. Currently, <var>cpu</var>
can be one of ‘<samp><span class="samp">bf512</span></samp>’, ‘<samp><span class="samp">bf514</span></samp>’, ‘<samp><span class="samp">bf516</span></samp>’, ‘<samp><span class="samp">bf518</span></samp>’,
‘<samp><span class="samp">bf522</span></samp>’, ‘<samp><span class="samp">bf523</span></samp>’, ‘<samp><span class="samp">bf524</span></samp>’, ‘<samp><span class="samp">bf525</span></samp>’, ‘<samp><span class="samp">bf526</span></samp>’,
‘<samp><span class="samp">bf527</span></samp>’, ‘<samp><span class="samp">bf531</span></samp>’, ‘<samp><span class="samp">bf532</span></samp>’, ‘<samp><span class="samp">bf533</span></samp>’,
‘<samp><span class="samp">bf534</span></samp>’, ‘<samp><span class="samp">bf536</span></samp>’, ‘<samp><span class="samp">bf537</span></samp>’, ‘<samp><span class="samp">bf538</span></samp>’, ‘<samp><span class="samp">bf539</span></samp>’,
‘<samp><span class="samp">bf542</span></samp>’, ‘<samp><span class="samp">bf544</span></samp>’, ‘<samp><span class="samp">bf547</span></samp>’, ‘<samp><span class="samp">bf548</span></samp>’, ‘<samp><span class="samp">bf549</span></samp>’,
‘<samp><span class="samp">bf561</span></samp>’.
The optional <var>sirevision</var> specifies the silicon revision of the target
Blackfin processor. Any workarounds available for the targeted silicon revision
will be enabled. If <var>sirevision</var> is ‘<samp><span class="samp">none</span></samp>’, no workarounds are enabled.
If <var>sirevision</var> is ‘<samp><span class="samp">any</span></samp>’, all workarounds for the targeted processor
will be enabled. The <code>__SILICON_REVISION__</code> macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision. If <var>sirevision</var> is ‘<samp><span class="samp">none</span></samp>’, the <code>__SILICON_REVISION__</code>
is not defined. If <var>sirevision</var> is ‘<samp><span class="samp">any</span></samp>’, the
<code>__SILICON_REVISION__</code> is defined to be <code>0xffff</code>.
If this optional <var>sirevision</var> is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.
<p>Support for ‘<samp><span class="samp">bf561</span></samp>’ is incomplete. For ‘<samp><span class="samp">bf561</span></samp>’,
Only the processor macro is defined.
Without this option, ‘<samp><span class="samp">bf532</span></samp>’ is used as the processor by default.
The corresponding predefined processor macros for <var>cpu</var> is to
be defined. And for ‘<samp><span class="samp">bfin-elf</span></samp>’ toolchain, this causes the hardware BSP
provided by libgloss to be linked in if <samp><span class="option">-msim</span></samp> is not given.
<br><dt><code>-msim</code><dd><a name="index-msim-1003"></a>Specifies that the program will be run on the simulator. This causes
the simulator BSP provided by libgloss to be linked in. This option
has effect only for ‘<samp><span class="samp">bfin-elf</span></samp>’ toolchain.
Certain other options, such as <samp><span class="option">-mid-shared-library</span></samp> and
<samp><span class="option">-mfdpic</span></samp>, imply <samp><span class="option">-msim</span></samp>.
<br><dt><code>-momit-leaf-frame-pointer</code><dd><a name="index-momit_002dleaf_002dframe_002dpointer-1004"></a>Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions. The option
<samp><span class="option">-fomit-frame-pointer</span></samp> removes the frame pointer for all functions
which might make debugging harder.
<br><dt><code>-mspecld-anomaly</code><dd><a name="index-mspecld_002danomaly-1005"></a>When enabled, the compiler will ensure that the generated code does not
contain speculative loads after jump instructions. If this option is used,
<code>__WORKAROUND_SPECULATIVE_LOADS</code> is defined.
<br><dt><code>-mno-specld-anomaly</code><dd><a name="index-mno_002dspecld_002danomaly-1006"></a>Don't generate extra code to prevent speculative loads from occurring.
<br><dt><code>-mcsync-anomaly</code><dd><a name="index-mcsync_002danomaly-1007"></a>When enabled, the compiler will ensure that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used, <code>__WORKAROUND_SPECULATIVE_SYNCS</code> is defined.
<br><dt><code>-mno-csync-anomaly</code><dd><a name="index-mno_002dcsync_002danomaly-1008"></a>Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.
<br><dt><code>-mlow-64k</code><dd><a name="index-mlow_002d64k-1009"></a>When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.
<br><dt><code>-mno-low-64k</code><dd><a name="index-mno_002dlow_002d64k-1010"></a>Assume that the program is arbitrarily large. This is the default.
<br><dt><code>-mstack-check-l1</code><dd><a name="index-mstack_002dcheck_002dl1-1011"></a>Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.
<br><dt><code>-mid-shared-library</code><dd><a name="index-mid_002dshared_002dlibrary-1012"></a>Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies <samp><span class="option">-fPIC</span></samp>.
With a ‘<samp><span class="samp">bfin-elf</span></samp>’ target, this option implies <samp><span class="option">-msim</span></samp>.
<br><dt><code>-mno-id-shared-library</code><dd><a name="index-mno_002did_002dshared_002dlibrary-1013"></a>Generate code that doesn't assume ID based shared libraries are being used.
This is the default.
<br><dt><code>-mleaf-id-shared-library</code><dd><a name="index-mleaf_002did_002dshared_002dlibrary-1014"></a>Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries. That allows the compiler to use faster code for jumps
and calls.
<br><dt><code>-mno-leaf-id-shared-library</code><dd><a name="index-mno_002dleaf_002did_002dshared_002dlibrary-1015"></a>Do not assume that the code being compiled won't link against any ID shared
libraries. Slower code will be generated for jump and call insns.
<br><dt><code>-mshared-library-id=n</code><dd><a name="index-mshared_002dlibrary_002did-1016"></a>Specified the identification number of the ID based shared library being
compiled. Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.
<br><dt><code>-msep-data</code><dd><a name="index-msep_002ddata-1017"></a>Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.
<br><dt><code>-mno-sep-data</code><dd><a name="index-mno_002dsep_002ddata-1018"></a>Generate code that assumes that the data segment follows the text segment.
This is the default.
<br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1019"></a><a name="index-mno_002dlong_002dcalls-1020"></a>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
will lie outside of the 24 bit addressing range of the offset based
version of subroutine call instruction.
<p>This feature is not enabled by default. Specifying
<samp><span class="option">-mno-long-calls</span></samp> will restore the default behavior. Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.
<br><dt><code>-mfast-fp</code><dd><a name="index-mfast_002dfp-1021"></a>Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.
<br><dt><code>-minline-plt</code><dd><a name="index-minline_002dplt-1022"></a>Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without <samp><span class="option">-mfdpic</span></samp>.
<br><dt><code>-mmulticore</code><dd><a name="index-mmulticore-1023"></a>Build standalone application for multicore Blackfin processor. Proper
start files and link scripts will be used to support multicore.
This option defines <code>__BFIN_MULTICORE</code>. It can only be used with
<samp><span class="option">-mcpu=bf561[-</span><var>sirevision</var><span class="option">]</span></samp>. It can be used with
<samp><span class="option">-mcorea</span></samp> or <samp><span class="option">-mcoreb</span></samp>. If it's used without
<samp><span class="option">-mcorea</span></samp> or <samp><span class="option">-mcoreb</span></samp>, single application/dual core
programming model is used. In this model, the main function of Core B
should be named as coreb_main. If it's used with <samp><span class="option">-mcorea</span></samp> or
<samp><span class="option">-mcoreb</span></samp>, one application per core programming model is used.
If this option is not used, single core application programming
model is used.
<br><dt><code>-mcorea</code><dd><a name="index-mcorea-1024"></a>Build standalone application for Core A of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core A. This option
defines <code>__BFIN_COREA</code>. It must be used with <samp><span class="option">-mmulticore</span></samp>.
<br><dt><code>-mcoreb</code><dd><a name="index-mcoreb-1025"></a>Build standalone application for Core B of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core B. This option
defines <code>__BFIN_COREB</code>. When this option is used, coreb_main
should be used instead of main. It must be used with
<samp><span class="option">-mmulticore</span></samp>.
<br><dt><code>-msdram</code><dd><a name="index-msdram-1026"></a>Build standalone application for SDRAM. Proper start files and
link scripts will be used to put the application into SDRAM.
Loader should initialize SDRAM before loading the application
into SDRAM. This option defines <code>__BFIN_SDRAM</code>.
<br><dt><code>-micplb</code><dd><a name="index-micplb-1027"></a>Assume that ICPLBs are enabled at runtime. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
</dl>
<div class="node">
<a name="CRIS-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#CRX-Options">CRX Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Blackfin-Options">Blackfin Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.5 CRIS Options</h4>
<p><a name="index-CRIS-Options-1028"></a>
These options are defined specifically for the CRIS ports.
<dl>
<dt><code>-march=</code><var>architecture-type</var><dt><code>-mcpu=</code><var>architecture-type</var><dd><a name="index-march-1029"></a><a name="index-mcpu-1030"></a>Generate code for the specified architecture. The choices for
<var>architecture-type</var> are ‘<samp><span class="samp">v3</span></samp>’, ‘<samp><span class="samp">v8</span></samp>’ and ‘<samp><span class="samp">v10</span></samp>’ for
respectively ETRAX <!-- /@w -->4, ETRAX <!-- /@w -->100, and ETRAX <!-- /@w -->100 <!-- /@w -->LX.
Default is ‘<samp><span class="samp">v0</span></samp>’ except for cris-axis-linux-gnu, where the default is
‘<samp><span class="samp">v10</span></samp>’.
<br><dt><code>-mtune=</code><var>architecture-type</var><dd><a name="index-mtune-1031"></a>Tune to <var>architecture-type</var> everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for <var>architecture-type</var> are the same as for
<samp><span class="option">-march=</span><var>architecture-type</var></samp>.
<br><dt><code>-mmax-stack-frame=</code><var>n</var><dd><a name="index-mmax_002dstack_002dframe-1032"></a>Warn when the stack frame of a function exceeds <var>n</var> bytes.
<br><dt><code>-metrax4</code><dt><code>-metrax100</code><dd><a name="index-metrax4-1033"></a><a name="index-metrax100-1034"></a>The options <samp><span class="option">-metrax4</span></samp> and <samp><span class="option">-metrax100</span></samp> are synonyms for
<samp><span class="option">-march=v3</span></samp> and <samp><span class="option">-march=v8</span></samp> respectively.
<br><dt><code>-mmul-bug-workaround</code><dt><code>-mno-mul-bug-workaround</code><dd><a name="index-mmul_002dbug_002dworkaround-1035"></a><a name="index-mno_002dmul_002dbug_002dworkaround-1036"></a>Work around a bug in the <code>muls</code> and <code>mulu</code> instructions for CPU
models where it applies. This option is active by default.
<br><dt><code>-mpdebug</code><dd><a name="index-mpdebug-1037"></a>Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect to turn off the ‘<samp><span class="samp">#NO_APP</span></samp>’
formatted-code indicator to the assembler at the beginning of the
assembly file.
<br><dt><code>-mcc-init</code><dd><a name="index-mcc_002dinit-1038"></a>Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
<br><dt><code>-mno-side-effects</code><dd><a name="index-mno_002dside_002deffects-1039"></a>Do not emit instructions with side-effects in addressing modes other than
post-increment.
<br><dt><code>-mstack-align</code><dt><code>-mno-stack-align</code><dt><code>-mdata-align</code><dt><code>-mno-data-align</code><dt><code>-mconst-align</code><dt><code>-mno-const-align</code><dd><a name="index-mstack_002dalign-1040"></a><a name="index-mno_002dstack_002dalign-1041"></a><a name="index-mdata_002dalign-1042"></a><a name="index-mno_002ddata_002dalign-1043"></a><a name="index-mconst_002dalign-1044"></a><a name="index-mno_002dconst_002dalign-1045"></a>These options (no-options) arranges (eliminate arrangements) for the
stack-frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model. The default is to
arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
<br><dt><code>-m32-bit</code><dt><code>-m16-bit</code><dt><code>-m8-bit</code><dd><a name="index-m32_002dbit-1046"></a><a name="index-m16_002dbit-1047"></a><a name="index-m8_002dbit-1048"></a>Similar to the stack- data- and const-align options above, these options
arrange for stack-frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
<br><dt><code>-mno-prologue-epilogue</code><dt><code>-mprologue-epilogue</code><dd><a name="index-mno_002dprologue_002depilogue-1049"></a><a name="index-mprologue_002depilogue-1050"></a>With <samp><span class="option">-mno-prologue-epilogue</span></samp>, the normal function prologue and
epilogue that sets up the stack-frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variable needs to be allocated.
<br><dt><code>-mno-gotplt</code><dt><code>-mgotplt</code><dd><a name="index-mno_002dgotplt-1051"></a><a name="index-mgotplt-1052"></a>With <samp><span class="option">-fpic</span></samp> and <samp><span class="option">-fPIC</span></samp>, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT. The default is <samp><span class="option">-mgotplt</span></samp>.
<br><dt><code>-melf</code><dd><a name="index-melf-1053"></a>Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.
<br><dt><code>-mlinux</code><dd><a name="index-mlinux-1054"></a>Legacy no-op option only recognized with the cris-axis-linux-gnu target.
<br><dt><code>-sim</code><dd><a name="index-sim-1055"></a>This option, recognized for the cris-axis-elf arranges
to link with input-output functions from a simulator library. Code,
initialized data and zero-initialized data are allocated consecutively.
<br><dt><code>-sim2</code><dd><a name="index-sim2-1056"></a>Like <samp><span class="option">-sim</span></samp>, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
</dl>
<div class="node">
<a name="CRX-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Darwin-Options">Darwin Options</a>,
Previous: <a rel="previous" accesskey="p" href="#CRIS-Options">CRIS Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.6 CRX Options</h4>
<p><a name="index-CRX-Options-1057"></a>
These options are defined specifically for the CRX ports.
<dl>
<dt><code>-mmac</code><dd><a name="index-mmac-1058"></a>Enable the use of multiply-accumulate instructions. Disabled by default.
<br><dt><code>-mpush-args</code><dd><a name="index-mpush_002dargs-1059"></a>Push instructions will be used to pass outgoing arguments when functions
are called. Enabled by default.
</dl>
<div class="node">
<a name="Darwin-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#DEC-Alpha-Options">DEC Alpha Options</a>,
Previous: <a rel="previous" accesskey="p" href="#CRX-Options">CRX Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.7 Darwin Options</h4>
<p><a name="index-Darwin-options-1060"></a>
These options are defined for all architectures running the Darwin operating
system.
<p>FSF GCC on Darwin does not create “fat” object files; it will create
an object file for the single architecture that it was built to
target. Apple's GCC on Darwin does create “fat” files if multiple
<samp><span class="option">-arch</span></samp> options are used; it does so by running the compiler or
linker multiple times and joining the results together with
<samp><span class="file">lipo</span></samp>.
<p>The subtype of the file created (like ‘<samp><span class="samp">ppc7400</span></samp>’ or ‘<samp><span class="samp">ppc970</span></samp>’ or
‘<samp><span class="samp">i686</span></samp>’) is determined by the flags that specify the ISA
that GCC is targetting, like <samp><span class="option">-mcpu</span></samp> or <samp><span class="option">-march</span></samp>. The
<samp><span class="option">-force_cpusubtype_ALL</span></samp> option can be used to override this.
<p>The Darwin tools vary in their behavior when presented with an ISA
mismatch. The assembler, <samp><span class="file">as</span></samp>, will only permit instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in an ‘<samp><span class="samp">ppc750</span></samp>’ object file.
The linker for shared libraries, <samp><span class="file">/usr/bin/libtool</span></samp>, will fail
and print an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a ‘<samp><span class="samp">ppc970</span></samp>’ object file in a ‘<samp><span class="samp">ppc7400</span></samp>’ library). The linker
for executables, <samp><span class="file">ld</span></samp>, will quietly give the executable the most
restrictive subtype of any of its input files.
<dl>
<dt><code>-F</code><var>dir</var><dd><a name="index-F-1061"></a>Add the framework directory <var>dir</var> to the head of the list of
directories to be searched for header files. These directories are
interleaved with those specified by <samp><span class="option">-I</span></samp> options and are
scanned in a left-to-right order.
<p>A framework directory is a directory with frameworks in it. A
framework is a directory with a ‘<samp><span class="samp">"Headers"</span></samp>’ and/or
‘<samp><span class="samp">"PrivateHeaders"</span></samp>’ directory contained directly in it that ends
in ‘<samp><span class="samp">".framework"</span></samp>’. The name of a framework is the name of this
directory excluding the ‘<samp><span class="samp">".framework"</span></samp>’. Headers associated with
the framework are found in one of those two directories, with
‘<samp><span class="samp">"Headers"</span></samp>’ being searched first. A subframework is a framework
directory that is in a framework's ‘<samp><span class="samp">"Frameworks"</span></samp>’ directory.
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header. Two subframeworks are siblings if they occur in the same
framework. A subframework should not have the same name as a
framework, a warning will be issued if this is violated. Currently a
subframework cannot have subframeworks, in the future, the mechanism
may be extended to support this. The standard frameworks can be found
in ‘<samp><span class="samp">"/System/Library/Frameworks"</span></samp>’ and
‘<samp><span class="samp">"/Library/Frameworks"</span></samp>’. An example include looks like
<code>#include <Framework/header.h></code>, where ‘<samp><span class="samp">Framework</span></samp>’ denotes
the name of the framework and header.h is found in the
‘<samp><span class="samp">"PrivateHeaders"</span></samp>’ or ‘<samp><span class="samp">"Headers"</span></samp>’ directory.
<br><dt><code>-iframework</code><var>dir</var><dd><a name="index-iframework-1062"></a>Like <samp><span class="option">-F</span></samp> except the directory is a treated as a system
directory. The main difference between this <samp><span class="option">-iframework</span></samp> and
<samp><span class="option">-F</span></samp> is that with <samp><span class="option">-iframework</span></samp> the compiler does not
warn about constructs contained within header files found via
<var>dir</var>. This option is valid only for the C family of languages.
<br><dt><code>-gused</code><dd><a name="index-gused-1063"></a>Emit debugging information for symbols that are used. For STABS
debugging format, this enables <samp><span class="option">-feliminate-unused-debug-symbols</span></samp>.
This is by default ON.
<br><dt><code>-gfull</code><dd><a name="index-gfull-1064"></a>Emit debugging information for all symbols and types.
<br><dt><code>-mmacosx-version-min=</code><var>version</var><dd>The earliest version of MacOS X that this executable will run on
is <var>version</var>. Typical values of <var>version</var> include <code>10.1</code>,
<code>10.2</code>, and <code>10.3.9</code>.
<p>If the compiler was built to use the system's headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices which
are compatible with as many systems and code bases as possible.
<br><dt><code>-mkernel</code><dd><a name="index-mkernel-1065"></a>Enable kernel development mode. The <samp><span class="option">-mkernel</span></samp> option sets
<samp><span class="option">-static</span></samp>, <samp><span class="option">-fno-common</span></samp>, <samp><span class="option">-fno-cxa-atexit</span></samp>,
<samp><span class="option">-fno-exceptions</span></samp>, <samp><span class="option">-fno-non-call-exceptions</span></samp>,
<samp><span class="option">-fapple-kext</span></samp>, <samp><span class="option">-fno-weak</span></samp> and <samp><span class="option">-fno-rtti</span></samp> where
applicable. This mode also sets <samp><span class="option">-mno-altivec</span></samp>,
<samp><span class="option">-msoft-float</span></samp>, <samp><span class="option">-fno-builtin</span></samp> and
<samp><span class="option">-mlong-branch</span></samp> for PowerPC targets.
<br><dt><code>-mone-byte-bool</code><dd><a name="index-mone_002dbyte_002dbool-1066"></a>Override the defaults for ‘<samp><span class="samp">bool</span></samp>’ so that ‘<samp><span class="samp">sizeof(bool)==1</span></samp>’.
By default ‘<samp><span class="samp">sizeof(bool)</span></samp>’ is ‘<samp><span class="samp">4</span></samp>’ when compiling for
Darwin/PowerPC and ‘<samp><span class="samp">1</span></samp>’ when compiling for Darwin/x86, so this
option has no effect on x86.
<p><strong>Warning:</strong> The <samp><span class="option">-mone-byte-bool</span></samp> switch causes GCC
to generate code that is not binary compatible with code generated
without that switch. Using this switch may require recompiling all
other modules in a program, including system libraries. Use this
switch to conform to a non-default data model.
<br><dt><code>-mfix-and-continue</code><dt><code>-ffix-and-continue</code><dt><code>-findirect-data</code><dd><a name="index-mfix_002dand_002dcontinue-1067"></a><a name="index-ffix_002dand_002dcontinue-1068"></a><a name="index-findirect_002ddata-1069"></a>Generate code suitable for fast turn around development. Needed to
enable gdb to dynamically load <code>.o</code> files into already running
programs. <samp><span class="option">-findirect-data</span></samp> and <samp><span class="option">-ffix-and-continue</span></samp>
are provided for backwards compatibility.
<br><dt><code>-all_load</code><dd><a name="index-all_005fload-1070"></a>Loads all members of static archive libraries.
See man ld(1) for more information.
<br><dt><code>-arch_errors_fatal</code><dd><a name="index-arch_005ferrors_005ffatal-1071"></a>Cause the errors having to do with files that have the wrong architecture
to be fatal.
<br><dt><code>-bind_at_load</code><dd><a name="index-bind_005fat_005fload-1072"></a>Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.
<br><dt><code>-bundle</code><dd><a name="index-bundle-1073"></a>Produce a Mach-o bundle format file.
See man ld(1) for more information.
<br><dt><code>-bundle_loader </code><var>executable</var><dd><a name="index-bundle_005floader-1074"></a>This option specifies the <var>executable</var> that will be loading the build
output file being linked. See man ld(1) for more information.
<br><dt><code>-dynamiclib</code><dd><a name="index-dynamiclib-1075"></a>When passed this option, GCC will produce a dynamic library instead of
an executable when linking, using the Darwin <samp><span class="file">libtool</span></samp> command.
<br><dt><code>-force_cpusubtype_ALL</code><dd><a name="index-force_005fcpusubtype_005fALL-1076"></a>This causes GCC's output file to have the <var>ALL</var> subtype, instead of
one controlled by the <samp><span class="option">-mcpu</span></samp> or <samp><span class="option">-march</span></samp> option.
<br><dt><code>-allowable_client </code><var>client_name</var><dt><code>-client_name</code><dt><code>-compatibility_version</code><dt><code>-current_version</code><dt><code>-dead_strip</code><dt><code>-dependency-file</code><dt><code>-dylib_file</code><dt><code>-dylinker_install_name</code><dt><code>-dynamic</code><dt><code>-exported_symbols_list</code><dt><code>-filelist</code><dt><code>-flat_namespace</code><dt><code>-force_flat_namespace</code><dt><code>-headerpad_max_install_names</code><dt><code>-image_base</code><dt><code>-init</code><dt><code>-install_name</code><dt><code>-keep_private_externs</code><dt><code>-multi_module</code><dt><code>-multiply_defined</code><dt><code>-multiply_defined_unused</code><dt><code>-noall_load</code><dt><code>-no_dead_strip_inits_and_terms</code><dt><code>-nofixprebinding</code><dt><code>-nomultidefs</code><dt><code>-noprebind</code><dt><code>-noseglinkedit</code><dt><code>-pagezero_size</code><dt><code>-prebind</code><dt><code>-prebind_all_twolevel_modules</code><dt><code>-private_bundle</code><dt><code>-read_only_relocs</code><dt><code>-sectalign</code><dt><code>-sectobjectsymbols</code><dt><code>-whyload</code><dt><code>-seg1addr</code><dt><code>-sectcreate</code><dt><code>-sectobjectsymbols</code><dt><code>-sectorder</code><dt><code>-segaddr</code><dt><code>-segs_read_only_addr</code><dt><code>-segs_read_write_addr</code><dt><code>-seg_addr_table</code><dt><code>-seg_addr_table_filename</code><dt><code>-seglinkedit</code><dt><code>-segprot</code><dt><code>-segs_read_only_addr</code><dt><code>-segs_read_write_addr</code><dt><code>-single_module</code><dt><code>-static</code><dt><code>-sub_library</code><dt><code>-sub_umbrella</code><dt><code>-twolevel_namespace</code><dt><code>-umbrella</code><dt><code>-undefined</code><dt><code>-unexported_symbols_list</code><dt><code>-weak_reference_mismatches</code><dt><code>-whatsloaded</code><dd><a name="index-allowable_005fclient-1077"></a><a name="index-client_005fname-1078"></a><a name="index-compatibility_005fversion-1079"></a><a name="index-current_005fversion-1080"></a><a name="index-dead_005fstrip-1081"></a><a name="index-dependency_002dfile-1082"></a><a name="index-dylib_005ffile-1083"></a><a name="index-dylinker_005finstall_005fname-1084"></a><a name="index-dynamic-1085"></a><a name="index-exported_005fsymbols_005flist-1086"></a><a name="index-filelist-1087"></a><a name="index-flat_005fnamespace-1088"></a><a name="index-force_005fflat_005fnamespace-1089"></a><a name="index-headerpad_005fmax_005finstall_005fnames-1090"></a><a name="index-image_005fbase-1091"></a><a name="index-init-1092"></a><a name="index-install_005fname-1093"></a><a name="index-keep_005fprivate_005fexterns-1094"></a><a name="index-multi_005fmodule-1095"></a><a name="index-multiply_005fdefined-1096"></a><a name="index-multiply_005fdefined_005funused-1097"></a><a name="index-noall_005fload-1098"></a><a name="index-no_005fdead_005fstrip_005finits_005fand_005fterms-1099"></a><a name="index-nofixprebinding-1100"></a><a name="index-nomultidefs-1101"></a><a name="index-noprebind-1102"></a><a name="index-noseglinkedit-1103"></a><a name="index-pagezero_005fsize-1104"></a><a name="index-prebind-1105"></a><a name="index-prebind_005fall_005ftwolevel_005fmodules-1106"></a><a name="index-private_005fbundle-1107"></a><a name="index-read_005fonly_005frelocs-1108"></a><a name="index-sectalign-1109"></a><a name="index-sectobjectsymbols-1110"></a><a name="index-whyload-1111"></a><a name="index-seg1addr-1112"></a><a name="index-sectcreate-1113"></a><a name="index-sectobjectsymbols-1114"></a><a name="index-sectorder-1115"></a><a name="index-segaddr-1116"></a><a name="index-segs_005fread_005fonly_005faddr-1117"></a><a name="index-segs_005fread_005fwrite_005faddr-1118"></a><a name="index-seg_005faddr_005ftable-1119"></a><a name="index-seg_005faddr_005ftable_005ffilename-1120"></a><a name="index-seglinkedit-1121"></a><a name="index-segprot-1122"></a><a name="index-segs_005fread_005fonly_005faddr-1123"></a><a name="index-segs_005fread_005fwrite_005faddr-1124"></a><a name="index-single_005fmodule-1125"></a><a name="index-static-1126"></a><a name="index-sub_005flibrary-1127"></a><a name="index-sub_005fumbrella-1128"></a><a name="index-twolevel_005fnamespace-1129"></a><a name="index-umbrella-1130"></a><a name="index-undefined-1131"></a><a name="index-unexported_005fsymbols_005flist-1132"></a><a name="index-weak_005freference_005fmismatches-1133"></a><a name="index-whatsloaded-1134"></a>These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
</dl>
<div class="node">
<a name="DEC-Alpha-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Darwin-Options">Darwin Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.8 DEC Alpha Options</h4>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the DEC Alpha implementations:
<dl>
<dt><code>-mno-soft-float</code><dt><code>-msoft-float</code><dd><a name="index-mno_002dsoft_002dfloat-1135"></a><a name="index-msoft_002dfloat-1136"></a>Use (do not use) the hardware floating-point instructions for
floating-point operations. When <samp><span class="option">-msoft-float</span></samp> is specified,
functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines will issue floating-point
operations. If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.
<p>Note that Alpha implementations without floating-point operations are
required to have floating-point registers.
<br><dt><code>-mfp-reg</code><dt><code>-mno-fp-regs</code><dd><a name="index-mfp_002dreg-1137"></a><a name="index-mno_002dfp_002dregs-1138"></a>Generate code that uses (does not use) the floating-point register set.
<samp><span class="option">-mno-fp-regs</span></samp> implies <samp><span class="option">-msoft-float</span></samp>. If the floating-point
register set is not used, floating point operands are passed in integer
registers as if they were integers and floating-point results are passed
in <code>$0</code> instead of <code>$f0</code>. This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with <samp><span class="option">-mno-fp-regs</span></samp> must also be compiled with that
option.
<p>A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.
<br><dt><code>-mieee</code><dd><a name="index-mieee-1139"></a>The Alpha architecture implements floating-point hardware optimized for
maximum performance. It is mostly compliant with the IEEE floating
point standard. However, for full compliance, software assistance is
required. This option generates code fully IEEE compliant code
<em>except</em> that the <var>inexact-flag</var> is not maintained (see below).
If this option is turned on, the preprocessor macro <code>_IEEE_FP</code> is
defined during compilation. The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity. Other Alpha
compilers call this option <samp><span class="option">-ieee_with_no_inexact</span></samp>.
<br><dt><code>-mieee-with-inexact</code><dd><a name="index-mieee_002dwith_002dinexact-1140"></a>This is like <samp><span class="option">-mieee</span></samp> except the generated code also maintains
the IEEE <var>inexact-flag</var>. Turning on this option causes the
generated code to implement fully-compliant IEEE math. In addition to
<code>_IEEE_FP</code>, <code>_IEEE_FP_EXACT</code> is defined as a preprocessor
macro. On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default. Since there is
very little code that depends on the <var>inexact-flag</var>, you should
normally not specify this option. Other Alpha compilers call this
option <samp><span class="option">-ieee_with_inexact</span></samp>.
<br><dt><code>-mfp-trap-mode=</code><var>trap-mode</var><dd><a name="index-mfp_002dtrap_002dmode-1141"></a>This option controls what floating-point related traps are enabled.
Other Alpha compilers call this option <samp><span class="option">-fptm </span><var>trap-mode</var></samp>.
The trap mode can be set to one of four values:
<dl>
<dt>‘<samp><span class="samp">n</span></samp>’<dd>This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).
<br><dt>‘<samp><span class="samp">u</span></samp>’<dd>In addition to the traps enabled by ‘<samp><span class="samp">n</span></samp>’, underflow traps are enabled
as well.
<br><dt>‘<samp><span class="samp">su</span></samp>’<dd>Like ‘<samp><span class="samp">u</span></samp>’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).
<br><dt>‘<samp><span class="samp">sui</span></samp>’<dd>Like ‘<samp><span class="samp">su</span></samp>’, but inexact traps are enabled as well.
</dl>
<br><dt><code>-mfp-rounding-mode=</code><var>rounding-mode</var><dd><a name="index-mfp_002drounding_002dmode-1142"></a>Selects the IEEE rounding mode. Other Alpha compilers call this option
<samp><span class="option">-fprm </span><var>rounding-mode</var></samp>. The <var>rounding-mode</var> can be one
of:
<dl>
<dt>‘<samp><span class="samp">n</span></samp>’<dd>Normal IEEE rounding mode. Floating point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.
<br><dt>‘<samp><span class="samp">m</span></samp>’<dd>Round towards minus infinity.
<br><dt>‘<samp><span class="samp">c</span></samp>’<dd>Chopped rounding mode. Floating point numbers are rounded towards zero.
<br><dt>‘<samp><span class="samp">d</span></samp>’<dd>Dynamic rounding mode. A field in the floating point control register
(<var>fpcr</var>, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies the
<var>fpcr</var>, ‘<samp><span class="samp">d</span></samp>’ corresponds to round towards plus infinity.
</dl>
<br><dt><code>-mtrap-precision=</code><var>trap-precision</var><dd><a name="index-mtrap_002dprecision-1143"></a>In the Alpha architecture, floating point traps are imprecise. This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated.
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:
<dl>
<dt>‘<samp><span class="samp">p</span></samp>’<dd>Program precision. This option is the default and means a trap handler
can only identify which program caused a floating point exception.
<br><dt>‘<samp><span class="samp">f</span></samp>’<dd>Function precision. The trap handler can determine the function that
caused a floating point exception.
<br><dt>‘<samp><span class="samp">i</span></samp>’<dd>Instruction precision. The trap handler can determine the exact
instruction that caused a floating point exception.
</dl>
<p>Other Alpha compilers provide the equivalent options called
<samp><span class="option">-scope_safe</span></samp> and <samp><span class="option">-resumption_safe</span></samp>.
<br><dt><code>-mieee-conformant</code><dd><a name="index-mieee_002dconformant-1144"></a>This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify <samp><span class="option">-mtrap-precision=i</span></samp> and either
<samp><span class="option">-mfp-trap-mode=su</span></samp> or <samp><span class="option">-mfp-trap-mode=sui</span></samp>. Its only effect
is to emit the line ‘<samp><span class="samp">.eflag 48</span></samp>’ in the function prologue of the
generated assembly file. Under DEC Unix, this has the effect that
IEEE-conformant math library routines will be linked in.
<br><dt><code>-mbuild-constants</code><dd><a name="index-mbuild_002dconstants-1145"></a>Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions. If it cannot, it will output the constant as a literal and
generate code to load it from the data segment at runtime.
<p>Use this option to require GCC to construct <em>all</em> integer constants
using code, even if it takes more instructions (the maximum is six).
<p>You would typically use this option to build a shared library dynamic
loader. Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.
<br><dt><code>-malpha-as</code><dt><code>-mgas</code><dd><a name="index-malpha_002das-1146"></a><a name="index-mgas-1147"></a>Select whether to generate code to be assembled by the vendor-supplied
assembler (<samp><span class="option">-malpha-as</span></samp>) or by the GNU assembler <samp><span class="option">-mgas</span></samp>.
<br><dt><code>-mbwx</code><dt><code>-mno-bwx</code><dt><code>-mcix</code><dt><code>-mno-cix</code><dt><code>-mfix</code><dt><code>-mno-fix</code><dt><code>-mmax</code><dt><code>-mno-max</code><dd><a name="index-mbwx-1148"></a><a name="index-mno_002dbwx-1149"></a><a name="index-mcix-1150"></a><a name="index-mno_002dcix-1151"></a><a name="index-mfix-1152"></a><a name="index-mno_002dfix-1153"></a><a name="index-mmax-1154"></a><a name="index-mno_002dmax-1155"></a>Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets. The default is to use the instruction
sets supported by the CPU type specified via <samp><span class="option">-mcpu=</span></samp> option or that
of the CPU on which GCC was built if none was specified.
<br><dt><code>-mfloat-vax</code><dt><code>-mfloat-ieee</code><dd><a name="index-mfloat_002dvax-1156"></a><a name="index-mfloat_002dieee-1157"></a>Generate code that uses (does not use) VAX F and G floating point
arithmetic instead of IEEE single and double precision.
<br><dt><code>-mexplicit-relocs</code><dt><code>-mno-explicit-relocs</code><dd><a name="index-mexplicit_002drelocs-1158"></a><a name="index-mno_002dexplicit_002drelocs-1159"></a>Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros. Use of these macros does not allow
optimal instruction scheduling. GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions. This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.
<br><dt><code>-msmall-data</code><dt><code>-mlarge-data</code><dd><a name="index-msmall_002ddata-1160"></a><a name="index-mlarge_002ddata-1161"></a>When <samp><span class="option">-mexplicit-relocs</span></samp> is in effect, static data is
accessed via <dfn>gp-relative</dfn> relocations. When <samp><span class="option">-msmall-data</span></samp>
is used, objects 8 bytes long or smaller are placed in a <dfn>small data area</dfn>
(the <code>.sdata</code> and <code>.sbss</code> sections) and are accessed via
16-bit relocations off of the <code>$gp</code> register. This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.
<p>The default is <samp><span class="option">-mlarge-data</span></samp>. With this option the data area
is limited to just below 2GB. Programs that require more than 2GB of
data must use <code>malloc</code> or <code>mmap</code> to allocate the data in the
heap instead of in the program's data segment.
<p>When generating code for shared libraries, <samp><span class="option">-fpic</span></samp> implies
<samp><span class="option">-msmall-data</span></samp> and <samp><span class="option">-fPIC</span></samp> implies <samp><span class="option">-mlarge-data</span></samp>.
<br><dt><code>-msmall-text</code><dt><code>-mlarge-text</code><dd><a name="index-msmall_002dtext-1162"></a><a name="index-mlarge_002dtext-1163"></a>When <samp><span class="option">-msmall-text</span></samp> is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction. When <samp><span class="option">-msmall-data</span></samp>
is used, the compiler can assume that all local symbols share the
same <code>$gp</code> value, and thus reduce the number of instructions
required for a function call from 4 to 1.
<p>The default is <samp><span class="option">-mlarge-text</span></samp>.
<br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-1164"></a>Set the instruction set and instruction scheduling parameters for
machine type <var>cpu_type</var>. You can specify either the ‘<samp><span class="samp">EV</span></samp>’
style name or the corresponding chip number. GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and will
choose the default values for the instruction set from the processor
you specify. If you do not specify a processor type, GCC will default
to the processor on which the compiler was built.
<p>Supported values for <var>cpu_type</var> are
<dl>
<dt>‘<samp><span class="samp">ev4</span></samp>’<dt>‘<samp><span class="samp">ev45</span></samp>’<dt>‘<samp><span class="samp">21064</span></samp>’<dd>Schedules as an EV4 and has no instruction set extensions.
<br><dt>‘<samp><span class="samp">ev5</span></samp>’<dt>‘<samp><span class="samp">21164</span></samp>’<dd>Schedules as an EV5 and has no instruction set extensions.
<br><dt>‘<samp><span class="samp">ev56</span></samp>’<dt>‘<samp><span class="samp">21164a</span></samp>’<dd>Schedules as an EV5 and supports the BWX extension.
<br><dt>‘<samp><span class="samp">pca56</span></samp>’<dt>‘<samp><span class="samp">21164pc</span></samp>’<dt>‘<samp><span class="samp">21164PC</span></samp>’<dd>Schedules as an EV5 and supports the BWX and MAX extensions.
<br><dt>‘<samp><span class="samp">ev6</span></samp>’<dt>‘<samp><span class="samp">21264</span></samp>’<dd>Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
<br><dt>‘<samp><span class="samp">ev67</span></samp>’<dt>‘<samp><span class="samp">21264a</span></samp>’<dd>Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
</dl>
<p>Native Linux/GNU toolchains also support the value ‘<samp><span class="samp">native</span></samp>’,
which selects the best architecture option for the host processor.
<samp><span class="option">-mcpu=native</span></samp> has no effect if GCC does not recognize
the processor.
<br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-1165"></a>Set only the instruction scheduling parameters for machine type
<var>cpu_type</var>. The instruction set is not changed.
<p>Native Linux/GNU toolchains also support the value ‘<samp><span class="samp">native</span></samp>’,
which selects the best architecture option for the host processor.
<samp><span class="option">-mtune=native</span></samp> has no effect if GCC does not recognize
the processor.
<br><dt><code>-mmemory-latency=</code><var>time</var><dd><a name="index-mmemory_002dlatency-1166"></a>Sets the latency the scheduler should assume for typical memory
references as seen by the application. This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.
<p>Valid options for <var>time</var> are
<dl>
<dt>‘<samp><var>number</var></samp>’<dd>A decimal number representing clock cycles.
<br><dt>‘<samp><span class="samp">L1</span></samp>’<dt>‘<samp><span class="samp">L2</span></samp>’<dt>‘<samp><span class="samp">L3</span></samp>’<dt>‘<samp><span class="samp">main</span></samp>’<dd>The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.
</dl>
</dl>
<div class="node">
<a name="DEC-Alpha%2fVMS-Options"></a>
<a name="DEC-Alpha_002fVMS-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#FR30-Options">FR30 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#DEC-Alpha-Options">DEC Alpha Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.9 DEC Alpha/VMS Options</h4>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the DEC Alpha/VMS implementations:
<dl>
<dt><code>-mvms-return-codes</code><dd><a name="index-mvms_002dreturn_002dcodes-1167"></a>Return VMS condition codes from main. The default is to return POSIX
style condition (e.g. error) codes.
</dl>
<div class="node">
<a name="FR30-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#FRV-Options">FRV Options</a>,
Previous: <a rel="previous" accesskey="p" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.10 FR30 Options</h4>
<p><a name="index-FR30-Options-1168"></a>
These options are defined specifically for the FR30 port.
<dl>
<dt><code>-msmall-model</code><dd><a name="index-msmall_002dmodel-1169"></a>Use the small address space model. This can produce smaller code, but
it does assume that all symbolic values and addresses will fit into a
20-bit range.
<br><dt><code>-mno-lsim</code><dd><a name="index-mno_002dlsim-1170"></a>Assume that run-time support has been provided and so there is no need
to include the simulator library (<samp><span class="file">libsim.a</span></samp>) on the linker
command line.
</dl>
<div class="node">
<a name="FRV-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GNU_002fLinux-Options">GNU/Linux Options</a>,
Previous: <a rel="previous" accesskey="p" href="#FR30-Options">FR30 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.11 FRV Options</h4>
<p><a name="index-FRV-Options-1171"></a>
<dl>
<dt><code>-mgpr-32</code><dd><a name="index-mgpr_002d32-1172"></a>
Only use the first 32 general purpose registers.
<br><dt><code>-mgpr-64</code><dd><a name="index-mgpr_002d64-1173"></a>
Use all 64 general purpose registers.
<br><dt><code>-mfpr-32</code><dd><a name="index-mfpr_002d32-1174"></a>
Use only the first 32 floating point registers.
<br><dt><code>-mfpr-64</code><dd><a name="index-mfpr_002d64-1175"></a>
Use all 64 floating point registers
<br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1176"></a>
Use hardware instructions for floating point operations.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1177"></a>
Use library routines for floating point operations.
<br><dt><code>-malloc-cc</code><dd><a name="index-malloc_002dcc-1178"></a>
Dynamically allocate condition code registers.
<br><dt><code>-mfixed-cc</code><dd><a name="index-mfixed_002dcc-1179"></a>
Do not try to dynamically allocate condition code registers, only
use <code>icc0</code> and <code>fcc0</code>.
<br><dt><code>-mdword</code><dd><a name="index-mdword-1180"></a>
Change ABI to use double word insns.
<br><dt><code>-mno-dword</code><dd><a name="index-mno_002ddword-1181"></a>
Do not use double word instructions.
<br><dt><code>-mdouble</code><dd><a name="index-mdouble-1182"></a>
Use floating point double instructions.
<br><dt><code>-mno-double</code><dd><a name="index-mno_002ddouble-1183"></a>
Do not use floating point double instructions.
<br><dt><code>-mmedia</code><dd><a name="index-mmedia-1184"></a>
Use media instructions.
<br><dt><code>-mno-media</code><dd><a name="index-mno_002dmedia-1185"></a>
Do not use media instructions.
<br><dt><code>-mmuladd</code><dd><a name="index-mmuladd-1186"></a>
Use multiply and add/subtract instructions.
<br><dt><code>-mno-muladd</code><dd><a name="index-mno_002dmuladd-1187"></a>
Do not use multiply and add/subtract instructions.
<br><dt><code>-mfdpic</code><dd><a name="index-mfdpic-1188"></a>
Select the FDPIC ABI, that uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it
implies <samp><span class="option">-fPIE</span></samp>. With <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fpie</span></samp>, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fPIE</span></samp>, GOT offsets
are computed with 32 bits.
With a ‘<samp><span class="samp">bfin-elf</span></samp>’ target, this option implies <samp><span class="option">-msim</span></samp>.
<br><dt><code>-minline-plt</code><dd><a name="index-minline_002dplt-1189"></a>
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without <samp><span class="option">-mfdpic</span></samp>.
It's enabled by default if optimizing for speed and compiling for
shared libraries (i.e., <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fpic</span></samp>), or when an
optimization option such as <samp><span class="option">-O3</span></samp> or above is present in the
command line.
<br><dt><code>-mTLS</code><dd><a name="index-TLS-1190"></a>
Assume a large TLS segment when generating thread-local code.
<br><dt><code>-mtls</code><dd><a name="index-tls-1191"></a>
Do not assume a large TLS segment when generating thread-local code.
<br><dt><code>-mgprel-ro</code><dd><a name="index-mgprel_002dro-1192"></a>
Enable the use of <code>GPREL</code> relocations in the FDPIC ABI for data
that is known to be in read-only sections. It's enabled by default,
except for <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fpie</span></samp>: even though it may help
make the global offset table smaller, it trades 1 instruction for 4.
With <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fPIE</span></samp>, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it's more likely to be a
win. If it is not, <samp><span class="option">-mno-gprel-ro</span></samp> can be used to disable it.
<br><dt><code>-multilib-library-pic</code><dd><a name="index-multilib_002dlibrary_002dpic-1193"></a>
Link with the (library, not FD) pic libraries. It's implied by
<samp><span class="option">-mlibrary-pic</span></samp>, as well as by <samp><span class="option">-fPIC</span></samp> and
<samp><span class="option">-fpic</span></samp> without <samp><span class="option">-mfdpic</span></samp>. You should never have to use
it explicitly.
<br><dt><code>-mlinked-fp</code><dd><a name="index-mlinked_002dfp-1194"></a>
Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated. This option is enabled by default and can
be disabled with <samp><span class="option">-mno-linked-fp</span></samp>.
<br><dt><code>-mlong-calls</code><dd><a name="index-mlong_002dcalls-1195"></a>
Use indirect addressing to call functions outside the current
compilation unit. This allows the functions to be placed anywhere
within the 32-bit address space.
<br><dt><code>-malign-labels</code><dd><a name="index-malign_002dlabels-1196"></a>
Try to align labels to an 8-byte boundary by inserting nops into the
previous packet. This option only has an effect when VLIW packing
is enabled. It doesn't create new packets; it merely adds nops to
existing ones.
<br><dt><code>-mlibrary-pic</code><dd><a name="index-mlibrary_002dpic-1197"></a>
Generate position-independent EABI code.
<br><dt><code>-macc-4</code><dd><a name="index-macc_002d4-1198"></a>
Use only the first four media accumulator registers.
<br><dt><code>-macc-8</code><dd><a name="index-macc_002d8-1199"></a>
Use all eight media accumulator registers.
<br><dt><code>-mpack</code><dd><a name="index-mpack-1200"></a>
Pack VLIW instructions.
<br><dt><code>-mno-pack</code><dd><a name="index-mno_002dpack-1201"></a>
Do not pack VLIW instructions.
<br><dt><code>-mno-eflags</code><dd><a name="index-mno_002deflags-1202"></a>
Do not mark ABI switches in e_flags.
<br><dt><code>-mcond-move</code><dd><a name="index-mcond_002dmove-1203"></a>
Enable the use of conditional-move instructions (default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-cond-move</code><dd><a name="index-mno_002dcond_002dmove-1204"></a>
Disable the use of conditional-move instructions.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mscc</code><dd><a name="index-mscc-1205"></a>
Enable the use of conditional set instructions (default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-scc</code><dd><a name="index-mno_002dscc-1206"></a>
Disable the use of conditional set instructions.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mcond-exec</code><dd><a name="index-mcond_002dexec-1207"></a>
Enable the use of conditional execution (default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-cond-exec</code><dd><a name="index-mno_002dcond_002dexec-1208"></a>
Disable the use of conditional execution.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mvliw-branch</code><dd><a name="index-mvliw_002dbranch-1209"></a>
Run a pass to pack branches into VLIW instructions (default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-vliw-branch</code><dd><a name="index-mno_002dvliw_002dbranch-1210"></a>
Do not run a pass to pack branches into VLIW instructions.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mmulti-cond-exec</code><dd><a name="index-mmulti_002dcond_002dexec-1211"></a>
Enable optimization of <code>&&</code> and <code>||</code> in conditional execution
(default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-multi-cond-exec</code><dd><a name="index-mno_002dmulti_002dcond_002dexec-1212"></a>
Disable optimization of <code>&&</code> and <code>||</code> in conditional execution.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mnested-cond-exec</code><dd><a name="index-mnested_002dcond_002dexec-1213"></a>
Enable nested conditional execution optimizations (default).
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-mno-nested-cond-exec</code><dd><a name="index-mno_002dnested_002dcond_002dexec-1214"></a>
Disable nested conditional execution optimizations.
<p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.
<br><dt><code>-moptimize-membar</code><dd><a name="index-moptimize_002dmembar-1215"></a>
This switch removes redundant <code>membar</code> instructions from the
compiler generated code. It is enabled by default.
<br><dt><code>-mno-optimize-membar</code><dd><a name="index-mno_002doptimize_002dmembar-1216"></a>
This switch disables the automatic removal of redundant <code>membar</code>
instructions from the generated code.
<br><dt><code>-mtomcat-stats</code><dd><a name="index-mtomcat_002dstats-1217"></a>
Cause gas to print out tomcat statistics.
<br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-1218"></a>
Select the processor type for which to generate code. Possible values are
‘<samp><span class="samp">frv</span></samp>’, ‘<samp><span class="samp">fr550</span></samp>’, ‘<samp><span class="samp">tomcat</span></samp>’, ‘<samp><span class="samp">fr500</span></samp>’, ‘<samp><span class="samp">fr450</span></samp>’,
‘<samp><span class="samp">fr405</span></samp>’, ‘<samp><span class="samp">fr400</span></samp>’, ‘<samp><span class="samp">fr300</span></samp>’ and ‘<samp><span class="samp">simple</span></samp>’.
</dl>
<div class="node">
<a name="GNU%2fLinux-Options"></a>
<a name="GNU_002fLinux-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#H8_002f300-Options">H8/300 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#FRV-Options">FRV Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.12 GNU/Linux Options</h4>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are defined for GNU/Linux targets:
<dl>
<dt><code>-mglibc</code><dd><a name="index-mglibc-1219"></a>Use the GNU C library instead of uClibc. This is the default except
on ‘<samp><span class="samp">*-*-linux-*uclibc*</span></samp>’ targets.
<br><dt><code>-muclibc</code><dd><a name="index-muclibc-1220"></a>Use uClibc instead of the GNU C library. This is the default on
‘<samp><span class="samp">*-*-linux-*uclibc*</span></samp>’ targets.
</dl>
<div class="node">
<a name="H8%2f300-Options"></a>
<a name="H8_002f300-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#HPPA-Options">HPPA Options</a>,
Previous: <a rel="previous" accesskey="p" href="#GNU_002fLinux-Options">GNU/Linux Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.13 H8/300 Options</h4>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the H8/300 implementations:
<dl>
<dt><code>-mrelax</code><dd><a name="index-mrelax-1221"></a>Shorten some address references at link time, when possible; uses the
linker option <samp><span class="option">-relax</span></samp>. See <a href="ld.html#H8_002f300"><code>ld</code> and the H8/300</a>, for a fuller description.
<br><dt><code>-mh</code><dd><a name="index-mh-1222"></a>Generate code for the H8/300H.
<br><dt><code>-ms</code><dd><a name="index-ms-1223"></a>Generate code for the H8S.
<br><dt><code>-mn</code><dd><a name="index-mn-1224"></a>Generate code for the H8S and H8/300H in the normal mode. This switch
must be used either with <samp><span class="option">-mh</span></samp> or <samp><span class="option">-ms</span></samp>.
<br><dt><code>-ms2600</code><dd><a name="index-ms2600-1225"></a>Generate code for the H8S/2600. This switch must be used with <samp><span class="option">-ms</span></samp>.
<br><dt><code>-mint32</code><dd><a name="index-mint32-1226"></a>Make <code>int</code> data 32 bits by default.
<br><dt><code>-malign-300</code><dd><a name="index-malign_002d300-1227"></a>On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4
byte boundaries.
<samp><span class="option">-malign-300</span></samp> causes them to be aligned on 2 byte boundaries.
This option has no effect on the H8/300.
</dl>
<div class="node">
<a name="HPPA-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#H8_002f300-Options">H8/300 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.14 HPPA Options</h4>
<p><a name="index-HPPA-Options-1228"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the HPPA family of computers:
<dl>
<dt><code>-march=</code><var>architecture-type</var><dd><a name="index-march-1229"></a>Generate code for the specified architecture. The choices for
<var>architecture-type</var> are ‘<samp><span class="samp">1.0</span></samp>’ for PA 1.0, ‘<samp><span class="samp">1.1</span></samp>’ for PA
1.1, and ‘<samp><span class="samp">2.0</span></samp>’ for PA 2.0 processors. Refer to
<samp><span class="file">/usr/lib/sched.models</span></samp> on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered
architectures will run on higher numbered architectures, but not the
other way around.
<br><dt><code>-mpa-risc-1-0</code><dt><code>-mpa-risc-1-1</code><dt><code>-mpa-risc-2-0</code><dd><a name="index-mpa_002drisc_002d1_002d0-1230"></a><a name="index-mpa_002drisc_002d1_002d1-1231"></a><a name="index-mpa_002drisc_002d2_002d0-1232"></a>Synonyms for <samp><span class="option">-march=1.0</span></samp>, <samp><span class="option">-march=1.1</span></samp>, and <samp><span class="option">-march=2.0</span></samp> respectively.
<br><dt><code>-mbig-switch</code><dd><a name="index-mbig_002dswitch-1233"></a>Generate code suitable for big switch tables. Use this option only if
the assembler/linker complain about out of range branches within a switch
table.
<br><dt><code>-mjump-in-delay</code><dd><a name="index-mjump_002din_002ddelay-1234"></a>Fill delay slots of function calls with unconditional jump instructions
by modifying the return pointer for the function call to be the target
of the conditional jump.
<br><dt><code>-mdisable-fpregs</code><dd><a name="index-mdisable_002dfpregs-1235"></a>Prevent floating point registers from being used in any manner. This is
necessary for compiling kernels which perform lazy context switching of
floating point registers. If you use this option and attempt to perform
floating point operations, the compiler will abort.
<br><dt><code>-mdisable-indexing</code><dd><a name="index-mdisable_002dindexing-1236"></a>Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.
<br><dt><code>-mno-space-regs</code><dd><a name="index-mno_002dspace_002dregs-1237"></a>Generate code that assumes the target has no space registers. This allows
GCC to generate faster indirect calls and use unscaled index address modes.
<p>Such code is suitable for level 0 PA systems and kernels.
<br><dt><code>-mfast-indirect-calls</code><dd><a name="index-mfast_002dindirect_002dcalls-1238"></a>Generate code that assumes calls never cross space boundaries. This
allows GCC to emit code which performs faster indirect calls.
<p>This option will not work in the presence of shared libraries or nested
functions.
<br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1239"></a>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
<br><dt><code>-mlong-load-store</code><dd><a name="index-mlong_002dload_002dstore-1240"></a>Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker. This is equivalent to the ‘<samp><span class="samp">+k</span></samp>’ option to
the HP compilers.
<br><dt><code>-mportable-runtime</code><dd><a name="index-mportable_002druntime-1241"></a>Use the portable calling conventions proposed by HP for ELF systems.
<br><dt><code>-mgas</code><dd><a name="index-mgas-1242"></a>Enable the use of assembler directives only GAS understands.
<br><dt><code>-mschedule=</code><var>cpu-type</var><dd><a name="index-mschedule-1243"></a>Schedule code according to the constraints for the machine type
<var>cpu-type</var>. The choices for <var>cpu-type</var> are ‘<samp><span class="samp">700</span></samp>’
‘<samp><span class="samp">7100</span></samp>’, ‘<samp><span class="samp">7100LC</span></samp>’, ‘<samp><span class="samp">7200</span></samp>’, ‘<samp><span class="samp">7300</span></samp>’ and ‘<samp><span class="samp">8000</span></samp>’. Refer
to <samp><span class="file">/usr/lib/sched.models</span></samp> on an HP-UX system to determine the
proper scheduling option for your machine. The default scheduling is
‘<samp><span class="samp">8000</span></samp>’.
<br><dt><code>-mlinker-opt</code><dd><a name="index-mlinker_002dopt-1244"></a>Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1245"></a>Generate output containing library calls for floating point.
<strong>Warning:</strong> the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.
<p><samp><span class="option">-msoft-float</span></samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option. In particular, you need to compile <samp><span class="file">libgcc.a</span></samp>, the
library that comes with GCC, with <samp><span class="option">-msoft-float</span></samp> in order for
this to work.
<br><dt><code>-msio</code><dd><a name="index-msio-1246"></a>Generate the predefine, <code>_SIO</code>, for server IO. The default is
<samp><span class="option">-mwsio</span></samp>. This generates the predefines, <code>__hp9000s700</code>,
<code>__hp9000s700__</code> and <code>_WSIO</code>, for workstation IO. These
options are available under HP-UX and HI-UX.
<br><dt><code>-mgnu-ld</code><dd><a name="index-gnu_002dld-1247"></a>Use GNU ld specific options. This passes <samp><span class="option">-shared</span></samp> to ld when
building a shared library. It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker. This option does not
have any affect on which ld is called, it only changes what parameters
are passed to that ld. The ld that is called is determined by the
<samp><span class="option">--with-ld</span></samp> configure option, GCC's program search path, and
finally by the user's <samp><span class="env">PATH</span></samp>. The linker used by GCC can be printed
using ‘<samp><span class="samp">which `gcc -print-prog-name=ld`</span></samp>’. This option is only available
on the 64 bit HP-UX GCC, i.e. configured with ‘<samp><span class="samp">hppa*64*-*-hpux*</span></samp>’.
<br><dt><code>-mhp-ld</code><dd><a name="index-hp_002dld-1248"></a>Use HP ld specific options. This passes <samp><span class="option">-b</span></samp> to ld when building
a shared library and passes <samp><span class="option">+Accept TypeMismatch</span></samp> to ld on all
links. It is the default when GCC is configured, explicitly or
implicitly, with the HP linker. This option does not have any affect on
which ld is called, it only changes what parameters are passed to that
ld. The ld that is called is determined by the <samp><span class="option">--with-ld</span></samp>
configure option, GCC's program search path, and finally by the user's
<samp><span class="env">PATH</span></samp>. The linker used by GCC can be printed using ‘<samp><span class="samp">which
`gcc -print-prog-name=ld`</span></samp>’. This option is only available on the 64 bit
HP-UX GCC, i.e. configured with ‘<samp><span class="samp">hppa*64*-*-hpux*</span></samp>’.
<br><dt><code>-mlong-calls</code><dd><a name="index-mno_002dlong_002dcalls-1249"></a>Generate code that uses long call sequences. This ensures that a call
is always able to reach linker generated stubs. The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used. The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
240,000 bytes.
<p>Distances are measured from the beginning of functions when using the
<samp><span class="option">-ffunction-sections</span></samp> option, or when using the <samp><span class="option">-mgas</span></samp>
and <samp><span class="option">-mno-portable-runtime</span></samp> options together under HP-UX with
the SOM linker.
<p>It is normally not desirable to use this option as it will degrade
performance. However, it may be useful in large applications,
particularly when partial linking is used to build the application.
<p>The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated. The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.
<br><dt><code>-munix=</code><var>unix-std</var><dd><a name="index-march-1250"></a>Generate compiler predefines and select a startfile for the specified
UNIX standard. The choices for <var>unix-std</var> are ‘<samp><span class="samp">93</span></samp>’, ‘<samp><span class="samp">95</span></samp>’
and ‘<samp><span class="samp">98</span></samp>’. ‘<samp><span class="samp">93</span></samp>’ is supported on all HP-UX versions. ‘<samp><span class="samp">95</span></samp>’
is available on HP-UX 10.10 and later. ‘<samp><span class="samp">98</span></samp>’ is available on HP-UX
11.11 and later. The default values are ‘<samp><span class="samp">93</span></samp>’ for HP-UX 10.00,
‘<samp><span class="samp">95</span></samp>’ for HP-UX 10.10 though to 11.00, and ‘<samp><span class="samp">98</span></samp>’ for HP-UX 11.11
and later.
<p><samp><span class="option">-munix=93</span></samp> provides the same predefines as GCC 3.3 and 3.4.
<samp><span class="option">-munix=95</span></samp> provides additional predefines for <code>XOPEN_UNIX</code>
and <code>_XOPEN_SOURCE_EXTENDED</code>, and the startfile <samp><span class="file">unix95.o</span></samp>.
<samp><span class="option">-munix=98</span></samp> provides additional predefines for <code>_XOPEN_UNIX</code>,
<code>_XOPEN_SOURCE_EXTENDED</code>, <code>_INCLUDE__STDC_A1_SOURCE</code> and
<code>_INCLUDE_XOPEN_SOURCE_500</code>, and the startfile <samp><span class="file">unix98.o</span></samp>.
<p>It is <em>important</em> to note that this option changes the interfaces
for various library routines. It also affects the operational behavior
of the C library. Thus, <em>extreme</em> care is needed in using this
option.
<p>Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable <var>__xpg4_extended_mask</var>
as appropriate. Most GNU software doesn't provide this capability.
<br><dt><code>-nolibdld</code><dd><a name="index-nolibdld-1251"></a>Suppress the generation of link options to search libdld.sl when the
<samp><span class="option">-static</span></samp> option is specified on HP-UX 10 and later.
<br><dt><code>-static</code><dd><a name="index-static-1252"></a>The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl. There isn't an archive version of libdld.sl. Thus,
when the <samp><span class="option">-static</span></samp> option is specified, special link options
are needed to resolve this dependency.
<p>On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the <samp><span class="option">-static</span></samp> option is specified.
This causes the resulting binary to be dynamic. On the 64-bit port,
the linkers generate dynamic binaries by default in any case. The
<samp><span class="option">-nolibdld</span></samp> option can be used to prevent the GCC driver from
adding these link options.
<br><dt><code>-threads</code><dd><a name="index-threads-1253"></a>Add support for multithreading with the <dfn>dce thread</dfn> library
under HP-UX. This option sets flags for both the preprocessor and
linker.
</dl>
<div class="node">
<a name="i386-and-x86-64-Options"></a>
<a name="i386-and-x86_002d64-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>,
Previous: <a rel="previous" accesskey="p" href="#HPPA-Options">HPPA Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.15 Intel 386 and AMD x86-64 Options</h4>
<p><a name="index-i386-Options-1254"></a><a name="index-x86_002d64-Options-1255"></a><a name="index-Intel-386-Options-1256"></a><a name="index-AMD-x86_002d64-Options-1257"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the i386 and x86-64 family of
computers:
<dl>
<dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1258"></a>Tune to <var>cpu-type</var> everything applicable about the generated code, except
for the ABI and the set of available instructions. The choices for
<var>cpu-type</var> are:
<dl>
<dt><em>generic</em><dd>Produce code optimized for the most common IA32/AMD64/EM64T processors.
If you know the CPU on which your code will run, then you should use
the corresponding <samp><span class="option">-mtune</span></samp> option instead of
<samp><span class="option">-mtune=generic</span></samp>. But, if you do not know exactly what CPU users
of your application will have, then you should use this option.
<p>As new processors are deployed in the marketplace, the behavior of this
option will change. Therefore, if you upgrade to a newer version of
GCC, the code generated option will change to reflect the processors
that were most common when that version of GCC was released.
<p>There is no <samp><span class="option">-march=generic</span></samp> option because <samp><span class="option">-march</span></samp>
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors. In contrast,
<samp><span class="option">-mtune</span></samp> indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
<br><dt><em>native</em><dd>This selects the CPU to tune for at compilation time by determining
the processor type of the compiling machine. Using <samp><span class="option">-mtune=native</span></samp>
will produce code optimized for the local machine under the constraints
of the selected instruction set. Using <samp><span class="option">-march=native</span></samp> will
enable all instruction subsets supported by the local machine (hence
the result might not run on different machines).
<br><dt><em>i386</em><dd>Original Intel's i386 CPU.
<br><dt><em>i486</em><dd>Intel's i486 CPU. (No scheduling is implemented for this chip.)
<br><dt><em>i586, pentium</em><dd>Intel Pentium CPU with no MMX support.
<br><dt><em>pentium-mmx</em><dd>Intel PentiumMMX CPU based on Pentium core with MMX instruction set support.
<br><dt><em>pentiumpro</em><dd>Intel PentiumPro CPU.
<br><dt><em>i686</em><dd>Same as <code>generic</code>, but when used as <code>march</code> option, PentiumPro
instruction set will be used, so the code will run on all i686 family chips.
<br><dt><em>pentium2</em><dd>Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support.
<br><dt><em>pentium3, pentium3m</em><dd>Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
support.
<br><dt><em>pentium-m</em><dd>Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
support. Used by Centrino notebooks.
<br><dt><em>pentium4, pentium4m</em><dd>Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.
<br><dt><em>prescott</em><dd>Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
set support.
<br><dt><em>nocona</em><dd>Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support.
<br><dt><em>core2</em><dd>Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
<br><dt><em>atom</em><dd>Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
<br><dt><em>k6</em><dd>AMD K6 CPU with MMX instruction set support.
<br><dt><em>k6-2, k6-3</em><dd>Improved versions of AMD K6 CPU with MMX and 3dNOW! instruction set support.
<br><dt><em>athlon, athlon-tbird</em><dd>AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and SSE prefetch instructions
support.
<br><dt><em>athlon-4, athlon-xp, athlon-mp</em><dd>Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and full SSE
instruction set support.
<br><dt><em>k8, opteron, athlon64, athlon-fx</em><dd>AMD K8 core based CPUs with x86-64 instruction set support. (This supersets
MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW! and 64-bit instruction set extensions.)
<br><dt><em>k8-sse3, opteron-sse3, athlon64-sse3</em><dd>Improved versions of k8, opteron and athlon64 with SSE3 instruction set support.
<br><dt><em>amdfam10, barcelona</em><dd>AMD Family 10h core based CPUs with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3dNOW!, enhanced 3dNOW!, ABM and 64-bit
instruction set extensions.)
<br><dt><em>winchip-c6</em><dd>IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support.
<br><dt><em>winchip2</em><dd>IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!
instruction set support.
<br><dt><em>c3</em><dd>Via C3 CPU with MMX and 3dNOW! instruction set support. (No scheduling is
implemented for this chip.)
<br><dt><em>c3-2</em><dd>Via C3-2 CPU with MMX and SSE instruction set support. (No scheduling is
implemented for this chip.)
<br><dt><em>geode</em><dd>Embedded AMD CPU with MMX and 3dNOW! instruction set support.
</dl>
<p>While picking a specific <var>cpu-type</var> will schedule things appropriately
for that particular chip, the compiler will not generate any code that
does not run on the i386 without the <samp><span class="option">-march=</span><var>cpu-type</var></samp> option
being used.
<br><dt><code>-march=</code><var>cpu-type</var><dd><a name="index-march-1259"></a>Generate instructions for the machine type <var>cpu-type</var>. The choices
for <var>cpu-type</var> are the same as for <samp><span class="option">-mtune</span></samp>. Moreover,
specifying <samp><span class="option">-march=</span><var>cpu-type</var></samp> implies <samp><span class="option">-mtune=</span><var>cpu-type</var></samp>.
<br><dt><code>-mcpu=</code><var>cpu-type</var><dd><a name="index-mcpu-1260"></a>A deprecated synonym for <samp><span class="option">-mtune</span></samp>.
<br><dt><code>-mfpmath=</code><var>unit</var><dd><a name="index-march-1261"></a>Generate floating point arithmetics for selected unit <var>unit</var>. The choices
for <var>unit</var> are:
<dl>
<dt>‘<samp><span class="samp">387</span></samp>’<dd>Use the standard 387 floating point coprocessor present majority of chips and
emulated otherwise. Code compiled with this option will run almost everywhere.
The temporary results are computed in 80bit precision instead of precision
specified by the type resulting in slightly different results compared to most
of other chips. See <samp><span class="option">-ffloat-store</span></samp> for more detailed description.
<p>This is the default choice for i386 compiler.
<br><dt>‘<samp><span class="samp">sse</span></samp>’<dd>Use scalar floating point instructions present in the SSE instruction set.
This instruction set is supported by Pentium3 and newer chips, in the AMD line
by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier version of SSE
instruction set supports only single precision arithmetics, thus the double and
extended precision arithmetics is still done using 387. Later version, present
only in Pentium4 and the future AMD x86-64 chips supports double precision
arithmetics too.
<p>For the i386 compiler, you need to use <samp><span class="option">-march=</span><var>cpu-type</var></samp>, <samp><span class="option">-msse</span></samp>
or <samp><span class="option">-msse2</span></samp> switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by default.
<p>The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80bit.
<p>This is the default choice for the x86-64 compiler.
<br><dt>‘<samp><span class="samp">sse,387</span></samp>’<dt>‘<samp><span class="samp">sse+387</span></samp>’<dt>‘<samp><span class="samp">both</span></samp>’<dd>Attempt to utilize both instruction sets at once. This effectively double the
amount of available registers and on chips with separate execution units for
387 and SSE the execution resources too. Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well resulting in instable performance.
</dl>
<br><dt><code>-masm=</code><var>dialect</var><dd><a name="index-masm_003d_0040var_007bdialect_007d-1262"></a>Output asm instructions using selected <var>dialect</var>. Supported
choices are ‘<samp><span class="samp">intel</span></samp>’ or ‘<samp><span class="samp">att</span></samp>’ (the default one). Darwin does
not support ‘<samp><span class="samp">intel</span></samp>’.
<br><dt><code>-mieee-fp</code><dt><code>-mno-ieee-fp</code><dd><a name="index-mieee_002dfp-1263"></a><a name="index-mno_002dieee_002dfp-1264"></a>Control whether or not the compiler uses IEEE floating point
comparisons. These handle correctly the case where the result of a
comparison is unordered.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1265"></a>Generate output containing library calls for floating point.
<strong>Warning:</strong> the requisite libraries are not part of GCC.
Normally the facilities of the machine's usual C compiler are used, but
this can't be done directly in cross-compilation. You must make your
own arrangements to provide suitable library functions for
cross-compilation.
<p>On machines where a function returns floating point results in the 80387
register stack, some floating point opcodes may be emitted even if
<samp><span class="option">-msoft-float</span></samp> is used.
<br><dt><code>-mno-fp-ret-in-387</code><dd><a name="index-mno_002dfp_002dret_002din_002d387-1266"></a>Do not use the FPU registers for return values of functions.
<p>The usual calling convention has functions return values of types
<code>float</code> and <code>double</code> in an FPU register, even if there
is no FPU. The idea is that the operating system should emulate
an FPU.
<p>The option <samp><span class="option">-mno-fp-ret-in-387</span></samp> causes such values to be returned
in ordinary CPU registers instead.
<br><dt><code>-mno-fancy-math-387</code><dd><a name="index-mno_002dfancy_002dmath_002d387-1267"></a>Some 387 emulators do not support the <code>sin</code>, <code>cos</code> and
<code>sqrt</code> instructions for the 387. Specify this option to avoid
generating those instructions. This option is the default on FreeBSD,
OpenBSD and NetBSD. This option is overridden when <samp><span class="option">-march</span></samp>
indicates that the target cpu will always have an FPU and so the
instruction will not need emulation. As of revision 2.6.1, these
instructions are not generated unless you also use the
<samp><span class="option">-funsafe-math-optimizations</span></samp> switch.
<br><dt><code>-malign-double</code><dt><code>-mno-align-double</code><dd><a name="index-malign_002ddouble-1268"></a><a name="index-mno_002dalign_002ddouble-1269"></a>Control whether GCC aligns <code>double</code>, <code>long double</code>, and
<code>long long</code> variables on a two word boundary or a one word
boundary. Aligning <code>double</code> variables on a two word boundary will
produce code that runs somewhat faster on a ‘<samp><span class="samp">Pentium</span></samp>’ at the
expense of more memory.
<p>On x86-64, <samp><span class="option">-malign-double</span></samp> is enabled by default.
<p><strong>Warning:</strong> if you use the <samp><span class="option">-malign-double</span></samp> switch,
structures containing the above types will be aligned differently than
the published application binary interface specifications for the 386
and will not be binary compatible with structures in code compiled
without that switch.
<br><dt><code>-m96bit-long-double</code><dt><code>-m128bit-long-double</code><dd><a name="index-m96bit_002dlong_002ddouble-1270"></a><a name="index-m128bit_002dlong_002ddouble-1271"></a>These switches control the size of <code>long double</code> type. The i386
application binary interface specifies the size to be 96 bits,
so <samp><span class="option">-m96bit-long-double</span></samp> is the default in 32 bit mode.
<p>Modern architectures (Pentium and newer) would prefer <code>long double</code>
to be aligned to an 8 or 16 byte boundary. In arrays or structures
conforming to the ABI, this would not be possible. So specifying a
<samp><span class="option">-m128bit-long-double</span></samp> will align <code>long double</code>
to a 16 byte boundary by padding the <code>long double</code> with an additional
32 bit zero.
<p>In the x86-64 compiler, <samp><span class="option">-m128bit-long-double</span></samp> is the default choice as
its ABI specifies that <code>long double</code> is to be aligned on 16 byte boundary.
<p>Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a <code>long double</code>.
<p><strong>Warning:</strong> if you override the default value for your target ABI, the
structures and arrays containing <code>long double</code> variables will change
their size as well as function calling convention for function taking
<code>long double</code> will be modified. Hence they will not be binary
compatible with arrays or structures in code compiled without that switch.
<br><dt><code>-mlarge-data-threshold=</code><var>number</var><dd><a name="index-mlarge_002ddata_002dthreshold_003d_0040var_007bnumber_007d-1272"></a>When <samp><span class="option">-mcmodel=medium</span></samp> is specified, the data greater than
<var>threshold</var> are placed in large data section. This value must be the
same across all object linked into the binary and defaults to 65535.
<br><dt><code>-mrtd</code><dd><a name="index-mrtd-1273"></a>Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the <code>ret</code> <var>num</var>
instruction, which pops their arguments while returning. This saves one
instruction in the caller since there is no need to pop the arguments
there.
<p>You can specify that an individual function is called with this calling
sequence with the function attribute ‘<samp><span class="samp">stdcall</span></samp>’. You can also
override the <samp><span class="option">-mrtd</span></samp> option by using the function attribute
‘<samp><span class="samp">cdecl</span></samp>’. See <a href="#Function-Attributes">Function Attributes</a>.
<p><strong>Warning:</strong> this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
<p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code will be generated for calls to those
functions.
<p>In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
<br><dt><code>-mregparm=</code><var>num</var><dd><a name="index-mregparm-1274"></a>Control how many registers are used to pass integer arguments. By
default, no registers are used to pass arguments, and at most 3
registers can be used. You can control this behavior for a specific
function by using the function attribute ‘<samp><span class="samp">regparm</span></samp>’.
See <a href="#Function-Attributes">Function Attributes</a>.
<p><strong>Warning:</strong> if you use this switch, and
<var>num</var> is nonzero, then you must build all modules with the same
value, including any libraries. This includes the system libraries and
startup modules.
<br><dt><code>-msseregparm</code><dd><a name="index-msseregparm-1275"></a>Use SSE register passing conventions for float and double arguments
and return values. You can control this behavior for a specific
function by using the function attribute ‘<samp><span class="samp">sseregparm</span></samp>’.
See <a href="#Function-Attributes">Function Attributes</a>.
<p><strong>Warning:</strong> if you use this switch then you must build all
modules with the same value, including any libraries. This includes
the system libraries and startup modules.
<br><dt><code>-mpc32</code><dt><code>-mpc64</code><dt><code>-mpc80</code><dd><a name="index-mpc32-1276"></a><a name="index-mpc64-1277"></a><a name="index-mpc80-1278"></a>
Set 80387 floating-point precision to 32, 64 or 80 bits. When <samp><span class="option">-mpc32</span></samp>
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); <samp><span class="option">-mpc64</span></samp> rounds the
significands of results of floating-point operations to 53 bits (double
precision) and <samp><span class="option">-mpc80</span></samp> rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default. When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.
<p>Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more. Note that some mathematical
libraries assume that extended precision (80 bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called "catastrophic cancellation",
when this option is used to set the precision to less than extended precision.
<br><dt><code>-mstackrealign</code><dd><a name="index-mstackrealign-1279"></a>Realign the stack at entry. On the Intel x86, the <samp><span class="option">-mstackrealign</span></samp>
option will generate an alternate prologue and epilogue that realigns the
runtime stack if necessary. This supports mixing legacy codes that keep
a 4-byte aligned stack with modern codes that keep a 16-byte stack for
SSE compatibility. See also the attribute <code>force_align_arg_pointer</code>,
applicable to individual functions.
<br><dt><code>-mpreferred-stack-boundary=</code><var>num</var><dd><a name="index-mpreferred_002dstack_002dboundary-1280"></a>Attempt to keep the stack boundary aligned to a 2 raised to <var>num</var>
byte boundary. If <samp><span class="option">-mpreferred-stack-boundary</span></samp> is not specified,
the default is 4 (16 bytes or 128 bits).
<br><dt><code>-mincoming-stack-boundary=</code><var>num</var><dd><a name="index-mincoming_002dstack_002dboundary-1281"></a>Assume the incoming stack is aligned to a 2 raised to <var>num</var> byte
boundary. If <samp><span class="option">-mincoming-stack-boundary</span></samp> is not specified,
the one specified by <samp><span class="option">-mpreferred-stack-boundary</span></samp> will be used.
<p>On Pentium and PentiumPro, <code>double</code> and <code>long double</code> values
should be aligned to an 8 byte boundary (see <samp><span class="option">-malign-double</span></samp>) or
suffer significant run time performance penalties. On Pentium III, the
Streaming SIMD Extension (SSE) data type <code>__m128</code> may not work
properly if it is not 16 byte aligned.
<p>To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack.
Further, every function must be generated such that it keeps the stack
aligned. Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary will most likely misalign the stack. It is recommended that
libraries that use callbacks always use the default setting.
<p>This extra alignment does consume extra stack space, and generally
increases code size. Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to <samp><span class="option">-mpreferred-stack-boundary=2</span></samp>.
<br><dt><code>-mmmx</code><dt><code>-mno-mmx</code><dt><code>-msse</code><dt><code>-mno-sse</code><dt><code>-msse2</code><dt><code>-mno-sse2</code><dt><code>-msse3</code><dt><code>-mno-sse3</code><dt><code>-mssse3</code><dt><code>-mno-ssse3</code><dt><code>-msse4.1</code><dt><code>-mno-sse4.1</code><dt><code>-msse4.2</code><dt><code>-mno-sse4.2</code><dt><code>-msse4</code><dt><code>-mno-sse4</code><dt><code>-mavx</code><dt><code>-mno-avx</code><dt><code>-maes</code><dt><code>-mno-aes</code><dt><code>-mpclmul</code><dt><code>-mno-pclmul</code><dt><code>-msse4a</code><dt><code>-mno-sse4a</code><dt><code>-msse5</code><dt><code>-mno-sse5</code><dt><code>-m3dnow</code><dt><code>-mno-3dnow</code><dt><code>-mpopcnt</code><dt><code>-mno-popcnt</code><dt><code>-mabm</code><dt><code>-mno-abm</code><dd><a name="index-mmmx-1282"></a><a name="index-mno_002dmmx-1283"></a><a name="index-msse-1284"></a><a name="index-mno_002dsse-1285"></a><a name="index-m3dnow-1286"></a><a name="index-mno_002d3dnow-1287"></a>These switches enable or disable the use of instructions in the MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AES, PCLMUL, SSE4A, SSE5, ABM or
3DNow! extended instruction sets.
These extensions are also available as built-in functions: see
<a href="#X86-Built_002din-Functions">X86 Built-in Functions</a>, for details of the functions enabled and
disabled by these switches.
<p>To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see <samp><span class="option">-mfpmath=sse</span></samp>.
<p>GCC depresses SSEx instructions when <samp><span class="option">-mavx</span></samp> is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.
<p>These options will enable GCC to use these extended instructions in
generated code, even without <samp><span class="option">-mfpmath=sse</span></samp>. Applications which
perform runtime CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
<br><dt><code>-mcld</code><dd><a name="index-mcld-1288"></a>This option instructs GCC to emit a <code>cld</code> instruction in the prologue
of functions that use string instructions. String instructions depend on
the DF flag to select between autoincrement or autodecrement mode. While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers. The exception handler can be invoked with the DF flag
set which leads to wrong direction mode, when string instructions are used.
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the <samp><span class="option">--enable-cld</span></samp> configure option. Generation of <code>cld</code>
instructions can be suppressed with the <samp><span class="option">-mno-cld</span></samp> compiler option
in this case.
<br><dt><code>-mcx16</code><dd><a name="index-mcx16-1289"></a>This option will enable GCC to use CMPXCHG16B instruction in generated code.
CMPXCHG16B allows for atomic operations on 128-bit double quadword (or oword)
data types. This is useful for high resolution counters that could be updated
by multiple processors (or cores). This instruction is generated as part of
atomic built-in functions: see <a href="#Atomic-Builtins">Atomic Builtins</a> for details.
<br><dt><code>-msahf</code><dd><a name="index-msahf-1290"></a>This option will enable GCC to use SAHF instruction in generated 64-bit code.
Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported
by AMD64 until introduction of Pentium 4 G1 step in December 2005. LAHF and
SAHF are load and store instructions, respectively, for certain status flags.
In 64-bit mode, SAHF instruction is used to optimize <code>fmod</code>, <code>drem</code>
or <code>remainder</code> built-in functions: see <a href="#Other-Builtins">Other Builtins</a> for details.
<br><dt><code>-mmovbe</code><dd><a name="index-mmovbe-1291"></a>This option will enable GCC to use movbe instruction to implement
<code>__builtin_bswap32</code> and <code>__builtin_bswap64</code>.
<br><dt><code>-mrecip</code><dd><a name="index-mrecip-1292"></a>This option will enable GCC to use RCPSS and RSQRTSS instructions (and their
vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step
to increase precision instead of DIVSS and SQRTSS (and their vectorized
variants) for single precision floating point arguments. These instructions
are generated only when <samp><span class="option">-funsafe-math-optimizations</span></samp> is enabled
together with <samp><span class="option">-finite-math-only</span></samp> and <samp><span class="option">-fno-trapping-math</span></samp>.
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
<br><dt><code>-mveclibabi=</code><var>type</var><dd><a name="index-mveclibabi-1293"></a>Specifies the ABI type to use for vectorizing intrinsics using an
external library. Supported types are <code>svml</code> for the Intel short
vector math library and <code>acml</code> for the AMD math core library style
of interfacing. GCC will currently emit calls to <code>vmldExp2</code>,
<code>vmldLn2</code>, <code>vmldLog102</code>, <code>vmldLog102</code>, <code>vmldPow2</code>,
<code>vmldTanh2</code>, <code>vmldTan2</code>, <code>vmldAtan2</code>, <code>vmldAtanh2</code>,
<code>vmldCbrt2</code>, <code>vmldSinh2</code>, <code>vmldSin2</code>, <code>vmldAsinh2</code>,
<code>vmldAsin2</code>, <code>vmldCosh2</code>, <code>vmldCos2</code>, <code>vmldAcosh2</code>,
<code>vmldAcos2</code>, <code>vmlsExp4</code>, <code>vmlsLn4</code>, <code>vmlsLog104</code>,
<code>vmlsLog104</code>, <code>vmlsPow4</code>, <code>vmlsTanh4</code>, <code>vmlsTan4</code>,
<code>vmlsAtan4</code>, <code>vmlsAtanh4</code>, <code>vmlsCbrt4</code>, <code>vmlsSinh4</code>,
<code>vmlsSin4</code>, <code>vmlsAsinh4</code>, <code>vmlsAsin4</code>, <code>vmlsCosh4</code>,
<code>vmlsCos4</code>, <code>vmlsAcosh4</code> and <code>vmlsAcos4</code> for corresponding
function type when <samp><span class="option">-mveclibabi=svml</span></samp> is used and <code>__vrd2_sin</code>,
<code>__vrd2_cos</code>, <code>__vrd2_exp</code>, <code>__vrd2_log</code>, <code>__vrd2_log2</code>,
<code>__vrd2_log10</code>, <code>__vrs4_sinf</code>, <code>__vrs4_cosf</code>,
<code>__vrs4_expf</code>, <code>__vrs4_logf</code>, <code>__vrs4_log2f</code>,
<code>__vrs4_log10f</code> and <code>__vrs4_powf</code> for corresponding function type
when <samp><span class="option">-mveclibabi=acml</span></samp> is used. Both <samp><span class="option">-ftree-vectorize</span></samp> and
<samp><span class="option">-funsafe-math-optimizations</span></samp> have to be enabled. A SVML or ACML ABI
compatible library will have to be specified at link time.
<br><dt><code>-mabi=</code><var>name</var><dd><a name="index-mabi-1294"></a>Generate code for the specified calling convention. Permissible values
are: ‘<samp><span class="samp">sysv</span></samp>’ for the ABI used on GNU/Linux and other systems and
‘<samp><span class="samp">ms</span></samp>’ for the Microsoft ABI. The default is to use the Microsoft
ABI when targeting Windows. On all other systems, the default is the
SYSV ABI. You can control this behavior for a specific function by
using the function attribute ‘<samp><span class="samp">ms_abi</span></samp>’/‘<samp><span class="samp">sysv_abi</span></samp>’.
See <a href="#Function-Attributes">Function Attributes</a>.
<br><dt><code>-mpush-args</code><dt><code>-mno-push-args</code><dd><a name="index-mpush_002dargs-1295"></a><a name="index-mno_002dpush_002dargs-1296"></a>Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.
<br><dt><code>-maccumulate-outgoing-args</code><dd><a name="index-maccumulate_002doutgoing_002dargs-1297"></a>If enabled, the maximum amount of space required for outgoing arguments will be
computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies <samp><span class="option">-mno-push-args</span></samp>.
<br><dt><code>-mthreads</code><dd><a name="index-mthreads-1298"></a>Support thread-safe exception handling on ‘<samp><span class="samp">Mingw32</span></samp>’. Code that relies
on thread-safe exception handling must compile and link all code with the
<samp><span class="option">-mthreads</span></samp> option. When compiling, <samp><span class="option">-mthreads</span></samp> defines
<samp><span class="option">-D_MT</span></samp>; when linking, it links in a special thread helper library
<samp><span class="option">-lmingwthrd</span></samp> which cleans up per thread exception handling data.
<br><dt><code>-mno-align-stringops</code><dd><a name="index-mno_002dalign_002dstringops-1299"></a>Do not align destination of inlined string operations. This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn't know about it.
<br><dt><code>-minline-all-stringops</code><dd><a name="index-minline_002dall_002dstringops-1300"></a>By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.
<br><dt><code>-minline-stringops-dynamically</code><dd><a name="index-minline_002dstringops_002ddynamically-1301"></a>For string operation of unknown size, inline runtime checks so for small
blocks inline code is used, while for large blocks library call is used.
<br><dt><code>-mstringop-strategy=</code><var>alg</var><dd><a name="index-mstringop_002dstrategy_003d_0040var_007balg_007d-1302"></a>Overwrite internal decision heuristic about particular algorithm to inline
string operation with. The allowed values are <code>rep_byte</code>,
<code>rep_4byte</code>, <code>rep_8byte</code> for expanding using i386 <code>rep</code> prefix
of specified size, <code>byte_loop</code>, <code>loop</code>, <code>unrolled_loop</code> for
expanding inline loop, <code>libcall</code> for always expanding library call.
<br><dt><code>-momit-leaf-frame-pointer</code><dd><a name="index-momit_002dleaf_002dframe_002dpointer-1303"></a>Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions. The option
<samp><span class="option">-fomit-frame-pointer</span></samp> removes the frame pointer for all functions
which might make debugging harder.
<br><dt><code>-mtls-direct-seg-refs</code><dt><code>-mno-tls-direct-seg-refs</code><dd><a name="index-mtls_002ddirect_002dseg_002drefs-1304"></a>Controls whether TLS variables may be accessed with offsets from the
TLS segment register (<code>%gs</code> for 32-bit, <code>%fs</code> for 64-bit),
or whether the thread base pointer must be added. Whether or not this
is legal depends on the operating system, and whether it maps the
segment to cover the entire TLS area.
<p>For systems that use GNU libc, the default is on.
<br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1305"></a>Enable automatic generation of fused floating point multiply-add instructions
if the ISA supports such instructions. The -mfused-madd option is on by
default. The fused multiply-add instructions have a different
rounding behavior compared to executing a multiply followed by an add.
<br><dt><code>-msse2avx</code><dt><code>-mno-sse2avx</code><dd><a name="index-msse2avx-1306"></a>Specify that the assembler should encode SSE instructions with VEX
prefix. The option <samp><span class="option">-mavx</span></samp> turns this on by default.
</dl>
<p>These ‘<samp><span class="samp">-m</span></samp>’ switches are supported in addition to the above
on AMD x86-64 processors in 64-bit environments.
<dl>
<dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-1307"></a><a name="index-m64-1308"></a>Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits and
generates code that runs on any i386 system.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits and generates code for AMD's x86-64 architecture. For
darwin only the -m64 option turns off the <samp><span class="option">-fno-pic</span></samp> and
<samp><span class="option">-mdynamic-no-pic</span></samp> options.
<br><dt><code>-mno-red-zone</code><dd><a name="index-no_002dred_002dzone-1309"></a>Do not use a so called red zone for x86-64 code. The red zone is mandated
by the x86-64 ABI, it is a 128-byte area beyond the location of the
stack pointer that will not be modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer. The flag <samp><span class="option">-mno-red-zone</span></samp> disables this red zone.
<br><dt><code>-mcmodel=small</code><dd><a name="index-mcmodel_003dsmall-1310"></a>Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default
code model.
<br><dt><code>-mcmodel=kernel</code><dd><a name="index-mcmodel_003dkernel-1311"></a>Generate code for the kernel code model. The kernel runs in the
negative 2 GB of the address space.
This model has to be used for Linux kernel code.
<br><dt><code>-mcmodel=medium</code><dd><a name="index-mcmodel_003dmedium-1312"></a>Generate code for the medium model: The program is linked in the lower 2
GB of the address space. Small symbols are also placed there. Symbols
with sizes larger than <samp><span class="option">-mlarge-data-threshold</span></samp> are put into
large data or bss sections and can be located above 2GB. Programs can
be statically or dynamically linked.
<br><dt><code>-mcmodel=large</code><dd><a name="index-mcmodel_003dlarge-1313"></a>Generate code for the large model: This model makes no assumptions
about addresses and sizes of sections.
</dl>
<div class="node">
<a name="i386-and-x86-64-Windows-Options"></a>
<a name="i386-and-x86_002d64-Windows-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#IA_002d64-Options">IA-64 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.16 i386 and x86-64 Windows Options</h4>
<p><a name="index-i386-and-x86_002d64-Windows-Options-1314"></a>
These additional options are available for Windows targets:
<dl>
<dt><code>-mconsole</code><dd><a name="index-mconsole-1315"></a>This option is available for Cygwin and MinGW targets. It
specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type
required for console applications.
This is the default behaviour for Cygwin and MinGW targets.
<br><dt><code>-mcygwin</code><dd><a name="index-mcygwin-1316"></a>This option is available for Cygwin targets. It specifies that
the Cygwin internal interface is to be used for predefined
preprocessor macros, C runtime libraries and related linker
paths and options. For Cygwin targets this is the default behaviour.
This option is deprecated and will be removed in a future release.
<br><dt><code>-mno-cygwin</code><dd><a name="index-mno_002dcygwin-1317"></a>This option is available for Cygwin targets. It specifies that
the MinGW internal interface is to be used instead of Cygwin's, by
setting MinGW-related predefined macros and linker paths and default
library options.
This option is deprecated and will be removed in a future release.
<br><dt><code>-mdll</code><dd><a name="index-mdll-1318"></a>This option is available for Cygwin and MinGW targets. It
specifies that a DLL - a dynamic link library - is to be
generated, enabling the selection of the required runtime
startup object and entry point.
<br><dt><code>-mnop-fun-dllimport</code><dd><a name="index-mnop_002dfun_002ddllimport-1319"></a>This option is available for Cygwin and MinGW targets. It
specifies that the dllimport attribute should be ignored.
<br><dt><code>-mthread</code><dd><a name="index-mthread-1320"></a>This option is available for MinGW targets. It specifies
that MinGW-specific thread support is to be used.
<br><dt><code>-mwin32</code><dd><a name="index-mwin32-1321"></a>This option is available for Cygwin and MinGW targets. It
specifies that the typical Windows pre-defined macros are to
be set in the pre-processor, but does not influence the choice
of runtime library/startup code.
<br><dt><code>-mwindows</code><dd><a name="index-mwindows-1322"></a>This option is available for Cygwin and MinGW targets. It
specifies that a GUI application is to be generated by
instructing the linker to set the PE header subsystem type
appropriately.
<br><dt><code>-mpe-aligned-commons</code><dd><a name="index-mpe_002daligned_002dcommons-1323"></a>This option is available for Cygwin and MinGW targets. It
specifies that the GNU extension to the PE file format that
permits the correct alignment of COMMON variables should be
used when generating code. It will be enabled by default if
GCC detects that the target assembler found during configuration
supports the feature.
</dl>
<p>See also under <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a> for standard options.
<div class="node">
<a name="IA-64-Options"></a>
<a name="IA_002d64-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#M32C-Options">M32C Options</a>,
Previous: <a rel="previous" accesskey="p" href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.17 IA-64 Options</h4>
<p><a name="index-IA_002d64-Options-1324"></a>
These are the ‘<samp><span class="samp">-m</span></samp>’ options defined for the Intel IA-64 architecture.
<dl>
<dt><code>-mbig-endian</code><dd><a name="index-mbig_002dendian-1325"></a>Generate code for a big endian target. This is the default for HP-UX.
<br><dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-1326"></a>Generate code for a little endian target. This is the default for AIX5
and GNU/Linux.
<br><dt><code>-mgnu-as</code><dt><code>-mno-gnu-as</code><dd><a name="index-mgnu_002das-1327"></a><a name="index-mno_002dgnu_002das-1328"></a>Generate (or don't) code for the GNU assembler. This is the default.
<!-- Also, this is the default if the configure option @option{-with-gnu-as} -->
<!-- is used. -->
<br><dt><code>-mgnu-ld</code><dt><code>-mno-gnu-ld</code><dd><a name="index-mgnu_002dld-1329"></a><a name="index-mno_002dgnu_002dld-1330"></a>Generate (or don't) code for the GNU linker. This is the default.
<!-- Also, this is the default if the configure option @option{-with-gnu-ld} -->
<!-- is used. -->
<br><dt><code>-mno-pic</code><dd><a name="index-mno_002dpic-1331"></a>Generate code that does not use a global pointer register. The result
is not position independent code, and violates the IA-64 ABI.
<br><dt><code>-mvolatile-asm-stop</code><dt><code>-mno-volatile-asm-stop</code><dd><a name="index-mvolatile_002dasm_002dstop-1332"></a><a name="index-mno_002dvolatile_002dasm_002dstop-1333"></a>Generate (or don't) a stop bit immediately before and after volatile asm
statements.
<br><dt><code>-mregister-names</code><dt><code>-mno-register-names</code><dd><a name="index-mregister_002dnames-1334"></a><a name="index-mno_002dregister_002dnames-1335"></a>Generate (or don't) ‘<samp><span class="samp">in</span></samp>’, ‘<samp><span class="samp">loc</span></samp>’, and ‘<samp><span class="samp">out</span></samp>’ register names for
the stacked registers. This may make assembler output more readable.
<br><dt><code>-mno-sdata</code><dt><code>-msdata</code><dd><a name="index-mno_002dsdata-1336"></a><a name="index-msdata-1337"></a>Disable (or enable) optimizations that use the small data section. This may
be useful for working around optimizer bugs.
<br><dt><code>-mconstant-gp</code><dd><a name="index-mconstant_002dgp-1338"></a>Generate code that uses a single constant global pointer value. This is
useful when compiling kernel code.
<br><dt><code>-mauto-pic</code><dd><a name="index-mauto_002dpic-1339"></a>Generate code that is self-relocatable. This implies <samp><span class="option">-mconstant-gp</span></samp>.
This is useful when compiling firmware code.
<br><dt><code>-minline-float-divide-min-latency</code><dd><a name="index-minline_002dfloat_002ddivide_002dmin_002dlatency-1340"></a>Generate code for inline divides of floating point values
using the minimum latency algorithm.
<br><dt><code>-minline-float-divide-max-throughput</code><dd><a name="index-minline_002dfloat_002ddivide_002dmax_002dthroughput-1341"></a>Generate code for inline divides of floating point values
using the maximum throughput algorithm.
<br><dt><code>-minline-int-divide-min-latency</code><dd><a name="index-minline_002dint_002ddivide_002dmin_002dlatency-1342"></a>Generate code for inline divides of integer values
using the minimum latency algorithm.
<br><dt><code>-minline-int-divide-max-throughput</code><dd><a name="index-minline_002dint_002ddivide_002dmax_002dthroughput-1343"></a>Generate code for inline divides of integer values
using the maximum throughput algorithm.
<br><dt><code>-minline-sqrt-min-latency</code><dd><a name="index-minline_002dsqrt_002dmin_002dlatency-1344"></a>Generate code for inline square roots
using the minimum latency algorithm.
<br><dt><code>-minline-sqrt-max-throughput</code><dd><a name="index-minline_002dsqrt_002dmax_002dthroughput-1345"></a>Generate code for inline square roots
using the maximum throughput algorithm.
<br><dt><code>-mno-dwarf2-asm</code><dt><code>-mdwarf2-asm</code><dd><a name="index-mno_002ddwarf2_002dasm-1346"></a><a name="index-mdwarf2_002dasm-1347"></a>Don't (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.
<br><dt><code>-mearly-stop-bits</code><dt><code>-mno-early-stop-bits</code><dd><a name="index-mearly_002dstop_002dbits-1348"></a><a name="index-mno_002dearly_002dstop_002dbits-1349"></a>Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit. This can improve instruction
scheduling, but does not always do so.
<br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1350"></a>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
<br><dt><code>-mtls-size=</code><var>tls-size</var><dd><a name="index-mtls_002dsize-1351"></a>Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
64.
<br><dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1352"></a>Tune the instruction scheduling for a particular CPU, Valid values are
itanium, itanium1, merced, itanium2, and mckinley.
<br><dt><code>-mt</code><dt><code>-pthread</code><dd><a name="index-mt-1353"></a><a name="index-pthread-1354"></a>Add support for multithreading using the POSIX threads library. This
option sets flags for both the preprocessor and linker. It does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it. These are HP-UX specific flags.
<br><dt><code>-milp32</code><dt><code>-mlp64</code><dd><a name="index-milp32-1355"></a><a name="index-mlp64-1356"></a>Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits. These are HP-UX specific flags.
<br><dt><code>-mno-sched-br-data-spec</code><dt><code>-msched-br-data-spec</code><dd><a name="index-mno_002dsched_002dbr_002ddata_002dspec-1357"></a><a name="index-msched_002dbr_002ddata_002dspec-1358"></a>(Dis/En)able data speculative scheduling before reload.
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a).
The default is 'disable'.
<br><dt><code>-msched-ar-data-spec</code><dt><code>-mno-sched-ar-data-spec</code><dd><a name="index-msched_002dar_002ddata_002dspec-1359"></a><a name="index-mno_002dsched_002dar_002ddata_002dspec-1360"></a>(En/Dis)able data speculative scheduling after reload.
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a).
The default is 'enable'.
<br><dt><code>-mno-sched-control-spec</code><dt><code>-msched-control-spec</code><dd><a name="index-mno_002dsched_002dcontrol_002dspec-1361"></a><a name="index-msched_002dcontrol_002dspec-1362"></a>(Dis/En)able control speculative scheduling. This feature is
available only during region scheduling (i.e. before reload).
This will result in generation of the ld.s instructions and
the corresponding check instructions chk.s .
The default is 'disable'.
<br><dt><code>-msched-br-in-data-spec</code><dt><code>-mno-sched-br-in-data-spec</code><dd><a name="index-msched_002dbr_002din_002ddata_002dspec-1363"></a><a name="index-mno_002dsched_002dbr_002din_002ddata_002dspec-1364"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload.
This is effective only with <samp><span class="option">-msched-br-data-spec</span></samp> enabled.
The default is 'enable'.
<br><dt><code>-msched-ar-in-data-spec</code><dt><code>-mno-sched-ar-in-data-spec</code><dd><a name="index-msched_002dar_002din_002ddata_002dspec-1365"></a><a name="index-mno_002dsched_002dar_002din_002ddata_002dspec-1366"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload.
This is effective only with <samp><span class="option">-msched-ar-data-spec</span></samp> enabled.
The default is 'enable'.
<br><dt><code>-msched-in-control-spec</code><dt><code>-mno-sched-in-control-spec</code><dd><a name="index-msched_002din_002dcontrol_002dspec-1367"></a><a name="index-mno_002dsched_002din_002dcontrol_002dspec-1368"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads.
This is effective only with <samp><span class="option">-msched-control-spec</span></samp> enabled.
The default is 'enable'.
<br><dt><code>-msched-ldc</code><dt><code>-mno-sched-ldc</code><dd><a name="index-msched_002dldc-1369"></a><a name="index-mno_002dsched_002dldc-1370"></a>(En/Dis)able use of simple data speculation checks ld.c .
If disabled, only chk.a instructions will be emitted to check
data speculative loads.
The default is 'enable'.
<br><dt><code>-mno-sched-control-ldc</code><dt><code>-msched-control-ldc</code><dd><a name="index-mno_002dsched_002dcontrol_002dldc-1371"></a><a name="index-msched_002dcontrol_002dldc-1372"></a>(Dis/En)able use of ld.c instructions to check control speculative loads.
If enabled, in case of control speculative load with no speculatively
scheduled dependent instructions this load will be emitted as ld.sa and
ld.c will be used to check it.
The default is 'disable'.
<br><dt><code>-mno-sched-spec-verbose</code><dt><code>-msched-spec-verbose</code><dd><a name="index-mno_002dsched_002dspec_002dverbose-1373"></a><a name="index-msched_002dspec_002dverbose-1374"></a>(Dis/En)able printing of the information about speculative motions.
<br><dt><code>-mno-sched-prefer-non-data-spec-insns</code><dt><code>-msched-prefer-non-data-spec-insns</code><dd><a name="index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1375"></a><a name="index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1376"></a>If enabled, data speculative instructions will be chosen for schedule
only if there are no other choices at the moment. This will make
the use of the data speculation much more conservative.
The default is 'disable'.
<br><dt><code>-mno-sched-prefer-non-control-spec-insns</code><dt><code>-msched-prefer-non-control-spec-insns</code><dd><a name="index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1377"></a><a name="index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1378"></a>If enabled, control speculative instructions will be chosen for schedule
only if there are no other choices at the moment. This will make
the use of the control speculation much more conservative.
The default is 'disable'.
<br><dt><code>-mno-sched-count-spec-in-critical-path</code><dt><code>-msched-count-spec-in-critical-path</code><dd><a name="index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath-1379"></a><a name="index-msched_002dcount_002dspec_002din_002dcritical_002dpath-1380"></a>If enabled, speculative dependencies will be considered during
computation of the instructions priorities. This will make the use of the
speculation a bit more conservative.
The default is 'disable'.
</dl>
<div class="node">
<a name="M32C-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#M32R_002fD-Options">M32R/D Options</a>,
Previous: <a rel="previous" accesskey="p" href="#IA_002d64-Options">IA-64 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.18 M32C Options</h4>
<p><a name="index-M32C-options-1381"></a>
<dl>
<dt><code>-mcpu=</code><var>name</var><dd><a name="index-mcpu_003d-1382"></a>Select the CPU for which code is generated. <var>name</var> may be one of
‘<samp><span class="samp">r8c</span></samp>’ for the R8C/Tiny series, ‘<samp><span class="samp">m16c</span></samp>’ for the M16C (up to
/60) series, ‘<samp><span class="samp">m32cm</span></samp>’ for the M16C/80 series, or ‘<samp><span class="samp">m32c</span></samp>’ for
the M32C/80 series.
<br><dt><code>-msim</code><dd><a name="index-msim-1383"></a>Specifies that the program will be run on the simulator. This causes
an alternate runtime library to be linked in which supports, for
example, file I/O. You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.
<br><dt><code>-memregs=</code><var>number</var><dd><a name="index-memregs_003d-1384"></a>Specifies the number of memory-based pseudo-registers GCC will use
during code generation. These pseudo-registers will be used like real
registers, so there is a tradeoff between GCC's ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers. Note that all modules in a program must
be compiled with the same value for this option. Because of that, you
must not use this option with the default runtime libraries gcc
builds.
</dl>
<div class="node">
<a name="M32R%2fD-Options"></a>
<a name="M32R_002fD-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#M680x0-Options">M680x0 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#M32C-Options">M32C Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.19 M32R/D Options</h4>
<p><a name="index-M32R_002fD-options-1385"></a>
These <samp><span class="option">-m</span></samp> options are defined for Renesas M32R/D architectures:
<dl>
<dt><code>-m32r2</code><dd><a name="index-m32r2-1386"></a>Generate code for the M32R/2.
<br><dt><code>-m32rx</code><dd><a name="index-m32rx-1387"></a>Generate code for the M32R/X.
<br><dt><code>-m32r</code><dd><a name="index-m32r-1388"></a>Generate code for the M32R. This is the default.
<br><dt><code>-mmodel=small</code><dd><a name="index-mmodel_003dsmall-1389"></a>Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the <code>ld24</code> instruction), and assume all subroutines
are reachable with the <code>bl</code> instruction.
This is the default.
<p>The addressability of a particular object can be set with the
<code>model</code> attribute.
<br><dt><code>-mmodel=medium</code><dd><a name="index-mmodel_003dmedium-1390"></a>Assume objects may be anywhere in the 32-bit address space (the compiler
will generate <code>seth/add3</code> instructions to load their addresses), and
assume all subroutines are reachable with the <code>bl</code> instruction.
<br><dt><code>-mmodel=large</code><dd><a name="index-mmodel_003dlarge-1391"></a>Assume objects may be anywhere in the 32-bit address space (the compiler
will generate <code>seth/add3</code> instructions to load their addresses), and
assume subroutines may not be reachable with the <code>bl</code> instruction
(the compiler will generate the much slower <code>seth/add3/jl</code>
instruction sequence).
<br><dt><code>-msdata=none</code><dd><a name="index-msdata_003dnone-1392"></a>Disable use of the small data area. Variables will be put into
one of ‘<samp><span class="samp">.data</span></samp>’, ‘<samp><span class="samp">bss</span></samp>’, or ‘<samp><span class="samp">.rodata</span></samp>’ (unless the
<code>section</code> attribute has been specified).
This is the default.
<p>The small data area consists of sections ‘<samp><span class="samp">.sdata</span></samp>’ and ‘<samp><span class="samp">.sbss</span></samp>’.
Objects may be explicitly put in the small data area with the
<code>section</code> attribute using one of these sections.
<br><dt><code>-msdata=sdata</code><dd><a name="index-msdata_003dsdata-1393"></a>Put small global and static data in the small data area, but do not
generate special code to reference them.
<br><dt><code>-msdata=use</code><dd><a name="index-msdata_003duse-1394"></a>Put small global and static data in the small data area, and generate
special instructions to reference them.
<br><dt><code>-G </code><var>num</var><dd><a name="index-G-1395"></a><a name="index-smaller-data-references-1396"></a>Put global and static objects less than or equal to <var>num</var> bytes
into the small data or bss sections instead of the normal data or bss
sections. The default value of <var>num</var> is 8.
The <samp><span class="option">-msdata</span></samp> option must be set to one of ‘<samp><span class="samp">sdata</span></samp>’ or ‘<samp><span class="samp">use</span></samp>’
for this option to have any effect.
<p>All modules should be compiled with the same <samp><span class="option">-G </span><var>num</var></samp> value.
Compiling with different values of <var>num</var> may or may not work; if it
doesn't the linker will give an error message—incorrect code will not be
generated.
<br><dt><code>-mdebug</code><dd><a name="index-mdebug-1397"></a>Makes the M32R specific code in the compiler display some statistics
that might help in debugging programs.
<br><dt><code>-malign-loops</code><dd><a name="index-malign_002dloops-1398"></a>Align all loops to a 32-byte boundary.
<br><dt><code>-mno-align-loops</code><dd><a name="index-mno_002dalign_002dloops-1399"></a>Do not enforce a 32-byte alignment for loops. This is the default.
<br><dt><code>-missue-rate=</code><var>number</var><dd><a name="index-missue_002drate_003d_0040var_007bnumber_007d-1400"></a>Issue <var>number</var> instructions per cycle. <var>number</var> can only be 1
or 2.
<br><dt><code>-mbranch-cost=</code><var>number</var><dd><a name="index-mbranch_002dcost_003d_0040var_007bnumber_007d-1401"></a><var>number</var> can only be 1 or 2. If it is 1 then branches will be
preferred over conditional code, if it is 2, then the opposite will
apply.
<br><dt><code>-mflush-trap=</code><var>number</var><dd><a name="index-mflush_002dtrap_003d_0040var_007bnumber_007d-1402"></a>Specifies the trap number to use to flush the cache. The default is
12. Valid numbers are between 0 and 15 inclusive.
<br><dt><code>-mno-flush-trap</code><dd><a name="index-mno_002dflush_002dtrap-1403"></a>Specifies that the cache cannot be flushed by using a trap.
<br><dt><code>-mflush-func=</code><var>name</var><dd><a name="index-mflush_002dfunc_003d_0040var_007bname_007d-1404"></a>Specifies the name of the operating system function to call to flush
the cache. The default is <em>_flush_cache</em>, but a function call
will only be used if a trap is not available.
<br><dt><code>-mno-flush-func</code><dd><a name="index-mno_002dflush_002dfunc-1405"></a>Indicates that there is no OS function for flushing the cache.
</dl>
<div class="node">
<a name="M680x0-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#M68hc1x-Options">M68hc1x Options</a>,
Previous: <a rel="previous" accesskey="p" href="#M32R_002fD-Options">M32R/D Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.20 M680x0 Options</h4>
<p><a name="index-M680x0-options-1406"></a>
These are the ‘<samp><span class="samp">-m</span></samp>’ options defined for M680x0 and ColdFire processors.
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.
<dl>
<dt><code>-march=</code><var>arch</var><dd><a name="index-march-1407"></a>Generate code for a specific M680x0 or ColdFire instruction set
architecture. Permissible values of <var>arch</var> for M680x0
architectures are: ‘<samp><span class="samp">68000</span></samp>’, ‘<samp><span class="samp">68010</span></samp>’, ‘<samp><span class="samp">68020</span></samp>’,
‘<samp><span class="samp">68030</span></samp>’, ‘<samp><span class="samp">68040</span></samp>’, ‘<samp><span class="samp">68060</span></samp>’ and ‘<samp><span class="samp">cpu32</span></samp>’. ColdFire
architectures are selected according to Freescale's ISA classification
and the permissible values are: ‘<samp><span class="samp">isaa</span></samp>’, ‘<samp><span class="samp">isaaplus</span></samp>’,
‘<samp><span class="samp">isab</span></samp>’ and ‘<samp><span class="samp">isac</span></samp>’.
<p>gcc defines a macro ‘<samp><span class="samp">__mcf</span><var>arch</var><span class="samp">__</span></samp>’ whenever it is generating
code for a ColdFire target. The <var>arch</var> in this macro is one of the
<samp><span class="option">-march</span></samp> arguments given above.
<p>When used together, <samp><span class="option">-march</span></samp> and <samp><span class="option">-mtune</span></samp> select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.
<br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-1408"></a>Generate code for a specific M680x0 or ColdFire processor.
The M680x0 <var>cpu</var>s are: ‘<samp><span class="samp">68000</span></samp>’, ‘<samp><span class="samp">68010</span></samp>’, ‘<samp><span class="samp">68020</span></samp>’,
‘<samp><span class="samp">68030</span></samp>’, ‘<samp><span class="samp">68040</span></samp>’, ‘<samp><span class="samp">68060</span></samp>’, ‘<samp><span class="samp">68302</span></samp>’, ‘<samp><span class="samp">68332</span></samp>’
and ‘<samp><span class="samp">cpu32</span></samp>’. The ColdFire <var>cpu</var>s are given by the table
below, which also classifies the CPUs into families:
<p><table summary=""><tr align="left"><td valign="top" width="20%"><strong>Family</strong> </td><td valign="top" width="80%"><strong>‘</strong><samp><span class="samp">-mcpu</span></samp><strong>’ arguments</strong>
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">51</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">51</span></samp>’ ‘<samp><span class="samp">51ac</span></samp>’ ‘<samp><span class="samp">51cn</span></samp>’ ‘<samp><span class="samp">51em</span></samp>’ ‘<samp><span class="samp">51qe</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5206</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5202</span></samp>’ ‘<samp><span class="samp">5204</span></samp>’ ‘<samp><span class="samp">5206</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5206e</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5206e</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5208</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5207</span></samp>’ ‘<samp><span class="samp">5208</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5211a</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5210a</span></samp>’ ‘<samp><span class="samp">5211a</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5213</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5211</span></samp>’ ‘<samp><span class="samp">5212</span></samp>’ ‘<samp><span class="samp">5213</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5216</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5214</span></samp>’ ‘<samp><span class="samp">5216</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">52235</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">52230</span></samp>’ ‘<samp><span class="samp">52231</span></samp>’ ‘<samp><span class="samp">52232</span></samp>’ ‘<samp><span class="samp">52233</span></samp>’ ‘<samp><span class="samp">52234</span></samp>’ ‘<samp><span class="samp">52235</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5225</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5224</span></samp>’ ‘<samp><span class="samp">5225</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">52259</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">52252</span></samp>’ ‘<samp><span class="samp">52254</span></samp>’ ‘<samp><span class="samp">52255</span></samp>’ ‘<samp><span class="samp">52256</span></samp>’ ‘<samp><span class="samp">52258</span></samp>’ ‘<samp><span class="samp">52259</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5235</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5232</span></samp>’ ‘<samp><span class="samp">5233</span></samp>’ ‘<samp><span class="samp">5234</span></samp>’ ‘<samp><span class="samp">5235</span></samp>’ ‘<samp><span class="samp">523x</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5249</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5249</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5250</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5250</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5271</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5270</span></samp>’ ‘<samp><span class="samp">5271</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5272</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5272</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5275</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5274</span></samp>’ ‘<samp><span class="samp">5275</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5282</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5280</span></samp>’ ‘<samp><span class="samp">5281</span></samp>’ ‘<samp><span class="samp">5282</span></samp>’ ‘<samp><span class="samp">528x</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">53017</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">53011</span></samp>’ ‘<samp><span class="samp">53012</span></samp>’ ‘<samp><span class="samp">53013</span></samp>’ ‘<samp><span class="samp">53014</span></samp>’ ‘<samp><span class="samp">53015</span></samp>’ ‘<samp><span class="samp">53016</span></samp>’ ‘<samp><span class="samp">53017</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5307</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5307</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5329</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5327</span></samp>’ ‘<samp><span class="samp">5328</span></samp>’ ‘<samp><span class="samp">5329</span></samp>’ ‘<samp><span class="samp">532x</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5373</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5372</span></samp>’ ‘<samp><span class="samp">5373</span></samp>’ ‘<samp><span class="samp">537x</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5407</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5407</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">‘<samp><span class="samp">5475</span></samp>’ </td><td valign="top" width="80%">‘<samp><span class="samp">5470</span></samp>’ ‘<samp><span class="samp">5471</span></samp>’ ‘<samp><span class="samp">5472</span></samp>’ ‘<samp><span class="samp">5473</span></samp>’ ‘<samp><span class="samp">5474</span></samp>’ ‘<samp><span class="samp">5475</span></samp>’ ‘<samp><span class="samp">547x</span></samp>’ ‘<samp><span class="samp">5480</span></samp>’ ‘<samp><span class="samp">5481</span></samp>’ ‘<samp><span class="samp">5482</span></samp>’ ‘<samp><span class="samp">5483</span></samp>’ ‘<samp><span class="samp">5484</span></samp>’ ‘<samp><span class="samp">5485</span></samp>’
<br></td></tr></table>
<p><samp><span class="option">-mcpu=</span><var>cpu</var></samp> overrides <samp><span class="option">-march=</span><var>arch</var></samp> if
<var>arch</var> is compatible with <var>cpu</var>. Other combinations of
<samp><span class="option">-mcpu</span></samp> and <samp><span class="option">-march</span></samp> are rejected.
<p>gcc defines the macro ‘<samp><span class="samp">__mcf_cpu_</span><var>cpu</var></samp>’ when ColdFire target
<var>cpu</var> is selected. It also defines ‘<samp><span class="samp">__mcf_family_</span><var>family</var></samp>’,
where the value of <var>family</var> is given by the table above.
<br><dt><code>-mtune=</code><var>tune</var><dd><a name="index-mtune-1409"></a>Tune the code for a particular microarchitecture, within the
constraints set by <samp><span class="option">-march</span></samp> and <samp><span class="option">-mcpu</span></samp>.
The M680x0 microarchitectures are: ‘<samp><span class="samp">68000</span></samp>’, ‘<samp><span class="samp">68010</span></samp>’,
‘<samp><span class="samp">68020</span></samp>’, ‘<samp><span class="samp">68030</span></samp>’, ‘<samp><span class="samp">68040</span></samp>’, ‘<samp><span class="samp">68060</span></samp>’
and ‘<samp><span class="samp">cpu32</span></samp>’. The ColdFire microarchitectures
are: ‘<samp><span class="samp">cfv1</span></samp>’, ‘<samp><span class="samp">cfv2</span></samp>’, ‘<samp><span class="samp">cfv3</span></samp>’, ‘<samp><span class="samp">cfv4</span></samp>’ and ‘<samp><span class="samp">cfv4e</span></samp>’.
<p>You can also use <samp><span class="option">-mtune=68020-40</span></samp> for code that needs
to run relatively well on 68020, 68030 and 68040 targets.
<samp><span class="option">-mtune=68020-60</span></samp> is similar but includes 68060 targets
as well. These two options select the same tuning decisions as
<samp><span class="option">-m68020-40</span></samp> and <samp><span class="option">-m68020-60</span></samp> respectively.
<p>gcc defines the macros ‘<samp><span class="samp">__mc</span><var>arch</var></samp>’ and ‘<samp><span class="samp">__mc</span><var>arch</var><span class="samp">__</span></samp>’
when tuning for 680x0 architecture <var>arch</var>. It also defines
‘<samp><span class="samp">mc</span><var>arch</var></samp>’ unless either <samp><span class="option">-ansi</span></samp> or a non-GNU <samp><span class="option">-std</span></samp>
option is used. If gcc is tuning for a range of architectures,
as selected by <samp><span class="option">-mtune=68020-40</span></samp> or <samp><span class="option">-mtune=68020-60</span></samp>,
it defines the macros for every architecture in the range.
<p>gcc also defines the macro ‘<samp><span class="samp">__m</span><var>uarch</var><span class="samp">__</span></samp>’ when tuning for
ColdFire microarchitecture <var>uarch</var>, where <var>uarch</var> is one
of the arguments given above.
<br><dt><code>-m68000</code><dt><code>-mc68000</code><dd><a name="index-m68000-1410"></a><a name="index-mc68000-1411"></a>Generate output for a 68000. This is the default
when the compiler is configured for 68000-based systems.
It is equivalent to <samp><span class="option">-march=68000</span></samp>.
<p>Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
<br><dt><code>-m68010</code><dd><a name="index-m68010-1412"></a>Generate output for a 68010. This is the default
when the compiler is configured for 68010-based systems.
It is equivalent to <samp><span class="option">-march=68010</span></samp>.
<br><dt><code>-m68020</code><dt><code>-mc68020</code><dd><a name="index-m68020-1413"></a><a name="index-mc68020-1414"></a>Generate output for a 68020. This is the default
when the compiler is configured for 68020-based systems.
It is equivalent to <samp><span class="option">-march=68020</span></samp>.
<br><dt><code>-m68030</code><dd><a name="index-m68030-1415"></a>Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems. It is equivalent to
<samp><span class="option">-march=68030</span></samp>.
<br><dt><code>-m68040</code><dd><a name="index-m68040-1416"></a>Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems. It is equivalent to
<samp><span class="option">-march=68040</span></samp>.
<p>This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. Use this option if your 68040 does not
have code to emulate those instructions.
<br><dt><code>-m68060</code><dd><a name="index-m68060-1417"></a>Generate output for a 68060. This is the default when the compiler is
configured for 68060-based systems. It is equivalent to
<samp><span class="option">-march=68060</span></samp>.
<p>This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060. Use this option if your 68060
does not have code to emulate those instructions.
<br><dt><code>-mcpu32</code><dd><a name="index-mcpu32-1418"></a>Generate output for a CPU32. This is the default
when the compiler is configured for CPU32-based systems.
It is equivalent to <samp><span class="option">-march=cpu32</span></samp>.
<p>Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.
<br><dt><code>-m5200</code><dd><a name="index-m5200-1419"></a>Generate output for a 520X ColdFire CPU. This is the default
when the compiler is configured for 520X-based systems.
It is equivalent to <samp><span class="option">-mcpu=5206</span></samp>, and is now deprecated
in favor of that option.
<p>Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.
<br><dt><code>-m5206e</code><dd><a name="index-m5206e-1420"></a>Generate output for a 5206e ColdFire CPU. The option is now
deprecated in favor of the equivalent <samp><span class="option">-mcpu=5206e</span></samp>.
<br><dt><code>-m528x</code><dd><a name="index-m528x-1421"></a>Generate output for a member of the ColdFire 528X family.
The option is now deprecated in favor of the equivalent
<samp><span class="option">-mcpu=528x</span></samp>.
<br><dt><code>-m5307</code><dd><a name="index-m5307-1422"></a>Generate output for a ColdFire 5307 CPU. The option is now deprecated
in favor of the equivalent <samp><span class="option">-mcpu=5307</span></samp>.
<br><dt><code>-m5407</code><dd><a name="index-m5407-1423"></a>Generate output for a ColdFire 5407 CPU. The option is now deprecated
in favor of the equivalent <samp><span class="option">-mcpu=5407</span></samp>.
<br><dt><code>-mcfv4e</code><dd><a name="index-mcfv4e-1424"></a>Generate output for a ColdFire V4e family CPU (e.g. 547x/548x).
This includes use of hardware floating point instructions.
The option is equivalent to <samp><span class="option">-mcpu=547x</span></samp>, and is now
deprecated in favor of that option.
<br><dt><code>-m68020-40</code><dd><a name="index-m68020_002d40-1425"></a>Generate output for a 68040, without using any of the new instructions.
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68040.
<p>The option is equivalent to <samp><span class="option">-march=68020</span></samp> <samp><span class="option">-mtune=68020-40</span></samp>.
<br><dt><code>-m68020-60</code><dd><a name="index-m68020_002d60-1426"></a>Generate output for a 68060, without using any of the new instructions.
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68060.
<p>The option is equivalent to <samp><span class="option">-march=68020</span></samp> <samp><span class="option">-mtune=68020-60</span></samp>.
<br><dt><code>-mhard-float</code><dt><code>-m68881</code><dd><a name="index-mhard_002dfloat-1427"></a><a name="index-m68881-1428"></a>Generate floating-point instructions. This is the default for 68020
and above, and for ColdFire devices that have an FPU. It defines the
macro ‘<samp><span class="samp">__HAVE_68881__</span></samp>’ on M680x0 targets and ‘<samp><span class="samp">__mcffpu__</span></samp>’
on ColdFire targets.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1429"></a>Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets. It is also
the default for ColdFire devices that have no FPU.
<br><dt><code>-mdiv</code><dt><code>-mno-div</code><dd><a name="index-mdiv-1430"></a><a name="index-mno_002ddiv-1431"></a>Generate (do not generate) ColdFire hardware divide and remainder
instructions. If <samp><span class="option">-march</span></samp> is used without <samp><span class="option">-mcpu</span></samp>,
the default is “on” for ColdFire architectures and “off” for M680x0
architectures. Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by <samp><span class="option">-mcpu</span></samp>). For
example, the default is “off” for <samp><span class="option">-mcpu=5206</span></samp> and “on” for
<samp><span class="option">-mcpu=5206e</span></samp>.
<p>gcc defines the macro ‘<samp><span class="samp">__mcfhwdiv__</span></samp>’ when this option is enabled.
<br><dt><code>-mshort</code><dd><a name="index-mshort-1432"></a>Consider type <code>int</code> to be 16 bits wide, like <code>short int</code>.
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.
<br><dt><code>-mno-short</code><dd><a name="index-mno_002dshort-1433"></a>Do not consider type <code>int</code> to be 16 bits wide. This is the default.
<br><dt><code>-mnobitfield</code><dt><code>-mno-bitfield</code><dd><a name="index-mnobitfield-1434"></a><a name="index-mno_002dbitfield-1435"></a>Do not use the bit-field instructions. The <samp><span class="option">-m68000</span></samp>, <samp><span class="option">-mcpu32</span></samp>
and <samp><span class="option">-m5200</span></samp> options imply <samp><span class="option">-mnobitfield</span></samp><!-- /@w -->.
<br><dt><code>-mbitfield</code><dd><a name="index-mbitfield-1436"></a>Do use the bit-field instructions. The <samp><span class="option">-m68020</span></samp> option implies
<samp><span class="option">-mbitfield</span></samp>. This is the default if you use a configuration
designed for a 68020.
<br><dt><code>-mrtd</code><dd><a name="index-mrtd-1437"></a>Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the <code>rtd</code>
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
<p>This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
<p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code will be generated for calls to those
functions.
<p>In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
<p>The <code>rtd</code> instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
<br><dt><code>-mno-rtd</code><dd><a name="index-mno_002drtd-1438"></a>Do not use the calling conventions selected by <samp><span class="option">-mrtd</span></samp>.
This is the default.
<br><dt><code>-malign-int</code><dt><code>-mno-align-int</code><dd><a name="index-malign_002dint-1439"></a><a name="index-mno_002dalign_002dint-1440"></a>Control whether GCC aligns <code>int</code>, <code>long</code>, <code>long long</code>,
<code>float</code>, <code>double</code>, and <code>long double</code> variables on a 32-bit
boundary (<samp><span class="option">-malign-int</span></samp>) or a 16-bit boundary (<samp><span class="option">-mno-align-int</span></samp>).
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.
<p><strong>Warning:</strong> if you use the <samp><span class="option">-malign-int</span></samp> switch, GCC will
align structures containing the above types differently than
most published application binary interface specifications for the m68k.
<br><dt><code>-mpcrel</code><dd><a name="index-mpcrel-1441"></a>Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table. At present, this option implies <samp><span class="option">-fpic</span></samp>,
allowing at most a 16-bit offset for pc-relative addressing. <samp><span class="option">-fPIC</span></samp> is
not presently supported with <samp><span class="option">-mpcrel</span></samp>, though this could be supported for
68020 and higher processors.
<br><dt><code>-mno-strict-align</code><dt><code>-mstrict-align</code><dd><a name="index-mno_002dstrict_002dalign-1442"></a><a name="index-mstrict_002dalign-1443"></a>Do not (do) assume that unaligned memory references will be handled by
the system.
<br><dt><code>-msep-data</code><dd>Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management. This option implies
<samp><span class="option">-fPIC</span></samp>.
<br><dt><code>-mno-sep-data</code><dd>Generate code that assumes that the data segment follows the text segment.
This is the default.
<br><dt><code>-mid-shared-library</code><dd>Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies <samp><span class="option">-fPIC</span></samp>.
<br><dt><code>-mno-id-shared-library</code><dd>Generate code that doesn't assume ID based shared libraries are being used.
This is the default.
<br><dt><code>-mshared-library-id=n</code><dd>Specified the identification number of the ID based shared library being
compiled. Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.
<br><dt><code>-mxgot</code><dt><code>-mno-xgot</code><dd><a name="index-mxgot-1444"></a><a name="index-mno_002dxgot-1445"></a>When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries. This code is
larger and slower than code generated without this option. On M680x0
processors, this option is not needed; <samp><span class="option">-fPIC</span></samp> suffices.
<p>GCC normally uses a single instruction to load values from the GOT.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
<p><a name="index-relocation-truncated-to-fit-_0028ColdFire_0029-1446"></a>
<pre class="smallexample"> relocation truncated to fit: R_68K_GOT16O foobar
</pre>
<p>If this happens, you should recompile your code with <samp><span class="option">-mxgot</span></samp>.
It should then work with very large GOTs. However, code generated with
<samp><span class="option">-mxgot</span></samp> is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.
<p>Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries. If you have such a linker,
you should only need to use <samp><span class="option">-mxgot</span></samp> when compiling a single
object file that accesses more than 8192 GOT entries. Very few do.
<p>These options have no effect unless GCC is generating
position-independent code.
</dl>
<div class="node">
<a name="M68hc1x-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MCore-Options">MCore Options</a>,
Previous: <a rel="previous" accesskey="p" href="#M680x0-Options">M680x0 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.21 M68hc1x Options</h4>
<p><a name="index-M68hc1x-options-1447"></a>
These are the ‘<samp><span class="samp">-m</span></samp>’ options defined for the 68hc11 and 68hc12
microcontrollers. The default values for these options depends on
which style of microcontroller was selected when the compiler was configured;
the defaults for the most common choices are given below.
<dl>
<dt><code>-m6811</code><dt><code>-m68hc11</code><dd><a name="index-m6811-1448"></a><a name="index-m68hc11-1449"></a>Generate output for a 68HC11. This is the default
when the compiler is configured for 68HC11-based systems.
<br><dt><code>-m6812</code><dt><code>-m68hc12</code><dd><a name="index-m6812-1450"></a><a name="index-m68hc12-1451"></a>Generate output for a 68HC12. This is the default
when the compiler is configured for 68HC12-based systems.
<br><dt><code>-m68S12</code><dt><code>-m68hcs12</code><dd><a name="index-m68S12-1452"></a><a name="index-m68hcs12-1453"></a>Generate output for a 68HCS12.
<br><dt><code>-mauto-incdec</code><dd><a name="index-mauto_002dincdec-1454"></a>Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.
<br><dt><code>-minmax</code><dt><code>-nominmax</code><dd><a name="index-minmax-1455"></a><a name="index-mnominmax-1456"></a>Enable the use of 68HC12 min and max instructions.
<br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1457"></a><a name="index-mno_002dlong_002dcalls-1458"></a>Treat all calls as being far away (near). If calls are assumed to be
far away, the compiler will use the <code>call</code> instruction to
call a function and the <code>rtc</code> instruction for returning.
<br><dt><code>-mshort</code><dd><a name="index-mshort-1459"></a>Consider type <code>int</code> to be 16 bits wide, like <code>short int</code>.
<br><dt><code>-msoft-reg-count=</code><var>count</var><dd><a name="index-msoft_002dreg_002dcount-1460"></a>Specify the number of pseudo-soft registers which are used for the
code generation. The maximum number is 32. Using more pseudo-soft
register may or may not result in better code depending on the program.
The default is 4 for 68HC11 and 2 for 68HC12.
</dl>
<div class="node">
<a name="MCore-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS-Options">MIPS Options</a>,
Previous: <a rel="previous" accesskey="p" href="#M68hc1x-Options">M68hc1x Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.22 MCore Options</h4>
<p><a name="index-MCore-options-1461"></a>
These are the ‘<samp><span class="samp">-m</span></samp>’ options defined for the Motorola M*Core
processors.
<dl>
<dt><code>-mhardlit</code><dt><code>-mno-hardlit</code><dd><a name="index-mhardlit-1462"></a><a name="index-mno_002dhardlit-1463"></a>Inline constants into the code stream if it can be done in two
instructions or less.
<br><dt><code>-mdiv</code><dt><code>-mno-div</code><dd><a name="index-mdiv-1464"></a><a name="index-mno_002ddiv-1465"></a>Use the divide instruction. (Enabled by default).
<br><dt><code>-mrelax-immediate</code><dt><code>-mno-relax-immediate</code><dd><a name="index-mrelax_002dimmediate-1466"></a><a name="index-mno_002drelax_002dimmediate-1467"></a>Allow arbitrary sized immediates in bit operations.
<br><dt><code>-mwide-bitfields</code><dt><code>-mno-wide-bitfields</code><dd><a name="index-mwide_002dbitfields-1468"></a><a name="index-mno_002dwide_002dbitfields-1469"></a>Always treat bit-fields as int-sized.
<br><dt><code>-m4byte-functions</code><dt><code>-mno-4byte-functions</code><dd><a name="index-m4byte_002dfunctions-1470"></a><a name="index-mno_002d4byte_002dfunctions-1471"></a>Force all functions to be aligned to a four byte boundary.
<br><dt><code>-mcallgraph-data</code><dt><code>-mno-callgraph-data</code><dd><a name="index-mcallgraph_002ddata-1472"></a><a name="index-mno_002dcallgraph_002ddata-1473"></a>Emit callgraph information.
<br><dt><code>-mslow-bytes</code><dt><code>-mno-slow-bytes</code><dd><a name="index-mslow_002dbytes-1474"></a><a name="index-mno_002dslow_002dbytes-1475"></a>Prefer word access when reading byte quantities.
<br><dt><code>-mlittle-endian</code><dt><code>-mbig-endian</code><dd><a name="index-mlittle_002dendian-1476"></a><a name="index-mbig_002dendian-1477"></a>Generate code for a little endian target.
<br><dt><code>-m210</code><dt><code>-m340</code><dd><a name="index-m210-1478"></a><a name="index-m340-1479"></a>Generate code for the 210 processor.
<br><dt><code>-mno-lsim</code><dd><a name="index-no_002dlsim-1480"></a>Assume that run-time support has been provided and so omit the
simulator library (<samp><span class="file">libsim.a)</span></samp> from the linker command line.
<br><dt><code>-mstack-increment=</code><var>size</var><dd><a name="index-mstack_002dincrement-1481"></a>Set the maximum amount for a single stack increment operation. Large
values can increase the speed of programs which contain functions
that need a large amount of stack space, but they can also trigger a
segmentation fault if the stack is extended too much. The default
value is 0x1000.
</dl>
<div class="node">
<a name="MIPS-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MMIX-Options">MMIX Options</a>,
Previous: <a rel="previous" accesskey="p" href="#MCore-Options">MCore Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.23 MIPS Options</h4>
<p><a name="index-MIPS-options-1482"></a>
<dl>
<dt><code>-EB</code><dd><a name="index-EB-1483"></a>Generate big-endian code.
<br><dt><code>-EL</code><dd><a name="index-EL-1484"></a>Generate little-endian code. This is the default for ‘<samp><span class="samp">mips*el-*-*</span></samp>’
configurations.
<br><dt><code>-march=</code><var>arch</var><dd><a name="index-march-1485"></a>Generate code that will run on <var>arch</var>, which can be the name of a
generic MIPS ISA, or the name of a particular processor.
The ISA names are:
‘<samp><span class="samp">mips1</span></samp>’, ‘<samp><span class="samp">mips2</span></samp>’, ‘<samp><span class="samp">mips3</span></samp>’, ‘<samp><span class="samp">mips4</span></samp>’,
‘<samp><span class="samp">mips32</span></samp>’, ‘<samp><span class="samp">mips32r2</span></samp>’, ‘<samp><span class="samp">mips64</span></samp>’ and ‘<samp><span class="samp">mips64r2</span></samp>’.
The processor names are:
‘<samp><span class="samp">4kc</span></samp>’, ‘<samp><span class="samp">4km</span></samp>’, ‘<samp><span class="samp">4kp</span></samp>’, ‘<samp><span class="samp">4ksc</span></samp>’,
‘<samp><span class="samp">4kec</span></samp>’, ‘<samp><span class="samp">4kem</span></samp>’, ‘<samp><span class="samp">4kep</span></samp>’, ‘<samp><span class="samp">4ksd</span></samp>’,
‘<samp><span class="samp">5kc</span></samp>’, ‘<samp><span class="samp">5kf</span></samp>’,
‘<samp><span class="samp">20kc</span></samp>’,
‘<samp><span class="samp">24kc</span></samp>’, ‘<samp><span class="samp">24kf2_1</span></samp>’, ‘<samp><span class="samp">24kf1_1</span></samp>’,
‘<samp><span class="samp">24kec</span></samp>’, ‘<samp><span class="samp">24kef2_1</span></samp>’, ‘<samp><span class="samp">24kef1_1</span></samp>’,
‘<samp><span class="samp">34kc</span></samp>’, ‘<samp><span class="samp">34kf2_1</span></samp>’, ‘<samp><span class="samp">34kf1_1</span></samp>’,
‘<samp><span class="samp">74kc</span></samp>’, ‘<samp><span class="samp">74kf2_1</span></samp>’, ‘<samp><span class="samp">74kf1_1</span></samp>’, ‘<samp><span class="samp">74kf3_2</span></samp>’,
‘<samp><span class="samp">1004kc</span></samp>’, ‘<samp><span class="samp">1004kf2_1</span></samp>’, ‘<samp><span class="samp">1004kf1_1</span></samp>’,
‘<samp><span class="samp">loongson2e</span></samp>’, ‘<samp><span class="samp">loongson2f</span></samp>’,
‘<samp><span class="samp">m4k</span></samp>’, ‘<samp><span class="samp">m14k</span></samp>’,
‘<samp><span class="samp">octeon</span></samp>’,
‘<samp><span class="samp">orion</span></samp>’,
‘<samp><span class="samp">r2000</span></samp>’, ‘<samp><span class="samp">r3000</span></samp>’, ‘<samp><span class="samp">r3900</span></samp>’, ‘<samp><span class="samp">r4000</span></samp>’, ‘<samp><span class="samp">r4400</span></samp>’,
‘<samp><span class="samp">r4600</span></samp>’, ‘<samp><span class="samp">r4650</span></samp>’, ‘<samp><span class="samp">r6000</span></samp>’, ‘<samp><span class="samp">r8000</span></samp>’,
‘<samp><span class="samp">rm7000</span></samp>’, ‘<samp><span class="samp">rm9000</span></samp>’,
‘<samp><span class="samp">r10000</span></samp>’, ‘<samp><span class="samp">r12000</span></samp>’, ‘<samp><span class="samp">r14000</span></samp>’, ‘<samp><span class="samp">r16000</span></samp>’,
‘<samp><span class="samp">sb1</span></samp>’,
‘<samp><span class="samp">sr71000</span></samp>’,
‘<samp><span class="samp">vr4100</span></samp>’, ‘<samp><span class="samp">vr4111</span></samp>’, ‘<samp><span class="samp">vr4120</span></samp>’, ‘<samp><span class="samp">vr4130</span></samp>’, ‘<samp><span class="samp">vr4300</span></samp>’,
‘<samp><span class="samp">vr5000</span></samp>’, ‘<samp><span class="samp">vr5400</span></samp>’, ‘<samp><span class="samp">vr5500</span></samp>’
and ‘<samp><span class="samp">xlr</span></samp>’.
The special value ‘<samp><span class="samp">from-abi</span></samp>’ selects the
most compatible architecture for the selected ABI (that is,
‘<samp><span class="samp">mips1</span></samp>’ for 32-bit ABIs and ‘<samp><span class="samp">mips3</span></samp>’ for 64-bit ABIs).
<p>Native Linux/GNU toolchains also support the value ‘<samp><span class="samp">native</span></samp>’,
which selects the best architecture option for the host processor.
<samp><span class="option">-march=native</span></samp> has no effect if GCC does not recognize
the processor.
<p>In processor names, a final ‘<samp><span class="samp">000</span></samp>’ can be abbreviated as ‘<samp><span class="samp">k</span></samp>’
(for example, ‘<samp><span class="samp">-march=r2k</span></samp>’). Prefixes are optional, and
‘<samp><span class="samp">vr</span></samp>’ may be written ‘<samp><span class="samp">r</span></samp>’.
<p>Names of the form ‘<samp><var>n</var><span class="samp">f2_1</span></samp>’ refer to processors with
FPUs clocked at half the rate of the core, names of the form
‘<samp><var>n</var><span class="samp">f1_1</span></samp>’ refer to processors with FPUs clocked at the same
rate as the core, and names of the form ‘<samp><var>n</var><span class="samp">f3_2</span></samp>’ refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core.
For compatibility reasons, ‘<samp><var>n</var><span class="samp">f</span></samp>’ is accepted as a synonym
for ‘<samp><var>n</var><span class="samp">f2_1</span></samp>’ while ‘<samp><var>n</var><span class="samp">x</span></samp>’ and ‘<samp><var>b</var><span class="samp">fx</span></samp>’ are
accepted as synonyms for ‘<samp><var>n</var><span class="samp">f1_1</span></samp>’.
<p>GCC defines two macros based on the value of this option. The first
is ‘<samp><span class="samp">_MIPS_ARCH</span></samp>’, which gives the name of target architecture, as
a string. The second has the form ‘<samp><span class="samp">_MIPS_ARCH_</span><var>foo</var></samp>’,
where <var>foo</var> is the capitalized value of ‘<samp><span class="samp">_MIPS_ARCH</span></samp>’.
For example, ‘<samp><span class="samp">-march=r2000</span></samp>’ will set ‘<samp><span class="samp">_MIPS_ARCH</span></samp>’
to ‘<samp><span class="samp">"r2000"</span></samp>’ and define the macro ‘<samp><span class="samp">_MIPS_ARCH_R2000</span></samp>’.
<p>Note that the ‘<samp><span class="samp">_MIPS_ARCH</span></samp>’ macro uses the processor names given
above. In other words, it will have the full prefix and will not
abbreviate ‘<samp><span class="samp">000</span></samp>’ as ‘<samp><span class="samp">k</span></samp>’. In the case of ‘<samp><span class="samp">from-abi</span></samp>’,
the macro names the resolved architecture (either ‘<samp><span class="samp">"mips1"</span></samp>’ or
‘<samp><span class="samp">"mips3"</span></samp>’). It names the default architecture when no
<samp><span class="option">-march</span></samp> option is given.
<br><dt><code>-mtune=</code><var>arch</var><dd><a name="index-mtune-1486"></a>Optimize for <var>arch</var>. Among other things, this option controls
the way instructions are scheduled, and the perceived cost of arithmetic
operations. The list of <var>arch</var> values is the same as for
<samp><span class="option">-march</span></samp>.
<p>When this option is not used, GCC will optimize for the processor
specified by <samp><span class="option">-march</span></samp>. By using <samp><span class="option">-march</span></samp> and
<samp><span class="option">-mtune</span></samp> together, it is possible to generate code that will
run on a family of processors, but optimize the code for one
particular member of that family.
<p>‘<samp><span class="samp">-mtune</span></samp>’ defines the macros ‘<samp><span class="samp">_MIPS_TUNE</span></samp>’ and
‘<samp><span class="samp">_MIPS_TUNE_</span><var>foo</var></samp>’, which work in the same way as the
‘<samp><span class="samp">-march</span></samp>’ ones described above.
<br><dt><code>-mips1</code><dd><a name="index-mips1-1487"></a>Equivalent to ‘<samp><span class="samp">-march=mips1</span></samp>’.
<br><dt><code>-mips2</code><dd><a name="index-mips2-1488"></a>Equivalent to ‘<samp><span class="samp">-march=mips2</span></samp>’.
<br><dt><code>-mips3</code><dd><a name="index-mips3-1489"></a>Equivalent to ‘<samp><span class="samp">-march=mips3</span></samp>’.
<br><dt><code>-mips4</code><dd><a name="index-mips4-1490"></a>Equivalent to ‘<samp><span class="samp">-march=mips4</span></samp>’.
<br><dt><code>-mips32</code><dd><a name="index-mips32-1491"></a>Equivalent to ‘<samp><span class="samp">-march=mips32</span></samp>’.
<br><dt><code>-mips32r2</code><dd><a name="index-mips32r2-1492"></a>Equivalent to ‘<samp><span class="samp">-march=mips32r2</span></samp>’.
<br><dt><code>-mips64</code><dd><a name="index-mips64-1493"></a>Equivalent to ‘<samp><span class="samp">-march=mips64</span></samp>’.
<br><dt><code>-mips64r2</code><dd><a name="index-mips64r2-1494"></a>Equivalent to ‘<samp><span class="samp">-march=mips64r2</span></samp>’.
<br><dt><code>-mips16</code><dt><code>-mips16e</code><dt><code>-mno-mips16</code><dd><a name="index-mips16-1495"></a><a name="index-mips16e-1496"></a><a name="index-mno_002dmips16-1497"></a>Generate (do not generate) MIPS16 code. If GCC is targetting a
MIPS32 or MIPS64 architecture, it will make use of the MIPS16e ASE.
<samp><span class="option">-mips16e</span></samp> is a deprecated alias for <samp><span class="option">-mips16</span></samp>.
<p>MIPS16 code generation can also be controlled on a per-function basis
by means of <code>mips16</code> and <code>nomips16</code> attributes.
See <a href="#Function-Attributes">Function Attributes</a>, for more information.
<br><dt><code>-mflip-mips16</code><dd><a name="index-mflip_002dmips16-1498"></a>Generate MIPS16 code on alternating functions. This option is provided
for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
not intended for ordinary use in compiling user code.
<br><dt><code>-minterlink-mips16</code><dt><code>-mno-interlink-mips16</code><dd><a name="index-minterlink_002dmips16-1499"></a><a name="index-mno_002dinterlink_002dmips16-1500"></a>Require (do not require) that non-MIPS16/non-microMIPS code be link-compatible
with MIPS16/microMIPS code.
<p>For example, non-MIPS16/non-microMIPS code cannot jump directly to
MIPS16/microMIPS code;
it must either use a call or an indirect jump. <samp><span class="option">-minterlink-mips16</span></samp>
therefore disables direct jumps unless GCC knows that the target of the
jump is not MIPS16/non microMIPS.
<br><dt><code>-mabi=32</code><dt><code>-mabi=o64</code><dt><code>-mabi=n32</code><dt><code>-mabi=64</code><dt><code>-mabi=eabi</code><dd><a name="index-mabi_003d32-1501"></a><a name="index-mabi_003do64-1502"></a><a name="index-mabi_003dn32-1503"></a><a name="index-mabi_003d64-1504"></a><a name="index-mabi_003deabi-1505"></a>Generate code for the given ABI.
<p>Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
generates 64-bit code when you select a 64-bit architecture, but you
can use <samp><span class="option">-mgp32</span></samp> to get 32-bit code instead.
<p>For information about the O64 ABI, see
<a href="http://gcc.gnu.org/projects/mipso64-abi.html">http://gcc.gnu.org/projects/mipso64-abi.html</a><!-- /@w -->.
<p>GCC supports a variant of the o32 ABI in which floating-point registers
are 64 rather than 32 bits wide. You can select this combination with
<samp><span class="option">-mabi=32</span></samp> <samp><span class="option">-mfp64</span></samp>. This ABI relies on the ‘<samp><span class="samp">mthc1</span></samp>’
and ‘<samp><span class="samp">mfhc1</span></samp>’ instructions and is therefore only supported for
MIPS32R2 processors.
<p>The register assignments for arguments and return values remain the
same, but each scalar value is passed in a single 64-bit register
rather than a pair of 32-bit registers. For example, scalar
floating-point values are returned in ‘<samp><span class="samp">$f0</span></samp>’ only, not a
‘<samp><span class="samp">$f0</span></samp>’/‘<samp><span class="samp">$f1</span></samp>’ pair. The set of call-saved registers also
remains the same, but all 64 bits are saved.
<br><dt><code>-mabicalls</code><dt><code>-mno-abicalls</code><dd><a name="index-mabicalls-1506"></a><a name="index-mno_002dabicalls-1507"></a>Generate (do not generate) code that is suitable for SVR4-style
dynamic objects. <samp><span class="option">-mabicalls</span></samp> is the default for SVR4-based
systems.
<br><dt><code>-mshared</code><dt><code>-mno-shared</code><dd>Generate (do not generate) code that is fully position-independent,
and that can therefore be linked into shared libraries. This option
only affects <samp><span class="option">-mabicalls</span></samp>.
<p>All <samp><span class="option">-mabicalls</span></samp> code has traditionally been position-independent,
regardless of options like <samp><span class="option">-fPIC</span></samp> and <samp><span class="option">-fpic</span></samp>. However,
as an extension, the GNU toolchain allows executables to use absolute
accesses for locally-binding symbols. It can also use shorter GP
initialization sequences and generate direct calls to locally-defined
functions. This mode is selected by <samp><span class="option">-mno-shared</span></samp>.
<p><samp><span class="option">-mno-shared</span></samp> depends on binutils 2.16 or higher and generates
objects that can only be linked by the GNU linker. However, the option
does not affect the ABI of the final executable; it only affects the ABI
of relocatable objects. Using <samp><span class="option">-mno-shared</span></samp> will generally make
executables both smaller and quicker.
<p><samp><span class="option">-mshared</span></samp> is the default.
<br><dt><code>-mplt</code><dt><code>-mno-plt</code><dd><a name="index-mplt-1508"></a><a name="index-mno_002dplt-1509"></a>Assume (do not assume) that the static and dynamic linkers
support PLTs and copy relocations. This option only affects
‘<samp><span class="samp">-mno-shared -mabicalls</span></samp>’. For the n64 ABI, this option
has no effect without ‘<samp><span class="samp">-msym32</span></samp>’.
<p>You can make <samp><span class="option">-mplt</span></samp> the default by configuring
GCC with <samp><span class="option">--with-mips-plt</span></samp>. The default is
<samp><span class="option">-mno-plt</span></samp> otherwise.
<br><dt><code>-mxgot</code><dt><code>-mno-xgot</code><dd><a name="index-mxgot-1510"></a><a name="index-mno_002dxgot-1511"></a>Lift (do not lift) the usual restrictions on the size of the global
offset table.
<p>GCC normally uses a single instruction to load values from the GOT.
While this is relatively efficient, it will only work if the GOT
is smaller than about 64k. Anything larger will cause the linker
to report an error such as:
<p><a name="index-relocation-truncated-to-fit-_0028MIPS_0029-1512"></a>
<pre class="smallexample"> relocation truncated to fit: R_MIPS_GOT16 foobar
</pre>
<p>If this happens, you should recompile your code with <samp><span class="option">-mxgot</span></samp>.
It should then work with very large GOTs, although it will also be
less efficient, since it will take three instructions to fetch the
value of a global symbol.
<p>Note that some linkers can create multiple GOTs. If you have such a
linker, you should only need to use <samp><span class="option">-mxgot</span></samp> when a single object
file accesses more than 64k's worth of GOT entries. Very few do.
<p>These options have no effect unless GCC is generating position
independent code.
<br><dt><code>-mgp32</code><dd><a name="index-mgp32-1513"></a>Assume that general-purpose registers are 32 bits wide.
<br><dt><code>-mgp64</code><dd><a name="index-mgp64-1514"></a>Assume that general-purpose registers are 64 bits wide.
<br><dt><code>-mfp32</code><dd><a name="index-mfp32-1515"></a>Assume that floating-point registers are 32 bits wide.
<br><dt><code>-mfp64</code><dd><a name="index-mfp64-1516"></a>Assume that floating-point registers are 64 bits wide.
<br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1517"></a>Use floating-point coprocessor instructions.
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1518"></a>Do not use floating-point coprocessor instructions. Implement
floating-point calculations using library calls instead.
<br><dt><code>-msingle-float</code><dd><a name="index-msingle_002dfloat-1519"></a>Assume that the floating-point coprocessor only supports single-precision
operations.
<br><dt><code>-mdouble-float</code><dd><a name="index-mdouble_002dfloat-1520"></a>Assume that the floating-point coprocessor supports double-precision
operations. This is the default.
<br><dt><code>-mllsc</code><dt><code>-mno-llsc</code><dd><a name="index-mllsc-1521"></a><a name="index-mno_002dllsc-1522"></a>Use (do not use) ‘<samp><span class="samp">ll</span></samp>’, ‘<samp><span class="samp">sc</span></samp>’, and ‘<samp><span class="samp">sync</span></samp>’ instructions to
implement atomic memory built-in functions. When neither option is
specified, GCC will use the instructions if the target architecture
supports them.
<p><samp><span class="option">-mllsc</span></samp> is useful if the runtime environment can emulate the
instructions and <samp><span class="option">-mno-llsc</span></samp> can be useful when compiling for
nonstandard ISAs. You can make either option the default by
configuring GCC with <samp><span class="option">--with-llsc</span></samp> and <samp><span class="option">--without-llsc</span></samp>
respectively. <samp><span class="option">--with-llsc</span></samp> is the default for some
configurations; see the installation documentation for details.
<br><dt><code>-mdsp</code><dt><code>-mno-dsp</code><dd><a name="index-mdsp-1523"></a><a name="index-mno_002ddsp-1524"></a>Use (do not use) revision 1 of the MIPS DSP ASE.
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
preprocessor macro ‘<samp><span class="samp">__mips_dsp</span></samp>’. It also defines
‘<samp><span class="samp">__mips_dsp_rev</span></samp>’ to 1.
<br><dt><code>-mdspr2</code><dt><code>-mno-dspr2</code><dd><a name="index-mdspr2-1525"></a><a name="index-mno_002ddspr2-1526"></a>Use (do not use) revision 2 of the MIPS DSP ASE.
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
preprocessor macros ‘<samp><span class="samp">__mips_dsp</span></samp>’ and ‘<samp><span class="samp">__mips_dspr2</span></samp>’.
It also defines ‘<samp><span class="samp">__mips_dsp_rev</span></samp>’ to 2.
<br><dt><code>-msmartmips</code><dt><code>-mno-smartmips</code><dd><a name="index-msmartmips-1527"></a><a name="index-mno_002dsmartmips-1528"></a>Use (do not use) the MIPS SmartMIPS ASE.
<br><dt><code>-mpaired-single</code><dt><code>-mno-paired-single</code><dd><a name="index-mpaired_002dsingle-1529"></a><a name="index-mno_002dpaired_002dsingle-1530"></a>Use (do not use) paired-single floating-point instructions.
See <a href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>. This option requires
hardware floating-point support to be enabled.
<br><dt><code>-mdmx</code><dt><code>-mno-mdmx</code><dd><a name="index-mdmx-1531"></a><a name="index-mno_002dmdmx-1532"></a>Use (do not use) MIPS Digital Media Extension instructions.
This option can only be used when generating 64-bit code and requires
hardware floating-point support to be enabled.
<br><dt><code>-mips3d</code><dt><code>-mno-mips3d</code><dd><a name="index-mips3d-1533"></a><a name="index-mno_002dmips3d-1534"></a>Use (do not use) the MIPS-3D ASE. See <a href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>.
The option <samp><span class="option">-mips3d</span></samp> implies <samp><span class="option">-mpaired-single</span></samp>.
<br><dt><code>-mmicromips</code><dt><code>-mno-micromips</code><dd><a name="index-mmicromips-1535"></a><a name="index-mno_002dmmicromips-1536"></a>Generate (do not generate) microMIPS code. If GCC is targetting a
MIPS32 or MIPS64 architecture, it will make use of the microMIPS ASE.
<p>MicroMIPS code generation can also be controlled on a per-function basis
by means of <code>micromips</code> and <code>nomicromips</code> attributes.
See <a href="#Function-Attributes">Function Attributes</a>, for more information.
<br><dt><code>-mmt</code><dt><code>-mno-mt</code><dd><a name="index-mmt-1537"></a><a name="index-mno_002dmt-1538"></a>Use (do not use) MT Multithreading instructions.
<br><dt><code>-mmcu</code><dt><code>-mno-mcu</code><dd><a name="index-mmcu-1539"></a><a name="index-mno_002dmcu-1540"></a>Use (do not use) the MIPS MCU ASE instructions.
<br><dt><code>-mlong64</code><dd><a name="index-mlong64-1541"></a>Force <code>long</code> types to be 64 bits wide. See <samp><span class="option">-mlong32</span></samp> for
an explanation of the default and the way that the pointer size is
determined.
<br><dt><code>-mlong32</code><dd><a name="index-mlong32-1542"></a>Force <code>long</code>, <code>int</code>, and pointer types to be 32 bits wide.
<p>The default size of <code>int</code>s, <code>long</code>s and pointers depends on
the ABI. All the supported ABIs use 32-bit <code>int</code>s. The n64 ABI
uses 64-bit <code>long</code>s, as does the 64-bit EABI; the others use
32-bit <code>long</code>s. Pointers are the same size as <code>long</code>s,
or the same size as integer registers, whichever is smaller.
<br><dt><code>-msym32</code><dt><code>-mno-sym32</code><dd><a name="index-msym32-1543"></a><a name="index-mno_002dsym32-1544"></a>Assume (do not assume) that all symbols have 32-bit values, regardless
of the selected ABI. This option is useful in combination with
<samp><span class="option">-mabi=64</span></samp> and <samp><span class="option">-mno-abicalls</span></samp> because it allows GCC
to generate shorter and faster references to symbolic addresses.
<br><dt><code>-G </code><var>num</var><dd><a name="index-G-1545"></a>Put definitions of externally-visible data in a small data section
if that data is no bigger than <var>num</var> bytes. GCC can then access
the data more efficiently; see <samp><span class="option">-mgpopt</span></samp> for details.
<p>The default <samp><span class="option">-G</span></samp> option depends on the configuration.
<br><dt><code>-mlocal-sdata</code><dt><code>-mno-local-sdata</code><dd><a name="index-mlocal_002dsdata-1546"></a><a name="index-mno_002dlocal_002dsdata-1547"></a>Extend (do not extend) the <samp><span class="option">-G</span></samp> behavior to local data too,
such as to static variables in C. <samp><span class="option">-mlocal-sdata</span></samp> is the
default for all configurations.
<p>If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with
<samp><span class="option">-mno-local-sdata</span></samp>. You might also want to build large
libraries with <samp><span class="option">-mno-local-sdata</span></samp>, so that the libraries leave
more room for the main program.
<br><dt><code>-mextern-sdata</code><dt><code>-mno-extern-sdata</code><dd><a name="index-mextern_002dsdata-1548"></a><a name="index-mno_002dextern_002dsdata-1549"></a>Assume (do not assume) that externally-defined data will be in
a small data section if that data is within the <samp><span class="option">-G</span></samp> limit.
<samp><span class="option">-mextern-sdata</span></samp> is the default for all configurations.
<p>If you compile a module <var>Mod</var> with <samp><span class="option">-mextern-sdata</span></samp> <samp><span class="option">-G
</span><var>num</var></samp> <samp><span class="option">-mgpopt</span></samp>, and <var>Mod</var> references a variable <var>Var</var>
that is no bigger than <var>num</var> bytes, you must make sure that <var>Var</var>
is placed in a small data section. If <var>Var</var> is defined by another
module, you must either compile that module with a high-enough
<samp><span class="option">-G</span></samp> setting or attach a <code>section</code> attribute to <var>Var</var>'s
definition. If <var>Var</var> is common, you must link the application
with a high-enough <samp><span class="option">-G</span></samp> setting.
<p>The easiest way of satisfying these restrictions is to compile
and link every module with the same <samp><span class="option">-G</span></samp> option. However,
you may wish to build a library that supports several different
small data limits. You can do this by compiling the library with
the highest supported <samp><span class="option">-G</span></samp> setting and additionally using
<samp><span class="option">-mno-extern-sdata</span></samp> to stop the library from making assumptions
about externally-defined data.
<br><dt><code>-mgpopt</code><dt><code>-mno-gpopt</code><dd><a name="index-mgpopt-1550"></a><a name="index-mno_002dgpopt-1551"></a>Use (do not use) GP-relative accesses for symbols that are known to be
in a small data section; see <samp><span class="option">-G</span></samp>, <samp><span class="option">-mlocal-sdata</span></samp> and
<samp><span class="option">-mextern-sdata</span></samp>. <samp><span class="option">-mgpopt</span></samp> is the default for all
configurations.
<p><samp><span class="option">-mno-gpopt</span></samp> is useful for cases where the <code>$gp</code> register
might not hold the value of <code>_gp</code>. For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines will pass an unknown value in <code>$gp</code>.
(In such situations, the boot monitor itself would usually be compiled
with <samp><span class="option">-G0</span></samp>.)
<p><samp><span class="option">-mno-gpopt</span></samp> implies <samp><span class="option">-mno-local-sdata</span></samp> and
<samp><span class="option">-mno-extern-sdata</span></samp>.
<br><dt><code>-membedded-data</code><dt><code>-mno-embedded-data</code><dd><a name="index-membedded_002ddata-1552"></a><a name="index-mno_002dembedded_002ddata-1553"></a>Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data. This gives
slightly slower code than the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some embedded systems.
<br><dt><code>-muninit-const-in-rodata</code><dt><code>-mno-uninit-const-in-rodata</code><dd><a name="index-muninit_002dconst_002din_002drodata-1554"></a><a name="index-mno_002duninit_002dconst_002din_002drodata-1555"></a>Put uninitialized <code>const</code> variables in the read-only data section.
This option is only meaningful in conjunction with <samp><span class="option">-membedded-data</span></samp>.
<br><dt><code>-mcode-readable=</code><var>setting</var><dd><a name="index-mcode_002dreadable-1556"></a>Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:
<dl>
<dt><code>-mcode-readable=yes</code><dd>Instructions may freely access executable sections. This is the
default setting.
<br><dt><code>-mcode-readable=pcrel</code><dd>MIPS16 PC-relative load instructions can access executable sections,
but other instructions must not do so. This option is useful on 4KSc
and 4KSd processors when the code TLBs have the Read Inhibit bit set.
It is also useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.
<br><dt><code>-mcode-readable=no</code><dd>Instructions must not access executable sections. This option can be
useful on targets that are configured to have a dual instruction/data
SRAM interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM.
</dl>
<br><dt><code>-msplit-addresses</code><dt><code>-mno-split-addresses</code><dd><a name="index-msplit_002daddresses-1557"></a><a name="index-mno_002dsplit_002daddresses-1558"></a>Enable (disable) use of the <code>%hi()</code> and <code>%lo()</code> assembler
relocation operators. This option has been superseded by
<samp><span class="option">-mexplicit-relocs</span></samp> but is retained for backwards compatibility.
<br><dt><code>-mexplicit-relocs</code><dt><code>-mno-explicit-relocs</code><dd><a name="index-mexplicit_002drelocs-1559"></a><a name="index-mno_002dexplicit_002drelocs-1560"></a>Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by <samp><span class="option">-mno-explicit-relocs</span></samp>,
is to use assembler macros instead.
<p><samp><span class="option">-mexplicit-relocs</span></samp> is the default if GCC was configured
to use an assembler that supports relocation operators.
<br><dt><code>-mcheck-zero-division</code><dt><code>-mno-check-zero-division</code><dd><a name="index-mcheck_002dzero_002ddivision-1561"></a><a name="index-mno_002dcheck_002dzero_002ddivision-1562"></a>Trap (do not trap) on integer division by zero.
<p>The default is <samp><span class="option">-mcheck-zero-division</span></samp>.
<br><dt><code>-mdivide-traps</code><dt><code>-mdivide-breaks</code><dd><a name="index-mdivide_002dtraps-1563"></a><a name="index-mdivide_002dbreaks-1564"></a>MIPS systems check for division by zero by generating either a
conditional trap or a break instruction. Using traps results in
smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from
generating the proper signal (<code>SIGFPE</code>). Use <samp><span class="option">-mdivide-traps</span></samp> to
allow conditional traps on architectures that support them and
<samp><span class="option">-mdivide-breaks</span></samp> to force the use of breaks.
<p>The default is usually <samp><span class="option">-mdivide-traps</span></samp>, but this can be
overridden at configure time using <samp><span class="option">--with-divide=breaks</span></samp>.
Divide-by-zero checks can be completely disabled using
<samp><span class="option">-mno-check-zero-division</span></samp>.
<br><dt><code>-mmemcpy</code><dt><code>-mno-memcpy</code><dd><a name="index-mmemcpy-1565"></a><a name="index-mno_002dmemcpy-1566"></a>Force (do not force) the use of <code>memcpy()</code> for non-trivial block
moves. The default is <samp><span class="option">-mno-memcpy</span></samp>, which allows GCC to inline
most constant-sized copies.
<br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1567"></a><a name="index-mno_002dlong_002dcalls-1568"></a>Disable (do not disable) use of the <code>jal</code> instruction. Calling
functions using <code>jal</code> is more efficient but requires the caller
and callee to be in the same 256 megabyte segment.
<p>This option has no effect on abicalls code. The default is
<samp><span class="option">-mno-long-calls</span></samp>.
<br><dt><code>-mjals</code><dt><code>-mno-jals</code><dd><a name="index-mjals-1569"></a><a name="index-mno_002djals-1570"></a>Generate (do not generate) the <code>jals</code> instruction for microMIPS
by recognizing that the branch delay slot instruction can be 16 bits.
This implies that the funciton call cannot switch the current mode
during the linking stage, because we don't have the <code>jalxs</code>
instruction that supports 16-bit branch delay slot instructions.
<br><dt><code>-mmad</code><dt><code>-mno-mad</code><dd><a name="index-mmad-1571"></a><a name="index-mno_002dmad-1572"></a>Enable (disable) use of the <code>mad</code>, <code>madu</code> and <code>mul</code>
instructions, as provided by the R4650 ISA.
<br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1573"></a><a name="index-mno_002dfused_002dmadd-1574"></a>Enable (disable) use of the floating point multiply-accumulate
instructions, when they are available. The default is
<samp><span class="option">-mfused-madd</span></samp>.
<p>When multiply-accumulate instructions are used, the intermediate
product is calculated to infinite precision and is not subject to
the FCSR Flush to Zero bit. This may be undesirable in some
circumstances.
<br><dt><code>-nocpp</code><dd><a name="index-nocpp-1575"></a>Tell the MIPS assembler to not run its preprocessor over user
assembler files (with a ‘<samp><span class="samp">.s</span></samp>’ suffix) when assembling them.
<br><dt><code>-mfix-r4000</code><dt><code>-mno-fix-r4000</code><dd><a name="index-mfix_002dr4000-1576"></a><a name="index-mno_002dfix_002dr4000-1577"></a>Work around certain R4000 CPU errata:
<ul>
<li>A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
<li>A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.
<li>An integer division may give an incorrect result if started in a delay slot
of a taken branch or a jump.
</ul>
<br><dt><code>-mfix-r4400</code><dt><code>-mno-fix-r4400</code><dd><a name="index-mfix_002dr4400-1578"></a><a name="index-mno_002dfix_002dr4400-1579"></a>Work around certain R4400 CPU errata:
<ul>
<li>A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
</ul>
<br><dt><code>-mfix-r10000</code><dt><code>-mno-fix-r10000</code><dd><a name="index-mfix_002dr10000-1580"></a><a name="index-mno_002dfix_002dr10000-1581"></a>Work around certain R10000 errata:
<ul>
<li><code>ll</code>/<code>sc</code> sequences may not behave atomically on revisions
prior to 3.0. They may deadlock on revisions 2.6 and earlier.
</ul>
<p>This option can only be used if the target architecture supports
branch-likely instructions. <samp><span class="option">-mfix-r10000</span></samp> is the default when
<samp><span class="option">-march=r10000</span></samp> is used; <samp><span class="option">-mno-fix-r10000</span></samp> is the default
otherwise.
<br><dt><code>-mfix-vr4120</code><dt><code>-mno-fix-vr4120</code><dd><a name="index-mfix_002dvr4120-1582"></a>Work around certain VR4120 errata:
<ul>
<li><code>dmultu</code> does not always produce the correct result.
<li><code>div</code> and <code>ddiv</code> do not always produce the correct result if one
of the operands is negative.
</ul>
The workarounds for the division errata rely on special functions in
<samp><span class="file">libgcc.a</span></samp>. At present, these functions are only provided by
the <code>mips64vr*-elf</code> configurations.
<p>Other VR4120 errata require a nop to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.
<br><dt><code>-mfix-vr4130</code><dd><a name="index-mfix_002dvr4130-1583"></a>Work around the VR4130 <code>mflo</code>/<code>mfhi</code> errata. The
workarounds are implemented by the assembler rather than by GCC,
although GCC will avoid using <code>mflo</code> and <code>mfhi</code> if the
VR4130 <code>macc</code>, <code>macchi</code>, <code>dmacc</code> and <code>dmacchi</code>
instructions are available instead.
<br><dt><code>-mfix-sb1</code><dt><code>-mno-fix-sb1</code><dd><a name="index-mfix_002dsb1-1584"></a>Work around certain SB-1 CPU core errata.
(This flag currently works around the SB-1 revision 2
“F1” and “F2” floating point errata.)
<br><dt><code>-mr10k-cache-barrier=</code><var>setting</var><dd><a name="index-mr10k_002dcache_002dbarrier-1585"></a>Specify whether GCC should insert cache barriers to avoid the
side-effects of speculation on R10K processors.
<p>In common with many processors, the R10K tries to predict the outcome
of a conditional branch and speculatively executes instructions from
the “taken” branch. It later aborts these instructions if the
predicted outcome was wrong. However, on the R10K, even aborted
instructions can have side effects.
<p>This problem only affects kernel stores and, depending on the system,
kernel loads. As an example, a speculatively-executed store may load
the target memory into cache and mark the cache line as dirty, even if
the store itself is later aborted. If a DMA operation writes to the
same area of memory before the “dirty” line is flushed, the cached
data will overwrite the DMA-ed data. See the R10K processor manual
for a full description, including other potential problems.
<p>One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side
effects even if aborted. <samp><span class="option">-mr10k-cache-barrier=</span><var>setting</var></samp>
controls GCC's implementation of this workaround. It assumes that
aborted accesses to any byte in the following regions will not have
side effects:
<ol type=1 start=1>
<li>the memory occupied by the current function's stack frame;
<li>the memory occupied by an incoming stack argument;
<li>the memory occupied by an object with a link-time-constant address.
</ol>
<p>It is the kernel's responsibility to ensure that speculative
accesses to these regions are indeed safe.
<p>If the input program contains a function declaration such as:
<pre class="smallexample"> void foo (void);
</pre>
<p>then the implementation of <code>foo</code> must allow <code>j foo</code> and
<code>jal foo</code> to be executed speculatively. GCC honors this
restriction for functions it compiles itself. It expects non-GCC
functions (such as hand-written assembly code) to do the same.
<p>The option has three forms:
<dl>
<dt><code>-mr10k-cache-barrier=load-store</code><dd>Insert a cache barrier before a load or store that might be
speculatively executed and that might have side effects even
if aborted.
<br><dt><code>-mr10k-cache-barrier=store</code><dd>Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.
<br><dt><code>-mr10k-cache-barrier=none</code><dd>Disable the insertion of cache barriers. This is the default setting.
</dl>
<br><dt><code>-mflush-func=</code><var>func</var><dt><code>-mno-flush-func</code><dd><a name="index-mflush_002dfunc-1586"></a>Specifies the function to call to flush the I and D caches, or to not
call any such function. If called, the function must take the same
arguments as the common <code>_flush_func()</code>, that is, the address of the
memory range for which the cache is being flushed, the size of the
memory range, and the number 3 (to flush both caches). The default
depends on the target GCC was configured for, but commonly is either
‘<samp><span class="samp">_flush_func</span></samp>’ or ‘<samp><span class="samp">__cpu_flush</span></samp>’.
<br><dt><code>mbranch-cost=</code><var>num</var><dd><a name="index-mbranch_002dcost-1587"></a>Set the cost of branches to roughly <var>num</var> “simple” instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases. A zero cost redundantly selects
the default, which is based on the <samp><span class="option">-mtune</span></samp> setting.
<br><dt><code>-mbranch-likely</code><dt><code>-mno-branch-likely</code><dd><a name="index-mbranch_002dlikely-1588"></a><a name="index-mno_002dbranch_002dlikely-1589"></a>Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture. By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture. An exception is for the MIPS32 and MIPS64 architectures
and processors which implement those architectures; for those, Branch
Likely instructions will not be generated by default because the MIPS32
and MIPS64 architectures specifically deprecate their use.
<br><dt><code>-mfp-exceptions</code><dt><code>-mno-fp-exceptions</code><dd><a name="index-mfp_002dexceptions-1590"></a>Specifies whether FP exceptions are enabled. This affects how we schedule
FP instructions for some processors. The default is that FP exceptions are
enabled.
<p>For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.
<br><dt><code>-mvr4130-align</code><dt><code>-mno-vr4130-align</code><dd><a name="index-mvr4130_002dalign-1591"></a>The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned. When this
option is enabled, GCC will align pairs of instructions that it
thinks should execute in parallel.
<p>This option only has an effect when optimizing for the VR4130.
It normally makes code faster, but at the expense of making it bigger.
It is enabled by default at optimization level <samp><span class="option">-O3</span></samp>.
</dl>
<div class="node">
<a name="MMIX-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MN10300-Options">MN10300 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#MIPS-Options">MIPS Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.24 MMIX Options</h4>
<p><a name="index-MMIX-Options-1592"></a>
These options are defined for the MMIX:
<dl>
<dt><code>-mlibfuncs</code><dt><code>-mno-libfuncs</code><dd><a name="index-mlibfuncs-1593"></a><a name="index-mno_002dlibfuncs-1594"></a>Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.
<br><dt><code>-mepsilon</code><dt><code>-mno-epsilon</code><dd><a name="index-mepsilon-1595"></a><a name="index-mno_002depsilon-1596"></a>Generate floating-point comparison instructions that compare with respect
to the <code>rE</code> epsilon register.
<br><dt><code>-mabi=mmixware</code><dt><code>-mabi=gnu</code><dd><a name="index-mabi_002dmmixware-1597"></a><a name="index-mabi_003dgnu-1598"></a>Generate code that passes function parameters and return values that (in
the called function) are seen as registers <code>$0</code> and up, as opposed to
the GNU ABI which uses global registers <code>$231</code> and up.
<br><dt><code>-mzero-extend</code><dt><code>-mno-zero-extend</code><dd><a name="index-mzero_002dextend-1599"></a><a name="index-mno_002dzero_002dextend-1600"></a>When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.
<br><dt><code>-mknuthdiv</code><dt><code>-mno-knuthdiv</code><dd><a name="index-mknuthdiv-1601"></a><a name="index-mno_002dknuthdiv-1602"></a>Make the result of a division yielding a remainder have the same sign as
the divisor. With the default, <samp><span class="option">-mno-knuthdiv</span></samp>, the sign of the
remainder follows the sign of the dividend. Both methods are
arithmetically valid, the latter being almost exclusively used.
<br><dt><code>-mtoplevel-symbols</code><dt><code>-mno-toplevel-symbols</code><dd><a name="index-mtoplevel_002dsymbols-1603"></a><a name="index-mno_002dtoplevel_002dsymbols-1604"></a>Prepend (do not prepend) a ‘<samp><span class="samp">:</span></samp>’ to all global symbols, so the assembly
code can be used with the <code>PREFIX</code> assembly directive.
<br><dt><code>-melf</code><dd><a name="index-melf-1605"></a>Generate an executable in the ELF format, rather than the default
‘<samp><span class="samp">mmo</span></samp>’ format used by the <samp><span class="command">mmix</span></samp> simulator.
<br><dt><code>-mbranch-predict</code><dt><code>-mno-branch-predict</code><dd><a name="index-mbranch_002dpredict-1606"></a><a name="index-mno_002dbranch_002dpredict-1607"></a>Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.
<br><dt><code>-mbase-addresses</code><dt><code>-mno-base-addresses</code><dd><a name="index-mbase_002daddresses-1608"></a><a name="index-mno_002dbase_002daddresses-1609"></a>Generate (do not generate) code that uses <em>base addresses</em>. Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register. The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited. This means that a program that uses lots of static
data may require <samp><span class="option">-mno-base-addresses</span></samp>.
<br><dt><code>-msingle-exit</code><dt><code>-mno-single-exit</code><dd><a name="index-msingle_002dexit-1610"></a><a name="index-mno_002dsingle_002dexit-1611"></a>Force (do not force) generated code to have a single exit point in each
function.
</dl>
<div class="node">
<a name="MN10300-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#PDP_002d11-Options">PDP-11 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#MMIX-Options">MMIX Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.25 MN10300 Options</h4>
<p><a name="index-MN10300-options-1612"></a>
These <samp><span class="option">-m</span></samp> options are defined for Matsushita MN10300 architectures:
<dl>
<dt><code>-mmult-bug</code><dd><a name="index-mmult_002dbug-1613"></a>Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.
<br><dt><code>-mno-mult-bug</code><dd><a name="index-mno_002dmult_002dbug-1614"></a>Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.
<br><dt><code>-mam33</code><dd><a name="index-mam33-1615"></a>Generate code which uses features specific to the AM33 processor.
<br><dt><code>-mno-am33</code><dd><a name="index-mno_002dam33-1616"></a>Do not generate code which uses features specific to the AM33 processor. This
is the default.
<br><dt><code>-mreturn-pointer-on-d0</code><dd><a name="index-mreturn_002dpointer_002don_002dd0-1617"></a>When generating a function which returns a pointer, return the pointer
in both <code>a0</code> and <code>d0</code>. Otherwise, the pointer is returned
only in a0, and attempts to call such functions without a prototype
would result in errors. Note that this option is on by default; use
<samp><span class="option">-mno-return-pointer-on-d0</span></samp> to disable it.
<br><dt><code>-mno-crt0</code><dd><a name="index-mno_002dcrt0-1618"></a>Do not link in the C run-time initialization object file.
<br><dt><code>-mrelax</code><dd><a name="index-mrelax-1619"></a>Indicate to the linker that it should perform a relaxation optimization pass
to shorten branches, calls and absolute memory addresses. This option only
has an effect when used on the command line for the final link step.
<p>This option makes symbolic debugging impossible.
</dl>
<div class="node">
<a name="PDP-11-Options"></a>
<a name="PDP_002d11-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#picoChip-Options">picoChip Options</a>,
Previous: <a rel="previous" accesskey="p" href="#MN10300-Options">MN10300 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.26 PDP-11 Options</h4>
<p><a name="index-PDP_002d11-Options-1620"></a>
These options are defined for the PDP-11:
<dl>
<dt><code>-mfpu</code><dd><a name="index-mfpu-1621"></a>Use hardware FPP floating point. This is the default. (FIS floating
point on the PDP-11/40 is not supported.)
<br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1622"></a>Do not use hardware floating point.
<br><dt><code>-mac0</code><dd><a name="index-mac0-1623"></a>Return floating-point results in ac0 (fr0 in Unix assembler syntax).
<br><dt><code>-mno-ac0</code><dd><a name="index-mno_002dac0-1624"></a>Return floating-point results in memory. This is the default.
<br><dt><code>-m40</code><dd><a name="index-m40-1625"></a>Generate code for a PDP-11/40.
<br><dt><code>-m45</code><dd><a name="index-m45-1626"></a>Generate code for a PDP-11/45. This is the default.
<br><dt><code>-m10</code><dd><a name="index-m10-1627"></a>Generate code for a PDP-11/10.
<br><dt><code>-mbcopy-builtin</code><dd><a name="index-bcopy_002dbuiltin-1628"></a>Use inline <code>movmemhi</code> patterns for copying memory. This is the
default.
<br><dt><code>-mbcopy</code><dd><a name="index-mbcopy-1629"></a>Do not use inline <code>movmemhi</code> patterns for copying memory.
<br><dt><code>-mint16</code><dt><code>-mno-int32</code><dd><a name="index-mint16-1630"></a><a name="index-mno_002dint32-1631"></a>Use 16-bit <code>int</code>. This is the default.
<br><dt><code>-mint32</code><dt><code>-mno-int16</code><dd><a name="index-mint32-1632"></a><a name="index-mno_002dint16-1633"></a>Use 32-bit <code>int</code>.
<br><dt><code>-mfloat64</code><dt><code>-mno-float32</code><dd><a name="index-mfloat64-1634"></a><a name="index-mno_002dfloat32-1635"></a>Use 64-bit <code>float</code>. This is the default.
<br><dt><code>-mfloat32</code><dt><code>-mno-float64</code><dd><a name="index-mfloat32-1636"></a><a name="index-mno_002dfloat64-1637"></a>Use 32-bit <code>float</code>.
<br><dt><code>-mabshi</code><dd><a name="index-mabshi-1638"></a>Use <code>abshi2</code> pattern. This is the default.
<br><dt><code>-mno-abshi</code><dd><a name="index-mno_002dabshi-1639"></a>Do not use <code>abshi2</code> pattern.
<br><dt><code>-mbranch-expensive</code><dd><a name="index-mbranch_002dexpensive-1640"></a>Pretend that branches are expensive. This is for experimenting with
code generation only.
<br><dt><code>-mbranch-cheap</code><dd><a name="index-mbranch_002dcheap-1641"></a>Do not pretend that branches are expensive. This is the default.
<br><dt><code>-msplit</code><dd><a name="index-msplit-1642"></a>Generate code for a system with split I&D.
<br><dt><code>-mno-split</code><dd><a name="index-mno_002dsplit-1643"></a>Generate code for a system without split I&D. This is the default.
<br><dt><code>-munix-asm</code><dd><a name="index-munix_002dasm-1644"></a>Use Unix assembler syntax. This is the default when configured for
‘<samp><span class="samp">pdp11-*-bsd</span></samp>’.
<br><dt><code>-mdec-asm</code><dd><a name="index-mdec_002dasm-1645"></a>Use DEC assembler syntax. This is the default when configured for any
PDP-11 target other than ‘<samp><span class="samp">pdp11-*-bsd</span></samp>’.
</dl>
<div class="node">
<a name="picoChip-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#PowerPC-Options">PowerPC Options</a>,
Previous: <a rel="previous" accesskey="p" href="#PDP_002d11-Options">PDP-11 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.27 picoChip Options</h4>
<p><a name="index-picoChip-options-1646"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for picoChip implementations:
<dl>
<dt><code>-mae=</code><var>ae_type</var><dd><a name="index-mcpu-1647"></a>Set the instruction set, register set, and instruction scheduling
parameters for array element type <var>ae_type</var>. Supported values
for <var>ae_type</var> are ‘<samp><span class="samp">ANY</span></samp>’, ‘<samp><span class="samp">MUL</span></samp>’, and ‘<samp><span class="samp">MAC</span></samp>’.
<p><samp><span class="option">-mae=ANY</span></samp> selects a completely generic AE type. Code
generated with this option will run on any of the other AE types. The
code will not be as efficient as it would be if compiled for a specific
AE type, and some types of operation (e.g., multiplication) will not
work properly on all types of AE.
<p><samp><span class="option">-mae=MUL</span></samp> selects a MUL AE type. This is the most useful AE type
for compiled code, and is the default.
<p><samp><span class="option">-mae=MAC</span></samp> selects a DSP-style MAC AE. Code compiled with this
option may suffer from poor performance of byte (char) manipulation,
since the DSP AE does not provide hardware support for byte load/stores.
<br><dt><code>-msymbol-as-address</code><dd>Enable the compiler to directly use a symbol name as an address in a
load/store instruction, without first loading it into a
register. Typically, the use of this option will generate larger
programs, which run faster than when the option isn't used. However, the
results vary from program to program, so it is left as a user option,
rather than being permanently enabled.
<br><dt><code>-mno-inefficient-warnings</code><dd>Disables warnings about the generation of inefficient code. These
warnings can be generated, for example, when compiling code which
performs byte-level memory operations on the MAC AE type. The MAC AE has
no hardware support for byte-level memory operations, so all byte
load/stores must be synthesized from word load/store operations. This is
inefficient and a warning will be generated indicating to the programmer
that they should rewrite the code to avoid byte operations, or to target
an AE type which has the necessary hardware support. This option enables
the warning to be turned off.
</dl>
<div class="node">
<a name="PowerPC-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>,
Previous: <a rel="previous" accesskey="p" href="#picoChip-Options">picoChip Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.28 PowerPC Options</h4>
<p><a name="index-PowerPC-options-1648"></a>
These are listed under See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>.
<div class="node">
<a name="RS%2f6000-and-PowerPC-Options"></a>
<a name="RS_002f6000-and-PowerPC-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>,
Previous: <a rel="previous" accesskey="p" href="#PowerPC-Options">PowerPC Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.29 IBM RS/6000 and PowerPC Options</h4>
<p><a name="index-RS_002f6000-and-PowerPC-Options-1649"></a><a name="index-IBM-RS_002f6000-and-PowerPC-Options-1650"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the IBM RS/6000 and PowerPC:
<dl>
<dt><code>-mpower</code><dt><code>-mno-power</code><dt><code>-mpower2</code><dt><code>-mno-power2</code><dt><code>-mpowerpc</code><dt><code>-mno-powerpc</code><dt><code>-mpowerpc-gpopt</code><dt><code>-mno-powerpc-gpopt</code><dt><code>-mpowerpc-gfxopt</code><dt><code>-mno-powerpc-gfxopt</code><dt><code>-mpowerpc64</code><dt><code>-mno-powerpc64</code><dt><code>-mmfcrf</code><dt><code>-mno-mfcrf</code><dt><code>-mpopcntb</code><dt><code>-mno-popcntb</code><dt><code>-mfprnd</code><dt><code>-mno-fprnd</code><dt><code>-mcmpb</code><dt><code>-mno-cmpb</code><dt><code>-mmfpgpr</code><dt><code>-mno-mfpgpr</code><dt><code>-mhard-dfp</code><dt><code>-mno-hard-dfp</code><dd><a name="index-mpower-1651"></a><a name="index-mno_002dpower-1652"></a><a name="index-mpower2-1653"></a><a name="index-mno_002dpower2-1654"></a><a name="index-mpowerpc-1655"></a><a name="index-mno_002dpowerpc-1656"></a><a name="index-mpowerpc_002dgpopt-1657"></a><a name="index-mno_002dpowerpc_002dgpopt-1658"></a><a name="index-mpowerpc_002dgfxopt-1659"></a><a name="index-mno_002dpowerpc_002dgfxopt-1660"></a><a name="index-mpowerpc64-1661"></a><a name="index-mno_002dpowerpc64-1662"></a><a name="index-mmfcrf-1663"></a><a name="index-mno_002dmfcrf-1664"></a><a name="index-mpopcntb-1665"></a><a name="index-mno_002dpopcntb-1666"></a><a name="index-mfprnd-1667"></a><a name="index-mno_002dfprnd-1668"></a><a name="index-mcmpb-1669"></a><a name="index-mno_002dcmpb-1670"></a><a name="index-mmfpgpr-1671"></a><a name="index-mno_002dmfpgpr-1672"></a><a name="index-mhard_002ddfp-1673"></a><a name="index-mno_002dhard_002ddfp-1674"></a>GCC supports two related instruction set architectures for the
RS/6000 and PowerPC. The <dfn>POWER</dfn> instruction set are those
instructions supported by the ‘<samp><span class="samp">rios</span></samp>’ chip set used in the original
RS/6000 systems and the <dfn>PowerPC</dfn> instruction set is the
architecture of the Freescale MPC5xx, MPC6xx, MPC8xx microprocessors, and
the IBM 4xx, 6xx, and follow-on microprocessors.
<p>Neither architecture is a subset of the other. However there is a
large common subset of instructions supported by both. An MQ
register is included in processors supporting the POWER architecture.
<p>You use these options to specify which instructions are available on the
processor you are using. The default value of these options is
determined when configuring GCC. Specifying the
<samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> overrides the specification of these
options. We recommend you use the <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> option
rather than the options listed above.
<p>The <samp><span class="option">-mpower</span></samp> option allows GCC to generate instructions that
are found only in the POWER architecture and to use the MQ register.
Specifying <samp><span class="option">-mpower2</span></samp> implies <samp><span class="option">-power</span></samp> and also allows GCC
to generate instructions that are present in the POWER2 architecture but
not the original POWER architecture.
<p>The <samp><span class="option">-mpowerpc</span></samp> option allows GCC to generate instructions that
are found only in the 32-bit subset of the PowerPC architecture.
Specifying <samp><span class="option">-mpowerpc-gpopt</span></samp> implies <samp><span class="option">-mpowerpc</span></samp> and also allows
GCC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root. Specifying
<samp><span class="option">-mpowerpc-gfxopt</span></samp> implies <samp><span class="option">-mpowerpc</span></samp> and also allows GCC to
use the optional PowerPC architecture instructions in the Graphics
group, including floating-point select.
<p>The <samp><span class="option">-mmfcrf</span></samp> option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture.
The <samp><span class="option">-mpopcntb</span></samp> option allows GCC to generate the popcount and
double precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture.
The <samp><span class="option">-mfprnd</span></samp> option allows GCC to generate the FP round to
integer instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture.
The <samp><span class="option">-mcmpb</span></samp> option allows GCC to generate the compare bytes
instruction implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture.
The <samp><span class="option">-mmfpgpr</span></samp> option allows GCC to generate the FP move to/from
general purpose register instructions implemented on the POWER6X
processor and other processors that support the extended PowerPC V2.05
architecture.
The <samp><span class="option">-mhard-dfp</span></samp> option allows GCC to generate the decimal floating
point instructions implemented on some POWER processors.
<p>The <samp><span class="option">-mpowerpc64</span></samp> option allows GCC to generate the additional
64-bit instructions that are found in the full PowerPC64 architecture
and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
<samp><span class="option">-mno-powerpc64</span></samp>.
<p>If you specify both <samp><span class="option">-mno-power</span></samp> and <samp><span class="option">-mno-powerpc</span></samp>, GCC
will use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will not use
the MQ register. Specifying both <samp><span class="option">-mpower</span></samp> and <samp><span class="option">-mpowerpc</span></samp>
permits GCC to use any instruction from either architecture and to
allow use of the MQ register; specify this for the Motorola MPC601.
<br><dt><code>-mnew-mnemonics</code><dt><code>-mold-mnemonics</code><dd><a name="index-mnew_002dmnemonics-1675"></a><a name="index-mold_002dmnemonics-1676"></a>Select which mnemonics to use in the generated assembler code. With
<samp><span class="option">-mnew-mnemonics</span></samp>, GCC uses the assembler mnemonics defined for
the PowerPC architecture. With <samp><span class="option">-mold-mnemonics</span></samp> it uses the
assembler mnemonics defined for the POWER architecture. Instructions
defined in only one architecture have only one mnemonic; GCC uses that
mnemonic irrespective of which of these options is specified.
<p>GCC defaults to the mnemonics appropriate for the architecture in
use. Specifying <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> sometimes overrides the
value of these option. Unless you are building a cross-compiler, you
should normally not specify either <samp><span class="option">-mnew-mnemonics</span></samp> or
<samp><span class="option">-mold-mnemonics</span></samp>, but should instead accept the default.
<br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-1677"></a>Set architecture type, register usage, choice of mnemonics, and
instruction scheduling parameters for machine type <var>cpu_type</var>.
Supported values for <var>cpu_type</var> are ‘<samp><span class="samp">401</span></samp>’, ‘<samp><span class="samp">403</span></samp>’,
‘<samp><span class="samp">405</span></samp>’, ‘<samp><span class="samp">405fp</span></samp>’, ‘<samp><span class="samp">440</span></samp>’, ‘<samp><span class="samp">440fp</span></samp>’, ‘<samp><span class="samp">464</span></samp>’, ‘<samp><span class="samp">464fp</span></samp>’,
‘<samp><span class="samp">505</span></samp>’, ‘<samp><span class="samp">601</span></samp>’, ‘<samp><span class="samp">602</span></samp>’, ‘<samp><span class="samp">603</span></samp>’, ‘<samp><span class="samp">603e</span></samp>’, ‘<samp><span class="samp">604</span></samp>’,
‘<samp><span class="samp">604e</span></samp>’, ‘<samp><span class="samp">620</span></samp>’, ‘<samp><span class="samp">630</span></samp>’, ‘<samp><span class="samp">740</span></samp>’, ‘<samp><span class="samp">7400</span></samp>’,
‘<samp><span class="samp">7450</span></samp>’, ‘<samp><span class="samp">750</span></samp>’, ‘<samp><span class="samp">801</span></samp>’, ‘<samp><span class="samp">821</span></samp>’, ‘<samp><span class="samp">823</span></samp>’,
‘<samp><span class="samp">860</span></samp>’, ‘<samp><span class="samp">970</span></samp>’, ‘<samp><span class="samp">8540</span></samp>’, ‘<samp><span class="samp">e300c2</span></samp>’, ‘<samp><span class="samp">e300c3</span></samp>’,
‘<samp><span class="samp">e500mc</span></samp>’, ‘<samp><span class="samp">ec603e</span></samp>’, ‘<samp><span class="samp">G3</span></samp>’, ‘<samp><span class="samp">G4</span></samp>’, ‘<samp><span class="samp">G5</span></samp>’,
‘<samp><span class="samp">power</span></samp>’, ‘<samp><span class="samp">power2</span></samp>’, ‘<samp><span class="samp">power3</span></samp>’, ‘<samp><span class="samp">power4</span></samp>’,
‘<samp><span class="samp">power5</span></samp>’, ‘<samp><span class="samp">power5+</span></samp>’, ‘<samp><span class="samp">power6</span></samp>’, ‘<samp><span class="samp">power6x</span></samp>’, ‘<samp><span class="samp">power7</span></samp>’
‘<samp><span class="samp">common</span></samp>’, ‘<samp><span class="samp">powerpc</span></samp>’, ‘<samp><span class="samp">powerpc64</span></samp>’, ‘<samp><span class="samp">rios</span></samp>’,
‘<samp><span class="samp">rios1</span></samp>’, ‘<samp><span class="samp">rios2</span></samp>’, ‘<samp><span class="samp">rsc</span></samp>’, and ‘<samp><span class="samp">rs64</span></samp>’.
<p><samp><span class="option">-mcpu=common</span></samp> selects a completely generic processor. Code
generated under this option will run on any POWER or PowerPC processor.
GCC will use only the instructions in the common subset of both
architectures, and will not use the MQ register. GCC assumes a generic
processor model for scheduling purposes.
<p><samp><span class="option">-mcpu=power</span></samp>, <samp><span class="option">-mcpu=power2</span></samp>, <samp><span class="option">-mcpu=powerpc</span></samp>, and
<samp><span class="option">-mcpu=powerpc64</span></samp> specify generic POWER, POWER2, pure 32-bit
PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
types, with an appropriate, generic processor model assumed for
scheduling purposes.
<p>The other options specify a specific processor. Code generated under
those options will run best on that processor, and may not run at all on
others.
<p>The <samp><span class="option">-mcpu</span></samp> options automatically enable or disable the
following options:
<pre class="smallexample"> -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
-mnew-mnemonics -mpopcntb -mpower -mpower2 -mpowerpc64
-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
-msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr
</pre>
<p>The particular options set for any particular CPU will vary between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn't necessarily reflect the actual hardware's
capabilities. If you wish to set an individual option to a particular
value, you may specify it after the <samp><span class="option">-mcpu</span></samp> option, like
‘<samp><span class="samp">-mcpu=970 -mno-altivec</span></samp>’.
<p>On AIX, the <samp><span class="option">-maltivec</span></samp> and <samp><span class="option">-mpowerpc64</span></samp> options are
not enabled or disabled by the <samp><span class="option">-mcpu</span></samp> option at present because
AIX does not have full support for these options. You may still
enable or disable them individually if you're sure it'll work in your
environment.
<br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-1678"></a>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the architecture type, register usage, or
choice of mnemonics, as <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> would. The same
values for <var>cpu_type</var> are used for <samp><span class="option">-mtune</span></samp> as for
<samp><span class="option">-mcpu</span></samp>. If both are specified, the code generated will use the
architecture, registers, and mnemonics set by <samp><span class="option">-mcpu</span></samp>, but the
scheduling parameters set by <samp><span class="option">-mtune</span></samp>.
<br><dt><code>-mswdiv</code><dt><code>-mno-swdiv</code><dd><a name="index-mswdiv-1679"></a><a name="index-mno_002dswdiv-1680"></a>Generate code to compute division as reciprocal estimate and iterative
refinement, creating opportunities for increased throughput. This
feature requires: optional PowerPC Graphics instruction set for single
precision and FRE instruction for double precision, assuming divides
cannot generate user-visible traps, and the domain values not include
Infinities, denormals or zero denominator.
<br><dt><code>-maltivec</code><dt><code>-mno-altivec</code><dd><a name="index-maltivec-1681"></a><a name="index-mno_002daltivec-1682"></a>Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to
the AltiVec instruction set. You may also need to set
<samp><span class="option">-mabi=altivec</span></samp> to adjust the current ABI with AltiVec ABI
enhancements.
<br><dt><code>-mvrsave</code><dt><code>-mno-vrsave</code><dd><a name="index-mvrsave-1683"></a><a name="index-mno_002dvrsave-1684"></a>Generate VRSAVE instructions when generating AltiVec code.
<br><dt><code>-mgen-cell-microcode</code><dd><a name="index-mgen_002dcell_002dmicrocode-1685"></a>Generate Cell microcode instructions
<br><dt><code>-mwarn-cell-microcode</code><dd><a name="index-mwarn_002dcell_002dmicrocode-1686"></a>Warning when a Cell microcode instruction is going to emitted. An example
of a Cell microcode instruction is a variable shift.
<br><dt><code>-msecure-plt</code><dd><a name="index-msecure_002dplt-1687"></a>Generate code that allows ld and ld.so to build executables and shared
libraries with non-exec .plt and .got sections. This is a PowerPC
32-bit SYSV ABI option.
<br><dt><code>-mbss-plt</code><dd><a name="index-mbss_002dplt-1688"></a>Generate code that uses a BSS .plt section that ld.so fills in, and
requires .plt and .got sections that are both writable and executable.
This is a PowerPC 32-bit SYSV ABI option.
<br><dt><code>-misel</code><dt><code>-mno-isel</code><dd><a name="index-misel-1689"></a><a name="index-mno_002disel-1690"></a>This switch enables or disables the generation of ISEL instructions.
<br><dt><code>-misel=</code><var>yes/no</var><dd>This switch has been deprecated. Use <samp><span class="option">-misel</span></samp> and
<samp><span class="option">-mno-isel</span></samp> instead.
<br><dt><code>-mspe</code><dt><code>-mno-spe</code><dd><a name="index-mspe-1691"></a><a name="index-mno_002dspe-1692"></a>This switch enables or disables the generation of SPE simd
instructions.
<br><dt><code>-mpaired</code><dt><code>-mno-paired</code><dd><a name="index-mpaired-1693"></a><a name="index-mno_002dpaired-1694"></a>This switch enables or disables the generation of PAIRED simd
instructions.
<br><dt><code>-mspe=</code><var>yes/no</var><dd>This option has been deprecated. Use <samp><span class="option">-mspe</span></samp> and
<samp><span class="option">-mno-spe</span></samp> instead.
<br><dt><code>-mfloat-gprs=</code><var>yes/single/double/no</var><dt><code>-mfloat-gprs</code><dd><a name="index-mfloat_002dgprs-1695"></a>This switch enables or disables the generation of floating point
operations on the general purpose registers for architectures that
support it.
<p>The argument <var>yes</var> or <var>single</var> enables the use of
single-precision floating point operations.
<p>The argument <var>double</var> enables the use of single and
double-precision floating point operations.
<p>The argument <var>no</var> disables floating point operations on the
general purpose registers.
<p>This option is currently only available on the MPC854x.
<br><dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-1696"></a><a name="index-m64-1697"></a>Generate code for 32-bit or 64-bit environments of Darwin and SVR4
targets (including GNU/Linux). The 32-bit environment sets int, long
and pointer to 32 bits and generates code that runs on any PowerPC
variant. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits, and generates code for PowerPC64, as for
<samp><span class="option">-mpowerpc64</span></samp>.
<br><dt><code>-mfull-toc</code><dt><code>-mno-fp-in-toc</code><dt><code>-mno-sum-in-toc</code><dt><code>-mminimal-toc</code><dd><a name="index-mfull_002dtoc-1698"></a><a name="index-mno_002dfp_002din_002dtoc-1699"></a><a name="index-mno_002dsum_002din_002dtoc-1700"></a><a name="index-mminimal_002dtoc-1701"></a>Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The <samp><span class="option">-mfull-toc</span></samp> option is selected by
default. In that case, GCC will allocate at least one TOC entry for
each unique non-automatic variable reference in your program. GCC
will also place floating-point constants in the TOC. However, only
16,384 entries are available in the TOC.
<p>If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the <samp><span class="option">-mno-fp-in-toc</span></samp> and <samp><span class="option">-mno-sum-in-toc</span></samp> options.
<samp><span class="option">-mno-fp-in-toc</span></samp> prevents GCC from putting floating-point
constants in the TOC and <samp><span class="option">-mno-sum-in-toc</span></samp> forces GCC to
generate code to calculate the sum of an address and a constant at
run-time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.
<p>If you still run out of space in the TOC even when you specify both of
these options, specify <samp><span class="option">-mminimal-toc</span></samp> instead. This option causes
GCC to make only one TOC entry for every file. When you specify this
option, GCC will produce code that is slower and larger but which
uses extremely little TOC space. You may wish to use this option
only on files that contain less frequently executed code.
<br><dt><code>-maix64</code><dt><code>-maix32</code><dd><a name="index-maix64-1702"></a><a name="index-maix32-1703"></a>Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
<code>long</code> type, and the infrastructure needed to support them.
Specifying <samp><span class="option">-maix64</span></samp> implies <samp><span class="option">-mpowerpc64</span></samp> and
<samp><span class="option">-mpowerpc</span></samp>, while <samp><span class="option">-maix32</span></samp> disables the 64-bit ABI and
implies <samp><span class="option">-mno-powerpc64</span></samp>. GCC defaults to <samp><span class="option">-maix32</span></samp>.
<br><dt><code>-mxl-compat</code><dt><code>-mno-xl-compat</code><dd><a name="index-mxl_002dcompat-1704"></a><a name="index-mno_002dxl_002dcompat-1705"></a>Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI. Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs. Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double. Use XL symbol names for long double
support routines.
<p>The AIX calling convention was extended but not initially documented to
handle an obscure K&R C case of calling a function that takes the
address of its arguments with fewer arguments than declared. IBM XL
compilers access floating point arguments which do not fit in the
RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
<br><dt><code>-mpe</code><dd><a name="index-mpe-1706"></a>Support <dfn>IBM RS/6000 SP</dfn> <dfn>Parallel Environment</dfn> (PE). Link an
application written to use message passing with special startup code to
enable the application to run. The system must have PE installed in the
standard location (<samp><span class="file">/usr/lpp/ppe.poe/</span></samp>), or the <samp><span class="file">specs</span></samp> file
must be overridden with the <samp><span class="option">-specs=</span></samp> option to specify the
appropriate directory location. The Parallel Environment does not
support threads, so the <samp><span class="option">-mpe</span></samp> option and the <samp><span class="option">-pthread</span></samp>
option are incompatible.
<br><dt><code>-malign-natural</code><dt><code>-malign-power</code><dd><a name="index-malign_002dnatural-1707"></a><a name="index-malign_002dpower-1708"></a>On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
<samp><span class="option">-malign-natural</span></samp> overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary.
The option <samp><span class="option">-malign-power</span></samp> instructs GCC to follow the ABI-specified
alignment rules. GCC defaults to the standard alignment defined in the ABI.
<p>On 64-bit Darwin, natural alignment is the default, and <samp><span class="option">-malign-power</span></samp>
is not supported.
<br><dt><code>-msoft-float</code><dt><code>-mhard-float</code><dd><a name="index-msoft_002dfloat-1709"></a><a name="index-mhard_002dfloat-1710"></a>Generate code that does not use (uses) the floating-point register set.
Software floating point emulation is provided if you use the
<samp><span class="option">-msoft-float</span></samp> option, and pass the option to GCC when linking.
<br><dt><code>-msingle-float</code><dt><code>-mdouble-float</code><dd><a name="index-msingle_002dfloat-1711"></a><a name="index-mdouble_002dfloat-1712"></a>Generate code for single or double-precision floating point operations.
<samp><span class="option">-mdouble-float</span></samp> implies <samp><span class="option">-msingle-float</span></samp>.
<br><dt><code>-msimple-fpu</code><dd><a name="index-msimple_002dfpu-1713"></a>Do not generate sqrt and div instructions for hardware floating point unit.
<br><dt><code>-mfpu</code><dd><a name="index-mfpu-1714"></a>Specify type of floating point unit. Valid values are <var>sp_lite</var>
(equivalent to -msingle-float -msimple-fpu), <var>dp_lite</var> (equivalent
to -mdouble-float -msimple-fpu), <var>sp_full</var> (equivalent to -msingle-float),
and <var>dp_full</var> (equivalent to -mdouble-float).
<br><dt><code>-mxilinx-fpu</code><dd><a name="index-mxilinx_002dfpu-1715"></a>Perform optimizations for floating point unit on Xilinx PPC 405/440.
<br><dt><code>-mmultiple</code><dt><code>-mno-multiple</code><dd><a name="index-mmultiple-1716"></a><a name="index-mno_002dmultiple-1717"></a>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use <samp><span class="option">-mmultiple</span></samp> on little
endian PowerPC systems, since those instructions do not work when the
processor is in little endian mode. The exceptions are PPC740 and
PPC750 which permit the instructions usage in little endian mode.
<br><dt><code>-mstring</code><dt><code>-mno-string</code><dd><a name="index-mstring-1718"></a><a name="index-mno_002dstring-1719"></a>Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use
<samp><span class="option">-mstring</span></samp> on little endian PowerPC systems, since those
instructions do not work when the processor is in little endian mode.
The exceptions are PPC740 and PPC750 which permit the instructions
usage in little endian mode.
<br><dt><code>-mupdate</code><dt><code>-mno-update</code><dd><a name="index-mupdate-1720"></a><a name="index-mno_002dupdate-1721"></a>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location. These instructions are generated by default. If you use
<samp><span class="option">-mno-update</span></samp>, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.
<br><dt><code>-mavoid-indexed-addresses</code><br><dt><code>-mno-avoid-indexed-addresses</code><dd><a name="index-mavoid_002dindexed_002daddresses-1722"></a><a name="index-mno_002davoid_002dindexed_002daddresses-1723"></a>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary. This option
is enabled by default when targetting Power6 and disabled otherwise.
<br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1724"></a><a name="index-mno_002dfused_002dmadd-1725"></a>Generate code that uses (does not use) the floating point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating is used.
<br><dt><code>-mmulhw</code><dt><code>-mno-mulhw</code><dd><a name="index-mmulhw-1726"></a><a name="index-mno_002dmulhw-1727"></a>Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440 and 464 processors.
These instructions are generated by default when targetting those
processors.
<br><dt><code>-mdlmzb</code><dt><code>-mno-dlmzb</code><dd><a name="index-mdlmzb-1728"></a><a name="index-mno_002ddlmzb-1729"></a>Generate code that uses (does not use) the string-search ‘<samp><span class="samp">dlmzb</span></samp>’
instruction on the IBM 405, 440 and 464 processors. This instruction is
generated by default when targetting those processors.
<br><dt><code>-mno-bit-align</code><dt><code>-mbit-align</code><dd><a name="index-mno_002dbit_002dalign-1730"></a><a name="index-mbit_002dalign-1731"></a>On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.
<p>For example, by default a structure containing nothing but 8
<code>unsigned</code> bit-fields of length 1 would be aligned to a 4 byte
boundary and have a size of 4 bytes. By using <samp><span class="option">-mno-bit-align</span></samp>,
the structure would be aligned to a 1 byte boundary and be one byte in
size.
<br><dt><code>-mno-strict-align</code><dt><code>-mstrict-align</code><dd><a name="index-mno_002dstrict_002dalign-1732"></a><a name="index-mstrict_002dalign-1733"></a>On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references will be handled by the system.
<br><dt><code>-mrelocatable</code><dt><code>-mno-relocatable</code><dd><a name="index-mrelocatable-1734"></a><a name="index-mno_002drelocatable-1735"></a>On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. If you
use <samp><span class="option">-mrelocatable</span></samp> on any module, all objects linked together must
be compiled with <samp><span class="option">-mrelocatable</span></samp> or <samp><span class="option">-mrelocatable-lib</span></samp>.
<br><dt><code>-mrelocatable-lib</code><dt><code>-mno-relocatable-lib</code><dd><a name="index-mrelocatable_002dlib-1736"></a><a name="index-mno_002drelocatable_002dlib-1737"></a>On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a different address at runtime. Modules
compiled with <samp><span class="option">-mrelocatable-lib</span></samp> can be linked with either modules
compiled without <samp><span class="option">-mrelocatable</span></samp> and <samp><span class="option">-mrelocatable-lib</span></samp> or
with modules compiled with the <samp><span class="option">-mrelocatable</span></samp> options.
<br><dt><code>-mno-toc</code><dt><code>-mtoc</code><dd><a name="index-mno_002dtoc-1738"></a><a name="index-mtoc-1739"></a>On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
<br><dt><code>-mlittle</code><dt><code>-mlittle-endian</code><dd><a name="index-mlittle-1740"></a><a name="index-mlittle_002dendian-1741"></a>On System V.4 and embedded PowerPC systems compile code for the
processor in little endian mode. The <samp><span class="option">-mlittle-endian</span></samp> option is
the same as <samp><span class="option">-mlittle</span></samp>.
<br><dt><code>-mbig</code><dt><code>-mbig-endian</code><dd><a name="index-mbig-1742"></a><a name="index-mbig_002dendian-1743"></a>On System V.4 and embedded PowerPC systems compile code for the
processor in big endian mode. The <samp><span class="option">-mbig-endian</span></samp> option is
the same as <samp><span class="option">-mbig</span></samp>.
<br><dt><code>-mdynamic-no-pic</code><dd><a name="index-mdynamic_002dno_002dpic-1744"></a>On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
<br><dt><code>-mprioritize-restricted-insns=</code><var>priority</var><dd><a name="index-mprioritize_002drestricted_002dinsns-1745"></a>This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass. The argument <var>priority</var> takes the value <var>0/1/2</var> to assign
<var>no/highest/second-highest</var> priority to dispatch slot restricted
instructions.
<br><dt><code>-msched-costly-dep=</code><var>dependence_type</var><dd><a name="index-msched_002dcostly_002ddep-1746"></a>This option controls which dependences are considered costly
by the target during instruction scheduling. The argument
<var>dependence_type</var> takes one of the following values:
<var>no</var>: no dependence is costly,
<var>all</var>: all dependences are costly,
<var>true_store_to_load</var>: a true dependence from store to load is costly,
<var>store_to_load</var>: any dependence from store to load is costly,
<var>number</var>: any dependence which latency >= <var>number</var> is costly.
<br><dt><code>-minsert-sched-nops=</code><var>scheme</var><dd><a name="index-minsert_002dsched_002dnops-1747"></a>This option controls which nop insertion scheme will be used during
the second scheduling pass. The argument <var>scheme</var> takes one of the
following values:
<var>no</var>: Don't insert nops.
<var>pad</var>: Pad with nops any dispatch group which has vacant issue slots,
according to the scheduler's grouping.
<var>regroup_exact</var>: Insert nops to force costly dependent insns into
separate groups. Insert exactly as many nops as needed to force an insn
to a new group, according to the estimated processor grouping.
<var>number</var>: Insert nops to force costly dependent insns into
separate groups. Insert <var>number</var> nops to force an insn to a new group.
<br><dt><code>-mcall-sysv</code><dd><a name="index-mcall_002dsysv-1748"></a>On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using ‘<samp><span class="samp">powerpc-*-eabiaix</span></samp>’.
<br><dt><code>-mcall-sysv-eabi</code><dd><a name="index-mcall_002dsysv_002deabi-1749"></a>Specify both <samp><span class="option">-mcall-sysv</span></samp> and <samp><span class="option">-meabi</span></samp> options.
<br><dt><code>-mcall-sysv-noeabi</code><dd><a name="index-mcall_002dsysv_002dnoeabi-1750"></a>Specify both <samp><span class="option">-mcall-sysv</span></samp> and <samp><span class="option">-mno-eabi</span></samp> options.
<br><dt><code>-mcall-solaris</code><dd><a name="index-mcall_002dsolaris-1751"></a>On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.
<br><dt><code>-mcall-linux</code><dd><a name="index-mcall_002dlinux-1752"></a>On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
<br><dt><code>-mcall-gnu</code><dd><a name="index-mcall_002dgnu-1753"></a>On System V.4 and embedded PowerPC systems compile code for the
Hurd-based GNU system.
<br><dt><code>-mcall-netbsd</code><dd><a name="index-mcall_002dnetbsd-1754"></a>On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.
<br><dt><code>-maix-struct-return</code><dd><a name="index-maix_002dstruct_002dreturn-1755"></a>Return all structures in memory (as specified by the AIX ABI).
<br><dt><code>-msvr4-struct-return</code><dd><a name="index-msvr4_002dstruct_002dreturn-1756"></a>Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI).
<br><dt><code>-mabi=</code><var>abi-type</var><dd><a name="index-mabi-1757"></a>Extend the current ABI with a particular extension, or remove such extension.
Valid values are <var>altivec</var>, <var>no-altivec</var>, <var>spe</var>,
<var>no-spe</var>, <var>ibmlongdouble</var>, <var>ieeelongdouble</var>.
<br><dt><code>-mabi=spe</code><dd><a name="index-mabi_003dspe-1758"></a>Extend the current ABI with SPE ABI extensions. This does not change
the default ABI, instead it adds the SPE ABI extensions to the current
ABI.
<br><dt><code>-mabi=no-spe</code><dd><a name="index-mabi_003dno_002dspe-1759"></a>Disable Booke SPE ABI extensions for the current ABI.
<br><dt><code>-mabi=ibmlongdouble</code><dd><a name="index-mabi_003dibmlongdouble-1760"></a>Change the current ABI to use IBM extended precision long double.
This is a PowerPC 32-bit SYSV ABI option.
<br><dt><code>-mabi=ieeelongdouble</code><dd><a name="index-mabi_003dieeelongdouble-1761"></a>Change the current ABI to use IEEE extended precision long double.
This is a PowerPC 32-bit Linux ABI option.
<br><dt><code>-mprototype</code><dt><code>-mno-prototype</code><dd><a name="index-mprototype-1762"></a><a name="index-mno_002dprototype-1763"></a>On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non prototyped call to
set or clear bit 6 of the condition code register (<var>CR</var>) to
indicate whether floating point values were passed in the floating point
registers in case the function takes a variable arguments. With
<samp><span class="option">-mprototype</span></samp>, only calls to prototyped variable argument functions
will set or clear the bit.
<br><dt><code>-msim</code><dd><a name="index-msim-1764"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">sim-crt0.o</span></samp> and that the standard C libraries are <samp><span class="file">libsim.a</span></samp> and
<samp><span class="file">libc.a</span></samp>. This is the default for ‘<samp><span class="samp">powerpc-*-eabisim</span></samp>’
configurations.
<br><dt><code>-mmvme</code><dd><a name="index-mmvme-1765"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libmvme.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.
<br><dt><code>-mads</code><dd><a name="index-mads-1766"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libads.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.
<br><dt><code>-myellowknife</code><dd><a name="index-myellowknife-1767"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libyk.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.
<br><dt><code>-mvxworks</code><dd><a name="index-mvxworks-1768"></a>On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.
<br><dt><code>-memb</code><dd><a name="index-memb-1769"></a>On embedded PowerPC systems, set the <var>PPC_EMB</var> bit in the ELF flags
header to indicate that ‘<samp><span class="samp">eabi</span></samp>’ extended relocations are used.
<br><dt><code>-meabi</code><dt><code>-mno-eabi</code><dd><a name="index-meabi-1770"></a><a name="index-mno_002deabi-1771"></a>On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of
modifications to the System V.4 specifications. Selecting <samp><span class="option">-meabi</span></samp>
means that the stack is aligned to an 8 byte boundary, a function
<code>__eabi</code> is called to from <code>main</code> to set up the eabi
environment, and the <samp><span class="option">-msdata</span></samp> option can use both <code>r2</code> and
<code>r13</code> to point to two separate small data areas. Selecting
<samp><span class="option">-mno-eabi</span></samp> means that the stack is aligned to a 16 byte boundary,
do not call an initialization function from <code>main</code>, and the
<samp><span class="option">-msdata</span></samp> option will only use <code>r13</code> to point to a single
small data area. The <samp><span class="option">-meabi</span></samp> option is on by default if you
configured GCC using one of the ‘<samp><span class="samp">powerpc*-*-eabi*</span></samp>’ options.
<br><dt><code>-msdata=eabi</code><dd><a name="index-msdata_003deabi-1772"></a>On System V.4 and embedded PowerPC systems, put small initialized
<code>const</code> global and static data in the ‘<samp><span class="samp">.sdata2</span></samp>’ section, which
is pointed to by register <code>r2</code>. Put small initialized
non-<code>const</code> global and static data in the ‘<samp><span class="samp">.sdata</span></samp>’ section,
which is pointed to by register <code>r13</code>. Put small uninitialized
global and static data in the ‘<samp><span class="samp">.sbss</span></samp>’ section, which is adjacent to
the ‘<samp><span class="samp">.sdata</span></samp>’ section. The <samp><span class="option">-msdata=eabi</span></samp> option is
incompatible with the <samp><span class="option">-mrelocatable</span></samp> option. The
<samp><span class="option">-msdata=eabi</span></samp> option also sets the <samp><span class="option">-memb</span></samp> option.
<br><dt><code>-msdata=sysv</code><dd><a name="index-msdata_003dsysv-1773"></a>On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘<samp><span class="samp">.sdata</span></samp>’ section, which is pointed to by register
<code>r13</code>. Put small uninitialized global and static data in the
‘<samp><span class="samp">.sbss</span></samp>’ section, which is adjacent to the ‘<samp><span class="samp">.sdata</span></samp>’ section.
The <samp><span class="option">-msdata=sysv</span></samp> option is incompatible with the
<samp><span class="option">-mrelocatable</span></samp> option.
<br><dt><code>-msdata=default</code><dt><code>-msdata</code><dd><a name="index-msdata_003ddefault-1774"></a><a name="index-msdata-1775"></a>On System V.4 and embedded PowerPC systems, if <samp><span class="option">-meabi</span></samp> is used,
compile code the same as <samp><span class="option">-msdata=eabi</span></samp>, otherwise compile code the
same as <samp><span class="option">-msdata=sysv</span></samp>.
<br><dt><code>-msdata=data</code><dd><a name="index-msdata_003ddata-1776"></a>On System V.4 and embedded PowerPC systems, put small global
data in the ‘<samp><span class="samp">.sdata</span></samp>’ section. Put small uninitialized global
data in the ‘<samp><span class="samp">.sbss</span></samp>’ section. Do not use register <code>r13</code>
to address small data however. This is the default behavior unless
other <samp><span class="option">-msdata</span></samp> options are used.
<br><dt><code>-msdata=none</code><dt><code>-mno-sdata</code><dd><a name="index-msdata_003dnone-1777"></a><a name="index-mno_002dsdata-1778"></a>On embedded PowerPC systems, put all initialized global and static data
in the ‘<samp><span class="samp">.data</span></samp>’ section, and all uninitialized data in the
‘<samp><span class="samp">.bss</span></samp>’ section.
<br><dt><code>-G </code><var>num</var><dd><a name="index-G-1779"></a><a name="index-smaller-data-references-_0028PowerPC_0029-1780"></a><a name="index-g_t_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1781"></a>On embedded PowerPC systems, put global and static items less than or
equal to <var>num</var> bytes into the small data or bss sections instead of
the normal data or bss section. By default, <var>num</var> is 8. The
<samp><span class="option">-G </span><var>num</var></samp> switch is also passed to the linker.
All modules should be compiled with the same <samp><span class="option">-G </span><var>num</var></samp> value.
<br><dt><code>-mregnames</code><dt><code>-mno-regnames</code><dd><a name="index-mregnames-1782"></a><a name="index-mno_002dregnames-1783"></a>On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.
<br><dt><code>-mlongcall</code><dt><code>-mno-longcall</code><dd><a name="index-mlongcall-1784"></a><a name="index-mno_002dlongcall-1785"></a>By default assume that all calls are far away so that a longer more
expensive calling sequence is required. This is required for calls
further than 32 megabytes (33,554,432 bytes) from the current location.
A short call will be generated if the compiler knows
the call cannot be that far away. This setting can be overridden by
the <code>shortcall</code> function attribute, or by <code>#pragma
longcall(0)</code>.
<p>Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly. On these systems, long calls are unnecessary and
generate slower code. As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64. It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.
<p>On Darwin/PPC systems, <code>#pragma longcall</code> will generate “jbsr
callee, L42”, plus a “branch island” (glue code). The two target
addresses represent the callee and the “branch island”. The
Darwin/PPC linker will prefer the first address and generate a “bl
callee” if the PPC “bl” instruction will reach the callee directly;
otherwise, the linker will generate “bl L42” to call the “branch
island”. The “branch island” is appended to the body of the
calling function; it computes the full 32-bit address of the callee
and jumps to it.
<p>On Mach-O (Darwin) systems, this option directs the compiler emit to
the glue for every direct call, and the Darwin linker decides whether
to use or discard it.
<p>In the future, we may cause GCC to ignore all longcall specifications
when the linker is known to generate glue.
<br><dt><code>-pthread</code><dd><a name="index-pthread-1786"></a>Adds support for multithreading with the <dfn>pthreads</dfn> library.
This option sets flags for both the preprocessor and linker.
</dl>
<div class="node">
<a name="S%2f390-and-zSeries-Options"></a>
<a name="S_002f390-and-zSeries-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Score-Options">Score Options</a>,
Previous: <a rel="previous" accesskey="p" href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.30 S/390 and zSeries Options</h4>
<p><a name="index-S_002f390-and-zSeries-Options-1787"></a>
These are the ‘<samp><span class="samp">-m</span></samp>’ options defined for the S/390 and zSeries architecture.
<dl>
<dt><code>-mhard-float</code><dt><code>-msoft-float</code><dd><a name="index-mhard_002dfloat-1788"></a><a name="index-msoft_002dfloat-1789"></a>Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When <samp><span class="option">-msoft-float</span></samp> is specified,
functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform floating-point
operations. When <samp><span class="option">-mhard-float</span></samp> is specified, the compiler
generates IEEE floating-point instructions. This is the default.
<br><dt><code>-mhard-dfp</code><dt><code>-mno-hard-dfp</code><dd><a name="index-mhard_002ddfp-1790"></a><a name="index-mno_002dhard_002ddfp-1791"></a>Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When <samp><span class="option">-mno-hard-dfp</span></samp> is
specified, functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform
decimal-floating-point operations. When <samp><span class="option">-mhard-dfp</span></samp> is
specified, the compiler generates decimal-floating-point hardware
instructions. This is the default for <samp><span class="option">-march=z9-ec</span></samp> or higher.
<br><dt><code>-mlong-double-64</code><dt><code>-mlong-double-128</code><dd><a name="index-mlong_002ddouble_002d64-1792"></a><a name="index-mlong_002ddouble_002d128-1793"></a>These switches control the size of <code>long double</code> type. A size
of 64bit makes the <code>long double</code> type equivalent to the <code>double</code>
type. This is the default.
<br><dt><code>-mbackchain</code><dt><code>-mno-backchain</code><dd><a name="index-mbackchain-1794"></a><a name="index-mno_002dbackchain-1795"></a>Store (do not store) the address of the caller's frame as backchain pointer
into the callee's stack frame.
A backchain may be needed to allow debugging using tools that do not understand
DWARF-2 call frame information.
When <samp><span class="option">-mno-packed-stack</span></samp> is in effect, the backchain pointer is stored
at the bottom of the stack frame; when <samp><span class="option">-mpacked-stack</span></samp> is in effect,
the backchain is placed into the topmost word of the 96/160 byte register
save area.
<p>In general, code compiled with <samp><span class="option">-mbackchain</span></samp> is call-compatible with
code compiled with <samp><span class="option">-mmo-backchain</span></samp>; however, use of the backchain
for debugging purposes usually requires that the whole binary is built with
<samp><span class="option">-mbackchain</span></samp>. Note that the combination of <samp><span class="option">-mbackchain</span></samp>,
<samp><span class="option">-mpacked-stack</span></samp> and <samp><span class="option">-mhard-float</span></samp> is not supported. In order
to build a linux kernel use <samp><span class="option">-msoft-float</span></samp>.
<p>The default is to not maintain the backchain.
<br><dt><code>-mpacked-stack</code><dt><code>-mno-packed-stack</code><dd><a name="index-mpacked_002dstack-1796"></a><a name="index-mno_002dpacked_002dstack-1797"></a>Use (do not use) the packed stack layout. When <samp><span class="option">-mno-packed-stack</span></samp> is
specified, the compiler uses the all fields of the 96/160 byte register save
area only for their default purpose; unused fields still take up stack space.
When <samp><span class="option">-mpacked-stack</span></samp> is specified, register save slots are densely
packed at the top of the register save area; unused space is reused for other
purposes, allowing for more efficient use of the available stack space.
However, when <samp><span class="option">-mbackchain</span></samp> is also in effect, the topmost word of
the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.
<p>As long as the stack frame backchain is not used, code generated with
<samp><span class="option">-mpacked-stack</span></samp> is call-compatible with code generated with
<samp><span class="option">-mno-packed-stack</span></samp>. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible
with code compiled with <samp><span class="option">-mpacked-stack</span></samp>. Also, note that the
combination of <samp><span class="option">-mbackchain</span></samp>,
<samp><span class="option">-mpacked-stack</span></samp> and <samp><span class="option">-mhard-float</span></samp> is not supported. In order
to build a linux kernel use <samp><span class="option">-msoft-float</span></samp>.
<p>The default is to not use the packed stack layout.
<br><dt><code>-msmall-exec</code><dt><code>-mno-small-exec</code><dd><a name="index-msmall_002dexec-1798"></a><a name="index-mno_002dsmall_002dexec-1799"></a>Generate (or do not generate) code using the <code>bras</code> instruction
to do subroutine calls.
This only works reliably if the total executable size does not
exceed 64k. The default is to use the <code>basr</code> instruction instead,
which does not have this limitation.
<br><dt><code>-m64</code><dt><code>-m31</code><dd><a name="index-m64-1800"></a><a name="index-m31-1801"></a>When <samp><span class="option">-m31</span></samp> is specified, generate code compliant to the
GNU/Linux for S/390 ABI. When <samp><span class="option">-m64</span></samp> is specified, generate
code compliant to the GNU/Linux for zSeries ABI. This allows GCC in
particular to generate 64-bit instructions. For the ‘<samp><span class="samp">s390</span></samp>’
targets, the default is <samp><span class="option">-m31</span></samp>, while the ‘<samp><span class="samp">s390x</span></samp>’
targets default to <samp><span class="option">-m64</span></samp>.
<br><dt><code>-mzarch</code><dt><code>-mesa</code><dd><a name="index-mzarch-1802"></a><a name="index-mesa-1803"></a>When <samp><span class="option">-mzarch</span></samp> is specified, generate code using the
instructions available on z/Architecture.
When <samp><span class="option">-mesa</span></samp> is specified, generate code using the
instructions available on ESA/390. Note that <samp><span class="option">-mesa</span></samp> is
not possible with <samp><span class="option">-m64</span></samp>.
When generating code compliant to the GNU/Linux for S/390 ABI,
the default is <samp><span class="option">-mesa</span></samp>. When generating code compliant
to the GNU/Linux for zSeries ABI, the default is <samp><span class="option">-mzarch</span></samp>.
<br><dt><code>-mmvcle</code><dt><code>-mno-mvcle</code><dd><a name="index-mmvcle-1804"></a><a name="index-mno_002dmvcle-1805"></a>Generate (or do not generate) code using the <code>mvcle</code> instruction
to perform block moves. When <samp><span class="option">-mno-mvcle</span></samp> is specified,
use a <code>mvc</code> loop instead. This is the default unless optimizing for
size.
<br><dt><code>-mdebug</code><dt><code>-mno-debug</code><dd><a name="index-mdebug-1806"></a><a name="index-mno_002ddebug-1807"></a>Print (or do not print) additional debug information when compiling.
The default is to not print debug information.
<br><dt><code>-march=</code><var>cpu-type</var><dd><a name="index-march-1808"></a>Generate code that will run on <var>cpu-type</var>, which is the name of a system
representing a certain processor type. Possible values for
<var>cpu-type</var> are ‘<samp><span class="samp">g5</span></samp>’, ‘<samp><span class="samp">g6</span></samp>’, ‘<samp><span class="samp">z900</span></samp>’, ‘<samp><span class="samp">z990</span></samp>’,
‘<samp><span class="samp">z9-109</span></samp>’, ‘<samp><span class="samp">z9-ec</span></samp>’ and ‘<samp><span class="samp">z10</span></samp>’.
When generating code using the instructions available on z/Architecture,
the default is <samp><span class="option">-march=z900</span></samp>. Otherwise, the default is
<samp><span class="option">-march=g5</span></samp>.
<br><dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1809"></a>Tune to <var>cpu-type</var> everything applicable about the generated code,
except for the ABI and the set of available instructions.
The list of <var>cpu-type</var> values is the same as for <samp><span class="option">-march</span></samp>.
The default is the value used for <samp><span class="option">-march</span></samp>.
<br><dt><code>-mtpf-trace</code><dt><code>-mno-tpf-trace</code><dd><a name="index-mtpf_002dtrace-1810"></a><a name="index-mno_002dtpf_002dtrace-1811"></a>Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even
when compiling for the TPF OS.
<br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1812"></a><a name="index-mno_002dfused_002dmadd-1813"></a>Generate code that uses (does not use) the floating point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used.
<br><dt><code>-mwarn-framesize=</code><var>framesize</var><dd><a name="index-mwarn_002dframesize-1814"></a>Emit a warning if the current function exceeds the given frame size. Because
this is a compile time check it doesn't need to be a real problem when the program
runs. It is intended to identify functions which most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g. the linux kernel.
<br><dt><code>-mwarn-dynamicstack</code><dd><a name="index-mwarn_002ddynamicstack-1815"></a>Emit a warning if the function calls alloca or uses dynamically
sized arrays. This is generally a bad idea with a limited stack size.
<br><dt><code>-mstack-guard=</code><var>stack-guard</var><dt><code>-mstack-size=</code><var>stack-size</var><dd><a name="index-mstack_002dguard-1816"></a><a name="index-mstack_002dsize-1817"></a>If these options are provided the s390 back end emits additional instructions in
the function prologue which trigger a trap if the stack size is <var>stack-guard</var>
bytes above the <var>stack-size</var> (remember that the stack on s390 grows downward).
If the <var>stack-guard</var> option is omitted the smallest power of 2 larger than
the frame size of the compiled function is chosen.
These options are intended to be used to help debugging stack overflow problems.
The additionally emitted code causes only little overhead and hence can also be
used in production like systems without greater performance degradation. The given
values have to be exact powers of 2 and <var>stack-size</var> has to be greater than
<var>stack-guard</var> without exceeding 64k.
In order to be efficient the extra code makes the assumption that the stack starts
at an address aligned to the value given by <var>stack-size</var>.
The <var>stack-guard</var> option can only be used in conjunction with <var>stack-size</var>.
</dl>
<div class="node">
<a name="Score-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SH-Options">SH Options</a>,
Previous: <a rel="previous" accesskey="p" href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.31 Score Options</h4>
<p><a name="index-Score-Options-1818"></a>
These options are defined for Score implementations:
<dl>
<dt><code>-meb</code><dd><a name="index-meb-1819"></a>Compile code for big endian mode. This is the default.
<br><dt><code>-mel</code><dd><a name="index-mel-1820"></a>Compile code for little endian mode.
<br><dt><code>-mnhwloop</code><dd><a name="index-mnhwloop-1821"></a>Disable generate bcnz instruction.
<br><dt><code>-muls</code><dd><a name="index-muls-1822"></a>Enable generate unaligned load and store instruction.
<br><dt><code>-mmac</code><dd><a name="index-mmac-1823"></a>Enable the use of multiply-accumulate instructions. Disabled by default.
<br><dt><code>-mscore5</code><dd><a name="index-mscore5-1824"></a>Specify the SCORE5 as the target architecture.
<br><dt><code>-mscore5u</code><dd><a name="index-mscore5u-1825"></a>Specify the SCORE5U of the target architecture.
<br><dt><code>-mscore7</code><dd><a name="index-mscore7-1826"></a>Specify the SCORE7 as the target architecture. This is the default.
<br><dt><code>-mscore7d</code><dd><a name="index-mscore7d-1827"></a>Specify the SCORE7D as the target architecture.
</dl>
<div class="node">
<a name="SH-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SPARC-Options">SPARC Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Score-Options">Score Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.32 SH Options</h4>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the SH implementations:
<dl>
<dt><code>-m1</code><dd><a name="index-m1-1828"></a>Generate code for the SH1.
<br><dt><code>-m2</code><dd><a name="index-m2-1829"></a>Generate code for the SH2.
<br><dt><code>-m2e</code><dd>Generate code for the SH2e.
<br><dt><code>-m3</code><dd><a name="index-m3-1830"></a>Generate code for the SH3.
<br><dt><code>-m3e</code><dd><a name="index-m3e-1831"></a>Generate code for the SH3e.
<br><dt><code>-m4-nofpu</code><dd><a name="index-m4_002dnofpu-1832"></a>Generate code for the SH4 without a floating-point unit.
<br><dt><code>-m4-single-only</code><dd><a name="index-m4_002dsingle_002donly-1833"></a>Generate code for the SH4 with a floating-point unit that only
supports single-precision arithmetic.
<br><dt><code>-m4-single</code><dd><a name="index-m4_002dsingle-1834"></a>Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.
<br><dt><code>-m4</code><dd><a name="index-m4-1835"></a>Generate code for the SH4.
<br><dt><code>-m4a-nofpu</code><dd><a name="index-m4a_002dnofpu-1836"></a>Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.
<br><dt><code>-m4a-single-only</code><dd><a name="index-m4a_002dsingle_002donly-1837"></a>Generate code for the SH4a, in such a way that no double-precision
floating point operations are used.
<br><dt><code>-m4a-single</code><dd><a name="index-m4a_002dsingle-1838"></a>Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.
<br><dt><code>-m4a</code><dd><a name="index-m4a-1839"></a>Generate code for the SH4a.
<br><dt><code>-m4al</code><dd><a name="index-m4al-1840"></a>Same as <samp><span class="option">-m4a-nofpu</span></samp>, except that it implicitly passes
<samp><span class="option">-dsp</span></samp> to the assembler. GCC doesn't generate any DSP
instructions at the moment.
<br><dt><code>-mb</code><dd><a name="index-mb-1841"></a>Compile code for the processor in big endian mode.
<br><dt><code>-ml</code><dd><a name="index-ml-1842"></a>Compile code for the processor in little endian mode.
<br><dt><code>-mdalign</code><dd><a name="index-mdalign-1843"></a>Align doubles at 64-bit boundaries. Note that this changes the calling
conventions, and thus some functions from the standard C library will
not work unless you recompile it first with <samp><span class="option">-mdalign</span></samp>.
<br><dt><code>-mrelax</code><dd><a name="index-mrelax-1844"></a>Shorten some address references at link time, when possible; uses the
linker option <samp><span class="option">-relax</span></samp>.
<br><dt><code>-mbigtable</code><dd><a name="index-mbigtable-1845"></a>Use 32-bit offsets in <code>switch</code> tables. The default is to use
16-bit offsets.
<br><dt><code>-mbitops</code><dd><a name="index-mbitops-1846"></a>Enable the use of bit manipulation instructions on SH2A.
<br><dt><code>-mfmovd</code><dd><a name="index-mfmovd-1847"></a>Enable the use of the instruction <code>fmovd</code>. Check <samp><span class="option">-mdalign</span></samp> for
alignment constraints.
<br><dt><code>-mhitachi</code><dd><a name="index-mhitachi-1848"></a>Comply with the calling conventions defined by Renesas.
<br><dt><code>-mrenesas</code><dd><a name="index-mhitachi-1849"></a>Comply with the calling conventions defined by Renesas.
<br><dt><code>-mno-renesas</code><dd><a name="index-mhitachi-1850"></a>Comply with the calling conventions defined for GCC before the Renesas
conventions were available. This option is the default for all
targets of the SH toolchain except for ‘<samp><span class="samp">sh-symbianelf</span></samp>’.
<br><dt><code>-mnomacsave</code><dd><a name="index-mnomacsave-1851"></a>Mark the <code>MAC</code> register as call-clobbered, even if
<samp><span class="option">-mhitachi</span></samp> is given.
<br><dt><code>-mieee</code><dd><a name="index-mieee-1852"></a>Increase IEEE-compliance of floating-point code.
At the moment, this is equivalent to <samp><span class="option">-fno-finite-math-only</span></samp>.
When generating 16 bit SH opcodes, getting IEEE-conforming results for
comparisons of NANs / infinities incurs extra overhead in every
floating point comparison, therefore the default is set to
<samp><span class="option">-ffinite-math-only</span></samp>.
<br><dt><code>-minline-ic_invalidate</code><dd><a name="index-minline_002dic_005finvalidate-1853"></a>Inline code to invalidate instruction cache entries after setting up
nested function trampolines.
This option has no effect if -musermode is in effect and the selected
code generation option (e.g. -m4) does not allow the use of the icbi
instruction.
If the selected code generation option does not allow the use of the icbi
instruction, and -musermode is not in effect, the inlined code will
manipulate the instruction cache address array directly with an associative
write. This not only requires privileged mode, but it will also
fail if the cache line had been mapped via the TLB and has become unmapped.
<br><dt><code>-misize</code><dd><a name="index-misize-1854"></a>Dump instruction size and location in the assembly code.
<br><dt><code>-mpadstruct</code><dd><a name="index-mpadstruct-1855"></a>This option is deprecated. It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI.
<br><dt><code>-mspace</code><dd><a name="index-mspace-1856"></a>Optimize for space instead of speed. Implied by <samp><span class="option">-Os</span></samp>.
<br><dt><code>-mprefergot</code><dd><a name="index-mprefergot-1857"></a>When generating position-independent code, emit function calls using
the Global Offset Table instead of the Procedure Linkage Table.
<br><dt><code>-musermode</code><dd><a name="index-musermode-1858"></a>Don't generate privileged mode only code; implies -mno-inline-ic_invalidate
if the inlined code would not work in user mode.
This is the default when the target is <code>sh-*-linux*</code>.
<br><dt><code>-multcost=</code><var>number</var><dd><a name="index-multcost_003d_0040var_007bnumber_007d-1859"></a>Set the cost to assume for a multiply insn.
<br><dt><code>-mdiv=</code><var>strategy</var><dd><a name="index-mdiv_003d_0040var_007bstrategy_007d-1860"></a>Set the division strategy to use for SHmedia code. <var>strategy</var> must be
one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call,
inv:call2, inv:fp .
"fp" performs the operation in floating point. This has a very high latency,
but needs only a few instructions, so it might be a good choice if
your code has enough easily exploitable ILP to allow the compiler to
schedule the floating point instructions together with other instructions.
Division by zero causes a floating point exception.
"inv" uses integer operations to calculate the inverse of the divisor,
and then multiplies the dividend with the inverse. This strategy allows
cse and hoisting of the inverse calculation. Division by zero calculates
an unspecified result, but does not trap.
"inv:minlat" is a variant of "inv" where if no cse / hoisting opportunities
have been found, or if the entire operation has been hoisted to the same
place, the last stages of the inverse calculation are intertwined with the
final multiply to reduce the overall latency, at the expense of using a few
more instructions, and thus offering fewer scheduling opportunities with
other code.
"call" calls a library function that usually implements the inv:minlat
strategy.
This gives high code density for m5-*media-nofpu compilations.
"call2" uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which
exposes the pointer load to cse / code hoisting optimizations.
"inv:call", "inv:call2" and "inv:fp" all use the "inv" algorithm for initial
code generation, but if the code stays unoptimized, revert to the "call",
"call2", or "fp" strategies, respectively. Note that the
potentially-trapping side effect of division by zero is carried by a
separate instruction, so it is possible that all the integer instructions
are hoisted out, but the marker for the side effect stays where it is.
A recombination to fp operations or a call is not possible in that case.
"inv20u" and "inv20l" are variants of the "inv:minlat" strategy. In the case
that the inverse calculation was nor separated from the multiply, they speed
up division where the dividend fits into 20 bits (plus sign where applicable),
by inserting a test to skip a number of operations in this case; this test
slows down the case of larger dividends. inv20u assumes the case of a such
a small dividend to be unlikely, and inv20l assumes it to be likely.
<br><dt><code>-mdivsi3_libfunc=</code><var>name</var><dd><a name="index-mdivsi3_005flibfunc_003d_0040var_007bname_007d-1861"></a>Set the name of the library function used for 32 bit signed division to
<var>name</var>. This only affect the name used in the call and inv:call
division strategies, and the compiler will still expect the same
sets of input/output/clobbered registers as if this option was not present.
<br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1862"></a>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
<br><dt><code>-madjust-unroll</code><dd><a name="index-madjust_002dunroll-1863"></a>Throttle unrolling to avoid thrashing target registers.
This option only has an effect if the gcc code base supports the
TARGET_ADJUST_UNROLL_MAX target hook.
<br><dt><code>-mindexed-addressing</code><dd><a name="index-mindexed_002daddressing-1864"></a>Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32 bit wrap-around
semantics for the indexed addressing mode. The architecture allows the
implementation of processors with 64 bit MMU, which the OS could use to
get 32 bit addressing, but since no current hardware implementation supports
this or any other way to make the indexed addressing mode safe to use in
the 32 bit ABI, the default is -mno-indexed-addressing.
<br><dt><code>-mgettrcost=</code><var>number</var><dd><a name="index-mgettrcost_003d_0040var_007bnumber_007d-1865"></a>Set the cost assumed for the gettr instruction to <var>number</var>.
The default is 2 if <samp><span class="option">-mpt-fixed</span></samp> is in effect, 100 otherwise.
<br><dt><code>-mpt-fixed</code><dd><a name="index-mpt_002dfixed-1866"></a>Assume pt* instructions won't trap. This will generally generate better
scheduled code, but is unsafe on current hardware. The current architecture
definition says that ptabs and ptrel trap when the target anded with 3 is 3.
This has the unintentional effect of making it unsafe to schedule ptabs /
ptrel before a branch, or hoist it out of a loop. For example,
__do_global_ctors, a part of libgcc that runs constructors at program
startup, calls functions in a list which is delimited by −1. With the
-mpt-fixed option, the ptabs will be done before testing against −1.
That means that all the constructors will be run a bit quicker, but when
the loop comes to the end of the list, the program crashes because ptabs
loads −1 into a target register. Since this option is unsafe for any
hardware implementing the current architecture specification, the default
is -mno-pt-fixed. Unless the user specifies a specific cost with
<samp><span class="option">-mgettrcost</span></samp>, -mno-pt-fixed also implies <samp><span class="option">-mgettrcost=100</span></samp>;
this deters register allocation using target registers for storing
ordinary integers.
<br><dt><code>-minvalid-symbols</code><dd><a name="index-minvalid_002dsymbols-1867"></a>Assume symbols might be invalid. Ordinary function symbols generated by
the compiler will always be valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible
to generate symbols that will cause ptabs / ptrel to trap.
This option is only meaningful when <samp><span class="option">-mno-pt-fixed</span></samp> is in effect.
It will then prevent cross-basic-block cse, hoisting and most scheduling
of symbol loads. The default is <samp><span class="option">-mno-invalid-symbols</span></samp>.
<br><dt><code>-mfdpic</code><dd><a name="index-fdpic-1868"></a>Generate code using the FDPIC ABI for uClinux, as documented at
<a href="http://www.codesourcery.com/public/docs/sh-fdpic/sh-fdpic-abi.txt">http://www.codesourcery.com/public/docs/sh-fdpic/sh-fdpic-abi.txt</a><!-- /@w -->.
</dl>
<div class="node">
<a name="SPARC-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SPU-Options">SPU Options</a>,
Previous: <a rel="previous" accesskey="p" href="#SH-Options">SH Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.33 SPARC Options</h4>
<p><a name="index-SPARC-options-1869"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are supported on the SPARC:
<dl>
<dt><code>-mno-app-regs</code><dt><code>-mapp-regs</code><dd><a name="index-mno_002dapp_002dregs-1870"></a><a name="index-mapp_002dregs-1871"></a>Specify <samp><span class="option">-mapp-regs</span></samp> to generate output using the global registers
2 through 4, which the SPARC SVR4 ABI reserves for applications. This
is the default.
<p>To be fully SVR4 ABI compliant at the cost of some performance loss,
specify <samp><span class="option">-mno-app-regs</span></samp>. You should compile libraries and system
software with this option.
<br><dt><code>-mfpu</code><dt><code>-mhard-float</code><dd><a name="index-mfpu-1872"></a><a name="index-mhard_002dfloat-1873"></a>Generate output containing floating point instructions. This is the
default.
<br><dt><code>-mno-fpu</code><dt><code>-msoft-float</code><dd><a name="index-mno_002dfpu-1874"></a><a name="index-msoft_002dfloat-1875"></a>Generate output containing library calls for floating point.
<strong>Warning:</strong> the requisite libraries are not available for all SPARC
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation. The embedded targets ‘<samp><span class="samp">sparc-*-aout</span></samp>’ and
‘<samp><span class="samp">sparclite-*-*</span></samp>’ do provide software floating point support.
<p><samp><span class="option">-msoft-float</span></samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option. In particular, you need to compile <samp><span class="file">libgcc.a</span></samp>, the
library that comes with GCC, with <samp><span class="option">-msoft-float</span></samp> in order for
this to work.
<br><dt><code>-mhard-quad-float</code><dd><a name="index-mhard_002dquad_002dfloat-1876"></a>Generate output containing quad-word (long double) floating point
instructions.
<br><dt><code>-msoft-quad-float</code><dd><a name="index-msoft_002dquad_002dfloat-1877"></a>Generate output containing library calls for quad-word (long double)
floating point instructions. The functions called are those specified
in the SPARC ABI. This is the default.
<p>As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating point instructions. They all invoke
a trap handler for one of these instructions, and then the trap handler
emulates the effect of the instruction. Because of the trap handler overhead,
this is much slower than calling the ABI library routines. Thus the
<samp><span class="option">-msoft-quad-float</span></samp> option is the default.
<br><dt><code>-mno-unaligned-doubles</code><dt><code>-munaligned-doubles</code><dd><a name="index-mno_002dunaligned_002ddoubles-1878"></a><a name="index-munaligned_002ddoubles-1879"></a>Assume that doubles have 8 byte alignment. This is the default.
<p>With <samp><span class="option">-munaligned-doubles</span></samp>, GCC assumes that doubles have 8 byte
alignment only if they are contained in another type, or if they have an
absolute address. Otherwise, it assumes they have 4 byte alignment.
Specifying this option avoids some rare compatibility problems with code
generated by other compilers. It is not the default because it results
in a performance loss, especially for floating point code.
<br><dt><code>-mno-faster-structs</code><dt><code>-mfaster-structs</code><dd><a name="index-mno_002dfaster_002dstructs-1880"></a><a name="index-mfaster_002dstructs-1881"></a>With <samp><span class="option">-mfaster-structs</span></samp>, the compiler assumes that structures
should have 8 byte alignment. This enables the use of pairs of
<code>ldd</code> and <code>std</code> instructions for copies in structure
assignment, in place of twice as many <code>ld</code> and <code>st</code> pairs.
However, the use of this changed alignment directly violates the SPARC
ABI. Thus, it's intended only for use on targets where the developer
acknowledges that their resulting code will not be directly in line with
the rules of the ABI.
<br><dt><code>-mimpure-text</code><dd><a name="index-mimpure_002dtext-1882"></a><samp><span class="option">-mimpure-text</span></samp>, used in addition to <samp><span class="option">-shared</span></samp>, tells
the compiler to not pass <samp><span class="option">-z text</span></samp> to the linker when linking a
shared object. Using this option, you can link position-dependent
code into a shared object.
<p><samp><span class="option">-mimpure-text</span></samp> suppresses the “relocations remain against
allocatable but non-writable sections” linker error message.
However, the necessary relocations will trigger copy-on-write, and the
shared object is not actually shared across processes. Instead of
using <samp><span class="option">-mimpure-text</span></samp>, you should compile all source code with
<samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp>.
<p>This option is only available on SunOS and Solaris.
<br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-1883"></a>Set the instruction set, register set, and instruction scheduling parameters
for machine type <var>cpu_type</var>. Supported values for <var>cpu_type</var> are
‘<samp><span class="samp">v7</span></samp>’, ‘<samp><span class="samp">cypress</span></samp>’, ‘<samp><span class="samp">v8</span></samp>’, ‘<samp><span class="samp">supersparc</span></samp>’, ‘<samp><span class="samp">sparclite</span></samp>’,
‘<samp><span class="samp">f930</span></samp>’, ‘<samp><span class="samp">f934</span></samp>’, ‘<samp><span class="samp">hypersparc</span></samp>’, ‘<samp><span class="samp">sparclite86x</span></samp>’,
‘<samp><span class="samp">sparclet</span></samp>’, ‘<samp><span class="samp">tsc701</span></samp>’, ‘<samp><span class="samp">v9</span></samp>’, ‘<samp><span class="samp">ultrasparc</span></samp>’,
‘<samp><span class="samp">ultrasparc3</span></samp>’, ‘<samp><span class="samp">niagara</span></samp>’ and ‘<samp><span class="samp">niagara2</span></samp>’.
<p>Default instruction scheduling parameters are used for values that select
an architecture and not an implementation. These are ‘<samp><span class="samp">v7</span></samp>’, ‘<samp><span class="samp">v8</span></samp>’,
‘<samp><span class="samp">sparclite</span></samp>’, ‘<samp><span class="samp">sparclet</span></samp>’, ‘<samp><span class="samp">v9</span></samp>’.
<p>Here is a list of each supported architecture and their supported
implementations.
<pre class="smallexample"> v7: cypress
v8: supersparc, hypersparc
sparclite: f930, f934, sparclite86x
sparclet: tsc701
v9: ultrasparc, ultrasparc3, niagara, niagara2
</pre>
<p>By default (unless configured otherwise), GCC generates code for the V7
variant of the SPARC architecture. With <samp><span class="option">-mcpu=cypress</span></samp>, the compiler
additionally optimizes it for the Cypress CY7C602 chip, as used in the
SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
SPARCStation 1, 2, IPX etc.
<p>With <samp><span class="option">-mcpu=v8</span></samp>, GCC generates code for the V8 variant of the SPARC
architecture. The only difference from V7 code is that the compiler emits
the integer multiply and integer divide instructions which exist in SPARC-V8
but not in SPARC-V7. With <samp><span class="option">-mcpu=supersparc</span></samp>, the compiler additionally
optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
2000 series.
<p>With <samp><span class="option">-mcpu=sparclite</span></samp>, GCC generates code for the SPARClite variant of
the SPARC architecture. This adds the integer multiply, integer divide step
and scan (<code>ffs</code>) instructions which exist in SPARClite but not in SPARC-V7.
With <samp><span class="option">-mcpu=f930</span></samp>, the compiler additionally optimizes it for the
Fujitsu MB86930 chip, which is the original SPARClite, with no FPU. With
<samp><span class="option">-mcpu=f934</span></samp>, the compiler additionally optimizes it for the Fujitsu
MB86934 chip, which is the more recent SPARClite with FPU.
<p>With <samp><span class="option">-mcpu=sparclet</span></samp>, GCC generates code for the SPARClet variant of
the SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (<code>ffs</code>) instructions which exist in SPARClet
but not in SPARC-V7. With <samp><span class="option">-mcpu=tsc701</span></samp>, the compiler additionally
optimizes it for the TEMIC SPARClet chip.
<p>With <samp><span class="option">-mcpu=v9</span></samp>, GCC generates code for the V9 variant of the SPARC
architecture. This adds 64-bit integer and floating-point move instructions,
3 additional floating-point condition code registers and conditional move
instructions. With <samp><span class="option">-mcpu=ultrasparc</span></samp>, the compiler additionally
optimizes it for the Sun UltraSPARC I/II/IIi chips. With
<samp><span class="option">-mcpu=ultrasparc3</span></samp>, the compiler additionally optimizes it for the
Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
<samp><span class="option">-mcpu=niagara</span></samp>, the compiler additionally optimizes it for
Sun UltraSPARC T1 chips. With <samp><span class="option">-mcpu=niagara2</span></samp>, the compiler
additionally optimizes it for Sun UltraSPARC T2 chips.
<br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-1884"></a>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the instruction set or register set that the
option <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> would.
<p>The same values for <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> can be used for
<samp><span class="option">-mtune=</span><var>cpu_type</var></samp>, but the only useful values are those
that select a particular cpu implementation. Those are ‘<samp><span class="samp">cypress</span></samp>’,
‘<samp><span class="samp">supersparc</span></samp>’, ‘<samp><span class="samp">hypersparc</span></samp>’, ‘<samp><span class="samp">f930</span></samp>’, ‘<samp><span class="samp">f934</span></samp>’,
‘<samp><span class="samp">sparclite86x</span></samp>’, ‘<samp><span class="samp">tsc701</span></samp>’, ‘<samp><span class="samp">ultrasparc</span></samp>’,
‘<samp><span class="samp">ultrasparc3</span></samp>’, ‘<samp><span class="samp">niagara</span></samp>’, and ‘<samp><span class="samp">niagara2</span></samp>’.
<br><dt><code>-mv8plus</code><dt><code>-mno-v8plus</code><dd><a name="index-mv8plus-1885"></a><a name="index-mno_002dv8plus-1886"></a>With <samp><span class="option">-mv8plus</span></samp>, GCC generates code for the SPARC-V8+ ABI. The
difference from the V8 ABI is that the global and out registers are
considered 64-bit wide. This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.
<br><dt><code>-mvis</code><dt><code>-mno-vis</code><dd><a name="index-mvis-1887"></a><a name="index-mno_002dvis-1888"></a>With <samp><span class="option">-mvis</span></samp>, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is <samp><span class="option">-mno-vis</span></samp>.
</dl>
<p>These ‘<samp><span class="samp">-m</span></samp>’ options are supported in addition to the above
on SPARC-V9 processors in 64-bit environments:
<dl>
<dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-1889"></a>Generate code for a processor running in little-endian mode. It is only
available for a few configurations and most notably not on Solaris and Linux.
<br><dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-1890"></a><a name="index-m64-1891"></a>Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.
<br><dt><code>-mcmodel=medlow</code><dd><a name="index-mcmodel_003dmedlow-1892"></a>Generate code for the Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically
or dynamically linked.
<br><dt><code>-mcmodel=medmid</code><dd><a name="index-mcmodel_003dmedmid-1893"></a>Generate code for the Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.
<br><dt><code>-mcmodel=medany</code><dd><a name="index-mcmodel_003dmedany-1894"></a>Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the
text segment.
<br><dt><code>-mcmodel=embmedany</code><dd><a name="index-mcmodel_003dembmedany-1895"></a>Generate code for the Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time). The
global register %g4 points to the base of the data segment. Programs
are statically linked and PIC is not supported.
<br><dt><code>-mstack-bias</code><dt><code>-mno-stack-bias</code><dd><a name="index-mstack_002dbias-1896"></a><a name="index-mno_002dstack_002dbias-1897"></a>With <samp><span class="option">-mstack-bias</span></samp>, GCC assumes that the stack pointer, and
frame pointer if present, are offset by −2047 which must be added back
when making stack frame references. This is the default in 64-bit mode.
Otherwise, assume no such offset is present.
</dl>
<p>These switches are supported in addition to the above on Solaris:
<dl>
<dt><code>-threads</code><dd><a name="index-threads-1898"></a>Add support for multithreading using the Solaris threads library. This
option sets flags for both the preprocessor and linker. This option does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.
<br><dt><code>-pthreads</code><dd><a name="index-pthreads-1899"></a>Add support for multithreading using the POSIX threads library. This
option sets flags for both the preprocessor and linker. This option does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.
<br><dt><code>-pthread</code><dd><a name="index-pthread-1900"></a>This is a synonym for <samp><span class="option">-pthreads</span></samp>.
</dl>
<div class="node">
<a name="SPU-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#System-V-Options">System V Options</a>,
Previous: <a rel="previous" accesskey="p" href="#SPARC-Options">SPARC Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.34 SPU Options</h4>
<p><a name="index-SPU-options-1901"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are supported on the SPU:
<dl>
<dt><code>-mwarn-reloc</code><dt><code>-merror-reloc</code><dd><a name="index-mwarn_002dreloc-1902"></a><a name="index-merror_002dreloc-1903"></a>
The loader for SPU does not handle dynamic relocations. By default, GCC
will give an error when it generates code that requires a dynamic
relocation. <samp><span class="option">-mno-error-reloc</span></samp> disables the error,
<samp><span class="option">-mwarn-reloc</span></samp> will generate a warning instead.
<br><dt><code>-msafe-dma</code><dt><code>-munsafe-dma</code><dd><a name="index-msafe_002ddma-1904"></a><a name="index-munsafe_002ddma-1905"></a>
Instructions which initiate or test completion of DMA must not be
reordered with respect to loads and stores of the memory which is being
accessed. Users typically address this problem using the volatile
keyword, but that can lead to inefficient code in places where the
memory is known to not change. Rather than mark the memory as volatile
we treat the DMA instructions as potentially effecting all memory. With
<samp><span class="option">-munsafe-dma</span></samp> users must use the volatile keyword to protect
memory accesses.
<br><dt><code>-mbranch-hints</code><dd><a name="index-mbranch_002dhints-1906"></a>
By default, GCC will generate a branch hint instruction to avoid
pipeline stalls for always taken or probably taken branches. A hint
will not be generated closer than 8 instructions away from its branch.
There is little reason to disable them, except for debugging purposes,
or to make an object a little bit smaller.
<br><dt><code>-msmall-mem</code><dt><code>-mlarge-mem</code><dd><a name="index-msmall_002dmem-1907"></a><a name="index-mlarge_002dmem-1908"></a>
By default, GCC generates code assuming that addresses are never larger
than 18 bits. With <samp><span class="option">-mlarge-mem</span></samp> code is generated that assumes
a full 32 bit address.
<br><dt><code>-mstdmain</code><dd><a name="index-mstdmain-1909"></a>
By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list).
With <samp><span class="option">-mstdmain</span></samp>, GCC will link your program against startup
code that assumes a C99-style interface to <code>main</code>, including a
local copy of <code>argv</code> strings.
<br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1910"></a>Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
<br><dt><code>-mdual-nops</code><dt><code>-mdual-nops=</code><var>n</var><dd><a name="index-mdual_002dnops-1911"></a>By default, GCC will insert nops to increase dual issue when it expects
it to increase performance. <var>n</var> can be a value from 0 to 10. A
smaller <var>n</var> will insert fewer nops. 10 is the default, 0 is the
same as <samp><span class="option">-mno-dual-nops</span></samp>. Disabled with <samp><span class="option">-Os</span></samp>.
<br><dt><code>-mhint-max-nops=</code><var>n</var><dd><a name="index-mhint_002dmax_002dnops-1912"></a>Maximum number of nops to insert for a branch hint. A branch hint must
be at least 8 instructions away from the branch it is effecting. GCC
will insert up to <var>n</var> nops to enforce this, otherwise it will not
generate the branch hint.
<br><dt><code>-mhint-max-distance=</code><var>n</var><dd><a name="index-mhint_002dmax_002ddistance-1913"></a>The encoding of the branch hint instruction limits the hint to be within
256 instructions of the branch it is effecting. By default, GCC makes
sure it is within 125.
<br><dt><code>-msafe-hints</code><dd><a name="index-msafe_002dhints-1914"></a>Work around a hardware bug which causes the SPU to stall indefinitely.
By default, GCC will insert the <code>hbrp</code> instruction to make sure
this stall won't happen.
</dl>
<div class="node">
<a name="System-V-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#V850-Options">V850 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#SPU-Options">SPU Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.35 Options for System V</h4>
<p>These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:
<dl>
<dt><code>-G</code><dd><a name="index-G-1915"></a>Create a shared object.
It is recommended that <samp><span class="option">-symbolic</span></samp> or <samp><span class="option">-shared</span></samp> be used instead.
<br><dt><code>-Qy</code><dd><a name="index-Qy-1916"></a>Identify the versions of each tool used by the compiler, in a
<code>.ident</code> assembler directive in the output.
<br><dt><code>-Qn</code><dd><a name="index-Qn-1917"></a>Refrain from adding <code>.ident</code> directives to the output file (this is
the default).
<br><dt><code>-YP,</code><var>dirs</var><dd><a name="index-YP-1918"></a>Search the directories <var>dirs</var>, and no others, for libraries
specified with <samp><span class="option">-l</span></samp>.
<br><dt><code>-Ym,</code><var>dir</var><dd><a name="index-Ym-1919"></a>Look in the directory <var>dir</var> to find the M4 preprocessor.
The assembler uses this option.
<!-- This is supposed to go with a -Yd for predefined M4 macro files, but -->
<!-- the generic assembler that comes with Solaris takes just -Ym. -->
</dl>
<div class="node">
<a name="V850-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#VAX-Options">VAX Options</a>,
Previous: <a rel="previous" accesskey="p" href="#System-V-Options">System V Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.36 V850 Options</h4>
<p><a name="index-V850-Options-1920"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for V850 implementations:
<dl>
<dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1921"></a><a name="index-mno_002dlong_002dcalls-1922"></a>Treat all calls as being far away (near). If calls are assumed to be
far away, the compiler will always load the functions address up into a
register, and call indirect through the pointer.
<br><dt><code>-mno-ep</code><dt><code>-mep</code><dd><a name="index-mno_002dep-1923"></a><a name="index-mep-1924"></a>Do not optimize (do optimize) basic blocks that use the same index
pointer 4 or more times to copy pointer into the <code>ep</code> register, and
use the shorter <code>sld</code> and <code>sst</code> instructions. The <samp><span class="option">-mep</span></samp>
option is on by default if you optimize.
<br><dt><code>-mno-prolog-function</code><dt><code>-mprolog-function</code><dd><a name="index-mno_002dprolog_002dfunction-1925"></a><a name="index-mprolog_002dfunction-1926"></a>Do not use (do use) external functions to save and restore registers
at the prologue and epilogue of a function. The external functions
are slower, but use less code space if more than one function saves
the same number of registers. The <samp><span class="option">-mprolog-function</span></samp> option
is on by default if you optimize.
<br><dt><code>-mspace</code><dd><a name="index-mspace-1927"></a>Try to make the code as small as possible. At present, this just turns
on the <samp><span class="option">-mep</span></samp> and <samp><span class="option">-mprolog-function</span></samp> options.
<br><dt><code>-mtda=</code><var>n</var><dd><a name="index-mtda-1928"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the tiny data area that register <code>ep</code> points to. The tiny data
area can hold up to 256 bytes in total (128 bytes for byte references).
<br><dt><code>-msda=</code><var>n</var><dd><a name="index-msda-1929"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the small data area that register <code>gp</code> points to. The small data
area can hold up to 64 kilobytes.
<br><dt><code>-mzda=</code><var>n</var><dd><a name="index-mzda-1930"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the first 32 kilobytes of memory.
<br><dt><code>-mv850</code><dd><a name="index-mv850-1931"></a>Specify that the target processor is the V850.
<br><dt><code>-mbig-switch</code><dd><a name="index-mbig_002dswitch-1932"></a>Generate code suitable for big switch tables. Use this option only if
the assembler/linker complain about out of range branches within a switch
table.
<br><dt><code>-mapp-regs</code><dd><a name="index-mapp_002dregs-1933"></a>This option will cause r2 and r5 to be used in the code generated by
the compiler. This setting is the default.
<br><dt><code>-mno-app-regs</code><dd><a name="index-mno_002dapp_002dregs-1934"></a>This option will cause r2 and r5 to be treated as fixed registers.
<br><dt><code>-mv850e1</code><dd><a name="index-mv850e1-1935"></a>Specify that the target processor is the V850E1. The preprocessor
constants ‘<samp><span class="samp">__v850e1__</span></samp>’ and ‘<samp><span class="samp">__v850e__</span></samp>’ will be defined if
this option is used.
<br><dt><code>-mv850e</code><dd><a name="index-mv850e-1936"></a>Specify that the target processor is the V850E. The preprocessor
constant ‘<samp><span class="samp">__v850e__</span></samp>’ will be defined if this option is used.
<p>If neither <samp><span class="option">-mv850</span></samp> nor <samp><span class="option">-mv850e</span></samp> nor <samp><span class="option">-mv850e1</span></samp>
are defined then a default target processor will be chosen and the
relevant ‘<samp><span class="samp">__v850*__</span></samp>’ preprocessor constant will be defined.
<p>The preprocessor constants ‘<samp><span class="samp">__v850</span></samp>’ and ‘<samp><span class="samp">__v851__</span></samp>’ are always
defined, regardless of which processor variant is the target.
<br><dt><code>-mdisable-callt</code><dd><a name="index-mdisable_002dcallt-1937"></a>This option will suppress generation of the CALLT instruction for the
v850e and v850e1 flavors of the v850 architecture. The default is
<samp><span class="option">-mno-disable-callt</span></samp> which allows the CALLT instruction to be used.
</dl>
<div class="node">
<a name="VAX-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#VxWorks-Options">VxWorks Options</a>,
Previous: <a rel="previous" accesskey="p" href="#V850-Options">V850 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.37 VAX Options</h4>
<p><a name="index-VAX-options-1938"></a>
These ‘<samp><span class="samp">-m</span></samp>’ options are defined for the VAX:
<dl>
<dt><code>-munix</code><dd><a name="index-munix-1939"></a>Do not output certain jump instructions (<code>aobleq</code> and so on)
that the Unix assembler for the VAX cannot handle across long
ranges.
<br><dt><code>-mgnu</code><dd><a name="index-mgnu-1940"></a>Do output those jump instructions, on the assumption that you
will assemble with the GNU assembler.
<br><dt><code>-mg</code><dd><a name="index-mg-1941"></a>Output code for g-format floating point numbers instead of d-format.
</dl>
<div class="node">
<a name="VxWorks-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#x86_002d64-Options">x86-64 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#VAX-Options">VAX Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.38 VxWorks Options</h4>
<p><a name="index-VxWorks-Options-1942"></a>
The options in this section are defined for all VxWorks targets.
Options specific to the target hardware are listed with the other
options for that target.
<dl>
<dt><code>-mrtp</code><dd><a name="index-mrtp-1943"></a>GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also
defines the preprocessor macro <code>__RTP__</code>.
<br><dt><code>-non-static</code><dd><a name="index-non_002dstatic-1944"></a>Link an RTP executable against shared libraries rather than static
libraries. The options <samp><span class="option">-static</span></samp> and <samp><span class="option">-shared</span></samp> can
also be used for RTPs (see <a href="#Link-Options">Link Options</a>); <samp><span class="option">-static</span></samp>
is the default.
<br><dt><code>-Bstatic</code><dt><code>-Bdynamic</code><dd><a name="index-Bstatic-1945"></a><a name="index-Bdynamic-1946"></a>These options are passed down to the linker. They are defined for
compatibility with Diab.
<br><dt><code>-Xbind-lazy</code><dd><a name="index-Xbind_002dlazy-1947"></a>Enable lazy binding of function calls. This option is equivalent to
<samp><span class="option">-Wl,-z,now</span></samp> and is defined for compatibility with Diab.
<br><dt><code>-Xbind-now</code><dd><a name="index-Xbind_002dnow-1948"></a>Disable lazy binding of function calls. This option is the default and
is defined for compatibility with Diab.
</dl>
<div class="node">
<a name="x86-64-Options"></a>
<a name="x86_002d64-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Xstormy16-Options">Xstormy16 Options</a>,
Previous: <a rel="previous" accesskey="p" href="#VxWorks-Options">VxWorks Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.39 x86-64 Options</h4>
<p><a name="index-x86_002d64-options-1949"></a>
These are listed under See <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>.
<div class="node">
<a name="Xstormy16-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Xtensa-Options">Xtensa Options</a>,
Previous: <a rel="previous" accesskey="p" href="#x86_002d64-Options">x86-64 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.40 Xstormy16 Options</h4>
<p><a name="index-Xstormy16-Options-1950"></a>
These options are defined for Xstormy16:
<dl>
<dt><code>-msim</code><dd><a name="index-msim-1951"></a>Choose startup files and linker script suitable for the simulator.
</dl>
<div class="node">
<a name="Xtensa-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#zSeries-Options">zSeries Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Xstormy16-Options">Xstormy16 Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.41 Xtensa Options</h4>
<p><a name="index-Xtensa-Options-1952"></a>
These options are supported for Xtensa targets:
<dl>
<dt><code>-mconst16</code><dt><code>-mno-const16</code><dd><a name="index-mconst16-1953"></a><a name="index-mno_002dconst16-1954"></a>Enable or disable use of <code>CONST16</code> instructions for loading
constant values. The <code>CONST16</code> instruction is currently not a
standard option from Tensilica. When enabled, <code>CONST16</code>
instructions are always used in place of the standard <code>L32R</code>
instructions. The use of <code>CONST16</code> is enabled by default only if
the <code>L32R</code> instruction is not available.
<br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1955"></a><a name="index-mno_002dfused_002dmadd-1956"></a>Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option. This has no effect if the
floating-point option is not also enabled. Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations. This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with <em>more</em> bits of
precision than specified by the IEEE standard. Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler's ability to combine multiply and add/subtract
operations.
<br><dt><code>-mserialize-volatile</code><dt><code>-mno-serialize-volatile</code><dd><a name="index-mserialize_002dvolatile-1957"></a><a name="index-mno_002dserialize_002dvolatile-1958"></a>When this option is enabled, GCC inserts <code>MEMW</code> instructions before
<code>volatile</code> memory references to guarantee sequential consistency.
The default is <samp><span class="option">-mserialize-volatile</span></samp>. Use
<samp><span class="option">-mno-serialize-volatile</span></samp> to omit the <code>MEMW</code> instructions.
<br><dt><code>-mtext-section-literals</code><dt><code>-mno-text-section-literals</code><dd><a name="index-mtext_002dsection_002dliterals-1959"></a><a name="index-mno_002dtext_002dsection_002dliterals-1960"></a>Control the treatment of literal pools. The default is
<samp><span class="option">-mno-text-section-literals</span></samp>, which places literals in a separate
section in the output file. This allows the literal pool to be placed
in a data RAM/ROM, and it also allows the linker to combine literal
pools from separate object files to remove redundant literals and
improve code size. With <samp><span class="option">-mtext-section-literals</span></samp>, the literals
are interspersed in the text section in order to keep them as close as
possible to their references. This may be necessary for large assembly
files.
<br><dt><code>-mtarget-align</code><dt><code>-mno-target-align</code><dd><a name="index-mtarget_002dalign-1961"></a><a name="index-mno_002dtarget_002dalign-1962"></a>When this option is enabled, GCC instructs the assembler to
automatically align instructions to reduce branch penalties at the
expense of some code density. The assembler attempts to widen density
instructions to align branch targets and the instructions following call
instructions. If there are not enough preceding safe density
instructions to align a target, no widening will be performed. The
default is <samp><span class="option">-mtarget-align</span></samp>. These options do not affect the
treatment of auto-aligned instructions like <code>LOOP</code>, which the
assembler will always align, either by widening density instructions or
by inserting no-op instructions.
<br><dt><code>-mlongcalls</code><dt><code>-mno-longcalls</code><dd><a name="index-mlongcalls-1963"></a><a name="index-mno_002dlongcalls-1964"></a>When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target
of a direct call is in the range allowed by the call instruction. This
translation typically occurs for calls to functions in other source
files. Specifically, the assembler translates a direct <code>CALL</code>
instruction into an <code>L32R</code> followed by a <code>CALLX</code> instruction.
The default is <samp><span class="option">-mno-longcalls</span></samp>. This option should be used in
programs where the call target can potentially be out of range. This
option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC will still show direct call
instructions—look at the disassembled object code to see the actual
instructions. Note that the assembler will use an indirect call for
every cross-file call, not just those that really will be out of range.
</dl>
<div class="node">
<a name="zSeries-Options"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Xtensa-Options">Xtensa Options</a>,
Up: <a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>
</div>
<h4 class="subsection">3.17.42 zSeries Options</h4>
<p><a name="index-zSeries-options-1965"></a>
These are listed under See <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>.
<div class="node">
<a name="Code-Gen-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Environment-Variables">Environment Variables</a>,
Previous: <a rel="previous" accesskey="p" href="#Submodel-Options">Submodel Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.18 Options for Code Generation Conventions</h3>
<p><a name="index-code-generation-conventions-1966"></a><a name="index-options_002c-code-generation-1967"></a><a name="index-run_002dtime-options-1968"></a>
These machine-independent options control the interface conventions
used in code generation.
<p>Most of them have both positive and negative forms; the negative form
of <samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>. In the table below, only
one of the forms is listed—the one which is not the default. You
can figure out the other form by either removing ‘<samp><span class="samp">no-</span></samp>’ or adding
it.
<dl>
<dt><code>-fbounds-check</code><dd><a name="index-fbounds_002dcheck-1969"></a>For front-ends that support it, generate additional code to check that
indices used to access arrays are within the declared range. This is
currently only supported by the Java and Fortran front-ends, where
this option defaults to true and false respectively.
<br><dt><code>-ftrapv</code><dd><a name="index-ftrapv-1970"></a>This option generates traps for signed overflow on addition, subtraction,
multiplication operations.
<br><dt><code>-fwrapv</code><dd><a name="index-fwrapv-1971"></a>This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around
using twos-complement representation. This flag enables some optimizations
and disables others. This option is enabled by default for the Java
front-end, as required by the Java language specification.
<br><dt><code>-fexceptions</code><dd><a name="index-fexceptions-1972"></a>Enable exception handling. Generates extra code needed to propagate
exceptions. For some targets, this implies GCC will generate frame
unwind information for all functions, which can produce significant data
size overhead, although it does not affect execution. If you do not
specify this option, GCC will enable it by default for languages like
C++ which normally require exception handling, and disable it for
languages like C that do not normally require it. However, you may need
to enable this option when compiling C code that needs to interoperate
properly with exception handlers written in C++. You may also wish to
disable this option if you are compiling older C++ programs that don't
use exception handling.
<br><dt><code>-fnon-call-exceptions</code><dd><a name="index-fnon_002dcall_002dexceptions-1973"></a>Generate code that allows trapping instructions to throw exceptions.
Note that this requires platform-specific runtime support that does
not exist everywhere. Moreover, it only allows <em>trapping</em>
instructions to throw exceptions, i.e. memory references or floating
point instructions. It does not allow exceptions to be thrown from
arbitrary signal handlers such as <code>SIGALRM</code>.
<br><dt><code>-funwind-tables</code><dd><a name="index-funwind_002dtables-1974"></a>Similar to <samp><span class="option">-fexceptions</span></samp>, except that it will just generate any needed
static data, but will not affect the generated code in any other way.
You will normally not enable this option; instead, a language processor
that needs this handling would enable it on your behalf.
<br><dt><code>-fasynchronous-unwind-tables</code><dd><a name="index-fasynchronous_002dunwind_002dtables-1975"></a>Generate unwind table in dwarf2 format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).
<br><dt><code>-fpcc-struct-return</code><dd><a name="index-fpcc_002dstruct_002dreturn-1976"></a>Return “short” <code>struct</code> and <code>union</code> values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallability between
GCC-compiled files and files compiled with other compilers, particularly
the Portable C Compiler (pcc).
<p>The precise convention for returning structures in memory depends
on the target configuration macros.
<p>Short structures and unions are those whose size and alignment match
that of some integer type.
<p><strong>Warning:</strong> code compiled with the <samp><span class="option">-fpcc-struct-return</span></samp>
switch is not binary compatible with code compiled with the
<samp><span class="option">-freg-struct-return</span></samp> switch.
Use it to conform to a non-default application binary interface.
<br><dt><code>-freg-struct-return</code><dd><a name="index-freg_002dstruct_002dreturn-1977"></a>Return <code>struct</code> and <code>union</code> values in registers when possible.
This is more efficient for small structures than
<samp><span class="option">-fpcc-struct-return</span></samp>.
<p>If you specify neither <samp><span class="option">-fpcc-struct-return</span></samp> nor
<samp><span class="option">-freg-struct-return</span></samp>, GCC defaults to whichever convention is
standard for the target. If there is no standard convention, GCC
defaults to <samp><span class="option">-fpcc-struct-return</span></samp>, except on targets where GCC is
the principal compiler. In those cases, we can choose the standard, and
we chose the more efficient register return alternative.
<p><strong>Warning:</strong> code compiled with the <samp><span class="option">-freg-struct-return</span></samp>
switch is not binary compatible with code compiled with the
<samp><span class="option">-fpcc-struct-return</span></samp> switch.
Use it to conform to a non-default application binary interface.
<br><dt><code>-fshort-enums</code><dd><a name="index-fshort_002denums-1978"></a>Allocate to an <code>enum</code> type only as many bytes as it needs for the
declared range of possible values. Specifically, the <code>enum</code> type
will be equivalent to the smallest integer type which has enough room.
<p><strong>Warning:</strong> the <samp><span class="option">-fshort-enums</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
<br><dt><code>-fshort-double</code><dd><a name="index-fshort_002ddouble-1979"></a>Use the same size for <code>double</code> as for <code>float</code>.
<p><strong>Warning:</strong> the <samp><span class="option">-fshort-double</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
<br><dt><code>-fshort-wchar</code><dd><a name="index-fshort_002dwchar-1980"></a>Override the underlying type for ‘<samp><span class="samp">wchar_t</span></samp>’ to be ‘<samp><span class="samp">short
unsigned int</span></samp>’ instead of the default for the target. This option is
useful for building programs to run under WINE.
<p><strong>Warning:</strong> the <samp><span class="option">-fshort-wchar</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
<br><dt><code>-fno-common</code><dd><a name="index-fno_002dcommon-1981"></a>In C code, controls the placement of uninitialized global variables.
Unix C compilers have traditionally permitted multiple definitions of
such variables in different compilation units by placing the variables
in a common block.
This is the behavior specified by <samp><span class="option">-fcommon</span></samp>, and is the default
for GCC on most targets.
On the other hand, this behavior is not required by ISO C, and on some
targets may carry a speed or code size penalty on variable references.
The <samp><span class="option">-fno-common</span></samp> option specifies that the compiler should place
uninitialized global variables in the data section of the object file,
rather than generating them as common blocks.
This has the effect that if the same variable is declared
(without <code>extern</code>) in two different compilations,
you will get a multiple-definition error when you link them.
In this case, you must compile with <samp><span class="option">-fcommon</span></samp> instead.
Compiling with <samp><span class="option">-fno-common</span></samp> is useful on targets for which
it provides better performance, or if you wish to verify that the
program will work on other systems which always treat uninitialized
variable declarations this way.
<br><dt><code>-fno-ident</code><dd><a name="index-fno_002dident-1982"></a>Ignore the ‘<samp><span class="samp">#ident</span></samp>’ directive.
<br><dt><code>-finhibit-size-directive</code><dd><a name="index-finhibit_002dsize_002ddirective-1983"></a>Don't output a <code>.size</code> assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This option is
used when compiling <samp><span class="file">crtstuff.c</span></samp>; you should not need to use it
for anything else.
<br><dt><code>-fverbose-asm</code><dd><a name="index-fverbose_002dasm-1984"></a>Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to those
who actually need to read the generated assembly code (perhaps while
debugging the compiler itself).
<p><samp><span class="option">-fno-verbose-asm</span></samp>, the default, causes the
extra information to be omitted and is useful when comparing two assembler
files.
<br><dt><code>-frecord-gcc-switches</code><dd><a name="index-frecord_002dgcc_002dswitches-1985"></a>This switch causes the command line that was used to invoke the
compiler to be recorded into the object file that is being created.
This switch is only implemented on some targets and the exact format
of the recording is target and binary file format dependent, but it
usually takes the form of a section containing ASCII text. This
switch is related to the <samp><span class="option">-fverbose-asm</span></samp> switch, but that
switch only records information in the assembler output file as
comments, so it never reaches the object file.
<br><dt><code>-fpic</code><dd><a name="index-fpic-1986"></a><a name="index-global-offset-table-1987"></a><a name="index-PIC-1988"></a>Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all
constant addresses through a global offset table (GOT). The dynamic
loader resolves the GOT entries when the program starts (the dynamic
loader is not part of GCC; it is part of the operating system). If
the GOT size for the linked executable exceeds a machine-specific
maximum size, you get an error message from the linker indicating that
<samp><span class="option">-fpic</span></samp> does not work; in that case, recompile with <samp><span class="option">-fPIC</span></samp>
instead. (These maximums are 8k on the SPARC and 32k
on the m68k and RS/6000. The 386 has no such limit.)
<p>Position-independent code requires special support, and therefore works
only on certain machines. For the 386, GCC supports PIC for System V
but not for the Sun 386i. Code generated for the IBM RS/6000 is always
position-independent.
<p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 1.
<br><dt><code>-fPIC</code><dd><a name="index-fPIC-1989"></a>If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table. This option makes a difference on the m68k,
PowerPC and SPARC.
<p>Position-independent code requires special support, and therefore works
only on certain machines.
<p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 2.
<br><dt><code>-fpie</code><dt><code>-fPIE</code><dd><a name="index-fpie-1990"></a><a name="index-fPIE-1991"></a>These options are similar to <samp><span class="option">-fpic</span></samp> and <samp><span class="option">-fPIC</span></samp>, but
generated position independent code can be only linked into executables.
Usually these options are used when <samp><span class="option">-pie</span></samp> GCC option will be
used during linking.
<p><samp><span class="option">-fpie</span></samp> and <samp><span class="option">-fPIE</span></samp> both define the macros
<code>__pie__</code> and <code>__PIE__</code>. The macros have the value 1
for <samp><span class="option">-fpie</span></samp> and 2 for <samp><span class="option">-fPIE</span></samp>.
<br><dt><code>-fno-jump-tables</code><dd><a name="index-fno_002djump_002dtables-1992"></a>Do not use jump tables for switch statements even where it would be
more efficient than other code generation strategies. This option is
of use in conjunction with <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp> for
building code which forms part of a dynamic linker and cannot
reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.
<br><dt><code>-ffixed-</code><var>reg</var><dd><a name="index-ffixed-1993"></a>Treat the register named <var>reg</var> as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
<p><var>reg</var> must be the name of a register. The register names accepted
are machine-specific and are defined in the <code>REGISTER_NAMES</code>
macro in the machine description macro file.
<p>This flag does not have a negative form, because it specifies a
three-way choice.
<br><dt><code>-fcall-used-</code><var>reg</var><dd><a name="index-fcall_002dused-1994"></a>Treat the register named <var>reg</var> as an allocable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
will not save and restore the register <var>reg</var>.
<p>It is an error to used this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model will produce disastrous results.
<p>This flag does not have a negative form, because it specifies a
three-way choice.
<br><dt><code>-fcall-saved-</code><var>reg</var><dd><a name="index-fcall_002dsaved-1995"></a>Treat the register named <var>reg</var> as an allocable register saved by
functions. It may be allocated even for temporaries or variables that
live across a call. Functions compiled this way will save and restore
the register <var>reg</var> if they use it.
<p>It is an error to used this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model will produce disastrous results.
<p>A different sort of disaster will result from the use of this flag for
a register in which function values may be returned.
<p>This flag does not have a negative form, because it specifies a
three-way choice.
<br><dt><code>-fpack-struct[=</code><var>n</var><code>]</code><dd><a name="index-fpack_002dstruct-1996"></a>Without a value specified, pack all structure members together without
holes. When a value is specified (which must be a small power of two), pack
structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger than
this will be output potentially unaligned at the next fitting location.
<p><strong>Warning:</strong> the <samp><span class="option">-fpack-struct</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Additionally, it makes the code suboptimal.
Use it to conform to a non-default application binary interface.
<br><dt><code>-finstrument-functions</code><dd><a name="index-finstrument_002dfunctions-1997"></a>Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions will be called with the address of the current
function and its call site. (On some platforms,
<code>__builtin_return_address</code> does not work beyond the current
function, so the call site information may not be available to the
profiling functions otherwise.)
<pre class="smallexample"> void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
</pre>
<p>The first argument is the address of the start of the current function,
which may be looked up exactly in the symbol table.
<p>This instrumentation is also done for functions expanded inline in other
functions. The profiling calls will indicate where, conceptually, the
inline function is entered and exited. This means that addressable
versions of such functions must be available. If all your uses of a
function are expanded inline, this may mean an additional expansion of
code size. If you use ‘<samp><span class="samp">extern inline</span></samp>’ in your C code, an
addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)
<p>A function may be given the attribute <code>no_instrument_function</code>, in
which case this instrumentation will not be done. This can be used, for
example, for the profiling functions listed above, high-priority
interrupt routines, and any functions from which the profiling functions
cannot safely be called (perhaps signal handlers, if the profiling
routines generate output or allocate memory).
<br><dt><code>-finstrument-functions-exclude-file-list=</code><var>file</var><code>,</code><var>file</var><code>,...</code><dd><a name="index-finstrument_002dfunctions_002dexclude_002dfile_002dlist-1998"></a>
Set the list of functions that are excluded from instrumentation (see
the description of <code>-finstrument-functions</code>). If the file that
contains a function definition matches with one of <var>file</var>, then
that function is not instrumented. The match is done on substrings:
if the <var>file</var> parameter is a substring of the file name, it is
considered to be a match.
<p>For example,
<code>-finstrument-functions-exclude-file-list=/bits/stl,include/sys</code>
will exclude any inline function defined in files whose pathnames
contain <code>/bits/stl</code> or <code>include/sys</code>.
<p>If, for some reason, you want to include letter <code>','</code> in one of
<var>sym</var>, write <code>'\,'</code>. For example,
<code>-finstrument-functions-exclude-file-list='\,\,tmp'</code>
(note the single quote surrounding the option).
<br><dt><code>-finstrument-functions-exclude-function-list=</code><var>sym</var><code>,</code><var>sym</var><code>,...</code><dd><a name="index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist-1999"></a>
This is similar to <code>-finstrument-functions-exclude-file-list</code>,
but this option sets the list of function names to be excluded from
instrumentation. The function name to be matched is its user-visible
name, such as <code>vector<int> blah(const vector<int> &)</code>, not the
internal mangled name (e.g., <code>_Z4blahRSt6vectorIiSaIiEE</code>). The
match is done on substrings: if the <var>sym</var> parameter is a substring
of the function name, it is considered to be a match.
<br><dt><code>-fstack-check</code><dd><a name="index-fstack_002dcheck-2000"></a>Generate code to verify that you do not go beyond the boundary of the
stack. You should specify this flag if you are running in an
environment with multiple threads, but only rarely need to specify it in
a single-threaded environment since stack overflow is automatically
detected on nearly all systems if there is only one stack.
<p>Note that this switch does not actually cause checking to be done; the
operating system or the language runtime must do that. The switch causes
generation of code to ensure that they see the stack being extended.
<p>You can additionally specify a string parameter: <code>no</code> means no
checking, <code>generic</code> means force the use of old-style checking,
<code>specific</code> means use the best checking method and is equivalent
to bare <samp><span class="option">-fstack-check</span></samp>.
<p>Old-style checking is a generic mechanism that requires no specific
target support in the compiler but comes with the following drawbacks:
<ol type=1 start=1>
<li>Modified allocation strategy for large objects: they will always be
allocated dynamically if their size exceeds a fixed threshold.
<li>Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and
a warning is issued by the compiler.
<li>Inefficiency: because of both the modified allocation strategy and the
generic implementation, the performances of the code are hampered.
</ol>
<p>Note that old-style stack checking is also the fallback method for
<code>specific</code> if no target support has been added in the compiler.
<br><dt><code>-fstack-limit-register=</code><var>reg</var><dt><code>-fstack-limit-symbol=</code><var>sym</var><dt><code>-fno-stack-limit</code><dd><a name="index-fstack_002dlimit_002dregister-2001"></a><a name="index-fstack_002dlimit_002dsymbol-2002"></a><a name="index-fno_002dstack_002dlimit-2003"></a>Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If the stack
would grow beyond the value, a signal is raised. For most targets,
the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.
<p>For instance, if the stack starts at absolute address ‘<samp><span class="samp">0x80000000</span></samp>’
and grows downwards, you can use the flags
<samp><span class="option">-fstack-limit-symbol=__stack_limit</span></samp> and
<samp><span class="option">-Wl,--defsym,__stack_limit=0x7ffe0000</span></samp> to enforce a stack limit
of 128KB. Note that this may only work with the GNU linker.
<p><a name="index-aliasing-of-parameters-2004"></a><a name="index-parameters_002c-aliased-2005"></a><br><dt><code>-fargument-alias</code><dt><code>-fargument-noalias</code><dt><code>-fargument-noalias-global</code><dt><code>-fargument-noalias-anything</code><dd><a name="index-fargument_002dalias-2006"></a><a name="index-fargument_002dnoalias-2007"></a><a name="index-fargument_002dnoalias_002dglobal-2008"></a><a name="index-fargument_002dnoalias_002danything-2009"></a>Specify the possible relationships among parameters and between
parameters and global data.
<p><samp><span class="option">-fargument-alias</span></samp> specifies that arguments (parameters) may
alias each other and may alias global storage.<br>
<samp><span class="option">-fargument-noalias</span></samp> specifies that arguments do not alias
each other, but may alias global storage.<br>
<samp><span class="option">-fargument-noalias-global</span></samp> specifies that arguments do not
alias each other and do not alias global storage.
<samp><span class="option">-fargument-noalias-anything</span></samp> specifies that arguments do not
alias any other storage.
<p>Each language will automatically use whatever option is required by
the language standard. You should not need to use these options yourself.
<br><dt><code>-fleading-underscore</code><dd><a name="index-fleading_002dunderscore-2010"></a>This option and its counterpart, <samp><span class="option">-fno-leading-underscore</span></samp>, forcibly
change the way C symbols are represented in the object file. One use
is to help link with legacy assembly code.
<p><strong>Warning:</strong> the <samp><span class="option">-fleading-underscore</span></samp> switch causes GCC to
generate code that is not binary compatible with code generated without that
switch. Use it to conform to a non-default application binary interface.
Not all targets provide complete support for this switch.
<br><dt><code>-ftls-model=</code><var>model</var><dd><a name="index-ftls_002dmodel-2011"></a>Alter the thread-local storage model to be used (see <a href="#Thread_002dLocal">Thread-Local</a>).
The <var>model</var> argument should be one of <code>global-dynamic</code>,
<code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.
<p>The default without <samp><span class="option">-fpic</span></samp> is <code>initial-exec</code>; with
<samp><span class="option">-fpic</span></samp> the default is <code>global-dynamic</code>.
<br><dt><code>-fvisibility=</code><var>default|internal|hidden|protected</var><dd><a name="index-fvisibility-2012"></a>Set the default ELF image symbol visibility to the specified option—all
symbols will be marked with this unless overridden within the code.
Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized
code, provide near-perfect API export and prevent symbol clashes.
It is <strong>strongly</strong> recommended that you use this in any shared objects
you distribute.
<p>Despite the nomenclature, <code>default</code> always means public ie;
available to be linked against from outside the shared object.
<code>protected</code> and <code>internal</code> are pretty useless in real-world
usage so the only other commonly used option will be <code>hidden</code>.
The default if <samp><span class="option">-fvisibility</span></samp> isn't specified is
<code>default</code>, i.e., make every
symbol public—this causes the same behavior as previous versions of
GCC.
<p>A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by “How To Write
Shared Libraries” by Ulrich Drepper (which can be found at
<a href="http://people.redhat.com/~drepper/">http://people.redhat.com/~drepper/</a><!-- /@w -->)—however a superior
solution made possible by this option to marking things hidden when
the default is public is to make the default hidden and mark things
public. This is the norm with DLL's on Windows and with <samp><span class="option">-fvisibility=hidden</span></samp>
and <code>__attribute__ ((visibility("default")))</code> instead of
<code>__declspec(dllexport)</code> you get almost identical semantics with
identical syntax. This is a great boon to those working with
cross-platform projects.
<p>For those adding visibility support to existing code, you may find
‘<samp><span class="samp">#pragma GCC visibility</span></samp>’ of use. This works by you enclosing
the declarations you wish to set visibility for with (for example)
‘<samp><span class="samp">#pragma GCC visibility push(hidden)</span></samp>’ and
‘<samp><span class="samp">#pragma GCC visibility pop</span></samp>’.
Bear in mind that symbol visibility should be viewed <strong>as
part of the API interface contract</strong> and thus all new code should
always specify visibility when it is not the default ie; declarations
only for use within the local DSO should <strong>always</strong> be marked explicitly
as hidden as so to avoid PLT indirection overheads—making this
abundantly clear also aids readability and self-documentation of the code.
Note that due to ISO C++ specification requirements, operator new and
operator delete must always be of default visibility.
<p>Be aware that headers from outside your project, in particular system
headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default. You
may need to explicitly say ‘<samp><span class="samp">#pragma GCC visibility push(default)</span></samp>’
before including any such headers.
<p>‘<samp><span class="samp">extern</span></samp>’ declarations are not affected by ‘<samp><span class="samp">-fvisibility</span></samp>’, so
a lot of code can be recompiled with ‘<samp><span class="samp">-fvisibility=hidden</span></samp>’ with
no modifications. However, this means that calls to ‘<samp><span class="samp">extern</span></samp>’
functions with no explicit visibility will use the PLT, so it is more
effective to use ‘<samp><span class="samp">__attribute ((visibility))</span></samp>’ and/or
‘<samp><span class="samp">#pragma GCC visibility</span></samp>’ to tell the compiler which ‘<samp><span class="samp">extern</span></samp>’
declarations should be treated as hidden.
<p>Note that ‘<samp><span class="samp">-fvisibility</span></samp>’ does affect C++ vague linkage
entities. This means that, for instance, an exception class that will
be thrown between DSOs must be explicitly marked with default
visibility so that the ‘<samp><span class="samp">type_info</span></samp>’ nodes will be unified between
the DSOs.
<p>An overview of these techniques, their benefits and how to use them
is at <a href="http://gcc.gnu.org/wiki/Visibility">http://gcc.gnu.org/wiki/Visibility</a><!-- /@w -->.
</dl>
<!-- man end -->
<div class="node">
<a name="Environment-Variables"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Precompiled-Headers">Precompiled Headers</a>,
Previous: <a rel="previous" accesskey="p" href="#Code-Gen-Options">Code Gen Options</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.19 Environment Variables Affecting GCC</h3>
<p><a name="index-environment-variables-2013"></a>
<!-- man begin ENVIRONMENT -->
This section describes several environment variables that affect how GCC
operates. Some of them work by specifying directories or prefixes to use
when searching for various kinds of files. Some are used to specify other
aspects of the compilation environment.
<p>Note that you can also specify places to search using options such as
<samp><span class="option">-B</span></samp>, <samp><span class="option">-I</span></samp> and <samp><span class="option">-L</span></samp> (see <a href="#Directory-Options">Directory Options</a>). These
take precedence over places specified using environment variables, which
in turn take precedence over those specified by the configuration of GCC.
See <a href="{No value for `fngccint'}.html#Driver">Controlling the Compilation Driver <samp><span class="file">gcc</span></samp></a>.
<dl>
<dt><samp><span class="env">LANG</span></samp><dt><samp><span class="env">LC_CTYPE</span></samp><dd><!-- @itemx LC_COLLATE -->
<dt><samp><span class="env">LC_MESSAGES</span></samp><dd><!-- @itemx LC_MONETARY -->
<!-- @itemx LC_NUMERIC -->
<!-- @itemx LC_TIME -->
<dt><samp><span class="env">LC_ALL</span></samp><dd><a name="index-LANG-2014"></a><a name="index-LC_005fCTYPE-2015"></a><!-- @findex LC_COLLATE -->
<a name="index-LC_005fMESSAGES-2016"></a><!-- @findex LC_MONETARY -->
<!-- @findex LC_NUMERIC -->
<!-- @findex LC_TIME -->
<a name="index-LC_005fALL-2017"></a><a name="index-locale-2018"></a>These environment variables control the way that GCC uses
localization information that allow GCC to work with different
national conventions. GCC inspects the locale categories
<samp><span class="env">LC_CTYPE</span></samp> and <samp><span class="env">LC_MESSAGES</span></samp> if it has been configured to do
so. These locale categories can be set to any value supported by your
installation. A typical value is ‘<samp><span class="samp">en_GB.UTF-8</span></samp>’ for English in the United
Kingdom encoded in UTF-8.
<p>The <samp><span class="env">LC_CTYPE</span></samp> environment variable specifies character
classification. GCC uses it to determine the character boundaries in
a string; this is needed for some multibyte encodings that contain quote
and escape characters that would otherwise be interpreted as a string
end or escape.
<p>The <samp><span class="env">LC_MESSAGES</span></samp> environment variable specifies the language to
use in diagnostic messages.
<p>If the <samp><span class="env">LC_ALL</span></samp> environment variable is set, it overrides the value
of <samp><span class="env">LC_CTYPE</span></samp> and <samp><span class="env">LC_MESSAGES</span></samp>; otherwise, <samp><span class="env">LC_CTYPE</span></samp>
and <samp><span class="env">LC_MESSAGES</span></samp> default to the value of the <samp><span class="env">LANG</span></samp>
environment variable. If none of these variables are set, GCC
defaults to traditional C English behavior.
<br><dt><samp><span class="env">TMPDIR</span></samp><dd><a name="index-TMPDIR-2019"></a>If <samp><span class="env">TMPDIR</span></samp> is set, it specifies the directory to use for temporary
files. GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
<br><dt><samp><span class="env">GCC_EXEC_PREFIX</span></samp><dd><a name="index-GCC_005fEXEC_005fPREFIX-2020"></a>If <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is added
when this prefix is combined with the name of a subprogram, but you can
specify a prefix that ends with a slash if you wish.
<p>If <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is not set, GCC will attempt to figure out
an appropriate prefix to use based on the pathname it was invoked with.
<p>If GCC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.
<p>The default value of <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is
<samp><var>prefix</var><span class="file">/lib/gcc/</span></samp> where <var>prefix</var> is the prefix to
the installed compiler. In many cases <var>prefix</var> is the value
of <code>prefix</code> when you ran the <samp><span class="file">configure</span></samp> script.
<p>Other prefixes specified with <samp><span class="option">-B</span></samp> take precedence over this prefix.
<p>This prefix is also used for finding files such as <samp><span class="file">crt0.o</span></samp> that are
used for linking.
<p>In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with ‘<samp><span class="samp">/usr/local/lib/gcc</span></samp>’
(more precisely, with the value of <samp><span class="env">GCC_INCLUDE_DIR</span></samp>), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with <samp><span class="option">-Bfoo/</span></samp>, GCC will search
<samp><span class="file">foo/bar</span></samp> where it would normally search <samp><span class="file">/usr/local/lib/bar</span></samp>.
These alternate directories are searched first; the standard directories
come next. If a standard directory begins with the configured
<var>prefix</var> then the value of <var>prefix</var> is replaced by
<samp><span class="env">GCC_EXEC_PREFIX</span></samp> when looking for header files.
<br><dt><samp><span class="env">COMPILER_PATH</span></samp><dd><a name="index-COMPILER_005fPATH-2021"></a>The value of <samp><span class="env">COMPILER_PATH</span></samp> is a colon-separated list of
directories, much like <samp><span class="env">PATH</span></samp>. GCC tries the directories thus
specified when searching for subprograms, if it can't find the
subprograms using <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.
<br><dt><samp><span class="env">LIBRARY_PATH</span></samp><dd><a name="index-LIBRARY_005fPATH-2022"></a>The value of <samp><span class="env">LIBRARY_PATH</span></samp> is a colon-separated list of
directories, much like <samp><span class="env">PATH</span></samp>. When configured as a native compiler,
GCC tries the directories thus specified when searching for special
linker files, if it can't find them using <samp><span class="env">GCC_EXEC_PREFIX</span></samp>. Linking
using GCC also uses these directories when searching for ordinary
libraries for the <samp><span class="option">-l</span></samp> option (but directories specified with
<samp><span class="option">-L</span></samp> come first).
<br><dt><samp><span class="env">LANG</span></samp><dd><a name="index-LANG-2023"></a><a name="index-locale-definition-2024"></a>This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used
when character literals, string literals and comments are parsed in C and C++.
When the compiler is configured to allow multibyte characters,
the following values for <samp><span class="env">LANG</span></samp> are recognized:
<dl>
<dt>‘<samp><span class="samp">C-JIS</span></samp>’<dd>Recognize JIS characters.
<br><dt>‘<samp><span class="samp">C-SJIS</span></samp>’<dd>Recognize SJIS characters.
<br><dt>‘<samp><span class="samp">C-EUCJP</span></samp>’<dd>Recognize EUCJP characters.
</dl>
<p>If <samp><span class="env">LANG</span></samp> is not defined, or if it has some other value, then the
compiler will use mblen and mbtowc as defined by the default locale to
recognize and translate multibyte characters.
</dl>
<p class="noindent">Some additional environments variables affect the behavior of the
preprocessor.
<!-- Copyright (c) 1999, 2000, 2001, 2002, 2004 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the CPP and GCC manuals. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- Environment variables affecting the preprocessor -->
<!-- -->
<!-- If this file is included with the flag ``cppmanual'' set, it is -->
<!-- formatted for inclusion in the CPP manual; otherwise the main GCC manual. -->
<dl>
<dt><samp><span class="env">CPATH</span></samp><a name="index-CPATH-2025"></a><dt><samp><span class="env">C_INCLUDE_PATH</span></samp><a name="index-C_005fINCLUDE_005fPATH-2026"></a><dt><samp><span class="env">CPLUS_INCLUDE_PATH</span></samp><a name="index-CPLUS_005fINCLUDE_005fPATH-2027"></a><dt><samp><span class="env">OBJC_INCLUDE_PATH</span></samp><a name="index-OBJC_005fINCLUDE_005fPATH-2028"></a><dd><!-- Commented out until ObjC++ is part of GCC: -->
<!-- @itemx OBJCPLUS_INCLUDE_PATH -->
Each variable's value is a list of directories separated by a special
character, much like <samp><span class="env">PATH</span></samp>, in which to look for header files.
The special character, <code>PATH_SEPARATOR</code>, is target-dependent and
determined at GCC build time. For Microsoft Windows-based targets it is a
semicolon, and for almost all other targets it is a colon.
<p><samp><span class="env">CPATH</span></samp> specifies a list of directories to be searched as if
specified with <samp><span class="option">-I</span></samp>, but after any paths given with <samp><span class="option">-I</span></samp>
options on the command line. This environment variable is used
regardless of which language is being preprocessed.
<p>The remaining environment variables apply only when preprocessing the
particular language indicated. Each specifies a list of directories
to be searched as if specified with <samp><span class="option">-isystem</span></samp>, but after any
paths given with <samp><span class="option">-isystem</span></samp> options on the command line.
<p>In all these variables, an empty element instructs the compiler to
search its current working directory. Empty elements can appear at the
beginning or end of a path. For instance, if the value of
<samp><span class="env">CPATH</span></samp> is <code>:/special/include</code>, that has the same
effect as ‘<samp><span class="samp">-I. -I/special/include<!-- /@w --></span></samp>’.
<!-- man end -->
<!-- man begin ENVIRONMENT -->
<br><dt><samp><span class="env">DEPENDENCIES_OUTPUT</span></samp><a name="index-DEPENDENCIES_005fOUTPUT-2029"></a><dd><a name="index-dependencies-for-make-as-output-2030"></a>If this variable is set, its value specifies how to output
dependencies for Make based on the non-system header files processed
by the compiler. System header files are ignored in the dependency
output.
<p>The value of <samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> can be just a file name, in
which case the Make rules are written to that file, guessing the target
name from the source file name. Or the value can have the form
‘<samp><var>file</var> <var>target</var></samp>’, in which case the rules are written to
file <var>file</var> using <var>target</var> as the target name.
<p>In other words, this environment variable is equivalent to combining
the options <samp><span class="option">-MM</span></samp> and <samp><span class="option">-MF</span></samp>
(see <a href="#Preprocessor-Options">Preprocessor Options</a>),
with an optional <samp><span class="option">-MT</span></samp> switch too.
<br><dt><samp><span class="env">SUNPRO_DEPENDENCIES</span></samp><a name="index-SUNPRO_005fDEPENDENCIES-2031"></a><dd><a name="index-dependencies-for-make-as-output-2032"></a>This variable is the same as <samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> (see above),
except that system header files are not ignored, so it implies
<samp><span class="option">-M</span></samp> rather than <samp><span class="option">-MM</span></samp>. However, the dependence on the
main input file is omitted.
See <a href="#Preprocessor-Options">Preprocessor Options</a>.
</dl>
<!-- man end -->
<div class="node">
<a name="Precompiled-Headers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Running-Protoize">Running Protoize</a>,
Previous: <a rel="previous" accesskey="p" href="#Environment-Variables">Environment Variables</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.20 Using Precompiled Headers</h3>
<p><a name="index-precompiled-headers-2033"></a><a name="index-speed-of-compilation-2034"></a>
Often large projects have many header files that are included in every
source file. The time the compiler takes to process these header files
over and over again can account for nearly all of the time required to
build the project. To make builds faster, GCC allows users to
`precompile' a header file; then, if builds can use the precompiled
header file they will be much faster.
<p>To create a precompiled header file, simply compile it as you would any
other file, if necessary using the <samp><span class="option">-x</span></samp> option to make the driver
treat it as a C or C++ header file. You will probably want to use a
tool like <samp><span class="command">make</span></samp> to keep the precompiled header up-to-date when
the headers it contains change.
<p>A precompiled header file will be searched for when <code>#include</code> is
seen in the compilation. As it searches for the included file
(see <a href="{No value for `fncpp'}.html#Search-Path">Search Path</a>) the
compiler looks for a precompiled header in each directory just before it
looks for the include file in that directory. The name searched for is
the name specified in the <code>#include</code> with ‘<samp><span class="samp">.gch</span></samp>’ appended. If
the precompiled header file can't be used, it is ignored.
<p>For instance, if you have <code>#include "all.h"</code>, and you have
<samp><span class="file">all.h.gch</span></samp> in the same directory as <samp><span class="file">all.h</span></samp>, then the
precompiled header file will be used if possible, and the original
header will be used otherwise.
<p>Alternatively, you might decide to put the precompiled header file in a
directory and use <samp><span class="option">-I</span></samp> to ensure that directory is searched
before (or instead of) the directory containing the original header.
Then, if you want to check that the precompiled header file is always
used, you can put a file of the same name as the original header in this
directory containing an <code>#error</code> command.
<p>This also works with <samp><span class="option">-include</span></samp>. So yet another way to use
precompiled headers, good for projects not designed with precompiled
header files in mind, is to simply take most of the header files used by
a project, include them from another header file, precompile that header
file, and <samp><span class="option">-include</span></samp> the precompiled header. If the header files
have guards against multiple inclusion, they will be skipped because
they've already been included (in the precompiled header).
<p>If you need to precompile the same header file for different
languages, targets, or compiler options, you can instead make a
<em>directory</em> named like <samp><span class="file">all.h.gch</span></samp>, and put each precompiled
header in the directory, perhaps using <samp><span class="option">-o</span></samp>. It doesn't matter
what you call the files in the directory, every precompiled header in
the directory will be considered. The first precompiled header
encountered in the directory that is valid for this compilation will
be used; they're searched in no particular order.
<p>There are many other possibilities, limited only by your imagination,
good sense, and the constraints of your build system.
<p>A precompiled header file can be used only when these conditions apply:
<ul>
<li>Only one precompiled header can be used in a particular compilation.
<li>A precompiled header can't be used once the first C token is seen. You
can have preprocessor directives before a precompiled header; you can
even include a precompiled header from inside another header, so long as
there are no C tokens before the <code>#include</code>.
<li>The precompiled header file must be produced for the same language as
the current compilation. You can't use a C precompiled header for a C++
compilation.
<li>The precompiled header file must have been produced by the same compiler
binary as the current compilation is using.
<li>Any macros defined before the precompiled header is included must
either be defined in the same way as when the precompiled header was
generated, or must not affect the precompiled header, which usually
means that they don't appear in the precompiled header at all.
<p>The <samp><span class="option">-D</span></samp> option is one way to define a macro before a
precompiled header is included; using a <code>#define</code> can also do it.
There are also some options that define macros implicitly, like
<samp><span class="option">-O</span></samp> and <samp><span class="option">-Wdeprecated</span></samp>; the same rule applies to macros
defined this way.
<li>If debugging information is output when using the precompiled
header, using <samp><span class="option">-g</span></samp> or similar, the same kind of debugging information
must have been output when building the precompiled header. However,
a precompiled header built using <samp><span class="option">-g</span></samp> can be used in a compilation
when no debugging information is being output.
<li>The same <samp><span class="option">-m</span></samp> options must generally be used when building
and using the precompiled header. See <a href="#Submodel-Options">Submodel Options</a>,
for any cases where this rule is relaxed.
<li>Each of the following options must be the same when building and using
the precompiled header:
<pre class="smallexample"> -fexceptions
</pre>
<li>Some other command-line options starting with <samp><span class="option">-f</span></samp>,
<samp><span class="option">-p</span></samp>, or <samp><span class="option">-O</span></samp> must be defined in the same way as when
the precompiled header was generated. At present, it's not clear
which options are safe to change and which are not; the safest choice
is to use exactly the same options when generating and using the
precompiled header. The following are known to be safe:
<pre class="smallexample"> -fmessage-length= -fpreprocessed -fsched-interblock
-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
-fsched-verbose=<number> -fschedule-insns -fvisibility=
-pedantic-errors
</pre>
</ul>
<p>For all of these except the last, the compiler will automatically
ignore the precompiled header if the conditions aren't met. If you
find an option combination that doesn't work and doesn't cause the
precompiled header to be ignored, please consider filing a bug report,
see <a href="#Bugs">Bugs</a>.
<p>If you do use differing options when generating and using the
precompiled header, the actual behavior will be a mixture of the
behavior for the options. For instance, if you use <samp><span class="option">-g</span></samp> to
generate the precompiled header but not when using it, you may or may
not get debugging information for routines in the precompiled header.
<div class="node">
<a name="Running-Protoize"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Precompiled-Headers">Precompiled Headers</a>,
Up: <a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>
</div>
<h3 class="section">3.21 Running Protoize</h3>
<p>The program <code>protoize</code> is an optional part of GCC. You can use
it to add prototypes to a program, thus converting the program to ISO
C in one respect. The companion program <code>unprotoize</code> does the
reverse: it removes argument types from any prototypes that are found.
<p>When you run these programs, you must specify a set of source files as
command line arguments. The conversion programs start out by compiling
these files to see what functions they define. The information gathered
about a file <var>foo</var> is saved in a file named <samp><var>foo</var><span class="file">.X</span></samp>.
<p>After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or
just headers) are eligible as well.
<p>But not all the eligible files are converted. By default,
<code>protoize</code> and <code>unprotoize</code> convert only source and header
files in the current directory. You can specify additional directories
whose files should be converted with the <samp><span class="option">-d </span><var>directory</var></samp>
option. You can also specify particular files to exclude with the
<samp><span class="option">-x </span><var>file</var></samp> option. A file is converted if it is eligible, its
directory name matches one of the specified directory names, and its
name within the directory has not been excluded.
<p>Basic conversion with <code>protoize</code> consists of rewriting most
function definitions and function declarations to specify the types of
the arguments. The only ones not rewritten are those for varargs
functions.
<p><code>protoize</code> optionally inserts prototype declarations at the
beginning of the source file, to make them available for any calls that
precede the function's definition. Or it can insert prototype
declarations with block scope in the blocks where undeclared functions
are called.
<p>Basic conversion with <code>unprotoize</code> consists of rewriting most
function declarations to remove any argument types, and rewriting
function definitions to the old-style pre-ISO form.
<p>Both conversion programs print a warning for any function declaration or
definition that they can't convert. You can suppress these warnings
with <samp><span class="option">-q</span></samp>.
<p>The output from <code>protoize</code> or <code>unprotoize</code> replaces the
original source file. The original file is renamed to a name ending
with ‘<samp><span class="samp">.save</span></samp>’ (for DOS, the saved filename ends in ‘<samp><span class="samp">.sav</span></samp>’
without the original ‘<samp><span class="samp">.c</span></samp>’ suffix). If the ‘<samp><span class="samp">.save</span></samp>’ (‘<samp><span class="samp">.sav</span></samp>’
for DOS) file already exists, then the source file is simply discarded.
<p><code>protoize</code> and <code>unprotoize</code> both depend on GCC itself to
scan the program and collect information about the functions it uses.
So neither of these programs will work until GCC is installed.
<p>Here is a table of the options you can use with <code>protoize</code> and
<code>unprotoize</code>. Each option works with both programs unless
otherwise stated.
<dl>
<dt><code>-B </code><var>directory</var><dd>Look for the file <samp><span class="file">SYSCALLS.c.X</span></samp> in <var>directory</var>, instead of the
usual directory (normally <samp><span class="file">/usr/local/lib</span></samp>). This file contains
prototype information about standard system functions. This option
applies only to <code>protoize</code>.
<br><dt><code>-c </code><var>compilation-options</var><dd>Use <var>compilation-options</var> as the options when running <samp><span class="command">gcc</span></samp> to
produce the ‘<samp><span class="samp">.X</span></samp>’ files. The special option <samp><span class="option">-aux-info</span></samp> is
always passed in addition, to tell <samp><span class="command">gcc</span></samp> to write a ‘<samp><span class="samp">.X</span></samp>’ file.
<p>Note that the compilation options must be given as a single argument to
<code>protoize</code> or <code>unprotoize</code>. If you want to specify several
<samp><span class="command">gcc</span></samp> options, you must quote the entire set of compilation options
to make them a single word in the shell.
<p>There are certain <samp><span class="command">gcc</span></samp> arguments that you cannot use, because they
would produce the wrong kind of output. These include <samp><span class="option">-g</span></samp>,
<samp><span class="option">-O</span></samp>, <samp><span class="option">-c</span></samp>, <samp><span class="option">-S</span></samp>, and <samp><span class="option">-o</span></samp> If you include these in
the <var>compilation-options</var>, they are ignored.
<br><dt><code>-C</code><dd>Rename files to end in ‘<samp><span class="samp">.C</span></samp>’ (‘<samp><span class="samp">.cc</span></samp>’ for DOS-based file
systems) instead of ‘<samp><span class="samp">.c</span></samp>’. This is convenient if you are converting
a C program to C++. This option applies only to <code>protoize</code>.
<br><dt><code>-g</code><dd>Add explicit global declarations. This means inserting explicit
declarations at the beginning of each source file for each function
that is called in the file and was not declared. These declarations
precede the first function definition that contains a call to an
undeclared function. This option applies only to <code>protoize</code>.
<br><dt><code>-i </code><var>string</var><dd>Indent old-style parameter declarations with the string <var>string</var>.
This option applies only to <code>protoize</code>.
<p><code>unprotoize</code> converts prototyped function definitions to old-style
function definitions, where the arguments are declared between the
argument list and the initial ‘<samp><span class="samp">{</span></samp>’. By default, <code>unprotoize</code>
uses five spaces as the indentation. If you want to indent with just
one space instead, use <samp><span class="option">-i " "</span></samp>.
<br><dt><code>-k</code><dd>Keep the ‘<samp><span class="samp">.X</span></samp>’ files. Normally, they are deleted after conversion
is finished.
<br><dt><code>-l</code><dd>Add explicit local declarations. <code>protoize</code> with <samp><span class="option">-l</span></samp> inserts
a prototype declaration for each function in each block which calls the
function without any declaration. This option applies only to
<code>protoize</code>.
<br><dt><code>-n</code><dd>Make no real changes. This mode just prints information about the conversions
that would have been done without <samp><span class="option">-n</span></samp>.
<br><dt><code>-N</code><dd>Make no ‘<samp><span class="samp">.save</span></samp>’ files. The original files are simply deleted.
Use this option with caution.
<br><dt><code>-p </code><var>program</var><dd>Use the program <var>program</var> as the compiler. Normally, the name
<samp><span class="file">gcc</span></samp> is used.
<br><dt><code>-q</code><dd>Work quietly. Most warnings are suppressed.
<br><dt><code>-v</code><dd>Print the version number, just like <samp><span class="option">-v</span></samp> for <samp><span class="command">gcc</span></samp>.
</dl>
<p>If you need special compiler options to compile one of your program's
source files, then you should generate that file's ‘<samp><span class="samp">.X</span></samp>’ file
specially, by running <samp><span class="command">gcc</span></samp> on that source file with the
appropriate options and the option <samp><span class="option">-aux-info</span></samp>. Then run
<code>protoize</code> on the entire set of files. <code>protoize</code> will use
the existing ‘<samp><span class="samp">.X</span></samp>’ file because it is newer than the source file.
For example:
<pre class="smallexample"> gcc -Dfoo=bar file1.c -aux-info file1.X
protoize *.c
</pre>
<p class="noindent">You need to include the special files along with the rest in the
<code>protoize</code> command, even though their ‘<samp><span class="samp">.X</span></samp>’ files already
exist, because otherwise they won't get converted.
<p>See <a href="#Protoize-Caveats">Protoize Caveats</a>, for more information on how to use
<code>protoize</code> successfully.
<!-- Copyright (C) 2001, 2002, 2003, 2004, 2006, 2008 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="C-Implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-Extensions">C Extensions</a>,
Previous: <a rel="previous" accesskey="p" href="#Invoking-GCC">Invoking GCC</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">4 C Implementation-defined behavior</h2>
<p><a name="index-implementation_002ddefined-behavior_002c-C-language-2035"></a>
A conforming implementation of ISO C is required to document its
choice of behavior in each of the areas that are designated
“implementation defined”. The following lists all such areas,
along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC
9899:1999 standards. Some areas are only implementation-defined in
one version of the standard.
<p>Some choices depend on the externally determined ABI for the platform
(including standard character encodings) which GCC follows; these are
listed as “determined by ABI” below. See <a href="#Compatibility">Binary Compatibility</a>, and <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>. Some
choices are documented in the preprocessor manual.
See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>. Some choices are made by the
library and operating system (or other environment when compiling for
a freestanding environment); refer to their documentation for details.
<ul class="menu">
<li><a accesskey="1" href="#Translation-implementation">Translation implementation</a>
<li><a accesskey="2" href="#Environment-implementation">Environment implementation</a>
<li><a accesskey="3" href="#Identifiers-implementation">Identifiers implementation</a>
<li><a accesskey="4" href="#Characters-implementation">Characters implementation</a>
<li><a accesskey="5" href="#Integers-implementation">Integers implementation</a>
<li><a accesskey="6" href="#Floating-point-implementation">Floating point implementation</a>
<li><a accesskey="7" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>
<li><a accesskey="8" href="#Hints-implementation">Hints implementation</a>
<li><a accesskey="9" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>
<li><a href="#Qualifiers-implementation">Qualifiers implementation</a>
<li><a href="#Declarators-implementation">Declarators implementation</a>
<li><a href="#Statements-implementation">Statements implementation</a>
<li><a href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>
<li><a href="#Library-functions-implementation">Library functions implementation</a>
<li><a href="#Architecture-implementation">Architecture implementation</a>
<li><a href="#Locale_002dspecific-behavior-implementation">Locale-specific behavior implementation</a>
</ul>
<div class="node">
<a name="Translation-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Environment-implementation">Environment implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.1 Translation</h3>
<ul>
<li><cite>How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).</cite>
<p>Diagnostics consist of all the output sent to stderr by GCC.
<li><cite>Whether each nonempty sequence of white-space characters other than
new-line is retained or replaced by one space character in translation
phase 3 (C90 and C99 5.1.1.2).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
</ul>
<div class="node">
<a name="Environment-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Identifiers-implementation">Identifiers implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Translation-implementation">Translation implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.2 Environment</h3>
<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
<ul>
<li><cite>The mapping between physical source file multibyte characters
and the source character set in translation phase 1 (C90 and C99 5.1.1.2).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
</ul>
<div class="node">
<a name="Identifiers-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Characters-implementation">Characters implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Environment-implementation">Environment implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.3 Identifiers</h3>
<ul>
<li><cite>Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (C99 6.4.2).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
<li><cite>The number of significant initial characters in an identifier
(C90 6.1.2, C90 and C99 5.2.4.1, C99 6.4.2).</cite>
<p>For internal names, all characters are significant. For external names,
the number of significant characters are defined by the linker; for
almost all targets, all characters are significant.
<li><cite>Whether case distinctions are significant in an identifier with
external linkage (C90 6.1.2).</cite>
<p>This is a property of the linker. C99 requires that case distinctions
are always significant in identifiers with external linkage and
systems without this property are not supported by GCC.
</ul>
<div class="node">
<a name="Characters-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Integers-implementation">Integers implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Identifiers-implementation">Identifiers implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.4 Characters</h3>
<ul>
<li><cite>The number of bits in a byte (C90 3.4, C99 3.6).</cite>
<p>Determined by ABI.
<li><cite>The values of the members of the execution character set (C90
and C99 5.2.1).</cite>
<p>Determined by ABI.
<li><cite>The unique value of the member of the execution character set produced
for each of the standard alphabetic escape sequences (C90 and C99 5.2.2).</cite>
<p>Determined by ABI.
<li><cite>The value of a </cite><code>char</code><cite> object into which has been stored any
character other than a member of the basic execution character set
(C90 6.1.2.5, C99 6.2.5).</cite>
<p>Determined by ABI.
<li><cite>Which of </cite><code>signed char</code><cite> or </cite><code>unsigned char</code><cite> has the same
range, representation, and behavior as “plain” </cite><code>char</code><cite> (C90
6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).</cite>
<p><a name="index-fsigned_002dchar-2036"></a><a name="index-funsigned_002dchar-2037"></a>Determined by ABI. The options <samp><span class="option">-funsigned-char</span></samp> and
<samp><span class="option">-fsigned-char</span></samp> change the default. See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<li><cite>The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).</cite>
<p>Determined by ABI.
<li><cite>The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not map
to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
<li><cite>The value of a wide character constant containing more than one
multibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set (C90
6.1.3.4, C99 6.4.4.4).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
<li><cite>The current locale used to convert a wide character constant consisting
of a single multibyte character that maps to a member of the extended
execution character set into a corresponding wide character code (C90
6.1.3.4, C99 6.4.4.4).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
<li><cite>The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 6.4.5).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
<li><cite>The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4, C99 6.4.5).</cite>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.
</ul>
<div class="node">
<a name="Integers-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Floating-point-implementation">Floating point implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Characters-implementation">Characters implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.5 Integers</h3>
<ul>
<li><cite>Any extended integer types that exist in the implementation (C99 6.2.5).</cite>
<p>GCC does not support any extended integer types.
<!-- The __mode__ attribute might create types of precisions not -->
<!-- otherwise supported, but the syntax isn't right for use everywhere -->
<!-- the standard type names might be used. Predefined typedefs should -->
<!-- be used if any extended integer types are to be defined. The -->
<!-- __int128_t and __uint128_t typedefs are not extended integer types -->
<!-- as they are generally longer than the ABI-specified intmax_t. -->
<li><cite>Whether signed integer types are represented using sign and magnitude,
two's complement, or one's complement, and whether the extraordinary value
is a trap representation or an ordinary value (C99 6.2.6.2).</cite>
<p>GCC supports only two's complement integer types, and all bit patterns
are ordinary values.
<li><cite>The rank of any extended integer type relative to another extended
integer type with the same precision (C99 6.3.1.1).</cite>
<p>GCC does not support any extended integer types.
<!-- If it did, there would only be one of each precision and signedness. -->
<li><cite>The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an object of
that type (C90 6.2.1.2, C99 6.3.1.3).</cite>
<p>For conversion to a type of width N, the value is reduced
modulo 2^N to be within range of the type; no signal is raised.
<li><cite>The results of some bitwise operations on signed integers (C90
6.3, C99 6.5).</cite>
<p>Bitwise operators act on the representation of the value including
both the sign and value bits, where the sign bit is considered
immediately above the highest-value value bit. Signed ‘<samp><span class="samp">>></span></samp>’ acts
on negative numbers by sign extension.
<p>GCC does not use the latitude given in C99 only to treat certain
aspects of signed ‘<samp><span class="samp"><<</span></samp>’ as undefined, but this is subject to
change.
<li><cite>The sign of the remainder on integer division (C90 6.3.5).</cite>
<p>GCC always follows the C99 requirement that the result of division is
truncated towards zero.
</ul>
<div class="node">
<a name="Floating-point-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Integers-implementation">Integers implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.6 Floating point</h3>
<ul>
<li><cite>The accuracy of the floating-point operations and of the library
functions in </cite><code><math.h></code><cite> and </cite><code><complex.h></code><cite> that return floating-point
results (C90 and C99 5.2.4.2.2).</cite>
<p>The accuracy is unknown.
<li><cite>The rounding behaviors characterized by non-standard values
of </cite><code>FLT_ROUNDS</code><cite>
(C90 and C99 5.2.4.2.2).</cite>
<p>GCC does not use such values.
<li><cite>The evaluation methods characterized by non-standard negative
values of </cite><code>FLT_EVAL_METHOD</code><cite> (C99 5.2.4.2.2).</cite>
<p>GCC does not use such values.
<li><cite>The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 6.3.1.4).</cite>
<p>C99 Annex F is followed.
<li><cite>The direction of rounding when a floating-point number is
converted to a narrower floating-point number (C90 6.2.1.4, C99
6.3.1.5).</cite>
<p>C99 Annex F is followed.
<li><cite>How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest representable
value is chosen for certain floating constants (C90 6.1.3.1, C99
6.4.4.2).</cite>
<p>C99 Annex F is followed.
<li><cite>Whether and how floating expressions are contracted when not
disallowed by the </cite><code>FP_CONTRACT</code><cite> pragma (C99 6.5).</cite>
<p>Expressions are currently only contracted if
<samp><span class="option">-funsafe-math-optimizations</span></samp> or <samp><span class="option">-ffast-math</span></samp> are used.
This is subject to change.
<li><cite>The default state for the </cite><code>FENV_ACCESS</code><cite> pragma (C99 7.6.1).</cite>
<p>This pragma is not implemented, but the default is to “off” unless
<samp><span class="option">-frounding-math</span></samp> is used in which case it is “on”.
<li><cite>Additional floating-point exceptions, rounding modes, environments,
and classifications, and their macro names (C99 7.6, C99 7.12).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
<li><cite>The default state for the </cite><code>FP_CONTRACT</code><cite> pragma (C99 7.12.2).</cite>
<p>This pragma is not implemented. Expressions are currently only
contracted if <samp><span class="option">-funsafe-math-optimizations</span></samp> or
<samp><span class="option">-ffast-math</span></samp> are used. This is subject to change.
<li><cite>Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical result
in an IEC 60559 conformant implementation (C99 F.9).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
<li><cite>Whether the “underflow” (and “inexact”) floating-point
exception can be raised when a result is tiny but not inexact in an
IEC 60559 conformant implementation (C99 F.9).</cite>
<p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.
</ul>
<div class="node">
<a name="Arrays-and-pointers-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Hints-implementation">Hints implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Floating-point-implementation">Floating point implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.7 Arrays and pointers</h3>
<ul>
<li><cite>The result of converting a pointer to an integer or
vice versa (C90 6.3.4, C99 6.3.2.3).</cite>
<p>A cast from pointer to integer discards most-significant bits if the
pointer representation is larger than the integer type,
sign-extends<a rel="footnote" href="#fn-2" name="fnd-2"><sup>2</sup></a>
if the pointer representation is smaller than the integer type, otherwise
the bits are unchanged.
<!-- ??? We've always claimed that pointers were unsigned entities. -->
<!-- Shouldn't we therefore be doing zero-extension? If so, the bug -->
<!-- is in convert_to_integer, where we call type_for_size and request -->
<!-- a signed integral type. On the other hand, it might be most useful -->
<!-- for the target if we extend according to POINTERS_EXTEND_UNSIGNED. -->
<p>A cast from integer to pointer discards most-significant bits if the
pointer representation is smaller than the integer type, extends according
to the signedness of the integer type if the pointer representation
is larger than the integer type, otherwise the bits are unchanged.
<p>When casting from pointer to integer and back again, the resulting
pointer must reference the same object as the original pointer, otherwise
the behavior is undefined. That is, one may not use integer arithmetic to
avoid the undefined behavior of pointer arithmetic as proscribed in
C99 6.5.6/8.
<li><cite>The size of the result of subtracting two pointers to elements
of the same array (C90 6.3.6, C99 6.5.6).</cite>
<p>The value is as specified in the standard and the type is determined
by the ABI.
</ul>
<div class="node">
<a name="Hints-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.8 Hints</h3>
<ul>
<li><cite>The extent to which suggestions made by using the </cite><code>register</code><cite>
storage-class specifier are effective (C90 6.5.1, C99 6.7.1).</cite>
<p>The <code>register</code> specifier affects code generation only in these ways:
<ul>
<li>When used as part of the register variable extension, see
<a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>.
<li>When <samp><span class="option">-O0</span></samp> is in use, the compiler allocates distinct stack
memory for all variables that do not have the <code>register</code>
storage-class specifier; if <code>register</code> is specified, the variable
may have a shorter lifespan than the code would indicate and may never
be placed in memory.
<li>On some rare x86 targets, <code>setjmp</code> doesn't save the registers in
all circumstances. In those cases, GCC doesn't allocate any variables
in registers unless they are marked <code>register</code>.
</ul>
<li><cite>The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).</cite>
<p>GCC will not inline any functions if the <samp><span class="option">-fno-inline</span></samp> option is
used or if <samp><span class="option">-O0</span></samp> is used. Otherwise, GCC may still be unable to
inline a function for many reasons; the <samp><span class="option">-Winline</span></samp> option may be
used to determine if a function has not been inlined and why not.
</ul>
<div class="node">
<a name="Structures-unions-enumerations-and-bit-fields-implementation"></a>
<a name="Structures-unions-enumerations-and-bit_002dfields-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Qualifiers-implementation">Qualifiers implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Hints-implementation">Hints implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.9 Structures, unions, enumerations, and bit-fields</h3>
<ul>
<li><cite>A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).</cite>
<p>The relevant bytes of the representation of the object are treated as
an object of the type used for the access. See <a href="#Type_002dpunning">Type-punning</a>. This
may be a trap representation.
<li><cite>Whether a “plain” </cite><code>int</code><cite> bit-field is treated as a
</cite><code>signed int</code><cite> bit-field or as an </cite><code>unsigned int</code><cite> bit-field
(C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).</cite>
<p><a name="index-funsigned_002dbitfields-2038"></a>By default it is treated as <code>signed int</code> but this may be changed
by the <samp><span class="option">-funsigned-bitfields</span></samp> option.
<li><cite>Allowable bit-field types other than </cite><code>_Bool</code><cite>, </cite><code>signed int</code><cite>,
and </cite><code>unsigned int</code><cite> (C99 6.7.2.1).</cite>
<p>No other types are permitted in strictly conforming mode.
<!-- Would it be better to restrict the pedwarn for other types to C90 -->
<!-- mode and document the other types for C99 mode? -->
<li><cite>Whether a bit-field can straddle a storage-unit boundary (C90
6.5.2.1, C99 6.7.2.1).</cite>
<p>Determined by ABI.
<li><cite>The order of allocation of bit-fields within a unit (C90
6.5.2.1, C99 6.7.2.1).</cite>
<p>Determined by ABI.
<li><cite>The alignment of non-bit-field members of structures (C90
6.5.2.1, C99 6.7.2.1).</cite>
<p>Determined by ABI.
<li><cite>The integer type compatible with each enumerated type (C90
6.5.2.2, C99 6.7.2.2).</cite>
<p><a name="index-fshort_002denums-2039"></a>Normally, the type is <code>unsigned int</code> if there are no negative
values in the enumeration, otherwise <code>int</code>. If
<samp><span class="option">-fshort-enums</span></samp> is specified, then if there are negative values
it is the first of <code>signed char</code>, <code>short</code> and <code>int</code>
that can represent all the values, otherwise it is the first of
<code>unsigned char</code>, <code>unsigned short</code> and <code>unsigned int</code>
that can represent all the values.
<!-- On a few unusual targets with 64-bit int, this doesn't agree with -->
<!-- the code and one of the types accessed via mode attributes (which -->
<!-- are not currently considered extended integer types) may be used. -->
<!-- If these types are made extended integer types, it would still be -->
<!-- the case that -fshort-enums stops the implementation from -->
<!-- conforming to C90 on those targets. -->
<p>On some targets, <samp><span class="option">-fshort-enums</span></samp> is the default; this is
determined by the ABI.
</ul>
<div class="node">
<a name="Qualifiers-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Declarators-implementation">Declarators implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.10 Qualifiers</h3>
<ul>
<li><cite>What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).</cite>
<p>Such an object is normally accessed by pointers and used for accessing
hardware. In most expressions, it is intuitively obvious what is a read
and what is a write. For example
<pre class="smallexample"> volatile int *dst = <var>somevalue</var>;
volatile int *src = <var>someothervalue</var>;
*dst = *src;
</pre>
<p class="noindent">will cause a read of the volatile object pointed to by <var>src</var> and store the
value into the volatile object pointed to by <var>dst</var>. There is no
guarantee that these reads and writes are atomic, especially for objects
larger than <code>int</code>.
<p>However, if the volatile storage is not being modified, and the value of
the volatile storage is not used, then the situation is less obvious.
For example
<pre class="smallexample"> volatile int *src = <var>somevalue</var>;
*src;
</pre>
<p>According to the C standard, such an expression is an rvalue whose type
is the unqualified version of its original type, i.e. <code>int</code>. Whether
GCC interprets this as a read of the volatile object being pointed to or
only as a request to evaluate the expression for its side-effects depends
on this type.
<p>If it is a scalar type, or on most targets an aggregate type whose only
member object is of a scalar type, or a union type whose member objects
are of scalar types, the expression is interpreted by GCC as a read of
the volatile object; in the other cases, the expression is only evaluated
for its side-effects.
</ul>
<div class="node">
<a name="Declarators-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Statements-implementation">Statements implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Qualifiers-implementation">Qualifiers implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.11 Declarators</h3>
<ul>
<li><cite>The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).</cite>
<p>GCC is only limited by available memory.
</ul>
<div class="node">
<a name="Statements-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Declarators-implementation">Declarators implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.12 Statements</h3>
<ul>
<li><cite>The maximum number of </cite><code>case</code><cite> values in a </cite><code>switch</code><cite>
statement (C90 6.6.4.2).</cite>
<p>GCC is only limited by available memory.
</ul>
<div class="node">
<a name="Preprocessing-directives-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Library-functions-implementation">Library functions implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Statements-implementation">Statements implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.13 Preprocessing directives</h3>
<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>, for details of these aspects of
implementation-defined behavior.
<ul>
<li><cite>How sequences in both forms of header names are mapped to headers
or external source file names (C90 6.1.7, C99 6.4.7).</cite>
<li><cite>Whether the value of a character constant in a constant expression
that controls conditional inclusion matches the value of the same character
constant in the execution character set (C90 6.8.1, C99 6.10.1).</cite>
<li><cite>Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have a
negative value (C90 6.8.1, C99 6.10.1).</cite>
<li><cite>The places that are searched for an included ‘</cite><samp><span class="samp"><></span></samp><cite>’ delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 6.10.2).</cite>
<li><cite>How the named source file is searched for in an included ‘</cite><samp><span class="samp">""</span></samp><cite>’
delimited header (C90 6.8.2, C99 6.10.2).</cite>
<li><cite>The method by which preprocessing tokens (possibly resulting from
macro expansion) in a </cite><code>#include</code><cite> directive are combined into a header
name (C90 6.8.2, C99 6.10.2).</cite>
<li><cite>The nesting limit for </cite><code>#include</code><cite> processing (C90 6.8.2, C99
6.10.2).</cite>
<li><cite>Whether the ‘</cite><samp><span class="samp">#</span></samp><cite>’ operator inserts a ‘</cite><samp><span class="samp">\</span></samp><cite>’ character before
the ‘</cite><samp><span class="samp">\</span></samp><cite>’ character that begins a universal character name in a
character constant or string literal (C99 6.10.3.2).</cite>
<li><cite>The behavior on each recognized non-</cite><code>STDC #pragma</code><cite>
directive (C90 6.8.6, C99 6.10.6).</cite>
<p>See <a href="cpp.html#Pragmas">Pragmas</a>, for details of
pragmas accepted by GCC on all targets. See <a href="#Pragmas">Pragmas Accepted by GCC</a>, for details of target-specific pragmas.
<li><cite>The definitions for </cite><code>__DATE__</code><cite> and </cite><code>__TIME__</code><cite> when
respectively, the date and time of translation are not available (C90
6.8.8, C99 6.10.8).</cite>
</ul>
<div class="node">
<a name="Library-functions-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Architecture-implementation">Architecture implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.14 Library functions</h3>
<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
<ul>
<li><cite>The null pointer constant to which the macro </cite><code>NULL</code><cite> expands
(C90 7.1.6, C99 7.17).</cite>
<p>In <code><stddef.h></code>, <code>NULL</code> expands to <code>((void *)0)</code>. GCC
does not provide the other headers which define <code>NULL</code> and some
library implementations may use other definitions in those headers.
</ul>
<div class="node">
<a name="Architecture-implementation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Locale_002dspecific-behavior-implementation">Locale-specific behavior implementation</a>,
Previous: <a rel="previous" accesskey="p" href="#Library-functions-implementation">Library functions implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.15 Architecture</h3>
<ul>
<li><cite>The values or expressions assigned to the macros specified in the
headers </cite><code><float.h></code><cite>, </cite><code><limits.h></code><cite>, and </cite><code><stdint.h></code><cite>
(C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).</cite>
<p>Determined by ABI.
<li><cite>The number, order, and encoding of bytes in any object
(when not explicitly specified in this International Standard) (C99 6.2.6.1).</cite>
<p>Determined by ABI.
<li><cite>The value of the result of the </cite><code>sizeof</code><cite> operator (C90
6.3.3.4, C99 6.5.3.4).</cite>
<p>Determined by ABI.
</ul>
<div class="node">
<a name="Locale-specific-behavior-implementation"></a>
<a name="Locale_002dspecific-behavior-implementation"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Architecture-implementation">Architecture implementation</a>,
Up: <a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>
</div>
<h3 class="section">4.16 Locale-specific behavior</h3>
<p>The behavior of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="C-Extensions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Extensions">C++ Extensions</a>,
Previous: <a rel="previous" accesskey="p" href="#C-Implementation">C Implementation</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">5 Extensions to the C Language Family</h2>
<p><a name="index-extensions_002c-C-language-2040"></a><a name="index-C-language-extensions-2041"></a>
<a name="index-pedantic-2042"></a>GNU C provides several language features not found in ISO standard C.
(The <samp><span class="option">-pedantic</span></samp> option directs GCC to print a warning message if
any of these features is used.) To test for the availability of these
features in conditional compilation, check for a predefined macro
<code>__GNUC__</code>, which is always defined under GCC.
<p>These extensions are available in C and Objective-C. Most of them are
also available in C++. See <a href="#C_002b_002b-Extensions">Extensions to the C++ Language</a>, for extensions that apply <em>only</em> to C++.
<p>Some features that are in ISO C99 but not C89 or C++ are also, as
extensions, accepted by GCC in C89 mode and in C++.
<ul class="menu">
<li><a accesskey="1" href="#Statement-Exprs">Statement Exprs</a>: Putting statements and declarations inside expressions.
<li><a accesskey="2" href="#Local-Labels">Local Labels</a>: Labels local to a block.
<li><a accesskey="3" href="#Labels-as-Values">Labels as Values</a>: Getting pointers to labels, and computed gotos.
<li><a accesskey="4" href="#Nested-Functions">Nested Functions</a>: As in Algol and Pascal, lexical scoping of functions.
<li><a accesskey="5" href="#Constructing-Calls">Constructing Calls</a>: Dispatching a call to another function.
<li><a accesskey="6" href="#Typeof">Typeof</a>: <code>typeof</code>: referring to the type of an expression.
<li><a accesskey="7" href="#Conditionals">Conditionals</a>: Omitting the middle operand of a ‘<samp><span class="samp">?:</span></samp>’ expression.
<li><a accesskey="8" href="#Long-Long">Long Long</a>: Double-word integers---<code>long long int</code>.
<li><a accesskey="9" href="#Complex">Complex</a>: Data types for complex numbers.
<li><a href="#Floating-Types">Floating Types</a>: Additional Floating Types.
<li><a href="#Half_002dPrecision">Half-Precision</a>: Half-Precision Floating Point.
<li><a href="#Decimal-Float">Decimal Float</a>: Decimal Floating Types.
<li><a href="#Hex-Floats">Hex Floats</a>: Hexadecimal floating-point constants.
<li><a href="#Fixed_002dPoint">Fixed-Point</a>: Fixed-Point Types.
<li><a href="#Zero-Length">Zero Length</a>: Zero-length arrays.
<li><a href="#Variable-Length">Variable Length</a>: Arrays whose length is computed at run time.
<li><a href="#Empty-Structures">Empty Structures</a>: Structures with no members.
<li><a href="#Variadic-Macros">Variadic Macros</a>: Macros with a variable number of arguments.
<li><a href="#Escaped-Newlines">Escaped Newlines</a>: Slightly looser rules for escaped newlines.
<li><a href="#Subscripting">Subscripting</a>: Any array can be subscripted, even if not an lvalue.
<li><a href="#Pointer-Arith">Pointer Arith</a>: Arithmetic on <code>void</code>-pointers and function pointers.
<li><a href="#Initializers">Initializers</a>: Non-constant initializers.
<li><a href="#Compound-Literals">Compound Literals</a>: Compound literals give structures, unions
or arrays as values.
<li><a href="#Designated-Inits">Designated Inits</a>: Labeling elements of initializers.
<li><a href="#Cast-to-Union">Cast to Union</a>: Casting to union type from any member of the union.
<li><a href="#Case-Ranges">Case Ranges</a>: `case 1 ... 9' and such.
<li><a href="#Mixed-Declarations">Mixed Declarations</a>: Mixing declarations and code.
<li><a href="#Function-Attributes">Function Attributes</a>: Declaring that functions have no side effects,
or that they can never return.
<li><a href="#Attribute-Syntax">Attribute Syntax</a>: Formal syntax for attributes.
<li><a href="#Function-Prototypes">Function Prototypes</a>: Prototype declarations and old-style definitions.
<li><a href="#C_002b_002b-Comments">C++ Comments</a>: C++ comments are recognized.
<li><a href="#Dollar-Signs">Dollar Signs</a>: Dollar sign is allowed in identifiers.
<li><a href="#Character-Escapes">Character Escapes</a>: ‘<samp><span class="samp">\e</span></samp>’ stands for the character <ESC>.
<li><a href="#Variable-Attributes">Variable Attributes</a>: Specifying attributes of variables.
<li><a href="#Type-Attributes">Type Attributes</a>: Specifying attributes of types.
<li><a href="#Alignment">Alignment</a>: Inquiring about the alignment of a type or variable.
<li><a href="#Inline">Inline</a>: Defining inline functions (as fast as macros).
<li><a href="#Extended-Asm">Extended Asm</a>: Assembler instructions with C expressions as operands.
(With them you can define ``built-in'' functions.)
<li><a href="#Constraints">Constraints</a>: Constraints for asm operands
<li><a href="#Asm-Labels">Asm Labels</a>: Specifying the assembler name to use for a C symbol.
<li><a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>: Defining variables residing in specified registers.
<li><a href="#Alternate-Keywords">Alternate Keywords</a>: <code>__const__</code>, <code>__asm__</code>, etc., for header files.
<li><a href="#Incomplete-Enums">Incomplete Enums</a>: <code>enum foo;</code>, with details to follow.
<li><a href="#Function-Names">Function Names</a>: Printable strings which are the name of the current
function.
<li><a href="#Return-Address">Return Address</a>: Getting the return or frame address of a function.
<li><a href="#Vector-Extensions">Vector Extensions</a>: Using vector instructions through built-in functions.
<li><a href="#Offsetof">Offsetof</a>: Special syntax for implementing <code>offsetof</code>.
<li><a href="#Atomic-Builtins">Atomic Builtins</a>: Built-in functions for atomic memory access.
<li><a href="#Object-Size-Checking">Object Size Checking</a>: Built-in functions for limited buffer overflow
checking.
<li><a href="#Other-Builtins">Other Builtins</a>: Other built-in functions.
<li><a href="#Target-Builtins">Target Builtins</a>: Built-in functions specific to particular targets.
<li><a href="#Target-Format-Checks">Target Format Checks</a>: Format checks specific to particular targets.
<li><a href="#Pragmas">Pragmas</a>: Pragmas accepted by GCC.
<li><a href="#Unnamed-Fields">Unnamed Fields</a>: Unnamed struct/union fields within structs/unions.
<li><a href="#Thread_002dLocal">Thread-Local</a>: Per-thread variables.
<li><a href="#Binary-constants">Binary constants</a>: Binary constants using the ‘<samp><span class="samp">0b</span></samp>’ prefix.
</ul>
<div class="node">
<a name="Statement-Exprs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Local-Labels">Local Labels</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.1 Statements and Declarations in Expressions</h3>
<p><a name="index-statements-inside-expressions-2043"></a><a name="index-declarations-inside-expressions-2044"></a><a name="index-expressions-containing-statements-2045"></a><a name="index-macros_002c-statements-in-expressions-2046"></a>
<!-- the above section title wrapped and causes an underfull hbox.. i -->
<!-- changed it from "within" to "in". -mew 4feb93 -->
A compound statement enclosed in parentheses may appear as an expression
in GNU C. This allows you to use loops, switches, and local variables
within an expression.
<p>Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For
example:
<pre class="smallexample"> ({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })
</pre>
<p class="noindent">is a valid (though slightly more complex than necessary) expression
for the absolute value of <code>foo ()</code>.
<p>The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type <code>void</code>, and thus
effectively no value.)
<p>This feature is especially useful in making macro definitions “safe” (so
that they evaluate each operand exactly once). For example, the
“maximum” function is commonly defined as a macro in standard C as
follows:
<pre class="smallexample"> #define max(a,b) ((a) > (b) ? (a) : (b))
</pre>
<p class="noindent"><a name="index-side-effects_002c-macro-argument-2047"></a>But this definition computes either <var>a</var> or <var>b</var> twice, with bad
results if the operand has side effects. In GNU C, if you know the
type of the operands (here taken as <code>int</code>), you can define
the macro safely as follows:
<pre class="smallexample"> #define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })
</pre>
<p>Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or
the initial value of a static variable.
<p>If you don't know the type of the operand, you can still do this, but you
must use <code>typeof</code> (see <a href="#Typeof">Typeof</a>).
<p>In G++, the result value of a statement expression undergoes array and
function pointer decay, and is returned by value to the enclosing
expression. For instance, if <code>A</code> is a class, then
<pre class="smallexample"> A a;
({a;}).Foo ()
</pre>
<p class="noindent">will construct a temporary <code>A</code> object to hold the result of the
statement expression, and that will be used to invoke <code>Foo</code>.
Therefore the <code>this</code> pointer observed by <code>Foo</code> will not be the
address of <code>a</code>.
<p>Any temporaries created within a statement within a statement expression
will be destroyed at the statement's end. This makes statement
expressions inside macros slightly different from function calls. In
the latter case temporaries introduced during argument evaluation will
be destroyed at the end of the statement that includes the function
call. In the statement expression case they will be destroyed during
the statement expression. For instance,
<pre class="smallexample"> #define macro(a) ({__typeof__(a) b = (a); b + 3; })
template<typename T> T function(T a) { T b = a; return b + 3; }
void foo ()
{
macro (X ());
function (X ());
}
</pre>
<p class="noindent">will have different places where temporaries are destroyed. For the
<code>macro</code> case, the temporary <code>X</code> will be destroyed just after
the initialization of <code>b</code>. In the <code>function</code> case that
temporary will be destroyed when the function returns.
<p>These considerations mean that it is probably a bad idea to use
statement-expressions of this form in header files that are designed to
work with C++. (Note that some versions of the GNU C Library contained
header files using statement-expression that lead to precisely this
bug.)
<p>Jumping into a statement expression with <code>goto</code> or using a
<code>switch</code> statement outside the statement expression with a
<code>case</code> or <code>default</code> label inside the statement expression is
not permitted. Jumping into a statement expression with a computed
<code>goto</code> (see <a href="#Labels-as-Values">Labels as Values</a>) yields undefined behavior.
Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been
evaluated except where the language definition requires certain
subexpressions to be evaluated before or after the statement
expression. In any case, as with a function call the evaluation of a
statement expression is not interleaved with the evaluation of other
parts of the containing expression. For example,
<pre class="smallexample"> foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
</pre>
<p class="noindent">will call <code>foo</code> and <code>bar1</code> and will not call <code>baz</code> but
may or may not call <code>bar2</code>. If <code>bar2</code> is called, it will be
called after <code>foo</code> and before <code>bar1</code>
<div class="node">
<a name="Local-Labels"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Labels-as-Values">Labels as Values</a>,
Previous: <a rel="previous" accesskey="p" href="#Statement-Exprs">Statement Exprs</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.2 Locally Declared Labels</h3>
<p><a name="index-local-labels-2048"></a><a name="index-macros_002c-local-labels-2049"></a>
GCC allows you to declare <dfn>local labels</dfn> in any nested block
scope. A local label is just like an ordinary label, but you can
only reference it (with a <code>goto</code> statement, or by taking its
address) within the block in which it was declared.
<p>A local label declaration looks like this:
<pre class="smallexample"> __label__ <var>label</var>;
</pre>
<p class="noindent">or
<pre class="smallexample"> __label__ <var>label1</var>, <var>label2</var>, /* <span class="roman">...</span> */;
</pre>
<p>Local label declarations must come at the beginning of the block,
before any ordinary declarations or statements.
<p>The label declaration defines the label <em>name</em>, but does not define
the label itself. You must do this in the usual way, with
<var>label</var><code>:</code>, within the statements of the statement expression.
<p>The local label feature is useful for complex macros. If a macro
contains nested loops, a <code>goto</code> can be useful for breaking out of
them. However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one
function, the label will be multiply defined in that function. A
local label avoids this problem. For example:
<pre class="smallexample"> #define SEARCH(value, array, target) \
do { \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ (value) = i; goto found; } \
(value) = -1; \
found:; \
} while (0)
</pre>
<p>This could also be written using a statement-expression:
<pre class="smallexample"> #define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \
value = -1; \
found: \
value; \
})
</pre>
<p>Local label declarations also make the labels they declare visible to
nested functions, if there are any. See <a href="#Nested-Functions">Nested Functions</a>, for details.
<div class="node">
<a name="Labels-as-Values"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Nested-Functions">Nested Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Local-Labels">Local Labels</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.3 Labels as Values</h3>
<p><a name="index-labels-as-values-2050"></a><a name="index-computed-gotos-2051"></a><a name="index-goto-with-computed-label-2052"></a><a name="index-address-of-a-label-2053"></a>
You can get the address of a label defined in the current function
(or a containing function) with the unary operator ‘<samp><span class="samp">&&</span></samp>’. The
value has type <code>void *</code>. This value is a constant and can be used
wherever a constant of that type is valid. For example:
<pre class="smallexample"> void *ptr;
/* <span class="roman">...</span> */
ptr = &&foo;
</pre>
<p>To use these values, you need to be able to jump to one. This is done
with the computed goto statement<a rel="footnote" href="#fn-3" name="fnd-3"><sup>3</sup></a>, <code>goto *</code><var>exp</var><code>;</code>. For example,
<pre class="smallexample"> goto *ptr;
</pre>
<p class="noindent">Any expression of type <code>void *</code> is allowed.
<p>One way of using these constants is in initializing a static array that
will serve as a jump table:
<pre class="smallexample"> static void *array[] = { &&foo, &&bar, &&hack };
</pre>
<p>Then you can select a label with indexing, like this:
<pre class="smallexample"> goto *array[i];
</pre>
<p class="noindent">Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.
<p>Such an array of label values serves a purpose much like that of the
<code>switch</code> statement. The <code>switch</code> statement is cleaner, so
use that rather than an array unless the problem does not fit a
<code>switch</code> statement very well.
<p>Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.
<p>You may not use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.
<p>An alternate way to write the above example is
<pre class="smallexample"> static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };
goto *(&&foo + array[i]);
</pre>
<p class="noindent">This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.
<p>The <code>&&foo</code> expressions for the same label might have different values
if the containing function is inlined or cloned. If a program relies on
them being always the same, <code>__attribute__((__noinline__))</code> should
be used to prevent inlining. If <code>&&foo</code> is used
in a static variable initializer, inlining is forbidden.
<div class="node">
<a name="Nested-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constructing-Calls">Constructing Calls</a>,
Previous: <a rel="previous" accesskey="p" href="#Labels-as-Values">Labels as Values</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.4 Nested Functions</h3>
<p><a name="index-nested-functions-2054"></a><a name="index-downward-funargs-2055"></a><a name="index-thunks-2056"></a>
A <dfn>nested function</dfn> is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested function's
name is local to the block where it is defined. For example, here we
define a nested function named <code>square</code>, and call it twice:
<pre class="smallexample"> foo (double a, double b)
{
double square (double z) { return z * z; }
return square (a) + square (b);
}
</pre>
<p>The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called <dfn>lexical scoping</dfn>. For example, here we show a nested
function which uses an inherited variable named <code>offset</code>:
<pre class="smallexample"> bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }
int i;
/* <span class="roman">...</span> */
for (i = 0; i < size; i++)
/* <span class="roman">...</span> */ access (array, i) /* <span class="roman">...</span> */
}
</pre>
<p>Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, mixed
with the other declarations and statements in the block.
<p>It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:
<pre class="smallexample"> hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }
intermediate (store, size);
}
</pre>
<p>Here, the function <code>intermediate</code> receives the address of
<code>store</code> as an argument. If <code>intermediate</code> calls <code>store</code>,
the arguments given to <code>store</code> are used to store into <code>array</code>.
But this technique works only so long as the containing function
(<code>hack</code>, in this example) does not exit.
<p>If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try
to call it after a containing scope level has exited, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk. If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.
<p>GCC implements taking the address of a nested function using a technique
called <dfn>trampolines</dfn>. A paper describing them is available as
<p class="noindent"><a href="http://people.debian.org/~aaronl/Usenix88-lexic.pdf">http://people.debian.org/~aaronl/Usenix88-lexic.pdf</a>.
<p>A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see <a href="#Local-Labels">Local Labels</a>). Such a jump returns instantly to the
containing function, exiting the nested function which did the
<code>goto</code> and any intermediate functions as well. Here is an example:
<pre class="smallexample"> bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
int i;
/* <span class="roman">...</span> */
for (i = 0; i < size; i++)
/* <span class="roman">...</span> */ access (array, i) /* <span class="roman">...</span> */
/* <span class="roman">...</span> */
return 0;
/* <span class="roman">Control comes here from </span><code>access</code><span class="roman">
if it detects an error.</span> */
failure:
return -1;
}
</pre>
<p>A nested function always has no linkage. Declaring one with
<code>extern</code> or <code>static</code> is erroneous. If you need to declare the nested function
before its definition, use <code>auto</code> (which is otherwise meaningless
for function declarations).
<pre class="smallexample"> bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
/* <span class="roman">...</span> */
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
/* <span class="roman">...</span> */
}
</pre>
<div class="node">
<a name="Constructing-Calls"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Typeof">Typeof</a>,
Previous: <a rel="previous" accesskey="p" href="#Nested-Functions">Nested Functions</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.5 Constructing Function Calls</h3>
<p><a name="index-constructing-calls-2057"></a><a name="index-forwarding-calls-2058"></a>
Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.
<p>You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).
<p>However, these built-in functions may interact badly with some
sophisticated features or other extensions of the language. It
is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.
<div class="defun">
— Built-in Function: void * <b>__builtin_apply_args</b> ()<var><a name="index-g_t_005f_005fbuiltin_005fapply_005fargs-2059"></a></var><br>
<blockquote><p>This built-in function returns a pointer to data
describing how to perform a call with the same arguments as were passed
to the current function.
<p>The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack. Then it returns the
address of that block.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void * <b>__builtin_apply</b> (<var>void </var>(<var>*function</var>)()<var>, void *arguments, size_t size</var>)<var><a name="index-g_t_005f_005fbuiltin_005fapply-2060"></a></var><br>
<blockquote><p>This built-in function invokes <var>function</var>
with a copy of the parameters described by <var>arguments</var>
and <var>size</var>.
<p>The value of <var>arguments</var> should be the value returned by
<code>__builtin_apply_args</code>. The argument <var>size</var> specifies the size
of the stack argument data, in bytes.
<p>This function returns a pointer to data describing
how to return whatever value was returned by <var>function</var>. The data
is saved in a block of memory allocated on the stack.
<p>It is not always simple to compute the proper value for <var>size</var>. The
value is used by <code>__builtin_apply</code> to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void <b>__builtin_return</b> (<var>void *result</var>)<var><a name="index-g_t_005f_005fbuiltin_005freturn-2061"></a></var><br>
<blockquote><p>This built-in function returns the value described by <var>result</var> from
the containing function. You should specify, for <var>result</var>, a value
returned by <code>__builtin_apply</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: __builtin_va_arg_pack <b>(</b>)<var><a name="index-g_t_0028-2062"></a></var><br>
<blockquote><p>This built-in function represents all anonymous arguments of an inline
function. It can be used only in inline functions which will be always
inlined, never compiled as a separate function, such as those using
<code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions.
It must be only passed as last argument to some other function
with variable arguments. This is useful for writing small wrapper
inlines for variable argument functions, when using preprocessor
macros is undesirable. For example:
<pre class="smallexample"> extern int myprintf (FILE *f, const char *format, ...);
extern inline __attribute__ ((__gnu_inline__)) int
myprintf (FILE *f, const char *format, ...)
{
int r = fprintf (f, "myprintf: ");
if (r < 0)
return r;
int s = fprintf (f, format, __builtin_va_arg_pack ());
if (s < 0)
return s;
return r + s;
}
</pre>
</blockquote></div>
<div class="defun">
— Built-in Function: __builtin_va_arg_pack_len <b>(</b>)<var><a name="index-g_t_0028-2063"></a></var><br>
<blockquote><p>This built-in function returns the number of anonymous arguments of
an inline function. It can be used only in inline functions which
will be always inlined, never compiled as a separate function, such
as those using <code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions.
For example following will do link or runtime checking of open
arguments for optimized code:
<pre class="smallexample"> #ifdef __OPTIMIZE__
extern inline __attribute__((__gnu_inline__)) int
myopen (const char *path, int oflag, ...)
{
if (__builtin_va_arg_pack_len () > 1)
warn_open_too_many_arguments ();
if (__builtin_constant_p (oflag))
{
if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
{
warn_open_missing_mode ();
return __open_2 (path, oflag);
}
return open (path, oflag, __builtin_va_arg_pack ());
}
if (__builtin_va_arg_pack_len () < 1)
return __open_2 (path, oflag);
return open (path, oflag, __builtin_va_arg_pack ());
}
#endif
</pre>
</blockquote></div>
<div class="node">
<a name="Typeof"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Conditionals">Conditionals</a>,
Previous: <a rel="previous" accesskey="p" href="#Constructing-Calls">Constructing Calls</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.6 Referring to a Type with <code>typeof</code></h3>
<p><a name="index-typeof-2064"></a><a name="index-sizeof-2065"></a><a name="index-macros_002c-types-of-arguments-2066"></a>
Another way to refer to the type of an expression is with <code>typeof</code>.
The syntax of using of this keyword looks like <code>sizeof</code>, but the
construct acts semantically like a type name defined with <code>typedef</code>.
<p>There are two ways of writing the argument to <code>typeof</code>: with an
expression or with a type. Here is an example with an expression:
<pre class="smallexample"> typeof (x[0](1))
</pre>
<p class="noindent">This assumes that <code>x</code> is an array of pointers to functions;
the type described is that of the values of the functions.
<p>Here is an example with a typename as the argument:
<pre class="smallexample"> typeof (int *)
</pre>
<p class="noindent">Here the type described is that of pointers to <code>int</code>.
<p>If you are writing a header file that must work when included in ISO C
programs, write <code>__typeof__</code> instead of <code>typeof</code>.
See <a href="#Alternate-Keywords">Alternate Keywords</a>.
<p>A <code>typeof</code>-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or inside
of <code>sizeof</code> or <code>typeof</code>.
<p><code>typeof</code> is often useful in conjunction with the
statements-within-expressions feature. Here is how the two together can
be used to define a safe “maximum” macro that operates on any
arithmetic type and evaluates each of its arguments exactly once:
<pre class="smallexample"> #define max(a,b) \
({ typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; })
</pre>
<p><a name="index-underscores-in-variables-in-macros-2067"></a><a name="index-g_t_0040samp_007b_005f_007d-in-variables-in-macros-2068"></a><a name="index-local-variables-in-macros-2069"></a><a name="index-variables_002c-local_002c-in-macros-2070"></a><a name="index-macros_002c-local-variables-in-2071"></a>
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for <code>a</code> and <code>b</code>. Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.
<p class="noindent">Some more examples of the use of <code>typeof</code>:
<ul>
<li>This declares <code>y</code> with the type of what <code>x</code> points to.
<pre class="smallexample"> typeof (*x) y;
</pre>
<li>This declares <code>y</code> as an array of such values.
<pre class="smallexample"> typeof (*x) y[4];
</pre>
<li>This declares <code>y</code> as an array of pointers to characters:
<pre class="smallexample"> typeof (typeof (char *)[4]) y;
</pre>
<p class="noindent">It is equivalent to the following traditional C declaration:
<pre class="smallexample"> char *y[4];
</pre>
<p>To see the meaning of the declaration using <code>typeof</code>, and why it
might be a useful way to write, rewrite it with these macros:
<pre class="smallexample"> #define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
</pre>
<p class="noindent">Now the declaration can be rewritten this way:
<pre class="smallexample"> array (pointer (char), 4) y;
</pre>
<p class="noindent">Thus, <code>array (pointer (char), 4)</code> is the type of arrays of 4
pointers to <code>char</code>.
</ul>
<p><em>Compatibility Note:</em> In addition to <code>typeof</code>, GCC 2 supported
a more limited extension which permitted one to write
<pre class="smallexample"> typedef <var>T</var> = <var>expr</var>;
</pre>
<p class="noindent">with the effect of declaring <var>T</var> to have the type of the expression
<var>expr</var>. This extension does not work with GCC 3 (versions between
3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
relies on it should be rewritten to use <code>typeof</code>:
<pre class="smallexample"> typedef typeof(<var>expr</var>) <var>T</var>;
</pre>
<p class="noindent">This will work with all versions of GCC.
<div class="node">
<a name="Conditionals"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Long-Long">Long Long</a>,
Previous: <a rel="previous" accesskey="p" href="#Typeof">Typeof</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.7 Conditionals with Omitted Operands</h3>
<p><a name="index-conditional-expressions_002c-extensions-2072"></a><a name="index-omitted-middle_002doperands-2073"></a><a name="index-middle_002doperands_002c-omitted-2074"></a><a name="index-extensions_002c-_0040code_007b_003f_003a_007d-2075"></a><a name="index-g_t_0040code_007b_003f_003a_007d-extensions-2076"></a>
The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.
<p>Therefore, the expression
<pre class="smallexample"> x ? : y
</pre>
<p class="noindent">has the value of <code>x</code> if that is nonzero; otherwise, the value of
<code>y</code>.
<p>This example is perfectly equivalent to
<pre class="smallexample"> x ? x : y
</pre>
<p><a name="index-side-effect-in-_003f_003a-2077"></a><a name="index-g_t_003f_003a-side-effect-2078"></a>In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.
<div class="node">
<a name="Long-Long"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Complex">Complex</a>,
Previous: <a rel="previous" accesskey="p" href="#Conditionals">Conditionals</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.8 Double-Word Integers</h3>
<p><a name="index-g_t_0040code_007blong-long_007d-data-types-2079"></a><a name="index-double_002dword-arithmetic-2080"></a><a name="index-multiprecision-arithmetic-2081"></a><a name="index-g_t_0040code_007bLL_007d-integer-suffix-2082"></a><a name="index-g_t_0040code_007bULL_007d-integer-suffix-2083"></a>
ISO C99 supports data types for integers that are at least 64 bits wide,
and as an extension GCC supports them in C89 mode and in C++.
Simply write <code>long long int</code> for a signed integer, or
<code>unsigned long long int</code> for an unsigned integer. To make an
integer constant of type <code>long long int</code>, add the suffix ‘<samp><span class="samp">LL</span></samp>’
to the integer. To make an integer constant of type <code>unsigned long
long int</code>, add the suffix ‘<samp><span class="samp">ULL</span></samp>’ to the integer.
<p>You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines. Multiplication is open-coded
if the machine supports fullword-to-doubleword a widening multiply
instruction. Division and shifts are open-coded only on machines that
provide special support. The operations that are not open-coded use
special library routines that come with GCC.
<p>There may be pitfalls when you use <code>long long</code> types for function
arguments, unless you declare function prototypes. If a function
expects type <code>int</code> for its argument, and you pass a value of type
<code>long long int</code>, confusion will result because the caller and the
subroutine will disagree about the number of bytes for the argument.
Likewise, if the function expects <code>long long int</code> and you pass
<code>int</code>. The best way to avoid such problems is to use prototypes.
<div class="node">
<a name="Complex"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Floating-Types">Floating Types</a>,
Previous: <a rel="previous" accesskey="p" href="#Long-Long">Long Long</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.9 Complex Numbers</h3>
<p><a name="index-complex-numbers-2084"></a><a name="index-g_t_0040code_007b_005fComplex_007d-keyword-2085"></a><a name="index-g_t_0040code_007b_005f_005fcomplex_005f_005f_007d-keyword-2086"></a>
ISO C99 supports complex floating data types, and as an extension GCC
supports them in C89 mode and in C++, and supports complex integer data
types which are not part of ISO C99. You can declare complex types
using the keyword <code>_Complex</code>. As an extension, the older GNU
keyword <code>__complex__</code> is also supported.
<p>For example, ‘<samp><span class="samp">_Complex double x;</span></samp>’ declares <code>x</code> as a
variable whose real part and imaginary part are both of type
<code>double</code>. ‘<samp><span class="samp">_Complex short int y;</span></samp>’ declares <code>y</code> to
have real and imaginary parts of type <code>short int</code>; this is not
likely to be useful, but it shows that the set of complex types is
complete.
<p>To write a constant with a complex data type, use the suffix ‘<samp><span class="samp">i</span></samp>’ or
‘<samp><span class="samp">j</span></samp>’ (either one; they are equivalent). For example, <code>2.5fi</code>
has type <code>_Complex float</code> and <code>3i</code> has type
<code>_Complex int</code>. Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant. This is a GNU extension; if you have an ISO C99
conforming C library (such as GNU libc), and want to construct complex
constants of floating type, you should include <code><complex.h></code> and
use the macros <code>I</code> or <code>_Complex_I</code> instead.
<p><a name="index-g_t_0040code_007b_005f_005freal_005f_005f_007d-keyword-2087"></a><a name="index-g_t_0040code_007b_005f_005fimag_005f_005f_007d-keyword-2088"></a>To extract the real part of a complex-valued expression <var>exp</var>, write
<code>__real__ </code><var>exp</var>. Likewise, use <code>__imag__</code> to
extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>crealf</code>,
<code>creal</code>, <code>creall</code>, <code>cimagf</code>, <code>cimag</code> and
<code>cimagl</code>, declared in <code><complex.h></code> and also provided as
built-in functions by GCC.
<p><a name="index-complex-conjugation-2089"></a>The operator ‘<samp><span class="samp">~</span></samp>’ performs complex conjugation when used on a value
with a complex type. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>conjf</code>,
<code>conj</code> and <code>conjl</code>, declared in <code><complex.h></code> and also
provided as built-in functions by GCC.
<p>GCC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice-versa). Only the DWARF2
debug info format can represent this, so use of DWARF2 is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type.
If the variable's actual name is <code>foo</code>, the two fictitious
variables are named <code>foo$real</code> and <code>foo$imag</code>. You can
examine and set these two fictitious variables with your debugger.
<div class="node">
<a name="Floating-Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Half_002dPrecision">Half-Precision</a>,
Previous: <a rel="previous" accesskey="p" href="#Complex">Complex</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.10 Additional Floating Types</h3>
<p><a name="index-additional-floating-types-2090"></a><a name="index-g_t_0040code_007b_005f_005ffloat80_007d-data-type-2091"></a><a name="index-g_t_0040code_007b_005f_005ffloat128_007d-data-type-2092"></a><a name="index-g_t_0040code_007bw_007d-floating-point-suffix-2093"></a><a name="index-g_t_0040code_007bq_007d-floating-point-suffix-2094"></a><a name="index-g_t_0040code_007bW_007d-floating-point-suffix-2095"></a><a name="index-g_t_0040code_007bQ_007d-floating-point-suffix-2096"></a>
As an extension, the GNU C compiler supports additional floating
types, <code>__float80</code> and <code>__float128</code> to support 80bit
(<code>XFmode</code>) and 128 bit (<code>TFmode</code>) floating types.
Support for additional types includes the arithmetic operators:
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix ‘<samp><span class="samp">w</span></samp>’ or ‘<samp><span class="samp">W</span></samp>’
in a literal constant of type <code>__float80</code> and ‘<samp><span class="samp">q</span></samp>’ or ‘<samp><span class="samp">Q</span></samp>’
for <code>_float128</code>. You can declare complex types using the
corresponding internal complex type, <code>XCmode</code> for <code>__float80</code>
type and <code>TCmode</code> for <code>__float128</code> type:
<pre class="smallexample"> typedef _Complex float __attribute__((mode(TC))) _Complex128;
typedef _Complex float __attribute__((mode(XC))) _Complex80;
</pre>
<p>Not all targets support additional floating point types. <code>__float80</code>
and <code>__float128</code> types are supported on i386, x86_64 and ia64 targets.
<div class="node">
<a name="Half-Precision"></a>
<a name="Half_002dPrecision"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Decimal-Float">Decimal Float</a>,
Previous: <a rel="previous" accesskey="p" href="#Floating-Types">Floating Types</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.11 Half-Precision Floating Point</h3>
<p><a name="index-half_002dprecision-floating-point-2097"></a><a name="index-g_t_0040code_007b_005f_005ffp16_007d-data-type-2098"></a>
On ARM targets, GCC supports half-precision (16-bit) floating point via
the <code>__fp16</code> type. You must enable this type explicitly
with the <samp><span class="option">-mfp16-format</span></samp> command-line option in order to use it.
<p>ARM supports two incompatible representations for half-precision
floating-point values. You must choose one of the representations and
use it consistently in your program.
<p>Specifying <samp><span class="option">-mfp16-format=ieee</span></samp> selects the IEEE 754-2008 format.
This format can represent normalized values in the range of 2^-14 to 65504.
There are 11 bits of significand precision, approximately 3
decimal digits.
<p>Specifying <samp><span class="option">-mfp16-format=alternative</span></samp> selects the ARM
alternative format. This representation is similar to the IEEE
format, but does not support infinities or NaNs. Instead, the range
of exponents is extended, so that this format can represent normalized
values in the range of 2^-14 to 131008.
<p>The <code>__fp16</code> type is a storage format only. For purposes
of arithmetic and other operations, <code>__fp16</code> values in C or C++
expressions are automatically promoted to <code>float</code>. In addition,
you cannot declare a function with a return value or parameters
of type <code>__fp16</code>.
<p>Note that conversions from <code>double</code> to <code>__fp16</code>
involve an intermediate conversion to <code>float</code>. Because
of rounding, this can sometimes produce a different result than a
direct conversion.
<p>ARM provides hardware support for conversions between
<code>__fp16</code> and <code>float</code> values
as an extension to VFP and NEON (Advanced SIMD). GCC generates
code using these hardware instructions if you compile with
options to select an FPU that provides them;
for example, <samp><span class="option">-mfpu=neon-fp16 -mfloat-abi=softfp</span></samp>,
in addition to the <samp><span class="option">-mfp16-format</span></samp> option to select
a half-precision format.
<p>Language-level support for the <code>__fp16</code> data type is
independent of whether GCC generates code using hardware floating-point
instructions. In cases where hardware support is not specified, GCC
implements conversions between <code>__fp16</code> and <code>float</code> values
as library calls.
<div class="node">
<a name="Decimal-Float"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Hex-Floats">Hex Floats</a>,
Previous: <a rel="previous" accesskey="p" href="#Half_002dPrecision">Half-Precision</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.12 Decimal Floating Types</h3>
<p><a name="index-decimal-floating-types-2099"></a><a name="index-g_t_0040code_007b_005fDecimal32_007d-data-type-2100"></a><a name="index-g_t_0040code_007b_005fDecimal64_007d-data-type-2101"></a><a name="index-g_t_0040code_007b_005fDecimal128_007d-data-type-2102"></a><a name="index-g_t_0040code_007bdf_007d-integer-suffix-2103"></a><a name="index-g_t_0040code_007bdd_007d-integer-suffix-2104"></a><a name="index-g_t_0040code_007bdl_007d-integer-suffix-2105"></a><a name="index-g_t_0040code_007bDF_007d-integer-suffix-2106"></a><a name="index-g_t_0040code_007bDD_007d-integer-suffix-2107"></a><a name="index-g_t_0040code_007bDL_007d-integer-suffix-2108"></a>
As an extension, the GNU C compiler supports decimal floating types as
defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
floating types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support decimal floating types.
<p>The decimal floating types are <code>_Decimal32</code>, <code>_Decimal64</code>, and
<code>_Decimal128</code>. They use a radix of ten, unlike the floating types
<code>float</code>, <code>double</code>, and <code>long double</code> whose radix is not
specified by the C standard but is usually two.
<p>Support for decimal floating types includes the arithmetic operators
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types. Use a suffix ‘<samp><span class="samp">df</span></samp>’ or
‘<samp><span class="samp">DF</span></samp>’ in a literal constant of type <code>_Decimal32</code>, ‘<samp><span class="samp">dd</span></samp>’
or ‘<samp><span class="samp">DD</span></samp>’ for <code>_Decimal64</code>, and ‘<samp><span class="samp">dl</span></samp>’ or ‘<samp><span class="samp">DL</span></samp>’ for
<code>_Decimal128</code>.
<p>GCC support of decimal float as specified by the draft technical report
is incomplete:
<ul>
<li>Pragma <code>FLOAT_CONST_DECIMAL64</code> is not supported, nor is the ‘<samp><span class="samp">d</span></samp>’
suffix for literal constants of type <code>double</code>.
<li>When the value of a decimal floating type cannot be represented in the
integer type to which it is being converted, the result is undefined
rather than the result value specified by the draft technical report.
<li>GCC does not provide the C library functionality associated with
<samp><span class="file">math.h</span></samp>, <samp><span class="file">fenv.h</span></samp>, <samp><span class="file">stdio.h</span></samp>, <samp><span class="file">stdlib.h</span></samp>, and
<samp><span class="file">wchar.h</span></samp>, which must come from a separate C library implementation.
Because of this the GNU C compiler does not define macro
<code>__STDC_DEC_FP__</code> to indicate that the implementation conforms to
the technical report.
</ul>
<p>Types <code>_Decimal32</code>, <code>_Decimal64</code>, and <code>_Decimal128</code>
are supported by the DWARF2 debug information format.
<div class="node">
<a name="Hex-Floats"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Fixed_002dPoint">Fixed-Point</a>,
Previous: <a rel="previous" accesskey="p" href="#Decimal-Float">Decimal Float</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.13 Hex Floats</h3>
<p><a name="index-hex-floats-2109"></a>
ISO C99 supports floating-point numbers written not only in the usual
decimal notation, such as <code>1.55e1</code>, but also numbers such as
<code>0x1.fp3</code> written in hexadecimal format. As a GNU extension, GCC
supports this in C89 mode (except in some cases when strictly
conforming) and in C++. In that format the
‘<samp><span class="samp">0x</span></samp>’ hex introducer and the ‘<samp><span class="samp">p</span></samp>’ or ‘<samp><span class="samp">P</span></samp>’ exponent field are
mandatory. The exponent is a decimal number that indicates the power of
2 by which the significant part will be multiplied. Thus ‘<samp><span class="samp">0x1.f</span></samp>’ is
1 15/16,
‘<samp><span class="samp">p3</span></samp>’ multiplies it by 8, and the value of <code>0x1.fp3</code>
is the same as <code>1.55e1</code>.
<p>Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation. Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., <code>0x1.f</code>. This
could mean <code>1.0f</code> or <code>1.9375</code> since ‘<samp><span class="samp">f</span></samp>’ is also the
extension for floating-point constants of type <code>float</code>.
<div class="node">
<a name="Fixed-Point"></a>
<a name="Fixed_002dPoint"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Zero-Length">Zero Length</a>,
Previous: <a rel="previous" accesskey="p" href="#Hex-Floats">Hex Floats</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.14 Fixed-Point Types</h3>
<p><a name="index-fixed_002dpoint-types-2110"></a><a name="index-g_t_0040code_007b_005fFract_007d-data-type-2111"></a><a name="index-g_t_0040code_007b_005fAccum_007d-data-type-2112"></a><a name="index-g_t_0040code_007b_005fSat_007d-data-type-2113"></a><a name="index-g_t_0040code_007bhr_007d-fixed_002dsuffix-2114"></a><a name="index-g_t_0040code_007br_007d-fixed_002dsuffix-2115"></a><a name="index-g_t_0040code_007blr_007d-fixed_002dsuffix-2116"></a><a name="index-g_t_0040code_007bllr_007d-fixed_002dsuffix-2117"></a><a name="index-g_t_0040code_007buhr_007d-fixed_002dsuffix-2118"></a><a name="index-g_t_0040code_007bur_007d-fixed_002dsuffix-2119"></a><a name="index-g_t_0040code_007bulr_007d-fixed_002dsuffix-2120"></a><a name="index-g_t_0040code_007bullr_007d-fixed_002dsuffix-2121"></a><a name="index-g_t_0040code_007bhk_007d-fixed_002dsuffix-2122"></a><a name="index-g_t_0040code_007bk_007d-fixed_002dsuffix-2123"></a><a name="index-g_t_0040code_007blk_007d-fixed_002dsuffix-2124"></a><a name="index-g_t_0040code_007bllk_007d-fixed_002dsuffix-2125"></a><a name="index-g_t_0040code_007buhk_007d-fixed_002dsuffix-2126"></a><a name="index-g_t_0040code_007buk_007d-fixed_002dsuffix-2127"></a><a name="index-g_t_0040code_007bulk_007d-fixed_002dsuffix-2128"></a><a name="index-g_t_0040code_007bullk_007d-fixed_002dsuffix-2129"></a><a name="index-g_t_0040code_007bHR_007d-fixed_002dsuffix-2130"></a><a name="index-g_t_0040code_007bR_007d-fixed_002dsuffix-2131"></a><a name="index-g_t_0040code_007bLR_007d-fixed_002dsuffix-2132"></a><a name="index-g_t_0040code_007bLLR_007d-fixed_002dsuffix-2133"></a><a name="index-g_t_0040code_007bUHR_007d-fixed_002dsuffix-2134"></a><a name="index-g_t_0040code_007bUR_007d-fixed_002dsuffix-2135"></a><a name="index-g_t_0040code_007bULR_007d-fixed_002dsuffix-2136"></a><a name="index-g_t_0040code_007bULLR_007d-fixed_002dsuffix-2137"></a><a name="index-g_t_0040code_007bHK_007d-fixed_002dsuffix-2138"></a><a name="index-g_t_0040code_007bK_007d-fixed_002dsuffix-2139"></a><a name="index-g_t_0040code_007bLK_007d-fixed_002dsuffix-2140"></a><a name="index-g_t_0040code_007bLLK_007d-fixed_002dsuffix-2141"></a><a name="index-g_t_0040code_007bUHK_007d-fixed_002dsuffix-2142"></a><a name="index-g_t_0040code_007bUK_007d-fixed_002dsuffix-2143"></a><a name="index-g_t_0040code_007bULK_007d-fixed_002dsuffix-2144"></a><a name="index-g_t_0040code_007bULLK_007d-fixed_002dsuffix-2145"></a>
As an extension, the GNU C compiler supports fixed-point types as
defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
types in GCC will evolve as the draft technical report changes.
Calling conventions for any target might also change. Not all targets
support fixed-point types.
<p>The fixed-point types are
<code>short _Fract</code>,
<code>_Fract</code>,
<code>long _Fract</code>,
<code>long long _Fract</code>,
<code>unsigned short _Fract</code>,
<code>unsigned _Fract</code>,
<code>unsigned long _Fract</code>,
<code>unsigned long long _Fract</code>,
<code>_Sat short _Fract</code>,
<code>_Sat _Fract</code>,
<code>_Sat long _Fract</code>,
<code>_Sat long long _Fract</code>,
<code>_Sat unsigned short _Fract</code>,
<code>_Sat unsigned _Fract</code>,
<code>_Sat unsigned long _Fract</code>,
<code>_Sat unsigned long long _Fract</code>,
<code>short _Accum</code>,
<code>_Accum</code>,
<code>long _Accum</code>,
<code>long long _Accum</code>,
<code>unsigned short _Accum</code>,
<code>unsigned _Accum</code>,
<code>unsigned long _Accum</code>,
<code>unsigned long long _Accum</code>,
<code>_Sat short _Accum</code>,
<code>_Sat _Accum</code>,
<code>_Sat long _Accum</code>,
<code>_Sat long long _Accum</code>,
<code>_Sat unsigned short _Accum</code>,
<code>_Sat unsigned _Accum</code>,
<code>_Sat unsigned long _Accum</code>,
<code>_Sat unsigned long long _Accum</code>.
<p>Fixed-point data values contain fractional and optional integral parts.
The format of fixed-point data varies and depends on the target machine.
<p>Support for fixed-point types includes:
<ul>
<li>prefix and postfix increment and decrement operators (<code>++</code>, <code>--</code>)
<li>unary arithmetic operators (<code>+</code>, <code>-</code>, <code>!</code>)
<li>binary arithmetic operators (<code>+</code>, <code>-</code>, <code>*</code>, <code>/</code>)
<li>binary shift operators (<code><<</code>, <code>>></code>)
<li>relational operators (<code><</code>, <code><=</code>, <code>>=</code>, <code>></code>)
<li>equality operators (<code>==</code>, <code>!=</code>)
<li>assignment operators (<code>+=</code>, <code>-=</code>, <code>*=</code>, <code>/=</code>,
<code><<=</code>, <code>>>=</code>)
<li>conversions to and from integer, floating-point, or fixed-point types
</ul>
<p>Use a suffix in a fixed-point literal constant:
<ul>
<li>‘<samp><span class="samp">hr</span></samp>’ or ‘<samp><span class="samp">HR</span></samp>’ for <code>short _Fract</code> and
<code>_Sat short _Fract</code>
<li>‘<samp><span class="samp">r</span></samp>’ or ‘<samp><span class="samp">R</span></samp>’ for <code>_Fract</code> and <code>_Sat _Fract</code>
<li>‘<samp><span class="samp">lr</span></samp>’ or ‘<samp><span class="samp">LR</span></samp>’ for <code>long _Fract</code> and
<code>_Sat long _Fract</code>
<li>‘<samp><span class="samp">llr</span></samp>’ or ‘<samp><span class="samp">LLR</span></samp>’ for <code>long long _Fract</code> and
<code>_Sat long long _Fract</code>
<li>‘<samp><span class="samp">uhr</span></samp>’ or ‘<samp><span class="samp">UHR</span></samp>’ for <code>unsigned short _Fract</code> and
<code>_Sat unsigned short _Fract</code>
<li>‘<samp><span class="samp">ur</span></samp>’ or ‘<samp><span class="samp">UR</span></samp>’ for <code>unsigned _Fract</code> and
<code>_Sat unsigned _Fract</code>
<li>‘<samp><span class="samp">ulr</span></samp>’ or ‘<samp><span class="samp">ULR</span></samp>’ for <code>unsigned long _Fract</code> and
<code>_Sat unsigned long _Fract</code>
<li>‘<samp><span class="samp">ullr</span></samp>’ or ‘<samp><span class="samp">ULLR</span></samp>’ for <code>unsigned long long _Fract</code>
and <code>_Sat unsigned long long _Fract</code>
<li>‘<samp><span class="samp">hk</span></samp>’ or ‘<samp><span class="samp">HK</span></samp>’ for <code>short _Accum</code> and
<code>_Sat short _Accum</code>
<li>‘<samp><span class="samp">k</span></samp>’ or ‘<samp><span class="samp">K</span></samp>’ for <code>_Accum</code> and <code>_Sat _Accum</code>
<li>‘<samp><span class="samp">lk</span></samp>’ or ‘<samp><span class="samp">LK</span></samp>’ for <code>long _Accum</code> and
<code>_Sat long _Accum</code>
<li>‘<samp><span class="samp">llk</span></samp>’ or ‘<samp><span class="samp">LLK</span></samp>’ for <code>long long _Accum</code> and
<code>_Sat long long _Accum</code>
<li>‘<samp><span class="samp">uhk</span></samp>’ or ‘<samp><span class="samp">UHK</span></samp>’ for <code>unsigned short _Accum</code> and
<code>_Sat unsigned short _Accum</code>
<li>‘<samp><span class="samp">uk</span></samp>’ or ‘<samp><span class="samp">UK</span></samp>’ for <code>unsigned _Accum</code> and
<code>_Sat unsigned _Accum</code>
<li>‘<samp><span class="samp">ulk</span></samp>’ or ‘<samp><span class="samp">ULK</span></samp>’ for <code>unsigned long _Accum</code> and
<code>_Sat unsigned long _Accum</code>
<li>‘<samp><span class="samp">ullk</span></samp>’ or ‘<samp><span class="samp">ULLK</span></samp>’ for <code>unsigned long long _Accum</code>
and <code>_Sat unsigned long long _Accum</code>
</ul>
<p>GCC support of fixed-point types as specified by the draft technical report
is incomplete:
<ul>
<li>Pragmas to control overflow and rounding behaviors are not implemented.
</ul>
<p>Fixed-point types are supported by the DWARF2 debug information format.
<div class="node">
<a name="Zero-Length"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Variable-Length">Variable Length</a>,
Previous: <a rel="previous" accesskey="p" href="#Fixed_002dPoint">Fixed-Point</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.15 Arrays of Length Zero</h3>
<p><a name="index-arrays-of-length-zero-2146"></a><a name="index-zero_002dlength-arrays-2147"></a><a name="index-length_002dzero-arrays-2148"></a><a name="index-flexible-array-members-2149"></a>
Zero-length arrays are allowed in GNU C. They are very useful as the
last element of a structure which is really a header for a variable-length
object:
<pre class="smallexample"> struct line {
int length;
char contents[0];
};
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
</pre>
<p>In ISO C90, you would have to give <code>contents</code> a length of 1, which
means either you waste space or complicate the argument to <code>malloc</code>.
<p>In ISO C99, you would use a <dfn>flexible array member</dfn>, which is
slightly different in syntax and semantics:
<ul>
<li>Flexible array members are written as <code>contents[]</code> without
the <code>0</code>.
<li>Flexible array members have incomplete type, and so the <code>sizeof</code>
operator may not be applied. As a quirk of the original implementation
of zero-length arrays, <code>sizeof</code> evaluates to zero.
<li>Flexible array members may only appear as the last member of a
<code>struct</code> that is otherwise non-empty.
<li>A structure containing a flexible array member, or a union containing
such a structure (possibly recursively), may not be a member of a
structure or an element of an array. (However, these uses are
permitted by GCC as extensions.)
</ul>
<p>GCC versions before 3.0 allowed zero-length arrays to be statically
initialized, as if they were flexible arrays. In addition to those
cases that were useful, it also allowed initializations in situations
that would corrupt later data. Non-empty initialization of zero-length
arrays is now treated like any case where there are more initializer
elements than the array holds, in that a suitable warning about "excess
elements in array" is given, and the excess elements (all of them, in
this case) are ignored.
<p>Instead GCC allows static initialization of flexible array members.
This is equivalent to defining a new structure containing the original
structure followed by an array of sufficient size to contain the data.
I.e. in the following, <code>f1</code> is constructed as if it were declared
like <code>f2</code>.
<pre class="smallexample"> struct f1 {
int x; int y[];
} f1 = { 1, { 2, 3, 4 } };
struct f2 {
struct f1 f1; int data[3];
} f2 = { { 1 }, { 2, 3, 4 } };
</pre>
<p class="noindent">The convenience of this extension is that <code>f1</code> has the desired
type, eliminating the need to consistently refer to <code>f2.f1</code>.
<p>This has symmetry with normal static arrays, in that an array of
unknown size is also written with <code>[]</code>.
<p>Of course, this extension only makes sense if the extra data comes at
the end of a top-level object, as otherwise we would be overwriting
data at subsequent offsets. To avoid undue complication and confusion
with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level
object. For example:
<pre class="smallexample"> struct foo { int x; int y[]; };
struct bar { struct foo z; };
struct foo a = { 1, { 2, 3, 4 } }; // <span class="roman">Valid.</span>
struct bar b = { { 1, { 2, 3, 4 } } }; // <span class="roman">Invalid.</span>
struct bar c = { { 1, { } } }; // <span class="roman">Valid.</span>
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // <span class="roman">Invalid.</span>
</pre>
<div class="node">
<a name="Empty-Structures"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Variadic-Macros">Variadic Macros</a>,
Previous: <a rel="previous" accesskey="p" href="#Variable-Length">Variable Length</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.16 Structures With No Members</h3>
<p><a name="index-empty-structures-2150"></a><a name="index-zero_002dsize-structures-2151"></a>
GCC permits a C structure to have no members:
<pre class="smallexample"> struct empty {
};
</pre>
<p>The structure will have size zero. In C++, empty structures are part
of the language. G++ treats empty structures as if they had a single
member of type <code>char</code>.
<div class="node">
<a name="Variable-Length"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Empty-Structures">Empty Structures</a>,
Previous: <a rel="previous" accesskey="p" href="#Zero-Length">Zero Length</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.17 Arrays of Variable Length</h3>
<p><a name="index-variable_002dlength-arrays-2152"></a><a name="index-arrays-of-variable-length-2153"></a><a name="index-VLAs-2154"></a>
Variable-length automatic arrays are allowed in ISO C99, and as an
extension GCC accepts them in C89 mode and in C++. (However, GCC's
implementation of variable-length arrays does not yet conform in detail
to the ISO C99 standard.) These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression. The storage is allocated at the point of
declaration and deallocated when the brace-level is exited. For
example:
<pre class="smallexample"> FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);
}
</pre>
<p><a name="index-scope-of-a-variable-length-array-2155"></a><a name="index-variable_002dlength-array-scope-2156"></a><a name="index-deallocating-variable-length-arrays-2157"></a>Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error
message for it.
<p><a name="index-g_t_0040code_007balloca_007d-vs-variable_002dlength-arrays-2158"></a>You can use the function <code>alloca</code> to get an effect much like
variable-length arrays. The function <code>alloca</code> is available in
many other C implementations (but not in all). On the other hand,
variable-length arrays are more elegant.
<p>There are other differences between these two methods. Space allocated
with <code>alloca</code> exists until the containing <em>function</em> returns.
The space for a variable-length array is deallocated as soon as the array
name's scope ends. (If you use both variable-length arrays and
<code>alloca</code> in the same function, deallocation of a variable-length array
will also deallocate anything more recently allocated with <code>alloca</code>.)
<p>You can also use variable-length arrays as arguments to functions:
<pre class="smallexample"> struct entry
tester (int len, char data[len][len])
{
/* <span class="roman">...</span> */
}
</pre>
<p>The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
<code>sizeof</code>.
<p>If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list—another GNU extension.
<pre class="smallexample"> struct entry
tester (int len; char data[len][len], int len)
{
/* <span class="roman">...</span> */
}
</pre>
<p><a name="index-parameter-forward-declaration-2159"></a>The ‘<samp><span class="samp">int len</span></samp>’ before the semicolon is a <dfn>parameter forward
declaration</dfn>, and it serves the purpose of making the name <code>len</code>
known when the declaration of <code>data</code> is parsed.
<p>You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.
<div class="node">
<a name="Variadic-Macros"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Escaped-Newlines">Escaped Newlines</a>,
Previous: <a rel="previous" accesskey="p" href="#Empty-Structures">Empty Structures</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.18 Macros with a Variable Number of Arguments.</h3>
<p><a name="index-variable-number-of-arguments-2160"></a><a name="index-macro-with-variable-arguments-2161"></a><a name="index-rest-argument-_0028in-macro_0029-2162"></a><a name="index-variadic-macros-2163"></a>
In the ISO C standard of 1999, a macro can be declared to accept a
variable number of arguments much as a function can. The syntax for
defining the macro is similar to that of a function. Here is an
example:
<pre class="smallexample"> #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
</pre>
<p>Here ‘<samp><span class="samp">...</span></samp>’ is a <dfn>variable argument</dfn>. In the invocation of
such a macro, it represents the zero or more tokens until the closing
parenthesis that ends the invocation, including any commas. This set of
tokens replaces the identifier <code>__VA_ARGS__</code> in the macro body
wherever it appears. See the CPP manual for more information.
<p>GCC has long supported variadic macros, and used a different syntax that
allowed you to give a name to the variable arguments just like any other
argument. Here is an example:
<pre class="smallexample"> #define debug(format, args...) fprintf (stderr, format, args)
</pre>
<p>This is in all ways equivalent to the ISO C example above, but arguably
more readable and descriptive.
<p>GNU CPP has two further variadic macro extensions, and permits them to
be used with either of the above forms of macro definition.
<p>In standard C, you are not allowed to leave the variable argument out
entirely; but you are allowed to pass an empty argument. For example,
this invocation is invalid in ISO C, because there is no comma after
the string:
<pre class="smallexample"> debug ("A message")
</pre>
<p>GNU CPP permits you to completely omit the variable arguments in this
way. In the above examples, the compiler would complain, though since
the expansion of the macro still has the extra comma after the format
string.
<p>To help solve this problem, CPP behaves specially for variable arguments
used with the token paste operator, ‘<samp><span class="samp">##</span></samp>’. If instead you write
<pre class="smallexample"> #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
</pre>
<p>and if the variable arguments are omitted or empty, the ‘<samp><span class="samp">##</span></samp>’
operator causes the preprocessor to remove the comma before it. If you
do provide some variable arguments in your macro invocation, GNU CPP
does not complain about the paste operation and instead places the
variable arguments after the comma. Just like any other pasted macro
argument, these arguments are not macro expanded.
<div class="node">
<a name="Escaped-Newlines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Subscripting">Subscripting</a>,
Previous: <a rel="previous" accesskey="p" href="#Variadic-Macros">Variadic Macros</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.19 Slightly Looser Rules for Escaped Newlines</h3>
<p><a name="index-escaped-newlines-2164"></a><a name="index-newlines-_0028escaped_0029-2165"></a>
Recently, the preprocessor has relaxed its treatment of escaped
newlines. Previously, the newline had to immediately follow a
backslash. The current implementation allows whitespace in the form
of spaces, horizontal and vertical tabs, and form feeds between the
backslash and the subsequent newline. The preprocessor issues a
warning, but treats it as a valid escaped newline and combines the two
lines to form a single logical line. This works within comments and
tokens, as well as between tokens. Comments are <em>not</em> treated as
whitespace for the purposes of this relaxation, since they have not
yet been replaced with spaces.
<div class="node">
<a name="Subscripting"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Pointer-Arith">Pointer Arith</a>,
Previous: <a rel="previous" accesskey="p" href="#Escaped-Newlines">Escaped Newlines</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.20 Non-Lvalue Arrays May Have Subscripts</h3>
<p><a name="index-subscripting-2166"></a><a name="index-arrays_002c-non_002dlvalue-2167"></a>
<a name="index-subscripting-and-function-values-2168"></a>In ISO C99, arrays that are not lvalues still decay to pointers, and
may be subscripted, although they may not be modified or used after
the next sequence point and the unary ‘<samp><span class="samp">&</span></samp>’ operator may not be
applied to them. As an extension, GCC allows such arrays to be
subscripted in C89 mode, though otherwise they do not decay to
pointers outside C99 mode. For example,
this is valid in GNU C though not valid in C89:
<pre class="smallexample"> struct foo {int a[4];};
struct foo f();
bar (int index)
{
return f().a[index];
}
</pre>
<div class="node">
<a name="Pointer-Arith"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Initializers">Initializers</a>,
Previous: <a rel="previous" accesskey="p" href="#Subscripting">Subscripting</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.21 Arithmetic on <code>void</code>- and Function-Pointers</h3>
<p><a name="index-void-pointers_002c-arithmetic-2169"></a><a name="index-void_002c-size-of-pointer-to-2170"></a><a name="index-function-pointers_002c-arithmetic-2171"></a><a name="index-function_002c-size-of-pointer-to-2172"></a>
In GNU C, addition and subtraction operations are supported on pointers to
<code>void</code> and on pointers to functions. This is done by treating the
size of a <code>void</code> or of a function as 1.
<p>A consequence of this is that <code>sizeof</code> is also allowed on <code>void</code>
and on function types, and returns 1.
<p><a name="index-Wpointer_002darith-2173"></a>The option <samp><span class="option">-Wpointer-arith</span></samp> requests a warning if these extensions
are used.
<div class="node">
<a name="Initializers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Compound-Literals">Compound Literals</a>,
Previous: <a rel="previous" accesskey="p" href="#Pointer-Arith">Pointer Arith</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.22 Non-Constant Initializers</h3>
<p><a name="index-initializers_002c-non_002dconstant-2174"></a><a name="index-non_002dconstant-initializers-2175"></a>
As in standard C++ and ISO C99, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C.
Here is an example of an initializer with run-time varying elements:
<pre class="smallexample"> foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
/* <span class="roman">...</span> */
}
</pre>
<div class="node">
<a name="Compound-Literals"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Designated-Inits">Designated Inits</a>,
Previous: <a rel="previous" accesskey="p" href="#Initializers">Initializers</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.23 Compound Literals</h3>
<p><a name="index-constructor-expressions-2176"></a><a name="index-initializations-in-expressions-2177"></a><a name="index-structures_002c-constructor-expression-2178"></a><a name="index-expressions_002c-constructor-2179"></a><a name="index-compound-literals-2180"></a><!-- The GNU C name for what C99 calls compound literals was "constructor expressions". -->
<p>ISO C99 supports compound literals. A compound literal looks like
a cast containing an initializer. Its value is an object of the
type specified in the cast, containing the elements specified in
the initializer; it is an lvalue. As an extension, GCC supports
compound literals in C89 mode and in C++.
<p>Usually, the specified type is a structure. Assume that
<code>struct foo</code> and <code>structure</code> are declared as shown:
<pre class="smallexample"> struct foo {int a; char b[2];} structure;
</pre>
<p class="noindent">Here is an example of constructing a <code>struct foo</code> with a compound literal:
<pre class="smallexample"> structure = ((struct foo) {x + y, 'a', 0});
</pre>
<p class="noindent">This is equivalent to writing the following:
<pre class="smallexample"> {
struct foo temp = {x + y, 'a', 0};
structure = temp;
}
</pre>
<p>You can also construct an array. If all the elements of the compound literal
are (made up of) simple constant expressions, suitable for use in
initializers of objects of static storage duration, then the compound
literal can be coerced to a pointer to its first element and used in
such an initializer, as shown here:
<pre class="smallexample"> char **foo = (char *[]) { "x", "y", "z" };
</pre>
<p>Compound literals for scalar types and union types are is
also allowed, but then the compound literal is equivalent
to a cast.
<p>As a GNU extension, GCC allows initialization of objects with static storage
duration by compound literals (which is not possible in ISO C99, because
the initializer is not a constant).
It is handled as if the object was initialized only with the bracket
enclosed list if the types of the compound literal and the object match.
The initializer list of the compound literal must be constant.
If the object being initialized has array type of unknown size, the size is
determined by compound literal size.
<pre class="smallexample"> static struct foo x = (struct foo) {1, 'a', 'b'};
static int y[] = (int []) {1, 2, 3};
static int z[] = (int [3]) {1};
</pre>
<p class="noindent">The above lines are equivalent to the following:
<pre class="smallexample"> static struct foo x = {1, 'a', 'b'};
static int y[] = {1, 2, 3};
static int z[] = {1, 0, 0};
</pre>
<div class="node">
<a name="Designated-Inits"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Cast-to-Union">Cast to Union</a>,
Previous: <a rel="previous" accesskey="p" href="#Compound-Literals">Compound Literals</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.24 Designated Initializers</h3>
<p><a name="index-initializers-with-labeled-elements-2181"></a><a name="index-labeled-elements-in-initializers-2182"></a><a name="index-case-labels-in-initializers-2183"></a><a name="index-designated-initializers-2184"></a>
Standard C89 requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.
<p>In ISO C99 you can give the elements in any order, specifying the array
indices or structure field names they apply to, and GNU C allows this as
an extension in C89 mode as well. This extension is not
implemented in GNU C++.
<p>To specify an array index, write
‘<samp><span class="samp">[</span><var>index</var><span class="samp">] =</span></samp>’ before the element value. For example,
<pre class="smallexample"> int a[6] = { [4] = 29, [2] = 15 };
</pre>
<p class="noindent">is equivalent to
<pre class="smallexample"> int a[6] = { 0, 0, 15, 0, 29, 0 };
</pre>
<p class="noindent">The index values must be constant expressions, even if the array being
initialized is automatic.
<p>An alternative syntax for this which has been obsolete since GCC 2.5 but
GCC still accepts is to write ‘<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>’ before the element
value, with no ‘<samp><span class="samp">=</span></samp>’.
<p>To initialize a range of elements to the same value, write
‘<samp><span class="samp">[</span><var>first</var><span class="samp"> ... </span><var>last</var><span class="samp">] = </span><var>value</var></samp>’. This is a GNU
extension. For example,
<pre class="smallexample"> int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
</pre>
<p class="noindent">If the value in it has side-effects, the side-effects will happen only once,
not for each initialized field by the range initializer.
<p class="noindent">Note that the length of the array is the highest value specified
plus one.
<p>In a structure initializer, specify the name of a field to initialize
with ‘<samp><span class="samp">.</span><var>fieldname</var><span class="samp"> =</span></samp>’ before the element value. For example,
given the following structure,
<pre class="smallexample"> struct point { int x, y; };
</pre>
<p class="noindent">the following initialization
<pre class="smallexample"> struct point p = { .y = yvalue, .x = xvalue };
</pre>
<p class="noindent">is equivalent to
<pre class="smallexample"> struct point p = { xvalue, yvalue };
</pre>
<p>Another syntax which has the same meaning, obsolete since GCC 2.5, is
‘<samp><var>fieldname</var><span class="samp">:</span></samp>’, as shown here:
<pre class="smallexample"> struct point p = { y: yvalue, x: xvalue };
</pre>
<p><a name="index-designators-2185"></a>The ‘<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>’ or ‘<samp><span class="samp">.</span><var>fieldname</var></samp>’ is known as a
<dfn>designator</dfn>. You can also use a designator (or the obsolete colon
syntax) when initializing a union, to specify which element of the union
should be used. For example,
<pre class="smallexample"> union foo { int i; double d; };
union foo f = { .d = 4 };
</pre>
<p class="noindent">will convert 4 to a <code>double</code> to store it in the union using
the second element. By contrast, casting 4 to type <code>union foo</code>
would store it into the union as the integer <code>i</code>, since it is
an integer. (See <a href="#Cast-to-Union">Cast to Union</a>.)
<p>You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that
does not have a designator applies to the next consecutive element of the
array or structure. For example,
<pre class="smallexample"> int a[6] = { [1] = v1, v2, [4] = v4 };
</pre>
<p class="noindent">is equivalent to
<pre class="smallexample"> int a[6] = { 0, v1, v2, 0, v4, 0 };
</pre>
<p>Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an <code>enum</code> type.
For example:
<pre class="smallexample"> int whitespace[256]
= { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
</pre>
<p><a name="index-designator-lists-2186"></a>You can also write a series of ‘<samp><span class="samp">.</span><var>fieldname</var></samp>’ and
‘<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>’ designators before an ‘<samp><span class="samp">=</span></samp>’ to specify a
nested subobject to initialize; the list is taken relative to the
subobject corresponding to the closest surrounding brace pair. For
example, with the ‘<samp><span class="samp">struct point</span></samp>’ declaration above:
<pre class="smallexample"> struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
</pre>
<p class="noindent">If the same field is initialized multiple times, it will have value from
the last initialization. If any such overridden initialization has
side-effect, it is unspecified whether the side-effect happens or not.
Currently, GCC will discard them and issue a warning.
<div class="node">
<a name="Case-Ranges"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Mixed-Declarations">Mixed Declarations</a>,
Previous: <a rel="previous" accesskey="p" href="#Cast-to-Union">Cast to Union</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.25 Case Ranges</h3>
<p><a name="index-case-ranges-2187"></a><a name="index-ranges-in-case-statements-2188"></a>
You can specify a range of consecutive values in a single <code>case</code> label,
like this:
<pre class="smallexample"> case <var>low</var> ... <var>high</var>:
</pre>
<p class="noindent">This has the same effect as the proper number of individual <code>case</code>
labels, one for each integer value from <var>low</var> to <var>high</var>, inclusive.
<p>This feature is especially useful for ranges of ASCII character codes:
<pre class="smallexample"> case 'A' ... 'Z':
</pre>
<p><strong>Be careful:</strong> Write spaces around the <code>...</code>, for otherwise
it may be parsed wrong when you use it with integer values. For example,
write this:
<pre class="smallexample"> case 1 ... 5:
</pre>
<p class="noindent">rather than this:
<pre class="smallexample"> case 1...5:
</pre>
<div class="node">
<a name="Cast-to-Union"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Case-Ranges">Case Ranges</a>,
Previous: <a rel="previous" accesskey="p" href="#Designated-Inits">Designated Inits</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.26 Cast to a Union Type</h3>
<p><a name="index-cast-to-a-union-2189"></a><a name="index-union_002c-casting-to-a-2190"></a>
A cast to union type is similar to other casts, except that the type
specified is a union type. You can specify the type either with
<code>union </code><var>tag</var> or with a typedef name. A cast to union is actually
a constructor though, not a cast, and hence does not yield an lvalue like
normal casts. (See <a href="#Compound-Literals">Compound Literals</a>.)
<p>The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:
<pre class="smallexample"> union foo { int i; double d; };
int x;
double y;
</pre>
<p class="noindent">both <code>x</code> and <code>y</code> can be cast to type <code>union foo</code>.
<p>Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union:
<pre class="smallexample"> union foo u;
/* <span class="roman">...</span> */
u = (union foo) x == u.i = x
u = (union foo) y == u.d = y
</pre>
<p>You can also use the union cast as a function argument:
<pre class="smallexample"> void hack (union foo);
/* <span class="roman">...</span> */
hack ((union foo) x);
</pre>
<div class="node">
<a name="Mixed-Declarations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Attributes">Function Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Case-Ranges">Case Ranges</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.27 Mixed Declarations and Code</h3>
<p><a name="index-mixed-declarations-and-code-2191"></a><a name="index-declarations_002c-mixed-with-code-2192"></a><a name="index-code_002c-mixed-with-declarations-2193"></a>
ISO C99 and ISO C++ allow declarations and code to be freely mixed
within compound statements. As an extension, GCC also allows this in
C89 mode. For example, you could do:
<pre class="smallexample"> int i;
/* <span class="roman">...</span> */
i++;
int j = i + 2;
</pre>
<p>Each identifier is visible from where it is declared until the end of
the enclosing block.
<div class="node">
<a name="Function-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attribute-Syntax">Attribute Syntax</a>,
Previous: <a rel="previous" accesskey="p" href="#Mixed-Declarations">Mixed Declarations</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.28 Declaring Attributes of Functions</h3>
<p><a name="index-function-attributes-2194"></a><a name="index-declaring-attributes-of-functions-2195"></a><a name="index-functions-that-never-return-2196"></a><a name="index-functions-that-return-more-than-once-2197"></a><a name="index-functions-that-have-no-side-effects-2198"></a><a name="index-functions-in-arbitrary-sections-2199"></a><a name="index-functions-that-behave-like-malloc-2200"></a><a name="index-g_t_0040code_007bvolatile_007d-applied-to-function-2201"></a><a name="index-g_t_0040code_007bconst_007d-applied-to-function-2202"></a><a name="index-functions-with-_0040code_007bprintf_007d_002c-_0040code_007bscanf_007d_002c-_0040code_007bstrftime_007d-or-_0040code_007bstrfmon_007d-style-arguments-2203"></a><a name="index-functions-with-non_002dnull-pointer-arguments-2204"></a><a name="index-functions-that-are-passed-arguments-in-registers-on-the-386-2205"></a><a name="index-functions-that-pop-the-argument-stack-on-the-386-2206"></a><a name="index-functions-that-do-not-pop-the-argument-stack-on-the-386-2207"></a><a name="index-functions-that-have-different-compilation-options-on-the-386-2208"></a><a name="index-functions-that-have-different-optimization-options-2209"></a>
In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.
<p>The keyword <code>__attribute__</code> allows you to specify special
attributes when making a declaration. This keyword is followed by an
attribute specification inside double parentheses. The following
attributes are currently defined for functions on all targets:
<code>aligned</code>, <code>alloc_size</code>, <code>noreturn</code>,
<code>returns_twice</code>, <code>noinline</code>, <code>always_inline</code>,
<code>flatten</code>, <code>pure</code>, <code>const</code>, <code>nothrow</code>,
<code>sentinel</code>, <code>format</code>, <code>format_arg</code>,
<code>no_instrument_function</code>, <code>section</code>, <code>constructor</code>,
<code>destructor</code>, <code>used</code>, <code>unused</code>, <code>deprecated</code>,
<code>weak</code>, <code>malloc</code>, <code>alias</code>, <code>warn_unused_result</code>,
<code>nonnull</code>, <code>gnu_inline</code>, <code>externally_visible</code>,
<code>hot</code>, <code>cold</code>, <code>artificial</code>, <code>error</code>
and <code>warning</code>.
Several other attributes are defined for functions on particular
target systems. Other attributes, including <code>section</code> are
supported for variables declarations (see <a href="#Variable-Attributes">Variable Attributes</a>) and
for types (see <a href="#Type-Attributes">Type Attributes</a>).
<p>You may also specify attributes with ‘<samp><span class="samp">__</span></samp>’ preceding and following
each keyword. This allows you to use them in header files without
being concerned about a possible macro of the same name. For example,
you may use <code>__noreturn__</code> instead of <code>noreturn</code>.
<p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.
<dl>
<!-- Keep this table alphabetized by attribute name. Treat _ as space. -->
<dt><code>alias ("</code><var>target</var><code>")</code><dd><a name="index-g_t_0040code_007balias_007d-attribute-2210"></a>The <code>alias</code> attribute causes the declaration to be emitted as an
alias for another symbol, which must be specified. For instance,
<pre class="smallexample"> void __f () { /* <span class="roman">Do something.</span> */; }
void f () __attribute__ ((weak, alias ("__f")));
</pre>
<p>defines ‘<samp><span class="samp">f</span></samp>’ to be a weak alias for ‘<samp><span class="samp">__f</span></samp>’. In C++, the
mangled name for the target must be used. It is an error if ‘<samp><span class="samp">__f</span></samp>’
is not defined in the same translation unit.
<p>Not all target machines support this attribute.
<br><dt><code>aligned (</code><var>alignment</var><code>)</code><dd><a name="index-g_t_0040code_007baligned_007d-attribute-2211"></a>This attribute specifies a minimum alignment for the function,
measured in bytes.
<p>You cannot use this attribute to decrease the alignment of a function,
only to increase it. However, when you explicitly specify a function
alignment this will override the effect of the
<samp><span class="option">-falign-functions</span></samp> (see <a href="#Optimize-Options">Optimize Options</a>) option for this
function.
<p>Note that the effectiveness of <code>aligned</code> attributes may be
limited by inherent limitations in your linker. On many systems, the
linker is only able to arrange for functions to be aligned up to a
certain maximum alignment. (For some linkers, the maximum supported
alignment may be very very small.) See your linker documentation for
further information.
<p>The <code>aligned</code> attribute can also be used for variables and fields
(see <a href="#Variable-Attributes">Variable Attributes</a>.)
<br><dt><code>alloc_size</code><dd><a name="index-g_t_0040code_007balloc_005fsize_007d-attribute-2212"></a>The <code>alloc_size</code> attribute is used to tell the compiler that the
function return value points to memory, where the size is given by
one or two of the functions parameters. GCC uses this
information to improve the correctness of <code>__builtin_object_size</code>.
<p>The function parameter(s) denoting the allocated size are specified by
one or two integer arguments supplied to the attribute. The allocated size
is either the value of the single function argument specified or the product
of the two function arguments specified. Argument numbering starts at
one.
<p>For instance,
<pre class="smallexample"> void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
</pre>
<p>declares that my_calloc will return memory of the size given by
the product of parameter 1 and 2 and that my_realloc will return memory
of the size given by parameter 2.
<br><dt><code>always_inline</code><dd><a name="index-g_t_0040code_007balways_005finline_007d-function-attribute-2213"></a>Generally, functions are not inlined unless optimization is specified.
For functions declared inline, this attribute inlines the function even
if no optimization level was specified.
<br><dt><code>gnu_inline</code><dd><a name="index-g_t_0040code_007bgnu_005finline_007d-function-attribute-2214"></a>This attribute should be used with a function which is also declared
with the <code>inline</code> keyword. It directs GCC to treat the function
as if it were defined in gnu89 mode even when compiling in C99 or
gnu99 mode.
<p>If the function is declared <code>extern</code>, then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if you
had only declared the function, and had not defined it. This has
almost the effect of a macro. The way to use this is to put a
function definition in a header file with this attribute, and put
another copy of the function, without <code>extern</code>, in a library
file. The definition in the header file will cause most calls to the
function to be inlined. If any uses of the function remain, they will
refer to the single copy in the library. Note that the two
definitions of the functions need not be precisely the same, although
if they do not have the same effect your program may behave oddly.
<p>In C, if the function is neither <code>extern</code> nor <code>static</code>, then
the function is compiled as a standalone function, as well as being
inlined where possible.
<p>This is how GCC traditionally handled functions declared
<code>inline</code>. Since ISO C99 specifies a different semantics for
<code>inline</code>, this function attribute is provided as a transition
measure and as a useful feature in its own right. This attribute is
available in GCC 4.1.3 and later. It is available if either of the
preprocessor macros <code>__GNUC_GNU_INLINE__</code> or
<code>__GNUC_STDC_INLINE__</code> are defined. See <a href="#Inline">An Inline Function is As Fast As a Macro</a>.
<p>In C++, this attribute does not depend on <code>extern</code> in any way,
but it still requires the <code>inline</code> keyword to enable its special
behavior.
<br><dt><code>artificial</code><dd><a name="index-g_t_0040code_007bartificial_007d-function-attribute-2215"></a>This attribute is useful for small inline wrappers which if possible
should appear during debugging as a unit, depending on the debug
info format it will either mean marking the function as artificial
or using the caller location for all instructions within the inlined
body.
<br><dt><code>flatten</code><dd><a name="index-g_t_0040code_007bflatten_007d-function-attribute-2216"></a>Generally, inlining into a function is limited. For a function marked with
this attribute, every call inside this function will be inlined, if possible.
Whether the function itself is considered for inlining depends on its size and
the current inlining parameters.
<br><dt><code>error ("</code><var>message</var><code>")</code><dd><a name="index-g_t_0040code_007berror_007d-function-attribute-2217"></a>If this attribute is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations, an error
which will include <var>message</var> will be diagnosed. This is useful
for compile time checking, especially together with <code>__builtin_constant_p</code>
and inline functions where checking the inline function arguments is not
possible through <code>extern char [(condition) ? 1 : -1];</code> tricks.
While it is possible to leave the function undefined and thus invoke
a link failure, when using this attribute the problem will be diagnosed
earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.
<br><dt><code>warning ("</code><var>message</var><code>")</code><dd><a name="index-g_t_0040code_007bwarning_007d-function-attribute-2218"></a>If this attribute is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations, a warning
which will include <var>message</var> will be diagnosed. This is useful
for compile time checking, especially together with <code>__builtin_constant_p</code>
and inline functions. While it is possible to define the function with
a message in <code>.gnu.warning*</code> section, when using this attribute the problem
will be diagnosed earlier and with exact location of the call even in presence
of inline functions or when not emitting debugging information.
<br><dt><code>cdecl</code><dd><a name="index-functions-that-do-pop-the-argument-stack-on-the-386-2219"></a><a name="index-mrtd-2220"></a>On the Intel 386, the <code>cdecl</code> attribute causes the compiler to
assume that the calling function will pop off the stack space used to
pass arguments. This is
useful to override the effects of the <samp><span class="option">-mrtd</span></samp> switch.
<br><dt><code>const</code><dd><a name="index-g_t_0040code_007bconst_007d-function-attribute-2221"></a>Many functions do not examine any values except their arguments, and
have no effects except the return value. Basically this is just slightly
more strict class than the <code>pure</code> attribute below, since function is not
allowed to read global memory.
<p><a name="index-pointer-arguments-2222"></a>Note that a function that has pointer arguments and examines the data
pointed to must <em>not</em> be declared <code>const</code>. Likewise, a
function that calls a non-<code>const</code> function usually must not be
<code>const</code>. It does not make sense for a <code>const</code> function to
return <code>void</code>.
<p>The attribute <code>const</code> is not implemented in GCC versions earlier
than 2.5. An alternative way to declare that a function has no side
effects, which works in the current version and in some older versions,
is as follows:
<pre class="smallexample"> typedef int intfn ();
extern const intfn square;
</pre>
<p>This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘<samp><span class="samp">const</span></samp>’ must be attached to the return value.
<br><dt><code>constructor</code><dt><code>destructor</code><dt><code>constructor (</code><var>priority</var><code>)</code><dt><code>destructor (</code><var>priority</var><code>)</code><dd><a name="index-g_t_0040code_007bconstructor_007d-function-attribute-2223"></a><a name="index-g_t_0040code_007bdestructor_007d-function-attribute-2224"></a>The <code>constructor</code> attribute causes the function to be called
automatically before execution enters <code>main ()</code>. Similarly, the
<code>destructor</code> attribute causes the function to be called
automatically after <code>main ()</code> has completed or <code>exit ()</code> has
been called. Functions with these attributes are useful for
initializing data that will be used implicitly during the execution of
the program.
<p>You may provide an optional integer priority to control the order in
which constructor and destructor functions are run. A constructor
with a smaller priority number runs before a constructor with a larger
priority number; the opposite relationship holds for destructors. So,
if you have a constructor that allocates a resource and a destructor
that deallocates the same resource, both functions typically have the
same priority. The priorities for constructor and destructor
functions are the same as those specified for namespace-scope C++
objects (see <a href="#C_002b_002b-Attributes">C++ Attributes</a>).
<p>These attributes are not currently implemented for Objective-C.
<br><dt><code>deprecated</code><dd><a name="index-g_t_0040code_007bdeprecated_007d-attribute_002e-2225"></a>The <code>deprecated</code> attribute results in a warning if the function
is used anywhere in the source file. This is useful when identifying
functions that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should
do instead. Note that the warnings only occurs for uses:
<pre class="smallexample"> int old_fn () __attribute__ ((deprecated));
int old_fn ();
int (*fn_ptr)() = old_fn;
</pre>
<p>results in a warning on line 3 but not line 2.
<p>The <code>deprecated</code> attribute can also be used for variables and
types (see <a href="#Variable-Attributes">Variable Attributes</a>, see <a href="#Type-Attributes">Type Attributes</a>.)
<br><dt><code>dllexport</code><dd><a name="index-g_t_0040code_007b_005f_005fdeclspec_0028dllexport_0029_007d-2226"></a>On Microsoft Windows targets and Symbian OS targets the
<code>dllexport</code> attribute causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
<code>dllimport</code> attribute. On Microsoft Windows targets, the pointer
name is formed by combining <code>_imp__</code> and the function or variable
name.
<p>You can use <code>__declspec(dllexport)</code> as a synonym for
<code>__attribute__ ((dllexport))</code> for compatibility with other
compilers.
<p>On systems that support the <code>visibility</code> attribute, this
attribute also implies “default” visibility. It is an error to
explicitly specify any other visibility.
<p>Currently, the <code>dllexport</code> attribute is ignored for inlined
functions, unless the <samp><span class="option">-fkeep-inline-functions</span></samp> flag has been
used. The attribute is also ignored for undefined symbols.
<p>When applied to C++ classes, the attribute marks defined non-inlined
member functions and static data members as exports. Static consts
initialized in-class are not marked unless they are also defined
out-of-class.
<p>For Microsoft Windows targets there are alternative methods for
including the symbol in the DLL's export table such as using a
<samp><span class="file">.def</span></samp> file with an <code>EXPORTS</code> section or, with GNU ld, using
the <samp><span class="option">--export-all</span></samp> linker flag.
<br><dt><code>dllimport</code><dd><a name="index-g_t_0040code_007b_005f_005fdeclspec_0028dllimport_0029_007d-2227"></a>On Microsoft Windows and Symbian OS targets, the <code>dllimport</code>
attribute causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol. The attribute implies <code>extern</code>. On Microsoft Windows
targets, the pointer name is formed by combining <code>_imp__</code> and the
function or variable name.
<p>You can use <code>__declspec(dllimport)</code> as a synonym for
<code>__attribute__ ((dllimport))</code> for compatibility with other
compilers.
<p>On systems that support the <code>visibility</code> attribute, this
attribute also implies “default” visibility. It is an error to
explicitly specify any other visibility.
<p>Currently, the attribute is ignored for inlined functions. If the
attribute is applied to a symbol <em>definition</em>, an error is reported.
If a symbol previously declared <code>dllimport</code> is later defined, the
attribute is ignored in subsequent references, and a warning is emitted.
The attribute is also overridden by a subsequent declaration as
<code>dllexport</code>.
<p>When applied to C++ classes, the attribute marks non-inlined
member functions and static data members as imports. However, the
attribute is ignored for virtual methods to allow creation of vtables
using thunks.
<p>On the SH Symbian OS target the <code>dllimport</code> attribute also has
another affect—it can cause the vtable and run-time type information
for a class to be exported. This happens when the class has a
dllimport'ed constructor or a non-inline, non-pure virtual function
and, for either of those two conditions, the class also has a inline
constructor or destructor and has a key function that is defined in
the current translation unit.
<p>For Microsoft Windows based targets the use of the <code>dllimport</code>
attribute on functions is not necessary, but provides a small
performance benefit by eliminating a thunk in the DLL. The use of the
<code>dllimport</code> attribute on imported variables was required on older
versions of the GNU linker, but can now be avoided by passing the
<samp><span class="option">--enable-auto-import</span></samp> switch to the GNU linker. As with
functions, using the attribute for a variable eliminates a thunk in
the DLL.
<p>One drawback to using this attribute is that a pointer to a
<em>variable</em> marked as <code>dllimport</code> cannot be used as a constant
address. However, a pointer to a <em>function</em> with the
<code>dllimport</code> attribute can be used as a constant initializer; in
this case, the address of a stub function in the import lib is
referenced. On Microsoft Windows targets, the attribute can be disabled
for functions by setting the <samp><span class="option">-mnop-fun-dllimport</span></samp> flag.
<br><dt><code>eightbit_data</code><dd><a name="index-eight-bit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S-2228"></a>Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight bit data section.
The compiler will generate more efficient code for certain operations
on data in the eight bit data area. Note the eight bit data area is limited to
256 bytes of data.
<p>You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.
<br><dt><code>exception_handler</code><dd><a name="index-exception-handler-functions-on-the-Blackfin-processor-2229"></a>Use this attribute on the Blackfin to indicate that the specified function
is an exception handler. The compiler will generate function entry and
exit sequences suitable for use in an exception handler when this
attribute is present.
<br><dt><code>externally_visible</code><dd><a name="index-g_t_0040code_007bexternally_005fvisible_007d-attribute_002e-2230"></a>This attribute, attached to a global variable or function, nullifies
the effect of the <samp><span class="option">-fwhole-program</span></samp> command-line option, so the
object remains visible outside the current compilation unit.
<br><dt><code>far</code><dd><a name="index-functions-which-handle-memory-bank-switching-2231"></a>On 68HC11 and 68HC12 the <code>far</code> attribute causes the compiler to
use a calling convention that takes care of switching memory banks when
entering and leaving a function. This calling convention is also the
default when using the <samp><span class="option">-mlong-calls</span></samp> option.
<p>On 68HC12 the compiler will use the <code>call</code> and <code>rtc</code> instructions
to call and return from a function.
<p>On 68HC11 the compiler will generate a sequence of instructions
to invoke a board-specific routine to switch the memory bank and call the
real function. The board-specific routine simulates a <code>call</code>.
At the end of a function, it will jump to a board-specific routine
instead of using <code>rts</code>. The board-specific return routine simulates
the <code>rtc</code>.
<br><dt><code>fastcall</code><dd><a name="index-functions-that-pop-the-argument-stack-on-the-386-2232"></a>On the Intel 386, the <code>fastcall</code> attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX and
the second argument (if of integral type) in the register EDX. Subsequent
and other typed arguments are passed on the stack. The called function will
pop the arguments off the stack. If the number of arguments is variable all
arguments are pushed on the stack.
<br><dt><code>format (</code><var>archetype</var><code>, </code><var>string-index</var><code>, </code><var>first-to-check</var><code>)</code><dd><a name="index-g_t_0040code_007bformat_007d-function-attribute-2233"></a><a name="index-Wformat-2234"></a>The <code>format</code> attribute specifies that a function takes <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments which
should be type-checked against a format string. For example, the
declaration:
<pre class="smallexample"> extern int
my_printf (void *my_object, const char *my_format, ...)
__attribute__ ((format (printf, 2, 3)));
</pre>
<p class="noindent">causes the compiler to check the arguments in calls to <code>my_printf</code>
for consistency with the <code>printf</code> style format string argument
<code>my_format</code>.
<p>The parameter <var>archetype</var> determines how the format string is
interpreted, and should be <code>printf</code>, <code>scanf</code>, <code>strftime</code>,
<code>gnu_printf</code>, <code>gnu_scanf</code>, <code>gnu_strftime</code> or
<code>strfmon</code>. (You can also use <code>__printf__</code>,
<code>__scanf__</code>, <code>__strftime__</code> or <code>__strfmon__</code>.) On
MinGW targets, <code>ms_printf</code>, <code>ms_scanf</code>, and
<code>ms_strftime</code> are also present.
<var>archtype</var> values such as <code>printf</code> refer to the formats accepted
by the system's C run-time library, while <code>gnu_</code> values always refer
to the formats accepted by the GNU C Library. On Microsoft Windows
targets, <code>ms_</code> values refer to the formats accepted by the
<samp><span class="file">msvcrt.dll</span></samp> library.
The parameter <var>string-index</var>
specifies which argument is the format string argument (starting
from 1), while <var>first-to-check</var> is the number of the first
argument to check against the format string. For functions
where the arguments are not available to be checked (such as
<code>vprintf</code>), specify the third parameter as zero. In this case the
compiler only checks the format string for consistency. For
<code>strftime</code> formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit <code>this</code> argument, the
arguments of such methods should be counted from two, not one, when
giving values for <var>string-index</var> and <var>first-to-check</var>.
<p>In the example above, the format string (<code>my_format</code>) is the second
argument of the function <code>my_print</code>, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.
<p><a name="index-ffreestanding-2235"></a><a name="index-fno_002dbuiltin-2236"></a>The <code>format</code> attribute allows you to identify your own functions
which take format strings as arguments, so that GCC can check the
calls to these functions for errors. The compiler always (unless
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp> is used) checks formats
for the standard library functions <code>printf</code>, <code>fprintf</code>,
<code>sprintf</code>, <code>scanf</code>, <code>fscanf</code>, <code>sscanf</code>, <code>strftime</code>,
<code>vprintf</code>, <code>vfprintf</code> and <code>vsprintf</code> whenever such
warnings are requested (using <samp><span class="option">-Wformat</span></samp>), so there is no need to
modify the header file <samp><span class="file">stdio.h</span></samp>. In C99 mode, the functions
<code>snprintf</code>, <code>vsnprintf</code>, <code>vscanf</code>, <code>vfscanf</code> and
<code>vsscanf</code> are also checked. Except in strictly conforming C
standard modes, the X/Open function <code>strfmon</code> is also checked as
are <code>printf_unlocked</code> and <code>fprintf_unlocked</code>.
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<p>The target may provide additional types of format checks.
See <a href="#Target-Format-Checks">Format Checks Specific to Particular Target Machines</a>.
<br><dt><code>format_arg (</code><var>string-index</var><code>)</code><dd><a name="index-g_t_0040code_007bformat_005farg_007d-function-attribute-2237"></a><a name="index-Wformat_002dnonliteral-2238"></a>The <code>format_arg</code> attribute specifies that a function takes a format
string for a <code>printf</code>, <code>scanf</code>, <code>strftime</code> or
<code>strfmon</code> style function and modifies it (for example, to translate
it into another language), so the result can be passed to a
<code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style
function (with the remaining arguments to the format function the same
as they would have been for the unmodified string). For example, the
declaration:
<pre class="smallexample"> extern char *
my_dgettext (char *my_domain, const char *my_format)
__attribute__ ((format_arg (2)));
</pre>
<p class="noindent">causes the compiler to check the arguments in calls to a <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> type function, whose
format string argument is a call to the <code>my_dgettext</code> function, for
consistency with the format string argument <code>my_format</code>. If the
<code>format_arg</code> attribute had not been specified, all the compiler
could tell in such calls to format functions would be that the format
string argument is not constant; this would generate a warning when
<samp><span class="option">-Wformat-nonliteral</span></samp> is used, but the calls could not be checked
without the attribute.
<p>The parameter <var>string-index</var> specifies which argument is the format
string argument (starting from one). Since non-static C++ methods have
an implicit <code>this</code> argument, the arguments of such methods should
be counted from two.
<p>The <code>format-arg</code> attribute allows you to identify your own
functions which modify format strings, so that GCC can check the
calls to <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code>
type function whose operands are a call to one of your own function.
The compiler always treats <code>gettext</code>, <code>dgettext</code>, and
<code>dcgettext</code> in this manner except when strict ISO C support is
requested by <samp><span class="option">-ansi</span></samp> or an appropriate <samp><span class="option">-std</span></samp> option, or
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp>
is used. See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
<br><dt><code>function_vector</code><dd><a name="index-calling-functions-through-the-function-vector-on-H8_002f300_002c-M16C_002c-M32C-and-SH2A-processors-2239"></a>Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
function should be called through the function vector. Calling a
function through the function vector will reduce code size, however;
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
<p>In SH2A target, this attribute declares a function to be called using the
TBR relative addressing mode. The argument to this attribute is the entry
number of the same function in a vector table containing all the TBR
relative addressable functions. For the successful jump, register TBR
should contain the start address of this TBR relative vector table.
In the startup routine of the user application, user needs to care of this
TBR register initialization. The TBR relative vector table can have at
max 256 function entries. The jumps to these functions will be generated
using a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR).
You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.
<p>Please refer the example of M16C target, to see the use of this
attribute while declaring a function,
<p>In an application, for a function being called once, this attribute will
save at least 8 bytes of code; and if other successive calls are being
made to the same function, it will save 2 bytes of code per each of these
calls.
<p>On M16C/M32C targets, the <code>function_vector</code> attribute declares a
special page subroutine call function. Use of this attribute reduces
the code size by 2 bytes for each call generated to the
subroutine. The argument to the attribute is the vector number entry
from the special page vector table which contains the 16 low-order
bits of the subroutine's entry address. Each vector table has special
page number (18 to 255) which are used in <code>jsrs</code> instruction.
Jump addresses of the routines are generated by adding 0x0F0000 (in
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
byte addresses set in the vector table. Therefore you need to ensure
that all the special page vector routines should get mapped within the
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
(for M32C).
<p>In the following example 2 bytes will be saved for each call to
function <code>foo</code>.
<pre class="smallexample"> void foo (void) __attribute__((function_vector(0x18)));
void foo (void)
{
}
void bar (void)
{
foo();
}
</pre>
<p>If functions are defined in one file and are called in another file,
then be sure to write this declaration in both files.
<p>This attribute is ignored for R8C target.
<br><dt><code>interrupt</code><dd><a name="index-interrupt-handler-functions-2240"></a>Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MIPS
and Xstormy16 ports to indicate that the specified function is an
interrupt handler. The compiler will generate function entry and exit
sequences suitable for use in an interrupt handler when this attribute
is present.
<p>Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, and
SH processors can be specified via the <code>interrupt_handler</code> attribute.
<p>Note, on the AVR, interrupts will be enabled inside the function.
<p>Note, for the ARM, you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:
<pre class="smallexample"> void f () __attribute__ ((interrupt ("IRQ")));
</pre>
<p>Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.
<p>On ARMv7-M the interrupt type is ignored, and the attribute means the function
may be called with a word aligned stack pointer.
<p>On MIPS targets, you can use the following attributes to modify the behavior
of an interrupt handler:
<dl>
<dt><code>use_shadow_register_set</code><dd><a name="index-g_t_0040code_007buse_005fshadow_005fregister_005fset_007d-attribute-2241"></a>Assume that the handler uses a shadow register set, instead of
the main general-purpose registers.
<br><dt><code>keep_interrupts_masked</code><dd><a name="index-g_t_0040code_007bkeep_005finterrupts_005fmasked_007d-attribute-2242"></a>Keep interrupts masked for the whole function. Without this attribute,
GCC tries to reenable interrupts for as much of the function as it can.
<br><dt><code>use_debug_exception_return</code><dd><a name="index-g_t_0040code_007buse_005fdebug_005fexception_005freturn_007d-attribute-2243"></a>Return using the <code>deret</code> instruction. Interrupt handlers that don't
have this attribute return using <code>eret</code> instead.
</dl>
<p>You can use any combination of these attributes, as shown below:
<pre class="smallexample"> void __attribute__ ((interrupt)) v0 ();
void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked)) v4 ();
void __attribute__ ((interrupt, use_shadow_register_set,
use_debug_exception_return)) v5 ();
void __attribute__ ((interrupt, keep_interrupts_masked,
use_debug_exception_return)) v6 ();
void __attribute__ ((interrupt, use_shadow_register_set,
keep_interrupts_masked,
use_debug_exception_return)) v7 ();
</pre>
<br><dt><code>interrupt_handler</code><dd><a name="index-interrupt-handler-functions-on-the-Blackfin_002c-m68k_002c-H8_002f300-and-SH-processors-2244"></a>Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
indicate that the specified function is an interrupt handler. The compiler
will generate function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.
<br><dt><code>interrupt_thread</code><dd><a name="index-interrupt-thread-functions-on-fido-2245"></a>Use this attribute on fido, a subarchitecture of the m68k, to indicate
that the specified function is an interrupt handler that is designed
to run as a thread. The compiler omits generate prologue/epilogue
sequences and replaces the return instruction with a <code>sleep</code>
instruction. This attribute is available only on fido.
<br><dt><code>isr</code><dd><a name="index-interrupt-service-routines-on-ARM-2246"></a>Use this attribute on ARM to write Interrupt Service Routines. This is an
alias to the <code>interrupt</code> attribute above.
<br><dt><code>kspisusp</code><dd><a name="index-User-stack-pointer-in-interrupts-on-the-Blackfin-2247"></a>When used together with <code>interrupt_handler</code>, <code>exception_handler</code>
or <code>nmi_handler</code>, code will be generated to load the stack pointer
from the USP register in the function prologue.
<br><dt><code>l1_text</code><dd><a name="index-g_t_0040code_007bl1_005ftext_007d-function-attribute-2248"></a>This attribute specifies a function to be placed into L1 Instruction
SRAM. The function will be put into a specific section named <code>.l1.text</code>.
With <samp><span class="option">-mfdpic</span></samp>, function calls with a such function as the callee
or caller will use inlined PLT.
<br><dt><code>long_call/short_call</code><dd><a name="index-indirect-calls-on-ARM-2249"></a>This attribute specifies how a particular function is called on
ARM. Both attributes override the <samp><span class="option">-mlong-calls</span></samp> (see <a href="#ARM-Options">ARM Options</a>)
command line switch and <code>#pragma long_calls</code> settings. The
<code>long_call</code> attribute indicates that the function might be far
away from the call site and require a different (more expensive)
calling sequence. The <code>short_call</code> attribute always places
the offset to the function from the call site into the ‘<samp><span class="samp">BL</span></samp>’
instruction directly.
<br><dt><code>longcall/shortcall</code><dd><a name="index-functions-called-via-pointer-on-the-RS_002f6000-and-PowerPC-2250"></a>On the Blackfin, RS/6000 and PowerPC, the <code>longcall</code> attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence. The
<code>shortcall</code> attribute indicates that the function is always close
enough for the shorter calling sequence to be used. These attributes
override both the <samp><span class="option">-mlongcall</span></samp> switch and, on the RS/6000 and
PowerPC, the <code>#pragma longcall</code> setting.
<p>See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information on whether long
calls are necessary.
<br><dt><code>long_call/near/far</code><dd><a name="index-indirect-calls-on-MIPS-2251"></a>These attributes specify how a particular function is called on MIPS.
The attributes override the <samp><span class="option">-mlong-calls</span></samp> (see <a href="#MIPS-Options">MIPS Options</a>)
command-line switch. The <code>long_call</code> and <code>far</code> attributes are
synonyms, and cause the compiler to always call
the function by first loading its address into a register, and then using
the contents of that register. The <code>near</code> attribute has the opposite
effect; it specifies that non-PIC calls should be made using the more
efficient <code>jal</code> instruction.
<br><dt><code>malloc</code><dd><a name="index-g_t_0040code_007bmalloc_007d-attribute-2252"></a>The <code>malloc</code> attribute is used to tell the compiler that a function
may be treated as if any non-<code>NULL</code> pointer it returns cannot
alias any other pointer valid when the function returns.
This will often improve optimization.
Standard functions with this property include <code>malloc</code> and
<code>calloc</code>. <code>realloc</code>-like functions have this property as
long as the old pointer is never referred to (including comparing it
to the new pointer) after the function returns a non-<code>NULL</code>
value.
<br><dt><code>mips16/nomips16</code><dd><a name="index-g_t_0040code_007bmips16_007d-attribute-2253"></a><a name="index-g_t_0040code_007bnomips16_007d-attribute-2254"></a>
On MIPS targets, you can use the <code>mips16</code> and <code>nomips16</code>
function attributes to locally select or turn off MIPS16 code generation.
A function with the <code>mips16</code> attribute is emitted as MIPS16 code,
while MIPS16 code generation is disabled for functions with the
<code>nomips16</code> attribute. These attributes override the
<samp><span class="option">-mips16</span></samp> and <samp><span class="option">-mno-mips16</span></samp> options on the command line
(see <a href="#MIPS-Options">MIPS Options</a>).
<p>When compiling files containing mixed MIPS16 and non-MIPS16 code, the
preprocessor symbol <code>__mips16</code> reflects the setting on the command line,
not that within individual functions. Mixed MIPS16 and non-MIPS16 code
may interact badly with some GCC extensions such as <code>__builtin_apply</code>
(see <a href="#Constructing-Calls">Constructing Calls</a>).
<br><dt><code>micromips/nomicromips</code><dd><a name="index-g_t_0040code_007bmicromips_007d-attribute-2255"></a><a name="index-g_t_0040code_007bnomicromips_007d-attribute-2256"></a>
On MIPS targets, you can use the <code>micromips</code> and <code>nomicromips</code>
function attributes to locally select or turn off microMIPS code generation.
A function with the <code>micromips</code> attribute is emitted as microMIPS code,
while microMIPS code generation is disabled for functions with the
<code>nomicromips</code> attribute. These attributes override the
<samp><span class="option">-mmicromips</span></samp> and <samp><span class="option">-mno-micromips</span></samp> options on the command line
(see <a href="#MIPS-Options">MIPS Options</a>).
<p>When compiling files containing mixed microMIPS and non-microMIPS code, the
preprocessor symbol <code>__mips_micromips</code> reflects the setting on the
command line,
not that within individual functions. Mixed microMIPS and non-microMIPS code
may interact badly with some GCC extensions such as <code>__builtin_apply</code>
(see <a href="#Constructing-Calls">Constructing Calls</a>).
<br><dt><code>model (</code><var>model-name</var><code>)</code><dd><a name="index-function-addressability-on-the-M32R_002fD-2257"></a><a name="index-variable-addressability-on-the-IA_002d64-2258"></a>
On the M32R/D, use this attribute to set the addressability of an
object, and of the code generated for a function. The identifier
<var>model-name</var> is one of <code>small</code>, <code>medium</code>, or
<code>large</code>, representing each of the code models.
<p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction), and are
callable with the <code>bl</code> instruction.
<p>Medium model objects may live anywhere in the 32-bit address space (the
compiler will generate <code>seth/add3</code> instructions to load their addresses),
and are callable with the <code>bl</code> instruction.
<p>Large model objects may live anywhere in the 32-bit address space (the
compiler will generate <code>seth/add3</code> instructions to load their addresses),
and may not be reachable with the <code>bl</code> instruction (the compiler will
generate the much slower <code>seth/add3/jl</code> instruction sequence).
<p>On IA-64, use this attribute to set the addressability of an object.
At present, the only supported identifier for <var>model-name</var> is
<code>small</code>, indicating addressability via “small” (22-bit)
addresses (so that their addresses can be loaded with the <code>addl</code>
instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects
defined by shared libraries.
<br><dt><code>ms_abi/sysv_abi</code><dd><a name="index-g_t_0040code_007bms_005fabi_007d-attribute-2259"></a><a name="index-g_t_0040code_007bsysv_005fabi_007d-attribute-2260"></a>
On 64-bit x86_64-*-* targets, you can use an ABI attribute to indicate
which calling convention should be used for a function. The <code>ms_abi</code>
attribute tells the compiler to use the Microsoft ABI, while the
<code>sysv_abi</code> attribute tells the compiler to use the ABI used on
GNU/Linux and other systems. The default is to use the Microsoft ABI
when targeting Windows. On all other systems, the default is the AMD ABI.
<p>Note, This feature is currently sorried out for Windows targets trying to
<br><dt><code>naked</code><dd><a name="index-function-without-a-prologue_002fepilogue-code-2261"></a>Use this attribute on the ARM, AVR, IP2K and SPU ports to indicate that
the specified function does not need prologue/epilogue sequences generated by
the compiler. It is up to the programmer to provide these sequences. The
only statements that can be safely included in naked functions are
<code>asm</code> statements that do not have operands. All other statements,
including declarations of local variables, <code>if</code> statements, and so
forth, should be avoided. Naked functions should be used to implement the
body of an assembly function, while allowing the compiler to construct
the requisite function declaration for the assembler.
<br><dt><code>near</code><dd><a name="index-functions-which-do-not-handle-memory-bank-switching-on-68HC11_002f68HC12-2262"></a>On 68HC11 and 68HC12 the <code>near</code> attribute causes the compiler to
use the normal calling convention based on <code>jsr</code> and <code>rts</code>.
This attribute can be used to cancel the effect of the <samp><span class="option">-mlong-calls</span></samp>
option.
<br><dt><code>nesting</code><dd><a name="index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor_002e-2263"></a>Use this attribute together with <code>interrupt_handler</code>,
<code>exception_handler</code> or <code>nmi_handler</code> to indicate that the function
entry code should enable nested interrupts or exceptions.
<br><dt><code>nmi_handler</code><dd><a name="index-NMI-handler-functions-on-the-Blackfin-processor-2264"></a>Use this attribute on the Blackfin to indicate that the specified function
is an NMI handler. The compiler will generate function entry and
exit sequences suitable for use in an NMI handler when this
attribute is present.
<br><dt><code>no_instrument_function</code><dd><a name="index-g_t_0040code_007bno_005finstrument_005ffunction_007d-function-attribute-2265"></a><a name="index-finstrument_002dfunctions-2266"></a>If <samp><span class="option">-finstrument-functions</span></samp> is given, profiling function calls will
be generated at entry and exit of most user-compiled functions.
Functions with this attribute will not be so instrumented.
<br><dt><code>noinline</code><dd><a name="index-g_t_0040code_007bnoinline_007d-function-attribute-2267"></a>This function attribute prevents a function from being considered for
inlining.
<!-- Don't enumerate the optimizations by name here; we try to be -->
<!-- future-compatible with this mechanism. -->
If the function does not have side-effects, there are optimizations
other than inlining that causes function calls to be optimized away,
although the function call is live. To keep such calls from being
optimized away, put
<pre class="smallexample"> asm ("");
</pre>
<p>(see <a href="#Extended-Asm">Extended Asm</a>) in the called function, to serve as a special
side-effect.
<br><dt><code>nonnull (</code><var>arg-index</var><code>, ...)</code><dd><a name="index-g_t_0040code_007bnonnull_007d-function-attribute-2268"></a>The <code>nonnull</code> attribute specifies that some function parameters should
be non-null pointers. For instance, the declaration:
<pre class="smallexample"> extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull (1, 2)));
</pre>
<p class="noindent">causes the compiler to check that, in calls to <code>my_memcpy</code>,
arguments <var>dest</var> and <var>src</var> are non-null. If the compiler
determines that a null pointer is passed in an argument slot marked
as non-null, and the <samp><span class="option">-Wnonnull</span></samp> option is enabled, a warning
is issued. The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will not be null.
<p>If no argument index list is given to the <code>nonnull</code> attribute,
all pointer arguments are marked as non-null. To illustrate, the
following declaration is equivalent to the previous example:
<pre class="smallexample"> extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull));
</pre>
<br><dt><code>noreturn</code><dd><a name="index-g_t_0040code_007bnoreturn_007d-function-attribute-2269"></a>A few standard library functions, such as <code>abort</code> and <code>exit</code>,
cannot return. GCC knows this automatically. Some programs define
their own functions that never return. You can declare them
<code>noreturn</code> to tell the compiler this fact. For example,
<pre class="smallexample"> void fatal () __attribute__ ((noreturn));
void
fatal (/* <span class="roman">...</span> */)
{
/* <span class="roman">...</span> */ /* <span class="roman">Print error message.</span> */ /* <span class="roman">...</span> */
exit (1);
}
</pre>
<p>The <code>noreturn</code> keyword tells the compiler to assume that
<code>fatal</code> cannot return. It can then optimize without regard to what
would happen if <code>fatal</code> ever did return. This makes slightly
better code. More importantly, it helps avoid spurious warnings of
uninitialized variables.
<p>The <code>noreturn</code> keyword does not affect the exceptional path when that
applies: a <code>noreturn</code>-marked function may still return to the caller
by throwing an exception or calling <code>longjmp</code>.
<p>Do not assume that registers saved by the calling function are
restored before calling the <code>noreturn</code> function.
<p>It does not make sense for a <code>noreturn</code> function to have a return
type other than <code>void</code>.
<p>The attribute <code>noreturn</code> is not implemented in GCC versions
earlier than 2.5. An alternative way to declare that a function does
not return, which works in the current version and in some older
versions, is as follows:
<pre class="smallexample"> typedef void voidfn ();
volatile voidfn fatal;
</pre>
<p>This approach does not work in GNU C++.
<br><dt><code>nothrow</code><dd><a name="index-g_t_0040code_007bnothrow_007d-function-attribute-2270"></a>The <code>nothrow</code> attribute is used to inform the compiler that a
function cannot throw an exception. For example, most functions in
the standard C library can be guaranteed not to throw an exception
with the notable exceptions of <code>qsort</code> and <code>bsearch</code> that
take function pointer arguments. The <code>nothrow</code> attribute is not
implemented in GCC versions earlier than 3.3.
<br><dt><code>optimize</code><dd><a name="index-g_t_0040code_007boptimize_007d-function-attribute-2271"></a>The <code>optimize</code> attribute is used to specify that a function is to
be compiled with different optimization options than specified on the
command line. Arguments can either be numbers or strings. Numbers
are assumed to be an optimization level. Strings that begin with
<code>O</code> are assumed to be an optimization option, while other options
are assumed to be used with a <code>-f</code> prefix. You can also use the
‘<samp><span class="samp">#pragma GCC optimize</span></samp>’ pragma to set the optimization options
that affect more than one function.
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
‘<samp><span class="samp">#pragma GCC optimize</span></samp>’ pragma.
<p>This can be used for instance to have frequently executed functions
compiled with more aggressive optimization options that produce faster
and larger code, while other functions can be called with less
aggressive options.
<br><dt><code>pure</code><dd><a name="index-g_t_0040code_007bpure_007d-function-attribute-2272"></a>Many functions have no effects except the return value and their
return value depends only on the parameters and/or global variables.
Such a function can be subject
to common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be declared
with the attribute <code>pure</code>. For example,
<pre class="smallexample"> int square (int) __attribute__ ((pure));
</pre>
<p class="noindent">says that the hypothetical function <code>square</code> is safe to call
fewer times than the program says.
<p>Some of common examples of pure functions are <code>strlen</code> or <code>memcmp</code>.
Interesting non-pure functions are functions with infinite loops or those
depending on volatile memory or other system resource, that may change between
two consecutive calls (such as <code>feof</code> in a multithreading environment).
<p>The attribute <code>pure</code> is not implemented in GCC versions earlier
than 2.96.
<br><dt><code>hot</code><dd><a name="index-g_t_0040code_007bhot_007d-function-attribute-2273"></a>The <code>hot</code> attribute is used to inform the compiler that a function is a
hot spot of the compiled program. The function is optimized more aggressively
and on many target it is placed into special subsection of the text section so
all hot functions appears close together improving locality.
<p>When profile feedback is available, via <samp><span class="option">-fprofile-use</span></samp>, hot functions
are automatically detected and this attribute is ignored.
<p>The <code>hot</code> attribute is not implemented in GCC versions earlier
than 4.3.
<br><dt><code>cold</code><dd><a name="index-g_t_0040code_007bcold_007d-function-attribute-2274"></a>The <code>cold</code> attribute is used to inform the compiler that a function is
unlikely executed. The function is optimized for size rather than speed and on
many targets it is placed into special subsection of the text section so all
cold functions appears close together improving code locality of non-cold parts
of program. The paths leading to call of cold functions within code are marked
as unlikely by the branch prediction mechanism. It is thus useful to mark
functions used to handle unlikely conditions, such as <code>perror</code>, as cold to
improve optimization of hot functions that do call marked functions in rare
occasions.
<p>When profile feedback is available, via <samp><span class="option">-fprofile-use</span></samp>, hot functions
are automatically detected and this attribute is ignored.
<p>The <code>cold</code> attribute is not implemented in GCC versions earlier than 4.3.
<br><dt><code>regparm (</code><var>number</var><code>)</code><dd><a name="index-g_t_0040code_007bregparm_007d-attribute-2275"></a><a name="index-functions-that-are-passed-arguments-in-registers-on-the-386-2276"></a>On the Intel 386, the <code>regparm</code> attribute causes the compiler to
pass arguments number one to <var>number</var> if they are of integral type
in registers EAX, EDX, and ECX instead of on the stack. Functions that
take a variable number of arguments will continue to be passed all of their
arguments on the stack.
<p>Beware that on some ELF systems this attribute is unsuitable for
global functions in shared libraries with lazy binding (which is the
default). Lazy binding will send the first call via resolving code in
the loader, which might assume EAX, EDX and ECX can be clobbered, as
per the standard calling conventions. Solaris 8 is affected by this.
GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
disabled with the linker or the loader if desired, to avoid the
problem.)
<br><dt><code>sseregparm</code><dd><a name="index-g_t_0040code_007bsseregparm_007d-attribute-2277"></a>On the Intel 386 with SSE support, the <code>sseregparm</code> attribute
causes the compiler to pass up to 3 floating point arguments in
SSE registers instead of on the stack. Functions that take a
variable number of arguments will continue to pass all of their
floating point arguments on the stack.
<br><dt><code>force_align_arg_pointer</code><dd><a name="index-g_t_0040code_007bforce_005falign_005farg_005fpointer_007d-attribute-2278"></a>On the Intel x86, the <code>force_align_arg_pointer</code> attribute may be
applied to individual function definitions, generating an alternate
prologue and epilogue that realigns the runtime stack if necessary.
This supports mixing legacy codes that run with a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility.
<br><dt><code>resbank</code><dd><a name="index-g_t_0040code_007bresbank_007d-attribute-2279"></a>On the SH2A target, this attribute enables the high-speed register
saving and restoration using a register bank for <code>interrupt_handler</code>
routines. Saving to the bank is performed automatically after the CPU
accepts an interrupt that uses a register bank.
<p>The nineteen 32-bit registers comprising general register R0 to R14,
control register GBR, and system registers MACH, MACL, and PR and the
vector table address offset are saved into a register bank. Register
banks are stacked in first-in last-out (FILO) sequence. Restoration
from the bank is executed by issuing a RESBANK instruction.
<br><dt><code>returns_twice</code><dd><a name="index-g_t_0040code_007breturns_005ftwice_007d-attribute-2280"></a>The <code>returns_twice</code> attribute tells the compiler that a function may
return more than one time. The compiler will ensure that all registers
are dead before calling such a function and will emit a warning about
the variables that may be clobbered after the second return from the
function. Examples of such functions are <code>setjmp</code> and <code>vfork</code>.
The <code>longjmp</code>-like counterpart of such function, if any, might need
to be marked with the <code>noreturn</code> attribute.
<br><dt><code>saveall</code><dd><a name="index-save-all-registers-on-the-Blackfin_002c-H8_002f300_002c-H8_002f300H_002c-and-H8S-2281"></a>Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.
<br><dt><code>section ("</code><var>section-name</var><code>")</code><dd><a name="index-g_t_0040code_007bsection_007d-function-attribute-2282"></a>Normally, the compiler places the code it generates in the <code>text</code> section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections. The <code>section</code>
attribute specifies that a function lives in a particular section.
For example, the declaration:
<pre class="smallexample"> extern void foobar (void) __attribute__ ((section ("bar")));
</pre>
<p class="noindent">puts the function <code>foobar</code> in the <code>bar</code> section.
<p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
<br><dt><code>sentinel</code><dd><a name="index-g_t_0040code_007bsentinel_007d-function-attribute-2283"></a>This function attribute ensures that a parameter in a function call is
an explicit <code>NULL</code>. The attribute is only valid on variadic
functions. By default, the sentinel is located at position zero, the
last parameter of the function call. If an optional integer position
argument P is supplied to the attribute, the sentinel must be located at
position P counting backwards from the end of the argument list.
<pre class="smallexample"> __attribute__ ((sentinel))
is equivalent to
__attribute__ ((sentinel(0)))
</pre>
<p>The attribute is automatically set with a position of 0 for the built-in
functions <code>execl</code> and <code>execlp</code>. The built-in function
<code>execle</code> has the attribute set with a position of 1.
<p>A valid <code>NULL</code> in this context is defined as zero with any pointer
type. If your system defines the <code>NULL</code> macro with an integer type
then you need to add an explicit cast. GCC replaces <code>stddef.h</code>
with a copy that redefines NULL appropriately.
<p>The warnings for missing or incorrect sentinels are enabled with
<samp><span class="option">-Wformat</span></samp>.
<br><dt><code>short_call</code><dd>See long_call/short_call.
<br><dt><code>shortcall</code><dd>See longcall/shortcall.
<br><dt><code>signal</code><dd><a name="index-signal-handler-functions-on-the-AVR-processors-2284"></a>Use this attribute on the AVR to indicate that the specified
function is a signal handler. The compiler will generate function
entry and exit sequences suitable for use in a signal handler when this
attribute is present. Interrupts will be disabled inside the function.
<br><dt><code>sp_switch</code><dd>Use this attribute on the SH to indicate an <code>interrupt_handler</code>
function should switch to an alternate stack. It expects a string
argument that names a global variable holding the address of the
alternate stack.
<pre class="smallexample"> void *alt_stack;
void f () __attribute__ ((interrupt_handler,
sp_switch ("alt_stack")));
</pre>
<br><dt><code>stdcall</code><dd><a name="index-functions-that-pop-the-argument-stack-on-the-386-2285"></a>On the Intel 386, the <code>stdcall</code> attribute causes the compiler to
assume that the called function will pop off the stack space used to
pass arguments, unless it takes a variable number of arguments.
<br><dt><code>syscall_linkage</code><dd><a name="index-g_t_0040code_007bsyscall_005flinkage_007d-attribute-2286"></a>This attribute is used to modify the IA64 calling convention by marking
all input registers as live at all function exits. This makes it possible
to restart a system call after an interrupt without having to save/restore
the input registers. This also prevents kernel data from leaking into
application code.
<br><dt><code>target</code><dd><a name="index-g_t_0040code_007btarget_007d-function-attribute-2287"></a>The <code>target</code> attribute is used to specify that a function is to
be compiled with different target options than specified on the
command line. This can be used for instance to have functions
compiled with a different ISA (instruction set architecture) than the
default. You can also use the ‘<samp><span class="samp">#pragma GCC target</span></samp>’ pragma to set
more than one function to be compiled with specific target options.
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
‘<samp><span class="samp">#pragma GCC target</span></samp>’ pragma.
<p>For instance on a 386, you could compile one function with
<code>target("sse4.1,arch=core2")</code> and another with
<code>target("sse4a,arch=amdfam10")</code> that would be equivalent to
compiling the first function with <samp><span class="option">-msse4.1</span></samp> and
<samp><span class="option">-march=core2</span></samp> options, and the second function with
<samp><span class="option">-msse4a</span></samp> and <samp><span class="option">-march=amdfam10</span></samp> options. It is up to the
user to make sure that a function is only invoked on a machine that
supports the particular ISA it was compiled for (for example by using
<code>cpuid</code> on 386 to determine what feature bits and architecture
family are used).
<pre class="smallexample"> int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
int sse3_func (void) __attribute__ ((__target__ ("sse3")));
</pre>
<p>On the 386, the following options are allowed:
<dl>
<dt>‘<samp><span class="samp">abm</span></samp>’<dt>‘<samp><span class="samp">no-abm</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022abm_0022_0029_007d-attribute-2288"></a>Enable/disable the generation of the advanced bit instructions.
<br><dt>‘<samp><span class="samp">aes</span></samp>’<dt>‘<samp><span class="samp">no-aes</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022aes_0022_0029_007d-attribute-2289"></a>Enable/disable the generation of the AES instructions.
<br><dt>‘<samp><span class="samp">mmx</span></samp>’<dt>‘<samp><span class="samp">no-mmx</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022mmx_0022_0029_007d-attribute-2290"></a>Enable/disable the generation of the MMX instructions.
<br><dt>‘<samp><span class="samp">pclmul</span></samp>’<dt>‘<samp><span class="samp">no-pclmul</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022pclmul_0022_0029_007d-attribute-2291"></a>Enable/disable the generation of the PCLMUL instructions.
<br><dt>‘<samp><span class="samp">popcnt</span></samp>’<dt>‘<samp><span class="samp">no-popcnt</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022popcnt_0022_0029_007d-attribute-2292"></a>Enable/disable the generation of the POPCNT instruction.
<br><dt>‘<samp><span class="samp">sse</span></samp>’<dt>‘<samp><span class="samp">no-sse</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse_0022_0029_007d-attribute-2293"></a>Enable/disable the generation of the SSE instructions.
<br><dt>‘<samp><span class="samp">sse2</span></samp>’<dt>‘<samp><span class="samp">no-sse2</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse2_0022_0029_007d-attribute-2294"></a>Enable/disable the generation of the SSE2 instructions.
<br><dt>‘<samp><span class="samp">sse3</span></samp>’<dt>‘<samp><span class="samp">no-sse3</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse3_0022_0029_007d-attribute-2295"></a>Enable/disable the generation of the SSE3 instructions.
<br><dt>‘<samp><span class="samp">sse4</span></samp>’<dt>‘<samp><span class="samp">no-sse4</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_0022_0029_007d-attribute-2296"></a>Enable/disable the generation of the SSE4 instructions (both SSE4.1
and SSE4.2).
<br><dt>‘<samp><span class="samp">sse4.1</span></samp>’<dt>‘<samp><span class="samp">no-sse4.1</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_002e1_0022_0029_007d-attribute-2297"></a>Enable/disable the generation of the sse4.1 instructions.
<br><dt>‘<samp><span class="samp">sse4.2</span></samp>’<dt>‘<samp><span class="samp">no-sse4.2</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_002e2_0022_0029_007d-attribute-2298"></a>Enable/disable the generation of the sse4.2 instructions.
<br><dt>‘<samp><span class="samp">sse4a</span></samp>’<dt>‘<samp><span class="samp">no-sse4a</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4a_0022_0029_007d-attribute-2299"></a>Enable/disable the generation of the SSE4A instructions.
<br><dt>‘<samp><span class="samp">sse5</span></samp>’<dt>‘<samp><span class="samp">no-sse5</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022sse5_0022_0029_007d-attribute-2300"></a>Enable/disable the generation of the SSE5 instructions.
<br><dt>‘<samp><span class="samp">ssse3</span></samp>’<dt>‘<samp><span class="samp">no-ssse3</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022ssse3_0022_0029_007d-attribute-2301"></a>Enable/disable the generation of the SSSE3 instructions.
<br><dt>‘<samp><span class="samp">cld</span></samp>’<dt>‘<samp><span class="samp">no-cld</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022cld_0022_0029_007d-attribute-2302"></a>Enable/disable the generation of the CLD before string moves.
<br><dt>‘<samp><span class="samp">fancy-math-387</span></samp>’<dt>‘<samp><span class="samp">no-fancy-math-387</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022fancy_002dmath_002d387_0022_0029_007d-attribute-2303"></a>Enable/disable the generation of the <code>sin</code>, <code>cos</code>, and
<code>sqrt</code> instructions on the 387 floating point unit.
<br><dt>‘<samp><span class="samp">fused-madd</span></samp>’<dt>‘<samp><span class="samp">no-fused-madd</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022fused_002dmadd_0022_0029_007d-attribute-2304"></a>Enable/disable the generation of the fused multiply/add instructions.
<br><dt>‘<samp><span class="samp">ieee-fp</span></samp>’<dt>‘<samp><span class="samp">no-ieee-fp</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022ieee_002dfp_0022_0029_007d-attribute-2305"></a>Enable/disable the generation of floating point that depends on IEEE arithmetic.
<br><dt>‘<samp><span class="samp">inline-all-stringops</span></samp>’<dt>‘<samp><span class="samp">no-inline-all-stringops</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022inline_002dall_002dstringops_0022_0029_007d-attribute-2306"></a>Enable/disable inlining of string operations.
<br><dt>‘<samp><span class="samp">inline-stringops-dynamically</span></samp>’<dt>‘<samp><span class="samp">no-inline-stringops-dynamically</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022inline_002dstringops_002ddynamically_0022_0029_007d-attribute-2307"></a>Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.
<br><dt>‘<samp><span class="samp">align-stringops</span></samp>’<dt>‘<samp><span class="samp">no-align-stringops</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022align_002dstringops_0022_0029_007d-attribute-2308"></a>Do/do not align destination of inlined string operations.
<br><dt>‘<samp><span class="samp">recip</span></samp>’<dt>‘<samp><span class="samp">no-recip</span></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022recip_0022_0029_007d-attribute-2309"></a>Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
instructions followed an additional Newton-Raphson step instead of
doing a floating point division.
<br><dt>‘<samp><span class="samp">arch=</span><var>ARCH</var></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022arch_003d_0040var_007bARCH_007d_0022_0029_007d-attribute-2310"></a>Specify the architecture to generate code for in compiling the function.
<br><dt>‘<samp><span class="samp">tune=</span><var>TUNE</var></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022tune_003d_0040var_007bTUNE_007d_0022_0029_007d-attribute-2311"></a>Specify the architecture to tune for in compiling the function.
<br><dt>‘<samp><span class="samp">fpmath=</span><var>FPMATH</var></samp>’<dd><a name="index-g_t_0040code_007btarget_0028_0022fpmath_003d_0040var_007bFPMATH_007d_0022_0029_007d-attribute-2312"></a>Specify which floating point unit to use. The
<code>target("fpmath=sse,387")</code> option must be specified as
<code>target("fpmath=sse+387")</code> because the comma would separate
different options.
</dl>
<p>On the 386, you can use either multiple strings to specify multiple
options, or you can separate the option with a comma (<code>,</code>).
<p>On the 386, the inliner will not inline a function that has different
target options than the caller, unless the callee has a subset of the
target options of the caller. For example a function declared with
<code>target("sse5")</code> can inline a function with
<code>target("sse2")</code>, since <code>-msse5</code> implies <code>-msse2</code>.
<p>The <code>target</code> attribute is not implemented in GCC versions earlier
than 4.4, and at present only the 386 uses it.
<br><dt><code>tiny_data</code><dd><a name="index-tiny-data-section-on-the-H8_002f300H-and-H8S-2313"></a>Use this attribute on the H8/300H and H8S to indicate that the specified
variable should be placed into the tiny data section.
The compiler will generate more efficient code for loads and stores
on data in the tiny data section. Note the tiny data area is limited to
slightly under 32kbytes of data.
<br><dt><code>trap_exit</code><dd>Use this attribute on the SH for an <code>interrupt_handler</code> to return using
<code>trapa</code> instead of <code>rte</code>. This attribute expects an integer
argument specifying the trap number to be used.
<br><dt><code>unused</code><dd><a name="index-g_t_0040code_007bunused_007d-attribute_002e-2314"></a>This attribute, attached to a function, means that the function is meant
to be possibly unused. GCC will not produce a warning for this
function.
<br><dt><code>used</code><dd><a name="index-g_t_0040code_007bused_007d-attribute_002e-2315"></a>This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced.
This is useful, for example, when the function is referenced only in
inline assembly.
<br><dt><code>version_id</code><dd><a name="index-g_t_0040code_007bversion_005fid_007d-attribute-2316"></a>This IA64 HP-UX attribute, attached to a global variable or function, renames a
symbol to contain a version string, thus allowing for function level
versioning. HP-UX system header files may use version level functioning
for some system calls.
<pre class="smallexample"> extern int foo () __attribute__((version_id ("20040821")));
</pre>
<p>Calls to <var>foo</var> will be mapped to calls to <var>foo{20040821}</var>.
<br><dt><code>visibility ("</code><var>visibility_type</var><code>")</code><dd><a name="index-g_t_0040code_007bvisibility_007d-attribute-2317"></a>This attribute affects the linkage of the declaration to which it is attached.
There are four supported <var>visibility_type</var> values: default,
hidden, protected or internal visibility.
<pre class="smallexample"> void __attribute__ ((visibility ("protected")))
f () { /* <span class="roman">Do something.</span> */; }
int i __attribute__ ((visibility ("hidden")));
</pre>
<p>The possible values of <var>visibility_type</var> correspond to the
visibility settings in the ELF gABI.
<dl>
<!-- keep this list of visibilities in alphabetical order. -->
<dt><dfn>default</dfn><dd>Default visibility is the normal case for the object file format.
This value is available for the visibility attribute to override other
options that may change the assumed visibility of entities.
<p>On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden.
<p>On Darwin, default visibility means that the declaration is visible to
other modules.
<p>Default visibility corresponds to “external linkage” in the language.
<br><dt><dfn>hidden</dfn><dd>Hidden visibility indicates that the entity declared will have a new
form of linkage, which we'll call “hidden linkage”. Two
declarations of an object with hidden linkage refer to the same object
if they are in the same shared object.
<br><dt><dfn>internal</dfn><dd>Internal visibility is like hidden visibility, but with additional
processor specific semantics. Unless otherwise specified by the
psABI, GCC defines internal visibility to mean that a function is
<em>never</em> called from another module. Compare this with hidden
functions which, while they cannot be referenced directly by other
modules, can be referenced indirectly via function pointers. By
indicating that a function cannot be called from outside the module,
GCC may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.
<br><dt><dfn>protected</dfn><dd>Protected visibility is like default visibility except that it
indicates that references within the defining module will bind to the
definition in that module. That is, the declared entity cannot be
overridden by another module.
</dl>
<p>All visibilities are supported on many, but not all, ELF targets
(supported when the assembler supports the ‘<samp><span class="samp">.visibility</span></samp>’
pseudo-op). Default visibility is supported everywhere. Hidden
visibility is supported on Darwin targets.
<p>The visibility attribute should be applied only to declarations which
would otherwise have external linkage. The attribute should be applied
consistently, so that the same entity should not be declared with
different settings of the attribute.
<p>In C++, the visibility attribute applies to types as well as functions
and objects, because in C++ types have linkage. A class must not have
greater visibility than its non-static data member types and bases,
and class members default to the visibility of their class. Also, a
declaration without explicit visibility is limited to the visibility
of its type.
<p>In C++, you can mark member functions and static member variables of a
class with the visibility attribute. This is useful if you know a
particular method or static member variable should only be used from
one shared object; then you can mark it hidden while the rest of the
class has default visibility. Care must be taken to avoid breaking
the One Definition Rule; for example, it is usually not useful to mark
an inline method as hidden without marking the whole class as hidden.
<p>A C++ namespace declaration can also have the visibility attribute.
This attribute applies only to the particular namespace body, not to
other definitions of the same namespace; it is equivalent to using
‘<samp><span class="samp">#pragma GCC visibility</span></samp>’ before and after the namespace
definition (see <a href="#Visibility-Pragmas">Visibility Pragmas</a>).
<p>In C++, if a template argument has limited visibility, this
restriction is implicitly propagated to the template instantiation.
Otherwise, template instantiations and specializations default to the
visibility of their template.
<p>If both the template and enclosing class have explicit visibility, the
visibility from the template is used.
<br><dt><code>warn_unused_result</code><dd><a name="index-g_t_0040code_007bwarn_005funused_005fresult_007d-attribute-2318"></a>The <code>warn_unused_result</code> attribute causes a warning to be emitted
if a caller of the function with this attribute does not use its
return value. This is useful for functions where not checking
the result is either a security problem or always a bug, such as
<code>realloc</code>.
<pre class="smallexample"> int fn () __attribute__ ((warn_unused_result));
int foo ()
{
if (fn () < 0) return -1;
fn ();
return 0;
}
</pre>
<p>results in warning on line 5.
<br><dt><code>weak</code><dd><a name="index-g_t_0040code_007bweak_007d-attribute-2319"></a>The <code>weak</code> attribute causes the declaration to be emitted as a weak
symbol rather than a global. This is primarily useful in defining
library functions which can be overridden in user code, though it can
also be used with non-function declarations. Weak symbols are supported
for ELF targets, and also for a.out targets when using the GNU assembler
and linker.
<br><dt><code>weakref</code><dt><code>weakref ("</code><var>target</var><code>")</code><dd><a name="index-g_t_0040code_007bweakref_007d-attribute-2320"></a>The <code>weakref</code> attribute marks a declaration as a weak reference.
Without arguments, it should be accompanied by an <code>alias</code> attribute
naming the target symbol. Optionally, the <var>target</var> may be given as
an argument to <code>weakref</code> itself. In either case, <code>weakref</code>
implicitly marks the declaration as <code>weak</code>. Without a
<var>target</var>, given as an argument to <code>weakref</code> or to <code>alias</code>,
<code>weakref</code> is equivalent to <code>weak</code>.
<pre class="smallexample"> static int x() __attribute__ ((weakref ("y")));
/* is equivalent to... */
static int x() __attribute__ ((weak, weakref, alias ("y")));
/* and to... */
static int x() __attribute__ ((weakref));
static int x() __attribute__ ((alias ("y")));
</pre>
<p>A weak reference is an alias that does not by itself require a
definition to be given for the target symbol. If the target symbol is
only referenced through weak references, then the becomes a <code>weak</code>
undefined symbol. If it is directly referenced, however, then such
strong references prevail, and a definition will be required for the
symbol, not necessarily in the same translation unit.
<p>The effect is equivalent to moving all references to the alias to a
separate translation unit, renaming the alias to the aliased symbol,
declaring it as weak, compiling the two separate translation units and
performing a reloadable link on them.
<p>At present, a declaration to which <code>weakref</code> is attached can
only be <code>static</code>.
</dl>
<p>You can specify multiple attributes in a declaration by separating them
by commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.
<p><a name="index-g_t_0040code_007b_0023pragma_007d_002c-reason-for-not-using-2321"></a><a name="index-pragma_002c-reason-for-not-using-2322"></a>Some people object to the <code>__attribute__</code> feature, suggesting that
ISO C's <code>#pragma</code> should be used instead. At the time
<code>__attribute__</code> was designed, there were two reasons for not doing
this.
<ol type=1 start=1>
<li>It is impossible to generate <code>#pragma</code> commands from a macro.
<li>There is no telling what the same <code>#pragma</code> might mean in another
compiler.
</ol>
<p>These two reasons applied to almost any application that might have been
proposed for <code>#pragma</code>. It was basically a mistake to use
<code>#pragma</code> for <em>anything</em>.
<p>The ISO C99 standard includes <code>_Pragma</code>, which now allows pragmas
to be generated from macros. In addition, a <code>#pragma GCC</code>
namespace is now in use for GCC-specific pragmas. However, it has been
found convenient to use <code>__attribute__</code> to achieve a natural
attachment of attributes to their corresponding declarations, whereas
<code>#pragma GCC</code> is of use for constructs that do not naturally form
part of the grammar. See <a href="cpp.html#Other-Directives">Miscellaneous Preprocessing Directives</a>.
<div class="node">
<a name="Attribute-Syntax"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Prototypes">Function Prototypes</a>,
Previous: <a rel="previous" accesskey="p" href="#Function-Attributes">Function Attributes</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.29 Attribute Syntax</h3>
<p><a name="index-attribute-syntax-2323"></a>
This section describes the syntax with which <code>__attribute__</code> may be
used, and the constructs to which attribute specifiers bind, for the C
language. Some details may vary for C++ and Objective-C. Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.
<p>There are some problems with the semantics of attributes in C++. For
example, there are no manglings for attributes, although they may affect
code generation, so problems may arise when attributed types are used in
conjunction with templates or overloading. Similarly, <code>typeid</code>
does not distinguish between types with different attributes. Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.
<p>See <a href="#Function-Attributes">Function Attributes</a>, for details of the semantics of attributes
applying to functions. See <a href="#Variable-Attributes">Variable Attributes</a>, for details of the
semantics of attributes applying to variables. See <a href="#Type-Attributes">Type Attributes</a>,
for details of the semantics of attributes applying to structure, union
and enumerated types.
<p>An <dfn>attribute specifier</dfn> is of the form
<code>__attribute__ ((</code><var>attribute-list</var><code>))</code>. An <dfn>attribute list</dfn>
is a possibly empty comma-separated sequence of <dfn>attributes</dfn>, where
each attribute is one of the following:
<ul>
<li>Empty. Empty attributes are ignored.
<li>A word (which may be an identifier such as <code>unused</code>, or a reserved
word such as <code>const</code>).
<li>A word, followed by, in parentheses, parameters for the attribute.
These parameters take one of the following forms:
<ul>
<li>An identifier. For example, <code>mode</code> attributes use this form.
<li>An identifier followed by a comma and a non-empty comma-separated list
of expressions. For example, <code>format</code> attributes use this form.
<li>A possibly empty comma-separated list of expressions. For example,
<code>format_arg</code> attributes use this form with the list being a single
integer constant expression, and <code>alias</code> attributes use this form
with the list being a single string constant.
</ul>
</ul>
<p>An <dfn>attribute specifier list</dfn> is a sequence of one or more attribute
specifiers, not separated by any other tokens.
<p>In GNU C, an attribute specifier list may appear after the colon following a
label, other than a <code>case</code> or <code>default</code> label. The only
attribute it makes sense to use after a label is <code>unused</code>. This
feature is intended for code generated by programs which contains labels
that may be unused but which is compiled with <samp><span class="option">-Wall</span></samp>. It would
not normally be appropriate to use in it human-written code, though it
could be useful in cases where the code that jumps to the label is
contained within an <code>#ifdef</code> conditional. GNU C++ does not permit
such placement of attribute lists, as it is permissible for a
declaration, which could begin with an attribute list, to be labelled in
C++. Declarations cannot be labelled in C90 or C99, so the ambiguity
does not arise there.
<p>An attribute specifier list may appear as part of a <code>struct</code>,
<code>union</code> or <code>enum</code> specifier. It may go either immediately
after the <code>struct</code>, <code>union</code> or <code>enum</code> keyword, or after
the closing brace. The former syntax is preferred.
Where attribute specifiers follow the closing brace, they are considered
to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers.
<!-- Otherwise, there would be the following problems: a shift/reduce -->
<!-- conflict between attributes binding the struct/union/enum and -->
<!-- binding to the list of specifiers/qualifiers; and "aligned" -->
<!-- attributes could use sizeof for the structure, but the size could be -->
<!-- changed later by "packed" attributes. -->
<p>Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular declarator
within a declaration. Where an
attribute specifier is applied to a parameter declared as a function or
an array, it should apply to the function or array rather than the
pointer to which the parameter is implicitly converted, but this is not
yet correctly implemented.
<p>Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers. (Some attributes, however,
are essentially in the nature of storage class specifiers, and only make
sense where storage class specifiers may be used; for example,
<code>section</code>.) There is one necessary limitation to this syntax: the
first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to
the function instead by syntax described below (which, however, is not
yet implemented in this case). In some other cases, attribute
specifiers are permitted by this grammar but not yet supported by the
compiler. All attribute specifiers in this place relate to the
declaration as a whole. In the obsolescent usage where a type of
<code>int</code> is implied by the absence of type specifiers, such a list of
specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.
<p>At present, the first parameter in a function prototype must have some
type specifier which is not an attribute specifier; this resolves an
ambiguity in the interpretation of <code>void f(int
(__attribute__((foo)) x))</code>, but is subject to change. At present, if
the parentheses of a function declarator contain only attributes then
those attributes are ignored, rather than yielding an error or warning
or implying a single parameter of type int, but this is subject to
change.
<p>An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of
specifiers and qualifiers. Such attribute specifiers apply
only to the identifier before whose declarator they appear. For
example, in
<pre class="smallexample"> __attribute__((noreturn)) void d0 (void),
__attribute__((format(printf, 1, 2))) d1 (const char *, ...),
d2 (void)
</pre>
<p class="noindent">the <code>noreturn</code> attribute applies to all the functions
declared; the <code>format</code> attribute only applies to <code>d1</code>.
<p>An attribute specifier list may appear immediately before the comma,
<code>=</code> or semicolon terminating the declaration of an identifier other
than a function definition. Such attribute specifiers apply
to the declared object or function. Where an
assembler name for an object or function is specified (see <a href="#Asm-Labels">Asm Labels</a>), the attribute must follow the <code>asm</code>
specification.
<p>An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).
<p>Attribute specifiers may be mixed with type qualifiers appearing inside
the <code>[]</code> of a parameter array declarator, in the C99 construct by
which such qualifiers are applied to the pointer to which the array is
implicitly converted. Such attribute specifiers apply to the pointer,
not to the array, but at present this is not implemented and they are
ignored.
<p>An attribute specifier list may appear at the start of a nested
declarator. At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented.
When attribute specifiers follow the <code>*</code> of a pointer
declarator, they may be mixed with any type qualifiers present.
The following describes the formal semantics of this syntax. It will make the
most sense if you are familiar with the formal specification of
declarators in the ISO C standard.
<p>Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration <code>T
D1</code>, where <code>T</code> contains declaration specifiers that specify a type
<var>Type</var> (such as <code>int</code>) and <code>D1</code> is a declarator that
contains an identifier <var>ident</var>. The type specified for <var>ident</var>
for derived declarators whose type does not include an attribute
specifier is as in the ISO C standard.
<p>If <code>D1</code> has the form <code>( </code><var>attribute-specifier-list</var><code> D )</code>,
and the declaration <code>T D</code> specifies the type
“<var>derived-declarator-type-list</var> <var>Type</var>” for <var>ident</var>, then
<code>T D1</code> specifies the type “<var>derived-declarator-type-list</var>
<var>attribute-specifier-list</var> <var>Type</var>” for <var>ident</var>.
<p>If <code>D1</code> has the form <code>*
</code><var>type-qualifier-and-attribute-specifier-list</var><code> D</code>, and the
declaration <code>T D</code> specifies the type
“<var>derived-declarator-type-list</var> <var>Type</var>” for <var>ident</var>, then
<code>T D1</code> specifies the type “<var>derived-declarator-type-list</var>
<var>type-qualifier-and-attribute-specifier-list</var> <var>Type</var>” for
<var>ident</var>.
<p>For example,
<pre class="smallexample"> void (__attribute__((noreturn)) ****f) (void);
</pre>
<p class="noindent">specifies the type “pointer to pointer to pointer to pointer to
non-returning function returning <code>void</code>”. As another example,
<pre class="smallexample"> char *__attribute__((aligned(8))) *f;
</pre>
<p class="noindent">specifies the type “pointer to 8-byte-aligned pointer to <code>char</code>”.
Note again that this does not work with most attributes; for example,
the usage of ‘<samp><span class="samp">aligned</span></samp>’ and ‘<samp><span class="samp">noreturn</span></samp>’ attributes given above
is not yet supported.
<p>For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is
allowed in the placing of attributes. If an attribute that only applies
to types is applied to a declaration, it will be treated as applying to
the type of that declaration. If an attribute that only applies to
declarations is applied to the type of a declaration, it will be treated
as applying to that declaration; and, for compatibility with code
placing the attributes immediately before the identifier declared, such
an attribute applied to a function return type will be treated as
applying to the function type, and such an attribute applied to an array
element type will be treated as applying to the array type. If an
attribute that only applies to function types is applied to a
pointer-to-function type, it will be treated as applying to the pointer
target type; if such an attribute is applied to a function return type
that is not a pointer-to-function type, it will be treated as applying
to the function type.
<div class="node">
<a name="Function-Prototypes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Comments">C++ Comments</a>,
Previous: <a rel="previous" accesskey="p" href="#Attribute-Syntax">Attribute Syntax</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.30 Prototypes and Old-Style Function Definitions</h3>
<p><a name="index-function-prototype-declarations-2324"></a><a name="index-old_002dstyle-function-definitions-2325"></a><a name="index-promotion-of-formal-parameters-2326"></a>
GNU C extends ISO C to allow a function prototype to override a later
old-style non-prototype definition. Consider the following example:
<pre class="smallexample"> /* <span class="roman">Use prototypes unless the compiler is old-fashioned.</span> */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
/* <span class="roman">Prototype function declaration.</span> */
int isroot P((uid_t));
/* <span class="roman">Old-style function definition.</span> */
int
isroot (x) /* <span class="roman">??? lossage here ???</span> */
uid_t x;
{
return x == 0;
}
</pre>
<p>Suppose the type <code>uid_t</code> happens to be <code>short</code>. ISO C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted. Therefore in this example the
function definition's argument is really an <code>int</code>, which does not
match the prototype argument type of <code>short</code>.
<p>This restriction of ISO C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the <code>uid_t</code> type is <code>short</code>, <code>int</code>, or
<code>long</code>. Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition. More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion. Thus in GNU C the above example is
equivalent to the following:
<pre class="smallexample"> int isroot (uid_t);
int
isroot (uid_t x)
{
return x == 0;
}
</pre>
<p class="noindent">GNU C++ does not support old-style function definitions, so this
extension is irrelevant.
<div class="node">
<a name="C++-Comments"></a>
<a name="C_002b_002b-Comments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dollar-Signs">Dollar Signs</a>,
Previous: <a rel="previous" accesskey="p" href="#Function-Prototypes">Function Prototypes</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.31 C++ Style Comments</h3>
<p><a name="index-g_t_002f_002f-2327"></a><a name="index-C_002b_002b-comments-2328"></a><a name="index-comments_002c-C_002b_002b-style-2329"></a>
In GNU C, you may use C++ style comments, which start with ‘<samp><span class="samp">//</span></samp>’ and
continue until the end of the line. Many other C implementations allow
such comments, and they are included in the 1999 C standard. However,
C++ style comments are not recognized if you specify an <samp><span class="option">-std</span></samp>
option specifying a version of ISO C before C99, or <samp><span class="option">-ansi</span></samp>
(equivalent to <samp><span class="option">-std=c89</span></samp>).
<div class="node">
<a name="Dollar-Signs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Character-Escapes">Character Escapes</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Comments">C++ Comments</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.32 Dollar Signs in Identifier Names</h3>
<p><a name="index-g_t_0024-2330"></a><a name="index-dollar-signs-in-identifier-names-2331"></a><a name="index-identifier-names_002c-dollar-signs-in-2332"></a>
In GNU C, you may normally use dollar signs in identifier names.
This is because many traditional C implementations allow such identifiers.
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.
<div class="node">
<a name="Character-Escapes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Variable-Attributes">Variable Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Dollar-Signs">Dollar Signs</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.33 The Character <ESC> in Constants</h3>
<p>You can use the sequence ‘<samp><span class="samp">\e</span></samp>’ in a string or character constant to
stand for the ASCII character <ESC>.
<div class="node">
<a name="Variable-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-Attributes">Type Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Character-Escapes">Character Escapes</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.34 Specifying Attributes of Variables</h3>
<p><a name="index-attribute-of-variables-2333"></a><a name="index-variable-attributes-2334"></a>
The keyword <code>__attribute__</code> allows you to specify special
attributes of variables or structure fields. This keyword is followed
by an attribute specification inside double parentheses. Some
attributes are currently defined generically for variables.
Other attributes are defined for variables on particular target
systems. Other attributes are available for functions
(see <a href="#Function-Attributes">Function Attributes</a>) and for types (see <a href="#Type-Attributes">Type Attributes</a>).
Other front ends might define more attributes
(see <a href="#C_002b_002b-Extensions">Extensions to the C++ Language</a>).
<p>You may also specify attributes with ‘<samp><span class="samp">__</span></samp>’ preceding and following
each keyword. This allows you to use them in header files without
being concerned about a possible macro of the same name. For example,
you may use <code>__aligned__</code> instead of <code>aligned</code>.
<p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.
<a name="index-g_t_0040code_007baligned_007d-attribute-2335"></a>
<dl><dt><code>aligned (</code><var>alignment</var><code>)</code><dd>This attribute specifies a minimum alignment for the variable or
structure field, measured in bytes. For example, the declaration:
<pre class="smallexample"> int x __attribute__ ((aligned (16))) = 0;
</pre>
<p class="noindent">causes the compiler to allocate the global variable <code>x</code> on a
16-byte boundary. On a 68040, this could be used in conjunction with
an <code>asm</code> expression to access the <code>move16</code> instruction which
requires 16-byte aligned operands.
<p>You can also specify the alignment of structure fields. For example, to
create a double-word aligned <code>int</code> pair, you could write:
<pre class="smallexample"> struct foo { int x[2] __attribute__ ((aligned (8))); };
</pre>
<p class="noindent">This is an alternative to creating a union with a <code>double</code> member
that forces the union to be double-word aligned.
<p>As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the
default alignment for the target architecture you are compiling for.
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target which supports vector operations.
The default alignment is fixed for a particular target ABI.
<p>Gcc also provides a target specific macro <code>__BIGGEST_ALIGNMENT__</code>,
which is the largest alignment ever used for any data type on the
target machine you are compiling for. For example, you could write:
<pre class="smallexample"> short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
</pre>
<p>The compiler automatically sets the alignment for the declared
variable or field to <code>__BIGGEST_ALIGNMENT__</code>. Doing this can
often make copy operations more efficient, because the compiler can
use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have
aligned this way. Note that the value of <code>__BIGGEST_ALIGNMENT__</code>
may change depending on command line options.
<p>When used on a struct, or struct member, the <code>aligned</code> attribute can
only increase the alignment; in order to decrease it, the <code>packed</code>
attribute must be specified as well. When used as part of a typedef, the
<code>aligned</code> attribute can both increase and decrease alignment, and
specifying the <code>packed</code> attribute will generate a warning.
<p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker. On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> will still only provide you with 8 byte
alignment. See your linker documentation for further information.
<p>The <code>aligned</code> attribute can also be used for functions
(see <a href="#Function-Attributes">Function Attributes</a>.)
<br><dt><code>cleanup (</code><var>cleanup_function</var><code>)</code><dd><a name="index-g_t_0040code_007bcleanup_007d-attribute-2336"></a>The <code>cleanup</code> attribute runs a function when the variable goes
out of scope. This attribute can only be applied to auto function
scope variables; it may not be applied to parameters or variables
with static storage duration. The function must take one parameter,
a pointer to a type compatible with the variable. The return value
of the function (if any) is ignored.
<p>If <samp><span class="option">-fexceptions</span></samp> is enabled, then <var>cleanup_function</var>
will be run during the stack unwinding that happens during the
processing of the exception. Note that the <code>cleanup</code> attribute
does not allow the exception to be caught, only to perform an action.
It is undefined what happens if <var>cleanup_function</var> does not
return normally.
<br><dt><code>common</code><dt><code>nocommon</code><dd><a name="index-g_t_0040code_007bcommon_007d-attribute-2337"></a><a name="index-g_t_0040code_007bnocommon_007d-attribute-2338"></a><a name="index-fcommon-2339"></a><a name="index-fno_002dcommon-2340"></a>The <code>common</code> attribute requests GCC to place a variable in
“common” storage. The <code>nocommon</code> attribute requests the
opposite—to allocate space for it directly.
<p>These attributes override the default chosen by the
<samp><span class="option">-fno-common</span></samp> and <samp><span class="option">-fcommon</span></samp> flags respectively.
<br><dt><code>deprecated</code><dd><a name="index-g_t_0040code_007bdeprecated_007d-attribute-2341"></a>The <code>deprecated</code> attribute results in a warning if the variable
is used anywhere in the source file. This is useful when identifying
variables that are expected to be removed in a future version of a
program. The warning also includes the location of the declaration
of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should
do instead. Note that the warning only occurs for uses:
<pre class="smallexample"> extern int old_var __attribute__ ((deprecated));
extern int old_var;
int new_fn () { return old_var; }
</pre>
<p>results in a warning on line 3 but not line 2.
<p>The <code>deprecated</code> attribute can also be used for functions and
types (see <a href="#Function-Attributes">Function Attributes</a>, see <a href="#Type-Attributes">Type Attributes</a>.)
<br><dt><code>mode (</code><var>mode</var><code>)</code><dd><a name="index-g_t_0040code_007bmode_007d-attribute-2342"></a>This attribute specifies the data type for the declaration—whichever
type corresponds to the mode <var>mode</var>. This in effect lets you
request an integer or floating point type according to its width.
<p>You may also specify a mode of ‘<samp><span class="samp">byte</span></samp>’ or ‘<samp><span class="samp">__byte__</span></samp>’ to
indicate the mode corresponding to a one-byte integer, ‘<samp><span class="samp">word</span></samp>’ or
‘<samp><span class="samp">__word__</span></samp>’ for the mode of a one-word integer, and ‘<samp><span class="samp">pointer</span></samp>’
or ‘<samp><span class="samp">__pointer__</span></samp>’ for the mode used to represent pointers.
<br><dt><code>packed</code><dd><a name="index-g_t_0040code_007bpacked_007d-attribute-2343"></a>The <code>packed</code> attribute specifies that a variable or structure field
should have the smallest possible alignment—one byte for a variable,
and one bit for a field, unless you specify a larger value with the
<code>aligned</code> attribute.
<p>Here is a structure in which the field <code>x</code> is packed, so that it
immediately follows <code>a</code>:
<pre class="smallexample"> struct foo
{
char a;
int x[2] __attribute__ ((packed));
};
</pre>
<p><em>Note:</em> The 4.1, 4.2 and 4.3 series of GCC ignore the
<code>packed</code> attribute on bit-fields of type <code>char</code>. This has
been fixed in GCC 4.4 but the change can lead to differences in the
structure layout. See the documentation of
<samp><span class="option">-Wpacked-bitfield-compat</span></samp> for more information.
<br><dt><code>section ("</code><var>section-name</var><code>")</code><dd><a name="index-g_t_0040code_007bsection_007d-variable-attribute-2344"></a>Normally, the compiler places the objects it generates in sections like
<code>data</code> and <code>bss</code>. Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware. The <code>section</code>
attribute specifies that a variable (or function) lives in a particular
section. For example, this small program uses several specific section names:
<pre class="smallexample"> struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data __attribute__ ((section ("INITDATA")));
main()
{
/* <span class="roman">Initialize stack pointer</span> */
init_sp (stack + sizeof (stack));
/* <span class="roman">Initialize initialized data</span> */
memcpy (&init_data, &data, &edata - &data);
/* <span class="roman">Turn on the serial ports</span> */
init_duart (&a);
init_duart (&b);
}
</pre>
<p class="noindent">Use the <code>section</code> attribute with
<em>global</em> variables and not <em>local</em> variables,
as shown in the example.
<p>You may use the <code>section</code> attribute with initialized or
uninitialized global variables but the linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the <code>common</code> (or <code>bss</code>) section
and can be multiply “defined”. Using the <code>section</code> attribute
will change what section the variable goes into and may cause the
linker to issue an error if an uninitialized variable has multiple
definitions. You can force a variable to be initialized with the
<samp><span class="option">-fno-common</span></samp> flag or the <code>nocommon</code> attribute.
<p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms.
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.
<br><dt><code>shared</code><dd><a name="index-g_t_0040code_007bshared_007d-variable-attribute-2345"></a>On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an
executable or DLL. For example, this small program defines shared data
by putting it in a named section <code>shared</code> and marking the section
shareable:
<pre class="smallexample"> int foo __attribute__((section ("shared"), shared)) = 0;
int
main()
{
/* <span class="roman">Read and write foo. All running
copies see the same value.</span> */
return 0;
}
</pre>
<p class="noindent">You may only use the <code>shared</code> attribute along with <code>section</code>
attribute with a fully initialized global definition because of the way
linkers work. See <code>section</code> attribute for more information.
<p>The <code>shared</code> attribute is only available on Microsoft Windows.
<br><dt><code>tls_model ("</code><var>tls_model</var><code>")</code><dd><a name="index-g_t_0040code_007btls_005fmodel_007d-attribute-2346"></a>The <code>tls_model</code> attribute sets thread-local storage model
(see <a href="#Thread_002dLocal">Thread-Local</a>) of a particular <code>__thread</code> variable,
overriding <samp><span class="option">-ftls-model=</span></samp> command line switch on a per-variable
basis.
The <var>tls_model</var> argument should be one of <code>global-dynamic</code>,
<code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.
<p>Not all targets support this attribute.
<br><dt><code>unused</code><dd>This attribute, attached to a variable, means that the variable is meant
to be possibly unused. GCC will not produce a warning for this
variable.
<br><dt><code>used</code><dd>This attribute, attached to a variable, means that the variable must be
emitted even if it appears that the variable is not referenced.
<br><dt><code>vector_size (</code><var>bytes</var><code>)</code><dd>This attribute specifies the vector size for the variable, measured in
bytes. For example, the declaration:
<pre class="smallexample"> int foo __attribute__ ((vector_size (16)));
</pre>
<p class="noindent">causes the compiler to set the mode for <code>foo</code>, to be 16 bytes,
divided into <code>int</code> sized units. Assuming a 32-bit int (a vector of
4 units of 4 bytes), the corresponding mode of <code>foo</code> will be V4SI.
<p>This attribute is only applicable to integral and float scalars,
although arrays, pointers, and function return values are allowed in
conjunction with this construct.
<p>Aggregates with this attribute are invalid, even if they are of the same
size as a corresponding scalar. For example, the declaration:
<pre class="smallexample"> struct S { int a; };
struct S __attribute__ ((vector_size (16))) foo;
</pre>
<p class="noindent">is invalid even if the size of the structure is the same as the size of
the <code>int</code>.
<br><dt><code>selectany</code><dd>The <code>selectany</code> attribute causes an initialized global variable to
have link-once semantics. When multiple definitions of the variable are
encountered by the linker, the first is selected and the remainder are
discarded. Following usage by the Microsoft compiler, the linker is told
<em>not</em> to warn about size or content differences of the multiple
definitions.
<p>Although the primary usage of this attribute is for POD types, the
attribute can also be applied to global C++ objects that are initialized
by a constructor. In this case, the static initialization and destruction
code for the object is emitted in each translation defining the object,
but the calls to the constructor and destructor are protected by a
link-once guard variable.
<p>The <code>selectany</code> attribute is only available on Microsoft Windows
targets. You can use <code>__declspec (selectany)</code> as a synonym for
<code>__attribute__ ((selectany))</code> for compatibility with other
compilers.
<br><dt><code>weak</code><dd>The <code>weak</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.
<br><dt><code>dllimport</code><dd>The <code>dllimport</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.
<br><dt><code>dllexport</code><dd>The <code>dllexport</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.
</dl>
<h4 class="subsection">5.34.1 Blackfin Variable Attributes</h4>
<p>Three attributes are currently defined for the Blackfin.
<dl>
<dt><code>l1_data</code><br><dt><code>l1_data_A</code><br><dt><code>l1_data_B</code><dd><a name="index-g_t_0040code_007bl1_005fdata_007d-variable-attribute-2347"></a><a name="index-g_t_0040code_007bl1_005fdata_005fA_007d-variable-attribute-2348"></a><a name="index-g_t_0040code_007bl1_005fdata_005fB_007d-variable-attribute-2349"></a>Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
Variables with <code>l1_data</code> attribute will be put into the specific section
named <code>.l1.data</code>. Those with <code>l1_data_A</code> attribute will be put into
the specific section named <code>.l1.data.A</code>. Those with <code>l1_data_B</code>
attribute will be put into the specific section named <code>.l1.data.B</code>.
</dl>
<h4 class="subsection">5.34.2 M32R/D Variable Attributes</h4>
<p>One attribute is currently defined for the M32R/D.
<dl>
<dt><code>model (</code><var>model-name</var><code>)</code><dd><a name="index-variable-addressability-on-the-M32R_002fD-2350"></a>Use this attribute on the M32R/D to set the addressability of an object.
The identifier <var>model-name</var> is one of <code>small</code>, <code>medium</code>,
or <code>large</code>, representing each of the code models.
<p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction).
<p>Medium and large model objects may live anywhere in the 32-bit address space
(the compiler will generate <code>seth/add3</code> instructions to load their
addresses).
</dl>
<p><a name="i386-Variable-Attributes"></a>
<h4 class="subsection">5.34.3 i386 Variable Attributes</h4>
<p>Two attributes are currently defined for i386 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>
<dl>
<dt><code>ms_struct</code><dt><code>gcc_struct</code><dd><a name="index-g_t_0040code_007bms_005fstruct_007d-attribute-2351"></a><a name="index-g_t_0040code_007bgcc_005fstruct_007d-attribute-2352"></a>
If <code>packed</code> is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC would normally pack them. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
<p>Currently <samp><span class="option">-m[no-]ms-bitfields</span></samp> is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.
<p>The Microsoft structure layout algorithm is fairly simple with the exception
of the bitfield packing:
<p>The padding and alignment of members of structures and whether a bit field
can straddle a storage-unit boundary
<ol type=1 start=1>
<li>Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last member
the highest.
<li>Every data object has an alignment-requirement. The alignment-requirement
for all data except structures, unions, and arrays is either the size of the
object or the current packing size (specified with either the aligned attribute
or the pack pragma), whichever is less. For structures, unions, and arrays,
the alignment-requirement is the largest alignment-requirement of its members.
Every object is allocated an offset so that:
<p>offset % alignment-requirement == 0
<li>Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
unit if the integral types are the same size and if the next bit field fits
into the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit fields.
</ol>
<p>Handling of zero-length bitfields:
<p>MSVC interprets zero-length bitfields in the following ways:
<ol type=1 start=1>
<li>If a zero-length bitfield is inserted between two bitfields that would
normally be coalesced, the bitfields will not be coalesced.
<p>For example:
<pre class="smallexample"> struct
{
unsigned long bf_1 : 12;
unsigned long : 0;
unsigned long bf_2 : 12;
} t1;
</pre>
<p>The size of <code>t1</code> would be 8 bytes with the zero-length bitfield. If the
zero-length bitfield were removed, <code>t1</code>'s size would be 4 bytes.
<li>If a zero-length bitfield is inserted after a bitfield, <code>foo</code>, and the
alignment of the zero-length bitfield is greater than the member that follows it,
<code>bar</code>, <code>bar</code> will be aligned as the type of the zero-length bitfield.
<p>For example:
<pre class="smallexample"> struct
{
char foo : 4;
short : 0;
char bar;
} t2;
struct
{
char foo : 4;
short : 0;
double bar;
} t3;
</pre>
<p>For <code>t2</code>, <code>bar</code> will be placed at offset 2, rather than offset 1.
Accordingly, the size of <code>t2</code> will be 4. For <code>t3</code>, the zero-length
bitfield will not affect the alignment of <code>bar</code> or, as a result, the size
of the structure.
<p>Taking this into account, it is important to note the following:
<ol type=1 start=1>
<li>If a zero-length bitfield follows a normal bitfield, the type of the
zero-length bitfield may affect the alignment of the structure as whole. For
example, <code>t2</code> has a size of 4 bytes, since the zero-length bitfield follows a
normal bitfield, and is of type short.
<li>Even if a zero-length bitfield is not followed by a normal bitfield, it may
still affect the alignment of the structure:
<pre class="smallexample"> struct
{
char foo : 6;
long : 0;
} t4;
</pre>
<p>Here, <code>t4</code> will take up 4 bytes.
</ol>
<li>Zero-length bitfields following non-bitfield members are ignored:
<pre class="smallexample"> struct
{
char foo;
long : 0;
char bar;
} t5;
</pre>
<p>Here, <code>t5</code> will take up 2 bytes.
</ol>
</dl>
<h4 class="subsection">5.34.4 PowerPC Variable Attributes</h4>
<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.
<p>For full documentation of the struct attributes please see the
documentation in <a href="#i386-Variable-Attributes">i386 Variable Attributes</a>.
<p>For documentation of <code>altivec</code> attribute please see the
documentation in <a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a>.
<h4 class="subsection">5.34.5 SPU Variable Attributes</h4>
<p>The SPU supports the <code>spu_vector</code> attribute for variables. For
documentation of this attribute please see the documentation in
<a href="#SPU-Type-Attributes">SPU Type Attributes</a>.
<h4 class="subsection">5.34.6 Xstormy16 Variable Attributes</h4>
<p>One attribute is currently defined for xstormy16 configurations:
<code>below100</code>.
<dl>
<dt><code>below100</code><dd><a name="index-g_t_0040code_007bbelow100_007d-attribute-2353"></a>
If a variable has the <code>below100</code> attribute (<code>BELOW100</code> is
allowed also), GCC will place the variable in the first 0x100 bytes of
memory and use special opcodes to access it. Such variables will be
placed in either the <code>.bss_below100</code> section or the
<code>.data_below100</code> section.
</dl>
<h4 class="subsection">5.34.7 AVR Variable Attributes</h4>
<dl>
<dt><code>progmem</code><dd><a name="index-g_t_0040code_007bprogmem_007d-variable-attribute-2354"></a>The <code>progmem</code> attribute is used on the AVR to place data in the Program
Memory address space. The AVR is a Harvard Architecture processor and data
normally resides in the Data Memory address space.
</dl>
<div class="node">
<a name="Type-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Alignment">Alignment</a>,
Previous: <a rel="previous" accesskey="p" href="#Variable-Attributes">Variable Attributes</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.35 Specifying Attributes of Types</h3>
<p><a name="index-attribute-of-types-2355"></a><a name="index-type-attributes-2356"></a>
The keyword <code>__attribute__</code> allows you to specify special
attributes of <code>struct</code> and <code>union</code> types when you define
such types. This keyword is followed by an attribute specification
inside double parentheses. Seven attributes are currently defined for
types: <code>aligned</code>, <code>packed</code>, <code>transparent_union</code>,
<code>unused</code>, <code>deprecated</code>, <code>visibility</code>, and
<code>may_alias</code>. Other attributes are defined for functions
(see <a href="#Function-Attributes">Function Attributes</a>) and for variables (see <a href="#Variable-Attributes">Variable Attributes</a>).
<p>You may also specify any one of these attributes with ‘<samp><span class="samp">__</span></samp>’
preceding and following its keyword. This allows you to use these
attributes in header files without being concerned about a possible
macro of the same name. For example, you may use <code>__aligned__</code>
instead of <code>aligned</code>.
<p>You may specify type attributes in an enum, struct or union type
declaration or definition, or for other types in a <code>typedef</code>
declaration.
<p>For an enum, struct or union type, you may specify attributes either
between the enum, struct or union tag and the name of the type, or
just past the closing curly brace of the <em>definition</em>. The
former syntax is preferred.
<p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.
<a name="index-g_t_0040code_007baligned_007d-attribute-2357"></a>
<dl><dt><code>aligned (</code><var>alignment</var><code>)</code><dd>This attribute specifies a minimum alignment (in bytes) for variables
of the specified type. For example, the declarations:
<pre class="smallexample"> struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));
</pre>
<p class="noindent">force the compiler to insure (as far as it can) that each variable whose
type is <code>struct S</code> or <code>more_aligned_int</code> will be allocated and
aligned <em>at least</em> on a 8-byte boundary. On a SPARC, having all
variables of type <code>struct S</code> aligned to 8-byte boundaries allows
the compiler to use the <code>ldd</code> and <code>std</code> (doubleword load and
store) instructions when copying one variable of type <code>struct S</code> to
another, thus improving run-time efficiency.
<p>Note that the alignment of any given <code>struct</code> or <code>union</code> type
is required by the ISO C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the <code>struct</code> or <code>union</code> in question. This means that you <em>can</em>
effectively adjust the alignment of a <code>struct</code> or <code>union</code>
type by attaching an <code>aligned</code> attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire <code>struct</code> or <code>union</code> type.
<p>As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given <code>struct</code>
or <code>union</code> type. Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for. For
example, you could write:
<pre class="smallexample"> struct S { short f[3]; } __attribute__ ((aligned));
</pre>
<p>Whenever you leave out the alignment factor in an <code>aligned</code>
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment which is ever used for any data
type on the target machine you are compiling for. Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables which have types that you have aligned
this way.
<p>In the example above, if the size of each <code>short</code> is 2 bytes, then
the size of the entire <code>struct S</code> type is 6 bytes. The smallest
power of two which is greater than or equal to that is 8, so the
compiler sets the alignment for the entire <code>struct S</code> type to 8
bytes.
<p>Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler's ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type. If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations will often be more efficient for
efficiently-aligned types than for other types.
<p>The <code>aligned</code> attribute can only increase the alignment; but you
can decrease it by specifying <code>packed</code> as well. See below.
<p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker. On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment. (For some linkers, the maximum supported alignment may
be very very small.) If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> will still only provide you with 8 byte
alignment. See your linker documentation for further information.
<br><dt><code>packed</code><dd>This attribute, attached to <code>struct</code> or <code>union</code> type
definition, specifies that each member (other than zero-width bitfields)
of the structure or union is placed to minimize the memory required. When
attached to an <code>enum</code> definition, it indicates that the smallest
integral type should be used.
<p><a name="index-fshort_002denums-2358"></a>Specifying this attribute for <code>struct</code> and <code>union</code> types is
equivalent to specifying the <code>packed</code> attribute on each of the
structure or union members. Specifying the <samp><span class="option">-fshort-enums</span></samp>
flag on the line is equivalent to specifying the <code>packed</code>
attribute on all <code>enum</code> definitions.
<p>In the following example <code>struct my_packed_struct</code>'s members are
packed closely together, but the internal layout of its <code>s</code> member
is not packed—to do that, <code>struct my_unpacked_struct</code> would need to
be packed too.
<pre class="smallexample"> struct my_unpacked_struct
{
char c;
int i;
};
struct __attribute__ ((__packed__)) my_packed_struct
{
char c;
int i;
struct my_unpacked_struct s;
};
</pre>
<p>You may only specify this attribute on the definition of a <code>enum</code>,
<code>struct</code> or <code>union</code>, not on a <code>typedef</code> which does not
also define the enumerated type, structure or union.
<br><dt><code>transparent_union</code><dd>This attribute, attached to a <code>union</code> type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.
<p>First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required. Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression.
If the union member type is a pointer, qualifiers like <code>const</code> on
the referenced type must be respected, just as with normal pointer
conversions.
<p>Second, the argument is passed to the function using the calling
conventions of the first member of the transparent union, not the calling
conventions of the union itself. All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.
<p>Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons. For example, suppose the
<code>wait</code> function must accept either a value of type <code>int *</code> to
comply with Posix, or a value of type <code>union wait *</code> to comply with
the 4.1BSD interface. If <code>wait</code>'s parameter were <code>void *</code>,
<code>wait</code> would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful. Instead, <code><sys/wait.h></code> might define the interface
as follows:
<pre class="smallexample"> typedef union __attribute__ ((__transparent_union__))
{
int *__ip;
union wait *__up;
} wait_status_ptr_t;
pid_t wait (wait_status_ptr_t);
</pre>
<p>This interface allows either <code>int *</code> or <code>union wait *</code>
arguments to be passed, using the <code>int *</code> calling convention.
The program can call <code>wait</code> with arguments of either type:
<pre class="smallexample"> int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }
</pre>
<p>With this interface, <code>wait</code>'s implementation might look like this:
<pre class="smallexample"> pid_t wait (wait_status_ptr_t p)
{
return waitpid (-1, p.__ip, 0);
}
</pre>
<br><dt><code>unused</code><dd>When attached to a type (including a <code>union</code> or a <code>struct</code>),
this attribute means that variables of that type are meant to appear
possibly unused. GCC will not produce a warning for any variables of
that type, even if the variable appears to do nothing. This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.
<br><dt><code>deprecated</code><dd>The <code>deprecated</code> attribute results in a warning if the type
is used anywhere in the source file. This is useful when identifying
types that are expected to be removed in a future version of a program.
If possible, the warning also includes the location of the declaration
of the deprecated type, to enable users to easily find further
information about why the type is deprecated, or what they should do
instead. Note that the warnings only occur for uses and then only
if the type is being applied to an identifier that itself is not being
declared as deprecated.
<pre class="smallexample"> typedef int T1 __attribute__ ((deprecated));
T1 x;
typedef T1 T2;
T2 y;
typedef T1 T3 __attribute__ ((deprecated));
T3 z __attribute__ ((deprecated));
</pre>
<p>results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
warning is issued for line 4 because T2 is not explicitly
deprecated. Line 5 has no warning because T3 is explicitly
deprecated. Similarly for line 6.
<p>The <code>deprecated</code> attribute can also be used for functions and
variables (see <a href="#Function-Attributes">Function Attributes</a>, see <a href="#Variable-Attributes">Variable Attributes</a>.)
<br><dt><code>may_alias</code><dd>Accesses through pointers to types with this attribute are not subject
to type-based alias analysis, but are instead assumed to be able to alias
any other type of objects. In the context of 6.5/7 an lvalue expression
dereferencing such a pointer is treated like having a character type.
See <samp><span class="option">-fstrict-aliasing</span></samp> for more information on aliasing issues.
This extension exists to support some vector APIs, in which pointers to
one vector type are permitted to alias pointers to a different vector type.
<p>Note that an object of a type with this attribute does not have any
special semantics.
<p>Example of use:
<pre class="smallexample"> typedef short __attribute__((__may_alias__)) short_a;
int
main (void)
{
int a = 0x12345678;
short_a *b = (short_a *) &a;
b[1] = 0;
if (a == 0x12345678)
abort();
exit(0);
}
</pre>
<p>If you replaced <code>short_a</code> with <code>short</code> in the variable
declaration, the above program would abort when compiled with
<samp><span class="option">-fstrict-aliasing</span></samp>, which is on by default at <samp><span class="option">-O2</span></samp> or
above in recent GCC versions.
<br><dt><code>visibility</code><dd>In C++, attribute visibility (see <a href="#Function-Attributes">Function Attributes</a>) can also be
applied to class, struct, union and enum types. Unlike other type
attributes, the attribute must appear between the initial keyword and
the name of the type; it cannot appear after the body of the type.
<p>Note that the type visibility is applied to vague linkage entities
associated with the class (vtable, typeinfo node, etc.). In
particular, if a class is thrown as an exception in one shared object
and caught in another, the class must have default visibility.
Otherwise the two shared objects will be unable to use the same
typeinfo node and exception handling will break.
</dl>
<h4 class="subsection">5.35.1 ARM Type Attributes</h4>
<p>On those ARM targets that support <code>dllimport</code> (such as Symbian
OS), you can use the <code>notshared</code> attribute to indicate that the
virtual table and other similar data for a class should not be
exported from a DLL. For example:
<pre class="smallexample"> class __declspec(notshared) C {
public:
__declspec(dllimport) C();
virtual void f();
}
__declspec(dllexport)
C::C() {}
</pre>
<p>In this code, <code>C::C</code> is exported from the current DLL, but the
virtual table for <code>C</code> is not exported. (You can use
<code>__attribute__</code> instead of <code>__declspec</code> if you prefer, but
most Symbian OS code uses <code>__declspec</code>.)
<p><a name="i386-Type-Attributes"></a>
<h4 class="subsection">5.35.2 i386 Type Attributes</h4>
<p>Two attributes are currently defined for i386 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>.
<dl>
<dt><code>ms_struct</code><dt><code>gcc_struct</code><dd><a name="index-g_t_0040code_007bms_005fstruct_007d-2359"></a><a name="index-g_t_0040code_007bgcc_005fstruct_007d-2360"></a>
If <code>packed</code> is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC would normally pack them. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
<p>Currently <samp><span class="option">-m[no-]ms-bitfields</span></samp> is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.
</dl>
<p>To specify multiple attributes, separate them by commas within the
double parentheses: for example, ‘<samp><span class="samp">__attribute__ ((aligned (16),
packed))</span></samp>’.
<p><a name="PowerPC-Type-Attributes"></a>
<h4 class="subsection">5.35.3 PowerPC Type Attributes</h4>
<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.
<p>For full documentation of the <code>ms_struct</code> and <code>gcc_struct</code>
attributes please see the documentation in <a href="#i386-Type-Attributes">i386 Type Attributes</a>.
<p>The <code>altivec</code> attribute allows one to declare AltiVec vector data
types supported by the AltiVec Programming Interface Manual. The
attribute requires an argument to specify one of three vector types:
<code>vector__</code>, <code>pixel__</code> (always followed by unsigned short),
and <code>bool__</code> (always followed by unsigned).
<pre class="smallexample"> __attribute__((altivec(vector__)))
__attribute__((altivec(pixel__))) unsigned short
__attribute__((altivec(bool__))) unsigned
</pre>
<p>These attributes mainly are intended to support the <code>__vector</code>,
<code>__pixel</code>, and <code>__bool</code> AltiVec keywords.
<p><a name="SPU-Type-Attributes"></a>
<h4 class="subsection">5.35.4 SPU Type Attributes</h4>
<p>The SPU supports the <code>spu_vector</code> attribute for types. This attribute
allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
Language Extensions Specification. It is intended to support the
<code>__vector</code> keyword.
<div class="node">
<a name="Alignment"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Inline">Inline</a>,
Previous: <a rel="previous" accesskey="p" href="#Type-Attributes">Type Attributes</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.36 Inquiring on Alignment of Types or Variables</h3>
<p><a name="index-alignment-2361"></a><a name="index-type-alignment-2362"></a><a name="index-variable-alignment-2363"></a>
The keyword <code>__alignof__</code> allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type. Its
syntax is just like <code>sizeof</code>.
<p>For example, if the target machine requires a <code>double</code> value to be
aligned on an 8-byte boundary, then <code>__alignof__ (double)</code> is 8.
This is true on many RISC machines. On more traditional machine
designs, <code>__alignof__ (double)</code> is 4 or even 2.
<p>Some machines never actually require alignment; they allow reference to any
data type even at an odd address. For these machines, <code>__alignof__</code>
reports the smallest alignment that GCC will give the data type, usually as
mandated by the target ABI.
<p>If the operand of <code>__alignof__</code> is an lvalue rather than a type,
its value is the required alignment for its type, taking into account
any minimum alignment specified with GCC's <code>__attribute__</code>
extension (see <a href="#Variable-Attributes">Variable Attributes</a>). For example, after this
declaration:
<pre class="smallexample"> struct foo { int x; char y; } foo1;
</pre>
<p class="noindent">the value of <code>__alignof__ (foo1.y)</code> is 1, even though its actual
alignment is probably 2 or 4, the same as <code>__alignof__ (int)</code>.
<p>It is an error to ask for the alignment of an incomplete type.
<div class="node">
<a name="Inline"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Extended-Asm">Extended Asm</a>,
Previous: <a rel="previous" accesskey="p" href="#Alignment">Alignment</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.37 An Inline Function is As Fast As a Macro</h3>
<p><a name="index-inline-functions-2364"></a><a name="index-integrating-function-code-2365"></a><a name="index-open-coding-2366"></a><a name="index-macros_002c-inline-alternative-2367"></a>
By declaring a function inline, you can direct GCC to make
calls to that function faster. One way GCC can achieve this is to
integrate that function's code into the code for its callers. This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function's code needs to be included. The effect on
code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case. You can
also direct GCC to try to integrate all “simple enough” functions
into their callers with the option <samp><span class="option">-finline-functions</span></samp>.
<p>GCC implements three different semantics of declaring a function
inline. One is available with <samp><span class="option">-std=gnu89</span></samp> or
<samp><span class="option">-fgnu89-inline</span></samp> or when <code>gnu_inline</code> attribute is present
on all inline declarations, another when <samp><span class="option">-std=c99</span></samp> or
<samp><span class="option">-std=gnu99</span></samp> (without <samp><span class="option">-fgnu89-inline</span></samp>), and the third
is used when compiling C++.
<p>To declare a function inline, use the <code>inline</code> keyword in its
declaration, like this:
<pre class="smallexample"> static inline int
inc (int *a)
{
(*a)++;
}
</pre>
<p>If you are writing a header file to be included in ISO C89 programs, write
<code>__inline__</code> instead of <code>inline</code>. See <a href="#Alternate-Keywords">Alternate Keywords</a>.
<p>The three types of inlining behave similarly in two important cases:
when the <code>inline</code> keyword is used on a <code>static</code> function,
like the example above, and when a function is first declared without
using the <code>inline</code> keyword and then is defined with
<code>inline</code>, like this:
<pre class="smallexample"> extern int inc (int *a);
inline int
inc (int *a)
{
(*a)++;
}
</pre>
<p>In both of these common cases, the program behaves the same as if you
had not used the <code>inline</code> keyword, except for its speed.
<p><a name="index-inline-functions_002c-omission-of-2368"></a><a name="index-fkeep_002dinline_002dfunctions-2369"></a>When a function is both inline and <code>static</code>, if all calls to the
function are integrated into the caller, and the function's address is
never used, then the function's own assembler code is never referenced.
In this case, GCC does not actually output assembler code for the
function, unless you specify the option <samp><span class="option">-fkeep-inline-functions</span></samp>.
Some calls cannot be integrated for various reasons (in particular,
calls that precede the function's definition cannot be integrated, and
neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as
usual. The function must also be compiled as usual if the program
refers to its address, because that can't be inlined.
<p><a name="index-Winline-2370"></a>Note that certain usages in a function definition can make it unsuitable
for inline substitution. Among these usages are: use of varargs, use of
alloca, use of variable sized data types (see <a href="#Variable-Length">Variable Length</a>),
use of computed goto (see <a href="#Labels-as-Values">Labels as Values</a>), use of nonlocal goto,
and nested functions (see <a href="#Nested-Functions">Nested Functions</a>). Using <samp><span class="option">-Winline</span></samp>
will warn when a function marked <code>inline</code> could not be substituted,
and will give the reason for the failure.
<p><a name="index-automatic-_0040code_007binline_007d-for-C_002b_002b-member-fns-2371"></a><a name="index-g_t_0040code_007binline_007d-automatic-for-C_002b_002b-member-fns-2372"></a><a name="index-member-fns_002c-automatically-_0040code_007binline_007d-2373"></a><a name="index-C_002b_002b-member-fns_002c-automatically-_0040code_007binline_007d-2374"></a><a name="index-fno_002ddefault_002dinline-2375"></a>As required by ISO C++, GCC considers member functions defined within
the body of a class to be marked inline even if they are
not explicitly declared with the <code>inline</code> keyword. You can
override this with <samp><span class="option">-fno-default-inline</span></samp>; see <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.
<p>GCC does not inline any functions when not optimizing unless you specify
the ‘<samp><span class="samp">always_inline</span></samp>’ attribute for the function, like this:
<pre class="smallexample"> /* <span class="roman">Prototype.</span> */
inline void foo (const char) __attribute__((always_inline));
</pre>
<p>The remainder of this section is specific to GNU C89 inlining.
<p><a name="index-non_002dstatic-inline-function-2376"></a>When an inline function is not <code>static</code>, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated.
Therefore, a non-<code>static</code> inline function is always compiled on its
own in the usual fashion.
<p>If you specify both <code>inline</code> and <code>extern</code> in the function
definition, then the definition is used only for inlining. In no case
is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.
<p>This combination of <code>inline</code> and <code>extern</code> has almost the
effect of a macro. The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking <code>inline</code> and <code>extern</code>) in a library file.
The definition in the header file will cause most calls to the function
to be inlined. If any uses of the function remain, they will refer to
the single copy in the library.
<div class="node">
<a name="Extended-Asm"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constraints">Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Inline">Inline</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.38 Assembler Instructions with C Expression Operands</h3>
<p><a name="index-extended-_0040code_007basm_007d-2377"></a><a name="index-g_t_0040code_007basm_007d-expressions-2378"></a><a name="index-assembler-instructions-2379"></a><a name="index-registers-2380"></a>
In an assembler instruction using <code>asm</code>, you can specify the
operands of the instruction using C expressions. This means you need not
guess which registers or memory locations will contain the data you want
to use.
<p>You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.
<p>For example, here is how to use the 68881's <code>fsinx</code> instruction:
<pre class="smallexample"> asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
</pre>
<p class="noindent">Here <code>angle</code> is the C expression for the input operand while
<code>result</code> is that of the output operand. Each has ‘<samp><span class="samp">"f"</span></samp>’ as its
operand constraint, saying that a floating point register is required.
The ‘<samp><span class="samp">=</span></samp>’ in ‘<samp><span class="samp">=f</span></samp>’ indicates that the operand is an output; all
output operands' constraints must use ‘<samp><span class="samp">=</span></samp>’. The constraints use the
same language used in the machine description (see <a href="#Constraints">Constraints</a>).
<p>Each operand is described by an operand-constraint string followed by
the C expression in parentheses. A colon separates the assembler
template from the first output operand and another separates the last
output operand from the first input, if any. Commas separate the
operands within each group. The total number of operands is currently
limited to 30; this limitation may be lifted in some future version of
GCC.
<p>If there are no output operands but there are input operands, you must
place two consecutive colons surrounding the place where the output
operands would go.
<p>As of GCC version 3.1, it is also possible to specify input and output
operands using symbolic names which can be referenced within the
assembler code. These names are specified inside square brackets
preceding the constraint string, and can be referenced inside the
assembler code using <code>%[</code><var>name</var><code>]</code> instead of a percentage sign
followed by the operand number. Using named operands the above example
could look like:
<pre class="smallexample"> asm ("fsinx %[angle],%[output]"
: [output] "=f" (result)
: [angle] "f" (angle));
</pre>
<p class="noindent">Note that the symbolic operand names have no relation whatsoever to
other C identifiers. You may use any name you like, even those of
existing C symbols, but you must ensure that no two operands within the same
assembler construct use the same symbolic name.
<p>Output operand expressions must be lvalues; the compiler can check this.
The input operands need not be lvalues. The compiler cannot check
whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler instruction
template and does not know what it means or even whether it is valid
assembler input. The extended <code>asm</code> feature is most often used for
machine instructions the compiler itself does not know exist. If
the output expression cannot be directly addressed (for example, it is a
bit-field), your constraint must allow a register. In that case, GCC
will use the register as the output of the <code>asm</code>, and then store
that register into the output.
<p>The ordinary output operands must be write-only; GCC will assume that
the values in these operands before the instruction are dead and need
not be generated. Extended asm supports input-output or read-write
operands. Use the constraint character ‘<samp><span class="samp">+</span></samp>’ to indicate such an
operand and list it with the output operands. You should only use
read-write operands when the constraints for the operand (or the
operand in which only some of the bits are to be changed) allow a
register.
<p>You may, as an alternative, logically split its function into two
separate operands, one input operand and one write-only output
operand. The connection between them is expressed by constraints
which say they need to be in the same location when the instruction
executes. You can use the same C expression for both operands, or
different expressions. For example, here we write the (fictitious)
‘<samp><span class="samp">combine</span></samp>’ instruction with <code>bar</code> as its read-only source
operand and <code>foo</code> as its read-write destination:
<pre class="smallexample"> asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
</pre>
<p class="noindent">The constraint ‘<samp><span class="samp">"0"</span></samp>’ for operand 1 says that it must occupy the
same location as operand 0. A number in constraint is allowed only in
an input operand and it must refer to an output operand.
<p>Only a number in the constraint can guarantee that one operand will be in
the same place as another. The mere fact that <code>foo</code> is the value
of both operands is not enough to guarantee that they will be in the
same place in the generated assembler code. The following would not
work reliably:
<pre class="smallexample"> asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
</pre>
<p>Various optimizations or reloading could cause operands 0 and 1 to be in
different registers; GCC knows no reason not to do so. For example, the
compiler might find a copy of the value of <code>foo</code> in one register and
use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to <code>foo</code>'s own address). Of course,
since the register for operand 1 is not even mentioned in the assembler
code, the result will not work, but GCC can't tell that.
<p>As of GCC version 3.1, one may write <code>[</code><var>name</var><code>]</code> instead of
the operand number for a matching constraint. For example:
<pre class="smallexample"> asm ("cmoveq %1,%2,%[result]"
: [result] "=r"(result)
: "r" (test), "r"(new), "[result]"(old));
</pre>
<p>Sometimes you need to make an <code>asm</code> operand be a specific register,
but there's no matching constraint letter for that register <em>by
itself</em>. To force the operand into that register, use a local variable
for the operand and specify the register in the variable declaration.
See <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>. Then for the <code>asm</code> operand, use any
register constraint letter that matches the register:
<pre class="smallexample"> register int *p1 asm ("r0") = ...;
register int *p2 asm ("r1") = ...;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre>
<p><a name="Example-of-asm-with-clobbered-asm-reg"></a>In the above example, beware that a register that is call-clobbered by
the target ABI will be overwritten by any function call in the
assignment, including library calls for arithmetic operators.
Also a register may be clobbered when generating some operations,
like variable shift, memory copy or memory move on x86.
Assuming it is a call-clobbered register, this may happen to <code>r0</code>
above by the assignment to <code>p2</code>. If you have to use such a
register, use temporary variables for expressions between the register
assignment and use:
<pre class="smallexample"> int t1 = ...;
register int *p1 asm ("r0") = ...;
register int *p2 asm ("r1") = t1;
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre>
<p>Some instructions clobber specific hard registers. To describe this,
write a third colon after the input operands, followed by the names of
the clobbered hard registers (given as strings). Here is a realistic
example for the VAX:
<pre class="smallexample"> asm volatile ("movc3 %0,%1,%2"
: /* <span class="roman">no outputs</span> */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");
</pre>
<p>You may not write a clobber description in a way that overlaps with an
input or output operand. For example, you may not have an operand
describing a register class with one member if you mention that register
in the clobber list. Variables declared to live in specific registers
(see <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>), and used as asm input or output operands must
have no part mentioned in the clobber description.
There is no way for you to specify that an input
operand is modified without also specifying it as an output
operand. Note that if all the output operands you specify are for this
purpose (and hence unused), you will then also need to specify
<code>volatile</code> for the <code>asm</code> construct, as described below, to
prevent GCC from deleting the <code>asm</code> statement as unused.
<p>If you refer to a particular hardware register from the assembler code,
you will probably have to list the register after the third colon to
tell the compiler the register's value is modified. In some assemblers,
the register names begin with ‘<samp><span class="samp">%</span></samp>’; to produce one ‘<samp><span class="samp">%</span></samp>’ in the
assembler code, you must write ‘<samp><span class="samp">%%</span></samp>’ in the input.
<p>If your assembler instruction can alter the condition code register, add
‘<samp><span class="samp">cc</span></samp>’ to the list of clobbered registers. GCC on some machines
represents the condition codes as a specific hardware register;
‘<samp><span class="samp">cc</span></samp>’ serves to name this register. On other machines, the
condition code is handled differently, and specifying ‘<samp><span class="samp">cc</span></samp>’ has no
effect. But it is valid no matter what the machine.
<p>If your assembler instructions access memory in an unpredictable
fashion, add ‘<samp><span class="samp">memory</span></samp>’ to the list of clobbered registers. This
will cause GCC to not keep memory values cached in registers across the
assembler instruction and not optimize stores or loads to that memory.
You will also want to add the <code>volatile</code> keyword if the memory
affected is not listed in the inputs or outputs of the <code>asm</code>, as
the ‘<samp><span class="samp">memory</span></samp>’ clobber does not count as a side-effect of the
<code>asm</code>. If you know how large the accessed memory is, you can add
it as input or output but if this is not known, you should add
‘<samp><span class="samp">memory</span></samp>’. As an example, if you access ten bytes of a string, you
can use a memory input like:
<pre class="smallexample"> {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}.
</pre>
<p>Note that in the following example the memory input is necessary,
otherwise GCC might optimize the store to <code>x</code> away:
<pre class="smallexample"> int foo ()
{
int x = 42;
int *y = &x;
int result;
asm ("magic stuff accessing an 'int' pointed to by '%1'"
"=&d" (r) : "a" (y), "m" (*y));
return result;
}
</pre>
<p>You can put multiple assembler instructions together in a single
<code>asm</code> template, separated by the characters normally used in assembly
code for the system. A combination that works in most places is a newline
to break the line, plus a tab character to move to the instruction field
(written as ‘<samp><span class="samp">\n\t</span></samp>’). Sometimes semicolons can be used, if the
assembler allows semicolons as a line-breaking character. Note that some
assembler dialects use semicolons to start a comment.
The input operands are guaranteed not to use any of the clobbered
registers, and neither will the output operands' addresses, so you can
read and write the clobbered registers as many times as you like. Here
is an example of multiple instructions in a template; it assumes the
subroutine <code>_foo</code> accepts arguments in registers 9 and 10:
<pre class="smallexample"> asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");
</pre>
<p>Unless an output operand has the ‘<samp><span class="samp">&</span></samp>’ constraint modifier, GCC
may allocate it in the same register as an unrelated input operand, on
the assumption the inputs are consumed before the outputs are produced.
This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use ‘<samp><span class="samp">&</span></samp>’ for each output
operand that may not overlap an input. See <a href="#Modifiers">Modifiers</a>.
<p>If you want to test the condition code produced by an assembler
instruction, you must include a branch and a label in the <code>asm</code>
construct, as follows:
<pre class="smallexample"> asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
: "g" (result)
: "g" (input));
</pre>
<p class="noindent">This assumes your assembler supports local labels, as the GNU assembler
and most Unix assemblers do.
<p>Speaking of labels, jumps from one <code>asm</code> to another are not
supported. The compiler's optimizers do not know about these jumps, and
therefore they cannot take account of them when deciding how to
optimize.
<p><a name="index-macros-containing-_0040code_007basm_007d-2381"></a>Usually the most convenient way to use these <code>asm</code> instructions is to
encapsulate them in macros that look like functions. For example,
<pre class="smallexample"> #define sin(x) \
({ double __value, __arg = (x); \
asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })
</pre>
<p class="noindent">Here the variable <code>__arg</code> is used to make sure that the instruction
operates on a proper <code>double</code> value, and to accept only those
arguments <code>x</code> which can convert automatically to a <code>double</code>.
<p>Another way to make sure the instruction operates on the correct data
type is to use a cast in the <code>asm</code>. This is different from using a
variable <code>__arg</code> in that it converts more different types. For
example, if the desired type were <code>int</code>, casting the argument to
<code>int</code> would accept a pointer with no complaint, while assigning the
argument to an <code>int</code> variable named <code>__arg</code> would warn about
using a pointer unless the caller explicitly casts it.
<p>If an <code>asm</code> has output operands, GCC assumes for optimization
purposes the instruction has no side effects except to change the output
operands. This does not mean instructions with a side effect cannot be
used, but you must be careful, because the compiler may eliminate them
if the output operands aren't used, or move them out of loops, or
replace two with one if they constitute a common subexpression. Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.
<p>You can prevent an <code>asm</code> instruction from being deleted
by writing the keyword <code>volatile</code> after
the <code>asm</code>. For example:
<pre class="smallexample"> #define get_and_set_priority(new) \
({ int __old; \
asm volatile ("get_and_set_priority %0, %1" \
: "=g" (__old) : "g" (new)); \
__old; })
</pre>
<p class="noindent">The <code>volatile</code> keyword indicates that the instruction has
important side-effects. GCC will not delete a volatile <code>asm</code> if
it is reachable. (The instruction can still be deleted if GCC can
prove that control-flow will never reach the location of the
instruction.) Note that even a volatile <code>asm</code> instruction
can be moved relative to other code, including across jump
instructions. For example, on many targets there is a system
register which can be set to control the rounding mode of
floating point operations. You might try
setting it with a volatile <code>asm</code>, like this PowerPC example:
<pre class="smallexample"> asm volatile("mtfsf 255,%0" : : "f" (fpenv));
sum = x + y;
</pre>
<p class="noindent">This will not work reliably, as the compiler may move the addition back
before the volatile <code>asm</code>. To make it work you need to add an
artificial dependency to the <code>asm</code> referencing a variable in the code
you don't want moved, for example:
<pre class="smallexample"> asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
sum = x + y;
</pre>
<p>Similarly, you can't expect a
sequence of volatile <code>asm</code> instructions to remain perfectly
consecutive. If you want consecutive output, use a single <code>asm</code>.
Also, GCC will perform some optimizations across a volatile <code>asm</code>
instruction; GCC does not “forget everything” when it encounters
a volatile <code>asm</code> instruction the way some other compilers do.
<p>An <code>asm</code> instruction without any output operands will be treated
identically to a volatile <code>asm</code> instruction.
<p>It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction. However, when we attempted to
implement this, we found no way to make it work reliably. The problem
is that output operands might need reloading, which would result in
additional following “store” instructions. On most machines, these
instructions would alter the condition code before there was time to
test it. This problem doesn't arise for ordinary “test” and
“compare” instructions because they don't have any output operands.
<p>For reasons similar to those described above, it is not possible to give
an assembler instruction access to the condition code left by previous
instructions.
<p>If you are writing a header file that should be includable in ISO C
programs, write <code>__asm__</code> instead of <code>asm</code>. See <a href="#Alternate-Keywords">Alternate Keywords</a>.
<h4 class="subsection">5.38.1 Size of an <code>asm</code></h4>
<p>Some targets require that GCC track the size of each instruction used in
order to generate correct code. Because the final length of an
<code>asm</code> is only known by the assembler, GCC must make an estimate as
to how big it will be. The estimate is formed by counting the number of
statements in the pattern of the <code>asm</code> and multiplying that by the
length of the longest instruction on that processor. Statements in the
<code>asm</code> are identified by newline characters and whatever statement
separator characters are supported by the assembler; on most processors
this is the `<code>;</code>' character.
<p>Normally, GCC's estimate is perfectly adequate to ensure that correct
code is generated, but it is possible to confuse the compiler if you use
pseudo instructions or assembler macros that expand into multiple real
instructions or if you use assembler directives that expand to more
space in the object file than would be needed for a single instruction.
If this happens then the assembler will produce a diagnostic saying that
a label is unreachable.
<h4 class="subsection">5.38.2 i386 floating point asm operands</h4>
<p>There are several rules on the usage of stack-like regs in
asm_operands insns. These rules apply only to the operands that are
stack-like regs:
<ol type=1 start=1>
<li>Given a set of input regs that die in an asm_operands, it is
necessary to know which are implicitly popped by the asm, and
which must be explicitly popped by gcc.
<p>An input reg that is implicitly popped by the asm must be
explicitly clobbered, unless it is constrained to match an
output operand.
<li>For any input reg that is implicitly popped by an asm, it is
necessary to know how to adjust the stack to compensate for the pop.
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped reg, it would not be possible to know what the
stack looked like—it's not clear how the rest of the stack “slides
up”.
<p>All implicitly popped input regs must be closer to the top of
the reg-stack than any input that is not implicitly popped.
<p>It is possible that if an input dies in an insn, reload might
use the input reg for an output reload. Consider this example:
<pre class="smallexample"> asm ("foo" : "=t" (a) : "f" (b));
</pre>
<p>This asm says that input B is not popped by the asm, and that
the asm pushes a result onto the reg-stack, i.e., the stack is one
deeper after the asm than it was before. But, it is possible that
reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.
<p>If any input operand uses the <code>f</code> constraint, all output reg
constraints must use the <code>&</code> earlyclobber.
<p>The asm above would be written as
<pre class="smallexample"> asm ("foo" : "=&t" (a) : "f" (b));
</pre>
<li>Some operands need to be in particular places on the stack. All
output operands fall in this category—there is no other way to
know which regs the outputs appear in unless the user indicates
this in the constraints.
<p>Output operands must specifically indicate which reg an output
appears in after an asm. <code>=f</code> is not allowed: the operand
constraints must select a class with a single reg.
<li>Output operands may not be “inserted” between existing stack regs.
Since no 387 opcode uses a read/write operand, all output operands
are dead before the asm_operands, and are pushed by the asm_operands.
It makes no sense to push anywhere but the top of the reg-stack.
<p>Output operands must start at the top of the reg-stack: output
operands may not “skip” a reg.
<li>Some asm statements may need extra stack space for internal
calculations. This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.
</ol>
<p>Here are a couple of reasonable asms to want to write. This asm
takes one input, which is internally popped, and produces two outputs.
<pre class="smallexample"> asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
</pre>
<p>This asm takes two inputs, which are popped by the <code>fyl2xp1</code> opcode,
and replaces them with one output. The user must code the <code>st(1)</code>
clobber for reg-stack.c to know that <code>fyl2xp1</code> pops both inputs.
<pre class="smallexample"> asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
</pre>
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- Most of this node appears by itself (in a different place) even -->
<!-- when the INTERNALS flag is clear. Passages that require the internals -->
<!-- manual's context are conditionalized to appear only in the internals manual. -->
<div class="node">
<a name="Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Asm-Labels">Asm Labels</a>,
Previous: <a rel="previous" accesskey="p" href="#Extended-Asm">Extended Asm</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.39 Constraints for <code>asm</code> Operands</h3>
<p><a name="index-operand-constraints_002c-_0040code_007basm_007d-2382"></a><a name="index-constraints_002c-_0040code_007basm_007d-2383"></a><a name="index-g_t_0040code_007basm_007d-constraints-2384"></a>
Here are specific details on what constraint letters you can use with
<code>asm</code> operands.
Constraints can say whether
an operand may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may
have. Constraints can also require two operands to match.
<ul class="menu">
<li><a accesskey="1" href="#Simple-Constraints">Simple Constraints</a>: Basic use of constraints.
<li><a accesskey="2" href="#Multi_002dAlternative">Multi-Alternative</a>: When an insn has two alternative constraint-patterns.
<li><a accesskey="3" href="#Modifiers">Modifiers</a>: More precise control over effects of constraints.
<li><a accesskey="4" href="#Machine-Constraints">Machine Constraints</a>: Special constraints for some particular machines.
</ul>
<div class="node">
<a name="Simple-Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">5.39.1 Simple Constraints</h4>
<p><a name="index-simple-constraints-2385"></a>
The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted. Here are
the letters that are allowed:
<dl>
<dt>whitespace<dd>Whitespace characters are ignored and can be inserted at any position
except the first. This enables each alternative for different operands to
be visually aligned in the machine description even if they have different
number of constraints and modifiers.
<p><a name="index-g_t_0040samp_007bm_007d-in-constraint-2386"></a><a name="index-memory-references-in-constraints-2387"></a><br><dt>‘<samp><span class="samp">m</span></samp>’<dd>A memory operand is allowed, with any kind of address that the machine
supports in general.
Note that the letter used for the general memory constraint can be
re-defined by a back end using the <code>TARGET_MEM_CONSTRAINT</code> macro.
<p><a name="index-offsettable-address-2388"></a><a name="index-g_t_0040samp_007bo_007d-in-constraint-2389"></a><br><dt>‘<samp><span class="samp">o</span></samp>’<dd>A memory operand is allowed, but only if the address is
<dfn>offsettable</dfn>. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine mode)
may be added to the address and the result is also a valid memory
address.
<p><a name="index-autoincrement_002fdecrement-addressing-2390"></a>For example, an address which is constant is offsettable; so is an
address that is the sum of a register and a constant (as long as a
slightly larger constant is also within the range of address-offsets
supported by the machine); but an autoincrement or autodecrement
address is not offsettable. More complicated indirect/indexed
addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.
<p>Note that in an output operand which can be matched by another
operand, the constraint letter ‘<samp><span class="samp">o</span></samp>’ is valid only when accompanied
by both ‘<samp><span class="samp"><</span></samp>’ (if the target machine has predecrement addressing)
and ‘<samp><span class="samp">></span></samp>’ (if the target machine has preincrement addressing).
<p><a name="index-g_t_0040samp_007bV_007d-in-constraint-2391"></a><br><dt>‘<samp><span class="samp">V</span></samp>’<dd>A memory operand that is not offsettable. In other words, anything that
would fit the ‘<samp><span class="samp">m</span></samp>’ constraint but not the ‘<samp><span class="samp">o</span></samp>’ constraint.
<p><a name="index-g_t_0040samp_007b_003c_007d-in-constraint-2392"></a><br><dt>‘<samp><span class="samp"><</span></samp>’<dd>A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.
<p><a name="index-g_t_0040samp_007b_003e_007d-in-constraint-2393"></a><br><dt>‘<samp><span class="samp">></span></samp>’<dd>A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.
<p><a name="index-g_t_0040samp_007br_007d-in-constraint-2394"></a><a name="index-registers-in-constraints-2395"></a><br><dt>‘<samp><span class="samp">r</span></samp>’<dd>A register operand is allowed provided that it is in a general
register.
<p><a name="index-constants-in-constraints-2396"></a><a name="index-g_t_0040samp_007bi_007d-in-constraint-2397"></a><br><dt>‘<samp><span class="samp">i</span></samp>’<dd>An immediate integer operand (one with constant value) is allowed.
This includes symbolic constants whose values will be known only at
assembly time or later.
<p><a name="index-g_t_0040samp_007bn_007d-in-constraint-2398"></a><br><dt>‘<samp><span class="samp">n</span></samp>’<dd>An immediate integer operand with a known numeric value is allowed.
Many systems cannot support assembly-time constants for operands less
than a word wide. Constraints for these operands should use ‘<samp><span class="samp">n</span></samp>’
rather than ‘<samp><span class="samp">i</span></samp>’.
<p><a name="index-g_t_0040samp_007bI_007d-in-constraint-2399"></a><br><dt>‘<samp><span class="samp">I</span></samp>’, ‘<samp><span class="samp">J</span></samp>’, ‘<samp><span class="samp">K</span></samp>’, <small class="dots">...</small> ‘<samp><span class="samp">P</span></samp>’<dd>Other letters in the range ‘<samp><span class="samp">I</span></samp>’ through ‘<samp><span class="samp">P</span></samp>’ may be defined in
a machine-dependent fashion to permit immediate integer operands with
explicit integer values in specified ranges. For example, on the
68000, ‘<samp><span class="samp">I</span></samp>’ is defined to stand for the range of values 1 to 8.
This is the range permitted as a shift count in the shift
instructions.
<p><a name="index-g_t_0040samp_007bE_007d-in-constraint-2400"></a><br><dt>‘<samp><span class="samp">E</span></samp>’<dd>An immediate floating operand (expression code <code>const_double</code>) is
allowed, but only if the target floating point format is the same as
that of the host machine (on which the compiler is running).
<p><a name="index-g_t_0040samp_007bF_007d-in-constraint-2401"></a><br><dt>‘<samp><span class="samp">F</span></samp>’<dd>An immediate floating operand (expression code <code>const_double</code> or
<code>const_vector</code>) is allowed.
<p><a name="index-g_t_0040samp_007bG_007d-in-constraint-2402"></a><a name="index-g_t_0040samp_007bH_007d-in-constraint-2403"></a><br><dt>‘<samp><span class="samp">G</span></samp>’, ‘<samp><span class="samp">H</span></samp>’<dd>‘<samp><span class="samp">G</span></samp>’ and ‘<samp><span class="samp">H</span></samp>’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of values.
<p><a name="index-g_t_0040samp_007bs_007d-in-constraint-2404"></a><br><dt>‘<samp><span class="samp">s</span></samp>’<dd>An immediate integer operand whose value is not an explicit integer is
allowed.
<p>This might appear strange; if an insn allows a constant operand with a
value not known at compile time, it certainly must allow any known
value. So why use ‘<samp><span class="samp">s</span></samp>’ instead of ‘<samp><span class="samp">i</span></samp>’? Sometimes it allows
better code to be generated.
<p>For example, on the 68000 in a fullword instruction it is possible to
use an immediate operand; but if the immediate value is between −128
and 127, better code results from loading the value into a register and
using the register. This is because the load into the register can be
done with a ‘<samp><span class="samp">moveq</span></samp>’ instruction. We arrange for this to happen
by defining the letter ‘<samp><span class="samp">K</span></samp>’ to mean “any integer outside the
range −128 to 127”, and then specifying ‘<samp><span class="samp">Ks</span></samp>’ in the operand
constraints.
<p><a name="index-g_t_0040samp_007bg_007d-in-constraint-2405"></a><br><dt>‘<samp><span class="samp">g</span></samp>’<dd>Any register, memory or immediate integer operand is allowed, except for
registers that are not general registers.
<p><a name="index-g_t_0040samp_007bX_007d-in-constraint-2406"></a><br><dt>‘<samp><span class="samp">X</span></samp>’<dd>Any operand whatsoever is allowed.
<p><a name="index-g_t_0040samp_007b0_007d-in-constraint-2407"></a><a name="index-digits-in-constraint-2408"></a><br><dt>‘<samp><span class="samp">0</span></samp>’, ‘<samp><span class="samp">1</span></samp>’, ‘<samp><span class="samp">2</span></samp>’, <small class="dots">...</small> ‘<samp><span class="samp">9</span></samp>’<dd>An operand that matches the specified operand number is allowed. If a
digit is used together with letters within the same alternative, the
digit should come last.
<p>This number is allowed to be more than a single digit. If multiple
digits are encountered consecutively, they are interpreted as a single
decimal integer. There is scant chance for ambiguity, since to-date
it has never been desirable that ‘<samp><span class="samp">10</span></samp>’ be interpreted as matching
either operand 1 <em>or</em> operand 0. Should this be desired, one
can use multiple alternatives instead.
<p><a name="index-matching-constraint-2409"></a><a name="index-constraint_002c-matching-2410"></a>This is called a <dfn>matching constraint</dfn> and what it really means is
that the assembler has only a single operand that fills two roles
which <code>asm</code> distinguishes. For example, an add instruction uses
two input operands and an output operand, but on most CISC
machines an add instruction really has only two operands, one of them an
input-output operand:
<pre class="smallexample"> addl #35,r12
</pre>
<p>Matching constraints are used in these circumstances.
More precisely, the two operands that match must include one input-only
operand and one output-only operand. Moreover, the digit must be a
smaller number than the number of the operand that uses it in the
constraint.
<p><a name="index-load-address-instruction-2411"></a><a name="index-push-address-instruction-2412"></a><a name="index-address-constraints-2413"></a><a name="index-g_t_0040samp_007bp_007d-in-constraint-2414"></a><br><dt>‘<samp><span class="samp">p</span></samp>’<dd>An operand that is a valid memory address is allowed. This is
for “load address” and “push address” instructions.
<p><a name="index-address_005foperand-2415"></a>‘<samp><span class="samp">p</span></samp>’ in the constraint must be accompanied by <code>address_operand</code>
as the predicate in the <code>match_operand</code>. This predicate interprets
the mode specified in the <code>match_operand</code> as the mode of the memory
reference for which the address would be valid.
<p><a name="index-other-register-constraints-2416"></a><a name="index-extensible-constraints-2417"></a><br><dt><var>other-letters</var><dd>Other letters can be defined in machine-dependent fashion to stand for
particular classes of registers or other arbitrary operand types.
‘<samp><span class="samp">d</span></samp>’, ‘<samp><span class="samp">a</span></samp>’ and ‘<samp><span class="samp">f</span></samp>’ are defined on the 68000/68020 to stand
for data, address and floating point registers.
</dl>
<div class="node">
<a name="Multi-Alternative"></a>
<a name="Multi_002dAlternative"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Modifiers">Modifiers</a>,
Previous: <a rel="previous" accesskey="p" href="#Simple-Constraints">Simple Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">5.39.2 Multiple Alternative Constraints</h4>
<p><a name="index-multiple-alternative-constraints-2418"></a>
Sometimes a single instruction has multiple alternative sets of possible
operands. For example, on the 68000, a logical-or instruction can combine
register or an immediate value into memory, or it can combine any kind of
operand into a register; but it cannot combine one memory location into
another.
<p>These constraints are represented as multiple alternatives. An alternative
can be described by a series of letters for each operand. The overall
constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from
the second alternative, a comma, and so on until the last alternative.
<!-- FIXME Is this ? and ! stuff of use in asm()? If not, hide unless INTERNAL -->
<p>If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many instructions
must be added to copy the operands so that that alternative applies.
The alternative requiring the least copying is chosen. If two alternatives
need the same amount of copying, the one that comes first is chosen.
These choices can be altered with the ‘<samp><span class="samp">?</span></samp>’ and ‘<samp><span class="samp">!</span></samp>’ characters:
<a name="index-g_t_0040samp_007b_003f_007d-in-constraint-2419"></a>
<a name="index-question-mark-2420"></a>
<dl><dt><code>?</code><dd>Disparage slightly the alternative that the ‘<samp><span class="samp">?</span></samp>’ appears in,
as a choice when no alternative applies exactly. The compiler regards
this alternative as one unit more costly for each ‘<samp><span class="samp">?</span></samp>’ that appears
in it.
<p><a name="index-g_t_0040samp_007b_0021_007d-in-constraint-2421"></a><a name="index-exclamation-point-2422"></a><br><dt><code>!</code><dd>Disparage severely the alternative that the ‘<samp><span class="samp">!</span></samp>’ appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be used.
</dl>
<div class="node">
<a name="Modifiers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Machine-Constraints">Machine Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">5.39.3 Constraint Modifier Characters</h4>
<p><a name="index-modifiers-in-constraints-2423"></a><a name="index-constraint-modifier-characters-2424"></a>
<!-- prevent bad page break with this line -->
Here are constraint modifier characters.
<a name="index-g_t_0040samp_007b_003d_007d-in-constraint-2425"></a>
<dl><dt>‘<samp><span class="samp">=</span></samp>’<dd>Means that this operand is write-only for this instruction: the previous
value is discarded and replaced by output data.
<p><a name="index-g_t_0040samp_007b_002b_007d-in-constraint-2426"></a><br><dt>‘<samp><span class="samp">+</span></samp>’<dd>Means that this operand is both read and written by the instruction.
<p>When the compiler fixes up the operands to satisfy the constraints,
it needs to know which operands are inputs to the instruction and
which are outputs from it. ‘<samp><span class="samp">=</span></samp>’ identifies an output; ‘<samp><span class="samp">+</span></samp>’
identifies an operand that is both input and output; all other operands
are assumed to be input only.
<p>If you specify ‘<samp><span class="samp">=</span></samp>’ or ‘<samp><span class="samp">+</span></samp>’ in a constraint, you put it in the
first character of the constraint string.
<p><a name="index-g_t_0040samp_007b_0026_007d-in-constraint-2427"></a><a name="index-earlyclobber-operand-2428"></a><br><dt>‘<samp><span class="samp">&</span></samp>’<dd>Means (in a particular alternative) that this operand is an
<dfn>earlyclobber</dfn> operand, which is modified before the instruction is
finished using the input operands. Therefore, this operand may not lie
in a register that is used as an input operand or as part of any memory
address.
<p>‘<samp><span class="samp">&</span></samp>’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alternative
requires ‘<samp><span class="samp">&</span></samp>’ while others do not. See, for example, the
‘<samp><span class="samp">movdf</span></samp>’ insn of the 68000.
<p>An input operand can be tied to an earlyclobber operand if its only
use as an input occurs before the early result is written. Adding
alternatives of this form often allows GCC to produce better code
when only some of the inputs can be affected by the earlyclobber.
See, for example, the ‘<samp><span class="samp">mulsi3</span></samp>’ insn of the ARM.
<p>‘<samp><span class="samp">&</span></samp>’ does not obviate the need to write ‘<samp><span class="samp">=</span></samp>’.
<p><a name="index-g_t_0040samp_007b_0025_007d-in-constraint-2429"></a><br><dt>‘<samp><span class="samp">%</span></samp>’<dd>Declares the instruction to be commutative for this operand and the
following operand. This means that the compiler may interchange the
two operands if that is the cheapest way to make all operands fit the
constraints.
GCC can only handle one commutative pair in an asm; if you use more,
the compiler may fail. Note that you need not use the modifier if
the two alternatives are strictly identical; this would only waste
time in the reload pass. The modifier is not operational after
register allocation, so the result of <code>define_peephole2</code>
and <code>define_split</code>s performed after reload cannot rely on
‘<samp><span class="samp">%</span></samp>’ to make the intended insn match.
<p><a name="index-g_t_0040samp_007b_0023_007d-in-constraint-2430"></a><br><dt>‘<samp><span class="samp">#</span></samp>’<dd>Says that all following characters, up to the next comma, are to be
ignored as a constraint. They are significant only for choosing
register preferences.
<p><a name="index-g_t_0040samp_007b_002a_007d-in-constraint-2431"></a><br><dt>‘<samp><span class="samp">*</span></samp>’<dd>Says that the following character should be ignored when choosing
register preferences. ‘<samp><span class="samp">*</span></samp>’ has no effect on the meaning of the
constraint as a constraint, and no effect on reloading.
</dl>
<div class="node">
<a name="Machine-Constraints"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Modifiers">Modifiers</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">5.39.4 Constraints for Particular Machines</h4>
<p><a name="index-machine-specific-constraints-2432"></a><a name="index-constraints_002c-machine-specific-2433"></a>
Whenever possible, you should use the general-purpose constraint letters
in <code>asm</code> arguments, since they will convey meaning more readily to
people reading your code. Failing that, use the constraint letters
that usually have very similar meanings across architectures. The most
commonly used constraints are ‘<samp><span class="samp">m</span></samp>’ and ‘<samp><span class="samp">r</span></samp>’ (for memory and
general-purpose registers respectively; see <a href="#Simple-Constraints">Simple Constraints</a>), and
‘<samp><span class="samp">I</span></samp>’, usually the letter indicating the most common
immediate-constant format.
<p>Each architecture defines additional constraints. These constraints
are used by the compiler itself for instruction generation, as well as
for <code>asm</code> statements; therefore, some of the constraints are not
particularly useful for <code>asm</code>. Here is a summary of some of the
machine-dependent constraints available on some particular machines;
it includes both constraints that are useful for <code>asm</code> and
constraints that aren't. The compiler source file mentioned in the
table heading for each architecture is the definitive reference for
the meanings of that architecture's constraints.
<dl>
<dt><em>ARM family—</em><samp><span class="file">config/arm/arm.h</span></samp><dd>
<dl>
<dt><code>f</code><dd>Floating-point register
<br><dt><code>w</code><dd>VFP floating-point register
<br><dt><code>F</code><dd>One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
or 10.0
<br><dt><code>G</code><dd>Floating-point constant that would satisfy the constraint ‘<samp><span class="samp">F</span></samp>’ if it
were negated
<br><dt><code>I</code><dd>Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2
<br><dt><code>J</code><dd>Integer in the range −4095 to 4095
<br><dt><code>K</code><dd>Integer that satisfies constraint ‘<samp><span class="samp">I</span></samp>’ when inverted (ones complement)
<br><dt><code>L</code><dd>Integer that satisfies constraint ‘<samp><span class="samp">I</span></samp>’ when negated (twos complement)
<br><dt><code>M</code><dd>Integer in the range 0 to 32
<br><dt><code>Q</code><dd>A memory reference where the exact address is in a single register
(`‘<samp><span class="samp">m</span></samp>’' is preferable for <code>asm</code> statements)
<br><dt><code>R</code><dd>An item in the constant pool
<br><dt><code>S</code><dd>A symbol in the text segment of the current file
<br><dt><code>Uv</code><dd>A memory reference suitable for VFP load/store insns (reg+constant offset)
<br><dt><code>Uy</code><dd>A memory reference suitable for iWMMXt load/store instructions.
<br><dt><code>Uq</code><dd>A memory reference suitable for the ARMv4 ldrsb instruction.
</dl>
<br><dt><em>AVR family—</em><samp><span class="file">config/avr/constraints.md</span></samp><dd>
<dl>
<dt><code>l</code><dd>Registers from r0 to r15
<br><dt><code>a</code><dd>Registers from r16 to r23
<br><dt><code>d</code><dd>Registers from r16 to r31
<br><dt><code>w</code><dd>Registers from r24 to r31. These registers can be used in ‘<samp><span class="samp">adiw</span></samp>’ command
<br><dt><code>e</code><dd>Pointer register (r26–r31)
<br><dt><code>b</code><dd>Base pointer register (r28–r31)
<br><dt><code>q</code><dd>Stack pointer register (SPH:SPL)
<br><dt><code>t</code><dd>Temporary register r0
<br><dt><code>x</code><dd>Register pair X (r27:r26)
<br><dt><code>y</code><dd>Register pair Y (r29:r28)
<br><dt><code>z</code><dd>Register pair Z (r31:r30)
<br><dt><code>I</code><dd>Constant greater than −1, less than 64
<br><dt><code>J</code><dd>Constant greater than −64, less than 1
<br><dt><code>K</code><dd>Constant integer 2
<br><dt><code>L</code><dd>Constant integer 0
<br><dt><code>M</code><dd>Constant that fits in 8 bits
<br><dt><code>N</code><dd>Constant integer −1
<br><dt><code>O</code><dd>Constant integer 8, 16, or 24
<br><dt><code>P</code><dd>Constant integer 1
<br><dt><code>G</code><dd>A floating point constant 0.0
<br><dt><code>R</code><dd>Integer constant in the range -6 <small class="dots">...</small> 5.
<br><dt><code>Q</code><dd>A memory address based on Y or Z pointer with displacement.
</dl>
<br><dt><em>CRX Architecture—</em><samp><span class="file">config/crx/crx.h</span></samp><dd>
<dl>
<dt><code>b</code><dd>Registers from r0 to r14 (registers without stack pointer)
<br><dt><code>l</code><dd>Register r16 (64-bit accumulator lo register)
<br><dt><code>h</code><dd>Register r17 (64-bit accumulator hi register)
<br><dt><code>k</code><dd>Register pair r16-r17. (64-bit accumulator lo-hi pair)
<br><dt><code>I</code><dd>Constant that fits in 3 bits
<br><dt><code>J</code><dd>Constant that fits in 4 bits
<br><dt><code>K</code><dd>Constant that fits in 5 bits
<br><dt><code>L</code><dd>Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48
<br><dt><code>G</code><dd>Floating point constant that is legal for store immediate
</dl>
<br><dt><em>Hewlett-Packard PA-RISC—</em><samp><span class="file">config/pa/pa.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>General register 1
<br><dt><code>f</code><dd>Floating point register
<br><dt><code>q</code><dd>Shift amount register
<br><dt><code>x</code><dd>Floating point register (deprecated)
<br><dt><code>y</code><dd>Upper floating point register (32-bit), floating point register (64-bit)
<br><dt><code>Z</code><dd>Any register
<br><dt><code>I</code><dd>Signed 11-bit integer constant
<br><dt><code>J</code><dd>Signed 14-bit integer constant
<br><dt><code>K</code><dd>Integer constant that can be deposited with a <code>zdepi</code> instruction
<br><dt><code>L</code><dd>Signed 5-bit integer constant
<br><dt><code>M</code><dd>Integer constant 0
<br><dt><code>N</code><dd>Integer constant that can be loaded with a <code>ldil</code> instruction
<br><dt><code>O</code><dd>Integer constant whose value plus one is a power of 2
<br><dt><code>P</code><dd>Integer constant that can be used for <code>and</code> operations in <code>depi</code>
and <code>extru</code> instructions
<br><dt><code>S</code><dd>Integer constant 31
<br><dt><code>U</code><dd>Integer constant 63
<br><dt><code>G</code><dd>Floating-point constant 0.0
<br><dt><code>A</code><dd>A <code>lo_sum</code> data-linkage-table memory operand
<br><dt><code>Q</code><dd>A memory operand that can be used as the destination operand of an
integer store instruction
<br><dt><code>R</code><dd>A scaled or unscaled indexed memory operand
<br><dt><code>T</code><dd>A memory operand for floating-point loads and stores
<br><dt><code>W</code><dd>A register indirect memory operand
</dl>
<br><dt><em>picoChip family—</em><samp><span class="file">picochip.h</span></samp><dd>
<dl>
<dt><code>k</code><dd>Stack register.
<br><dt><code>f</code><dd>Pointer register. A register which can be used to access memory without
supplying an offset. Any other register can be used to access memory,
but will need a constant offset. In the case of the offset being zero,
it is more efficient to use a pointer register, since this reduces code
size.
<br><dt><code>t</code><dd>A twin register. A register which may be paired with an adjacent
register to create a 32-bit register.
<br><dt><code>a</code><dd>Any absolute memory address (e.g., symbolic constant, symbolic
constant + offset).
<br><dt><code>I</code><dd>4-bit signed integer.
<br><dt><code>J</code><dd>4-bit unsigned integer.
<br><dt><code>K</code><dd>8-bit signed integer.
<br><dt><code>M</code><dd>Any constant whose absolute value is no greater than 4-bits.
<br><dt><code>N</code><dd>10-bit signed integer
<br><dt><code>O</code><dd>16-bit signed integer.
</dl>
<br><dt><em>PowerPC and IBM RS6000—</em><samp><span class="file">config/rs6000/rs6000.h</span></samp><dd>
<dl>
<dt><code>b</code><dd>Address base register
<br><dt><code>f</code><dd>Floating point register
<br><dt><code>v</code><dd>Vector register
<br><dt><code>h</code><dd>‘<samp><span class="samp">MQ</span></samp>’, ‘<samp><span class="samp">CTR</span></samp>’, or ‘<samp><span class="samp">LINK</span></samp>’ register
<br><dt><code>q</code><dd>‘<samp><span class="samp">MQ</span></samp>’ register
<br><dt><code>c</code><dd>‘<samp><span class="samp">CTR</span></samp>’ register
<br><dt><code>l</code><dd>‘<samp><span class="samp">LINK</span></samp>’ register
<br><dt><code>x</code><dd>‘<samp><span class="samp">CR</span></samp>’ register (condition register) number 0
<br><dt><code>y</code><dd>‘<samp><span class="samp">CR</span></samp>’ register (condition register)
<br><dt><code>z</code><dd>‘<samp><span class="samp">FPMEM</span></samp>’ stack memory for FPR-GPR transfers
<br><dt><code>I</code><dd>Signed 16-bit constant
<br><dt><code>J</code><dd>Unsigned 16-bit constant shifted left 16 bits (use ‘<samp><span class="samp">L</span></samp>’ instead for
<code>SImode</code> constants)
<br><dt><code>K</code><dd>Unsigned 16-bit constant
<br><dt><code>L</code><dd>Signed 16-bit constant shifted left 16 bits
<br><dt><code>M</code><dd>Constant larger than 31
<br><dt><code>N</code><dd>Exact power of 2
<br><dt><code>O</code><dd>Zero
<br><dt><code>P</code><dd>Constant whose negation is a signed 16-bit constant
<br><dt><code>G</code><dd>Floating point constant that can be loaded into a register with one
instruction per word
<br><dt><code>H</code><dd>Integer/Floating point constant that can be loaded into a register using
three instructions
<br><dt><code>Q</code><dd>Memory operand that is an offset from a register (‘<samp><span class="samp">m</span></samp>’ is preferable
for <code>asm</code> statements)
<br><dt><code>Z</code><dd>Memory operand that is an indexed or indirect from a register (‘<samp><span class="samp">m</span></samp>’ is
preferable for <code>asm</code> statements)
<br><dt><code>R</code><dd>AIX TOC entry
<br><dt><code>a</code><dd>Address operand that is an indexed or indirect from a register (‘<samp><span class="samp">p</span></samp>’ is
preferable for <code>asm</code> statements)
<br><dt><code>S</code><dd>Constant suitable as a 64-bit mask operand
<br><dt><code>T</code><dd>Constant suitable as a 32-bit mask operand
<br><dt><code>U</code><dd>System V Release 4 small data area reference
<br><dt><code>t</code><dd>AND masks that can be performed by two rldic{l, r} instructions
<br><dt><code>W</code><dd>Vector constant that does not require memory
</dl>
<br><dt><em>Intel 386—</em><samp><span class="file">config/i386/constraints.md</span></samp><dd>
<dl>
<dt><code>R</code><dd>Legacy register—the eight integer registers available on all
i386 processors (<code>a</code>, <code>b</code>, <code>c</code>, <code>d</code>,
<code>si</code>, <code>di</code>, <code>bp</code>, <code>sp</code>).
<br><dt><code>q</code><dd>Any register accessible as <var>r</var><code>l</code>. In 32-bit mode, <code>a</code>,
<code>b</code>, <code>c</code>, and <code>d</code>; in 64-bit mode, any integer register.
<br><dt><code>Q</code><dd>Any register accessible as <var>r</var><code>h</code>: <code>a</code>, <code>b</code>,
<code>c</code>, and <code>d</code>.
<br><dt><code>a</code><dd>The <code>a</code> register.
<br><dt><code>b</code><dd>The <code>b</code> register.
<br><dt><code>c</code><dd>The <code>c</code> register.
<br><dt><code>d</code><dd>The <code>d</code> register.
<br><dt><code>S</code><dd>The <code>si</code> register.
<br><dt><code>D</code><dd>The <code>di</code> register.
<br><dt><code>A</code><dd>The <code>a</code> and <code>d</code> registers, as a pair (for instructions that
return half the result in one and half in the other).
<br><dt><code>f</code><dd>Any 80387 floating-point (stack) register.
<br><dt><code>t</code><dd>Top of 80387 floating-point stack (<code>%st(0)</code>).
<br><dt><code>u</code><dd>Second from top of 80387 floating-point stack (<code>%st(1)</code>).
<br><dt><code>y</code><dd>Any MMX register.
<br><dt><code>x</code><dd>Any SSE register.
<br><dt><code>Yz</code><dd>First SSE register (<code>%xmm0</code>).
<br><dt><code>I</code><dd>Integer constant in the range 0 <small class="dots">...</small> 31, for 32-bit shifts.
<br><dt><code>J</code><dd>Integer constant in the range 0 <small class="dots">...</small> 63, for 64-bit shifts.
<br><dt><code>K</code><dd>Signed 8-bit integer constant.
<br><dt><code>L</code><dd><code>0xFF</code> or <code>0xFFFF</code>, for andsi as a zero-extending move.
<br><dt><code>M</code><dd>0, 1, 2, or 3 (shifts for the <code>lea</code> instruction).
<br><dt><code>N</code><dd>Unsigned 8-bit integer constant (for <code>in</code> and <code>out</code>
instructions).
<br><dt><code>G</code><dd>Standard 80387 floating point constant.
<br><dt><code>C</code><dd>Standard SSE floating point constant.
<br><dt><code>e</code><dd>32-bit signed integer constant, or a symbolic reference known
to fit that range (for immediate operands in sign-extending x86-64
instructions).
<br><dt><code>Z</code><dd>32-bit unsigned integer constant, or a symbolic reference known
to fit that range (for immediate operands in zero-extending x86-64
instructions).
</dl>
<br><dt><em>Intel IA-64—</em><samp><span class="file">config/ia64/ia64.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>General register <code>r0</code> to <code>r3</code> for <code>addl</code> instruction
<br><dt><code>b</code><dd>Branch register
<br><dt><code>c</code><dd>Predicate register (‘<samp><span class="samp">c</span></samp>’ as in “conditional”)
<br><dt><code>d</code><dd>Application register residing in M-unit
<br><dt><code>e</code><dd>Application register residing in I-unit
<br><dt><code>f</code><dd>Floating-point register
<br><dt><code>m</code><dd>Memory operand.
Remember that ‘<samp><span class="samp">m</span></samp>’ allows postincrement and postdecrement which
require printing with ‘<samp><span class="samp">%Pn</span></samp>’ on IA-64.
Use ‘<samp><span class="samp">S</span></samp>’ to disallow postincrement and postdecrement.
<br><dt><code>G</code><dd>Floating-point constant 0.0 or 1.0
<br><dt><code>I</code><dd>14-bit signed integer constant
<br><dt><code>J</code><dd>22-bit signed integer constant
<br><dt><code>K</code><dd>8-bit signed integer constant for logical instructions
<br><dt><code>L</code><dd>8-bit adjusted signed integer constant for compare pseudo-ops
<br><dt><code>M</code><dd>6-bit unsigned integer constant for shift counts
<br><dt><code>N</code><dd>9-bit signed integer constant for load and store postincrements
<br><dt><code>O</code><dd>The constant zero
<br><dt><code>P</code><dd>0 or −1 for <code>dep</code> instruction
<br><dt><code>Q</code><dd>Non-volatile memory for floating-point loads and stores
<br><dt><code>R</code><dd>Integer constant in the range 1 to 4 for <code>shladd</code> instruction
<br><dt><code>S</code><dd>Memory operand except postincrement and postdecrement
</dl>
<br><dt><em>FRV—</em><samp><span class="file">config/frv/frv.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register in the class <code>ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>b</code><dd>Register in the class <code>EVEN_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>c</code><dd>Register in the class <code>CC_REGS</code> (<code>fcc0</code> to <code>fcc3</code> and
<code>icc0</code> to <code>icc3</code>).
<br><dt><code>d</code><dd>Register in the class <code>GPR_REGS</code> (<code>gr0</code> to <code>gr63</code>).
<br><dt><code>e</code><dd>Register in the class <code>EVEN_REGS</code> (<code>gr0</code> to <code>gr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
<br><dt><code>f</code><dd>Register in the class <code>FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
<br><dt><code>h</code><dd>Register in the class <code>FEVEN_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
<br><dt><code>l</code><dd>Register in the class <code>LR_REG</code> (the <code>lr</code> register).
<br><dt><code>q</code><dd>Register in the class <code>QUAD_REGS</code> (<code>gr2</code> to <code>gr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
<br><dt><code>t</code><dd>Register in the class <code>ICC_REGS</code> (<code>icc0</code> to <code>icc3</code>).
<br><dt><code>u</code><dd>Register in the class <code>FCC_REGS</code> (<code>fcc0</code> to <code>fcc3</code>).
<br><dt><code>v</code><dd>Register in the class <code>ICR_REGS</code> (<code>cc4</code> to <code>cc7</code>).
<br><dt><code>w</code><dd>Register in the class <code>FCR_REGS</code> (<code>cc0</code> to <code>cc3</code>).
<br><dt><code>x</code><dd>Register in the class <code>QUAD_FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
<br><dt><code>z</code><dd>Register in the class <code>SPR_REGS</code> (<code>lcr</code> and <code>lr</code>).
<br><dt><code>A</code><dd>Register in the class <code>QUAD_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>B</code><dd>Register in the class <code>ACCG_REGS</code> (<code>accg0</code> to <code>accg7</code>).
<br><dt><code>C</code><dd>Register in the class <code>CR_REGS</code> (<code>cc0</code> to <code>cc7</code>).
<br><dt><code>G</code><dd>Floating point constant zero
<br><dt><code>I</code><dd>6-bit signed integer constant
<br><dt><code>J</code><dd>10-bit signed integer constant
<br><dt><code>L</code><dd>16-bit signed integer constant
<br><dt><code>M</code><dd>16-bit unsigned integer constant
<br><dt><code>N</code><dd>12-bit signed integer constant that is negative—i.e. in the
range of −2048 to −1
<br><dt><code>O</code><dd>Constant zero
<br><dt><code>P</code><dd>12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.
</dl>
<br><dt><em>Blackfin family—</em><samp><span class="file">config/bfin/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>P register
<br><dt><code>d</code><dd>D register
<br><dt><code>z</code><dd>A call clobbered P register.
<br><dt><code>q</code><var>n</var><dd>A single register. If <var>n</var> is in the range 0 to 7, the corresponding D
register. If it is <code>A</code>, then the register P0.
<br><dt><code>D</code><dd>Even-numbered D register
<br><dt><code>W</code><dd>Odd-numbered D register
<br><dt><code>e</code><dd>Accumulator register.
<br><dt><code>A</code><dd>Even-numbered accumulator register.
<br><dt><code>B</code><dd>Odd-numbered accumulator register.
<br><dt><code>b</code><dd>I register
<br><dt><code>v</code><dd>B register
<br><dt><code>f</code><dd>M register
<br><dt><code>c</code><dd>Registers used for circular buffering, i.e. I, B, or L registers.
<br><dt><code>C</code><dd>The CC register.
<br><dt><code>t</code><dd>LT0 or LT1.
<br><dt><code>k</code><dd>LC0 or LC1.
<br><dt><code>u</code><dd>LB0 or LB1.
<br><dt><code>x</code><dd>Any D, P, B, M, I or L register.
<br><dt><code>y</code><dd>Additional registers typically used only in prologues and epilogues: RETS,
RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
<br><dt><code>w</code><dd>Any register except accumulators or CC.
<br><dt><code>Ksh</code><dd>Signed 16 bit integer (in the range -32768 to 32767)
<br><dt><code>Kuh</code><dd>Unsigned 16 bit integer (in the range 0 to 65535)
<br><dt><code>Ks7</code><dd>Signed 7 bit integer (in the range -64 to 63)
<br><dt><code>Ku7</code><dd>Unsigned 7 bit integer (in the range 0 to 127)
<br><dt><code>Ku5</code><dd>Unsigned 5 bit integer (in the range 0 to 31)
<br><dt><code>Ks4</code><dd>Signed 4 bit integer (in the range -8 to 7)
<br><dt><code>Ks3</code><dd>Signed 3 bit integer (in the range -3 to 4)
<br><dt><code>Ku3</code><dd>Unsigned 3 bit integer (in the range 0 to 7)
<br><dt><code>P</code><var>n</var><dd>Constant <var>n</var>, where <var>n</var> is a single-digit constant in the range 0 to 4.
<br><dt><code>PA</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use with either accumulator.
<br><dt><code>PB</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use only with accumulator A1.
<br><dt><code>M1</code><dd>Constant 255.
<br><dt><code>M2</code><dd>Constant 65535.
<br><dt><code>J</code><dd>An integer constant with exactly a single bit set.
<br><dt><code>L</code><dd>An integer constant with all bits set except exactly one.
<br><dt><code>H</code>
<br><dt><code>Q</code><dd>Any SYMBOL_REF.
</dl>
<br><dt><em>M32C—</em><samp><span class="file">config/m32c/m32c.c</span></samp><dd>
<dl>
<dt><code>Rsp</code><dt><code>Rfb</code><dt><code>Rsb</code><dd>‘<samp><span class="samp">$sp</span></samp>’, ‘<samp><span class="samp">$fb</span></samp>’, ‘<samp><span class="samp">$sb</span></samp>’.
<br><dt><code>Rcr</code><dd>Any control register, when they're 16 bits wide (nothing if control
registers are 24 bits wide)
<br><dt><code>Rcl</code><dd>Any control register, when they're 24 bits wide.
<br><dt><code>R0w</code><dt><code>R1w</code><dt><code>R2w</code><dt><code>R3w</code><dd>$r0, $r1, $r2, $r3.
<br><dt><code>R02</code><dd>$r0 or $r2, or $r2r0 for 32 bit values.
<br><dt><code>R13</code><dd>$r1 or $r3, or $r3r1 for 32 bit values.
<br><dt><code>Rdi</code><dd>A register that can hold a 64 bit value.
<br><dt><code>Rhl</code><dd>$r0 or $r1 (registers with addressable high/low bytes)
<br><dt><code>R23</code><dd>$r2 or $r3
<br><dt><code>Raa</code><dd>Address registers
<br><dt><code>Raw</code><dd>Address registers when they're 16 bits wide.
<br><dt><code>Ral</code><dd>Address registers when they're 24 bits wide.
<br><dt><code>Rqi</code><dd>Registers that can hold QI values.
<br><dt><code>Rad</code><dd>Registers that can be used with displacements ($a0, $a1, $sb).
<br><dt><code>Rsi</code><dd>Registers that can hold 32 bit values.
<br><dt><code>Rhi</code><dd>Registers that can hold 16 bit values.
<br><dt><code>Rhc</code><dd>Registers chat can hold 16 bit values, including all control
registers.
<br><dt><code>Rra</code><dd>$r0 through R1, plus $a0 and $a1.
<br><dt><code>Rfl</code><dd>The flags register.
<br><dt><code>Rmm</code><dd>The memory-based pseudo-registers $mem0 through $mem15.
<br><dt><code>Rpi</code><dd>Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).
<br><dt><code>Rpa</code><dd>Matches multiple registers in a PARALLEL to form a larger register.
Used to match function return values.
<br><dt><code>Is3</code><dd>-8 <small class="dots">...</small> 7
<br><dt><code>IS1</code><dd>-128 <small class="dots">...</small> 127
<br><dt><code>IS2</code><dd>-32768 <small class="dots">...</small> 32767
<br><dt><code>IU2</code><dd>0 <small class="dots">...</small> 65535
<br><dt><code>In4</code><dd>-8 <small class="dots">...</small> -1 or 1 <small class="dots">...</small> 8
<br><dt><code>In5</code><dd>-16 <small class="dots">...</small> -1 or 1 <small class="dots">...</small> 16
<br><dt><code>In6</code><dd>-32 <small class="dots">...</small> -1 or 1 <small class="dots">...</small> 32
<br><dt><code>IM2</code><dd>-65536 <small class="dots">...</small> -1
<br><dt><code>Ilb</code><dd>An 8 bit value with exactly one bit set.
<br><dt><code>Ilw</code><dd>A 16 bit value with exactly one bit set.
<br><dt><code>Sd</code><dd>The common src/dest memory addressing modes.
<br><dt><code>Sa</code><dd>Memory addressed using $a0 or $a1.
<br><dt><code>Si</code><dd>Memory addressed with immediate addresses.
<br><dt><code>Ss</code><dd>Memory addressed using the stack pointer ($sp).
<br><dt><code>Sf</code><dd>Memory addressed using the frame base register ($fb).
<br><dt><code>Ss</code><dd>Memory addressed using the small base register ($sb).
<br><dt><code>S1</code><dd>$r1h
</dl>
<br><dt><em>MIPS—</em><samp><span class="file">config/mips/constraints.md</span></samp><dd>
<dl>
<dt><code>d</code><dd>An address register. This is equivalent to <code>r</code> unless
generating MIPS16 code.
<br><dt><code>f</code><dd>A floating-point register (if available).
<br><dt><code>h</code><dd>Formerly the <code>hi</code> register. This constraint is no longer supported.
<br><dt><code>l</code><dd>The <code>lo</code> register. Use this register to store values that are
no bigger than a word.
<br><dt><code>x</code><dd>The concatenated <code>hi</code> and <code>lo</code> registers. Use this register
to store doubleword values.
<br><dt><code>c</code><dd>A register suitable for use in an indirect jump. This will always be
<code>$25</code> for <samp><span class="option">-mabicalls</span></samp>.
<br><dt><code>v</code><dd>Register <code>$3</code>. Do not use this constraint in new code;
it is retained only for compatibility with glibc.
<br><dt><code>y</code><dd>Equivalent to <code>r</code>; retained for backwards compatibility.
<br><dt><code>z</code><dd>A floating-point condition code register.
<br><dt><code>I</code><dd>A signed 16-bit constant (for arithmetic instructions).
<br><dt><code>J</code><dd>Integer zero.
<br><dt><code>K</code><dd>An unsigned 16-bit constant (for logic instructions).
<br><dt><code>L</code><dd>A signed 32-bit constant in which the lower 16 bits are zero.
Such constants can be loaded using <code>lui</code>.
<br><dt><code>M</code><dd>A constant that cannot be loaded using <code>lui</code>, <code>addiu</code>
or <code>ori</code>.
<br><dt><code>N</code><dd>A constant in the range -65535 to -1 (inclusive).
<br><dt><code>O</code><dd>A signed 15-bit constant.
<br><dt><code>P</code><dd>A constant in the range 1 to 65535 (inclusive).
<br><dt><code>G</code><dd>Floating-point zero.
<br><dt><code>R</code><dd>An address that can be used in a non-macro load or store.
<br><dt><code>YC</code><dd>For MIPS, it is the same as the constraint <code>R</code>. For microMIPS, it matches an address within a 12-bit offset that can be used for microMIPS <code>ll</code>, <code>sc</code>, etc.
</dl>
<br><dt><em>Motorola 680x0—</em><samp><span class="file">config/m68k/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>Address register
<br><dt><code>d</code><dd>Data register
<br><dt><code>f</code><dd>68881 floating-point register, if available
<br><dt><code>I</code><dd>Integer in the range 1 to 8
<br><dt><code>J</code><dd>16-bit signed number
<br><dt><code>K</code><dd>Signed number whose magnitude is greater than 0x80
<br><dt><code>L</code><dd>Integer in the range −8 to −1
<br><dt><code>M</code><dd>Signed number whose magnitude is greater than 0x100
<br><dt><code>N</code><dd>Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
<br><dt><code>O</code><dd>16 (for rotate using swap)
<br><dt><code>P</code><dd>Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
<br><dt><code>R</code><dd>Numbers that mov3q can handle
<br><dt><code>G</code><dd>Floating point constant that is not a 68881 constant
<br><dt><code>S</code><dd>Operands that satisfy 'm' when -mpcrel is in effect
<br><dt><code>T</code><dd>Operands that satisfy 's' when -mpcrel is not in effect
<br><dt><code>Q</code><dd>Address register indirect addressing mode
<br><dt><code>U</code><dd>Register offset addressing
<br><dt><code>W</code><dd>const_call_operand
<br><dt><code>Cs</code><dd>symbol_ref or const
<br><dt><code>Ci</code><dd>const_int
<br><dt><code>C0</code><dd>const_int 0
<br><dt><code>Cj</code><dd>Range of signed numbers that don't fit in 16 bits
<br><dt><code>Cmvq</code><dd>Integers valid for mvq
<br><dt><code>Capsw</code><dd>Integers valid for a moveq followed by a swap
<br><dt><code>Cmvz</code><dd>Integers valid for mvz
<br><dt><code>Cmvs</code><dd>Integers valid for mvs
<br><dt><code>Ap</code><dd>push_operand
<br><dt><code>Ac</code><dd>Non-register operands allowed in clr
</dl>
<br><dt><em>Motorola 68HC11 & 68HC12 families—</em><samp><span class="file">config/m68hc11/m68hc11.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register `a'
<br><dt><code>b</code><dd>Register `b'
<br><dt><code>d</code><dd>Register `d'
<br><dt><code>q</code><dd>An 8-bit register
<br><dt><code>t</code><dd>Temporary soft register _.tmp
<br><dt><code>u</code><dd>A soft register _.d1 to _.d31
<br><dt><code>w</code><dd>Stack pointer register
<br><dt><code>x</code><dd>Register `x'
<br><dt><code>y</code><dd>Register `y'
<br><dt><code>z</code><dd>Pseudo register `z' (replaced by `x' or `y' at the end)
<br><dt><code>A</code><dd>An address register: x, y or z
<br><dt><code>B</code><dd>An address register: x or y
<br><dt><code>D</code><dd>Register pair (x:d) to form a 32-bit value
<br><dt><code>L</code><dd>Constants in the range −65536 to 65535
<br><dt><code>M</code><dd>Constants whose 16-bit low part is zero
<br><dt><code>N</code><dd>Constant integer 1 or −1
<br><dt><code>O</code><dd>Constant integer 16
<br><dt><code>P</code><dd>Constants in the range −8 to 2
</dl>
<br><dt><em>SPARC—</em><samp><span class="file">config/sparc/sparc.h</span></samp><dd>
<dl>
<dt><code>f</code><dd>Floating-point register on the SPARC-V8 architecture and
lower floating-point register on the SPARC-V9 architecture.
<br><dt><code>e</code><dd>Floating-point register. It is equivalent to ‘<samp><span class="samp">f</span></samp>’ on the
SPARC-V8 architecture and contains both lower and upper
floating-point registers on the SPARC-V9 architecture.
<br><dt><code>c</code><dd>Floating-point condition code register.
<br><dt><code>d</code><dd>Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.
<br><dt><code>b</code><dd>Floating-point register. It is only valid on the SPARC-V9 architecture
when the Visual Instruction Set is available.
<br><dt><code>h</code><dd>64-bit global or out register for the SPARC-V8+ architecture.
<br><dt><code>D</code><dd>A vector constant
<br><dt><code>I</code><dd>Signed 13-bit constant
<br><dt><code>J</code><dd>Zero
<br><dt><code>K</code><dd>32-bit constant with the low 12 bits clear (a constant that can be
loaded with the <code>sethi</code> instruction)
<br><dt><code>L</code><dd>A constant in the range supported by <code>movcc</code> instructions
<br><dt><code>M</code><dd>A constant in the range supported by <code>movrcc</code> instructions
<br><dt><code>N</code><dd>Same as ‘<samp><span class="samp">K</span></samp>’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘<samp><span class="samp">K</span></samp>’ for
modes wider than <code>SImode</code>
<br><dt><code>O</code><dd>The constant 4096
<br><dt><code>G</code><dd>Floating-point zero
<br><dt><code>H</code><dd>Signed 13-bit constant, sign-extended to 32 or 64 bits
<br><dt><code>Q</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single sethi
instruction
<br><dt><code>R</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single mov
instruction
<br><dt><code>S</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a high/lo_sum
instruction sequence
<br><dt><code>T</code><dd>Memory address aligned to an 8-byte boundary
<br><dt><code>U</code><dd>Even register
<br><dt><code>W</code><dd>Memory address for ‘<samp><span class="samp">e</span></samp>’ constraint registers
<br><dt><code>Y</code><dd>Vector zero
</dl>
<br><dt><em>SPU—</em><samp><span class="file">config/spu/spu.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value.
<br><dt><code>c</code><dd>An immediate for and/xor/or instructions. const_int is treated as a 64 bit value.
<br><dt><code>d</code><dd>An immediate for the <code>iohl</code> instruction. const_int is treated as a 64 bit value.
<br><dt><code>f</code><dd>An immediate which can be loaded with <code>fsmbi</code>.
<br><dt><code>A</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value.
<br><dt><code>B</code><dd>An immediate for most arithmetic instructions. const_int is treated as a 32 bit value.
<br><dt><code>C</code><dd>An immediate for and/xor/or instructions. const_int is treated as a 32 bit value.
<br><dt><code>D</code><dd>An immediate for the <code>iohl</code> instruction. const_int is treated as a 32 bit value.
<br><dt><code>I</code><dd>A constant in the range [-64, 63] for shift/rotate instructions.
<br><dt><code>J</code><dd>An unsigned 7-bit constant for conversion/nop/channel instructions.
<br><dt><code>K</code><dd>A signed 10-bit constant for most arithmetic instructions.
<br><dt><code>M</code><dd>A signed 16 bit immediate for <code>stop</code>.
<br><dt><code>N</code><dd>An unsigned 16-bit constant for <code>iohl</code> and <code>fsmbi</code>.
<br><dt><code>O</code><dd>An unsigned 7-bit constant whose 3 least significant bits are 0.
<br><dt><code>P</code><dd>An unsigned 3-bit constant for 16-byte rotates and shifts
<br><dt><code>R</code><dd>Call operand, reg, for indirect calls
<br><dt><code>S</code><dd>Call operand, symbol, for relative calls.
<br><dt><code>T</code><dd>Call operand, const_int, for absolute calls.
<br><dt><code>U</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit.
<br><dt><code>W</code><dd>An immediate for shift and rotate instructions. const_int is treated as a 32 bit value.
<br><dt><code>Y</code><dd>An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit.
<br><dt><code>Z</code><dd>An immediate for the <code>iohl</code> instruction. const_int is sign extended to 128 bit.
</dl>
<br><dt><em>S/390 and zSeries—</em><samp><span class="file">config/s390/s390.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Address register (general purpose register except r0)
<br><dt><code>c</code><dd>Condition code register
<br><dt><code>d</code><dd>Data register (arbitrary general purpose register)
<br><dt><code>f</code><dd>Floating-point register
<br><dt><code>I</code><dd>Unsigned 8-bit constant (0–255)
<br><dt><code>J</code><dd>Unsigned 12-bit constant (0–4095)
<br><dt><code>K</code><dd>Signed 16-bit constant (−32768–32767)
<br><dt><code>L</code><dd>Value appropriate as displacement.
<dl>
<dt><code>(0..4095)</code><dd>for short displacement
<br><dt><code>(-524288..524287)</code><dd>for long displacement
</dl>
<br><dt><code>M</code><dd>Constant integer with a value of 0x7fffffff.
<br><dt><code>N</code><dd>Multiple letter constraint followed by 4 parameter letters.
<dl>
<dt><code>0..9:</code><dd>number of the part counting from most to least significant
<br><dt><code>H,Q:</code><dd>mode of the part
<br><dt><code>D,S,H:</code><dd>mode of the containing operand
<br><dt><code>0,F:</code><dd>value of the other parts (F—all bits set)
</dl>
The constraint matches if the specified part of a constant
has a value different from its other parts.
<br><dt><code>Q</code><dd>Memory reference without index register and with short displacement.
<br><dt><code>R</code><dd>Memory reference with index register and short displacement.
<br><dt><code>S</code><dd>Memory reference without index register but with long displacement.
<br><dt><code>T</code><dd>Memory reference with index register and long displacement.
<br><dt><code>U</code><dd>Pointer with short displacement.
<br><dt><code>W</code><dd>Pointer with long displacement.
<br><dt><code>Y</code><dd>Shift count operand.
</dl>
<br><dt><em>Score family—</em><samp><span class="file">config/score/score.h</span></samp><dd>
<dl>
<dt><code>d</code><dd>Registers from r0 to r32.
<br><dt><code>e</code><dd>Registers from r0 to r16.
<br><dt><code>t</code><dd>r8—r11 or r22—r27 registers.
<br><dt><code>h</code><dd>hi register.
<br><dt><code>l</code><dd>lo register.
<br><dt><code>x</code><dd>hi + lo register.
<br><dt><code>q</code><dd>cnt register.
<br><dt><code>y</code><dd>lcb register.
<br><dt><code>z</code><dd>scb register.
<br><dt><code>a</code><dd>cnt + lcb + scb register.
<br><dt><code>c</code><dd>cr0—cr15 register.
<br><dt><code>b</code><dd>cp1 registers.
<br><dt><code>f</code><dd>cp2 registers.
<br><dt><code>i</code><dd>cp3 registers.
<br><dt><code>j</code><dd>cp1 + cp2 + cp3 registers.
<br><dt><code>I</code><dd>High 16-bit constant (32-bit constant with 16 LSBs zero).
<br><dt><code>J</code><dd>Unsigned 5 bit integer (in the range 0 to 31).
<br><dt><code>K</code><dd>Unsigned 16 bit integer (in the range 0 to 65535).
<br><dt><code>L</code><dd>Signed 16 bit integer (in the range −32768 to 32767).
<br><dt><code>M</code><dd>Unsigned 14 bit integer (in the range 0 to 16383).
<br><dt><code>N</code><dd>Signed 14 bit integer (in the range −8192 to 8191).
<br><dt><code>Z</code><dd>Any SYMBOL_REF.
</dl>
<br><dt><em>Xstormy16—</em><samp><span class="file">config/stormy16/stormy16.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register r0.
<br><dt><code>b</code><dd>Register r1.
<br><dt><code>c</code><dd>Register r2.
<br><dt><code>d</code><dd>Register r8.
<br><dt><code>e</code><dd>Registers r0 through r7.
<br><dt><code>t</code><dd>Registers r0 and r1.
<br><dt><code>y</code><dd>The carry register.
<br><dt><code>z</code><dd>Registers r8 and r9.
<br><dt><code>I</code><dd>A constant between 0 and 3 inclusive.
<br><dt><code>J</code><dd>A constant that has exactly one bit set.
<br><dt><code>K</code><dd>A constant that has exactly one bit clear.
<br><dt><code>L</code><dd>A constant between 0 and 255 inclusive.
<br><dt><code>M</code><dd>A constant between −255 and 0 inclusive.
<br><dt><code>N</code><dd>A constant between −3 and 0 inclusive.
<br><dt><code>O</code><dd>A constant between 1 and 4 inclusive.
<br><dt><code>P</code><dd>A constant between −4 and −1 inclusive.
<br><dt><code>Q</code><dd>A memory reference that is a stack push.
<br><dt><code>R</code><dd>A memory reference that is a stack pop.
<br><dt><code>S</code><dd>A memory reference that refers to a constant address of known value.
<br><dt><code>T</code><dd>The register indicated by Rx (not implemented yet).
<br><dt><code>U</code><dd>A constant that is not between 2 and 15 inclusive.
<br><dt><code>Z</code><dd>The constant 0.
</dl>
<br><dt><em>Xtensa—</em><samp><span class="file">config/xtensa/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>General-purpose 32-bit register
<br><dt><code>b</code><dd>One-bit boolean register
<br><dt><code>A</code><dd>MAC16 40-bit accumulator register
<br><dt><code>I</code><dd>Signed 12-bit integer constant, for use in MOVI instructions
<br><dt><code>J</code><dd>Signed 8-bit integer constant, for use in ADDI instructions
<br><dt><code>K</code><dd>Integer constant valid for BccI instructions
<br><dt><code>L</code><dd>Unsigned constant valid for BccUI instructions
</dl>
</dl>
<!-- Each of the following nodes are wrapped in separate -->
<!-- "@ifset INTERNALS" to work around memory limits for the default -->
<!-- configuration in older tetex distributions. Known to not work: -->
<!-- tetex-1.0.7, known to work: tetex-2.0.2. -->
<div class="node">
<a name="Asm-Labels"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>,
Previous: <a rel="previous" accesskey="p" href="#Constraints">Constraints</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.40 Controlling Names Used in Assembler Code</h3>
<p><a name="index-assembler-names-for-identifiers-2434"></a><a name="index-names-used-in-assembler-code-2435"></a><a name="index-identifiers_002c-names-in-assembler-code-2436"></a>
You can specify the name to be used in the assembler code for a C
function or variable by writing the <code>asm</code> (or <code>__asm__</code>)
keyword after the declarator as follows:
<pre class="smallexample"> int foo asm ("myfoo") = 2;
</pre>
<p class="noindent">This specifies that the name to be used for the variable <code>foo</code> in
the assembler code should be ‘<samp><span class="samp">myfoo</span></samp>’ rather than the usual
‘<samp><span class="samp">_foo</span></samp>’.
<p>On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the
linker that do not start with an underscore.
<p>It does not make sense to use this feature with a non-static local
variable since such variables do not have assembler names. If you are
trying to put the variable in a particular register, see <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>. GCC presently accepts such code with a warning, but will
probably be changed to issue an error, rather than a warning, in the
future.
<p>You cannot use <code>asm</code> in this way in a function <em>definition</em>; but
you can get the same effect by writing a declaration for the function
before its definition and putting <code>asm</code> there, like this:
<pre class="smallexample"> extern func () asm ("FUNC");
func (x, y)
int x, y;
/* <span class="roman">...</span> */
</pre>
<p>It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols. Also, you must not use a
register name; that would produce completely invalid assembler code. GCC
does not as yet have the ability to store static variables in registers.
Perhaps that will be added.
<div class="node">
<a name="Explicit-Reg-Vars"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Alternate-Keywords">Alternate Keywords</a>,
Previous: <a rel="previous" accesskey="p" href="#Asm-Labels">Asm Labels</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.41 Variables in Specified Registers</h3>
<p><a name="index-explicit-register-variables-2437"></a><a name="index-variables-in-specified-registers-2438"></a><a name="index-specified-registers-2439"></a><a name="index-registers_002c-global-allocation-2440"></a>
GNU C allows you to put a few global variables into specified hardware
registers. You can also specify the register in which an ordinary
register variable should be allocated.
<ul>
<li>Global register variables reserve registers throughout the program.
This may be useful in programs such as programming language
interpreters which have a couple of global variables that are accessed
very often.
<li>Local register variables in specific registers do not reserve the
registers, except at the point where they are used as input or output
operands in an <code>asm</code> statement and the <code>asm</code> statement itself is
not deleted. The compiler's data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses. Stores into local register variables may be deleted
when they appear to be dead according to dataflow analysis. References
to local register variables may be deleted or moved or simplified.
<p>These local variables are sometimes convenient for use with the extended
<code>asm</code> feature (see <a href="#Extended-Asm">Extended Asm</a>), if you want to write one
output of the assembler instruction directly into a particular register.
(This will work provided the register you specify fits the constraints
specified for that operand in the <code>asm</code>.)
</ul>
<ul class="menu">
<li><a accesskey="1" href="#Global-Reg-Vars">Global Reg Vars</a>
<li><a accesskey="2" href="#Local-Reg-Vars">Local Reg Vars</a>
</ul>
<div class="node">
<a name="Global-Reg-Vars"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Local-Reg-Vars">Local Reg Vars</a>,
Up: <a rel="up" accesskey="u" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>
</div>
<h4 class="subsection">5.41.1 Defining Global Register Variables</h4>
<p><a name="index-global-register-variables-2441"></a><a name="index-registers_002c-global-variables-in-2442"></a>
You can define a global register variable in GNU C like this:
<pre class="smallexample"> register int *foo asm ("a5");
</pre>
<p class="noindent">Here <code>a5</code> is the name of the register which should be used. Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.
<p>Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type. The register
<code>a5</code> would be a good choice on a 68000 for a variable of pointer
type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.
<p>In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals. For
example, some 68000 operating systems call this register <code>%a5</code>.
<p>Eventually there may be a way of asking the compiler to choose a register
automatically, but first we need to figure out how it should choose and
how to enable you to guide the choice. No solution is evident.
<p>Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation.
The register will not be allocated for any other purpose in the functions
in the current compilation. The register will not be saved and restored by
these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or
simplified.
<p>It is not safe to access the global register variables from signal
handlers, or from more than one thread of control, because the system
library routines may temporarily use the register for other things (unless
you recompile them specially for the task at hand).
<p><a name="index-g_t_0040code_007bqsort_007d_002c-and-global-register-variables-2443"></a>It is not safe for one function that uses a global register variable to
call another such function <code>foo</code> by way of a third function
<code>lose</code> that was compiled without knowledge of this variable (i.e. in a
different source file in which the variable wasn't declared). This is
because <code>lose</code> might save the register and put some other value there.
For example, you can't expect a global register variable to be available in
the comparison-function that you pass to <code>qsort</code>, since <code>qsort</code>
might have put something else in that register. (If you are prepared to
recompile <code>qsort</code> with the same global register variable, you can
solve this problem.)
<p>If you want to recompile <code>qsort</code> or other source files which do not
actually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler
option <samp><span class="option">-ffixed-</span><var>reg</var></samp>. You need not actually add a global
register declaration to their source code.
<p>A function which can alter the value of a global register variable cannot
safely be called from a function compiled without this variable, because it
could clobber the value the caller expects to find there on return.
Therefore, the function which is the entry point into the part of the
program that uses the global register variable must explicitly save and
restore the value which belongs to its caller.
<p><a name="index-register-variable-after-_0040code_007blongjmp_007d-2444"></a><a name="index-global-register-after-_0040code_007blongjmp_007d-2445"></a><a name="index-value-after-_0040code_007blongjmp_007d-2446"></a><a name="index-longjmp-2447"></a><a name="index-setjmp-2448"></a>On most machines, <code>longjmp</code> will restore to each global register
variable the value it had at the time of the <code>setjmp</code>. On some
machines, however, <code>longjmp</code> will not change the value of global
register variables. To be portable, the function that called <code>setjmp</code>
should make other arrangements to save the values of the global register
variables, and to restore them in a <code>longjmp</code>. This way, the same
thing will happen regardless of what <code>longjmp</code> does.
<p>All global register variable declarations must precede all function
definitions. If such a declaration could appear after function
definitions, the declaration would be too late to prevent the register from
being used for other purposes in the preceding functions.
<p>Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.
<p>On the SPARC, there are reports that g3 <small class="dots">...</small> g7 are suitable
registers, but certain library functions, such as <code>getwd</code>, as well
as the subroutines for division and remainder, modify g3 and g4. g1 and
g2 are local temporaries.
<p>On the 68000, a2 <small class="dots">...</small> a5 should be suitable, as should d2 <small class="dots">...</small> d7.
Of course, it will not do to use more than a few of those.
<div class="node">
<a name="Local-Reg-Vars"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Global-Reg-Vars">Global Reg Vars</a>,
Up: <a rel="up" accesskey="u" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>
</div>
<h4 class="subsection">5.41.2 Specifying Registers for Local Variables</h4>
<p><a name="index-local-variables_002c-specifying-registers-2449"></a><a name="index-specifying-registers-for-local-variables-2450"></a><a name="index-registers-for-local-variables-2451"></a>
You can define a local register variable with a specified register
like this:
<pre class="smallexample"> register int *foo asm ("a5");
</pre>
<p class="noindent">Here <code>a5</code> is the name of the register which should be used. Note
that this is the same syntax used for defining global register
variables, but for a local variable it would appear within a function.
<p>Naturally the register name is cpu-dependent, but this is not a
problem, since specific registers are most often useful with explicit
assembler instructions (see <a href="#Extended-Asm">Extended Asm</a>). Both of these things
generally require that you conditionalize your program according to
cpu type.
<p>In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals. For
example, some 68000 operating systems call this register <code>%a5</code>.
<p>Defining such a register variable does not reserve the register; it
remains available for other uses in places where flow control determines
the variable's value is not live.
<p>This option does not guarantee that GCC will generate code that has
this variable in the register you specify at all times. You may not
code an explicit reference to this register in the <em>assembler
instruction template</em> part of an <code>asm</code> statement and assume it will
always refer to this variable. However, using the variable as an
<code>asm</code> <em>operand</em> guarantees that the specified register is used
for the operand.
<p>Stores into local register variables may be deleted when they appear to be dead
according to dataflow analysis. References to local register variables may
be deleted or moved or simplified.
<p>As for global register variables, it's recommended that you choose a
register which is normally saved and restored by function calls on
your machine, so that library routines will not clobber it. A common
pitfall is to initialize multiple call-clobbered registers with
arbitrary expressions, where a function call or library call for an
arithmetic operator will overwrite a register value from a previous
assignment, for example <code>r0</code> below:
<pre class="smallexample"> register int *p1 asm ("r0") = ...;
register int *p2 asm ("r1") = ...;
</pre>
<p>In those cases, a solution is to use a temporary variable for
each arbitrary expression. See <a href="#Example-of-asm-with-clobbered-asm-reg">Example of asm with clobbered asm reg</a>.
<div class="node">
<a name="Alternate-Keywords"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Incomplete-Enums">Incomplete Enums</a>,
Previous: <a rel="previous" accesskey="p" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.42 Alternate Keywords</h3>
<p><a name="index-alternate-keywords-2452"></a><a name="index-keywords_002c-alternate-2453"></a>
<samp><span class="option">-ansi</span></samp> and the various <samp><span class="option">-std</span></samp> options disable certain
keywords. This causes trouble when you want to use GNU C extensions, or
a general-purpose header file that should be usable by all programs,
including ISO C programs. The keywords <code>asm</code>, <code>typeof</code> and
<code>inline</code> are not available in programs compiled with
<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std</span></samp> (although <code>inline</code> can be used in a
program compiled with <samp><span class="option">-std=c99</span></samp>). The ISO C99 keyword
<code>restrict</code> is only available when <samp><span class="option">-std=gnu99</span></samp> (which will
eventually be the default) or <samp><span class="option">-std=c99</span></samp> (or the equivalent
<samp><span class="option">-std=iso9899:1999</span></samp>) is used.
<p>The way to solve these problems is to put ‘<samp><span class="samp">__</span></samp>’ at the beginning and
end of each problematical keyword. For example, use <code>__asm__</code>
instead of <code>asm</code>, and <code>__inline__</code> instead of <code>inline</code>.
<p>Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:
<pre class="smallexample"> #ifndef __GNUC__
#define __asm__ asm
#endif
</pre>
<p><a name="index-g_t_005f_005fextension_005f_005f-2454"></a><a name="index-pedantic-2455"></a><samp><span class="option">-pedantic</span></samp> and other options cause warnings for many GNU C extensions.
You can
prevent such warnings within one expression by writing
<code>__extension__</code> before the expression. <code>__extension__</code> has no
effect aside from this.
<div class="node">
<a name="Incomplete-Enums"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Names">Function Names</a>,
Previous: <a rel="previous" accesskey="p" href="#Alternate-Keywords">Alternate Keywords</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.43 Incomplete <code>enum</code> Types</h3>
<p>You can define an <code>enum</code> tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
<code>struct foo</code> without describing the elements. A later declaration
which does specify the possible values completes the type.
<p>You can't allocate variables or storage using the type while it is
incomplete. However, you can work with pointers to that type.
<p>This extension may not be very useful, but it makes the handling of
<code>enum</code> more consistent with the way <code>struct</code> and <code>union</code>
are handled.
<p>This extension is not supported by GNU C++.
<div class="node">
<a name="Function-Names"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Return-Address">Return Address</a>,
Previous: <a rel="previous" accesskey="p" href="#Incomplete-Enums">Incomplete Enums</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.44 Function Names as Strings</h3>
<p><a name="index-g_t_0040code_007b_005f_005ffunc_005f_005f_007d-identifier-2456"></a><a name="index-g_t_0040code_007b_005f_005fFUNCTION_005f_005f_007d-identifier-2457"></a><a name="index-g_t_0040code_007b_005f_005fPRETTY_005fFUNCTION_005f_005f_007d-identifier-2458"></a>
GCC provides three magic variables which hold the name of the current
function, as a string. The first of these is <code>__func__</code>, which
is part of the C99 standard:
<p>The identifier <code>__func__</code> is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration
<pre class="smallexample"> static const char __func__[] = "function-name";
</pre>
<p class="noindent">appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function.
<p><code>__FUNCTION__</code> is another name for <code>__func__</code>. Older
versions of GCC recognize only this name. However, it is not
standardized. For maximum portability, we recommend you use
<code>__func__</code>, but provide a fallback definition with the
preprocessor:
<pre class="smallexample"> #if __STDC_VERSION__ < 199901L
# if __GNUC__ >= 2
# define __func__ __FUNCTION__
# else
# define __func__ "<unknown>"
# endif
#endif
</pre>
<p>In C, <code>__PRETTY_FUNCTION__</code> is yet another name for
<code>__func__</code>. However, in C++, <code>__PRETTY_FUNCTION__</code> contains
the type signature of the function as well as its bare name. For
example, this program:
<pre class="smallexample"> extern "C" {
extern int printf (char *, ...);
}
class a {
public:
void sub (int i)
{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
}
};
int
main (void)
{
a ax;
ax.sub (0);
return 0;
}
</pre>
<p class="noindent">gives this output:
<pre class="smallexample"> __FUNCTION__ = sub
__PRETTY_FUNCTION__ = void a::sub(int)
</pre>
<p>These identifiers are not preprocessor macros. In GCC 3.3 and
earlier, in C only, <code>__FUNCTION__</code> and <code>__PRETTY_FUNCTION__</code>
were treated as string literals; they could be used to initialize
<code>char</code> arrays, and they could be concatenated with other string
literals. GCC 3.4 and later treat them as variables, like
<code>__func__</code>. In C++, <code>__FUNCTION__</code> and
<code>__PRETTY_FUNCTION__</code> have always been variables.
<div class="node">
<a name="Return-Address"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Vector-Extensions">Vector Extensions</a>,
Previous: <a rel="previous" accesskey="p" href="#Function-Names">Function Names</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.45 Getting the Return or Frame Address of a Function</h3>
<p>These functions may be used to get information about the callers of a
function.
<div class="defun">
— Built-in Function: void * <b>__builtin_return_address</b> (<var>unsigned int level</var>)<var><a name="index-g_t_005f_005fbuiltin_005freturn_005faddress-2459"></a></var><br>
<blockquote><p>This function returns the return address of the current function, or of
one of its callers. The <var>level</var> argument is number of frames to
scan up the call stack. A value of <code>0</code> yields the return address
of the current function, a value of <code>1</code> yields the return address
of the caller of the current function, and so forth. When inlining
the expected behavior is that the function will return the address of
the function that will be returned to. To work around this behavior use
the <code>noinline</code> function attribute.
<p>The <var>level</var> argument must be a constant integer.
<p>On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function will return <code>0</code> or a
random value. In addition, <code>__builtin_frame_address</code> may be used
to determine if the top of the stack has been reached.
<p>This function should only be used with a nonzero argument for debugging
purposes.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void * <b>__builtin_frame_address</b> (<var>unsigned int level</var>)<var><a name="index-g_t_005f_005fbuiltin_005fframe_005faddress-2460"></a></var><br>
<blockquote><p>This function is similar to <code>__builtin_return_address</code>, but it
returns the address of the function frame rather than the return address
of the function. Calling <code>__builtin_frame_address</code> with a value of
<code>0</code> yields the frame address of the current function, a value of
<code>1</code> yields the frame address of the caller of the current function,
and so forth.
<p>The frame is the area on the stack which holds local variables and saved
registers. The frame address is normally the address of the first word
pushed on to the stack by the function. However, the exact definition
depends upon the processor and the calling convention. If the processor
has a dedicated frame pointer register, and the function has a frame,
then <code>__builtin_frame_address</code> will return the value of the frame
pointer register.
<p>On some machines it may be impossible to determine the frame address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function will return <code>0</code> if
the first frame pointer is properly initialized by the startup code.
<p>This function should only be used with a nonzero argument for debugging
purposes.
</p></blockquote></div>
<div class="node">
<a name="Vector-Extensions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Offsetof">Offsetof</a>,
Previous: <a rel="previous" accesskey="p" href="#Return-Address">Return Address</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.46 Using vector instructions through built-in functions</h3>
<p>On some targets, the instruction set contains SIMD vector instructions that
operate on multiple values contained in one large register at the same time.
For example, on the i386 the MMX, 3Dnow! and SSE extensions can be used
this way.
<p>The first step in using these extensions is to provide the necessary data
types. This should be done using an appropriate <code>typedef</code>:
<pre class="smallexample"> typedef int v4si __attribute__ ((vector_size (16)));
</pre>
<p>The <code>int</code> type specifies the base type, while the attribute specifies
the vector size for the variable, measured in bytes. For example, the
declaration above causes the compiler to set the mode for the <code>v4si</code>
type to be 16 bytes wide and divided into <code>int</code> sized units. For
a 32-bit <code>int</code> this means a vector of 4 units of 4 bytes, and the
corresponding mode of <code>foo</code> will be <acronym>V4SI</acronym>.
<p>The <code>vector_size</code> attribute is only applicable to integral and
float scalars, although arrays, pointers, and function return values
are allowed in conjunction with this construct.
<p>All the basic integer types can be used as base types, both as signed
and as unsigned: <code>char</code>, <code>short</code>, <code>int</code>, <code>long</code>,
<code>long long</code>. In addition, <code>float</code> and <code>double</code> can be
used to build floating-point vector types.
<p>Specifying a combination that is not valid for the current architecture
will cause GCC to synthesize the instructions using a narrower mode.
For example, if you specify a variable of type <code>V4SI</code> and your
architecture does not allow for this specific SIMD type, GCC will
produce code that uses 4 <code>SIs</code>.
<p>The types defined in this manner can be used with a subset of normal C
operations. Currently, GCC will allow using the following operators
on these types: <code>+, -, *, /, unary minus, ^, |, &, ~</code>.
<p>The operations behave like C++ <code>valarrays</code>. Addition is defined as
the addition of the corresponding elements of the operands. For
example, in the code below, each of the 4 elements in <var>a</var> will be
added to the corresponding 4 elements in <var>b</var> and the resulting
vector will be stored in <var>c</var>.
<pre class="smallexample"> typedef int v4si __attribute__ ((vector_size (16)));
v4si a, b, c;
c = a + b;
</pre>
<p>Subtraction, multiplication, division, and the logical operations
operate in a similar manner. Likewise, the result of using the unary
minus or complement operators on a vector type is a vector whose
elements are the negative or complemented values of the corresponding
elements in the operand.
<p>You can declare variables and use them in function calls and returns, as
well as in assignments and some casts. You can specify a vector type as
a return type for a function. Vector types can also be used as function
arguments. It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors
to and from other datatypes of the same size).
<p>You cannot operate between vectors of different lengths or different
signedness without a cast.
<p>A port that supports hardware vector operations, usually provides a set
of built-in functions that can be used to operate on vectors. For
example, a function to add two vectors and multiply the result by a
third could look like this:
<pre class="smallexample"> v4si f (v4si a, v4si b, v4si c)
{
v4si tmp = __builtin_addv4si (a, b);
return __builtin_mulv4si (tmp, c);
}
</pre>
<div class="node">
<a name="Offsetof"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Atomic-Builtins">Atomic Builtins</a>,
Previous: <a rel="previous" accesskey="p" href="#Vector-Extensions">Vector Extensions</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.47 Offsetof</h3>
<p><a name="index-g_t_005f_005fbuiltin_005foffsetof-2461"></a>
GCC implements for both C and C++ a syntactic extension to implement
the <code>offsetof</code> macro.
<pre class="smallexample"> primary:
"__builtin_offsetof" "(" <code>typename</code> "," offsetof_member_designator ")"
offsetof_member_designator:
<code>identifier</code>
| offsetof_member_designator "." <code>identifier</code>
| offsetof_member_designator "[" <code>expr</code> "]"
</pre>
<p>This extension is sufficient such that
<pre class="smallexample"> #define offsetof(<var>type</var>, <var>member</var>) __builtin_offsetof (<var>type</var>, <var>member</var>)
</pre>
<p>is a suitable definition of the <code>offsetof</code> macro. In C++, <var>type</var>
may be dependent. In either case, <var>member</var> may consist of a single
identifier, or a sequence of member accesses and array references.
<div class="node">
<a name="Atomic-Builtins"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Object-Size-Checking">Object Size Checking</a>,
Previous: <a rel="previous" accesskey="p" href="#Offsetof">Offsetof</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.48 Built-in functions for atomic memory access</h3>
<p>The following builtins are intended to be compatible with those described
in the <cite>Intel Itanium Processor-specific Application Binary Interface</cite>,
section 7.4. As such, they depart from the normal GCC practice of using
the “__builtin_” prefix, and further that they are overloaded such that
they work on multiple types.
<p>The definition given in the Intel documentation allows only for the use of
the types <code>int</code>, <code>long</code>, <code>long long</code> as well as their unsigned
counterparts. GCC will allow any integral scalar or pointer type that is
1, 2, 4 or 8 bytes in length.
<p>Not all operations are supported by all target processors. If a particular
operation cannot be implemented on the target processor, a warning will be
generated and a call an external function will be generated. The external
function will carry the same name as the builtin, with an additional suffix
‘<samp><span class="samp">_</span><var>n</var></samp>’ where <var>n</var> is the size of the data type.
<!-- ??? Should we have a mechanism to suppress this warning? This is almost -->
<!-- useful for implementing the operation under the control of an external -->
<!-- mutex. -->
<p>In most cases, these builtins are considered a <dfn>full barrier</dfn>. That is,
no memory operand will be moved across the operation, either forward or
backward. Further, instructions will be issued as necessary to prevent the
processor from speculating loads across the operation and from queuing stores
after the operation.
<p>All of the routines are described in the Intel documentation to take
“an optional list of variables protected by the memory barrier”. It's
not clear what is meant by that; it could mean that <em>only</em> the
following variables are protected, or it could mean that these variables
should in addition be protected. At present GCC ignores this list and
protects all variables which are globally accessible. If in the future
we make some use of this list, an empty list will continue to mean all
globally accessible variables.
<dl>
<dt><var>type</var><code> __sync_fetch_and_add (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_sub (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_or (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_and (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_xor (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_nand (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fadd-2462"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fsub-2463"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005for-2464"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fand-2465"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fxor-2466"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fnand-2467"></a>These builtins perform the operation suggested by the name, and
returns the value that had previously been in memory. That is,
<pre class="smallexample"> { tmp = *ptr; *ptr <var>op</var>= value; return tmp; }
{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
</pre>
<p><em>Note:</em> GCC 4.4 and later implement <code>__sync_fetch_and_nand</code>
builtin as <code>*ptr = ~(tmp & value)</code> instead of <code>*ptr = ~tmp & value</code>.
<br><dt><var>type</var><code> __sync_add_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_sub_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_or_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_and_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_xor_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_nand_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005fadd_005fand_005ffetch-2468"></a><a name="index-g_t_005f_005fsync_005fsub_005fand_005ffetch-2469"></a><a name="index-g_t_005f_005fsync_005for_005fand_005ffetch-2470"></a><a name="index-g_t_005f_005fsync_005fand_005fand_005ffetch-2471"></a><a name="index-g_t_005f_005fsync_005fxor_005fand_005ffetch-2472"></a><a name="index-g_t_005f_005fsync_005fnand_005fand_005ffetch-2473"></a>These builtins perform the operation suggested by the name, and
return the new value. That is,
<pre class="smallexample"> { *ptr <var>op</var>= value; return *ptr; }
{ *ptr = ~(*ptr & value); return *ptr; } // nand
</pre>
<p><em>Note:</em> GCC 4.4 and later implement <code>__sync_nand_and_fetch</code>
builtin as <code>*ptr = ~(*ptr & value)</code> instead of
<code>*ptr = ~*ptr & value</code>.
<br><dt><code>bool __sync_bool_compare_and_swap (</code><var>type</var><code> *ptr, </code><var>type</var><code> oldval </code><var>type</var><code> newval, ...)</code><dt><var>type</var><code> __sync_val_compare_and_swap (</code><var>type</var><code> *ptr, </code><var>type</var><code> oldval </code><var>type</var><code> newval, ...)</code><dd><a name="index-g_t_005f_005fsync_005fbool_005fcompare_005fand_005fswap-2474"></a><a name="index-g_t_005f_005fsync_005fval_005fcompare_005fand_005fswap-2475"></a>These builtins perform an atomic compare and swap. That is, if the current
value of <code>*</code><var>ptr</var> is <var>oldval</var>, then write <var>newval</var> into
<code>*</code><var>ptr</var>.
<p>The “bool” version returns true if the comparison is successful and
<var>newval</var> was written. The “val” version returns the contents
of <code>*</code><var>ptr</var> before the operation.
<br><dt><code>__sync_synchronize (...)</code><dd><a name="index-g_t_005f_005fsync_005fsynchronize-2476"></a>This builtin issues a full memory barrier.
<br><dt><var>type</var><code> __sync_lock_test_and_set (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005flock_005ftest_005fand_005fset-2477"></a>This builtin, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation. It writes <var>value</var>
into <code>*</code><var>ptr</var>, and returns the previous contents of
<code>*</code><var>ptr</var>.
<p>Many targets have only minimal support for such locks, and do not support
a full exchange operation. In this case, a target may support reduced
functionality here by which the <em>only</em> valid value to store is the
immediate constant 1. The exact value actually stored in <code>*</code><var>ptr</var>
is implementation defined.
<p>This builtin is not a full barrier, but rather an <dfn>acquire barrier</dfn>.
This means that references after the builtin cannot move to (or be
speculated to) before the builtin, but previous memory stores may not
be globally visible yet, and previous memory loads may not yet be
satisfied.
<br><dt><code>void __sync_lock_release (</code><var>type</var><code> *ptr, ...)</code><dd><a name="index-g_t_005f_005fsync_005flock_005frelease-2478"></a>This builtin releases the lock acquired by <code>__sync_lock_test_and_set</code>.
Normally this means writing the constant 0 to <code>*</code><var>ptr</var>.
<p>This builtin is not a full barrier, but rather a <dfn>release barrier</dfn>.
This means that all previous memory stores are globally visible, and all
previous memory loads have been satisfied, but following memory reads
are not prevented from being speculated to before the barrier.
</dl>
<div class="node">
<a name="Object-Size-Checking"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Other-Builtins">Other Builtins</a>,
Previous: <a rel="previous" accesskey="p" href="#Atomic-Builtins">Atomic Builtins</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.49 Object Size Checking Builtins</h3>
<p><a name="index-g_t_005f_005fbuiltin_005fobject_005fsize-2479"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk-2480"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk-2481"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemmove_005fchk-2482"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemset_005fchk-2483"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk-2484"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk-2485"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk-2486"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrcat_005fchk-2487"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrncat_005fchk-2488"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fsprintf_005fchk-2489"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk-2490"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk-2491"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk-2492"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fprintf_005fchk-2493"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvprintf_005fchk-2494"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005ffprintf_005fchk-2495"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk-2496"></a>
GCC implements a limited buffer overflow protection mechanism
that can prevent some buffer overflow attacks.
<div class="defun">
— Built-in Function: size_t <b>__builtin_object_size</b> (<var>void * ptr, int type</var>)<var><a name="index-g_t_005f_005fbuiltin_005fobject_005fsize-2497"></a></var><br>
<blockquote><p>is a built-in construct that returns a constant number of bytes from
<var>ptr</var> to the end of the object <var>ptr</var> pointer points to
(if known at compile time). <code>__builtin_object_size</code> never evaluates
its arguments for side-effects. If there are any side-effects in them, it
returns <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3. If there are multiple objects <var>ptr</var> can
point to and all of them are known at compile time, the returned number
is the maximum of remaining byte counts in those objects if <var>type</var> & 2 is
0 and minimum if nonzero. If it is not possible to determine which objects
<var>ptr</var> points to at compile time, <code>__builtin_object_size</code> should
return <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3.
<p><var>type</var> is an integer constant from 0 to 3. If the least significant
bit is clear, objects are whole variables, if it is set, a closest
surrounding subobject is considered the object a pointer points to.
The second bit determines if maximum or minimum of remaining bytes
is computed.
<pre class="smallexample"> struct V { char buf1[10]; int b; char buf2[10]; } var;
char *p = &var.buf1[1], *q = &var.b;
/* Here the object p points to is var. */
assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
/* The subobject p points to is var.buf1. */
assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
/* The object q points to is var. */
assert (__builtin_object_size (q, 0)
== (char *) (&var + 1) - (char *) &var.b);
/* The subobject q points to is var.b. */
assert (__builtin_object_size (q, 1) == sizeof (var.b));
</pre>
</blockquote></div>
<p>There are built-in functions added for many common string operation
functions, e.g., for <code>memcpy</code> <code>__builtin___memcpy_chk</code>
built-in is provided. This built-in has an additional last argument,
which is the number of bytes remaining in object the <var>dest</var>
argument points to or <code>(size_t) -1</code> if the size is not known.
<p>The built-in functions are optimized into the normal string functions
like <code>memcpy</code> if the last argument is <code>(size_t) -1</code> or if
it is known at compile time that the destination object will not
be overflown. If the compiler can determine at compile time the
object will be always overflown, it issues a warning.
<p>The intended use can be e.g.
<pre class="smallexample"> #undef memcpy
#define bos0(dest) __builtin_object_size (dest, 0)
#define memcpy(dest, src, n) \
__builtin___memcpy_chk (dest, src, n, bos0 (dest))
char *volatile p;
char buf[10];
/* It is unknown what object p points to, so this is optimized
into plain memcpy - no checking is possible. */
memcpy (p, "abcde", n);
/* Destination is known and length too. It is known at compile
time there will be no overflow. */
memcpy (&buf[5], "abcde", 5);
/* Destination is known, but the length is not known at compile time.
This will result in __memcpy_chk call that can check for overflow
at runtime. */
memcpy (&buf[5], "abcde", n);
/* Destination is known and it is known at compile time there will
be overflow. There will be a warning and __memcpy_chk call that
will abort the program at runtime. */
memcpy (&buf[6], "abcde", 5);
</pre>
<p>Such built-in functions are provided for <code>memcpy</code>, <code>mempcpy</code>,
<code>memmove</code>, <code>memset</code>, <code>strcpy</code>, <code>stpcpy</code>, <code>strncpy</code>,
<code>strcat</code> and <code>strncat</code>.
<p>There are also checking built-in functions for formatted output functions.
<pre class="smallexample"> int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, ...);
int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
va_list ap);
int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
const char *fmt, va_list ap);
</pre>
<p>The added <var>flag</var> argument is passed unchanged to <code>__sprintf_chk</code>
etc. functions and can contain implementation specific flags on what
additional security measures the checking function might take, such as
handling <code>%n</code> differently.
<p>The <var>os</var> argument is the object size <var>s</var> points to, like in the
other built-in functions. There is a small difference in the behavior
though, if <var>os</var> is <code>(size_t) -1</code>, the built-in functions are
optimized into the non-checking functions only if <var>flag</var> is 0, otherwise
the checking function is called with <var>os</var> argument set to
<code>(size_t) -1</code>.
<p>In addition to this, there are checking built-in functions
<code>__builtin___printf_chk</code>, <code>__builtin___vprintf_chk</code>,
<code>__builtin___fprintf_chk</code> and <code>__builtin___vfprintf_chk</code>.
These have just one additional argument, <var>flag</var>, right before
format string <var>fmt</var>. If the compiler is able to optimize them to
<code>fputc</code> etc. functions, it will, otherwise the checking function
should be called and the <var>flag</var> argument passed to it.
<div class="node">
<a name="Other-Builtins"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Target-Builtins">Target Builtins</a>,
Previous: <a rel="previous" accesskey="p" href="#Object-Size-Checking">Object Size Checking</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.50 Other built-in functions provided by GCC</h3>
<p><a name="index-built_002din-functions-2498"></a><a name="index-g_t_005f_005fbuiltin_005ffpclassify-2499"></a><a name="index-g_t_005f_005fbuiltin_005fisfinite-2500"></a><a name="index-g_t_005f_005fbuiltin_005fisnormal-2501"></a><a name="index-g_t_005f_005fbuiltin_005fisgreater-2502"></a><a name="index-g_t_005f_005fbuiltin_005fisgreaterequal-2503"></a><a name="index-g_t_005f_005fbuiltin_005fisinf_005fsign-2504"></a><a name="index-g_t_005f_005fbuiltin_005fisless-2505"></a><a name="index-g_t_005f_005fbuiltin_005fislessequal-2506"></a><a name="index-g_t_005f_005fbuiltin_005fislessgreater-2507"></a><a name="index-g_t_005f_005fbuiltin_005fisunordered-2508"></a><a name="index-g_t_005f_005fbuiltin_005fpowi-2509"></a><a name="index-g_t_005f_005fbuiltin_005fpowif-2510"></a><a name="index-g_t_005f_005fbuiltin_005fpowil-2511"></a><a name="index-g_t_005fExit-2512"></a><a name="index-g_t_005fexit-2513"></a><a name="index-abort-2514"></a><a name="index-abs-2515"></a><a name="index-acos-2516"></a><a name="index-acosf-2517"></a><a name="index-acosh-2518"></a><a name="index-acoshf-2519"></a><a name="index-acoshl-2520"></a><a name="index-acosl-2521"></a><a name="index-alloca-2522"></a><a name="index-asin-2523"></a><a name="index-asinf-2524"></a><a name="index-asinh-2525"></a><a name="index-asinhf-2526"></a><a name="index-asinhl-2527"></a><a name="index-asinl-2528"></a><a name="index-atan-2529"></a><a name="index-atan2-2530"></a><a name="index-atan2f-2531"></a><a name="index-atan2l-2532"></a><a name="index-atanf-2533"></a><a name="index-atanh-2534"></a><a name="index-atanhf-2535"></a><a name="index-atanhl-2536"></a><a name="index-atanl-2537"></a><a name="index-bcmp-2538"></a><a name="index-bzero-2539"></a><a name="index-cabs-2540"></a><a name="index-cabsf-2541"></a><a name="index-cabsl-2542"></a><a name="index-cacos-2543"></a><a name="index-cacosf-2544"></a><a name="index-cacosh-2545"></a><a name="index-cacoshf-2546"></a><a name="index-cacoshl-2547"></a><a name="index-cacosl-2548"></a><a name="index-calloc-2549"></a><a name="index-carg-2550"></a><a name="index-cargf-2551"></a><a name="index-cargl-2552"></a><a name="index-casin-2553"></a><a name="index-casinf-2554"></a><a name="index-casinh-2555"></a><a name="index-casinhf-2556"></a><a name="index-casinhl-2557"></a><a name="index-casinl-2558"></a><a name="index-catan-2559"></a><a name="index-catanf-2560"></a><a name="index-catanh-2561"></a><a name="index-catanhf-2562"></a><a name="index-catanhl-2563"></a><a name="index-catanl-2564"></a><a name="index-cbrt-2565"></a><a name="index-cbrtf-2566"></a><a name="index-cbrtl-2567"></a><a name="index-ccos-2568"></a><a name="index-ccosf-2569"></a><a name="index-ccosh-2570"></a><a name="index-ccoshf-2571"></a><a name="index-ccoshl-2572"></a><a name="index-ccosl-2573"></a><a name="index-ceil-2574"></a><a name="index-ceilf-2575"></a><a name="index-ceill-2576"></a><a name="index-cexp-2577"></a><a name="index-cexpf-2578"></a><a name="index-cexpl-2579"></a><a name="index-cimag-2580"></a><a name="index-cimagf-2581"></a><a name="index-cimagl-2582"></a><a name="index-clog-2583"></a><a name="index-clogf-2584"></a><a name="index-clogl-2585"></a><a name="index-conj-2586"></a><a name="index-conjf-2587"></a><a name="index-conjl-2588"></a><a name="index-copysign-2589"></a><a name="index-copysignf-2590"></a><a name="index-copysignl-2591"></a><a name="index-cos-2592"></a><a name="index-cosf-2593"></a><a name="index-cosh-2594"></a><a name="index-coshf-2595"></a><a name="index-coshl-2596"></a><a name="index-cosl-2597"></a><a name="index-cpow-2598"></a><a name="index-cpowf-2599"></a><a name="index-cpowl-2600"></a><a name="index-cproj-2601"></a><a name="index-cprojf-2602"></a><a name="index-cprojl-2603"></a><a name="index-creal-2604"></a><a name="index-crealf-2605"></a><a name="index-creall-2606"></a><a name="index-csin-2607"></a><a name="index-csinf-2608"></a><a name="index-csinh-2609"></a><a name="index-csinhf-2610"></a><a name="index-csinhl-2611"></a><a name="index-csinl-2612"></a><a name="index-csqrt-2613"></a><a name="index-csqrtf-2614"></a><a name="index-csqrtl-2615"></a><a name="index-ctan-2616"></a><a name="index-ctanf-2617"></a><a name="index-ctanh-2618"></a><a name="index-ctanhf-2619"></a><a name="index-ctanhl-2620"></a><a name="index-ctanl-2621"></a><a name="index-dcgettext-2622"></a><a name="index-dgettext-2623"></a><a name="index-drem-2624"></a><a name="index-dremf-2625"></a><a name="index-dreml-2626"></a><a name="index-erf-2627"></a><a name="index-erfc-2628"></a><a name="index-erfcf-2629"></a><a name="index-erfcl-2630"></a><a name="index-erff-2631"></a><a name="index-erfl-2632"></a><a name="index-exit-2633"></a><a name="index-exp-2634"></a><a name="index-exp10-2635"></a><a name="index-exp10f-2636"></a><a name="index-exp10l-2637"></a><a name="index-exp2-2638"></a><a name="index-exp2f-2639"></a><a name="index-exp2l-2640"></a><a name="index-expf-2641"></a><a name="index-expl-2642"></a><a name="index-expm1-2643"></a><a name="index-expm1f-2644"></a><a name="index-expm1l-2645"></a><a name="index-fabs-2646"></a><a name="index-fabsf-2647"></a><a name="index-fabsl-2648"></a><a name="index-fdim-2649"></a><a name="index-fdimf-2650"></a><a name="index-fdiml-2651"></a><a name="index-ffs-2652"></a><a name="index-floor-2653"></a><a name="index-floorf-2654"></a><a name="index-floorl-2655"></a><a name="index-fma-2656"></a><a name="index-fmaf-2657"></a><a name="index-fmal-2658"></a><a name="index-fmax-2659"></a><a name="index-fmaxf-2660"></a><a name="index-fmaxl-2661"></a><a name="index-fmin-2662"></a><a name="index-fminf-2663"></a><a name="index-fminl-2664"></a><a name="index-fmod-2665"></a><a name="index-fmodf-2666"></a><a name="index-fmodl-2667"></a><a name="index-fprintf-2668"></a><a name="index-fprintf_005funlocked-2669"></a><a name="index-fputs-2670"></a><a name="index-fputs_005funlocked-2671"></a><a name="index-frexp-2672"></a><a name="index-frexpf-2673"></a><a name="index-frexpl-2674"></a><a name="index-fscanf-2675"></a><a name="index-gamma-2676"></a><a name="index-gammaf-2677"></a><a name="index-gammal-2678"></a><a name="index-gamma_005fr-2679"></a><a name="index-gammaf_005fr-2680"></a><a name="index-gammal_005fr-2681"></a><a name="index-gettext-2682"></a><a name="index-hypot-2683"></a><a name="index-hypotf-2684"></a><a name="index-hypotl-2685"></a><a name="index-ilogb-2686"></a><a name="index-ilogbf-2687"></a><a name="index-ilogbl-2688"></a><a name="index-imaxabs-2689"></a><a name="index-index-2690"></a><a name="index-isalnum-2691"></a><a name="index-isalpha-2692"></a><a name="index-isascii-2693"></a><a name="index-isblank-2694"></a><a name="index-iscntrl-2695"></a><a name="index-isdigit-2696"></a><a name="index-isgraph-2697"></a><a name="index-islower-2698"></a><a name="index-isprint-2699"></a><a name="index-ispunct-2700"></a><a name="index-isspace-2701"></a><a name="index-isupper-2702"></a><a name="index-iswalnum-2703"></a><a name="index-iswalpha-2704"></a><a name="index-iswblank-2705"></a><a name="index-iswcntrl-2706"></a><a name="index-iswdigit-2707"></a><a name="index-iswgraph-2708"></a><a name="index-iswlower-2709"></a><a name="index-iswprint-2710"></a><a name="index-iswpunct-2711"></a><a name="index-iswspace-2712"></a><a name="index-iswupper-2713"></a><a name="index-iswxdigit-2714"></a><a name="index-isxdigit-2715"></a><a name="index-j0-2716"></a><a name="index-j0f-2717"></a><a name="index-j0l-2718"></a><a name="index-j1-2719"></a><a name="index-j1f-2720"></a><a name="index-j1l-2721"></a><a name="index-jn-2722"></a><a name="index-jnf-2723"></a><a name="index-jnl-2724"></a><a name="index-labs-2725"></a><a name="index-ldexp-2726"></a><a name="index-ldexpf-2727"></a><a name="index-ldexpl-2728"></a><a name="index-lgamma-2729"></a><a name="index-lgammaf-2730"></a><a name="index-lgammal-2731"></a><a name="index-lgamma_005fr-2732"></a><a name="index-lgammaf_005fr-2733"></a><a name="index-lgammal_005fr-2734"></a><a name="index-llabs-2735"></a><a name="index-llrint-2736"></a><a name="index-llrintf-2737"></a><a name="index-llrintl-2738"></a><a name="index-llround-2739"></a><a name="index-llroundf-2740"></a><a name="index-llroundl-2741"></a><a name="index-log-2742"></a><a name="index-log10-2743"></a><a name="index-log10f-2744"></a><a name="index-log10l-2745"></a><a name="index-log1p-2746"></a><a name="index-log1pf-2747"></a><a name="index-log1pl-2748"></a><a name="index-log2-2749"></a><a name="index-log2f-2750"></a><a name="index-log2l-2751"></a><a name="index-logb-2752"></a><a name="index-logbf-2753"></a><a name="index-logbl-2754"></a><a name="index-logf-2755"></a><a name="index-logl-2756"></a><a name="index-lrint-2757"></a><a name="index-lrintf-2758"></a><a name="index-lrintl-2759"></a><a name="index-lround-2760"></a><a name="index-lroundf-2761"></a><a name="index-lroundl-2762"></a><a name="index-malloc-2763"></a><a name="index-memchr-2764"></a><a name="index-memcmp-2765"></a><a name="index-memcpy-2766"></a><a name="index-mempcpy-2767"></a><a name="index-memset-2768"></a><a name="index-modf-2769"></a><a name="index-modff-2770"></a><a name="index-modfl-2771"></a><a name="index-nearbyint-2772"></a><a name="index-nearbyintf-2773"></a><a name="index-nearbyintl-2774"></a><a name="index-nextafter-2775"></a><a name="index-nextafterf-2776"></a><a name="index-nextafterl-2777"></a><a name="index-nexttoward-2778"></a><a name="index-nexttowardf-2779"></a><a name="index-nexttowardl-2780"></a><a name="index-pow-2781"></a><a name="index-pow10-2782"></a><a name="index-pow10f-2783"></a><a name="index-pow10l-2784"></a><a name="index-powf-2785"></a><a name="index-powl-2786"></a><a name="index-printf-2787"></a><a name="index-printf_005funlocked-2788"></a><a name="index-putchar-2789"></a><a name="index-puts-2790"></a><a name="index-remainder-2791"></a><a name="index-remainderf-2792"></a><a name="index-remainderl-2793"></a><a name="index-remquo-2794"></a><a name="index-remquof-2795"></a><a name="index-remquol-2796"></a><a name="index-rindex-2797"></a><a name="index-rint-2798"></a><a name="index-rintf-2799"></a><a name="index-rintl-2800"></a><a name="index-round-2801"></a><a name="index-roundf-2802"></a><a name="index-roundl-2803"></a><a name="index-scalb-2804"></a><a name="index-scalbf-2805"></a><a name="index-scalbl-2806"></a><a name="index-scalbln-2807"></a><a name="index-scalblnf-2808"></a><a name="index-scalblnf-2809"></a><a name="index-scalbn-2810"></a><a name="index-scalbnf-2811"></a><a name="index-scanfnl-2812"></a><a name="index-signbit-2813"></a><a name="index-signbitf-2814"></a><a name="index-signbitl-2815"></a><a name="index-signbitd32-2816"></a><a name="index-signbitd64-2817"></a><a name="index-signbitd128-2818"></a><a name="index-significand-2819"></a><a name="index-significandf-2820"></a><a name="index-significandl-2821"></a><a name="index-sin-2822"></a><a name="index-sincos-2823"></a><a name="index-sincosf-2824"></a><a name="index-sincosl-2825"></a><a name="index-sinf-2826"></a><a name="index-sinh-2827"></a><a name="index-sinhf-2828"></a><a name="index-sinhl-2829"></a><a name="index-sinl-2830"></a><a name="index-snprintf-2831"></a><a name="index-sprintf-2832"></a><a name="index-sqrt-2833"></a><a name="index-sqrtf-2834"></a><a name="index-sqrtl-2835"></a><a name="index-sscanf-2836"></a><a name="index-stpcpy-2837"></a><a name="index-stpncpy-2838"></a><a name="index-strcasecmp-2839"></a><a name="index-strcat-2840"></a><a name="index-strchr-2841"></a><a name="index-strcmp-2842"></a><a name="index-strcpy-2843"></a><a name="index-strcspn-2844"></a><a name="index-strdup-2845"></a><a name="index-strfmon-2846"></a><a name="index-strftime-2847"></a><a name="index-strlen-2848"></a><a name="index-strncasecmp-2849"></a><a name="index-strncat-2850"></a><a name="index-strncmp-2851"></a><a name="index-strncpy-2852"></a><a name="index-strndup-2853"></a><a name="index-strpbrk-2854"></a><a name="index-strrchr-2855"></a><a name="index-strspn-2856"></a><a name="index-strstr-2857"></a><a name="index-tan-2858"></a><a name="index-tanf-2859"></a><a name="index-tanh-2860"></a><a name="index-tanhf-2861"></a><a name="index-tanhl-2862"></a><a name="index-tanl-2863"></a><a name="index-tgamma-2864"></a><a name="index-tgammaf-2865"></a><a name="index-tgammal-2866"></a><a name="index-toascii-2867"></a><a name="index-tolower-2868"></a><a name="index-toupper-2869"></a><a name="index-towlower-2870"></a><a name="index-towupper-2871"></a><a name="index-trunc-2872"></a><a name="index-truncf-2873"></a><a name="index-truncl-2874"></a><a name="index-vfprintf-2875"></a><a name="index-vfscanf-2876"></a><a name="index-vprintf-2877"></a><a name="index-vscanf-2878"></a><a name="index-vsnprintf-2879"></a><a name="index-vsprintf-2880"></a><a name="index-vsscanf-2881"></a><a name="index-y0-2882"></a><a name="index-y0f-2883"></a><a name="index-y0l-2884"></a><a name="index-y1-2885"></a><a name="index-y1f-2886"></a><a name="index-y1l-2887"></a><a name="index-yn-2888"></a><a name="index-ynf-2889"></a><a name="index-ynl-2890"></a>
GCC provides a large number of built-in functions other than the ones
mentioned above. Some of these are for internal use in the processing
of exceptions or variable-length argument lists and will not be
documented here because they may change from time to time; we do not
recommend general use of these functions.
<p>The remaining functions are provided for optimization purposes.
<p><a name="index-fno_002dbuiltin-2891"></a>GCC includes built-in versions of many of the functions in the standard
C library. The versions prefixed with <code>__builtin_</code> will always be
treated as having the same meaning as the C library function even if you
specify the <samp><span class="option">-fno-builtin</span></samp> option. (see <a href="#C-Dialect-Options">C Dialect Options</a>)
Many of these functions are only optimized in certain cases; if they are
not optimized in a particular case, a call to the library function will
be emitted.
<p><a name="index-ansi-2892"></a><a name="index-std-2893"></a>Outside strict ISO C mode (<samp><span class="option">-ansi</span></samp>, <samp><span class="option">-std=c89</span></samp> or
<samp><span class="option">-std=c99</span></samp>), the functions
<code>_exit</code>, <code>alloca</code>, <code>bcmp</code>, <code>bzero</code>,
<code>dcgettext</code>, <code>dgettext</code>, <code>dremf</code>, <code>dreml</code>,
<code>drem</code>, <code>exp10f</code>, <code>exp10l</code>, <code>exp10</code>, <code>ffsll</code>,
<code>ffsl</code>, <code>ffs</code>, <code>fprintf_unlocked</code>,
<code>fputs_unlocked</code>, <code>gammaf</code>, <code>gammal</code>, <code>gamma</code>,
<code>gammaf_r</code>, <code>gammal_r</code>, <code>gamma_r</code>, <code>gettext</code>,
<code>index</code>, <code>isascii</code>, <code>j0f</code>, <code>j0l</code>, <code>j0</code>,
<code>j1f</code>, <code>j1l</code>, <code>j1</code>, <code>jnf</code>, <code>jnl</code>, <code>jn</code>,
<code>lgammaf_r</code>, <code>lgammal_r</code>, <code>lgamma_r</code>, <code>mempcpy</code>,
<code>pow10f</code>, <code>pow10l</code>, <code>pow10</code>, <code>printf_unlocked</code>,
<code>rindex</code>, <code>scalbf</code>, <code>scalbl</code>, <code>scalb</code>,
<code>signbit</code>, <code>signbitf</code>, <code>signbitl</code>, <code>signbitd32</code>,
<code>signbitd64</code>, <code>signbitd128</code>, <code>significandf</code>,
<code>significandl</code>, <code>significand</code>, <code>sincosf</code>,
<code>sincosl</code>, <code>sincos</code>, <code>stpcpy</code>, <code>stpncpy</code>,
<code>strcasecmp</code>, <code>strdup</code>, <code>strfmon</code>, <code>strncasecmp</code>,
<code>strndup</code>, <code>toascii</code>, <code>y0f</code>, <code>y0l</code>, <code>y0</code>,
<code>y1f</code>, <code>y1l</code>, <code>y1</code>, <code>ynf</code>, <code>ynl</code> and
<code>yn</code>
may be handled as built-in functions.
All these functions have corresponding versions
prefixed with <code>__builtin_</code>, which may be used even in strict C89
mode.
<p>The ISO C99 functions
<code>_Exit</code>, <code>acoshf</code>, <code>acoshl</code>, <code>acosh</code>, <code>asinhf</code>,
<code>asinhl</code>, <code>asinh</code>, <code>atanhf</code>, <code>atanhl</code>, <code>atanh</code>,
<code>cabsf</code>, <code>cabsl</code>, <code>cabs</code>, <code>cacosf</code>, <code>cacoshf</code>,
<code>cacoshl</code>, <code>cacosh</code>, <code>cacosl</code>, <code>cacos</code>,
<code>cargf</code>, <code>cargl</code>, <code>carg</code>, <code>casinf</code>, <code>casinhf</code>,
<code>casinhl</code>, <code>casinh</code>, <code>casinl</code>, <code>casin</code>,
<code>catanf</code>, <code>catanhf</code>, <code>catanhl</code>, <code>catanh</code>,
<code>catanl</code>, <code>catan</code>, <code>cbrtf</code>, <code>cbrtl</code>, <code>cbrt</code>,
<code>ccosf</code>, <code>ccoshf</code>, <code>ccoshl</code>, <code>ccosh</code>, <code>ccosl</code>,
<code>ccos</code>, <code>cexpf</code>, <code>cexpl</code>, <code>cexp</code>, <code>cimagf</code>,
<code>cimagl</code>, <code>cimag</code>, <code>clogf</code>, <code>clogl</code>, <code>clog</code>,
<code>conjf</code>, <code>conjl</code>, <code>conj</code>, <code>copysignf</code>, <code>copysignl</code>,
<code>copysign</code>, <code>cpowf</code>, <code>cpowl</code>, <code>cpow</code>, <code>cprojf</code>,
<code>cprojl</code>, <code>cproj</code>, <code>crealf</code>, <code>creall</code>, <code>creal</code>,
<code>csinf</code>, <code>csinhf</code>, <code>csinhl</code>, <code>csinh</code>, <code>csinl</code>,
<code>csin</code>, <code>csqrtf</code>, <code>csqrtl</code>, <code>csqrt</code>, <code>ctanf</code>,
<code>ctanhf</code>, <code>ctanhl</code>, <code>ctanh</code>, <code>ctanl</code>, <code>ctan</code>,
<code>erfcf</code>, <code>erfcl</code>, <code>erfc</code>, <code>erff</code>, <code>erfl</code>,
<code>erf</code>, <code>exp2f</code>, <code>exp2l</code>, <code>exp2</code>, <code>expm1f</code>,
<code>expm1l</code>, <code>expm1</code>, <code>fdimf</code>, <code>fdiml</code>, <code>fdim</code>,
<code>fmaf</code>, <code>fmal</code>, <code>fmaxf</code>, <code>fmaxl</code>, <code>fmax</code>,
<code>fma</code>, <code>fminf</code>, <code>fminl</code>, <code>fmin</code>, <code>hypotf</code>,
<code>hypotl</code>, <code>hypot</code>, <code>ilogbf</code>, <code>ilogbl</code>, <code>ilogb</code>,
<code>imaxabs</code>, <code>isblank</code>, <code>iswblank</code>, <code>lgammaf</code>,
<code>lgammal</code>, <code>lgamma</code>, <code>llabs</code>, <code>llrintf</code>, <code>llrintl</code>,
<code>llrint</code>, <code>llroundf</code>, <code>llroundl</code>, <code>llround</code>,
<code>log1pf</code>, <code>log1pl</code>, <code>log1p</code>, <code>log2f</code>, <code>log2l</code>,
<code>log2</code>, <code>logbf</code>, <code>logbl</code>, <code>logb</code>, <code>lrintf</code>,
<code>lrintl</code>, <code>lrint</code>, <code>lroundf</code>, <code>lroundl</code>,
<code>lround</code>, <code>nearbyintf</code>, <code>nearbyintl</code>, <code>nearbyint</code>,
<code>nextafterf</code>, <code>nextafterl</code>, <code>nextafter</code>,
<code>nexttowardf</code>, <code>nexttowardl</code>, <code>nexttoward</code>,
<code>remainderf</code>, <code>remainderl</code>, <code>remainder</code>, <code>remquof</code>,
<code>remquol</code>, <code>remquo</code>, <code>rintf</code>, <code>rintl</code>, <code>rint</code>,
<code>roundf</code>, <code>roundl</code>, <code>round</code>, <code>scalblnf</code>,
<code>scalblnl</code>, <code>scalbln</code>, <code>scalbnf</code>, <code>scalbnl</code>,
<code>scalbn</code>, <code>snprintf</code>, <code>tgammaf</code>, <code>tgammal</code>,
<code>tgamma</code>, <code>truncf</code>, <code>truncl</code>, <code>trunc</code>,
<code>vfscanf</code>, <code>vscanf</code>, <code>vsnprintf</code> and <code>vsscanf</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std=c89</span></samp>).
<p>There are also built-in versions of the ISO C99 functions
<code>acosf</code>, <code>acosl</code>, <code>asinf</code>, <code>asinl</code>, <code>atan2f</code>,
<code>atan2l</code>, <code>atanf</code>, <code>atanl</code>, <code>ceilf</code>, <code>ceill</code>,
<code>cosf</code>, <code>coshf</code>, <code>coshl</code>, <code>cosl</code>, <code>expf</code>,
<code>expl</code>, <code>fabsf</code>, <code>fabsl</code>, <code>floorf</code>, <code>floorl</code>,
<code>fmodf</code>, <code>fmodl</code>, <code>frexpf</code>, <code>frexpl</code>, <code>ldexpf</code>,
<code>ldexpl</code>, <code>log10f</code>, <code>log10l</code>, <code>logf</code>, <code>logl</code>,
<code>modfl</code>, <code>modf</code>, <code>powf</code>, <code>powl</code>, <code>sinf</code>,
<code>sinhf</code>, <code>sinhl</code>, <code>sinl</code>, <code>sqrtf</code>, <code>sqrtl</code>,
<code>tanf</code>, <code>tanhf</code>, <code>tanhl</code> and <code>tanl</code>
that are recognized in any mode since ISO C90 reserves these names for
the purpose to which ISO C99 puts them. All these functions have
corresponding versions prefixed with <code>__builtin_</code>.
<p>The ISO C94 functions
<code>iswalnum</code>, <code>iswalpha</code>, <code>iswcntrl</code>, <code>iswdigit</code>,
<code>iswgraph</code>, <code>iswlower</code>, <code>iswprint</code>, <code>iswpunct</code>,
<code>iswspace</code>, <code>iswupper</code>, <code>iswxdigit</code>, <code>towlower</code> and
<code>towupper</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std=c89</span></samp>).
<p>The ISO C90 functions
<code>abort</code>, <code>abs</code>, <code>acos</code>, <code>asin</code>, <code>atan2</code>,
<code>atan</code>, <code>calloc</code>, <code>ceil</code>, <code>cosh</code>, <code>cos</code>,
<code>exit</code>, <code>exp</code>, <code>fabs</code>, <code>floor</code>, <code>fmod</code>,
<code>fprintf</code>, <code>fputs</code>, <code>frexp</code>, <code>fscanf</code>,
<code>isalnum</code>, <code>isalpha</code>, <code>iscntrl</code>, <code>isdigit</code>,
<code>isgraph</code>, <code>islower</code>, <code>isprint</code>, <code>ispunct</code>,
<code>isspace</code>, <code>isupper</code>, <code>isxdigit</code>, <code>tolower</code>,
<code>toupper</code>, <code>labs</code>, <code>ldexp</code>, <code>log10</code>, <code>log</code>,
<code>malloc</code>, <code>memchr</code>, <code>memcmp</code>, <code>memcpy</code>,
<code>memset</code>, <code>modf</code>, <code>pow</code>, <code>printf</code>, <code>putchar</code>,
<code>puts</code>, <code>scanf</code>, <code>sinh</code>, <code>sin</code>, <code>snprintf</code>,
<code>sprintf</code>, <code>sqrt</code>, <code>sscanf</code>, <code>strcat</code>,
<code>strchr</code>, <code>strcmp</code>, <code>strcpy</code>, <code>strcspn</code>,
<code>strlen</code>, <code>strncat</code>, <code>strncmp</code>, <code>strncpy</code>,
<code>strpbrk</code>, <code>strrchr</code>, <code>strspn</code>, <code>strstr</code>,
<code>tanh</code>, <code>tan</code>, <code>vfprintf</code>, <code>vprintf</code> and <code>vsprintf</code>
are all recognized as built-in functions unless
<samp><span class="option">-fno-builtin</span></samp> is specified (or <samp><span class="option">-fno-builtin-</span><var>function</var></samp>
is specified for an individual function). All of these functions have
corresponding versions prefixed with <code>__builtin_</code>.
<p>GCC provides built-in versions of the ISO C99 floating point comparison
macros that avoid raising exceptions for unordered operands. They have
the same names as the standard macros ( <code>isgreater</code>,
<code>isgreaterequal</code>, <code>isless</code>, <code>islessequal</code>,
<code>islessgreater</code>, and <code>isunordered</code>) , with <code>__builtin_</code>
prefixed. We intend for a library implementor to be able to simply
<code>#define</code> each standard macro to its built-in equivalent.
In the same fashion, GCC provides <code>fpclassify</code>, <code>isfinite</code>,
<code>isinf_sign</code> and <code>isnormal</code> built-ins used with
<code>__builtin_</code> prefixed. The <code>isinf</code> and <code>isnan</code>
builtins appear both with and without the <code>__builtin_</code> prefix.
<div class="defun">
— Built-in Function: int <b>__builtin_types_compatible_p</b> (<var>type1, type2</var>)<var><a name="index-g_t_005f_005fbuiltin_005ftypes_005fcompatible_005fp-2894"></a></var><br>
<blockquote>
<p>You can use the built-in function <code>__builtin_types_compatible_p</code> to
determine whether two types are the same.
<p>This built-in function returns 1 if the unqualified versions of the
types <var>type1</var> and <var>type2</var> (which are types, not expressions) are
compatible, 0 otherwise. The result of this built-in function can be
used in integer constant expressions.
<p>This built-in function ignores top level qualifiers (e.g., <code>const</code>,
<code>volatile</code>). For example, <code>int</code> is equivalent to <code>const
int</code>.
<p>The type <code>int[]</code> and <code>int[5]</code> are compatible. On the other
hand, <code>int</code> and <code>char *</code> are not compatible, even if the size
of their types, on the particular architecture are the same. Also, the
amount of pointer indirection is taken into account when determining
similarity. Consequently, <code>short *</code> is not similar to
<code>short **</code>. Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.
<p>An <code>enum</code> type is not considered to be compatible with another
<code>enum</code> type even if both are compatible with the same integer
type; this is what the C standard specifies.
For example, <code>enum {foo, bar}</code> is not similar to
<code>enum {hot, dog}</code>.
<p>You would typically use this function in code whose execution varies
depending on the arguments' types. For example:
<pre class="smallexample"> #define foo(x) \
({ \
typeof (x) tmp = (x); \
if (__builtin_types_compatible_p (typeof (x), long double)) \
tmp = foo_long_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), double)) \
tmp = foo_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), float)) \
tmp = foo_float (tmp); \
else \
abort (); \
tmp; \
})
</pre>
<p><em>Note:</em> This construct is only available for C.
</blockquote></div>
<div class="defun">
— Built-in Function: <var>type</var> <b>__builtin_choose_expr</b> (<var>const_exp, exp1, exp2</var>)<var><a name="index-g_t_005f_005fbuiltin_005fchoose_005fexpr-2895"></a></var><br>
<blockquote>
<p>You can use the built-in function <code>__builtin_choose_expr</code> to
evaluate code depending on the value of a constant expression. This
built-in function returns <var>exp1</var> if <var>const_exp</var>, which is a
constant expression that must be able to be determined at compile time,
is nonzero. Otherwise it returns 0.
<p>This built-in function is analogous to the ‘<samp><span class="samp">? :</span></samp>’ operator in C,
except that the expression returned has its type unaltered by promotion
rules. Also, the built-in function does not evaluate the expression
that was not chosen. For example, if <var>const_exp</var> evaluates to true,
<var>exp2</var> is not evaluated even if it has side-effects.
<p>This built-in function can return an lvalue if the chosen argument is an
lvalue.
<p>If <var>exp1</var> is returned, the return type is the same as <var>exp1</var>'s
type. Similarly, if <var>exp2</var> is returned, its return type is the same
as <var>exp2</var>.
<p>Example:
<pre class="smallexample"> #define foo(x) \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), double), \
foo_double (x), \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), float), \
foo_float (x), \
/* <span class="roman">The void expression results in a compile-time error</span> \
<span class="roman">when assigning the result to something.</span> */ \
(void)0))
</pre>
<p><em>Note:</em> This construct is only available for C. Furthermore, the
unused expression (<var>exp1</var> or <var>exp2</var> depending on the value of
<var>const_exp</var>) may still generate syntax errors. This may change in
future revisions.
</blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_constant_p</b> (<var>exp</var>)<var><a name="index-g_t_005f_005fbuiltin_005fconstant_005fp-2896"></a></var><br>
<blockquote><p>You can use the built-in function <code>__builtin_constant_p</code> to
determine if a value is known to be constant at compile-time and hence
that GCC can perform constant-folding on expressions involving that
value. The argument of the function is the value to test. The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant. A
return of 0 does not indicate that the value is <em>not</em> a constant,
but merely that GCC cannot prove it is a constant with the specified
value of the <samp><span class="option">-O</span></samp> option.
<p>You would typically use this function in an embedded application where
memory was a critical resource. If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not. For example:
<pre class="smallexample"> #define Scale_Value(X) \
(__builtin_constant_p (X) \
? ((X) * SCALE + OFFSET) : Scale (X))
</pre>
<p>You may use this built-in function in either a macro or an inline
function. However, if you use it in an inlined function and pass an
argument of the function as the argument to the built-in, GCC will
never return 1 when you call the inline function with a string constant
or compound literal (see <a href="#Compound-Literals">Compound Literals</a>) and will not return 1
when you pass a constant numeric value to the inline function unless you
specify the <samp><span class="option">-O</span></samp> option.
<p>You may also use <code>__builtin_constant_p</code> in initializers for static
data. For instance, you can write
<pre class="smallexample"> static const int table[] = {
__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
/* <span class="roman">...</span> */
};
</pre>
<p class="noindent">This is an acceptable initializer even if <var>EXPRESSION</var> is not a
constant expression. GCC must be more conservative about evaluating the
built-in in this case, because it has no opportunity to perform
optimization.
<p>Previous versions of GCC did not accept this built-in in data
initializers. The earliest version where it is completely safe is
3.0.1.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long <b>__builtin_expect</b> (<var>long exp, long c</var>)<var><a name="index-g_t_005f_005fbuiltin_005fexpect-2897"></a></var><br>
<blockquote><p><a name="index-fprofile_002darcs-2898"></a>You may use <code>__builtin_expect</code> to provide the compiler with
branch prediction information. In general, you should prefer to
use actual profile feedback for this (<samp><span class="option">-fprofile-arcs</span></samp>), as
programmers are notoriously bad at predicting how their programs
actually perform. However, there are applications in which this
data is hard to collect.
<p>The return value is the value of <var>exp</var>, which should be an integral
expression. The semantics of the built-in are that it is expected that
<var>exp</var> == <var>c</var>. For example:
<pre class="smallexample"> if (__builtin_expect (x, 0))
foo ();
</pre>
<p class="noindent">would indicate that we do not expect to call <code>foo</code>, since
we expect <code>x</code> to be zero. Since you are limited to integral
expressions for <var>exp</var>, you should use constructions such as
<pre class="smallexample"> if (__builtin_expect (ptr != NULL, 1))
error ();
</pre>
<p class="noindent">when testing pointer or floating-point values.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void <b>__builtin_trap</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005ftrap-2899"></a></var><br>
<blockquote><p>This function causes the program to exit abnormally. GCC implements
this function by using a target-dependent mechanism (such as
intentionally executing an illegal instruction) or by calling
<code>abort</code>. The mechanism used may vary from release to release so
you should not rely on any particular implementation.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void <b>__builtin___clear_cache</b> (<var>char *begin, char *end</var>)<var><a name="index-g_t_005f_005fbuiltin_005f_005f_005fclear_005fcache-2900"></a></var><br>
<blockquote><p>This function is used to flush the processor's instruction cache for
the region of memory between <var>begin</var> inclusive and <var>end</var>
exclusive. Some targets require that the instruction cache be
flushed, after modifying memory containing code, in order to obtain
deterministic behavior.
<p>If the target does not require instruction cache flushes,
<code>__builtin___clear_cache</code> has no effect. Otherwise either
instructions are emitted in-line to clear the instruction cache or a
call to the <code>__clear_cache</code> function in libgcc is made.
</p></blockquote></div>
<div class="defun">
— Built-in Function: void <b>__builtin_prefetch</b> (<var>const void *addr, ...</var>)<var><a name="index-g_t_005f_005fbuiltin_005fprefetch-2901"></a></var><br>
<blockquote><p>This function is used to minimize cache-miss latency by moving data into
a cache before it is accessed.
You can insert calls to <code>__builtin_prefetch</code> into code for which
you know addresses of data in memory that is likely to be accessed soon.
If the target supports them, data prefetch instructions will be generated.
If the prefetch is done early enough before the access then the data will
be in the cache by the time it is accessed.
<p>The value of <var>addr</var> is the address of the memory to prefetch.
There are two optional arguments, <var>rw</var> and <var>locality</var>.
The value of <var>rw</var> is a compile-time constant one or zero; one
means that the prefetch is preparing for a write to the memory address
and zero, the default, means that the prefetch is preparing for a read.
The value <var>locality</var> must be a compile-time constant integer between
zero and three. A value of zero means that the data has no temporal
locality, so it need not be left in the cache after the access. A value
of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible. Values of one and two
mean, respectively, a low or moderate degree of temporal locality. The
default is three.
<pre class="smallexample"> for (i = 0; i < n; i++)
{
a[i] = a[i] + b[i];
__builtin_prefetch (&a[i+j], 1, 1);
__builtin_prefetch (&b[i+j], 0, 1);
/* <span class="roman">...</span> */
}
</pre>
<p>Data prefetch does not generate faults if <var>addr</var> is invalid, but
the address expression itself must be valid. For example, a prefetch
of <code>p->next</code> will not fault if <code>p->next</code> is not a valid
address, but evaluation will fault if <code>p</code> is not a valid address.
<p>If the target does not support data prefetch, the address expression
is evaluated if it includes side effects but no other code is generated
and GCC does not issue a warning.
</p></blockquote></div>
<div class="defun">
— Built-in Function: double <b>__builtin_huge_val</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fval-2902"></a></var><br>
<blockquote><p>Returns a positive infinity, if supported by the floating-point format,
else <code>DBL_MAX</code>. This function is suitable for implementing the
ISO C macro <code>HUGE_VAL</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: float <b>__builtin_huge_valf</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fvalf-2903"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except the return type is <code>float</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long double <b>__builtin_huge_vall</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fvall-2904"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except the return
type is <code>long double</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_fpclassify</b> (<var>int, int, int, int, int, ...</var>)<var><a name="index-g_t_005f_005fbuiltin_005ffpclassify-2905"></a></var><br>
<blockquote><p>This built-in implements the C99 fpclassify functionality. The first
five int arguments should be the target library's notion of the
possible FP classes and are used for return values. They must be
constant values and they must appear in this order: <code>FP_NAN</code>,
<code>FP_INFINITE</code>, <code>FP_NORMAL</code>, <code>FP_SUBNORMAL</code> and
<code>FP_ZERO</code>. The ellipsis is for exactly one floating point value
to classify. GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double.
</p></blockquote></div>
<div class="defun">
— Built-in Function: double <b>__builtin_inf</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finf-2906"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except a warning is generated
if the target floating-point format does not support infinities.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal32 <b>__builtin_infd32</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd32-2907"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal32</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal64 <b>__builtin_infd64</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd64-2908"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal64</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal128 <b>__builtin_infd128</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd128-2909"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal128</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: float <b>__builtin_inff</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finff-2910"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>float</code>.
This function is suitable for implementing the ISO C99 macro <code>INFINITY</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long double <b>__builtin_infl</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfl-2911"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return
type is <code>long double</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_isinf_sign</b> (<var>...</var>)<var><a name="index-g_t_005f_005fbuiltin_005fisinf_005fsign-2912"></a></var><br>
<blockquote><p>Similar to <code>isinf</code>, except the return value will be negative for
an argument of <code>-Inf</code>. Note while the parameter list is an
ellipsis, this function only accepts exactly one floating point
argument. GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double.
</p></blockquote></div>
<div class="defun">
— Built-in Function: double <b>__builtin_nan</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnan-2913"></a></var><br>
<blockquote><p>This is an implementation of the ISO C99 function <code>nan</code>.
<p>Since ISO C99 defines this function in terms of <code>strtod</code>, which we
do not implement, a description of the parsing is in order. The string
is parsed as by <code>strtol</code>; that is, the base is recognized by
leading ‘<samp><span class="samp">0</span></samp>’ or ‘<samp><span class="samp">0x</span></samp>’ prefixes. The number parsed is placed
in the significand such that the least significant bit of the number
is at the least significant bit of the significand. The number is
truncated to fit the significand field provided. The significand is
forced to be a quiet NaN.
<p>This function, if given a string literal all of which would have been
consumed by strtol, is evaluated early enough that it is considered a
compile-time constant.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal32 <b>__builtin_nand32</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand32-2914"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal32</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal64 <b>__builtin_nand64</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand64-2915"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal64</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: _Decimal128 <b>__builtin_nand128</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand128-2916"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal128</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: float <b>__builtin_nanf</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnanf-2917"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>float</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long double <b>__builtin_nanl</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnanl-2918"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>long double</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: double <b>__builtin_nans</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnans-2919"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the significand is forced
to be a signaling NaN. The <code>nans</code> function is proposed by
<a href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm">WG14 N965</a>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: float <b>__builtin_nansf</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnansf-2920"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nans</code>, except the return type is <code>float</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long double <b>__builtin_nansl</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnansl-2921"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nans</code>, except the return type is <code>long double</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ffs</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffs-2922"></a></var><br>
<blockquote><p>Returns one plus the index of the least significant 1-bit of <var>x</var>, or
if <var>x</var> is zero, returns zero.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_clz</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclz-2923"></a></var><br>
<blockquote><p>Returns the number of leading 0-bits in <var>x</var>, starting at the most
significant bit position. If <var>x</var> is 0, the result is undefined.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ctz</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctz-2924"></a></var><br>
<blockquote><p>Returns the number of trailing 0-bits in <var>x</var>, starting at the least
significant bit position. If <var>x</var> is 0, the result is undefined.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_popcount</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcount-2925"></a></var><br>
<blockquote><p>Returns the number of 1-bits in <var>x</var>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_parity</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparity-2926"></a></var><br>
<blockquote><p>Returns the parity of <var>x</var>, i.e. the number of 1-bits in <var>x</var>
modulo 2.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ffsl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffsl-2927"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>unsigned long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_clzl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclzl-2928"></a></var><br>
<blockquote><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ctzl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctzl-2929"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_popcountl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcountl-2930"></a></var><br>
<blockquote><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_parityl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparityl-2931"></a></var><br>
<blockquote><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ffsll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffsll-2932"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>unsigned long long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_clzll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclzll-2933"></a></var><br>
<blockquote><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_ctzll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctzll-2934"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_popcountll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcountll-2935"></a></var><br>
<blockquote><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int <b>__builtin_parityll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparityll-2936"></a></var><br>
<blockquote><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long long</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: double <b>__builtin_powi</b> (<var>double, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowi-2937"></a></var><br>
<blockquote><p>Returns the first argument raised to the power of the second. Unlike the
<code>pow</code> function no guarantees about precision and rounding are made.
</p></blockquote></div>
<div class="defun">
— Built-in Function: float <b>__builtin_powif</b> (<var>float, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowif-2938"></a></var><br>
<blockquote><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>float</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: long double <b>__builtin_powil</b> (<var>long double, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowil-2939"></a></var><br>
<blockquote><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>long double</code>.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int32_t <b>__builtin_bswap32</b> (<var>int32_t x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fbswap32-2940"></a></var><br>
<blockquote><p>Returns <var>x</var> with the order of the bytes reversed; for example,
<code>0xaabbccdd</code> becomes <code>0xddccbbaa</code>. Byte here always means
exactly 8 bits.
</p></blockquote></div>
<div class="defun">
— Built-in Function: int64_t <b>__builtin_bswap64</b> (<var>int64_t x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fbswap64-2941"></a></var><br>
<blockquote><p>Similar to <code>__builtin_bswap32</code>, except the argument and return types
are 64-bit.
</p></blockquote></div>
<div class="node">
<a name="Target-Builtins"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Target-Format-Checks">Target Format Checks</a>,
Previous: <a rel="previous" accesskey="p" href="#Other-Builtins">Other Builtins</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.51 Built-in Functions Specific to Particular Target Machines</h3>
<p>On some target machines, GCC supports many built-in functions specific
to those machines. Generally these generate calls to specific machine
instructions, but allow the compiler to schedule those calls.
<ul class="menu">
<li><a accesskey="1" href="#Alpha-Built_002din-Functions">Alpha Built-in Functions</a>
<li><a accesskey="2" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>
<li><a accesskey="3" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>
<li><a accesskey="4" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>
<li><a accesskey="5" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
<li><a accesskey="6" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>
<li><a accesskey="7" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>
<li><a accesskey="8" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>
<li><a accesskey="9" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>
<li><a href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>
<li><a href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>
<li><a href="#PowerPC-AltiVec-Built_002din-Functions">PowerPC AltiVec Built-in Functions</a>
<li><a href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>
<li><a href="#SPU-Built_002din-Functions">SPU Built-in Functions</a>
</ul>
<div class="node">
<a name="Alpha-Built-in-Functions"></a>
<a name="Alpha-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.1 Alpha Built-in Functions</h4>
<p>These built-in functions are available for the Alpha family of
processors, depending on the command-line switches used.
<p>The following built-in functions are always available. They
all generate the machine instruction that is part of the name.
<pre class="smallexample"> long __builtin_alpha_implver (void)
long __builtin_alpha_rpcc (void)
long __builtin_alpha_amask (long)
long __builtin_alpha_cmpbge (long, long)
long __builtin_alpha_extbl (long, long)
long __builtin_alpha_extwl (long, long)
long __builtin_alpha_extll (long, long)
long __builtin_alpha_extql (long, long)
long __builtin_alpha_extwh (long, long)
long __builtin_alpha_extlh (long, long)
long __builtin_alpha_extqh (long, long)
long __builtin_alpha_insbl (long, long)
long __builtin_alpha_inswl (long, long)
long __builtin_alpha_insll (long, long)
long __builtin_alpha_insql (long, long)
long __builtin_alpha_inswh (long, long)
long __builtin_alpha_inslh (long, long)
long __builtin_alpha_insqh (long, long)
long __builtin_alpha_mskbl (long, long)
long __builtin_alpha_mskwl (long, long)
long __builtin_alpha_mskll (long, long)
long __builtin_alpha_mskql (long, long)
long __builtin_alpha_mskwh (long, long)
long __builtin_alpha_msklh (long, long)
long __builtin_alpha_mskqh (long, long)
long __builtin_alpha_umulh (long, long)
long __builtin_alpha_zap (long, long)
long __builtin_alpha_zapnot (long, long)
</pre>
<p>The following built-in functions are always with <samp><span class="option">-mmax</span></samp>
or <samp><span class="option">-mcpu=</span><var>cpu</var></samp> where <var>cpu</var> is <code>pca56</code> or
later. They all generate the machine instruction that is part
of the name.
<pre class="smallexample"> long __builtin_alpha_pklb (long)
long __builtin_alpha_pkwb (long)
long __builtin_alpha_unpkbl (long)
long __builtin_alpha_unpkbw (long)
long __builtin_alpha_minub8 (long, long)
long __builtin_alpha_minsb8 (long, long)
long __builtin_alpha_minuw4 (long, long)
long __builtin_alpha_minsw4 (long, long)
long __builtin_alpha_maxub8 (long, long)
long __builtin_alpha_maxsb8 (long, long)
long __builtin_alpha_maxuw4 (long, long)
long __builtin_alpha_maxsw4 (long, long)
long __builtin_alpha_perr (long, long)
</pre>
<p>The following built-in functions are always with <samp><span class="option">-mcix</span></samp>
or <samp><span class="option">-mcpu=</span><var>cpu</var></samp> where <var>cpu</var> is <code>ev67</code> or
later. They all generate the machine instruction that is part
of the name.
<pre class="smallexample"> long __builtin_alpha_cttz (long)
long __builtin_alpha_ctlz (long)
long __builtin_alpha_ctpop (long)
</pre>
<p>The following builtins are available on systems that use the OSF/1
PALcode. Normally they invoke the <code>rduniq</code> and <code>wruniq</code>
PAL calls, but when invoked with <samp><span class="option">-mtls-kernel</span></samp>, they invoke
<code>rdval</code> and <code>wrval</code>.
<pre class="smallexample"> void *__builtin_thread_pointer (void)
void __builtin_set_thread_pointer (void *)
</pre>
<div class="node">
<a name="ARM-iWMMXt-Built-in-Functions"></a>
<a name="ARM-iWMMXt-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>,
Previous: <a rel="previous" accesskey="p" href="#Alpha-Built_002din-Functions">Alpha Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.2 ARM iWMMXt Built-in Functions</h4>
<p>These built-in functions are available for the ARM family of
processors when the <samp><span class="option">-mcpu=iwmmxt</span></samp> switch is used:
<pre class="smallexample"> typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef char v8qi __attribute__ ((vector_size (8)));
int __builtin_arm_getwcx (int)
void __builtin_arm_setwcx (int, int)
int __builtin_arm_textrmsb (v8qi, int)
int __builtin_arm_textrmsh (v4hi, int)
int __builtin_arm_textrmsw (v2si, int)
int __builtin_arm_textrmub (v8qi, int)
int __builtin_arm_textrmuh (v4hi, int)
int __builtin_arm_textrmuw (v2si, int)
v8qi __builtin_arm_tinsrb (v8qi, int)
v4hi __builtin_arm_tinsrh (v4hi, int)
v2si __builtin_arm_tinsrw (v2si, int)
long long __builtin_arm_tmia (long long, int, int)
long long __builtin_arm_tmiabb (long long, int, int)
long long __builtin_arm_tmiabt (long long, int, int)
long long __builtin_arm_tmiaph (long long, int, int)
long long __builtin_arm_tmiatb (long long, int, int)
long long __builtin_arm_tmiatt (long long, int, int)
int __builtin_arm_tmovmskb (v8qi)
int __builtin_arm_tmovmskh (v4hi)
int __builtin_arm_tmovmskw (v2si)
long long __builtin_arm_waccb (v8qi)
long long __builtin_arm_wacch (v4hi)
long long __builtin_arm_waccw (v2si)
v8qi __builtin_arm_waddb (v8qi, v8qi)
v8qi __builtin_arm_waddbss (v8qi, v8qi)
v8qi __builtin_arm_waddbus (v8qi, v8qi)
v4hi __builtin_arm_waddh (v4hi, v4hi)
v4hi __builtin_arm_waddhss (v4hi, v4hi)
v4hi __builtin_arm_waddhus (v4hi, v4hi)
v2si __builtin_arm_waddw (v2si, v2si)
v2si __builtin_arm_waddwss (v2si, v2si)
v2si __builtin_arm_waddwus (v2si, v2si)
v8qi __builtin_arm_walign (v8qi, v8qi, int)
long long __builtin_arm_wand(long long, long long)
long long __builtin_arm_wandn (long long, long long)
v8qi __builtin_arm_wavg2b (v8qi, v8qi)
v8qi __builtin_arm_wavg2br (v8qi, v8qi)
v4hi __builtin_arm_wavg2h (v4hi, v4hi)
v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
v2si __builtin_arm_wcmpeqw (v2si, v2si)
v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
v2si __builtin_arm_wcmpgtsw (v2si, v2si)
v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
v2si __builtin_arm_wcmpgtuw (v2si, v2si)
long long __builtin_arm_wmacs (long long, v4hi, v4hi)
long long __builtin_arm_wmacsz (v4hi, v4hi)
long long __builtin_arm_wmacu (long long, v4hi, v4hi)
long long __builtin_arm_wmacuz (v4hi, v4hi)
v4hi __builtin_arm_wmadds (v4hi, v4hi)
v4hi __builtin_arm_wmaddu (v4hi, v4hi)
v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
v2si __builtin_arm_wmaxsw (v2si, v2si)
v8qi __builtin_arm_wmaxub (v8qi, v8qi)
v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
v2si __builtin_arm_wmaxuw (v2si, v2si)
v8qi __builtin_arm_wminsb (v8qi, v8qi)
v4hi __builtin_arm_wminsh (v4hi, v4hi)
v2si __builtin_arm_wminsw (v2si, v2si)
v8qi __builtin_arm_wminub (v8qi, v8qi)
v4hi __builtin_arm_wminuh (v4hi, v4hi)
v2si __builtin_arm_wminuw (v2si, v2si)
v4hi __builtin_arm_wmulsm (v4hi, v4hi)
v4hi __builtin_arm_wmulul (v4hi, v4hi)
v4hi __builtin_arm_wmulum (v4hi, v4hi)
long long __builtin_arm_wor (long long, long long)
v2si __builtin_arm_wpackdss (long long, long long)
v2si __builtin_arm_wpackdus (long long, long long)
v8qi __builtin_arm_wpackhss (v4hi, v4hi)
v8qi __builtin_arm_wpackhus (v4hi, v4hi)
v4hi __builtin_arm_wpackwss (v2si, v2si)
v4hi __builtin_arm_wpackwus (v2si, v2si)
long long __builtin_arm_wrord (long long, long long)
long long __builtin_arm_wrordi (long long, int)
v4hi __builtin_arm_wrorh (v4hi, long long)
v4hi __builtin_arm_wrorhi (v4hi, int)
v2si __builtin_arm_wrorw (v2si, long long)
v2si __builtin_arm_wrorwi (v2si, int)
v2si __builtin_arm_wsadb (v8qi, v8qi)
v2si __builtin_arm_wsadbz (v8qi, v8qi)
v2si __builtin_arm_wsadh (v4hi, v4hi)
v2si __builtin_arm_wsadhz (v4hi, v4hi)
v4hi __builtin_arm_wshufh (v4hi, int)
long long __builtin_arm_wslld (long long, long long)
long long __builtin_arm_wslldi (long long, int)
v4hi __builtin_arm_wsllh (v4hi, long long)
v4hi __builtin_arm_wsllhi (v4hi, int)
v2si __builtin_arm_wsllw (v2si, long long)
v2si __builtin_arm_wsllwi (v2si, int)
long long __builtin_arm_wsrad (long long, long long)
long long __builtin_arm_wsradi (long long, int)
v4hi __builtin_arm_wsrah (v4hi, long long)
v4hi __builtin_arm_wsrahi (v4hi, int)
v2si __builtin_arm_wsraw (v2si, long long)
v2si __builtin_arm_wsrawi (v2si, int)
long long __builtin_arm_wsrld (long long, long long)
long long __builtin_arm_wsrldi (long long, int)
v4hi __builtin_arm_wsrlh (v4hi, long long)
v4hi __builtin_arm_wsrlhi (v4hi, int)
v2si __builtin_arm_wsrlw (v2si, long long)
v2si __builtin_arm_wsrlwi (v2si, int)
v8qi __builtin_arm_wsubb (v8qi, v8qi)
v8qi __builtin_arm_wsubbss (v8qi, v8qi)
v8qi __builtin_arm_wsubbus (v8qi, v8qi)
v4hi __builtin_arm_wsubh (v4hi, v4hi)
v4hi __builtin_arm_wsubhss (v4hi, v4hi)
v4hi __builtin_arm_wsubhus (v4hi, v4hi)
v2si __builtin_arm_wsubw (v2si, v2si)
v2si __builtin_arm_wsubwss (v2si, v2si)
v2si __builtin_arm_wsubwus (v2si, v2si)
v4hi __builtin_arm_wunpckehsb (v8qi)
v2si __builtin_arm_wunpckehsh (v4hi)
long long __builtin_arm_wunpckehsw (v2si)
v4hi __builtin_arm_wunpckehub (v8qi)
v2si __builtin_arm_wunpckehuh (v4hi)
long long __builtin_arm_wunpckehuw (v2si)
v4hi __builtin_arm_wunpckelsb (v8qi)
v2si __builtin_arm_wunpckelsh (v4hi)
long long __builtin_arm_wunpckelsw (v2si)
v4hi __builtin_arm_wunpckelub (v8qi)
v2si __builtin_arm_wunpckeluh (v4hi)
long long __builtin_arm_wunpckeluw (v2si)
v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
v2si __builtin_arm_wunpckihw (v2si, v2si)
v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
v2si __builtin_arm_wunpckilw (v2si, v2si)
long long __builtin_arm_wxor (long long, long long)
long long __builtin_arm_wzero ()
</pre>
<div class="node">
<a name="ARM-NEON-Intrinsics"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.3 ARM NEON Intrinsics</h4>
<p>These built-in intrinsics for the ARM Advanced SIMD extension are available
when the <samp><span class="option">-mfpu=neon</span></samp> switch is used:
<!-- Copyright (C) 2006 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- This file is generated automatically using gcc/config/arm/neon-docgen.ml -->
<!-- Please do not edit manually. -->
<h5 class="subsubsection">5.51.3.1 Addition</h5>
<ul>
<li>uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vadd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vadd_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vaddq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vaddq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vaddl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vaddl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vaddl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vaddw_s32 (int64x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vaddw_s16 (int32x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vaddw_s8 (int16x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vhadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vhadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vhadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vhaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vhaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vhaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vrhadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vrhadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vrhadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vqadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vqadd_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vqaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vqaddq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vaddhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vaddhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vaddhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vraddhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vraddhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vraddhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.2 Multiplication</h5>
<ul>
<li>uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmul_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmul_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmul_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vmul_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.p8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vmulq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vmulq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vmulq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vmulq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.p8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vmull_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vmull_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vmull_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.p8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vqdmull_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqdmull_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.3 Multiply-accumulate</h5>
<ul>
<li>uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.4 Multiply-subtract</h5>
<ul>
<li>uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.5 Subtraction</h5>
<ul>
<li>uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vsub_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vsub_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vsubq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vsubq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vsubl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vsubl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vsubl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vsubw_s32 (int64x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vsubw_s16 (int32x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vsubw_s8 (int16x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vhsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vhsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vhsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vhsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vhsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vhsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vqsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vqsub_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vqsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vqsubq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vsubhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vsubhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vsubhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.6 Comparison (equal-to)</h5>
<ul>
<li>uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vceq_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vceq_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vceq_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vceq_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vceqq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vceqq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vceqq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vceqq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.7 Comparison (greater-than-or-equal-to)</h5>
<ul>
<li>uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcge_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcge_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcge_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcge_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.8 Comparison (less-than-or-equal-to)</h5>
<ul>
<li>uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcle_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcle_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcle_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcle_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcleq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcleq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcleq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcleq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.9 Comparison (greater-than)</h5>
<ul>
<li>uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcgt_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vcgt_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vcgt_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcgt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.10 Comparison (less-than)</h5>
<ul>
<li>uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vclt_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vclt_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vclt_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vclt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcltq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vcltq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vcltq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcltq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.11 Comparison (absolute greater-than-or-equal-to)</h5>
<ul>
<li>uint32x2_t vcage_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcageq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.12 Comparison (absolute less-than-or-equal-to)</h5>
<ul>
<li>uint32x2_t vcale_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.13 Comparison (absolute greater-than)</h5>
<ul>
<li>uint32x2_t vcagt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.14 Comparison (absolute less-than)</h5>
<ul>
<li>uint32x2_t vcalt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.15 Test bits</h5>
<ul>
<li>uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vtst_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vtst_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtst_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vtstq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vtstq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vtstq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.16 Absolute difference</h5>
<ul>
<li>uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vabd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vabd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vabd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vabd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vabdq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vabdq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vabdq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vabdq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vabdl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vabdl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vabdl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.17 Absolute difference and accumulate</h5>
<ul>
<li>uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.18 Maximum</h5>
<ul>
<li>uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmax_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmax_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmax_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vmax_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vmaxq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vmaxq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vmaxq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vmaxq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.19 Minimum</h5>
<ul>
<li>uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmin_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmin_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmin_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vmin_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vminq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vminq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vminq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vminq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.20 Pairwise add</h5>
<ul>
<li>uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vpadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vpadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vpadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vpadd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vpaddl_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vpaddl_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vpaddl_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vpaddl_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vpaddl_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vpaddl_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x2_t vpaddlq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vpaddlq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vpaddlq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vpaddlq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vpaddlq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vpaddlq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.21 Pairwise add, single_opcode widen and accumulate</h5>
<ul>
<li>uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vpadal_s32 (int64x1_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vpadal_s16 (int32x2_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vpadal_s8 (int16x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vpadalq_s32 (int64x2_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vpadalq_s16 (int32x4_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vpadalq_s8 (int16x8_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.22 Folding maximum</h5>
<ul>
<li>uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vpmax_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vpmax_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vpmax_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vpmax_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.23 Folding minimum</h5>
<ul>
<li>uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vpmin_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vpmin_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vpmin_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vpmin_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.24 Reciprocal step</h5>
<ul>
<li>float32x2_t vrecps_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecps.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecps.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrts.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrts.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.25 Vector shift left</h5>
<ul>
<li>uint32x2_t vshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vrshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vrshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vrshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vrshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vrshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vrshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vrshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vrshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vqshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vqshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vqshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vqshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vqrshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqrshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqrshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vqrshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.26 Vector shift left by constant</h5>
<ul>
<li>uint32x2_t vshl_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vshl_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vshl_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vshl_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vshl_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vshl_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vshl_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vshl_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vshlq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vshlq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vshlq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vshlq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vshlq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vshlq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vshlq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vshlq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqshl_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqshl_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqshl_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vqshl_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vqshl_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vqshl_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vqshl_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vqshl_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vqshlq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vqshlq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vqshlq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vqshlq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vqshlq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vqshlq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vqshlq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vqshlq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vqshlu_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqshlu_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqshlu_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqshlu_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vqshluq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vqshluq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vqshluq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vqshluq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vshll_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vshll_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vshll_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vshll_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vshll_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vshll_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.27 Vector shift right by constant</h5>
<ul>
<li>uint32x2_t vshr_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vshr_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vshr_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vshr_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vshr_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vshr_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vshr_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vshr_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vshrq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vshrq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vshrq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vshrq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vshrq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vshrq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vshrq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vshrq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vrshr_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vrshr_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vrshr_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vrshr_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vrshr_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vrshr_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vrshr_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vrshr_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vrshrq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vrshrq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vrshrq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vrshrq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vrshrq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vrshrq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vrshrq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vrshrq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vrshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vrshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vrshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vrshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vrshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vrshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vqshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vqshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vqshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vqrshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vqrshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vqrshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqshrun_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqshrun_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqshrun_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vqrshrun_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vqrshrun_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vqrshrun_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.28 Vector shift right by constant and accumulate</h5>
<ul>
<li>uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.29 Vector shift right and insert</h5>
<ul>
<li>uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.30 Vector shift left and insert</h5>
<ul>
<li>uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.31 Absolute value</h5>
<ul>
<li>float32x2_t vabs_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vabs_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vabs_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vabs_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vabsq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vabsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vabsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vabsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vqabs_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqabs_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqabs_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqabsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqabsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqabsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.32 Negation</h5>
<ul>
<li>float32x2_t vneg_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vneg_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vneg_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vneg_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vnegq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vnegq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vnegq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vnegq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vqneg_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vqneg_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vqneg_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vqnegq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vqnegq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vqnegq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.33 Bitwise not</h5>
<ul>
<li>uint32x2_t vmvn_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vmvn_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vmvn_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vmvn_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vmvn_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vmvn_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vmvn_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmvnq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vmvnq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vmvnq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vmvnq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vmvnq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vmvnq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vmvnq_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.34 Count leading sign bits</h5>
<ul>
<li>int32x2_t vcls_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vcls_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vcls_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vclsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vclsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vclsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.35 Count leading zeros</h5>
<ul>
<li>uint32x2_t vclz_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vclz_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vclz_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vclz_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vclz_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vclz_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vclzq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vclzq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vclzq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vclzq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vclzq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vclzq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.36 Count number of set bits</h5>
<ul>
<li>uint8x8_t vcnt_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vcnt_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vcnt_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x16_t vcntq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vcntq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vcntq_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.37 Reciprocal estimate</h5>
<ul>
<li>float32x2_t vrecpe_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vrecpe_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vrecpeq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vrecpeq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.38 Reciprocal square-root estimate</h5>
<ul>
<li>float32x2_t vrsqrte_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vrsqrte_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vrsqrteq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vrsqrteq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.39 Get lanes from a vector</h5>
<ul>
<li>uint32_t vget_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16_t vget_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint8_t vget_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32_t vget_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16_t vget_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int8_t vget_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32_t vget_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly16_t vget_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly8_t vget_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64_t vget_lane_u64 (uint64x1_t, const int)
</ul>
<ul>
<li>int64_t vget_lane_s64 (int64x1_t, const int)
</ul>
<ul>
<li>uint32_t vgetq_lane_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16_t vgetq_lane_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint8_t vgetq_lane_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32_t vgetq_lane_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16_t vgetq_lane_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int8_t vgetq_lane_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32_t vgetq_lane_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly16_t vgetq_lane_p16 (poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly8_t vgetq_lane_p8 (poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64_t vgetq_lane_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>r0</var><code>, </code><var>r0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64_t vgetq_lane_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>r0</var><code>, </code><var>r0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.40 Set lanes in a vector</h5>
<ul>
<li>uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int)
</ul>
<ul>
<li>int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int)
</ul>
<ul>
<li>uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>
<ul>
<li>uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>r0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>r0</var><code>, </code><var>r0</var>
</ul>
<h5 class="subsubsection">5.51.3.41 Create vector from literal bit pattern</h5>
<ul>
<li>uint32x2_t vcreate_u32 (uint64_t)
</ul>
<ul>
<li>uint16x4_t vcreate_u16 (uint64_t)
</ul>
<ul>
<li>uint8x8_t vcreate_u8 (uint64_t)
</ul>
<ul>
<li>int32x2_t vcreate_s32 (uint64_t)
</ul>
<ul>
<li>int16x4_t vcreate_s16 (uint64_t)
</ul>
<ul>
<li>int8x8_t vcreate_s8 (uint64_t)
</ul>
<ul>
<li>uint64x1_t vcreate_u64 (uint64_t)
</ul>
<ul>
<li>int64x1_t vcreate_s64 (uint64_t)
</ul>
<ul>
<li>float32x2_t vcreate_f32 (uint64_t)
</ul>
<ul>
<li>poly16x4_t vcreate_p16 (uint64_t)
</ul>
<ul>
<li>poly8x8_t vcreate_p8 (uint64_t)
</ul>
<h5 class="subsubsection">5.51.3.42 Set all lanes to the same value</h5>
<ul>
<li>uint32x2_t vdup_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint16x4_t vdup_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint8x8_t vdup_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int32x2_t vdup_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int16x4_t vdup_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int8x8_t vdup_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>float32x2_t vdup_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly16x4_t vdup_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly8x8_t vdup_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint64x1_t vdup_n_u64 (uint64_t)
</ul>
<ul>
<li>int64x1_t vdup_n_s64 (int64_t)
</ul>
<ul>
<li>uint32x4_t vdupq_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint16x8_t vdupq_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint8x16_t vdupq_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int32x4_t vdupq_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int16x8_t vdupq_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int8x16_t vdupq_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>float32x4_t vdupq_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly16x8_t vdupq_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly8x16_t vdupq_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint64x2_t vdupq_n_u64 (uint64_t)
</ul>
<ul>
<li>int64x2_t vdupq_n_s64 (int64_t)
</ul>
<ul>
<li>uint32x2_t vmov_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint16x4_t vmov_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint8x8_t vmov_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int32x2_t vmov_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int16x4_t vmov_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int8x8_t vmov_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>float32x2_t vmov_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly16x4_t vmov_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly8x8_t vmov_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint64x1_t vmov_n_u64 (uint64_t)
</ul>
<ul>
<li>int64x1_t vmov_n_s64 (int64_t)
</ul>
<ul>
<li>uint32x4_t vmovq_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint16x8_t vmovq_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint8x16_t vmovq_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int32x4_t vmovq_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int16x8_t vmovq_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>int8x16_t vmovq_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>float32x4_t vmovq_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly16x8_t vmovq_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>poly8x16_t vmovq_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>
<ul>
<li>uint64x2_t vmovq_n_u64 (uint64_t)
</ul>
<ul>
<li>int64x2_t vmovq_n_s64 (int64_t)
</ul>
<ul>
<li>uint32x2_t vdup_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vdup_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint8x8_t vdup_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vdup_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vdup_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int8x8_t vdup_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x2_t vdup_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly16x4_t vdup_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly8x8_t vdup_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x1_t vdup_lane_u64 (uint64x1_t, const int)
</ul>
<ul>
<li>int64x1_t vdup_lane_s64 (int64x1_t, const int)
</ul>
<ul>
<li>uint32x4_t vdupq_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vdupq_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint8x16_t vdupq_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vdupq_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vdupq_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int8x16_t vdupq_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vdupq_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly16x8_t vdupq_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>poly8x16_t vdupq_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vdupq_lane_u64 (uint64x1_t, const int)
</ul>
<ul>
<li>int64x2_t vdupq_lane_s64 (int64x1_t, const int)
</ul>
<h5 class="subsubsection">5.51.3.43 Combining vectors</h5>
<ul>
<li>uint32x4_t vcombine_u32 (uint32x2_t, uint32x2_t)
</ul>
<ul>
<li>uint16x8_t vcombine_u16 (uint16x4_t, uint16x4_t)
</ul>
<ul>
<li>uint8x16_t vcombine_u8 (uint8x8_t, uint8x8_t)
</ul>
<ul>
<li>int32x4_t vcombine_s32 (int32x2_t, int32x2_t)
</ul>
<ul>
<li>int16x8_t vcombine_s16 (int16x4_t, int16x4_t)
</ul>
<ul>
<li>int8x16_t vcombine_s8 (int8x8_t, int8x8_t)
</ul>
<ul>
<li>uint64x2_t vcombine_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x2_t vcombine_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>float32x4_t vcombine_f32 (float32x2_t, float32x2_t)
</ul>
<ul>
<li>poly16x8_t vcombine_p16 (poly16x4_t, poly16x4_t)
</ul>
<ul>
<li>poly8x16_t vcombine_p8 (poly8x8_t, poly8x8_t)
</ul>
<h5 class="subsubsection">5.51.3.44 Splitting vectors</h5>
<ul>
<li>uint32x2_t vget_high_u32 (uint32x4_t)
</ul>
<ul>
<li>uint16x4_t vget_high_u16 (uint16x8_t)
</ul>
<ul>
<li>uint8x8_t vget_high_u8 (uint8x16_t)
</ul>
<ul>
<li>int32x2_t vget_high_s32 (int32x4_t)
</ul>
<ul>
<li>int16x4_t vget_high_s16 (int16x8_t)
</ul>
<ul>
<li>int8x8_t vget_high_s8 (int8x16_t)
</ul>
<ul>
<li>uint64x1_t vget_high_u64 (uint64x2_t)
</ul>
<ul>
<li>int64x1_t vget_high_s64 (int64x2_t)
</ul>
<ul>
<li>float32x2_t vget_high_f32 (float32x4_t)
</ul>
<ul>
<li>poly16x4_t vget_high_p16 (poly16x8_t)
</ul>
<ul>
<li>poly8x8_t vget_high_p8 (poly8x16_t)
</ul>
<ul>
<li>uint32x2_t vget_low_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vget_low_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vget_low_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vget_low_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vget_low_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vget_low_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vget_low_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly16x4_t vget_low_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vget_low_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vget_low_u64 (uint64x2_t)
</ul>
<ul>
<li>int64x1_t vget_low_s64 (int64x2_t)
</ul>
<h5 class="subsubsection">5.51.3.45 Conversions</h5>
<ul>
<li>float32x2_t vcvt_f32_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vcvt_f32_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x2_t vcvt_u32_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vcvt_s32_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x4_t vcvtq_f32_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vcvtq_f32_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x4_t vcvtq_u32_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vcvtq_s32_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>float32x2_t vcvt_n_f32_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vcvt_n_s32_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.46 Move, single_opcode narrowing</h5>
<ul>
<li>uint32x2_t vmovn_u64 (uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vmovn_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vmovn_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vmovn_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vmovn_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vmovn_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqmovn_u64 (uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vqmovn_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vqmovn_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x2_t vqmovn_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x4_t vqmovn_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x8_t vqmovn_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint32x2_t vqmovun_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vqmovun_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vqmovun_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.47 Move, single_opcode long</h5>
<ul>
<li>uint64x2_t vmovl_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u32 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vmovl_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u16 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vmovl_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u8 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x2_t vmovl_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s32 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x4_t vmovl_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s16 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x8_t vmovl_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s8 </code><var>q0</var><code>, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.48 Table lookup</h5>
<ul>
<li>poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbl1_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.49 Extended table lookup</h5>
<ul>
<li>poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>
<h5 class="subsubsection">5.51.3.50 Multiply, lane</h5>
<ul>
<li>float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.51 Long multiply, lane</h5>
<ul>
<li>uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.52 Saturating doubling long multiply, lane</h5>
<ul>
<li>int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.53 Saturating doubling multiply high, lane</h5>
<ul>
<li>int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.54 Multiply-accumulate, lane</h5>
<ul>
<li>float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.55 Multiply-subtract, lane</h5>
<ul>
<li>float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.56 Vector multiply by scalar</h5>
<ul>
<li>float32x2_t vmul_n_f32 (float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmul_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmul_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmulq_n_f32 (float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmulq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmulq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.57 Vector long multiply by scalar</h5>
<ul>
<li>uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmull_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmull_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.58 Vector saturating doubling long multiply by scalar</h5>
<ul>
<li>int64x2_t vqdmull_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmull_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.59 Vector saturating doubling multiply high by scalar</h5>
<ul>
<li>int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.60 Vector multiply-accumulate by scalar</h5>
<ul>
<li>float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.61 Vector multiply-subtract by scalar</h5>
<ul>
<li>float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.62 Vector extract</h5>
<ul>
<li>uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x2_t vext_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x4_t vext_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x8_t vext_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x1_t vext_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>float32x2_t vext_f32 (float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<ul>
<li>poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>
<h5 class="subsubsection">5.51.3.63 Reverse elements</h5>
<ul>
<li>uint32x2_t vrev64_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vrev64_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vrev64_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vrev64_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vrev64_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vrev64_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vrev64_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly16x4_t vrev64_p16 (poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vrev64_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vrev64q_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vrev64q_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vrev64q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vrev64q_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vrev64q_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vrev64q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vrev64q_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly16x8_t vrev64q_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vrev64q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x4_t vrev32_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vrev32_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vrev32_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vrev32_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly16x4_t vrev32_p16 (poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vrev32_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x8_t vrev32q_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vrev32q_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vrev32q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vrev32q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly16x8_t vrev32q_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vrev32q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x8_t vrev16_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vrev16_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vrev16_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x16_t vrev16q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vrev16q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vrev16q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.64 Bit selection</h5>
<ul>
<li>uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.65 Transpose elements</h5>
<ul>
<li>uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<h5 class="subsubsection">5.51.3.66 Zip elements</h5>
<ul>
<li>uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int32x2x2_t vzip_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int16x4x2_t vzip_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int8x8x2_t vzip_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>float32x2x2_t vzip_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<h5 class="subsubsection">5.51.3.67 Unzip elements</h5>
<ul>
<li>uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>
<ul>
<li>uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<ul>
<li>poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>
<h5 class="subsubsection">5.51.3.68 Element/structure loads, VLD1 variants</h5>
<ul>
<li>uint32x2_t vld1_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vld1_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8_t vld1_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vld1_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vld1_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8_t vld1_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1_t vld1_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1_t vld1_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2_t vld1_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4_t vld1_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8_t vld1_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vld1q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vld1q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16_t vld1q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vld1q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vld1q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16_t vld1q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vld1q_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vld1q_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vld1q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8_t vld1q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16_t vld1q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2_t vld1_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4_t vld1_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8_t vld1_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2_t vld1_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4_t vld1_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8_t vld1_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2_t vld1_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4_t vld1_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8_t vld1_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1_t vld1_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1_t vld1_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4_t vld1q_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8_t vld1q_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16_t vld1q_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4_t vld1q_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8_t vld1q_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16_t vld1q_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4_t vld1q_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8_t vld1q_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16_t vld1q_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x2_t vld1q_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x2_t vld1q_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.69 Element/structure stores, VST1 variants</h5>
<ul>
<li>void vst1_u32 (uint32_t *, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_u16 (uint16_t *, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_u8 (uint8_t *, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_s32 (int32_t *, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_s16 (int16_t *, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_s8 (int8_t *, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_u64 (uint64_t *, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_s64 (int64_t *, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_f32 (float32_t *, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_p16 (poly16_t *, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_p8 (poly8_t *, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_u32 (uint32_t *, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_u16 (uint16_t *, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_u8 (uint8_t *, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_s32 (int32_t *, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_s16 (int16_t *, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_s8 (int8_t *, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_u64 (uint64_t *, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_s64 (int64_t *, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_f32 (float32_t *, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_p16 (poly16_t *, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_p8 (poly8_t *, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_u32 (uint32_t *, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_u16 (uint16_t *, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_u8 (uint8_t *, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_s32 (int32_t *, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_s16 (int16_t *, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_s8 (int8_t *, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_f32 (float32_t *, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_p16 (poly16_t *, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_p8 (poly8_t *, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_s64 (int64_t *, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1_lane_u64 (uint64_t *, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_s32 (int32_t *, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_s16 (int16_t *, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_s8 (int8_t *, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_f32 (float32_t *, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_s64 (int64_t *, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.70 Element/structure loads, VLD2 variants</h5>
<ul>
<li>uint32x2x2_t vld2_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x2_t vld2_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x2_t vld2_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x2_t vld2_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x2_t vld2_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x2_t vld2_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x2_t vld2_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x2_t vld2_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x2_t vld2_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x2_t vld2_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x2_t vld2_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x2_t vld2q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x2_t vld2q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16x2_t vld2q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x2_t vld2q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x2_t vld2q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16x2_t vld2q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x2_t vld2q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x2_t vld2q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16x2_t vld2q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x2_t vld2_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x2_t vld2_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x2_t vld2_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x2_t vld2_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x2_t vld2_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x2_t vld2_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x2_t vld2_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x2_t vld2_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x2_t vld2_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x2_t vld2_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x2_t vld2_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.71 Element/structure stores, VST2 variants</h5>
<ul>
<li>void vst2_u32 (uint32_t *, uint32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_u16 (uint16_t *, uint16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_u8 (uint8_t *, uint8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_s32 (int32_t *, int32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_s16 (int16_t *, int16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_s8 (int8_t *, int8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_f32 (float32_t *, float32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_p16 (poly16_t *, poly16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_p8 (poly8_t *, poly8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_u64 (uint64_t *, uint64x1x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_s64 (int64_t *, int64x1x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_u32 (uint32_t *, uint32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_u16 (uint16_t *, uint16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_u8 (uint8_t *, uint8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_s32 (int32_t *, int32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_s16 (int16_t *, int16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_s8 (int8_t *, int8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_f32 (float32_t *, float32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_p16 (poly16_t *, poly16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_p8 (poly8_t *, poly8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_s32 (int32_t *, int32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_s16 (int16_t *, int16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_s8 (int8_t *, int8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_f32 (float32_t *, float32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.72 Element/structure loads, VLD3 variants</h5>
<ul>
<li>uint32x2x3_t vld3_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x3_t vld3_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x3_t vld3_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x3_t vld3_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x3_t vld3_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x3_t vld3_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x3_t vld3_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x3_t vld3_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x3_t vld3_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x3_t vld3_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x3_t vld3_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x3_t vld3q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x3_t vld3q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16x3_t vld3q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x3_t vld3q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x3_t vld3q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16x3_t vld3q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x3_t vld3q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x3_t vld3q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16x3_t vld3q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x3_t vld3_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x3_t vld3_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x3_t vld3_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x3_t vld3_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x3_t vld3_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x3_t vld3_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x3_t vld3_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x3_t vld3_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x3_t vld3_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x3_t vld3_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x3_t vld3_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.73 Element/structure stores, VST3 variants</h5>
<ul>
<li>void vst3_u32 (uint32_t *, uint32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_u16 (uint16_t *, uint16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_u8 (uint8_t *, uint8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_s32 (int32_t *, int32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_s16 (int16_t *, int16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_s8 (int8_t *, int8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_f32 (float32_t *, float32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_p16 (poly16_t *, poly16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_p8 (poly8_t *, poly8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_u64 (uint64_t *, uint64x1x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_s64 (int64_t *, int64x1x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_u32 (uint32_t *, uint32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_u16 (uint16_t *, uint16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_u8 (uint8_t *, uint8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_s32 (int32_t *, int32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_s16 (int16_t *, int16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_s8 (int8_t *, int8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_f32 (float32_t *, float32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_p16 (poly16_t *, poly16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_p8 (poly8_t *, poly8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_s32 (int32_t *, int32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_s16 (int16_t *, int16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_s8 (int8_t *, int8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_f32 (float32_t *, float32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.74 Element/structure loads, VLD4 variants</h5>
<ul>
<li>uint32x2x4_t vld4_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x4_t vld4_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x4_t vld4_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x4_t vld4_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x4_t vld4_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x4_t vld4_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x4_t vld4_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x4_t vld4_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x4_t vld4_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x4_t vld4_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x4_t vld4_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x4_t vld4q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x4_t vld4q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x16x4_t vld4q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x4_t vld4q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x4_t vld4q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x16x4_t vld4q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x4_t vld4q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x4_t vld4q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x16x4_t vld4q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint32x2x4_t vld4_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint16x4x4_t vld4_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint8x8x4_t vld4_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int32x2x4_t vld4_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int16x4x4_t vld4_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int8x8x4_t vld4_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>float32x2x4_t vld4_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly16x4x4_t vld4_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>poly8x8x4_t vld4_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>uint64x1x4_t vld4_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>int64x1x4_t vld4_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.75 Element/structure stores, VST4 variants</h5>
<ul>
<li>void vst4_u32 (uint32_t *, uint32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_u16 (uint16_t *, uint16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_u8 (uint8_t *, uint8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_s32 (int32_t *, int32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_s16 (int16_t *, int16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_s8 (int8_t *, int8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_f32 (float32_t *, float32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_p16 (poly16_t *, poly16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_p8 (poly8_t *, poly8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_u64 (uint64_t *, uint64x1x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_s64 (int64_t *, int64x1x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_u32 (uint32_t *, uint32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_u16 (uint16_t *, uint16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_u8 (uint8_t *, uint8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_s32 (int32_t *, int32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_s16 (int16_t *, int16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_s8 (int8_t *, int8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_f32 (float32_t *, float32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_p16 (poly16_t *, poly16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_p8 (poly8_t *, poly8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_s32 (int32_t *, int32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_s16 (int16_t *, int16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_s8 (int8_t *, int8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_f32 (float32_t *, float32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<ul>
<li>void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>
<h5 class="subsubsection">5.51.3.76 Logical operations (AND)</h5>
<ul>
<li>uint32x2_t vand_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vand_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vand_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vand_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vand_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vand_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vand_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vand_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vandq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vandq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vandq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vandq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.77 Logical operations (OR)</h5>
<ul>
<li>uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vorr_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vorr_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vorr_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vorr_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vorrq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vorrq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vorrq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vorrq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.78 Logical operations (exclusive OR)</h5>
<ul>
<li>uint32x2_t veor_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t veor_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t veor_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t veor_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t veor_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t veor_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t veor_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t veor_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t veorq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t veorq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t veorq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t veorq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.79 Logical operations (AND-NOT)</h5>
<ul>
<li>uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vbic_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vbic_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vbic_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vbic_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vbicq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vbicq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vbicq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vbicq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.80 Logical operations (OR-NOT)</h5>
<ul>
<li>uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int32x2_t vorn_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int16x4_t vorn_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>int8x8_t vorn_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>
<ul>
<li>uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t)
</ul>
<ul>
<li>int64x1_t vorn_s64 (int64x1_t, int64x1_t)
</ul>
<ul>
<li>uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int32x4_t vornq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int16x8_t vornq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int8x16_t vornq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<ul>
<li>int64x2_t vornq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>
<h5 class="subsubsection">5.51.3.81 Reinterpret casts</h5>
<ul>
<li>poly8x8_t vreinterpret_p8_u32 (uint32x2_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_u16 (uint16x4_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_u8 (uint8x8_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_s32 (int32x2_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_s16 (int16x4_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_s8 (int8x8_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_u64 (uint64x1_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_s64 (int64x1_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_f32 (float32x2_t)
</ul>
<ul>
<li>poly8x8_t vreinterpret_p8_p16 (poly16x4_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_u32 (uint32x4_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_u16 (uint16x8_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_u8 (uint8x16_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_s32 (int32x4_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_s16 (int16x8_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_s8 (int8x16_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_u64 (uint64x2_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_s64 (int64x2_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_f32 (float32x4_t)
</ul>
<ul>
<li>poly8x16_t vreinterpretq_p8_p16 (poly16x8_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_u32 (uint32x2_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_u16 (uint16x4_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_u8 (uint8x8_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_s32 (int32x2_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_s16 (int16x4_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_s8 (int8x8_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_u64 (uint64x1_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_s64 (int64x1_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_f32 (float32x2_t)
</ul>
<ul>
<li>poly16x4_t vreinterpret_p16_p8 (poly8x8_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_u32 (uint32x4_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_u16 (uint16x8_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_u8 (uint8x16_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_s32 (int32x4_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_s16 (int16x8_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_s8 (int8x16_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_u64 (uint64x2_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_s64 (int64x2_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_f32 (float32x4_t)
</ul>
<ul>
<li>poly16x8_t vreinterpretq_p16_p8 (poly8x16_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_u32 (uint32x2_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_u16 (uint16x4_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_u8 (uint8x8_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_s32 (int32x2_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_s16 (int16x4_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_s8 (int8x8_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_u64 (uint64x1_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_s64 (int64x1_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_p16 (poly16x4_t)
</ul>
<ul>
<li>float32x2_t vreinterpret_f32_p8 (poly8x8_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_u32 (uint32x4_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_u16 (uint16x8_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_u8 (uint8x16_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_s32 (int32x4_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_s16 (int16x8_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_s8 (int8x16_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_u64 (uint64x2_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_s64 (int64x2_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_p16 (poly16x8_t)
</ul>
<ul>
<li>float32x4_t vreinterpretq_f32_p8 (poly8x16_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_u32 (uint32x2_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_u16 (uint16x4_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_u8 (uint8x8_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_s32 (int32x2_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_s16 (int16x4_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_s8 (int8x8_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_u64 (uint64x1_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_f32 (float32x2_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_p16 (poly16x4_t)
</ul>
<ul>
<li>int64x1_t vreinterpret_s64_p8 (poly8x8_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_u32 (uint32x4_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_u16 (uint16x8_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_u8 (uint8x16_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_s32 (int32x4_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_s16 (int16x8_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_s8 (int8x16_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_u64 (uint64x2_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_f32 (float32x4_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_p16 (poly16x8_t)
</ul>
<ul>
<li>int64x2_t vreinterpretq_s64_p8 (poly8x16_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_u32 (uint32x2_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_u16 (uint16x4_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_u8 (uint8x8_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_s32 (int32x2_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_s16 (int16x4_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_s8 (int8x8_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_s64 (int64x1_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_f32 (float32x2_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_p16 (poly16x4_t)
</ul>
<ul>
<li>uint64x1_t vreinterpret_u64_p8 (poly8x8_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_u32 (uint32x4_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_u16 (uint16x8_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_u8 (uint8x16_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_s32 (int32x4_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_s16 (int16x8_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_s8 (int8x16_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_s64 (int64x2_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_f32 (float32x4_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_p16 (poly16x8_t)
</ul>
<ul>
<li>uint64x2_t vreinterpretq_u64_p8 (poly8x16_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_u32 (uint32x2_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_u16 (uint16x4_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_u8 (uint8x8_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_s32 (int32x2_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_s16 (int16x4_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_u64 (uint64x1_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_s64 (int64x1_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_f32 (float32x2_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_p16 (poly16x4_t)
</ul>
<ul>
<li>int8x8_t vreinterpret_s8_p8 (poly8x8_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_u32 (uint32x4_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_u16 (uint16x8_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_u8 (uint8x16_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_s32 (int32x4_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_s16 (int16x8_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_u64 (uint64x2_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_s64 (int64x2_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_f32 (float32x4_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_p16 (poly16x8_t)
</ul>
<ul>
<li>int8x16_t vreinterpretq_s8_p8 (poly8x16_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_u32 (uint32x2_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_u16 (uint16x4_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_u8 (uint8x8_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_s32 (int32x2_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_s8 (int8x8_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_u64 (uint64x1_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_s64 (int64x1_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_f32 (float32x2_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_p16 (poly16x4_t)
</ul>
<ul>
<li>int16x4_t vreinterpret_s16_p8 (poly8x8_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_u32 (uint32x4_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_u16 (uint16x8_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_u8 (uint8x16_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_s32 (int32x4_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_s8 (int8x16_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_u64 (uint64x2_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_s64 (int64x2_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_f32 (float32x4_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_p16 (poly16x8_t)
</ul>
<ul>
<li>int16x8_t vreinterpretq_s16_p8 (poly8x16_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_u32 (uint32x2_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_u16 (uint16x4_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_u8 (uint8x8_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_s16 (int16x4_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_s8 (int8x8_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_u64 (uint64x1_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_s64 (int64x1_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_f32 (float32x2_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_p16 (poly16x4_t)
</ul>
<ul>
<li>int32x2_t vreinterpret_s32_p8 (poly8x8_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_u32 (uint32x4_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_u16 (uint16x8_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_u8 (uint8x16_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_s16 (int16x8_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_s8 (int8x16_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_u64 (uint64x2_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_s64 (int64x2_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_f32 (float32x4_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_p16 (poly16x8_t)
</ul>
<ul>
<li>int32x4_t vreinterpretq_s32_p8 (poly8x16_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_u32 (uint32x2_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_u16 (uint16x4_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_s32 (int32x2_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_s16 (int16x4_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_s8 (int8x8_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_u64 (uint64x1_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_s64 (int64x1_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_f32 (float32x2_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_p16 (poly16x4_t)
</ul>
<ul>
<li>uint8x8_t vreinterpret_u8_p8 (poly8x8_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_u32 (uint32x4_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_u16 (uint16x8_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_s32 (int32x4_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_s16 (int16x8_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_s8 (int8x16_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_u64 (uint64x2_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_s64 (int64x2_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_f32 (float32x4_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_p16 (poly16x8_t)
</ul>
<ul>
<li>uint8x16_t vreinterpretq_u8_p8 (poly8x16_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_u32 (uint32x2_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_u8 (uint8x8_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_s32 (int32x2_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_s16 (int16x4_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_s8 (int8x8_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_u64 (uint64x1_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_s64 (int64x1_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_f32 (float32x2_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_p16 (poly16x4_t)
</ul>
<ul>
<li>uint16x4_t vreinterpret_u16_p8 (poly8x8_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_u32 (uint32x4_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_u8 (uint8x16_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_s32 (int32x4_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_s16 (int16x8_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_s8 (int8x16_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_u64 (uint64x2_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_s64 (int64x2_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_f32 (float32x4_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_p16 (poly16x8_t)
</ul>
<ul>
<li>uint16x8_t vreinterpretq_u16_p8 (poly8x16_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_u16 (uint16x4_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_u8 (uint8x8_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_s32 (int32x2_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_s16 (int16x4_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_s8 (int8x8_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_u64 (uint64x1_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_s64 (int64x1_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_f32 (float32x2_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_p16 (poly16x4_t)
</ul>
<ul>
<li>uint32x2_t vreinterpret_u32_p8 (poly8x8_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_u16 (uint16x8_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_u8 (uint8x16_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_s32 (int32x4_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_s16 (int16x8_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_s8 (int8x16_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_u64 (uint64x2_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_s64 (int64x2_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_f32 (float32x4_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_p16 (poly16x8_t)
</ul>
<ul>
<li>uint32x4_t vreinterpretq_u32_p8 (poly8x16_t)
</ul>
<div class="node">
<a name="Blackfin-Built-in-Functions"></a>
<a name="Blackfin-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.4 Blackfin Built-in Functions</h4>
<p>Currently, there are two Blackfin-specific built-in functions. These are
used for generating <code>CSYNC</code> and <code>SSYNC</code> machine insns without
using inline assembly; by using these built-in functions the compiler can
automatically add workarounds for hardware errata involving these
instructions. These functions are named as follows:
<pre class="smallexample"> void __builtin_bfin_csync (void)
void __builtin_bfin_ssync (void)
</pre>
<div class="node">
<a name="FR-V-Built-in-Functions"></a>
<a name="FR_002dV-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.5 FR-V Built-in Functions</h4>
<p>GCC provides many FR-V-specific built-in functions. In general,
these functions are intended to be compatible with those described
by <cite>FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
Semiconductor</cite>. The two exceptions are <code>__MDUNPACKH</code> and
<code>__MBTOHE</code>, the gcc forms of which pass 128-bit values by
pointer rather than by value.
<p>Most of the functions are named after specific FR-V instructions.
Such functions are said to be “directly mapped” and are summarized
here in tabular form.
<ul class="menu">
<li><a accesskey="1" href="#Argument-Types">Argument Types</a>
<li><a accesskey="2" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>
<li><a accesskey="3" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>
<li><a accesskey="4" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>
<li><a accesskey="5" href="#Other-Built_002din-Functions">Other Built-in Functions</a>
</ul>
<div class="node">
<a name="Argument-Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>,
Up: <a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.5.1 Argument Types</h5>
<p>The arguments to the built-in functions can be divided into three groups:
register numbers, compile-time constants and run-time values. In order
to make this classification clear at a glance, the arguments and return
values are given the following pseudo types:
<p><table summary=""><tr align="left"><td valign="top" width="20%">Pseudo type </td><td valign="top" width="30%">Real C type </td><td valign="top" width="15%">Constant? </td><td valign="top" width="35%">Description
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uh</code> </td><td valign="top" width="30%"><code>unsigned short</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">an unsigned halfword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uw1</code> </td><td valign="top" width="30%"><code>unsigned int</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">an unsigned word
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>sw1</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">a signed word
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uw2</code> </td><td valign="top" width="30%"><code>unsigned long long</code> </td><td valign="top" width="15%">No
</td><td valign="top" width="35%">an unsigned doubleword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>sw2</code> </td><td valign="top" width="30%"><code>long long</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">a signed doubleword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>const</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an integer constant
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>acc</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an ACC register number
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>iacc</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an IACC register number
<br></td></tr></table>
<p>These pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.
<p>Arguments of type <code>uh</code>, <code>uw1</code>, <code>sw1</code>, <code>uw2</code>
and <code>sw2</code> are evaluated at run time. They correspond to
register operands in the underlying FR-V instructions.
<p><code>const</code> arguments represent immediate operands in the underlying
FR-V instructions. They must be compile-time constants.
<p><code>acc</code> arguments are evaluated at compile time and specify the number
of an accumulator register. For example, an <code>acc</code> argument of 2
will select the ACC2 register.
<p><code>iacc</code> arguments are similar to <code>acc</code> arguments but specify the
number of an IACC register. See see <a href="#Other-Built_002din-Functions">Other Built-in Functions</a>
for more details.
<div class="node">
<a name="Directly-mapped-Integer-Functions"></a>
<a name="Directly_002dmapped-Integer-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Argument-Types">Argument Types</a>,
Up: <a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.5.2 Directly-mapped Integer Functions</h5>
<p>The functions listed below map directly to FR-V I-type instructions.
<p><table summary=""><tr align="left"><td valign="top" width="45%">Function prototype </td><td valign="top" width="32%">Example usage </td><td valign="top" width="23%">Assembly output
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __ADDSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __ADDSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>ADDSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SCAN (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SCAN (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SCAN </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SCUTSS (sw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __SCUTSS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>SCUTSS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SLASS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SLASS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SLASS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMASS (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMASS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMASS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMSSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMSSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMSSS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMU (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMU (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMU </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __SMUL (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SMUL (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMUL </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SUBSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SUBSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SUBSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __UMUL (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __UMUL (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>UMUL </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr></table>
<div class="node">
<a name="Directly-mapped-Media-Functions"></a>
<a name="Directly_002dmapped-Media-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>,
Up: <a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.5.3 Directly-mapped Media Functions</h5>
<p>The functions listed below map directly to FR-V M-type instructions.
<p><table summary=""><tr align="left"><td valign="top" width="45%">Function prototype </td><td valign="top" width="32%">Example usage </td><td valign="top" width="23%">Assembly output
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MABSHS (sw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MABSHS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MABSHS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MADDACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MADDACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MADDHSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MADDHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MADDHUS (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MADDHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MAND (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MAND (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MAND </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MASACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MASACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MASACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MAVEH (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MAVEH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MAVEH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MBTOH (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MBTOH (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MBTOH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MBTOHE (uw1 *, uw1)</code>
</td><td valign="top" width="32%"><code>__MBTOHE (&</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MBTOHE </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCLRACC (acc)</code>
</td><td valign="top" width="32%"><code>__MCLRACC (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MCLRACC </code><var>a</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCLRACCA (void)</code>
</td><td valign="top" width="32%"><code>__MCLRACCA ()</code>
</td><td valign="top" width="23%"><code>MCLRACCA</code>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __Mcop1 (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __Mcop1 (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>Mcop1 </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __Mcop2 (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __Mcop2 (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>Mcop2 </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCPLHI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCPLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCPLI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCPLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXIS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MCPXIS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXIS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXIU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MCPXIU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXIU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXRS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MCPXRS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXRS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXRU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MCPXRU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXRU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCUT (acc, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCUT (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCUT </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCUTSS (acc, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCUTSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCUTSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDADDACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDADDACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDADDACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDASACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDASACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDASACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDCUTSSI (acc, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDCUTSSI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDCUTSSI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDPACKH (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDPACKH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDPACKH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDROTLI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDROTLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDROTLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDSUBACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDSUBACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDSUBACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDUNPACKH (uw1 *, uw2)</code>
</td><td valign="top" width="32%"><code>__MDUNPACKH (&</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDUNPACKH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MEXPDHD (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MEXPDHD (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MEXPDHD </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MEXPDHW (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MEXPDHW (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MEXPDHW </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHDSETH (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MHDSETH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MHDSETH </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHDSETS (const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHDSETS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHDSETS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHSETHIH (uw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETHIH (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETHIH #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHSETHIS (sw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETHIS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETHIS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHSETLOH (uw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETLOH (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETLOH #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHSETLOS (sw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETLOS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETLOS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHTOB (uw2)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHTOB (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHTOB </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMACHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMACHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMACHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMACHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMRDHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMRDHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMRDHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMRDHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMRDHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMRDHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMULHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMULHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULXHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMULXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULXHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMULXHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULXHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MNOT (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MNOT (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MNOT </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MOR (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MOR (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MOR </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MPACKH (uh, uh)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MPACKH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MPACKH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQADDHSS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQADDHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQADDHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQADDHUS (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQADDHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQADDHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXIS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXIS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXIS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXIU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXIU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXIU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXRS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXRS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXRS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXRU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXRU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXRU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQLCLRHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQLCLRHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQLCLRHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQLMTHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQLMTHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQLMTHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMACHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMACXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMULHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMULHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMULXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULXHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMULXHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULXHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSATHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSATHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSATHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQSLLHI (uw2, int)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSLLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSLLHI </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSRAHI (sw2, int)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSRAHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSRAHI </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSUBHSS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSUBHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSUBHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQSUBHUS (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSUBHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSUBHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQXMACHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQXMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQXMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQXMACXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQXMACXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQXMACXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MRDACC (acc)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MRDACC (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MRDACC </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MRDACCG (acc)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MRDACCG (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MRDACCG </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MROTLI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MROTLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MROTLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MROTRI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MROTRI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MROTRI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSATHS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSATHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSATHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSATHU (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSATHU (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSATHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSLLHI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSLLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSLLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSRAHI (sw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSRAHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSRAHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSRLHI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSRLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSRLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MSUBACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MSUBACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSUBHSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSUBHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSUBHUS (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSUBHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MTRAP (void)</code>
</td><td valign="top" width="32%"><code>__MTRAP ()</code>
</td><td valign="top" width="23%"><code>MTRAP</code>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MUNPACKH (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MUNPACKH (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MUNPACKH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MWCUT (uw2, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MWCUT (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MWCUT </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MWTACC (acc, uw1)</code>
</td><td valign="top" width="32%"><code>__MWTACC (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MWTACC </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MWTACCG (acc, uw1)</code>
</td><td valign="top" width="32%"><code>__MWTACCG (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MWTACCG </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MXOR (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MXOR (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MXOR </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr></table>
<div class="node">
<a name="Raw-read%2fwrite-Functions"></a>
<a name="Raw-read_002fwrite-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Other-Built_002din-Functions">Other Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>,
Up: <a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.5.4 Raw read/write Functions</h5>
<p>This sections describes built-in functions related to read and write
instructions to access memory. These functions generate
<code>membar</code> instructions to flush the I/O load and stores where
appropriate, as described in Fujitsu's manual described above.
<dl>
<dt><code>unsigned char __builtin_read8 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned short __builtin_read16 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned long __builtin_read32 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned long long __builtin_read64 (void *</code><var>data</var><code>)</code>
<br><dt><code>void __builtin_write8 (void *</code><var>data</var><code>, unsigned char </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write16 (void *</code><var>data</var><code>, unsigned short </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write32 (void *</code><var>data</var><code>, unsigned long </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write64 (void *</code><var>data</var><code>, unsigned long long </code><var>datum</var><code>)</code><dd></dl>
<div class="node">
<a name="Other-Built-in-Functions"></a>
<a name="Other-Built_002din-Functions"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>,
Up: <a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.5.5 Other Built-in Functions</h5>
<p>This section describes built-in functions that are not named after
a specific FR-V instruction.
<dl>
<dt><code>sw2 __IACCreadll (iacc </code><var>reg</var><code>)</code><dd>Return the full 64-bit value of IACC0. The <var>reg</var> argument is reserved
for future expansion and must be 0.
<br><dt><code>sw1 __IACCreadl (iacc </code><var>reg</var><code>)</code><dd>Return the value of IACC0H if <var>reg</var> is 0 and IACC0L if <var>reg</var> is 1.
Other values of <var>reg</var> are rejected as invalid.
<br><dt><code>void __IACCsetll (iacc </code><var>reg</var><code>, sw2 </code><var>x</var><code>)</code><dd>Set the full 64-bit value of IACC0 to <var>x</var>. The <var>reg</var> argument
is reserved for future expansion and must be 0.
<br><dt><code>void __IACCsetl (iacc </code><var>reg</var><code>, sw1 </code><var>x</var><code>)</code><dd>Set IACC0H to <var>x</var> if <var>reg</var> is 0 and IACC0L to <var>x</var> if <var>reg</var>
is 1. Other values of <var>reg</var> are rejected as invalid.
<br><dt><code>void __data_prefetch0 (const void *</code><var>x</var><code>)</code><dd>Use the <code>dcpl</code> instruction to load the contents of address <var>x</var>
into the data cache.
<br><dt><code>void __data_prefetch (const void *</code><var>x</var><code>)</code><dd>Use the <code>nldub</code> instruction to load the contents of address <var>x</var>
into the data cache. The instruction will be issued in slot I1.
</dl>
<div class="node">
<a name="X86-Built-in-Functions"></a>
<a name="X86-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.6 X86 Built-in Functions</h4>
<p>These built-in functions are available for the i386 and x86-64 family
of computers, depending on the command-line switches used.
<p>Note that, if you specify command-line switches such as <samp><span class="option">-msse</span></samp>,
the compiler could use the extended instruction sets even if the built-ins
are not used explicitly in the program. For this reason, applications
which perform runtime CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
<p>The following machine modes are available for use with MMX built-in functions
(see <a href="#Vector-Extensions">Vector Extensions</a>): <code>V2SI</code> for a vector of two 32-bit integers,
<code>V4HI</code> for a vector of four 16-bit integers, and <code>V8QI</code> for a
vector of eight 8-bit integers. Some of the built-in functions operate on
MMX registers as a whole 64-bit entity, these use <code>V1DI</code> as their mode.
<p>If 3Dnow extensions are enabled, <code>V2SF</code> is used as a mode for a vector
of two 32-bit floating point values.
<p>If SSE extensions are enabled, <code>V4SF</code> is used for a vector of four 32-bit
floating point values. Some instructions use a vector of four 32-bit
integers, these use <code>V4SI</code>. Finally, some instructions operate on an
entire vector register, interpreting it as a 128-bit integer, these use mode
<code>TI</code>.
<p>In 64-bit mode, the x86-64 family of processors uses additional built-in
functions for efficient use of <code>TF</code> (<code>__float128</code>) 128-bit
floating point and <code>TC</code> 128-bit complex floating point values.
<p>The following floating point built-in functions are available in 64-bit
mode. All of them implement the function that is part of the name.
<pre class="smallexample"> __float128 __builtin_fabsq (__float128)
__float128 __builtin_copysignq (__float128, __float128)
</pre>
<p>The following floating point built-in functions are made available in the
64-bit mode.
<dl>
<dt><code>__float128 __builtin_infq (void)</code><dd>Similar to <code>__builtin_inf</code>, except the return type is <code>__float128</code>.
</dl>
<p>The following built-in functions are made available by <samp><span class="option">-mmmx</span></samp>.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> v8qi __builtin_ia32_paddb (v8qi, v8qi)
v4hi __builtin_ia32_paddw (v4hi, v4hi)
v2si __builtin_ia32_paddd (v2si, v2si)
v8qi __builtin_ia32_psubb (v8qi, v8qi)
v4hi __builtin_ia32_psubw (v4hi, v4hi)
v2si __builtin_ia32_psubd (v2si, v2si)
v8qi __builtin_ia32_paddsb (v8qi, v8qi)
v4hi __builtin_ia32_paddsw (v4hi, v4hi)
v8qi __builtin_ia32_psubsb (v8qi, v8qi)
v4hi __builtin_ia32_psubsw (v4hi, v4hi)
v8qi __builtin_ia32_paddusb (v8qi, v8qi)
v4hi __builtin_ia32_paddusw (v4hi, v4hi)
v8qi __builtin_ia32_psubusb (v8qi, v8qi)
v4hi __builtin_ia32_psubusw (v4hi, v4hi)
v4hi __builtin_ia32_pmullw (v4hi, v4hi)
v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
di __builtin_ia32_pand (di, di)
di __builtin_ia32_pandn (di,di)
di __builtin_ia32_por (di, di)
di __builtin_ia32_pxor (di, di)
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
v2si __builtin_ia32_pcmpeqd (v2si, v2si)
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
v2si __builtin_ia32_pcmpgtd (v2si, v2si)
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
v2si __builtin_ia32_punpckhdq (v2si, v2si)
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
v2si __builtin_ia32_punpckldq (v2si, v2si)
v8qi __builtin_ia32_packsswb (v4hi, v4hi)
v4hi __builtin_ia32_packssdw (v2si, v2si)
v8qi __builtin_ia32_packuswb (v4hi, v4hi)
v4hi __builtin_ia32_psllw (v4hi, v4hi)
v2si __builtin_ia32_pslld (v2si, v2si)
v1di __builtin_ia32_psllq (v1di, v1di)
v4hi __builtin_ia32_psrlw (v4hi, v4hi)
v2si __builtin_ia32_psrld (v2si, v2si)
v1di __builtin_ia32_psrlq (v1di, v1di)
v4hi __builtin_ia32_psraw (v4hi, v4hi)
v2si __builtin_ia32_psrad (v2si, v2si)
v4hi __builtin_ia32_psllwi (v4hi, int)
v2si __builtin_ia32_pslldi (v2si, int)
v1di __builtin_ia32_psllqi (v1di, int)
v4hi __builtin_ia32_psrlwi (v4hi, int)
v2si __builtin_ia32_psrldi (v2si, int)
v1di __builtin_ia32_psrlqi (v1di, int)
v4hi __builtin_ia32_psrawi (v4hi, int)
v2si __builtin_ia32_psradi (v2si, int)
</pre>
<p>The following built-in functions are made available either with
<samp><span class="option">-msse</span></samp>, or with a combination of <samp><span class="option">-m3dnow</span></samp> and
<samp><span class="option">-march=athlon</span></samp>. All of them generate the machine
instruction that is part of the name.
<pre class="smallexample"> v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
v8qi __builtin_ia32_pavgb (v8qi, v8qi)
v4hi __builtin_ia32_pavgw (v4hi, v4hi)
v1di __builtin_ia32_psadbw (v8qi, v8qi)
v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
v8qi __builtin_ia32_pminub (v8qi, v8qi)
v4hi __builtin_ia32_pminsw (v4hi, v4hi)
int __builtin_ia32_pextrw (v4hi, int)
v4hi __builtin_ia32_pinsrw (v4hi, int, int)
int __builtin_ia32_pmovmskb (v8qi)
void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
void __builtin_ia32_movntq (di *, di)
void __builtin_ia32_sfence (void)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse</span></samp> is used.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> int __builtin_ia32_comieq (v4sf, v4sf)
int __builtin_ia32_comineq (v4sf, v4sf)
int __builtin_ia32_comilt (v4sf, v4sf)
int __builtin_ia32_comile (v4sf, v4sf)
int __builtin_ia32_comigt (v4sf, v4sf)
int __builtin_ia32_comige (v4sf, v4sf)
int __builtin_ia32_ucomieq (v4sf, v4sf)
int __builtin_ia32_ucomineq (v4sf, v4sf)
int __builtin_ia32_ucomilt (v4sf, v4sf)
int __builtin_ia32_ucomile (v4sf, v4sf)
int __builtin_ia32_ucomigt (v4sf, v4sf)
int __builtin_ia32_ucomige (v4sf, v4sf)
v4sf __builtin_ia32_addps (v4sf, v4sf)
v4sf __builtin_ia32_subps (v4sf, v4sf)
v4sf __builtin_ia32_mulps (v4sf, v4sf)
v4sf __builtin_ia32_divps (v4sf, v4sf)
v4sf __builtin_ia32_addss (v4sf, v4sf)
v4sf __builtin_ia32_subss (v4sf, v4sf)
v4sf __builtin_ia32_mulss (v4sf, v4sf)
v4sf __builtin_ia32_divss (v4sf, v4sf)
v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
v4si __builtin_ia32_cmpltps (v4sf, v4sf)
v4si __builtin_ia32_cmpleps (v4sf, v4sf)
v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
v4si __builtin_ia32_cmpordps (v4sf, v4sf)
v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
v4si __builtin_ia32_cmpltss (v4sf, v4sf)
v4si __builtin_ia32_cmpless (v4sf, v4sf)
v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
v4si __builtin_ia32_cmpnless (v4sf, v4sf)
v4si __builtin_ia32_cmpordss (v4sf, v4sf)
v4sf __builtin_ia32_maxps (v4sf, v4sf)
v4sf __builtin_ia32_maxss (v4sf, v4sf)
v4sf __builtin_ia32_minps (v4sf, v4sf)
v4sf __builtin_ia32_minss (v4sf, v4sf)
v4sf __builtin_ia32_andps (v4sf, v4sf)
v4sf __builtin_ia32_andnps (v4sf, v4sf)
v4sf __builtin_ia32_orps (v4sf, v4sf)
v4sf __builtin_ia32_xorps (v4sf, v4sf)
v4sf __builtin_ia32_movss (v4sf, v4sf)
v4sf __builtin_ia32_movhlps (v4sf, v4sf)
v4sf __builtin_ia32_movlhps (v4sf, v4sf)
v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
v2si __builtin_ia32_cvtps2pi (v4sf)
int __builtin_ia32_cvtss2si (v4sf)
v2si __builtin_ia32_cvttps2pi (v4sf)
int __builtin_ia32_cvttss2si (v4sf)
v4sf __builtin_ia32_rcpps (v4sf)
v4sf __builtin_ia32_rsqrtps (v4sf)
v4sf __builtin_ia32_sqrtps (v4sf)
v4sf __builtin_ia32_rcpss (v4sf)
v4sf __builtin_ia32_rsqrtss (v4sf)
v4sf __builtin_ia32_sqrtss (v4sf)
v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
void __builtin_ia32_movntps (float *, v4sf)
int __builtin_ia32_movmskps (v4sf)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse</span></samp> is used.
<dl>
<dt><code>v4sf __builtin_ia32_loadaps (float *)</code><dd>Generates the <code>movaps</code> machine instruction as a load from memory.
<br><dt><code>void __builtin_ia32_storeaps (float *, v4sf)</code><dd>Generates the <code>movaps</code> machine instruction as a store to memory.
<br><dt><code>v4sf __builtin_ia32_loadups (float *)</code><dd>Generates the <code>movups</code> machine instruction as a load from memory.
<br><dt><code>void __builtin_ia32_storeups (float *, v4sf)</code><dd>Generates the <code>movups</code> machine instruction as a store to memory.
<br><dt><code>v4sf __builtin_ia32_loadsss (float *)</code><dd>Generates the <code>movss</code> machine instruction as a load from memory.
<br><dt><code>void __builtin_ia32_storess (float *, v4sf)</code><dd>Generates the <code>movss</code> machine instruction as a store to memory.
<br><dt><code>v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)</code><dd>Generates the <code>movhps</code> machine instruction as a load from memory.
<br><dt><code>v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)</code><dd>Generates the <code>movlps</code> machine instruction as a load from memory
<br><dt><code>void __builtin_ia32_storehps (v2sf *, v4sf)</code><dd>Generates the <code>movhps</code> machine instruction as a store to memory.
<br><dt><code>void __builtin_ia32_storelps (v2sf *, v4sf)</code><dd>Generates the <code>movlps</code> machine instruction as a store to memory.
</dl>
<p>The following built-in functions are available when <samp><span class="option">-msse2</span></samp> is used.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> int __builtin_ia32_comisdeq (v2df, v2df)
int __builtin_ia32_comisdlt (v2df, v2df)
int __builtin_ia32_comisdle (v2df, v2df)
int __builtin_ia32_comisdgt (v2df, v2df)
int __builtin_ia32_comisdge (v2df, v2df)
int __builtin_ia32_comisdneq (v2df, v2df)
int __builtin_ia32_ucomisdeq (v2df, v2df)
int __builtin_ia32_ucomisdlt (v2df, v2df)
int __builtin_ia32_ucomisdle (v2df, v2df)
int __builtin_ia32_ucomisdgt (v2df, v2df)
int __builtin_ia32_ucomisdge (v2df, v2df)
int __builtin_ia32_ucomisdneq (v2df, v2df)
v2df __builtin_ia32_cmpeqpd (v2df, v2df)
v2df __builtin_ia32_cmpltpd (v2df, v2df)
v2df __builtin_ia32_cmplepd (v2df, v2df)
v2df __builtin_ia32_cmpgtpd (v2df, v2df)
v2df __builtin_ia32_cmpgepd (v2df, v2df)
v2df __builtin_ia32_cmpunordpd (v2df, v2df)
v2df __builtin_ia32_cmpneqpd (v2df, v2df)
v2df __builtin_ia32_cmpnltpd (v2df, v2df)
v2df __builtin_ia32_cmpnlepd (v2df, v2df)
v2df __builtin_ia32_cmpngtpd (v2df, v2df)
v2df __builtin_ia32_cmpngepd (v2df, v2df)
v2df __builtin_ia32_cmpordpd (v2df, v2df)
v2df __builtin_ia32_cmpeqsd (v2df, v2df)
v2df __builtin_ia32_cmpltsd (v2df, v2df)
v2df __builtin_ia32_cmplesd (v2df, v2df)
v2df __builtin_ia32_cmpunordsd (v2df, v2df)
v2df __builtin_ia32_cmpneqsd (v2df, v2df)
v2df __builtin_ia32_cmpnltsd (v2df, v2df)
v2df __builtin_ia32_cmpnlesd (v2df, v2df)
v2df __builtin_ia32_cmpordsd (v2df, v2df)
v2di __builtin_ia32_paddq (v2di, v2di)
v2di __builtin_ia32_psubq (v2di, v2di)
v2df __builtin_ia32_addpd (v2df, v2df)
v2df __builtin_ia32_subpd (v2df, v2df)
v2df __builtin_ia32_mulpd (v2df, v2df)
v2df __builtin_ia32_divpd (v2df, v2df)
v2df __builtin_ia32_addsd (v2df, v2df)
v2df __builtin_ia32_subsd (v2df, v2df)
v2df __builtin_ia32_mulsd (v2df, v2df)
v2df __builtin_ia32_divsd (v2df, v2df)
v2df __builtin_ia32_minpd (v2df, v2df)
v2df __builtin_ia32_maxpd (v2df, v2df)
v2df __builtin_ia32_minsd (v2df, v2df)
v2df __builtin_ia32_maxsd (v2df, v2df)
v2df __builtin_ia32_andpd (v2df, v2df)
v2df __builtin_ia32_andnpd (v2df, v2df)
v2df __builtin_ia32_orpd (v2df, v2df)
v2df __builtin_ia32_xorpd (v2df, v2df)
v2df __builtin_ia32_movsd (v2df, v2df)
v2df __builtin_ia32_unpckhpd (v2df, v2df)
v2df __builtin_ia32_unpcklpd (v2df, v2df)
v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
v4si __builtin_ia32_paddd128 (v4si, v4si)
v2di __builtin_ia32_paddq128 (v2di, v2di)
v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
v4si __builtin_ia32_psubd128 (v4si, v4si)
v2di __builtin_ia32_psubq128 (v2di, v2di)
v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
v2di __builtin_ia32_pand128 (v2di, v2di)
v2di __builtin_ia32_pandn128 (v2di, v2di)
v2di __builtin_ia32_por128 (v2di, v2di)
v2di __builtin_ia32_pxor128 (v2di, v2di)
v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
v4si __builtin_ia32_punpckldq128 (v4si, v4si)
v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
v8hi __builtin_ia32_packssdw128 (v4si, v4si)
v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
void __builtin_ia32_maskmovdqu (v16qi, v16qi)
v2df __builtin_ia32_loadupd (double *)
void __builtin_ia32_storeupd (double *, v2df)
v2df __builtin_ia32_loadhpd (v2df, double const *)
v2df __builtin_ia32_loadlpd (v2df, double const *)
int __builtin_ia32_movmskpd (v2df)
int __builtin_ia32_pmovmskb128 (v16qi)
void __builtin_ia32_movnti (int *, int)
void __builtin_ia32_movntpd (double *, v2df)
void __builtin_ia32_movntdq (v2df *, v2df)
v4si __builtin_ia32_pshufd (v4si, int)
v8hi __builtin_ia32_pshuflw (v8hi, int)
v8hi __builtin_ia32_pshufhw (v8hi, int)
v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
v2df __builtin_ia32_sqrtpd (v2df)
v2df __builtin_ia32_sqrtsd (v2df)
v2df __builtin_ia32_shufpd (v2df, v2df, int)
v2df __builtin_ia32_cvtdq2pd (v4si)
v4sf __builtin_ia32_cvtdq2ps (v4si)
v4si __builtin_ia32_cvtpd2dq (v2df)
v2si __builtin_ia32_cvtpd2pi (v2df)
v4sf __builtin_ia32_cvtpd2ps (v2df)
v4si __builtin_ia32_cvttpd2dq (v2df)
v2si __builtin_ia32_cvttpd2pi (v2df)
v2df __builtin_ia32_cvtpi2pd (v2si)
int __builtin_ia32_cvtsd2si (v2df)
int __builtin_ia32_cvttsd2si (v2df)
long long __builtin_ia32_cvtsd2si64 (v2df)
long long __builtin_ia32_cvttsd2si64 (v2df)
v4si __builtin_ia32_cvtps2dq (v4sf)
v2df __builtin_ia32_cvtps2pd (v4sf)
v4si __builtin_ia32_cvttps2dq (v4sf)
v2df __builtin_ia32_cvtsi2sd (v2df, int)
v2df __builtin_ia32_cvtsi642sd (v2df, long long)
v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
void __builtin_ia32_clflush (const void *)
void __builtin_ia32_lfence (void)
void __builtin_ia32_mfence (void)
v16qi __builtin_ia32_loaddqu (const char *)
void __builtin_ia32_storedqu (char *, v16qi)
v1di __builtin_ia32_pmuludq (v2si, v2si)
v2di __builtin_ia32_pmuludq128 (v4si, v4si)
v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
v4si __builtin_ia32_pslld128 (v4si, v4si)
v2di __builtin_ia32_psllq128 (v2di, v2di)
v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
v4si __builtin_ia32_psrld128 (v4si, v4si)
v2di __builtin_ia32_psrlq128 (v2di, v2di)
v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
v4si __builtin_ia32_psrad128 (v4si, v4si)
v2di __builtin_ia32_pslldqi128 (v2di, int)
v8hi __builtin_ia32_psllwi128 (v8hi, int)
v4si __builtin_ia32_pslldi128 (v4si, int)
v2di __builtin_ia32_psllqi128 (v2di, int)
v2di __builtin_ia32_psrldqi128 (v2di, int)
v8hi __builtin_ia32_psrlwi128 (v8hi, int)
v4si __builtin_ia32_psrldi128 (v4si, int)
v2di __builtin_ia32_psrlqi128 (v2di, int)
v8hi __builtin_ia32_psrawi128 (v8hi, int)
v4si __builtin_ia32_psradi128 (v4si, int)
v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
v2di __builtin_ia32_movq128 (v2di)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse3</span></samp> is used.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> v2df __builtin_ia32_addsubpd (v2df, v2df)
v4sf __builtin_ia32_addsubps (v4sf, v4sf)
v2df __builtin_ia32_haddpd (v2df, v2df)
v4sf __builtin_ia32_haddps (v4sf, v4sf)
v2df __builtin_ia32_hsubpd (v2df, v2df)
v4sf __builtin_ia32_hsubps (v4sf, v4sf)
v16qi __builtin_ia32_lddqu (char const *)
void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
v2df __builtin_ia32_movddup (v2df)
v4sf __builtin_ia32_movshdup (v4sf)
v4sf __builtin_ia32_movsldup (v4sf)
void __builtin_ia32_mwait (unsigned int, unsigned int)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse3</span></samp> is used.
<dl>
<dt><code>v2df __builtin_ia32_loadddup (double const *)</code><dd>Generates the <code>movddup</code> machine instruction as a load from memory.
</dl>
<p>The following built-in functions are available when <samp><span class="option">-mssse3</span></samp> is used.
All of them generate the machine instruction that is part of the name
with MMX registers.
<pre class="smallexample"> v2si __builtin_ia32_phaddd (v2si, v2si)
v4hi __builtin_ia32_phaddw (v4hi, v4hi)
v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
v2si __builtin_ia32_phsubd (v2si, v2si)
v4hi __builtin_ia32_phsubw (v4hi, v4hi)
v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
v8qi __builtin_ia32_pshufb (v8qi, v8qi)
v8qi __builtin_ia32_psignb (v8qi, v8qi)
v2si __builtin_ia32_psignd (v2si, v2si)
v4hi __builtin_ia32_psignw (v4hi, v4hi)
v1di __builtin_ia32_palignr (v1di, v1di, int)
v8qi __builtin_ia32_pabsb (v8qi)
v2si __builtin_ia32_pabsd (v2si)
v4hi __builtin_ia32_pabsw (v4hi)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-mssse3</span></samp> is used.
All of them generate the machine instruction that is part of the name
with SSE registers.
<pre class="smallexample"> v4si __builtin_ia32_phaddd128 (v4si, v4si)
v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
v4si __builtin_ia32_phsubd128 (v4si, v4si)
v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
v4si __builtin_ia32_psignd128 (v4si, v4si)
v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
v2di __builtin_ia32_palignr128 (v2di, v2di, int)
v16qi __builtin_ia32_pabsb128 (v16qi)
v4si __builtin_ia32_pabsd128 (v4si)
v8hi __builtin_ia32_pabsw128 (v8hi)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse4.1</span></samp> is
used. All of them generate the machine instruction that is part of the
name.
<pre class="smallexample"> v2df __builtin_ia32_blendpd (v2df, v2df, const int)
v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_dppd (v2df, v2df, const int)
v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
v2di __builtin_ia32_movntdqa (v2di *);
v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
v8hi __builtin_ia32_packusdw128 (v4si, v4si)
v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
v2di __builtin_ia32_pcmpeqq (v2di, v2di)
v8hi __builtin_ia32_phminposuw128 (v8hi)
v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
v4si __builtin_ia32_pmaxud128 (v4si, v4si)
v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
v4si __builtin_ia32_pminsd128 (v4si, v4si)
v4si __builtin_ia32_pminud128 (v4si, v4si)
v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
v4si __builtin_ia32_pmovsxbd128 (v16qi)
v2di __builtin_ia32_pmovsxbq128 (v16qi)
v8hi __builtin_ia32_pmovsxbw128 (v16qi)
v2di __builtin_ia32_pmovsxdq128 (v4si)
v4si __builtin_ia32_pmovsxwd128 (v8hi)
v2di __builtin_ia32_pmovsxwq128 (v8hi)
v4si __builtin_ia32_pmovzxbd128 (v16qi)
v2di __builtin_ia32_pmovzxbq128 (v16qi)
v8hi __builtin_ia32_pmovzxbw128 (v16qi)
v2di __builtin_ia32_pmovzxdq128 (v4si)
v4si __builtin_ia32_pmovzxwd128 (v8hi)
v2di __builtin_ia32_pmovzxwq128 (v8hi)
v2di __builtin_ia32_pmuldq128 (v4si, v4si)
v4si __builtin_ia32_pmulld128 (v4si, v4si)
int __builtin_ia32_ptestc128 (v2di, v2di)
int __builtin_ia32_ptestnzc128 (v2di, v2di)
int __builtin_ia32_ptestz128 (v2di, v2di)
v2df __builtin_ia32_roundpd (v2df, const int)
v4sf __builtin_ia32_roundps (v4sf, const int)
v2df __builtin_ia32_roundsd (v2df, v2df, const int)
v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse4.1</span></samp> is
used.
<dl>
<dt><code>v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)</code><dd>Generates the <code>insertps</code> machine instruction.
<br><dt><code>int __builtin_ia32_vec_ext_v16qi (v16qi, const int)</code><dd>Generates the <code>pextrb</code> machine instruction.
<br><dt><code>v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)</code><dd>Generates the <code>pinsrb</code> machine instruction.
<br><dt><code>v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)</code><dd>Generates the <code>pinsrd</code> machine instruction.
<br><dt><code>v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)</code><dd>Generates the <code>pinsrq</code> machine instruction in 64bit mode.
</dl>
<p>The following built-in functions are changed to generate new SSE4.1
instructions when <samp><span class="option">-msse4.1</span></samp> is used.
<dl>
<dt><code>float __builtin_ia32_vec_ext_v4sf (v4sf, const int)</code><dd>Generates the <code>extractps</code> machine instruction.
<br><dt><code>int __builtin_ia32_vec_ext_v4si (v4si, const int)</code><dd>Generates the <code>pextrd</code> machine instruction.
<br><dt><code>long long __builtin_ia32_vec_ext_v2di (v2di, const int)</code><dd>Generates the <code>pextrq</code> machine instruction in 64bit mode.
</dl>
<p>The following built-in functions are available when <samp><span class="option">-msse4.2</span></samp> is
used. All of them generate the machine instruction that is part of the
name.
<pre class="smallexample"> v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
v2di __builtin_ia32_pcmpgtq (v2di, v2di)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse4.2</span></samp> is
used.
<dl>
<dt><code>unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)</code><dd>Generates the <code>crc32b</code> machine instruction.
<br><dt><code>unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)</code><dd>Generates the <code>crc32w</code> machine instruction.
<br><dt><code>unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)</code><dd>Generates the <code>crc32l</code> machine instruction.
<br><dt><code>unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)</code><dd>Generates the <code>crc32q</code> machine instruction.
</dl>
<p>The following built-in functions are changed to generate new SSE4.2
instructions when <samp><span class="option">-msse4.2</span></samp> is used.
<dl>
<dt><code>int __builtin_popcount (unsigned int)</code><dd>Generates the <code>popcntl</code> machine instruction.
<br><dt><code>int __builtin_popcountl (unsigned long)</code><dd>Generates the <code>popcntl</code> or <code>popcntq</code> machine instruction,
depending on the size of <code>unsigned long</code>.
<br><dt><code>int __builtin_popcountll (unsigned long long)</code><dd>Generates the <code>popcntq</code> machine instruction.
</dl>
<p>The following built-in functions are available when <samp><span class="option">-mavx</span></samp> is
used. All of them generate the machine instruction that is part of the
name.
<pre class="smallexample"> v4df __builtin_ia32_addpd256 (v4df,v4df)
v8sf __builtin_ia32_addps256 (v8sf,v8sf)
v4df __builtin_ia32_addsubpd256 (v4df,v4df)
v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
v4df __builtin_ia32_andnpd256 (v4df,v4df)
v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
v4df __builtin_ia32_andpd256 (v4df,v4df)
v8sf __builtin_ia32_andps256 (v8sf,v8sf)
v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
v2df __builtin_ia32_cmppd (v2df,v2df,int)
v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
v2df __builtin_ia32_cmpsd (v2df,v2df,int)
v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
v4df __builtin_ia32_cvtdq2pd256 (v4si)
v8sf __builtin_ia32_cvtdq2ps256 (v8si)
v4si __builtin_ia32_cvtpd2dq256 (v4df)
v4sf __builtin_ia32_cvtpd2ps256 (v4df)
v8si __builtin_ia32_cvtps2dq256 (v8sf)
v4df __builtin_ia32_cvtps2pd256 (v4sf)
v4si __builtin_ia32_cvttpd2dq256 (v4df)
v8si __builtin_ia32_cvttps2dq256 (v8sf)
v4df __builtin_ia32_divpd256 (v4df,v4df)
v8sf __builtin_ia32_divps256 (v8sf,v8sf)
v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
v4df __builtin_ia32_haddpd256 (v4df,v4df)
v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
v4df __builtin_ia32_hsubpd256 (v4df,v4df)
v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
v32qi __builtin_ia32_lddqu256 (pcchar)
v32qi __builtin_ia32_loaddqu256 (pcchar)
v4df __builtin_ia32_loadupd256 (pcdouble)
v8sf __builtin_ia32_loadups256 (pcfloat)
v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
v4df __builtin_ia32_maxpd256 (v4df,v4df)
v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
v4df __builtin_ia32_minpd256 (v4df,v4df)
v8sf __builtin_ia32_minps256 (v8sf,v8sf)
v4df __builtin_ia32_movddup256 (v4df)
int __builtin_ia32_movmskpd256 (v4df)
int __builtin_ia32_movmskps256 (v8sf)
v8sf __builtin_ia32_movshdup256 (v8sf)
v8sf __builtin_ia32_movsldup256 (v8sf)
v4df __builtin_ia32_mulpd256 (v4df,v4df)
v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
v4df __builtin_ia32_orpd256 (v4df,v4df)
v8sf __builtin_ia32_orps256 (v8sf,v8sf)
v2df __builtin_ia32_pd_pd256 (v4df)
v4df __builtin_ia32_pd256_pd (v2df)
v4sf __builtin_ia32_ps_ps256 (v8sf)
v8sf __builtin_ia32_ps256_ps (v4sf)
int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
v8sf __builtin_ia32_rcpps256 (v8sf)
v4df __builtin_ia32_roundpd256 (v4df,int)
v8sf __builtin_ia32_roundps256 (v8sf,int)
v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
v8sf __builtin_ia32_rsqrtps256 (v8sf)
v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
v4si __builtin_ia32_si_si256 (v8si)
v8si __builtin_ia32_si256_si (v4si)
v4df __builtin_ia32_sqrtpd256 (v4df)
v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
v8sf __builtin_ia32_sqrtps256 (v8sf)
void __builtin_ia32_storedqu256 (pchar,v32qi)
void __builtin_ia32_storeupd256 (pdouble,v4df)
void __builtin_ia32_storeups256 (pfloat,v8sf)
v4df __builtin_ia32_subpd256 (v4df,v4df)
v8sf __builtin_ia32_subps256 (v8sf,v8sf)
v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
v4sf __builtin_ia32_vbroadcastss (pcfloat)
v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
v4si __builtin_ia32_vextractf128_si256 (v8si,int)
v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
v2df __builtin_ia32_vpermilpd (v2df,int)
v4df __builtin_ia32_vpermilpd256 (v4df,int)
v4sf __builtin_ia32_vpermilps (v4sf,int)
v8sf __builtin_ia32_vpermilps256 (v8sf,int)
v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
void __builtin_ia32_vzeroall (void)
void __builtin_ia32_vzeroupper (void)
v4df __builtin_ia32_xorpd256 (v4df,v4df)
v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-maes</span></samp> is
used. All of them generate the machine instruction that is part of the
name.
<pre class="smallexample"> v2di __builtin_ia32_aesenc128 (v2di, v2di)
v2di __builtin_ia32_aesenclast128 (v2di, v2di)
v2di __builtin_ia32_aesdec128 (v2di, v2di)
v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
v2di __builtin_ia32_aesimc128 (v2di)
</pre>
<p>The following built-in function is available when <samp><span class="option">-mpclmul</span></samp> is
used.
<dl>
<dt><code>v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)</code><dd>Generates the <code>pclmulqdq</code> machine instruction.
</dl>
<p>The following built-in functions are available when <samp><span class="option">-msse4a</span></samp> is used.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> void __builtin_ia32_movntsd (double *, v2df)
void __builtin_ia32_movntss (float *, v4sf)
v2di __builtin_ia32_extrq (v2di, v16qi)
v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
v2di __builtin_ia32_insertq (v2di, v2di)
v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-msse5</span></samp> is used.
All of them generate the machine instruction that is part of the name
with MMX registers.
<pre class="smallexample"> v2df __builtin_ia32_comeqpd (v2df, v2df)
v2df __builtin_ia32_comeqps (v2df, v2df)
v4sf __builtin_ia32_comeqsd (v4sf, v4sf)
v4sf __builtin_ia32_comeqss (v4sf, v4sf)
v2df __builtin_ia32_comfalsepd (v2df, v2df)
v2df __builtin_ia32_comfalseps (v2df, v2df)
v4sf __builtin_ia32_comfalsesd (v4sf, v4sf)
v4sf __builtin_ia32_comfalsess (v4sf, v4sf)
v2df __builtin_ia32_comgepd (v2df, v2df)
v2df __builtin_ia32_comgeps (v2df, v2df)
v4sf __builtin_ia32_comgesd (v4sf, v4sf)
v4sf __builtin_ia32_comgess (v4sf, v4sf)
v2df __builtin_ia32_comgtpd (v2df, v2df)
v2df __builtin_ia32_comgtps (v2df, v2df)
v4sf __builtin_ia32_comgtsd (v4sf, v4sf)
v4sf __builtin_ia32_comgtss (v4sf, v4sf)
v2df __builtin_ia32_comlepd (v2df, v2df)
v2df __builtin_ia32_comleps (v2df, v2df)
v4sf __builtin_ia32_comlesd (v4sf, v4sf)
v4sf __builtin_ia32_comless (v4sf, v4sf)
v2df __builtin_ia32_comltpd (v2df, v2df)
v2df __builtin_ia32_comltps (v2df, v2df)
v4sf __builtin_ia32_comltsd (v4sf, v4sf)
v4sf __builtin_ia32_comltss (v4sf, v4sf)
v2df __builtin_ia32_comnepd (v2df, v2df)
v2df __builtin_ia32_comneps (v2df, v2df)
v4sf __builtin_ia32_comnesd (v4sf, v4sf)
v4sf __builtin_ia32_comness (v4sf, v4sf)
v2df __builtin_ia32_comordpd (v2df, v2df)
v2df __builtin_ia32_comordps (v2df, v2df)
v4sf __builtin_ia32_comordsd (v4sf, v4sf)
v4sf __builtin_ia32_comordss (v4sf, v4sf)
v2df __builtin_ia32_comtruepd (v2df, v2df)
v2df __builtin_ia32_comtrueps (v2df, v2df)
v4sf __builtin_ia32_comtruesd (v4sf, v4sf)
v4sf __builtin_ia32_comtruess (v4sf, v4sf)
v2df __builtin_ia32_comueqpd (v2df, v2df)
v2df __builtin_ia32_comueqps (v2df, v2df)
v4sf __builtin_ia32_comueqsd (v4sf, v4sf)
v4sf __builtin_ia32_comueqss (v4sf, v4sf)
v2df __builtin_ia32_comugepd (v2df, v2df)
v2df __builtin_ia32_comugeps (v2df, v2df)
v4sf __builtin_ia32_comugesd (v4sf, v4sf)
v4sf __builtin_ia32_comugess (v4sf, v4sf)
v2df __builtin_ia32_comugtpd (v2df, v2df)
v2df __builtin_ia32_comugtps (v2df, v2df)
v4sf __builtin_ia32_comugtsd (v4sf, v4sf)
v4sf __builtin_ia32_comugtss (v4sf, v4sf)
v2df __builtin_ia32_comulepd (v2df, v2df)
v2df __builtin_ia32_comuleps (v2df, v2df)
v4sf __builtin_ia32_comulesd (v4sf, v4sf)
v4sf __builtin_ia32_comuless (v4sf, v4sf)
v2df __builtin_ia32_comultpd (v2df, v2df)
v2df __builtin_ia32_comultps (v2df, v2df)
v4sf __builtin_ia32_comultsd (v4sf, v4sf)
v4sf __builtin_ia32_comultss (v4sf, v4sf)
v2df __builtin_ia32_comunepd (v2df, v2df)
v2df __builtin_ia32_comuneps (v2df, v2df)
v4sf __builtin_ia32_comunesd (v4sf, v4sf)
v4sf __builtin_ia32_comuness (v4sf, v4sf)
v2df __builtin_ia32_comunordpd (v2df, v2df)
v2df __builtin_ia32_comunordps (v2df, v2df)
v4sf __builtin_ia32_comunordsd (v4sf, v4sf)
v4sf __builtin_ia32_comunordss (v4sf, v4sf)
v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
v2df __builtin_ia32_frczpd (v2df)
v4sf __builtin_ia32_frczps (v4sf)
v2df __builtin_ia32_frczsd (v2df, v2df)
v4sf __builtin_ia32_frczss (v4sf, v4sf)
v2di __builtin_ia32_pcmov (v2di, v2di, v2di)
v2di __builtin_ia32_pcmov_v2di (v2di, v2di, v2di)
v4si __builtin_ia32_pcmov_v4si (v4si, v4si, v4si)
v8hi __builtin_ia32_pcmov_v8hi (v8hi, v8hi, v8hi)
v16qi __builtin_ia32_pcmov_v16qi (v16qi, v16qi, v16qi)
v2df __builtin_ia32_pcmov_v2df (v2df, v2df, v2df)
v4sf __builtin_ia32_pcmov_v4sf (v4sf, v4sf, v4sf)
v16qi __builtin_ia32_pcomeqb (v16qi, v16qi)
v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
v4si __builtin_ia32_pcomeqd (v4si, v4si)
v2di __builtin_ia32_pcomeqq (v2di, v2di)
v16qi __builtin_ia32_pcomequb (v16qi, v16qi)
v4si __builtin_ia32_pcomequd (v4si, v4si)
v2di __builtin_ia32_pcomequq (v2di, v2di)
v8hi __builtin_ia32_pcomequw (v8hi, v8hi)
v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
v16qi __builtin_ia32_pcomfalseb (v16qi, v16qi)
v4si __builtin_ia32_pcomfalsed (v4si, v4si)
v2di __builtin_ia32_pcomfalseq (v2di, v2di)
v16qi __builtin_ia32_pcomfalseub (v16qi, v16qi)
v4si __builtin_ia32_pcomfalseud (v4si, v4si)
v2di __builtin_ia32_pcomfalseuq (v2di, v2di)
v8hi __builtin_ia32_pcomfalseuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomfalsew (v8hi, v8hi)
v16qi __builtin_ia32_pcomgeb (v16qi, v16qi)
v4si __builtin_ia32_pcomged (v4si, v4si)
v2di __builtin_ia32_pcomgeq (v2di, v2di)
v16qi __builtin_ia32_pcomgeub (v16qi, v16qi)
v4si __builtin_ia32_pcomgeud (v4si, v4si)
v2di __builtin_ia32_pcomgeuq (v2di, v2di)
v8hi __builtin_ia32_pcomgeuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomgew (v8hi, v8hi)
v16qi __builtin_ia32_pcomgtb (v16qi, v16qi)
v4si __builtin_ia32_pcomgtd (v4si, v4si)
v2di __builtin_ia32_pcomgtq (v2di, v2di)
v16qi __builtin_ia32_pcomgtub (v16qi, v16qi)
v4si __builtin_ia32_pcomgtud (v4si, v4si)
v2di __builtin_ia32_pcomgtuq (v2di, v2di)
v8hi __builtin_ia32_pcomgtuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomgtw (v8hi, v8hi)
v16qi __builtin_ia32_pcomleb (v16qi, v16qi)
v4si __builtin_ia32_pcomled (v4si, v4si)
v2di __builtin_ia32_pcomleq (v2di, v2di)
v16qi __builtin_ia32_pcomleub (v16qi, v16qi)
v4si __builtin_ia32_pcomleud (v4si, v4si)
v2di __builtin_ia32_pcomleuq (v2di, v2di)
v8hi __builtin_ia32_pcomleuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomlew (v8hi, v8hi)
v16qi __builtin_ia32_pcomltb (v16qi, v16qi)
v4si __builtin_ia32_pcomltd (v4si, v4si)
v2di __builtin_ia32_pcomltq (v2di, v2di)
v16qi __builtin_ia32_pcomltub (v16qi, v16qi)
v4si __builtin_ia32_pcomltud (v4si, v4si)
v2di __builtin_ia32_pcomltuq (v2di, v2di)
v8hi __builtin_ia32_pcomltuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomltw (v8hi, v8hi)
v16qi __builtin_ia32_pcomneb (v16qi, v16qi)
v4si __builtin_ia32_pcomned (v4si, v4si)
v2di __builtin_ia32_pcomneq (v2di, v2di)
v16qi __builtin_ia32_pcomneub (v16qi, v16qi)
v4si __builtin_ia32_pcomneud (v4si, v4si)
v2di __builtin_ia32_pcomneuq (v2di, v2di)
v8hi __builtin_ia32_pcomneuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomnew (v8hi, v8hi)
v16qi __builtin_ia32_pcomtrueb (v16qi, v16qi)
v4si __builtin_ia32_pcomtrued (v4si, v4si)
v2di __builtin_ia32_pcomtrueq (v2di, v2di)
v16qi __builtin_ia32_pcomtrueub (v16qi, v16qi)
v4si __builtin_ia32_pcomtrueud (v4si, v4si)
v2di __builtin_ia32_pcomtrueuq (v2di, v2di)
v8hi __builtin_ia32_pcomtrueuw (v8hi, v8hi)
v8hi __builtin_ia32_pcomtruew (v8hi, v8hi)
v4df __builtin_ia32_permpd (v2df, v2df, v16qi)
v4sf __builtin_ia32_permps (v4sf, v4sf, v16qi)
v4si __builtin_ia32_phaddbd (v16qi)
v2di __builtin_ia32_phaddbq (v16qi)
v8hi __builtin_ia32_phaddbw (v16qi)
v2di __builtin_ia32_phadddq (v4si)
v4si __builtin_ia32_phaddubd (v16qi)
v2di __builtin_ia32_phaddubq (v16qi)
v8hi __builtin_ia32_phaddubw (v16qi)
v2di __builtin_ia32_phaddudq (v4si)
v4si __builtin_ia32_phadduwd (v8hi)
v2di __builtin_ia32_phadduwq (v8hi)
v4si __builtin_ia32_phaddwd (v8hi)
v2di __builtin_ia32_phaddwq (v8hi)
v8hi __builtin_ia32_phsubbw (v16qi)
v2di __builtin_ia32_phsubdq (v4si)
v4si __builtin_ia32_phsubwd (v8hi)
v4si __builtin_ia32_pmacsdd (v4si, v4si, v4si)
v2di __builtin_ia32_pmacsdqh (v4si, v4si, v2di)
v2di __builtin_ia32_pmacsdql (v4si, v4si, v2di)
v4si __builtin_ia32_pmacssdd (v4si, v4si, v4si)
v2di __builtin_ia32_pmacssdqh (v4si, v4si, v2di)
v2di __builtin_ia32_pmacssdql (v4si, v4si, v2di)
v4si __builtin_ia32_pmacsswd (v8hi, v8hi, v4si)
v8hi __builtin_ia32_pmacssww (v8hi, v8hi, v8hi)
v4si __builtin_ia32_pmacswd (v8hi, v8hi, v4si)
v8hi __builtin_ia32_pmacsww (v8hi, v8hi, v8hi)
v4si __builtin_ia32_pmadcsswd (v8hi, v8hi, v4si)
v4si __builtin_ia32_pmadcswd (v8hi, v8hi, v4si)
v16qi __builtin_ia32_pperm (v16qi, v16qi, v16qi)
v16qi __builtin_ia32_protb (v16qi, v16qi)
v4si __builtin_ia32_protd (v4si, v4si)
v2di __builtin_ia32_protq (v2di, v2di)
v8hi __builtin_ia32_protw (v8hi, v8hi)
v16qi __builtin_ia32_pshab (v16qi, v16qi)
v4si __builtin_ia32_pshad (v4si, v4si)
v2di __builtin_ia32_pshaq (v2di, v2di)
v8hi __builtin_ia32_pshaw (v8hi, v8hi)
v16qi __builtin_ia32_pshlb (v16qi, v16qi)
v4si __builtin_ia32_pshld (v4si, v4si)
v2di __builtin_ia32_pshlq (v2di, v2di)
v8hi __builtin_ia32_pshlw (v8hi, v8hi)
</pre>
<p>The following builtin-in functions are available when <samp><span class="option">-msse5</span></samp>
is used. The second argument must be an integer constant and generate
the machine instruction that is part of the name with the ‘<samp><span class="samp">_imm</span></samp>’
suffix removed.
<pre class="smallexample"> v16qi __builtin_ia32_protb_imm (v16qi, int)
v4si __builtin_ia32_protd_imm (v4si, int)
v2di __builtin_ia32_protq_imm (v2di, int)
v8hi __builtin_ia32_protw_imm (v8hi, int)
</pre>
<p>The following built-in functions are available when <samp><span class="option">-m3dnow</span></samp> is used.
All of them generate the machine instruction that is part of the name.
<pre class="smallexample"> void __builtin_ia32_femms (void)
v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
v2si __builtin_ia32_pf2id (v2sf)
v2sf __builtin_ia32_pfacc (v2sf, v2sf)
v2sf __builtin_ia32_pfadd (v2sf, v2sf)
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
v2sf __builtin_ia32_pfmax (v2sf, v2sf)
v2sf __builtin_ia32_pfmin (v2sf, v2sf)
v2sf __builtin_ia32_pfmul (v2sf, v2sf)
v2sf __builtin_ia32_pfrcp (v2sf)
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
v2sf __builtin_ia32_pfrsqrt (v2sf)
v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
v2sf __builtin_ia32_pfsub (v2sf, v2sf)
v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
v2sf __builtin_ia32_pi2fd (v2si)
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
</pre>
<p>The following built-in functions are available when both <samp><span class="option">-m3dnow</span></samp>
and <samp><span class="option">-march=athlon</span></samp> are used. All of them generate the machine
instruction that is part of the name.
<pre class="smallexample"> v2si __builtin_ia32_pf2iw (v2sf)
v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
v2sf __builtin_ia32_pi2fw (v2si)
v2sf __builtin_ia32_pswapdsf (v2sf)
v2si __builtin_ia32_pswapdsi (v2si)
</pre>
<div class="node">
<a name="MIPS-DSP-Built-in-Functions"></a>
<a name="MIPS-DSP-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>,
Previous: <a rel="previous" accesskey="p" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.7 MIPS DSP Built-in Functions</h4>
<p>The MIPS DSP Application-Specific Extension (ASE) includes new
instructions that are designed to improve the performance of DSP and
media applications. It provides instructions that operate on packed
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
<p>GCC supports MIPS DSP operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the <samp><span class="option">-mdsp</span></samp> command-line option.
<p>Revision 2 of the ASE was introduced in the second half of 2006.
This revision adds extra instructions to the original ASE, but is
otherwise backwards-compatible with it. You can select revision 2
using the command-line option <samp><span class="option">-mdspr2</span></samp>; this option implies
<samp><span class="option">-mdsp</span></samp>.
<p>The SCOUNT and POS bits of the DSP control register are global. The
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
POS bits. During optimization, the compiler will not delete these
instructions and it will not delete calls to functions containing
these instructions.
<p>At present, GCC only provides support for operations on 32-bit
vectors. The vector type associated with 8-bit integer data is
usually called <code>v4i8</code>, the vector type associated with Q7
is usually called <code>v4q7</code>, the vector type associated with 16-bit
integer data is usually called <code>v2i16</code>, and the vector type
associated with Q15 is usually called <code>v2q15</code>. They can be
defined in C as follows:
<pre class="smallexample"> typedef signed char v4i8 __attribute__ ((vector_size(4)));
typedef signed char v4q7 __attribute__ ((vector_size(4)));
typedef short v2i16 __attribute__ ((vector_size(4)));
typedef short v2q15 __attribute__ ((vector_size(4)));
</pre>
<p><code>v4i8</code>, <code>v4q7</code>, <code>v2i16</code> and <code>v2q15</code> values are
initialized in the same way as aggregates. For example:
<pre class="smallexample"> v4i8 a = {1, 2, 3, 4};
v4i8 b;
b = (v4i8) {5, 6, 7, 8};
v2q15 c = {0x0fcb, 0x3a75};
v2q15 d;
d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};
</pre>
<p><em>Note:</em> The CPU's endianness determines the order in which values
are packed. On little-endian targets, the first value is the least
significant and the last value is the most significant. The opposite
order applies to big-endian targets. For example, the code above will
set the lowest byte of <code>a</code> to <code>1</code> on little-endian targets
and <code>4</code> on big-endian targets.
<p><em>Note:</em> Q7, Q15 and Q31 values must be initialized with their integer
representation. As shown in this example, the integer representation
of a Q7 value can be obtained by multiplying the fractional value by
<code>0x1.0p7</code>. The equivalent for Q15 values is to multiply by
<code>0x1.0p15</code>. The equivalent for Q31 values is to multiply by
<code>0x1.0p31</code>.
<p>The table below lists the <code>v4i8</code> and <code>v2q15</code> operations for which
hardware support exists. <code>a</code> and <code>b</code> are <code>v4i8</code> values,
and <code>c</code> and <code>d</code> are <code>v2q15</code> values.
<p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a + b</code> </td><td valign="top" width="50%"><code>addu.qb</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>c + d</code> </td><td valign="top" width="50%"><code>addq.ph</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a - b</code> </td><td valign="top" width="50%"><code>subu.qb</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>c - d</code> </td><td valign="top" width="50%"><code>subq.ph</code>
<br></td></tr></table>
<p>The table below lists the <code>v2i16</code> operation for which
hardware support exists for the DSP ASE REV 2. <code>e</code> and <code>f</code> are
<code>v2i16</code> values.
<p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>e * f</code> </td><td valign="top" width="50%"><code>mul.ph</code>
<br></td></tr></table>
<p>It is easier to describe the DSP built-in functions if we first define
the following types:
<pre class="smallexample"> typedef int q31;
typedef int i32;
typedef unsigned int ui32;
typedef long long a64;
</pre>
<p><code>q31</code> and <code>i32</code> are actually the same as <code>int</code>, but we
use <code>q31</code> to indicate a Q31 fractional value and <code>i32</code> to
indicate a 32-bit integer value. Similarly, <code>a64</code> is the same as
<code>long long</code>, but we use <code>a64</code> to indicate values that will
be placed in one of the four DSP accumulators (<code>$ac0</code>,
<code>$ac1</code>, <code>$ac2</code> or <code>$ac3</code>).
<p>Also, some built-in functions prefer or require immediate numbers as
parameters, because the corresponding DSP instructions accept both immediate
numbers and register operands, or accept immediate numbers only. The
immediate parameters are listed as follows.
<pre class="smallexample"> imm0_3: 0 to 3.
imm0_7: 0 to 7.
imm0_15: 0 to 15.
imm0_31: 0 to 31.
imm0_63: 0 to 63.
imm0_255: 0 to 255.
imm_n32_31: -32 to 31.
imm_n512_511: -512 to 511.
</pre>
<p>The following built-in functions map directly to a particular MIPS DSP
instruction. Please refer to the architecture specification
for details on what each instruction does.
<pre class="smallexample"> v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
q31 __builtin_mips_addq_s_w (q31, q31)
v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
q31 __builtin_mips_subq_s_w (q31, q31)
v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
i32 __builtin_mips_addsc (i32, i32)
i32 __builtin_mips_addwc (i32, i32)
i32 __builtin_mips_modsub (i32, i32)
i32 __builtin_mips_raddu_w_qb (v4i8)
v2q15 __builtin_mips_absq_s_ph (v2q15)
q31 __builtin_mips_absq_s_w (q31)
v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
v2q15 __builtin_mips_precrq_ph_w (q31, q31)
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
q31 __builtin_mips_preceq_w_phl (v2q15)
q31 __builtin_mips_preceq_w_phr (v2q15)
v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
v4i8 __builtin_mips_shll_qb (v4i8, i32)
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shll_ph (v2q15, i32)
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
q31 __builtin_mips_shll_s_w (q31, imm0_31)
q31 __builtin_mips_shll_s_w (q31, i32)
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
v4i8 __builtin_mips_shrl_qb (v4i8, i32)
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shra_ph (v2q15, i32)
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
q31 __builtin_mips_shra_r_w (q31, imm0_31)
q31 __builtin_mips_shra_r_w (q31, i32)
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
i32 __builtin_mips_bitrev (i32)
i32 __builtin_mips_insv (i32, i32)
v4i8 __builtin_mips_repl_qb (imm0_255)
v4i8 __builtin_mips_repl_qb (i32)
v2q15 __builtin_mips_repl_ph (imm_n512_511)
v2q15 __builtin_mips_repl_ph (i32)
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
void __builtin_mips_cmp_le_ph (v2q15, v2q15)
v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
i32 __builtin_mips_extr_w (a64, imm0_31)
i32 __builtin_mips_extr_w (a64, i32)
i32 __builtin_mips_extr_r_w (a64, imm0_31)
i32 __builtin_mips_extr_s_h (a64, i32)
i32 __builtin_mips_extr_rs_w (a64, imm0_31)
i32 __builtin_mips_extr_rs_w (a64, i32)
i32 __builtin_mips_extr_s_h (a64, imm0_31)
i32 __builtin_mips_extr_r_w (a64, i32)
i32 __builtin_mips_extp (a64, imm0_31)
i32 __builtin_mips_extp (a64, i32)
i32 __builtin_mips_extpdp (a64, imm0_31)
i32 __builtin_mips_extpdp (a64, i32)
a64 __builtin_mips_shilo (a64, imm_n32_31)
a64 __builtin_mips_shilo (a64, i32)
a64 __builtin_mips_mthlip (a64, i32)
void __builtin_mips_wrdsp (i32, imm0_63)
i32 __builtin_mips_rddsp (imm0_63)
i32 __builtin_mips_lbux (void *, i32)
i32 __builtin_mips_lhx (void *, i32)
i32 __builtin_mips_lwx (void *, i32)
i32 __builtin_mips_bposge32 (void)
</pre>
<p>The following built-in functions map directly to a particular MIPS DSP REV 2
instruction. Please refer to the architecture specification
for details on what each instruction does.
<pre class="smallexample"> v4q7 __builtin_mips_absq_s_qb (v4q7);
v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
i32 __builtin_mips_append (i32, i32, imm0_31);
i32 __builtin_mips_balign (i32, i32, imm0_3);
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);
v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
q31 __builtin_mips_mulq_rs_w (q31, q31);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
q31 __builtin_mips_mulq_s_w (q31, q31);
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
i32 __builtin_mips_prepend (i32, i32, imm0_31);
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
v4i8 __builtin_mips_shra_qb (v4i8, i32);
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
v2i16 __builtin_mips_shrl_ph (v2i16, i32);
v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_addqh_w (q31, q31);
q31 __builtin_mips_addqh_r_w (q31, q31);
v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_subqh_w (q31, q31);
q31 __builtin_mips_subqh_r_w (q31, q31);
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
</pre>
<div class="node">
<a name="MIPS-Paired-Single-Support"></a>
<a name="MIPS-Paired_002dSingle-Support"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.8 MIPS Paired-Single Support</h4>
<p>The MIPS64 architecture includes a number of instructions that
operate on pairs of single-precision floating-point values.
Each pair is packed into a 64-bit floating-point register,
with one element being designated the “upper half” and
the other being designated the “lower half”.
<p>GCC supports paired-single operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions. Both kinds of support are
enabled by the <samp><span class="option">-mpaired-single</span></samp> command-line option.
<p>The vector type associated with paired-single values is usually
called <code>v2sf</code>. It can be defined in C as follows:
<pre class="smallexample"> typedef float v2sf __attribute__ ((vector_size (8)));
</pre>
<p><code>v2sf</code> values are initialized in the same way as aggregates.
For example:
<pre class="smallexample"> v2sf a = {1.5, 9.1};
v2sf b;
float e, f;
b = (v2sf) {e, f};
</pre>
<p><em>Note:</em> The CPU's endianness determines which value is stored in
the upper half of a register and which value is stored in the lower half.
On little-endian targets, the first value is the lower one and the second
value is the upper one. The opposite order applies to big-endian targets.
For example, the code above will set the lower half of <code>a</code> to
<code>1.5</code> on little-endian targets and <code>9.1</code> on big-endian targets.
<div class="node">
<a name="MIPS-Loongson-Built-in-Functions"></a>
<a name="MIPS-Loongson-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.9 MIPS Loongson Built-in Functions</h4>
<p>GCC provides intrinsics to access the SIMD instructions provided by the
ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
available after inclusion of the <code>loongson.h</code> header file,
operate on the following 64-bit vector types:
<ul>
<li><code>uint8x8_t</code>, a vector of eight unsigned 8-bit integers;
<li><code>uint16x4_t</code>, a vector of four unsigned 16-bit integers;
<li><code>uint32x2_t</code>, a vector of two unsigned 32-bit integers;
<li><code>int8x8_t</code>, a vector of eight signed 8-bit integers;
<li><code>int16x4_t</code>, a vector of four signed 16-bit integers;
<li><code>int32x2_t</code>, a vector of two signed 32-bit integers.
</ul>
<p>The intrinsics provided are listed below; each is named after the
machine instruction to which it corresponds, with suffixes added as
appropriate to distinguish intrinsics that expand to the same machine
instruction yet have different argument types. Refer to the architecture
documentation for a description of the functionality of each
instruction.
<pre class="smallexample"> int16x4_t packsswh (int32x2_t s, int32x2_t t);
int8x8_t packsshb (int16x4_t s, int16x4_t t);
uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
int32x2_t paddw_s (int32x2_t s, int32x2_t t);
int16x4_t paddh_s (int16x4_t s, int16x4_t t);
int8x8_t paddb_s (int8x8_t s, int8x8_t t);
uint64_t paddd_u (uint64_t s, uint64_t t);
int64_t paddd_s (int64_t s, int64_t t);
int16x4_t paddsh (int16x4_t s, int16x4_t t);
int8x8_t paddsb (int8x8_t s, int8x8_t t);
uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
uint64_t pandn_ud (uint64_t s, uint64_t t);
uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
int64_t pandn_sd (int64_t s, int64_t t);
int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
uint16x4_t pextrh_u (uint16x4_t s, int field);
int16x4_t pextrh_s (int16x4_t s, int field);
uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
int16x4_t pminsh (int16x4_t s, int16x4_t t);
uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
uint8x8_t pmovmskb_u (uint8x8_t s);
int8x8_t pmovmskb_s (int8x8_t s);
uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
int16x4_t pmulhh (int16x4_t s, int16x4_t t);
int16x4_t pmullh (int16x4_t s, int16x4_t t);
int64_t pmuluw (uint32x2_t s, uint32x2_t t);
uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
uint16x4_t biadd (uint8x8_t s);
uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
int16x4_t psllh_s (int16x4_t s, uint8_t amount);
uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
int32x2_t psllw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
int16x4_t psrah_s (int16x4_t s, uint8_t amount);
uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
int32x2_t psraw_s (int32x2_t s, uint8_t amount);
uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
int32x2_t psubw_s (int32x2_t s, int32x2_t t);
int16x4_t psubh_s (int16x4_t s, int16x4_t t);
int8x8_t psubb_s (int8x8_t s, int8x8_t t);
uint64_t psubd_u (uint64_t s, uint64_t t);
int64_t psubd_s (int64_t s, int64_t t);
int16x4_t psubsh (int16x4_t s, int16x4_t t);
int8x8_t psubsb (int8x8_t s, int8x8_t t);
uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
</pre>
<ul class="menu">
<li><a accesskey="1" href="#Paired_002dSingle-Arithmetic">Paired-Single Arithmetic</a>
<li><a accesskey="2" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>
<li><a accesskey="3" href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>
</ul>
<div class="node">
<a name="Paired-Single-Arithmetic"></a>
<a name="Paired_002dSingle-Arithmetic"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.9.1 Paired-Single Arithmetic</h5>
<p>The table below lists the <code>v2sf</code> operations for which hardware
support exists. <code>a</code>, <code>b</code> and <code>c</code> are <code>v2sf</code>
values and <code>x</code> is an integral value.
<p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a + b</code> </td><td valign="top" width="50%"><code>add.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a - b</code> </td><td valign="top" width="50%"><code>sub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-a</code> </td><td valign="top" width="50%"><code>neg.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b</code> </td><td valign="top" width="50%"><code>mul.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b + c</code> </td><td valign="top" width="50%"><code>madd.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b - c</code> </td><td valign="top" width="50%"><code>msub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-(a * b + c)</code> </td><td valign="top" width="50%"><code>nmadd.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-(a * b - c)</code> </td><td valign="top" width="50%"><code>nmsub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>x ? a : b</code> </td><td valign="top" width="50%"><code>movn.ps</code>/<code>movz.ps</code>
<br></td></tr></table>
<p>Note that the multiply-accumulate instructions can be disabled
using the command-line option <code>-mno-fused-madd</code>.
<div class="node">
<a name="Paired-Single-Built-in-Functions"></a>
<a name="Paired_002dSingle-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Paired_002dSingle-Arithmetic">Paired-Single Arithmetic</a>,
Up: <a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.9.2 Paired-Single Built-in Functions</h5>
<p>The following paired-single functions map directly to a particular
MIPS instruction. Please refer to the architecture specification
for details on what each instruction does.
<dl>
<dt><code>v2sf __builtin_mips_pll_ps (v2sf, v2sf)</code><dd>Pair lower lower (<code>pll.ps</code>).
<br><dt><code>v2sf __builtin_mips_pul_ps (v2sf, v2sf)</code><dd>Pair upper lower (<code>pul.ps</code>).
<br><dt><code>v2sf __builtin_mips_plu_ps (v2sf, v2sf)</code><dd>Pair lower upper (<code>plu.ps</code>).
<br><dt><code>v2sf __builtin_mips_puu_ps (v2sf, v2sf)</code><dd>Pair upper upper (<code>puu.ps</code>).
<br><dt><code>v2sf __builtin_mips_cvt_ps_s (float, float)</code><dd>Convert pair to paired single (<code>cvt.ps.s</code>).
<br><dt><code>float __builtin_mips_cvt_s_pl (v2sf)</code><dd>Convert pair lower to single (<code>cvt.s.pl</code>).
<br><dt><code>float __builtin_mips_cvt_s_pu (v2sf)</code><dd>Convert pair upper to single (<code>cvt.s.pu</code>).
<br><dt><code>v2sf __builtin_mips_abs_ps (v2sf)</code><dd>Absolute value (<code>abs.ps</code>).
<br><dt><code>v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)</code><dd>Align variable (<code>alnv.ps</code>).
<p><em>Note:</em> The value of the third parameter must be 0 or 4
modulo 8, otherwise the result will be unpredictable. Please read the
instruction description for details.
</dl>
<p>The following multi-instruction functions are also available.
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>, <code>ngl</code>,
<code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.
<dl>
<dt><code>v2sf __builtin_mips_movt_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>v2sf __builtin_mips_movf_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Conditional move based on floating point comparison (<code>c.</code><var>cond</var><code>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).
<p>The <code>movt</code> functions return the value <var>x</var> computed by:
<pre class="smallexample"> c.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
mov.ps <var>x</var>,<var>c</var>
movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre>
<p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.
<br><dt><code>int __builtin_mips_upper_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_lower_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Comparison of two paired-single values (<code>c.</code><var>cond</var><code>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).
<p>These functions compare <var>a</var> and <var>b</var> using <code>c.</code><var>cond</var><code>.ps</code>
and return either the upper or lower half of the result. For example:
<pre class="smallexample"> v2sf a, b;
if (__builtin_mips_upper_c_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_c_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
</pre>
</dl>
<div class="node">
<a name="MIPS-3D-Built-in-Functions"></a>
<a name="MIPS_002d3D-Built_002din-Functions"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>
</div>
<h5 class="subsubsection">5.51.9.3 MIPS-3D Built-in Functions</h5>
<p>The MIPS-3D Application-Specific Extension (ASE) includes additional
paired-single instructions that are designed to improve the performance
of 3D graphics operations. Support for these instructions is controlled
by the <samp><span class="option">-mips3d</span></samp> command-line option.
<p>The functions listed below map directly to a particular MIPS-3D
instruction. Please refer to the architecture specification for
more details on what each instruction does.
<dl>
<dt><code>v2sf __builtin_mips_addr_ps (v2sf, v2sf)</code><dd>Reduction add (<code>addr.ps</code>).
<br><dt><code>v2sf __builtin_mips_mulr_ps (v2sf, v2sf)</code><dd>Reduction multiply (<code>mulr.ps</code>).
<br><dt><code>v2sf __builtin_mips_cvt_pw_ps (v2sf)</code><dd>Convert paired single to paired word (<code>cvt.pw.ps</code>).
<br><dt><code>v2sf __builtin_mips_cvt_ps_pw (v2sf)</code><dd>Convert paired word to paired single (<code>cvt.ps.pw</code>).
<br><dt><code>float __builtin_mips_recip1_s (float)</code><dt><code>double __builtin_mips_recip1_d (double)</code><dt><code>v2sf __builtin_mips_recip1_ps (v2sf)</code><dd>Reduced precision reciprocal (sequence step 1) (<code>recip1.</code><var>fmt</var>).
<br><dt><code>float __builtin_mips_recip2_s (float, float)</code><dt><code>double __builtin_mips_recip2_d (double, double)</code><dt><code>v2sf __builtin_mips_recip2_ps (v2sf, v2sf)</code><dd>Reduced precision reciprocal (sequence step 2) (<code>recip2.</code><var>fmt</var>).
<br><dt><code>float __builtin_mips_rsqrt1_s (float)</code><dt><code>double __builtin_mips_rsqrt1_d (double)</code><dt><code>v2sf __builtin_mips_rsqrt1_ps (v2sf)</code><dd>Reduced precision reciprocal square root (sequence step 1)
(<code>rsqrt1.</code><var>fmt</var>).
<br><dt><code>float __builtin_mips_rsqrt2_s (float, float)</code><dt><code>double __builtin_mips_rsqrt2_d (double, double)</code><dt><code>v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)</code><dd>Reduced precision reciprocal square root (sequence step 2)
(<code>rsqrt2.</code><var>fmt</var>).
</dl>
<p>The following multi-instruction functions are also available.
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>,
<code>ngl</code>, <code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.
<dl>
<dt><code>int __builtin_mips_cabs_</code><var>cond</var><code>_s (float </code><var>a</var><code>, float </code><var>b</var><code>)</code><dt><code>int __builtin_mips_cabs_</code><var>cond</var><code>_d (double </code><var>a</var><code>, double </code><var>b</var><code>)</code><dd>Absolute comparison of two scalar values (<code>cabs.</code><var>cond</var><code>.</code><var>fmt</var>,
<code>bc1t</code>/<code>bc1f</code>).
<p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.</code><var>cond</var><code>.s</code>
or <code>cabs.</code><var>cond</var><code>.d</code> and return the result as a boolean value.
For example:
<pre class="smallexample"> float a, b;
if (__builtin_mips_cabs_eq_s (a, b))
true ();
else
false ();
</pre>
<br><dt><code>int __builtin_mips_upper_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_lower_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Absolute comparison of two paired-single values (<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).
<p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.</code><var>cond</var><code>.ps</code>
and return either the upper or lower half of the result. For example:
<pre class="smallexample"> v2sf a, b;
if (__builtin_mips_upper_cabs_eq_ps (a, b))
upper_halves_are_equal ();
else
upper_halves_are_unequal ();
if (__builtin_mips_lower_cabs_eq_ps (a, b))
lower_halves_are_equal ();
else
lower_halves_are_unequal ();
</pre>
<br><dt><code>v2sf __builtin_mips_movt_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>v2sf __builtin_mips_movf_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Conditional move based on absolute comparison (<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).
<p>The <code>movt</code> functions return the value <var>x</var> computed by:
<pre class="smallexample"> cabs.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
mov.ps <var>x</var>,<var>c</var>
movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre>
<p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.
<br><dt><code>int __builtin_mips_any_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_all_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_any_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_all_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Comparison of two paired-single values
(<code>c.</code><var>cond</var><code>.ps</code>/<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1any2t</code>/<code>bc1any2f</code>).
<p>These functions compare <var>a</var> and <var>b</var> using <code>c.</code><var>cond</var><code>.ps</code>
or <code>cabs.</code><var>cond</var><code>.ps</code>. The <code>any</code> forms return true if either
result is true and the <code>all</code> forms return true if both results are true.
For example:
<pre class="smallexample"> v2sf a, b;
if (__builtin_mips_any_c_eq_ps (a, b))
one_is_true ();
else
both_are_false ();
if (__builtin_mips_all_c_eq_ps (a, b))
both_are_true ();
else
one_is_false ();
</pre>
<br><dt><code>int __builtin_mips_any_c_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_all_c_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_any_cabs_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_all_cabs_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Comparison of four paired-single values
(<code>c.</code><var>cond</var><code>.ps</code>/<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1any4t</code>/<code>bc1any4f</code>).
<p>These functions use <code>c.</code><var>cond</var><code>.ps</code> or <code>cabs.</code><var>cond</var><code>.ps</code>
to compare <var>a</var> with <var>b</var> and to compare <var>c</var> with <var>d</var>.
The <code>any</code> forms return true if any of the four results are true
and the <code>all</code> forms return true if all four results are true.
For example:
<pre class="smallexample"> v2sf a, b, c, d;
if (__builtin_mips_any_c_eq_4s (a, b, c, d))
some_are_true ();
else
all_are_false ();
if (__builtin_mips_all_c_eq_4s (a, b, c, d))
all_are_true ();
else
some_are_false ();
</pre>
</dl>
<div class="node">
<a name="picoChip-Built-in-Functions"></a>
<a name="picoChip-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#PowerPC-AltiVec-Built_002din-Functions">PowerPC AltiVec Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.10 picoChip Built-in Functions</h4>
<p>GCC provides an interface to selected machine instructions from the
picoChip instruction set.
<dl>
<dt><code>int __builtin_sbc (int </code><var>value</var><code>)</code><dd>Sign bit count. Return the number of consecutive bits in <var>value</var>
which have the same value as the sign-bit. The result is the number of
leading sign bits minus one, giving the number of redundant sign bits in
<var>value</var>.
<br><dt><code>int __builtin_byteswap (int </code><var>value</var><code>)</code><dd>Byte swap. Return the result of swapping the upper and lower bytes of
<var>value</var>.
<br><dt><code>int __builtin_brev (int </code><var>value</var><code>)</code><dd>Bit reversal. Return the result of reversing the bits in
<var>value</var>. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
and so on.
<br><dt><code>int __builtin_adds (int </code><var>x</var><code>, int </code><var>y</var><code>)</code><dd>Saturating addition. Return the result of adding <var>x</var> and <var>y</var>,
storing the value 32767 if the result overflows.
<br><dt><code>int __builtin_subs (int </code><var>x</var><code>, int </code><var>y</var><code>)</code><dd>Saturating subtraction. Return the result of subtracting <var>y</var> from
<var>x</var>, storing the value -32768 if the result overflows.
<br><dt><code>void __builtin_halt (void)</code><dd>Halt. The processor will stop execution. This built-in is useful for
implementing assertions.
</dl>
<div class="node">
<a name="Other-MIPS-Built-in-Functions"></a>
<a name="Other-MIPS-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.11 Other MIPS Built-in Functions</h4>
<p>GCC provides other MIPS-specific built-in functions:
<dl>
<dt><code>void __builtin_mips_cache (int </code><var>op</var><code>, const volatile void *</code><var>addr</var><code>)</code><dd>Insert a ‘<samp><span class="samp">cache</span></samp>’ instruction with operands <var>op</var> and <var>addr</var>.
GCC defines the preprocessor macro <code>___GCC_HAVE_BUILTIN_MIPS_CACHE</code>
when this function is available.
</dl>
<div class="node">
<a name="PowerPC-AltiVec-Built-in-Functions"></a>
<a name="PowerPC-AltiVec-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.12 PowerPC AltiVec Built-in Functions</h4>
<p>GCC provides an interface for the PowerPC family of processors to access
the AltiVec operations described in Motorola's AltiVec Programming
Interface Manual. The interface is made available by including
<code><altivec.h></code> and using <samp><span class="option">-maltivec</span></samp> and
<samp><span class="option">-mabi=altivec</span></samp>. The interface supports the following vector
types.
<pre class="smallexample"> vector unsigned char
vector signed char
vector bool char
vector unsigned short
vector signed short
vector bool short
vector pixel
vector unsigned int
vector signed int
vector bool int
vector float
</pre>
<p>GCC's implementation of the high-level language interface available from
C and C++ code differs from Motorola's documentation in several ways.
<ul>
<li>A vector constant is a list of constant expressions within curly braces.
<li>A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.
<li>If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type. The default
varies depending on the operating system, so a portable program should
always specify the signedness.
<li>Compiling with <samp><span class="option">-maltivec</span></samp> adds keywords <code>__vector</code>,
<code>vector</code>, <code>__pixel</code>, <code>pixel</code>, <code>__bool</code> and
<code>bool</code>. When compiling ISO C, the context-sensitive substitution
of the keywords <code>vector</code>, <code>pixel</code> and <code>bool</code> is
disabled. To use them, you must include <code><altivec.h></code> instead.
<li>GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.
<li>For C, overloaded functions are implemented with macros so the following
does not work:
<pre class="smallexample"> vec_add ((vector signed int){1, 2, 3, 4}, foo);
</pre>
<p>Since <code>vec_add</code> is a macro, the vector constant in the example
is treated as four separate arguments. Wrap the entire argument in
parentheses for this to work.
</ul>
<p><em>Note:</em> Only the <code><altivec.h></code> interface is supported.
Internally, GCC uses built-in functions to achieve the functionality in
the aforementioned header file, but they are not supported and are
subject to change without notice.
<p>The following interfaces are supported for the generic and specific
AltiVec operations and the AltiVec predicates. In cases where there
is a direct mapping between generic and specific operations, only the
generic names are shown here, although the specific operations can also
be used.
<p>Arguments that are documented as <code>const int</code> require literal
integral values within the range required for that operation.
<pre class="smallexample"> vector signed char vec_abs (vector signed char);
vector signed short vec_abs (vector signed short);
vector signed int vec_abs (vector signed int);
vector float vec_abs (vector float);
vector signed char vec_abss (vector signed char);
vector signed short vec_abss (vector signed short);
vector signed int vec_abss (vector signed int);
vector signed char vec_add (vector bool char, vector signed char);
vector signed char vec_add (vector signed char, vector bool char);
vector signed char vec_add (vector signed char, vector signed char);
vector unsigned char vec_add (vector bool char, vector unsigned char);
vector unsigned char vec_add (vector unsigned char, vector bool char);
vector unsigned char vec_add (vector unsigned char,
vector unsigned char);
vector signed short vec_add (vector bool short, vector signed short);
vector signed short vec_add (vector signed short, vector bool short);
vector signed short vec_add (vector signed short, vector signed short);
vector unsigned short vec_add (vector bool short,
vector unsigned short);
vector unsigned short vec_add (vector unsigned short,
vector bool short);
vector unsigned short vec_add (vector unsigned short,
vector unsigned short);
vector signed int vec_add (vector bool int, vector signed int);
vector signed int vec_add (vector signed int, vector bool int);
vector signed int vec_add (vector signed int, vector signed int);
vector unsigned int vec_add (vector bool int, vector unsigned int);
vector unsigned int vec_add (vector unsigned int, vector bool int);
vector unsigned int vec_add (vector unsigned int, vector unsigned int);
vector float vec_add (vector float, vector float);
vector float vec_vaddfp (vector float, vector float);
vector signed int vec_vadduwm (vector bool int, vector signed int);
vector signed int vec_vadduwm (vector signed int, vector bool int);
vector signed int vec_vadduwm (vector signed int, vector signed int);
vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
vector unsigned int vec_vadduwm (vector unsigned int,
vector unsigned int);
vector signed short vec_vadduhm (vector bool short,
vector signed short);
vector signed short vec_vadduhm (vector signed short,
vector bool short);
vector signed short vec_vadduhm (vector signed short,
vector signed short);
vector unsigned short vec_vadduhm (vector bool short,
vector unsigned short);
vector unsigned short vec_vadduhm (vector unsigned short,
vector bool short);
vector unsigned short vec_vadduhm (vector unsigned short,
vector unsigned short);
vector signed char vec_vaddubm (vector bool char, vector signed char);
vector signed char vec_vaddubm (vector signed char, vector bool char);
vector signed char vec_vaddubm (vector signed char, vector signed char);
vector unsigned char vec_vaddubm (vector bool char,
vector unsigned char);
vector unsigned char vec_vaddubm (vector unsigned char,
vector bool char);
vector unsigned char vec_vaddubm (vector unsigned char,
vector unsigned char);
vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
vector unsigned char vec_adds (vector bool char, vector unsigned char);
vector unsigned char vec_adds (vector unsigned char, vector bool char);
vector unsigned char vec_adds (vector unsigned char,
vector unsigned char);
vector signed char vec_adds (vector bool char, vector signed char);
vector signed char vec_adds (vector signed char, vector bool char);
vector signed char vec_adds (vector signed char, vector signed char);
vector unsigned short vec_adds (vector bool short,
vector unsigned short);
vector unsigned short vec_adds (vector unsigned short,
vector bool short);
vector unsigned short vec_adds (vector unsigned short,
vector unsigned short);
vector signed short vec_adds (vector bool short, vector signed short);
vector signed short vec_adds (vector signed short, vector bool short);
vector signed short vec_adds (vector signed short, vector signed short);
vector unsigned int vec_adds (vector bool int, vector unsigned int);
vector unsigned int vec_adds (vector unsigned int, vector bool int);
vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
vector signed int vec_adds (vector bool int, vector signed int);
vector signed int vec_adds (vector signed int, vector bool int);
vector signed int vec_adds (vector signed int, vector signed int);
vector signed int vec_vaddsws (vector bool int, vector signed int);
vector signed int vec_vaddsws (vector signed int, vector bool int);
vector signed int vec_vaddsws (vector signed int, vector signed int);
vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
vector unsigned int vec_vadduws (vector unsigned int,
vector unsigned int);
vector signed short vec_vaddshs (vector bool short,
vector signed short);
vector signed short vec_vaddshs (vector signed short,
vector bool short);
vector signed short vec_vaddshs (vector signed short,
vector signed short);
vector unsigned short vec_vadduhs (vector bool short,
vector unsigned short);
vector unsigned short vec_vadduhs (vector unsigned short,
vector bool short);
vector unsigned short vec_vadduhs (vector unsigned short,
vector unsigned short);
vector signed char vec_vaddsbs (vector bool char, vector signed char);
vector signed char vec_vaddsbs (vector signed char, vector bool char);
vector signed char vec_vaddsbs (vector signed char, vector signed char);
vector unsigned char vec_vaddubs (vector bool char,
vector unsigned char);
vector unsigned char vec_vaddubs (vector unsigned char,
vector bool char);
vector unsigned char vec_vaddubs (vector unsigned char,
vector unsigned char);
vector float vec_and (vector float, vector float);
vector float vec_and (vector float, vector bool int);
vector float vec_and (vector bool int, vector float);
vector bool int vec_and (vector bool int, vector bool int);
vector signed int vec_and (vector bool int, vector signed int);
vector signed int vec_and (vector signed int, vector bool int);
vector signed int vec_and (vector signed int, vector signed int);
vector unsigned int vec_and (vector bool int, vector unsigned int);
vector unsigned int vec_and (vector unsigned int, vector bool int);
vector unsigned int vec_and (vector unsigned int, vector unsigned int);
vector bool short vec_and (vector bool short, vector bool short);
vector signed short vec_and (vector bool short, vector signed short);
vector signed short vec_and (vector signed short, vector bool short);
vector signed short vec_and (vector signed short, vector signed short);
vector unsigned short vec_and (vector bool short,
vector unsigned short);
vector unsigned short vec_and (vector unsigned short,
vector bool short);
vector unsigned short vec_and (vector unsigned short,
vector unsigned short);
vector signed char vec_and (vector bool char, vector signed char);
vector bool char vec_and (vector bool char, vector bool char);
vector signed char vec_and (vector signed char, vector bool char);
vector signed char vec_and (vector signed char, vector signed char);
vector unsigned char vec_and (vector bool char, vector unsigned char);
vector unsigned char vec_and (vector unsigned char, vector bool char);
vector unsigned char vec_and (vector unsigned char,
vector unsigned char);
vector float vec_andc (vector float, vector float);
vector float vec_andc (vector float, vector bool int);
vector float vec_andc (vector bool int, vector float);
vector bool int vec_andc (vector bool int, vector bool int);
vector signed int vec_andc (vector bool int, vector signed int);
vector signed int vec_andc (vector signed int, vector bool int);
vector signed int vec_andc (vector signed int, vector signed int);
vector unsigned int vec_andc (vector bool int, vector unsigned int);
vector unsigned int vec_andc (vector unsigned int, vector bool int);
vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
vector bool short vec_andc (vector bool short, vector bool short);
vector signed short vec_andc (vector bool short, vector signed short);
vector signed short vec_andc (vector signed short, vector bool short);
vector signed short vec_andc (vector signed short, vector signed short);
vector unsigned short vec_andc (vector bool short,
vector unsigned short);
vector unsigned short vec_andc (vector unsigned short,
vector bool short);
vector unsigned short vec_andc (vector unsigned short,
vector unsigned short);
vector signed char vec_andc (vector bool char, vector signed char);
vector bool char vec_andc (vector bool char, vector bool char);
vector signed char vec_andc (vector signed char, vector bool char);
vector signed char vec_andc (vector signed char, vector signed char);
vector unsigned char vec_andc (vector bool char, vector unsigned char);
vector unsigned char vec_andc (vector unsigned char, vector bool char);
vector unsigned char vec_andc (vector unsigned char,
vector unsigned char);
vector unsigned char vec_avg (vector unsigned char,
vector unsigned char);
vector signed char vec_avg (vector signed char, vector signed char);
vector unsigned short vec_avg (vector unsigned short,
vector unsigned short);
vector signed short vec_avg (vector signed short, vector signed short);
vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
vector signed int vec_avg (vector signed int, vector signed int);
vector signed int vec_vavgsw (vector signed int, vector signed int);
vector unsigned int vec_vavguw (vector unsigned int,
vector unsigned int);
vector signed short vec_vavgsh (vector signed short,
vector signed short);
vector unsigned short vec_vavguh (vector unsigned short,
vector unsigned short);
vector signed char vec_vavgsb (vector signed char, vector signed char);
vector unsigned char vec_vavgub (vector unsigned char,
vector unsigned char);
vector float vec_ceil (vector float);
vector signed int vec_cmpb (vector float, vector float);
vector bool char vec_cmpeq (vector signed char, vector signed char);
vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
vector bool short vec_cmpeq (vector signed short, vector signed short);
vector bool short vec_cmpeq (vector unsigned short,
vector unsigned short);
vector bool int vec_cmpeq (vector signed int, vector signed int);
vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
vector bool int vec_cmpeq (vector float, vector float);
vector bool int vec_vcmpeqfp (vector float, vector float);
vector bool int vec_vcmpequw (vector signed int, vector signed int);
vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
vector bool short vec_vcmpequh (vector signed short,
vector signed short);
vector bool short vec_vcmpequh (vector unsigned short,
vector unsigned short);
vector bool char vec_vcmpequb (vector signed char, vector signed char);
vector bool char vec_vcmpequb (vector unsigned char,
vector unsigned char);
vector bool int vec_cmpge (vector float, vector float);
vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
vector bool char vec_cmpgt (vector signed char, vector signed char);
vector bool short vec_cmpgt (vector unsigned short,
vector unsigned short);
vector bool short vec_cmpgt (vector signed short, vector signed short);
vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
vector bool int vec_cmpgt (vector signed int, vector signed int);
vector bool int vec_cmpgt (vector float, vector float);
vector bool int vec_vcmpgtfp (vector float, vector float);
vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
vector bool short vec_vcmpgtsh (vector signed short,
vector signed short);
vector bool short vec_vcmpgtuh (vector unsigned short,
vector unsigned short);
vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
vector bool char vec_vcmpgtub (vector unsigned char,
vector unsigned char);
vector bool int vec_cmple (vector float, vector float);
vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
vector bool char vec_cmplt (vector signed char, vector signed char);
vector bool short vec_cmplt (vector unsigned short,
vector unsigned short);
vector bool short vec_cmplt (vector signed short, vector signed short);
vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
vector bool int vec_cmplt (vector signed int, vector signed int);
vector bool int vec_cmplt (vector float, vector float);
vector float vec_ctf (vector unsigned int, const int);
vector float vec_ctf (vector signed int, const int);
vector float vec_vcfsx (vector signed int, const int);
vector float vec_vcfux (vector unsigned int, const int);
vector signed int vec_cts (vector float, const int);
vector unsigned int vec_ctu (vector float, const int);
void vec_dss (const int);
void vec_dssall (void);
void vec_dst (const vector unsigned char *, int, const int);
void vec_dst (const vector signed char *, int, const int);
void vec_dst (const vector bool char *, int, const int);
void vec_dst (const vector unsigned short *, int, const int);
void vec_dst (const vector signed short *, int, const int);
void vec_dst (const vector bool short *, int, const int);
void vec_dst (const vector pixel *, int, const int);
void vec_dst (const vector unsigned int *, int, const int);
void vec_dst (const vector signed int *, int, const int);
void vec_dst (const vector bool int *, int, const int);
void vec_dst (const vector float *, int, const int);
void vec_dst (const unsigned char *, int, const int);
void vec_dst (const signed char *, int, const int);
void vec_dst (const unsigned short *, int, const int);
void vec_dst (const short *, int, const int);
void vec_dst (const unsigned int *, int, const int);
void vec_dst (const int *, int, const int);
void vec_dst (const unsigned long *, int, const int);
void vec_dst (const long *, int, const int);
void vec_dst (const float *, int, const int);
void vec_dstst (const vector unsigned char *, int, const int);
void vec_dstst (const vector signed char *, int, const int);
void vec_dstst (const vector bool char *, int, const int);
void vec_dstst (const vector unsigned short *, int, const int);
void vec_dstst (const vector signed short *, int, const int);
void vec_dstst (const vector bool short *, int, const int);
void vec_dstst (const vector pixel *, int, const int);
void vec_dstst (const vector unsigned int *, int, const int);
void vec_dstst (const vector signed int *, int, const int);
void vec_dstst (const vector bool int *, int, const int);
void vec_dstst (const vector float *, int, const int);
void vec_dstst (const unsigned char *, int, const int);
void vec_dstst (const signed char *, int, const int);
void vec_dstst (const unsigned short *, int, const int);
void vec_dstst (const short *, int, const int);
void vec_dstst (const unsigned int *, int, const int);
void vec_dstst (const int *, int, const int);
void vec_dstst (const unsigned long *, int, const int);
void vec_dstst (const long *, int, const int);
void vec_dstst (const float *, int, const int);
void vec_dststt (const vector unsigned char *, int, const int);
void vec_dststt (const vector signed char *, int, const int);
void vec_dststt (const vector bool char *, int, const int);
void vec_dststt (const vector unsigned short *, int, const int);
void vec_dststt (const vector signed short *, int, const int);
void vec_dststt (const vector bool short *, int, const int);
void vec_dststt (const vector pixel *, int, const int);
void vec_dststt (const vector unsigned int *, int, const int);
void vec_dststt (const vector signed int *, int, const int);
void vec_dststt (const vector bool int *, int, const int);
void vec_dststt (const vector float *, int, const int);
void vec_dststt (const unsigned char *, int, const int);
void vec_dststt (const signed char *, int, const int);
void vec_dststt (const unsigned short *, int, const int);
void vec_dststt (const short *, int, const int);
void vec_dststt (const unsigned int *, int, const int);
void vec_dststt (const int *, int, const int);
void vec_dststt (const unsigned long *, int, const int);
void vec_dststt (const long *, int, const int);
void vec_dststt (const float *, int, const int);
void vec_dstt (const vector unsigned char *, int, const int);
void vec_dstt (const vector signed char *, int, const int);
void vec_dstt (const vector bool char *, int, const int);
void vec_dstt (const vector unsigned short *, int, const int);
void vec_dstt (const vector signed short *, int, const int);
void vec_dstt (const vector bool short *, int, const int);
void vec_dstt (const vector pixel *, int, const int);
void vec_dstt (const vector unsigned int *, int, const int);
void vec_dstt (const vector signed int *, int, const int);
void vec_dstt (const vector bool int *, int, const int);
void vec_dstt (const vector float *, int, const int);
void vec_dstt (const unsigned char *, int, const int);
void vec_dstt (const signed char *, int, const int);
void vec_dstt (const unsigned short *, int, const int);
void vec_dstt (const short *, int, const int);
void vec_dstt (const unsigned int *, int, const int);
void vec_dstt (const int *, int, const int);
void vec_dstt (const unsigned long *, int, const int);
void vec_dstt (const long *, int, const int);
void vec_dstt (const float *, int, const int);
vector float vec_expte (vector float);
vector float vec_floor (vector float);
vector float vec_ld (int, const vector float *);
vector float vec_ld (int, const float *);
vector bool int vec_ld (int, const vector bool int *);
vector signed int vec_ld (int, const vector signed int *);
vector signed int vec_ld (int, const int *);
vector signed int vec_ld (int, const long *);
vector unsigned int vec_ld (int, const vector unsigned int *);
vector unsigned int vec_ld (int, const unsigned int *);
vector unsigned int vec_ld (int, const unsigned long *);
vector bool short vec_ld (int, const vector bool short *);
vector pixel vec_ld (int, const vector pixel *);
vector signed short vec_ld (int, const vector signed short *);
vector signed short vec_ld (int, const short *);
vector unsigned short vec_ld (int, const vector unsigned short *);
vector unsigned short vec_ld (int, const unsigned short *);
vector bool char vec_ld (int, const vector bool char *);
vector signed char vec_ld (int, const vector signed char *);
vector signed char vec_ld (int, const signed char *);
vector unsigned char vec_ld (int, const vector unsigned char *);
vector unsigned char vec_ld (int, const unsigned char *);
vector signed char vec_lde (int, const signed char *);
vector unsigned char vec_lde (int, const unsigned char *);
vector signed short vec_lde (int, const short *);
vector unsigned short vec_lde (int, const unsigned short *);
vector float vec_lde (int, const float *);
vector signed int vec_lde (int, const int *);
vector unsigned int vec_lde (int, const unsigned int *);
vector signed int vec_lde (int, const long *);
vector unsigned int vec_lde (int, const unsigned long *);
vector float vec_lvewx (int, float *);
vector signed int vec_lvewx (int, int *);
vector unsigned int vec_lvewx (int, unsigned int *);
vector signed int vec_lvewx (int, long *);
vector unsigned int vec_lvewx (int, unsigned long *);
vector signed short vec_lvehx (int, short *);
vector unsigned short vec_lvehx (int, unsigned short *);
vector signed char vec_lvebx (int, char *);
vector unsigned char vec_lvebx (int, unsigned char *);
vector float vec_ldl (int, const vector float *);
vector float vec_ldl (int, const float *);
vector bool int vec_ldl (int, const vector bool int *);
vector signed int vec_ldl (int, const vector signed int *);
vector signed int vec_ldl (int, const int *);
vector signed int vec_ldl (int, const long *);
vector unsigned int vec_ldl (int, const vector unsigned int *);
vector unsigned int vec_ldl (int, const unsigned int *);
vector unsigned int vec_ldl (int, const unsigned long *);
vector bool short vec_ldl (int, const vector bool short *);
vector pixel vec_ldl (int, const vector pixel *);
vector signed short vec_ldl (int, const vector signed short *);
vector signed short vec_ldl (int, const short *);
vector unsigned short vec_ldl (int, const vector unsigned short *);
vector unsigned short vec_ldl (int, const unsigned short *);
vector bool char vec_ldl (int, const vector bool char *);
vector signed char vec_ldl (int, const vector signed char *);
vector signed char vec_ldl (int, const signed char *);
vector unsigned char vec_ldl (int, const vector unsigned char *);
vector unsigned char vec_ldl (int, const unsigned char *);
vector float vec_loge (vector float);
vector unsigned char vec_lvsl (int, const volatile unsigned char *);
vector unsigned char vec_lvsl (int, const volatile signed char *);
vector unsigned char vec_lvsl (int, const volatile unsigned short *);
vector unsigned char vec_lvsl (int, const volatile short *);
vector unsigned char vec_lvsl (int, const volatile unsigned int *);
vector unsigned char vec_lvsl (int, const volatile int *);
vector unsigned char vec_lvsl (int, const volatile unsigned long *);
vector unsigned char vec_lvsl (int, const volatile long *);
vector unsigned char vec_lvsl (int, const volatile float *);
vector unsigned char vec_lvsr (int, const volatile unsigned char *);
vector unsigned char vec_lvsr (int, const volatile signed char *);
vector unsigned char vec_lvsr (int, const volatile unsigned short *);
vector unsigned char vec_lvsr (int, const volatile short *);
vector unsigned char vec_lvsr (int, const volatile unsigned int *);
vector unsigned char vec_lvsr (int, const volatile int *);
vector unsigned char vec_lvsr (int, const volatile unsigned long *);
vector unsigned char vec_lvsr (int, const volatile long *);
vector unsigned char vec_lvsr (int, const volatile float *);
vector float vec_madd (vector float, vector float, vector float);
vector signed short vec_madds (vector signed short,
vector signed short,
vector signed short);
vector unsigned char vec_max (vector bool char, vector unsigned char);
vector unsigned char vec_max (vector unsigned char, vector bool char);
vector unsigned char vec_max (vector unsigned char,
vector unsigned char);
vector signed char vec_max (vector bool char, vector signed char);
vector signed char vec_max (vector signed char, vector bool char);
vector signed char vec_max (vector signed char, vector signed char);
vector unsigned short vec_max (vector bool short,
vector unsigned short);
vector unsigned short vec_max (vector unsigned short,
vector bool short);
vector unsigned short vec_max (vector unsigned short,
vector unsigned short);
vector signed short vec_max (vector bool short, vector signed short);
vector signed short vec_max (vector signed short, vector bool short);
vector signed short vec_max (vector signed short, vector signed short);
vector unsigned int vec_max (vector bool int, vector unsigned int);
vector unsigned int vec_max (vector unsigned int, vector bool int);
vector unsigned int vec_max (vector unsigned int, vector unsigned int);
vector signed int vec_max (vector bool int, vector signed int);
vector signed int vec_max (vector signed int, vector bool int);
vector signed int vec_max (vector signed int, vector signed int);
vector float vec_max (vector float, vector float);
vector float vec_vmaxfp (vector float, vector float);
vector signed int vec_vmaxsw (vector bool int, vector signed int);
vector signed int vec_vmaxsw (vector signed int, vector bool int);
vector signed int vec_vmaxsw (vector signed int, vector signed int);
vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
vector unsigned int vec_vmaxuw (vector unsigned int,
vector unsigned int);
vector signed short vec_vmaxsh (vector bool short, vector signed short);
vector signed short vec_vmaxsh (vector signed short, vector bool short);
vector signed short vec_vmaxsh (vector signed short,
vector signed short);
vector unsigned short vec_vmaxuh (vector bool short,
vector unsigned short);
vector unsigned short vec_vmaxuh (vector unsigned short,
vector bool short);
vector unsigned short vec_vmaxuh (vector unsigned short,
vector unsigned short);
vector signed char vec_vmaxsb (vector bool char, vector signed char);
vector signed char vec_vmaxsb (vector signed char, vector bool char);
vector signed char vec_vmaxsb (vector signed char, vector signed char);
vector unsigned char vec_vmaxub (vector bool char,
vector unsigned char);
vector unsigned char vec_vmaxub (vector unsigned char,
vector bool char);
vector unsigned char vec_vmaxub (vector unsigned char,
vector unsigned char);
vector bool char vec_mergeh (vector bool char, vector bool char);
vector signed char vec_mergeh (vector signed char, vector signed char);
vector unsigned char vec_mergeh (vector unsigned char,
vector unsigned char);
vector bool short vec_mergeh (vector bool short, vector bool short);
vector pixel vec_mergeh (vector pixel, vector pixel);
vector signed short vec_mergeh (vector signed short,
vector signed short);
vector unsigned short vec_mergeh (vector unsigned short,
vector unsigned short);
vector float vec_mergeh (vector float, vector float);
vector bool int vec_mergeh (vector bool int, vector bool int);
vector signed int vec_mergeh (vector signed int, vector signed int);
vector unsigned int vec_mergeh (vector unsigned int,
vector unsigned int);
vector float vec_vmrghw (vector float, vector float);
vector bool int vec_vmrghw (vector bool int, vector bool int);
vector signed int vec_vmrghw (vector signed int, vector signed int);
vector unsigned int vec_vmrghw (vector unsigned int,
vector unsigned int);
vector bool short vec_vmrghh (vector bool short, vector bool short);
vector signed short vec_vmrghh (vector signed short,
vector signed short);
vector unsigned short vec_vmrghh (vector unsigned short,
vector unsigned short);
vector pixel vec_vmrghh (vector pixel, vector pixel);
vector bool char vec_vmrghb (vector bool char, vector bool char);
vector signed char vec_vmrghb (vector signed char, vector signed char);
vector unsigned char vec_vmrghb (vector unsigned char,
vector unsigned char);
vector bool char vec_mergel (vector bool char, vector bool char);
vector signed char vec_mergel (vector signed char, vector signed char);
vector unsigned char vec_mergel (vector unsigned char,
vector unsigned char);
vector bool short vec_mergel (vector bool short, vector bool short);
vector pixel vec_mergel (vector pixel, vector pixel);
vector signed short vec_mergel (vector signed short,
vector signed short);
vector unsigned short vec_mergel (vector unsigned short,
vector unsigned short);
vector float vec_mergel (vector float, vector float);
vector bool int vec_mergel (vector bool int, vector bool int);
vector signed int vec_mergel (vector signed int, vector signed int);
vector unsigned int vec_mergel (vector unsigned int,
vector unsigned int);
vector float vec_vmrglw (vector float, vector float);
vector signed int vec_vmrglw (vector signed int, vector signed int);
vector unsigned int vec_vmrglw (vector unsigned int,
vector unsigned int);
vector bool int vec_vmrglw (vector bool int, vector bool int);
vector bool short vec_vmrglh (vector bool short, vector bool short);
vector signed short vec_vmrglh (vector signed short,
vector signed short);
vector unsigned short vec_vmrglh (vector unsigned short,
vector unsigned short);
vector pixel vec_vmrglh (vector pixel, vector pixel);
vector bool char vec_vmrglb (vector bool char, vector bool char);
vector signed char vec_vmrglb (vector signed char, vector signed char);
vector unsigned char vec_vmrglb (vector unsigned char,
vector unsigned char);
vector unsigned short vec_mfvscr (void);
vector unsigned char vec_min (vector bool char, vector unsigned char);
vector unsigned char vec_min (vector unsigned char, vector bool char);
vector unsigned char vec_min (vector unsigned char,
vector unsigned char);
vector signed char vec_min (vector bool char, vector signed char);
vector signed char vec_min (vector signed char, vector bool char);
vector signed char vec_min (vector signed char, vector signed char);
vector unsigned short vec_min (vector bool short,
vector unsigned short);
vector unsigned short vec_min (vector unsigned short,
vector bool short);
vector unsigned short vec_min (vector unsigned short,
vector unsigned short);
vector signed short vec_min (vector bool short, vector signed short);
vector signed short vec_min (vector signed short, vector bool short);
vector signed short vec_min (vector signed short, vector signed short);
vector unsigned int vec_min (vector bool int, vector unsigned int);
vector unsigned int vec_min (vector unsigned int, vector bool int);
vector unsigned int vec_min (vector unsigned int, vector unsigned int);
vector signed int vec_min (vector bool int, vector signed int);
vector signed int vec_min (vector signed int, vector bool int);
vector signed int vec_min (vector signed int, vector signed int);
vector float vec_min (vector float, vector float);
vector float vec_vminfp (vector float, vector float);
vector signed int vec_vminsw (vector bool int, vector signed int);
vector signed int vec_vminsw (vector signed int, vector bool int);
vector signed int vec_vminsw (vector signed int, vector signed int);
vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
vector unsigned int vec_vminuw (vector unsigned int,
vector unsigned int);
vector signed short vec_vminsh (vector bool short, vector signed short);
vector signed short vec_vminsh (vector signed short, vector bool short);
vector signed short vec_vminsh (vector signed short,
vector signed short);
vector unsigned short vec_vminuh (vector bool short,
vector unsigned short);
vector unsigned short vec_vminuh (vector unsigned short,
vector bool short);
vector unsigned short vec_vminuh (vector unsigned short,
vector unsigned short);
vector signed char vec_vminsb (vector bool char, vector signed char);
vector signed char vec_vminsb (vector signed char, vector bool char);
vector signed char vec_vminsb (vector signed char, vector signed char);
vector unsigned char vec_vminub (vector bool char,
vector unsigned char);
vector unsigned char vec_vminub (vector unsigned char,
vector bool char);
vector unsigned char vec_vminub (vector unsigned char,
vector unsigned char);
vector signed short vec_mladd (vector signed short,
vector signed short,
vector signed short);
vector signed short vec_mladd (vector signed short,
vector unsigned short,
vector unsigned short);
vector signed short vec_mladd (vector unsigned short,
vector signed short,
vector signed short);
vector unsigned short vec_mladd (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector signed short vec_mradds (vector signed short,
vector signed short,
vector signed short);
vector unsigned int vec_msum (vector unsigned char,
vector unsigned char,
vector unsigned int);
vector signed int vec_msum (vector signed char,
vector unsigned char,
vector signed int);
vector unsigned int vec_msum (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_msum (vector signed short,
vector signed short,
vector signed int);
vector signed int vec_vmsumshm (vector signed short,
vector signed short,
vector signed int);
vector unsigned int vec_vmsumuhm (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_vmsummbm (vector signed char,
vector unsigned char,
vector signed int);
vector unsigned int vec_vmsumubm (vector unsigned char,
vector unsigned char,
vector unsigned int);
vector unsigned int vec_msums (vector unsigned short,
vector unsigned short,
vector unsigned int);
vector signed int vec_msums (vector signed short,
vector signed short,
vector signed int);
vector signed int vec_vmsumshs (vector signed short,
vector signed short,
vector signed int);
vector unsigned int vec_vmsumuhs (vector unsigned short,
vector unsigned short,
vector unsigned int);
void vec_mtvscr (vector signed int);
void vec_mtvscr (vector unsigned int);
void vec_mtvscr (vector bool int);
void vec_mtvscr (vector signed short);
void vec_mtvscr (vector unsigned short);
void vec_mtvscr (vector bool short);
void vec_mtvscr (vector pixel);
void vec_mtvscr (vector signed char);
void vec_mtvscr (vector unsigned char);
void vec_mtvscr (vector bool char);
vector unsigned short vec_mule (vector unsigned char,
vector unsigned char);
vector signed short vec_mule (vector signed char,
vector signed char);
vector unsigned int vec_mule (vector unsigned short,
vector unsigned short);
vector signed int vec_mule (vector signed short, vector signed short);
vector signed int vec_vmulesh (vector signed short,
vector signed short);
vector unsigned int vec_vmuleuh (vector unsigned short,
vector unsigned short);
vector signed short vec_vmulesb (vector signed char,
vector signed char);
vector unsigned short vec_vmuleub (vector unsigned char,
vector unsigned char);
vector unsigned short vec_mulo (vector unsigned char,
vector unsigned char);
vector signed short vec_mulo (vector signed char, vector signed char);
vector unsigned int vec_mulo (vector unsigned short,
vector unsigned short);
vector signed int vec_mulo (vector signed short, vector signed short);
vector signed int vec_vmulosh (vector signed short,
vector signed short);
vector unsigned int vec_vmulouh (vector unsigned short,
vector unsigned short);
vector signed short vec_vmulosb (vector signed char,
vector signed char);
vector unsigned short vec_vmuloub (vector unsigned char,
vector unsigned char);
vector float vec_nmsub (vector float, vector float, vector float);
vector float vec_nor (vector float, vector float);
vector signed int vec_nor (vector signed int, vector signed int);
vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
vector bool int vec_nor (vector bool int, vector bool int);
vector signed short vec_nor (vector signed short, vector signed short);
vector unsigned short vec_nor (vector unsigned short,
vector unsigned short);
vector bool short vec_nor (vector bool short, vector bool short);
vector signed char vec_nor (vector signed char, vector signed char);
vector unsigned char vec_nor (vector unsigned char,
vector unsigned char);
vector bool char vec_nor (vector bool char, vector bool char);
vector float vec_or (vector float, vector float);
vector float vec_or (vector float, vector bool int);
vector float vec_or (vector bool int, vector float);
vector bool int vec_or (vector bool int, vector bool int);
vector signed int vec_or (vector bool int, vector signed int);
vector signed int vec_or (vector signed int, vector bool int);
vector signed int vec_or (vector signed int, vector signed int);
vector unsigned int vec_or (vector bool int, vector unsigned int);
vector unsigned int vec_or (vector unsigned int, vector bool int);
vector unsigned int vec_or (vector unsigned int, vector unsigned int);
vector bool short vec_or (vector bool short, vector bool short);
vector signed short vec_or (vector bool short, vector signed short);
vector signed short vec_or (vector signed short, vector bool short);
vector signed short vec_or (vector signed short, vector signed short);
vector unsigned short vec_or (vector bool short, vector unsigned short);
vector unsigned short vec_or (vector unsigned short, vector bool short);
vector unsigned short vec_or (vector unsigned short,
vector unsigned short);
vector signed char vec_or (vector bool char, vector signed char);
vector bool char vec_or (vector bool char, vector bool char);
vector signed char vec_or (vector signed char, vector bool char);
vector signed char vec_or (vector signed char, vector signed char);
vector unsigned char vec_or (vector bool char, vector unsigned char);
vector unsigned char vec_or (vector unsigned char, vector bool char);
vector unsigned char vec_or (vector unsigned char,
vector unsigned char);
vector signed char vec_pack (vector signed short, vector signed short);
vector unsigned char vec_pack (vector unsigned short,
vector unsigned short);
vector bool char vec_pack (vector bool short, vector bool short);
vector signed short vec_pack (vector signed int, vector signed int);
vector unsigned short vec_pack (vector unsigned int,
vector unsigned int);
vector bool short vec_pack (vector bool int, vector bool int);
vector bool short vec_vpkuwum (vector bool int, vector bool int);
vector signed short vec_vpkuwum (vector signed int, vector signed int);
vector unsigned short vec_vpkuwum (vector unsigned int,
vector unsigned int);
vector bool char vec_vpkuhum (vector bool short, vector bool short);
vector signed char vec_vpkuhum (vector signed short,
vector signed short);
vector unsigned char vec_vpkuhum (vector unsigned short,
vector unsigned short);
vector pixel vec_packpx (vector unsigned int, vector unsigned int);
vector unsigned char vec_packs (vector unsigned short,
vector unsigned short);
vector signed char vec_packs (vector signed short, vector signed short);
vector unsigned short vec_packs (vector unsigned int,
vector unsigned int);
vector signed short vec_packs (vector signed int, vector signed int);
vector signed short vec_vpkswss (vector signed int, vector signed int);
vector unsigned short vec_vpkuwus (vector unsigned int,
vector unsigned int);
vector signed char vec_vpkshss (vector signed short,
vector signed short);
vector unsigned char vec_vpkuhus (vector unsigned short,
vector unsigned short);
vector unsigned char vec_packsu (vector unsigned short,
vector unsigned short);
vector unsigned char vec_packsu (vector signed short,
vector signed short);
vector unsigned short vec_packsu (vector unsigned int,
vector unsigned int);
vector unsigned short vec_packsu (vector signed int, vector signed int);
vector unsigned short vec_vpkswus (vector signed int,
vector signed int);
vector unsigned char vec_vpkshus (vector signed short,
vector signed short);
vector float vec_perm (vector float,
vector float,
vector unsigned char);
vector signed int vec_perm (vector signed int,
vector signed int,
vector unsigned char);
vector unsigned int vec_perm (vector unsigned int,
vector unsigned int,
vector unsigned char);
vector bool int vec_perm (vector bool int,
vector bool int,
vector unsigned char);
vector signed short vec_perm (vector signed short,
vector signed short,
vector unsigned char);
vector unsigned short vec_perm (vector unsigned short,
vector unsigned short,
vector unsigned char);
vector bool short vec_perm (vector bool short,
vector bool short,
vector unsigned char);
vector pixel vec_perm (vector pixel,
vector pixel,
vector unsigned char);
vector signed char vec_perm (vector signed char,
vector signed char,
vector unsigned char);
vector unsigned char vec_perm (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector bool char vec_perm (vector bool char,
vector bool char,
vector unsigned char);
vector float vec_re (vector float);
vector signed char vec_rl (vector signed char,
vector unsigned char);
vector unsigned char vec_rl (vector unsigned char,
vector unsigned char);
vector signed short vec_rl (vector signed short, vector unsigned short);
vector unsigned short vec_rl (vector unsigned short,
vector unsigned short);
vector signed int vec_rl (vector signed int, vector unsigned int);
vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
vector signed int vec_vrlw (vector signed int, vector unsigned int);
vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
vector signed short vec_vrlh (vector signed short,
vector unsigned short);
vector unsigned short vec_vrlh (vector unsigned short,
vector unsigned short);
vector signed char vec_vrlb (vector signed char, vector unsigned char);
vector unsigned char vec_vrlb (vector unsigned char,
vector unsigned char);
vector float vec_round (vector float);
vector float vec_rsqrte (vector float);
vector float vec_sel (vector float, vector float, vector bool int);
vector float vec_sel (vector float, vector float, vector unsigned int);
vector signed int vec_sel (vector signed int,
vector signed int,
vector bool int);
vector signed int vec_sel (vector signed int,
vector signed int,
vector unsigned int);
vector unsigned int vec_sel (vector unsigned int,
vector unsigned int,
vector bool int);
vector unsigned int vec_sel (vector unsigned int,
vector unsigned int,
vector unsigned int);
vector bool int vec_sel (vector bool int,
vector bool int,
vector bool int);
vector bool int vec_sel (vector bool int,
vector bool int,
vector unsigned int);
vector signed short vec_sel (vector signed short,
vector signed short,
vector bool short);
vector signed short vec_sel (vector signed short,
vector signed short,
vector unsigned short);
vector unsigned short vec_sel (vector unsigned short,
vector unsigned short,
vector bool short);
vector unsigned short vec_sel (vector unsigned short,
vector unsigned short,
vector unsigned short);
vector bool short vec_sel (vector bool short,
vector bool short,
vector bool short);
vector bool short vec_sel (vector bool short,
vector bool short,
vector unsigned short);
vector signed char vec_sel (vector signed char,
vector signed char,
vector bool char);
vector signed char vec_sel (vector signed char,
vector signed char,
vector unsigned char);
vector unsigned char vec_sel (vector unsigned char,
vector unsigned char,
vector bool char);
vector unsigned char vec_sel (vector unsigned char,
vector unsigned char,
vector unsigned char);
vector bool char vec_sel (vector bool char,
vector bool char,
vector bool char);
vector bool char vec_sel (vector bool char,
vector bool char,
vector unsigned char);
vector signed char vec_sl (vector signed char,
vector unsigned char);
vector unsigned char vec_sl (vector unsigned char,
vector unsigned char);
vector signed short vec_sl (vector signed short, vector unsigned short);
vector unsigned short vec_sl (vector unsigned short,
vector unsigned short);
vector signed int vec_sl (vector signed int, vector unsigned int);
vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
vector signed int vec_vslw (vector signed int, vector unsigned int);
vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
vector signed short vec_vslh (vector signed short,
vector unsigned short);
vector unsigned short vec_vslh (vector unsigned short,
vector unsigned short);
vector signed char vec_vslb (vector signed char, vector unsigned char);
vector unsigned char vec_vslb (vector unsigned char,
vector unsigned char);
vector float vec_sld (vector float, vector float, const int);
vector signed int vec_sld (vector signed int,
vector signed int,
const int);
vector unsigned int vec_sld (vector unsigned int,
vector unsigned int,
const int);
vector bool int vec_sld (vector bool int,
vector bool int,
const int);
vector signed short vec_sld (vector signed short,
vector signed short,
const int);
vector unsigned short vec_sld (vector unsigned short,
vector unsigned short,
const int);
vector bool short vec_sld (vector bool short,
vector bool short,
const int);
vector pixel vec_sld (vector pixel,
vector pixel,
const int);
vector signed char vec_sld (vector signed char,
vector signed char,
const int);
vector unsigned char vec_sld (vector unsigned char,
vector unsigned char,
const int);
vector bool char vec_sld (vector bool char,
vector bool char,
const int);
vector signed int vec_sll (vector signed int,
vector unsigned int);
vector signed int vec_sll (vector signed int,
vector unsigned short);
vector signed int vec_sll (vector signed int,
vector unsigned char);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned int);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned short);
vector unsigned int vec_sll (vector unsigned int,
vector unsigned char);
vector bool int vec_sll (vector bool int,
vector unsigned int);
vector bool int vec_sll (vector bool int,
vector unsigned short);
vector bool int vec_sll (vector bool int,
vector unsigned char);
vector signed short vec_sll (vector signed short,
vector unsigned int);
vector signed short vec_sll (vector signed short,
vector unsigned short);
vector signed short vec_sll (vector signed short,
vector unsigned char);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned int);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned short);
vector unsigned short vec_sll (vector unsigned short,
vector unsigned char);
vector bool short vec_sll (vector bool short, vector unsigned int);
vector bool short vec_sll (vector bool short, vector unsigned short);
vector bool short vec_sll (vector bool short, vector unsigned char);
vector pixel vec_sll (vector pixel, vector unsigned int);
vector pixel vec_sll (vector pixel, vector unsigned short);
vector pixel vec_sll (vector pixel, vector unsigned char);
vector signed char vec_sll (vector signed char, vector unsigned int);
vector signed char vec_sll (vector signed char, vector unsigned short);
vector signed char vec_sll (vector signed char, vector unsigned char);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned int);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned short);
vector unsigned char vec_sll (vector unsigned char,
vector unsigned char);
vector bool char vec_sll (vector bool char, vector unsigned int);
vector bool char vec_sll (vector bool char, vector unsigned short);
vector bool char vec_sll (vector bool char, vector unsigned char);
vector float vec_slo (vector float, vector signed char);
vector float vec_slo (vector float, vector unsigned char);
vector signed int vec_slo (vector signed int, vector signed char);
vector signed int vec_slo (vector signed int, vector unsigned char);
vector unsigned int vec_slo (vector unsigned int, vector signed char);
vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
vector signed short vec_slo (vector signed short, vector signed char);
vector signed short vec_slo (vector signed short, vector unsigned char);
vector unsigned short vec_slo (vector unsigned short,
vector signed char);
vector unsigned short vec_slo (vector unsigned short,
vector unsigned char);
vector pixel vec_slo (vector pixel, vector signed char);
vector pixel vec_slo (vector pixel, vector unsigned char);
vector signed char vec_slo (vector signed char, vector signed char);
vector signed char vec_slo (vector signed char, vector unsigned char);
vector unsigned char vec_slo (vector unsigned char, vector signed char);
vector unsigned char vec_slo (vector unsigned char,
vector unsigned char);
vector signed char vec_splat (vector signed char, const int);
vector unsigned char vec_splat (vector unsigned char, const int);
vector bool char vec_splat (vector bool char, const int);
vector signed short vec_splat (vector signed short, const int);
vector unsigned short vec_splat (vector unsigned short, const int);
vector bool short vec_splat (vector bool short, const int);
vector pixel vec_splat (vector pixel, const int);
vector float vec_splat (vector float, const int);
vector signed int vec_splat (vector signed int, const int);
vector unsigned int vec_splat (vector unsigned int, const int);
vector bool int vec_splat (vector bool int, const int);
vector float vec_vspltw (vector float, const int);
vector signed int vec_vspltw (vector signed int, const int);
vector unsigned int vec_vspltw (vector unsigned int, const int);
vector bool int vec_vspltw (vector bool int, const int);
vector bool short vec_vsplth (vector bool short, const int);
vector signed short vec_vsplth (vector signed short, const int);
vector unsigned short vec_vsplth (vector unsigned short, const int);
vector pixel vec_vsplth (vector pixel, const int);
vector signed char vec_vspltb (vector signed char, const int);
vector unsigned char vec_vspltb (vector unsigned char, const int);
vector bool char vec_vspltb (vector bool char, const int);
vector signed char vec_splat_s8 (const int);
vector signed short vec_splat_s16 (const int);
vector signed int vec_splat_s32 (const int);
vector unsigned char vec_splat_u8 (const int);
vector unsigned short vec_splat_u16 (const int);
vector unsigned int vec_splat_u32 (const int);
vector signed char vec_sr (vector signed char, vector unsigned char);
vector unsigned char vec_sr (vector unsigned char,
vector unsigned char);
vector signed short vec_sr (vector signed short,
vector unsigned short);
vector unsigned short vec_sr (vector unsigned short,
vector unsigned short);
vector signed int vec_sr (vector signed int, vector unsigned int);
vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
vector signed int vec_vsrw (vector signed int, vector unsigned int);
vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
vector signed short vec_vsrh (vector signed short,
vector unsigned short);
vector unsigned short vec_vsrh (vector unsigned short,
vector unsigned short);
vector signed char vec_vsrb (vector signed char, vector unsigned char);
vector unsigned char vec_vsrb (vector unsigned char,
vector unsigned char);
vector signed char vec_sra (vector signed char, vector unsigned char);
vector unsigned char vec_sra (vector unsigned char,
vector unsigned char);
vector signed short vec_sra (vector signed short,
vector unsigned short);
vector unsigned short vec_sra (vector unsigned short,
vector unsigned short);
vector signed int vec_sra (vector signed int, vector unsigned int);
vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
vector signed int vec_vsraw (vector signed int, vector unsigned int);
vector unsigned int vec_vsraw (vector unsigned int,
vector unsigned int);
vector signed short vec_vsrah (vector signed short,
vector unsigned short);
vector unsigned short vec_vsrah (vector unsigned short,
vector unsigned short);
vector signed char vec_vsrab (vector signed char, vector unsigned char);
vector unsigned char vec_vsrab (vector unsigned char,
vector unsigned char);
vector signed int vec_srl (vector signed int, vector unsigned int);
vector signed int vec_srl (vector signed int, vector unsigned short);
vector signed int vec_srl (vector signed int, vector unsigned char);
vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
vector unsigned int vec_srl (vector unsigned int,
vector unsigned short);
vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
vector bool int vec_srl (vector bool int, vector unsigned int);
vector bool int vec_srl (vector bool int, vector unsigned short);
vector bool int vec_srl (vector bool int, vector unsigned char);
vector signed short vec_srl (vector signed short, vector unsigned int);
vector signed short vec_srl (vector signed short,
vector unsigned short);
vector signed short vec_srl (vector signed short, vector unsigned char);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned int);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned short);
vector unsigned short vec_srl (vector unsigned short,
vector unsigned char);
vector bool short vec_srl (vector bool short, vector unsigned int);
vector bool short vec_srl (vector bool short, vector unsigned short);
vector bool short vec_srl (vector bool short, vector unsigned char);
vector pixel vec_srl (vector pixel, vector unsigned int);
vector pixel vec_srl (vector pixel, vector unsigned short);
vector pixel vec_srl (vector pixel, vector unsigned char);
vector signed char vec_srl (vector signed char, vector unsigned int);
vector signed char vec_srl (vector signed char, vector unsigned short);
vector signed char vec_srl (vector signed char, vector unsigned char);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned int);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned short);
vector unsigned char vec_srl (vector unsigned char,
vector unsigned char);
vector bool char vec_srl (vector bool char, vector unsigned int);
vector bool char vec_srl (vector bool char, vector unsigned short);
vector bool char vec_srl (vector bool char, vector unsigned char);
vector float vec_sro (vector float, vector signed char);
vector float vec_sro (vector float, vector unsigned char);
vector signed int vec_sro (vector signed int, vector signed char);
vector signed int vec_sro (vector signed int, vector unsigned char);
vector unsigned int vec_sro (vector unsigned int, vector signed char);
vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
vector signed short vec_sro (vector signed short, vector signed char);
vector signed short vec_sro (vector signed short, vector unsigned char);
vector unsigned short vec_sro (vector unsigned short,
vector signed char);
vector unsigned short vec_sro (vector unsigned short,
vector unsigned char);
vector pixel vec_sro (vector pixel, vector signed char);
vector pixel vec_sro (vector pixel, vector unsigned char);
vector signed char vec_sro (vector signed char, vector signed char);
vector signed char vec_sro (vector signed char, vector unsigned char);
vector unsigned char vec_sro (vector unsigned char, vector signed char);
vector unsigned char vec_sro (vector unsigned char,
vector unsigned char);
void vec_st (vector float, int, vector float *);
void vec_st (vector float, int, float *);
void vec_st (vector signed int, int, vector signed int *);
void vec_st (vector signed int, int, int *);
void vec_st (vector unsigned int, int, vector unsigned int *);
void vec_st (vector unsigned int, int, unsigned int *);
void vec_st (vector bool int, int, vector bool int *);
void vec_st (vector bool int, int, unsigned int *);
void vec_st (vector bool int, int, int *);
void vec_st (vector signed short, int, vector signed short *);
void vec_st (vector signed short, int, short *);
void vec_st (vector unsigned short, int, vector unsigned short *);
void vec_st (vector unsigned short, int, unsigned short *);
void vec_st (vector bool short, int, vector bool short *);
void vec_st (vector bool short, int, unsigned short *);
void vec_st (vector pixel, int, vector pixel *);
void vec_st (vector pixel, int, unsigned short *);
void vec_st (vector pixel, int, short *);
void vec_st (vector bool short, int, short *);
void vec_st (vector signed char, int, vector signed char *);
void vec_st (vector signed char, int, signed char *);
void vec_st (vector unsigned char, int, vector unsigned char *);
void vec_st (vector unsigned char, int, unsigned char *);
void vec_st (vector bool char, int, vector bool char *);
void vec_st (vector bool char, int, unsigned char *);
void vec_st (vector bool char, int, signed char *);
void vec_ste (vector signed char, int, signed char *);
void vec_ste (vector unsigned char, int, unsigned char *);
void vec_ste (vector bool char, int, signed char *);
void vec_ste (vector bool char, int, unsigned char *);
void vec_ste (vector signed short, int, short *);
void vec_ste (vector unsigned short, int, unsigned short *);
void vec_ste (vector bool short, int, short *);
void vec_ste (vector bool short, int, unsigned short *);
void vec_ste (vector pixel, int, short *);
void vec_ste (vector pixel, int, unsigned short *);
void vec_ste (vector float, int, float *);
void vec_ste (vector signed int, int, int *);
void vec_ste (vector unsigned int, int, unsigned int *);
void vec_ste (vector bool int, int, int *);
void vec_ste (vector bool int, int, unsigned int *);
void vec_stvewx (vector float, int, float *);
void vec_stvewx (vector signed int, int, int *);
void vec_stvewx (vector unsigned int, int, unsigned int *);
void vec_stvewx (vector bool int, int, int *);
void vec_stvewx (vector bool int, int, unsigned int *);
void vec_stvehx (vector signed short, int, short *);
void vec_stvehx (vector unsigned short, int, unsigned short *);
void vec_stvehx (vector bool short, int, short *);
void vec_stvehx (vector bool short, int, unsigned short *);
void vec_stvehx (vector pixel, int, short *);
void vec_stvehx (vector pixel, int, unsigned short *);
void vec_stvebx (vector signed char, int, signed char *);
void vec_stvebx (vector unsigned char, int, unsigned char *);
void vec_stvebx (vector bool char, int, signed char *);
void vec_stvebx (vector bool char, int, unsigned char *);
void vec_stl (vector float, int, vector float *);
void vec_stl (vector float, int, float *);
void vec_stl (vector signed int, int, vector signed int *);
void vec_stl (vector signed int, int, int *);
void vec_stl (vector unsigned int, int, vector unsigned int *);
void vec_stl (vector unsigned int, int, unsigned int *);
void vec_stl (vector bool int, int, vector bool int *);
void vec_stl (vector bool int, int, unsigned int *);
void vec_stl (vector bool int, int, int *);
void vec_stl (vector signed short, int, vector signed short *);
void vec_stl (vector signed short, int, short *);
void vec_stl (vector unsigned short, int, vector unsigned short *);
void vec_stl (vector unsigned short, int, unsigned short *);
void vec_stl (vector bool short, int, vector bool short *);
void vec_stl (vector bool short, int, unsigned short *);
void vec_stl (vector bool short, int, short *);
void vec_stl (vector pixel, int, vector pixel *);
void vec_stl (vector pixel, int, unsigned short *);
void vec_stl (vector pixel, int, short *);
void vec_stl (vector signed char, int, vector signed char *);
void vec_stl (vector signed char, int, signed char *);
void vec_stl (vector unsigned char, int, vector unsigned char *);
void vec_stl (vector unsigned char, int, unsigned char *);
void vec_stl (vector bool char, int, vector bool char *);
void vec_stl (vector bool char, int, unsigned char *);
void vec_stl (vector bool char, int, signed char *);
vector signed char vec_sub (vector bool char, vector signed char);
vector signed char vec_sub (vector signed char, vector bool char);
vector signed char vec_sub (vector signed char, vector signed char);
vector unsigned char vec_sub (vector bool char, vector unsigned char);
vector unsigned char vec_sub (vector unsigned char, vector bool char);
vector unsigned char vec_sub (vector unsigned char,
vector unsigned char);
vector signed short vec_sub (vector bool short, vector signed short);
vector signed short vec_sub (vector signed short, vector bool short);
vector signed short vec_sub (vector signed short, vector signed short);
vector unsigned short vec_sub (vector bool short,
vector unsigned short);
vector unsigned short vec_sub (vector unsigned short,
vector bool short);
vector unsigned short vec_sub (vector unsigned short,
vector unsigned short);
vector signed int vec_sub (vector bool int, vector signed int);
vector signed int vec_sub (vector signed int, vector bool int);
vector signed int vec_sub (vector signed int, vector signed int);
vector unsigned int vec_sub (vector bool int, vector unsigned int);
vector unsigned int vec_sub (vector unsigned int, vector bool int);
vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
vector float vec_sub (vector float, vector float);
vector float vec_vsubfp (vector float, vector float);
vector signed int vec_vsubuwm (vector bool int, vector signed int);
vector signed int vec_vsubuwm (vector signed int, vector bool int);
vector signed int vec_vsubuwm (vector signed int, vector signed int);
vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuwm (vector unsigned int,
vector unsigned int);
vector signed short vec_vsubuhm (vector bool short,
vector signed short);
vector signed short vec_vsubuhm (vector signed short,
vector bool short);
vector signed short vec_vsubuhm (vector signed short,
vector signed short);
vector unsigned short vec_vsubuhm (vector bool short,
vector unsigned short);
vector unsigned short vec_vsubuhm (vector unsigned short,
vector bool short);
vector unsigned short vec_vsubuhm (vector unsigned short,
vector unsigned short);
vector signed char vec_vsububm (vector bool char, vector signed char);
vector signed char vec_vsububm (vector signed char, vector bool char);
vector signed char vec_vsububm (vector signed char, vector signed char);
vector unsigned char vec_vsububm (vector bool char,
vector unsigned char);
vector unsigned char vec_vsububm (vector unsigned char,
vector bool char);
vector unsigned char vec_vsububm (vector unsigned char,
vector unsigned char);
vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
vector unsigned char vec_subs (vector bool char, vector unsigned char);
vector unsigned char vec_subs (vector unsigned char, vector bool char);
vector unsigned char vec_subs (vector unsigned char,
vector unsigned char);
vector signed char vec_subs (vector bool char, vector signed char);
vector signed char vec_subs (vector signed char, vector bool char);
vector signed char vec_subs (vector signed char, vector signed char);
vector unsigned short vec_subs (vector bool short,
vector unsigned short);
vector unsigned short vec_subs (vector unsigned short,
vector bool short);
vector unsigned short vec_subs (vector unsigned short,
vector unsigned short);
vector signed short vec_subs (vector bool short, vector signed short);
vector signed short vec_subs (vector signed short, vector bool short);
vector signed short vec_subs (vector signed short, vector signed short);
vector unsigned int vec_subs (vector bool int, vector unsigned int);
vector unsigned int vec_subs (vector unsigned int, vector bool int);
vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
vector signed int vec_subs (vector bool int, vector signed int);
vector signed int vec_subs (vector signed int, vector bool int);
vector signed int vec_subs (vector signed int, vector signed int);
vector signed int vec_vsubsws (vector bool int, vector signed int);
vector signed int vec_vsubsws (vector signed int, vector bool int);
vector signed int vec_vsubsws (vector signed int, vector signed int);
vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
vector unsigned int vec_vsubuws (vector unsigned int,
vector unsigned int);
vector signed short vec_vsubshs (vector bool short,
vector signed short);
vector signed short vec_vsubshs (vector signed short,
vector bool short);
vector signed short vec_vsubshs (vector signed short,
vector signed short);
vector unsigned short vec_vsubuhs (vector bool short,
vector unsigned short);
vector unsigned short vec_vsubuhs (vector unsigned short,
vector bool short);
vector unsigned short vec_vsubuhs (vector unsigned short,
vector unsigned short);
vector signed char vec_vsubsbs (vector bool char, vector signed char);
vector signed char vec_vsubsbs (vector signed char, vector bool char);
vector signed char vec_vsubsbs (vector signed char, vector signed char);
vector unsigned char vec_vsububs (vector bool char,
vector unsigned char);
vector unsigned char vec_vsububs (vector unsigned char,
vector bool char);
vector unsigned char vec_vsububs (vector unsigned char,
vector unsigned char);
vector unsigned int vec_sum4s (vector unsigned char,
vector unsigned int);
vector signed int vec_sum4s (vector signed char, vector signed int);
vector signed int vec_sum4s (vector signed short, vector signed int);
vector signed int vec_vsum4shs (vector signed short, vector signed int);
vector signed int vec_vsum4sbs (vector signed char, vector signed int);
vector unsigned int vec_vsum4ubs (vector unsigned char,
vector unsigned int);
vector signed int vec_sum2s (vector signed int, vector signed int);
vector signed int vec_sums (vector signed int, vector signed int);
vector float vec_trunc (vector float);
vector signed short vec_unpackh (vector signed char);
vector bool short vec_unpackh (vector bool char);
vector signed int vec_unpackh (vector signed short);
vector bool int vec_unpackh (vector bool short);
vector unsigned int vec_unpackh (vector pixel);
vector bool int vec_vupkhsh (vector bool short);
vector signed int vec_vupkhsh (vector signed short);
vector unsigned int vec_vupkhpx (vector pixel);
vector bool short vec_vupkhsb (vector bool char);
vector signed short vec_vupkhsb (vector signed char);
vector signed short vec_unpackl (vector signed char);
vector bool short vec_unpackl (vector bool char);
vector unsigned int vec_unpackl (vector pixel);
vector signed int vec_unpackl (vector signed short);
vector bool int vec_unpackl (vector bool short);
vector unsigned int vec_vupklpx (vector pixel);
vector bool int vec_vupklsh (vector bool short);
vector signed int vec_vupklsh (vector signed short);
vector bool short vec_vupklsb (vector bool char);
vector signed short vec_vupklsb (vector signed char);
vector float vec_xor (vector float, vector float);
vector float vec_xor (vector float, vector bool int);
vector float vec_xor (vector bool int, vector float);
vector bool int vec_xor (vector bool int, vector bool int);
vector signed int vec_xor (vector bool int, vector signed int);
vector signed int vec_xor (vector signed int, vector bool int);
vector signed int vec_xor (vector signed int, vector signed int);
vector unsigned int vec_xor (vector bool int, vector unsigned int);
vector unsigned int vec_xor (vector unsigned int, vector bool int);
vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
vector bool short vec_xor (vector bool short, vector bool short);
vector signed short vec_xor (vector bool short, vector signed short);
vector signed short vec_xor (vector signed short, vector bool short);
vector signed short vec_xor (vector signed short, vector signed short);
vector unsigned short vec_xor (vector bool short,
vector unsigned short);
vector unsigned short vec_xor (vector unsigned short,
vector bool short);
vector unsigned short vec_xor (vector unsigned short,
vector unsigned short);
vector signed char vec_xor (vector bool char, vector signed char);
vector bool char vec_xor (vector bool char, vector bool char);
vector signed char vec_xor (vector signed char, vector bool char);
vector signed char vec_xor (vector signed char, vector signed char);
vector unsigned char vec_xor (vector bool char, vector unsigned char);
vector unsigned char vec_xor (vector unsigned char, vector bool char);
vector unsigned char vec_xor (vector unsigned char,
vector unsigned char);
int vec_all_eq (vector signed char, vector bool char);
int vec_all_eq (vector signed char, vector signed char);
int vec_all_eq (vector unsigned char, vector bool char);
int vec_all_eq (vector unsigned char, vector unsigned char);
int vec_all_eq (vector bool char, vector bool char);
int vec_all_eq (vector bool char, vector unsigned char);
int vec_all_eq (vector bool char, vector signed char);
int vec_all_eq (vector signed short, vector bool short);
int vec_all_eq (vector signed short, vector signed short);
int vec_all_eq (vector unsigned short, vector bool short);
int vec_all_eq (vector unsigned short, vector unsigned short);
int vec_all_eq (vector bool short, vector bool short);
int vec_all_eq (vector bool short, vector unsigned short);
int vec_all_eq (vector bool short, vector signed short);
int vec_all_eq (vector pixel, vector pixel);
int vec_all_eq (vector signed int, vector bool int);
int vec_all_eq (vector signed int, vector signed int);
int vec_all_eq (vector unsigned int, vector bool int);
int vec_all_eq (vector unsigned int, vector unsigned int);
int vec_all_eq (vector bool int, vector bool int);
int vec_all_eq (vector bool int, vector unsigned int);
int vec_all_eq (vector bool int, vector signed int);
int vec_all_eq (vector float, vector float);
int vec_all_ge (vector bool char, vector unsigned char);
int vec_all_ge (vector unsigned char, vector bool char);
int vec_all_ge (vector unsigned char, vector unsigned char);
int vec_all_ge (vector bool char, vector signed char);
int vec_all_ge (vector signed char, vector bool char);
int vec_all_ge (vector signed char, vector signed char);
int vec_all_ge (vector bool short, vector unsigned short);
int vec_all_ge (vector unsigned short, vector bool short);
int vec_all_ge (vector unsigned short, vector unsigned short);
int vec_all_ge (vector signed short, vector signed short);
int vec_all_ge (vector bool short, vector signed short);
int vec_all_ge (vector signed short, vector bool short);
int vec_all_ge (vector bool int, vector unsigned int);
int vec_all_ge (vector unsigned int, vector bool int);
int vec_all_ge (vector unsigned int, vector unsigned int);
int vec_all_ge (vector bool int, vector signed int);
int vec_all_ge (vector signed int, vector bool int);
int vec_all_ge (vector signed int, vector signed int);
int vec_all_ge (vector float, vector float);
int vec_all_gt (vector bool char, vector unsigned char);
int vec_all_gt (vector unsigned char, vector bool char);
int vec_all_gt (vector unsigned char, vector unsigned char);
int vec_all_gt (vector bool char, vector signed char);
int vec_all_gt (vector signed char, vector bool char);
int vec_all_gt (vector signed char, vector signed char);
int vec_all_gt (vector bool short, vector unsigned short);
int vec_all_gt (vector unsigned short, vector bool short);
int vec_all_gt (vector unsigned short, vector unsigned short);
int vec_all_gt (vector bool short, vector signed short);
int vec_all_gt (vector signed short, vector bool short);
int vec_all_gt (vector signed short, vector signed short);
int vec_all_gt (vector bool int, vector unsigned int);
int vec_all_gt (vector unsigned int, vector bool int);
int vec_all_gt (vector unsigned int, vector unsigned int);
int vec_all_gt (vector bool int, vector signed int);
int vec_all_gt (vector signed int, vector bool int);
int vec_all_gt (vector signed int, vector signed int);
int vec_all_gt (vector float, vector float);
int vec_all_in (vector float, vector float);
int vec_all_le (vector bool char, vector unsigned char);
int vec_all_le (vector unsigned char, vector bool char);
int vec_all_le (vector unsigned char, vector unsigned char);
int vec_all_le (vector bool char, vector signed char);
int vec_all_le (vector signed char, vector bool char);
int vec_all_le (vector signed char, vector signed char);
int vec_all_le (vector bool short, vector unsigned short);
int vec_all_le (vector unsigned short, vector bool short);
int vec_all_le (vector unsigned short, vector unsigned short);
int vec_all_le (vector bool short, vector signed short);
int vec_all_le (vector signed short, vector bool short);
int vec_all_le (vector signed short, vector signed short);
int vec_all_le (vector bool int, vector unsigned int);
int vec_all_le (vector unsigned int, vector bool int);
int vec_all_le (vector unsigned int, vector unsigned int);
int vec_all_le (vector bool int, vector signed int);
int vec_all_le (vector signed int, vector bool int);
int vec_all_le (vector signed int, vector signed int);
int vec_all_le (vector float, vector float);
int vec_all_lt (vector bool char, vector unsigned char);
int vec_all_lt (vector unsigned char, vector bool char);
int vec_all_lt (vector unsigned char, vector unsigned char);
int vec_all_lt (vector bool char, vector signed char);
int vec_all_lt (vector signed char, vector bool char);
int vec_all_lt (vector signed char, vector signed char);
int vec_all_lt (vector bool short, vector unsigned short);
int vec_all_lt (vector unsigned short, vector bool short);
int vec_all_lt (vector unsigned short, vector unsigned short);
int vec_all_lt (vector bool short, vector signed short);
int vec_all_lt (vector signed short, vector bool short);
int vec_all_lt (vector signed short, vector signed short);
int vec_all_lt (vector bool int, vector unsigned int);
int vec_all_lt (vector unsigned int, vector bool int);
int vec_all_lt (vector unsigned int, vector unsigned int);
int vec_all_lt (vector bool int, vector signed int);
int vec_all_lt (vector signed int, vector bool int);
int vec_all_lt (vector signed int, vector signed int);
int vec_all_lt (vector float, vector float);
int vec_all_nan (vector float);
int vec_all_ne (vector signed char, vector bool char);
int vec_all_ne (vector signed char, vector signed char);
int vec_all_ne (vector unsigned char, vector bool char);
int vec_all_ne (vector unsigned char, vector unsigned char);
int vec_all_ne (vector bool char, vector bool char);
int vec_all_ne (vector bool char, vector unsigned char);
int vec_all_ne (vector bool char, vector signed char);
int vec_all_ne (vector signed short, vector bool short);
int vec_all_ne (vector signed short, vector signed short);
int vec_all_ne (vector unsigned short, vector bool short);
int vec_all_ne (vector unsigned short, vector unsigned short);
int vec_all_ne (vector bool short, vector bool short);
int vec_all_ne (vector bool short, vector unsigned short);
int vec_all_ne (vector bool short, vector signed short);
int vec_all_ne (vector pixel, vector pixel);
int vec_all_ne (vector signed int, vector bool int);
int vec_all_ne (vector signed int, vector signed int);
int vec_all_ne (vector unsigned int, vector bool int);
int vec_all_ne (vector unsigned int, vector unsigned int);
int vec_all_ne (vector bool int, vector bool int);
int vec_all_ne (vector bool int, vector unsigned int);
int vec_all_ne (vector bool int, vector signed int);
int vec_all_ne (vector float, vector float);
int vec_all_nge (vector float, vector float);
int vec_all_ngt (vector float, vector float);
int vec_all_nle (vector float, vector float);
int vec_all_nlt (vector float, vector float);
int vec_all_numeric (vector float);
int vec_any_eq (vector signed char, vector bool char);
int vec_any_eq (vector signed char, vector signed char);
int vec_any_eq (vector unsigned char, vector bool char);
int vec_any_eq (vector unsigned char, vector unsigned char);
int vec_any_eq (vector bool char, vector bool char);
int vec_any_eq (vector bool char, vector unsigned char);
int vec_any_eq (vector bool char, vector signed char);
int vec_any_eq (vector signed short, vector bool short);
int vec_any_eq (vector signed short, vector signed short);
int vec_any_eq (vector unsigned short, vector bool short);
int vec_any_eq (vector unsigned short, vector unsigned short);
int vec_any_eq (vector bool short, vector bool short);
int vec_any_eq (vector bool short, vector unsigned short);
int vec_any_eq (vector bool short, vector signed short);
int vec_any_eq (vector pixel, vector pixel);
int vec_any_eq (vector signed int, vector bool int);
int vec_any_eq (vector signed int, vector signed int);
int vec_any_eq (vector unsigned int, vector bool int);
int vec_any_eq (vector unsigned int, vector unsigned int);
int vec_any_eq (vector bool int, vector bool int);
int vec_any_eq (vector bool int, vector unsigned int);
int vec_any_eq (vector bool int, vector signed int);
int vec_any_eq (vector float, vector float);
int vec_any_ge (vector signed char, vector bool char);
int vec_any_ge (vector unsigned char, vector bool char);
int vec_any_ge (vector unsigned char, vector unsigned char);
int vec_any_ge (vector signed char, vector signed char);
int vec_any_ge (vector bool char, vector unsigned char);
int vec_any_ge (vector bool char, vector signed char);
int vec_any_ge (vector unsigned short, vector bool short);
int vec_any_ge (vector unsigned short, vector unsigned short);
int vec_any_ge (vector signed short, vector signed short);
int vec_any_ge (vector signed short, vector bool short);
int vec_any_ge (vector bool short, vector unsigned short);
int vec_any_ge (vector bool short, vector signed short);
int vec_any_ge (vector signed int, vector bool int);
int vec_any_ge (vector unsigned int, vector bool int);
int vec_any_ge (vector unsigned int, vector unsigned int);
int vec_any_ge (vector signed int, vector signed int);
int vec_any_ge (vector bool int, vector unsigned int);
int vec_any_ge (vector bool int, vector signed int);
int vec_any_ge (vector float, vector float);
int vec_any_gt (vector bool char, vector unsigned char);
int vec_any_gt (vector unsigned char, vector bool char);
int vec_any_gt (vector unsigned char, vector unsigned char);
int vec_any_gt (vector bool char, vector signed char);
int vec_any_gt (vector signed char, vector bool char);
int vec_any_gt (vector signed char, vector signed char);
int vec_any_gt (vector bool short, vector unsigned short);
int vec_any_gt (vector unsigned short, vector bool short);
int vec_any_gt (vector unsigned short, vector unsigned short);
int vec_any_gt (vector bool short, vector signed short);
int vec_any_gt (vector signed short, vector bool short);
int vec_any_gt (vector signed short, vector signed short);
int vec_any_gt (vector bool int, vector unsigned int);
int vec_any_gt (vector unsigned int, vector bool int);
int vec_any_gt (vector unsigned int, vector unsigned int);
int vec_any_gt (vector bool int, vector signed int);
int vec_any_gt (vector signed int, vector bool int);
int vec_any_gt (vector signed int, vector signed int);
int vec_any_gt (vector float, vector float);
int vec_any_le (vector bool char, vector unsigned char);
int vec_any_le (vector unsigned char, vector bool char);
int vec_any_le (vector unsigned char, vector unsigned char);
int vec_any_le (vector bool char, vector signed char);
int vec_any_le (vector signed char, vector bool char);
int vec_any_le (vector signed char, vector signed char);
int vec_any_le (vector bool short, vector unsigned short);
int vec_any_le (vector unsigned short, vector bool short);
int vec_any_le (vector unsigned short, vector unsigned short);
int vec_any_le (vector bool short, vector signed short);
int vec_any_le (vector signed short, vector bool short);
int vec_any_le (vector signed short, vector signed short);
int vec_any_le (vector bool int, vector unsigned int);
int vec_any_le (vector unsigned int, vector bool int);
int vec_any_le (vector unsigned int, vector unsigned int);
int vec_any_le (vector bool int, vector signed int);
int vec_any_le (vector signed int, vector bool int);
int vec_any_le (vector signed int, vector signed int);
int vec_any_le (vector float, vector float);
int vec_any_lt (vector bool char, vector unsigned char);
int vec_any_lt (vector unsigned char, vector bool char);
int vec_any_lt (vector unsigned char, vector unsigned char);
int vec_any_lt (vector bool char, vector signed char);
int vec_any_lt (vector signed char, vector bool char);
int vec_any_lt (vector signed char, vector signed char);
int vec_any_lt (vector bool short, vector unsigned short);
int vec_any_lt (vector unsigned short, vector bool short);
int vec_any_lt (vector unsigned short, vector unsigned short);
int vec_any_lt (vector bool short, vector signed short);
int vec_any_lt (vector signed short, vector bool short);
int vec_any_lt (vector signed short, vector signed short);
int vec_any_lt (vector bool int, vector unsigned int);
int vec_any_lt (vector unsigned int, vector bool int);
int vec_any_lt (vector unsigned int, vector unsigned int);
int vec_any_lt (vector bool int, vector signed int);
int vec_any_lt (vector signed int, vector bool int);
int vec_any_lt (vector signed int, vector signed int);
int vec_any_lt (vector float, vector float);
int vec_any_nan (vector float);
int vec_any_ne (vector signed char, vector bool char);
int vec_any_ne (vector signed char, vector signed char);
int vec_any_ne (vector unsigned char, vector bool char);
int vec_any_ne (vector unsigned char, vector unsigned char);
int vec_any_ne (vector bool char, vector bool char);
int vec_any_ne (vector bool char, vector unsigned char);
int vec_any_ne (vector bool char, vector signed char);
int vec_any_ne (vector signed short, vector bool short);
int vec_any_ne (vector signed short, vector signed short);
int vec_any_ne (vector unsigned short, vector bool short);
int vec_any_ne (vector unsigned short, vector unsigned short);
int vec_any_ne (vector bool short, vector bool short);
int vec_any_ne (vector bool short, vector unsigned short);
int vec_any_ne (vector bool short, vector signed short);
int vec_any_ne (vector pixel, vector pixel);
int vec_any_ne (vector signed int, vector bool int);
int vec_any_ne (vector signed int, vector signed int);
int vec_any_ne (vector unsigned int, vector bool int);
int vec_any_ne (vector unsigned int, vector unsigned int);
int vec_any_ne (vector bool int, vector bool int);
int vec_any_ne (vector bool int, vector unsigned int);
int vec_any_ne (vector bool int, vector signed int);
int vec_any_ne (vector float, vector float);
int vec_any_nge (vector float, vector float);
int vec_any_ngt (vector float, vector float);
int vec_any_nle (vector float, vector float);
int vec_any_nlt (vector float, vector float);
int vec_any_numeric (vector float);
int vec_any_out (vector float, vector float);
</pre>
<div class="node">
<a name="SPARC-VIS-Built-in-Functions"></a>
<a name="SPARC-VIS-Built_002din-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SPU-Built_002din-Functions">SPU Built-in Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#PowerPC-AltiVec-Built_002din-Functions">PowerPC AltiVec Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.13 SPARC VIS Built-in Functions</h4>
<p>GCC supports SIMD operations on the SPARC using both the generic vector
extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) as well as built-in functions for
the SPARC Visual Instruction Set (VIS). When you use the <samp><span class="option">-mvis</span></samp>
switch, the VIS extension is exposed as the following built-in functions:
<pre class="smallexample"> typedef int v2si __attribute__ ((vector_size (8)));
typedef short v4hi __attribute__ ((vector_size (8)));
typedef short v2hi __attribute__ ((vector_size (4)));
typedef char v8qi __attribute__ ((vector_size (8)));
typedef char v4qi __attribute__ ((vector_size (4)));
void * __builtin_vis_alignaddr (void *, long);
int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
v2si __builtin_vis_faligndatav2si (v2si, v2si);
v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
v4hi __builtin_vis_fexpand (v4qi);
v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
v4qi __builtin_vis_fpack16 (v4hi);
v8qi __builtin_vis_fpack32 (v2si, v2si);
v2hi __builtin_vis_fpackfix (v2si);
v8qi __builtin_vis_fpmerge (v4qi, v4qi);
int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
</pre>
<div class="node">
<a name="SPU-Built-in-Functions"></a>
<a name="SPU-Built_002din-Functions"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>,
Up: <a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>
</div>
<h4 class="subsection">5.51.14 SPU Built-in Functions</h4>
<p>GCC provides extensions for the SPU processor as described in the
Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
found at <a href="http://cell.scei.co.jp/">http://cell.scei.co.jp/</a> or
<a href="http://www.ibm.com/developerworks/power/cell/">http://www.ibm.com/developerworks/power/cell/</a>. GCC's
implementation differs in several ways.
<ul>
<li>The optional extension of specifying vector constants in parentheses is
not supported.
<li>A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.
<li>If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type. The default
varies depending on the operating system, so a portable program should
always specify the signedness.
<li>By default, the keyword <code>__vector</code> is added. The macro
<code>vector</code> is defined in <code><spu_intrinsics.h></code> and can be
undefined.
<li>GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.
<li>For C, overloaded functions are implemented with macros so the following
does not work:
<pre class="smallexample"> spu_add ((vector signed int){1, 2, 3, 4}, foo);
</pre>
<p>Since <code>spu_add</code> is a macro, the vector constant in the example
is treated as four separate arguments. Wrap the entire argument in
parentheses for this to work.
<li>The extended version of <code>__builtin_expect</code> is not supported.
</ul>
<p><em>Note:</em> Only the interface described in the aforementioned
specification is supported. Internally, GCC uses built-in functions to
implement the required functionality, but these are not supported and
are subject to change without notice.
<div class="node">
<a name="Target-Format-Checks"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Pragmas">Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Builtins">Target Builtins</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.52 Format Checks Specific to Particular Target Machines</h3>
<p>For some target machines, GCC supports additional options to the
format attribute
(see <a href="#Function-Attributes">Declaring Attributes of Functions</a>).
<ul class="menu">
<li><a accesskey="1" href="#Solaris-Format-Checks">Solaris Format Checks</a>
</ul>
<div class="node">
<a name="Solaris-Format-Checks"></a>
<p><hr>
Up: <a rel="up" accesskey="u" href="#Target-Format-Checks">Target Format Checks</a>
</div>
<h4 class="subsection">5.52.1 Solaris Format Checks</h4>
<p>Solaris targets support the <code>cmn_err</code> (or <code>__cmn_err__</code>) format
check. <code>cmn_err</code> accepts a subset of the standard <code>printf</code>
conversions, and the two-argument <code>%b</code> conversion for displaying
bit-fields. See the Solaris man page for <code>cmn_err</code> for more information.
<div class="node">
<a name="Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Unnamed-Fields">Unnamed Fields</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Format-Checks">Target Format Checks</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.53 Pragmas Accepted by GCC</h3>
<p><a name="index-pragmas-2942"></a><a name="index-g_t_0023pragma-2943"></a>
GCC supports several types of pragmas, primarily in order to compile
code originally written for other compilers. Note that in general
we do not recommend the use of pragmas; See <a href="#Function-Attributes">Function Attributes</a>,
for further explanation.
<ul class="menu">
<li><a accesskey="1" href="#ARM-Pragmas">ARM Pragmas</a>
<li><a accesskey="2" href="#M32C-Pragmas">M32C Pragmas</a>
<li><a accesskey="3" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>
<li><a accesskey="4" href="#Darwin-Pragmas">Darwin Pragmas</a>
<li><a accesskey="5" href="#Solaris-Pragmas">Solaris Pragmas</a>
<li><a accesskey="6" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>
<li><a accesskey="7" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>
<li><a accesskey="8" href="#Weak-Pragmas">Weak Pragmas</a>
<li><a accesskey="9" href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>
<li><a href="#Visibility-Pragmas">Visibility Pragmas</a>
<li><a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>
<li><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>
</ul>
<div class="node">
<a name="ARM-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#M32C-Pragmas">M32C Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.1 ARM Pragmas</h4>
<p>The ARM target defines pragmas for controlling the default addition of
<code>long_call</code> and <code>short_call</code> attributes to functions.
See <a href="#Function-Attributes">Function Attributes</a>, for information about the effects of these
attributes.
<dl>
<dt><code>long_calls</code><dd><a name="index-pragma_002c-long_005fcalls-2944"></a>Set all subsequent functions to have the <code>long_call</code> attribute.
<br><dt><code>no_long_calls</code><dd><a name="index-pragma_002c-no_005flong_005fcalls-2945"></a>Set all subsequent functions to have the <code>short_call</code> attribute.
<br><dt><code>long_calls_off</code><dd><a name="index-pragma_002c-long_005fcalls_005foff-2946"></a>Do not affect the <code>long_call</code> or <code>short_call</code> attributes of
subsequent functions.
</dl>
<div class="node">
<a name="M32C-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#ARM-Pragmas">ARM Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.2 M32C Pragmas</h4>
<dl>
<dt><code>memregs </code><var>number</var><dd><a name="index-pragma_002c-memregs-2947"></a>Overrides the command line option <code>-memregs=</code> for the current
file. Use with care! This pragma must be before any function in the
file, and mixing different memregs values in different objects may
make them incompatible. This pragma is useful when a
performance-critical function uses a memreg for temporary values,
as it may allow you to reduce the number of memregs used.
</dl>
<div class="node">
<a name="RS%2f6000-and-PowerPC-Pragmas"></a>
<a name="RS_002f6000-and-PowerPC-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Darwin-Pragmas">Darwin Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#M32C-Pragmas">M32C Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.3 RS/6000 and PowerPC Pragmas</h4>
<p>The RS/6000 and PowerPC targets define one pragma for controlling
whether or not the <code>longcall</code> attribute is added to function
declarations by default. This pragma overrides the <samp><span class="option">-mlongcall</span></samp>
option, but not the <code>longcall</code> and <code>shortcall</code> attributes.
See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information about when long
calls are and are not necessary.
<dl>
<dt><code>longcall (1)</code><dd><a name="index-pragma_002c-longcall-2948"></a>Apply the <code>longcall</code> attribute to all subsequent function
declarations.
<br><dt><code>longcall (0)</code><dd>Do not apply the <code>longcall</code> attribute to subsequent function
declarations.
</dl>
<!-- Describe h8300 pragmas here. -->
<!-- Describe sh pragmas here. -->
<!-- Describe v850 pragmas here. -->
<div class="node">
<a name="Darwin-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Solaris-Pragmas">Solaris Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.4 Darwin Pragmas</h4>
<p>The following pragmas are available for all architectures running the
Darwin operating system. These are useful for compatibility with other
Mac OS compilers.
<dl>
<dt><code>mark </code><var>tokens</var><code>...</code><dd><a name="index-pragma_002c-mark-2949"></a>This pragma is accepted, but has no effect.
<br><dt><code>options align=</code><var>alignment</var><dd><a name="index-pragma_002c-options-align-2950"></a>This pragma sets the alignment of fields in structures. The values of
<var>alignment</var> may be <code>mac68k</code>, to emulate m68k alignment, or
<code>power</code>, to emulate PowerPC alignment. Uses of this pragma nest
properly; to restore the previous setting, use <code>reset</code> for the
<var>alignment</var>.
<br><dt><code>segment </code><var>tokens</var><code>...</code><dd><a name="index-pragma_002c-segment-2951"></a>This pragma is accepted, but has no effect.
<br><dt><code>unused (</code><var>var</var><code> [, </code><var>var</var><code>]...)</code><dd><a name="index-pragma_002c-unused-2952"></a>This pragma declares variables to be possibly unused. GCC will not
produce warnings for the listed variables. The effect is similar to
that of the <code>unused</code> attribute, except that this pragma may appear
anywhere within the variables' scopes.
</dl>
<div class="node">
<a name="Solaris-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Darwin-Pragmas">Darwin Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.5 Solaris Pragmas</h4>
<p>The Solaris target supports <code>#pragma redefine_extname</code>
(see <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>). It also supports additional
<code>#pragma</code> directives for compatibility with the system compiler.
<dl>
<dt><code>align </code><var>alignment</var><code> (</code><var>variable</var><code> [, </code><var>variable</var><code>]...)</code><dd><a name="index-pragma_002c-align-2953"></a>
Increase the minimum alignment of each <var>variable</var> to <var>alignment</var>.
This is the same as GCC's <code>aligned</code> attribute see <a href="#Variable-Attributes">Variable Attributes</a>). Macro expansion occurs on the arguments to this pragma
when compiling C and Objective-C. It does not currently occur when
compiling C++, but this is a bug which may be fixed in a future
release.
<br><dt><code>fini (</code><var>function</var><code> [, </code><var>function</var><code>]...)</code><dd><a name="index-pragma_002c-fini-2954"></a>
This pragma causes each listed <var>function</var> to be called after
main, or during shared module unloading, by adding a call to the
<code>.fini</code> section.
<br><dt><code>init (</code><var>function</var><code> [, </code><var>function</var><code>]...)</code><dd><a name="index-pragma_002c-init-2955"></a>
This pragma causes each listed <var>function</var> to be called during
initialization (before <code>main</code>) or during shared module loading, by
adding a call to the <code>.init</code> section.
</dl>
<div class="node">
<a name="Symbol-Renaming-Pragmas"></a>
<a name="Symbol_002dRenaming-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Solaris-Pragmas">Solaris Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.6 Symbol-Renaming Pragmas</h4>
<p>For compatibility with the Solaris and Tru64 UNIX system headers, GCC
supports two <code>#pragma</code> directives which change the name used in
assembly for a given declaration. These pragmas are only available on
platforms whose system headers need them. To get this effect on all
platforms supported by GCC, use the asm labels extension (see <a href="#Asm-Labels">Asm Labels</a>).
<dl>
<dt><code>redefine_extname </code><var>oldname</var> <var>newname</var><dd><a name="index-pragma_002c-redefine_005fextname-2956"></a>
This pragma gives the C function <var>oldname</var> the assembly symbol
<var>newname</var>. The preprocessor macro <code>__PRAGMA_REDEFINE_EXTNAME</code>
will be defined if this pragma is available (currently only on
Solaris).
<br><dt><code>extern_prefix </code><var>string</var><dd><a name="index-pragma_002c-extern_005fprefix-2957"></a>
This pragma causes all subsequent external function and variable
declarations to have <var>string</var> prepended to their assembly symbols.
This effect may be terminated with another <code>extern_prefix</code> pragma
whose argument is an empty string. The preprocessor macro
<code>__PRAGMA_EXTERN_PREFIX</code> will be defined if this pragma is
available (currently only on Tru64 UNIX).
</dl>
<p>These pragmas and the asm labels extension interact in a complicated
manner. Here are some corner cases you may want to be aware of.
<ol type=1 start=1>
<li>Both pragmas silently apply only to declarations with external
linkage. Asm labels do not have this restriction.
<li>In C++, both pragmas silently apply only to declarations with
“C” linkage. Again, asm labels do not have this restriction.
<li>If any of the three ways of changing the assembly name of a
declaration is applied to a declaration whose assembly name has
already been determined (either by a previous use of one of these
features, or because the compiler needed the assembly name in order to
generate code), and the new name is different, a warning issues and
the name does not change.
<li>The <var>oldname</var> used by <code>#pragma redefine_extname</code> is
always the C-language name.
<li>If <code>#pragma extern_prefix</code> is in effect, and a declaration
occurs with an asm label attached, the prefix is silently ignored for
that declaration.
<li>If <code>#pragma extern_prefix</code> and <code>#pragma redefine_extname</code>
apply to the same declaration, whichever triggered first wins, and a
warning issues if they contradict each other. (We would like to have
<code>#pragma redefine_extname</code> always win, for consistency with asm
labels, but if <code>#pragma extern_prefix</code> triggers first we have no
way of knowing that that happened.)
</ol>
<div class="node">
<a name="Structure-Packing-Pragmas"></a>
<a name="Structure_002dPacking-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Weak-Pragmas">Weak Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.7 Structure-Packing Pragmas</h4>
<p>For compatibility with Microsoft Windows compilers, GCC supports a
set of <code>#pragma</code> directives which change the maximum alignment of
members of structures (other than zero-width bitfields), unions, and
classes subsequently defined. The <var>n</var> value below always is required
to be a small power of two and specifies the new alignment in bytes.
<ol type=1 start=1>
<li><code>#pragma pack(</code><var>n</var><code>)</code> simply sets the new alignment.
<li><code>#pragma pack()</code> sets the alignment to the one that was in
effect when compilation started (see also command line option
<samp><span class="option">-fpack-struct[=<n>]</span></samp> see <a href="#Code-Gen-Options">Code Gen Options</a>).
<li><code>#pragma pack(push[,</code><var>n</var><code>])</code> pushes the current alignment
setting on an internal stack and then optionally sets the new alignment.
<li><code>#pragma pack(pop)</code> restores the alignment setting to the one
saved at the top of the internal stack (and removes that stack entry).
Note that <code>#pragma pack([</code><var>n</var><code>])</code> does not influence this internal
stack; thus it is possible to have <code>#pragma pack(push)</code> followed by
multiple <code>#pragma pack(</code><var>n</var><code>)</code> instances and finalized by a single
<code>#pragma pack(pop)</code>.
</ol>
<p>Some targets, e.g. i386 and powerpc, support the <code>ms_struct</code>
<code>#pragma</code> which lays out a structure as the documented
<code>__attribute__ ((ms_struct))</code>.
<ol type=1 start=1>
<li><code>#pragma ms_struct on</code> turns on the layout for structures
declared.
<li><code>#pragma ms_struct off</code> turns off the layout for structures
declared.
<li><code>#pragma ms_struct reset</code> goes back to the default layout.
</ol>
<div class="node">
<a name="Weak-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.8 Weak Pragmas</h4>
<p>For compatibility with SVR4, GCC supports a set of <code>#pragma</code>
directives for declaring symbols to be weak, and defining weak
aliases.
<dl>
<dt><code>#pragma weak </code><var>symbol</var><dd><a name="index-pragma_002c-weak-2958"></a>This pragma declares <var>symbol</var> to be weak, as if the declaration
had the attribute of the same name. The pragma may appear before
or after the declaration of <var>symbol</var>, but must appear before
either its first use or its definition. It is not an error for
<var>symbol</var> to never be defined at all.
<br><dt><code>#pragma weak </code><var>symbol1</var><code> = </code><var>symbol2</var><dd>This pragma declares <var>symbol1</var> to be a weak alias of <var>symbol2</var>.
It is an error if <var>symbol2</var> is not defined in the current
translation unit.
</dl>
<div class="node">
<a name="Diagnostic-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Visibility-Pragmas">Visibility Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Weak-Pragmas">Weak Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.9 Diagnostic Pragmas</h4>
<p>GCC allows the user to selectively enable or disable certain types of
diagnostics, and change the kind of the diagnostic. For example, a
project's policy might require that all sources compile with
<samp><span class="option">-Werror</span></samp> but certain files might have exceptions allowing
specific types of warnings. Or, a project might selectively enable
diagnostics and treat them as errors depending on which preprocessor
macros are defined.
<dl>
<dt><code>#pragma GCC diagnostic </code><var>kind</var> <var>option</var><dd><a name="index-pragma_002c-diagnostic-2959"></a>
Modifies the disposition of a diagnostic. Note that not all
diagnostics are modifiable; at the moment only warnings (normally
controlled by ‘<samp><span class="samp">-W...</span></samp>’) can be controlled, and not all of them.
Use <samp><span class="option">-fdiagnostics-show-option</span></samp> to determine which diagnostics
are controllable and which option controls them.
<p><var>kind</var> is ‘<samp><span class="samp">error</span></samp>’ to treat this diagnostic as an error,
‘<samp><span class="samp">warning</span></samp>’ to treat it like a warning (even if <samp><span class="option">-Werror</span></samp> is
in effect), or ‘<samp><span class="samp">ignored</span></samp>’ if the diagnostic is to be ignored.
<var>option</var> is a double quoted string which matches the command line
option.
<pre class="example"> #pragma GCC diagnostic warning "-Wformat"
#pragma GCC diagnostic error "-Wformat"
#pragma GCC diagnostic ignored "-Wformat"
</pre>
<p>Note that these pragmas override any command line options. Also,
while it is syntactically valid to put these pragmas anywhere in your
sources, the only supported location for them is before any data or
functions are defined. Doing otherwise may result in unpredictable
results depending on how the optimizer manages your sources. If the
same option is listed multiple times, the last one specified is the
one that is in effect. This pragma is not intended to be a general
purpose replacement for command line options, but for implementing
strict control over project policies.
</dl>
<p>GCC also offers a simple mechanism for printing messages during
compilation.
<dl>
<dt><code>#pragma message </code><var>string</var><dd><a name="index-pragma_002c-diagnostic-2960"></a>
Prints <var>string</var> as a compiler message on compilation. The message
is informational only, and is neither a compilation warning nor an error.
<pre class="smallexample"> #pragma message "Compiling " __FILE__ "..."
</pre>
<p><var>string</var> may be parenthesized, and is printed with location
information. For example,
<pre class="smallexample"> #define DO_PRAGMA(x) _Pragma (#x)
#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
TODO(Remember to fix this)
</pre>
<p>prints ‘<samp><span class="samp">/tmp/file.c:4: note: #pragma message:
TODO - Remember to fix this</span></samp>’.
</dl>
<div class="node">
<a name="Visibility-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.10 Visibility Pragmas</h4>
<dl>
<dt><code>#pragma GCC visibility push(</code><var>visibility</var><code>)</code><dt><code>#pragma GCC visibility pop</code><dd><a name="index-pragma_002c-visibility-2961"></a>
This pragma allows the user to set the visibility for multiple
declarations without having to give each a visibility attribute
See <a href="#Function-Attributes">Function Attributes</a>, for more information about visibility and
the attribute syntax.
<p>In C++, ‘<samp><span class="samp">#pragma GCC visibility</span></samp>’ affects only namespace-scope
declarations. Class members and template specializations are not
affected; if you want to override the visibility for a particular
member or instantiation, you must use an attribute.
</dl>
<div class="node">
<a name="Push%2fPop-Macro-Pragmas"></a>
<a name="Push_002fPop-Macro-Pragmas"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>,
Previous: <a rel="previous" accesskey="p" href="#Visibility-Pragmas">Visibility Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.11 Push/Pop Macro Pragmas</h4>
<p>For compatibility with Microsoft Windows compilers, GCC supports
‘<samp><span class="samp">#pragma push_macro(</span><var>"macro_name"</var><span class="samp">)</span></samp>’
and ‘<samp><span class="samp">#pragma pop_macro(</span><var>"macro_name"</var><span class="samp">)</span></samp>’.
<dl>
<dt><code>#pragma push_macro(</code><var>"macro_name"</var><code>)</code><dd><a name="index-pragma_002c-push_005fmacro-2962"></a>This pragma saves the value of the macro named as <var>macro_name</var> to
the top of the stack for this macro.
<br><dt><code>#pragma pop_macro(</code><var>"macro_name"</var><code>)</code><dd><a name="index-pragma_002c-pop_005fmacro-2963"></a>This pragma sets the value of the macro named as <var>macro_name</var> to
the value on top of the stack for this macro. If the stack for
<var>macro_name</var> is empty, the value of the macro remains unchanged.
</dl>
<p>For example:
<pre class="smallexample"> #define X 1
#pragma push_macro("X")
#undef X
#define X -1
#pragma pop_macro("X")
int x [X];
</pre>
<p>In this example, the definition of X as 1 is saved by <code>#pragma
push_macro</code> and restored by <code>#pragma pop_macro</code>.
<div class="node">
<a name="Function-Specific-Option-Pragmas"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>
</div>
<h4 class="subsection">5.53.12 Function Specific Option Pragmas</h4>
<dl>
<dt><code>#pragma GCC target (</code><var>"string"</var><code>...)</code><dd><a name="index-pragma-GCC-target-2964"></a>
This pragma allows you to set target specific options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point will be as
if <code>attribute((target("STRING")))</code> was specified for that
function. The parenthesis around the options is optional.
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>target</code> attribute and the attribute syntax.
<p>The ‘<samp><span class="samp">#pragma GCC target</span></samp>’ pragma is not implemented in GCC
versions earlier than 4.4, and is currently only implemented for the
386 and x86_64 backends.
</dl>
<dl>
<dt><code>#pragma GCC optimize (</code><var>"string"</var><code>...)</code><dd><a name="index-pragma-GCC-optimize-2965"></a>
This pragma allows you to set global optimization options for functions
defined later in the source file. One or more strings can be
specified. Each function that is defined after this point will be as
if <code>attribute((optimize("STRING")))</code> was specified for that
function. The parenthesis around the options is optional.
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>optimize</code> attribute and the attribute syntax.
<p>The ‘<samp><span class="samp">#pragma GCC optimize</span></samp>’ pragma is not implemented in GCC
versions earlier than 4.4.
</dl>
<dl>
<dt><code>#pragma GCC push_options</code><dt><code>#pragma GCC pop_options</code><dd><a name="index-pragma-GCC-push_005foptions-2966"></a><a name="index-pragma-GCC-pop_005foptions-2967"></a>
These pragmas maintain a stack of the current target and optimization
options. It is intended for include files where you temporarily want
to switch to using a different ‘<samp><span class="samp">#pragma GCC target</span></samp>’ or
‘<samp><span class="samp">#pragma GCC optimize</span></samp>’ and then to pop back to the previous
options.
<p>The ‘<samp><span class="samp">#pragma GCC push_options</span></samp>’ and ‘<samp><span class="samp">#pragma GCC pop_options</span></samp>’
pragmas are not implemented in GCC versions earlier than 4.4.
</dl>
<dl>
<dt><code>#pragma GCC reset_options</code><dd><a name="index-pragma-GCC-reset_005foptions-2968"></a>
This pragma clears the current <code>#pragma GCC target</code> and
<code>#pragma GCC optimize</code> to use the default switches as specified
on the command line.
<p>The ‘<samp><span class="samp">#pragma GCC reset_options</span></samp>’ pragma is not implemented in GCC
versions earlier than 4.4.
</dl>
<div class="node">
<a name="Unnamed-Fields"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Thread_002dLocal">Thread-Local</a>,
Previous: <a rel="previous" accesskey="p" href="#Pragmas">Pragmas</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.54 Unnamed struct/union fields within structs/unions</h3>
<p><a name="index-struct-2969"></a><a name="index-union-2970"></a>
For compatibility with other compilers, GCC allows you to define
a structure or union that contains, as fields, structures and unions
without names. For example:
<pre class="smallexample"> struct {
int a;
union {
int b;
float c;
};
int d;
} foo;
</pre>
<p>In this example, the user would be able to access members of the unnamed
union with code like ‘<samp><span class="samp">foo.b</span></samp>’. Note that only unnamed structs and
unions are allowed, you may not have, for example, an unnamed
<code>int</code>.
<p>You must never create such structures that cause ambiguous field definitions.
For example, this structure:
<pre class="smallexample"> struct {
int a;
struct {
int a;
};
} foo;
</pre>
<p>It is ambiguous which <code>a</code> is being referred to with ‘<samp><span class="samp">foo.a</span></samp>’.
Such constructs are not supported and must be avoided. In the future,
such constructs may be detected and treated as compilation errors.
<p><a name="index-fms_002dextensions-2971"></a>Unless <samp><span class="option">-fms-extensions</span></samp> is used, the unnamed field must be a
structure or union definition without a tag (for example, ‘<samp><span class="samp">struct
{ int a; };</span></samp>’). If <samp><span class="option">-fms-extensions</span></samp> is used, the field may
also be a definition with a tag such as ‘<samp><span class="samp">struct foo { int a;
};</span></samp>’, a reference to a previously defined structure or union such as
‘<samp><span class="samp">struct foo;</span></samp>’, or a reference to a <code>typedef</code> name for a
previously defined structure or union type.
<div class="node">
<a name="Thread-Local"></a>
<a name="Thread_002dLocal"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Binary-constants">Binary constants</a>,
Previous: <a rel="previous" accesskey="p" href="#Unnamed-Fields">Unnamed Fields</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.55 Thread-Local Storage</h3>
<p><a name="index-Thread_002dLocal-Storage-2972"></a><a name="index-g_t_0040acronym_007bTLS_007d-2973"></a><a name="index-g_t_005f_005fthread-2974"></a>
Thread-local storage (<acronym>TLS</acronym>) is a mechanism by which variables
are allocated such that there is one instance of the variable per extant
thread. The run-time model GCC uses to implement this originates
in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well. It requires significant support from
the linker (<samp><span class="command">ld</span></samp>), dynamic linker (<samp><span class="command">ld.so</span></samp>), and
system libraries (<samp><span class="file">libc.so</span></samp> and <samp><span class="file">libpthread.so</span></samp>), so it
is not available everywhere.
<p>At the user level, the extension is visible with a new storage
class keyword: <code>__thread</code>. For example:
<pre class="smallexample"> __thread int i;
extern __thread struct state s;
static __thread char *p;
</pre>
<p>The <code>__thread</code> specifier may be used alone, with the <code>extern</code>
or <code>static</code> specifiers, but with no other storage class specifier.
When used with <code>extern</code> or <code>static</code>, <code>__thread</code> must appear
immediately after the other storage class specifier.
<p>The <code>__thread</code> specifier may be applied to any global, file-scoped
static, function-scoped static, or static data member of a class. It may
not be applied to block-scoped automatic or non-static data member.
<p>When the address-of operator is applied to a thread-local variable, it is
evaluated at run-time and returns the address of the current thread's
instance of that variable. An address so obtained may be used by any
thread. When a thread terminates, any pointers to thread-local variables
in that thread become invalid.
<p>No static initialization may refer to the address of a thread-local variable.
<p>In C++, if an initializer is present for a thread-local variable, it must
be a <var>constant-expression</var>, as defined in 5.19.2 of the ANSI/ISO C++
standard.
<p>See <a href="http://people.redhat.com/drepper/tls.pdf">ELF Handling For Thread-Local Storage</a> for a detailed explanation of
the four thread-local storage addressing models, and how the run-time
is expected to function.
<ul class="menu">
<li><a accesskey="1" href="#C99-Thread_002dLocal-Edits">C99 Thread-Local Edits</a>
<li><a accesskey="2" href="#C_002b_002b98-Thread_002dLocal-Edits">C++98 Thread-Local Edits</a>
</ul>
<div class="node">
<a name="C99-Thread-Local-Edits"></a>
<a name="C99-Thread_002dLocal-Edits"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b98-Thread_002dLocal-Edits">C++98 Thread-Local Edits</a>,
Up: <a rel="up" accesskey="u" href="#Thread_002dLocal">Thread-Local</a>
</div>
<h4 class="subsection">5.55.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</h4>
<p>The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
that document the exact semantics of the language extension.
<ul>
<li><cite>5.1.2 Execution environments</cite>
<p>Add new text after paragraph 1
<blockquote>
Within either execution environment, a <dfn>thread</dfn> is a flow of
control within a program. It is implementation defined whether
or not there may be more than one thread associated with a program.
It is implementation defined how threads beyond the first are
created, the name and type of the function called at thread
startup, and how threads may be terminated. However, objects
with thread storage duration shall be initialized before thread
startup.
</blockquote>
<li><cite>6.2.4 Storage durations of objects</cite>
<p>Add new text before paragraph 3
<blockquote>
An object whose identifier is declared with the storage-class
specifier <code>__thread</code><!-- /@w --> has <dfn>thread storage duration</dfn>.
Its lifetime is the entire execution of the thread, and its
stored value is initialized only once, prior to thread startup.
</blockquote>
<li><cite>6.4.1 Keywords</cite>
<p>Add <code>__thread</code>.
<li><cite>6.7.1 Storage-class specifiers</cite>
<p>Add <code>__thread</code> to the list of storage class specifiers in
paragraph 1.
<p>Change paragraph 2 to
<blockquote>
With the exception of <code>__thread</code>, at most one storage-class
specifier may be given [<small class="dots">...</small>]. The <code>__thread</code> specifier may
be used alone, or immediately following <code>extern</code> or
<code>static</code>.
</blockquote>
<p>Add new text after paragraph 6
<blockquote>
The declaration of an identifier for a variable that has
block scope that specifies <code>__thread</code> shall also
specify either <code>extern</code> or <code>static</code>.
<p>The <code>__thread</code> specifier shall be used only with
variables.
</blockquote>
</ul>
<div class="node">
<a name="C++98-Thread-Local-Edits"></a>
<a name="C_002b_002b98-Thread_002dLocal-Edits"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#C99-Thread_002dLocal-Edits">C99 Thread-Local Edits</a>,
Up: <a rel="up" accesskey="u" href="#Thread_002dLocal">Thread-Local</a>
</div>
<h4 class="subsection">5.55.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</h4>
<p>The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
that document the exact semantics of the language extension.
<ul>
<li><b>[intro.execution]</b>
<p>New text after paragraph 4
<blockquote>
A <dfn>thread</dfn> is a flow of control within the abstract machine.
It is implementation defined whether or not there may be more than
one thread.
</blockquote>
<p>New text after paragraph 7
<blockquote>
It is unspecified whether additional action must be taken to
ensure when and whether side effects are visible to other threads.
</blockquote>
<li><b>[lex.key]</b>
<p>Add <code>__thread</code>.
<li><b>[basic.start.main]</b>
<p>Add after paragraph 5
<blockquote>
The thread that begins execution at the <code>main</code> function is called
the <dfn>main thread</dfn>. It is implementation defined how functions
beginning threads other than the main thread are designated or typed.
A function so designated, as well as the <code>main</code> function, is called
a <dfn>thread startup function</dfn>. It is implementation defined what
happens if a thread startup function returns. It is implementation
defined what happens to other threads when any thread calls <code>exit</code>.
</blockquote>
<li><b>[basic.start.init]</b>
<p>Add after paragraph 4
<blockquote>
The storage for an object of thread storage duration shall be
statically initialized before the first statement of the thread startup
function. An object of thread storage duration shall not require
dynamic initialization.
</blockquote>
<li><b>[basic.start.term]</b>
<p>Add after paragraph 3
<blockquote>
The type of an object with thread storage duration shall not have a
non-trivial destructor, nor shall it be an array type whose elements
(directly or indirectly) have non-trivial destructors.
</blockquote>
<li><b>[basic.stc]</b>
<p>Add “thread storage duration” to the list in paragraph 1.
<p>Change paragraph 2
<blockquote>
Thread, static, and automatic storage durations are associated with
objects introduced by declarations [<small class="dots">...</small>].
</blockquote>
<p>Add <code>__thread</code> to the list of specifiers in paragraph 3.
<li><b>[basic.stc.thread]</b>
<p>New section before <b>[basic.stc.static]</b>
<blockquote>
The keyword <code>__thread</code> applied to a non-local object gives the
object thread storage duration.
<p>A local variable or class data member declared both <code>static</code>
and <code>__thread</code> gives the variable or member thread storage
duration.
</blockquote>
<li><b>[basic.stc.static]</b>
<p>Change paragraph 1
<blockquote>
All objects which have neither thread storage duration, dynamic
storage duration nor are local [<small class="dots">...</small>].
</blockquote>
<li><b>[dcl.stc]</b>
<p>Add <code>__thread</code> to the list in paragraph 1.
<p>Change paragraph 1
<blockquote>
With the exception of <code>__thread</code>, at most one
<var>storage-class-specifier</var> shall appear in a given
<var>decl-specifier-seq</var>. The <code>__thread</code> specifier may
be used alone, or immediately following the <code>extern</code> or
<code>static</code> specifiers. [<small class="dots">...</small>]
</blockquote>
<p>Add after paragraph 5
<blockquote>
The <code>__thread</code> specifier can be applied only to the names of objects
and to anonymous unions.
</blockquote>
<li><b>[class.mem]</b>
<p>Add after paragraph 6
<blockquote>
Non-<code>static</code> members shall not be <code>__thread</code>.
</blockquote>
</ul>
<div class="node">
<a name="Binary-constants"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Thread_002dLocal">Thread-Local</a>,
Up: <a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>
</div>
<h3 class="section">5.56 Binary constants using the ‘<samp><span class="samp">0b</span></samp>’ prefix</h3>
<p><a name="index-Binary-constants-using-the-_0040samp_007b0b_007d-prefix-2975"></a>
Integer constants can be written as binary constants, consisting of a
sequence of ‘<samp><span class="samp">0</span></samp>’ and ‘<samp><span class="samp">1</span></samp>’ digits, prefixed by ‘<samp><span class="samp">0b</span></samp>’ or
‘<samp><span class="samp">0B</span></samp>’. This is particularly useful in environments that operate a
lot on the bit-level (like microcontrollers).
<p>The following statements are identical:
<pre class="smallexample"> i = 42;
i = 0x2a;
i = 052;
i = 0b101010;
</pre>
<p>The type of these constants follows the same rules as for octal or
hexadecimal integer constants, so suffixes like ‘<samp><span class="samp">L</span></samp>’ or ‘<samp><span class="samp">UL</span></samp>’
can be applied.
<div class="node">
<a name="C++-Extensions"></a>
<a name="C_002b_002b-Extensions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Objective_002dC">Objective-C</a>,
Previous: <a rel="previous" accesskey="p" href="#C-Extensions">C Extensions</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">6 Extensions to the C++ Language</h2>
<p><a name="index-extensions_002c-C_002b_002b-language-2976"></a><a name="index-C_002b_002b-language-extensions-2977"></a>
The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs). If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro <code>__GNUC__</code>. You can also use <code>__GNUG__</code> to
test specifically for GNU C++ (see <a href="{No value for `fncpp'}.html#Common-Predefined-Macros">Predefined Macros</a>).
<ul class="menu">
<li><a accesskey="1" href="#Volatiles">Volatiles</a>: What constitutes an access to a volatile object.
<li><a accesskey="2" href="#Restricted-Pointers">Restricted Pointers</a>: C99 restricted pointers and references.
<li><a accesskey="3" href="#Vague-Linkage">Vague Linkage</a>: Where G++ puts inlines, vtables and such.
<li><a accesskey="4" href="#C_002b_002b-Interface">C++ Interface</a>: You can use a single C++ header file for both
declarations and definitions.
<li><a accesskey="5" href="#Template-Instantiation">Template Instantiation</a>: Methods for ensuring that exactly one copy of
each needed template instantiation is emitted.
<li><a accesskey="6" href="#Bound-member-functions">Bound member functions</a>: You can extract a function pointer to the
method denoted by a ‘<samp><span class="samp">->*</span></samp>’ or ‘<samp><span class="samp">.*</span></samp>’ expression.
<li><a accesskey="7" href="#C_002b_002b-Attributes">C++ Attributes</a>: Variable, function, and type attributes for C++ only.
<li><a accesskey="8" href="#Namespace-Association">Namespace Association</a>: Strong using-directives for namespace association.
<li><a accesskey="9" href="#Type-Traits">Type Traits</a>: Compiler support for type traits
<li><a href="#Java-Exceptions">Java Exceptions</a>: Tweaking exception handling to work with Java.
<li><a href="#Deprecated-Features">Deprecated Features</a>: Things will disappear from g++.
<li><a href="#Backwards-Compatibility">Backwards Compatibility</a>: Compatibilities with earlier definitions of C++.
</ul>
<div class="node">
<a name="Volatiles"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Restricted-Pointers">Restricted Pointers</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.1 When is a Volatile Object Accessed?</h3>
<p><a name="index-accessing-volatiles-2978"></a><a name="index-volatile-read-2979"></a><a name="index-volatile-write-2980"></a><a name="index-volatile-access-2981"></a>
Both the C and C++ standard have the concept of volatile objects. These
are normally accessed by pointers and used for accessing hardware. The
standards encourage compilers to refrain from optimizations concerning
accesses to volatile objects. The C standard leaves it implementation
defined as to what constitutes a volatile access. The C++ standard omits
to specify this, except to say that C++ should behave in a similar manner
to C with respect to volatiles, where possible. The minimum either
standard specifies is that at a sequence point all previous accesses to
volatile objects have stabilized and no subsequent accesses have
occurred. Thus an implementation is free to reorder and combine
volatile accesses which occur between sequence points, but cannot do so
for accesses across a sequence point. The use of volatiles does not
allow you to violate the restriction on updating objects multiple times
within a sequence point.
<p>See <a href="#Qualifiers-implementation">Volatile qualifier and the C compiler</a>.
<p>The behavior differs slightly between C and C++ in the non-obvious cases:
<pre class="smallexample"> volatile int *src = <var>somevalue</var>;
*src;
</pre>
<p>With C, such expressions are rvalues, and GCC interprets this either as a
read of the volatile object being pointed to or only as request to evaluate
the side-effects. The C++ standard specifies that such expressions do not
undergo lvalue to rvalue conversion, and that the type of the dereferenced
object may be incomplete. The C++ standard does not specify explicitly
that it is this lvalue to rvalue conversion which may be responsible for
causing an access. However, there is reason to believe that it is,
because otherwise certain simple expressions become undefined. However,
because it would surprise most programmers, G++ treats dereferencing a
pointer to volatile object of complete type when the value is unused as
GCC would do for an equivalent type in C. When the object has incomplete
type, G++ issues a warning; if you wish to force an error, you must
force a conversion to rvalue with, for instance, a static cast.
<p>When using a reference to volatile, G++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed. The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references. Again, if you wish to force a read, cast the reference to
an rvalue.
<div class="node">
<a name="Restricted-Pointers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Vague-Linkage">Vague Linkage</a>,
Previous: <a rel="previous" accesskey="p" href="#Volatiles">Volatiles</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.2 Restricting Pointer Aliasing</h3>
<p><a name="index-restricted-pointers-2982"></a><a name="index-restricted-references-2983"></a><a name="index-restricted-this-pointer-2984"></a>
As with the C front end, G++ understands the C99 feature of restricted pointers,
specified with the <code>__restrict__</code>, or <code>__restrict</code> type
qualifier. Because you cannot compile C++ by specifying the <samp><span class="option">-std=c99</span></samp>
language flag, <code>restrict</code> is not a keyword in C++.
<p>In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.
<pre class="smallexample"> void fn (int *__restrict__ rptr, int &__restrict__ rref)
{
/* <span class="roman">...</span> */
}
</pre>
<p class="noindent">In the body of <code>fn</code>, <var>rptr</var> points to an unaliased integer and
<var>rref</var> refers to a (different) unaliased integer.
<p>You may also specify whether a member function's <var>this</var> pointer is
unaliased by using <code>__restrict__</code> as a member function qualifier.
<pre class="smallexample"> void T::fn () __restrict__
{
/* <span class="roman">...</span> */
}
</pre>
<p class="noindent">Within the body of <code>T::fn</code>, <var>this</var> will have the effective
definition <code>T *__restrict__ const this</code>. Notice that the
interpretation of a <code>__restrict__</code> member function qualifier is
different to that of <code>const</code> or <code>volatile</code> qualifier, in that it
is applied to the pointer rather than the object. This is consistent with
other compilers which implement restricted pointers.
<p>As with all outermost parameter qualifiers, <code>__restrict__</code> is
ignored in function definition matching. This means you only need to
specify <code>__restrict__</code> in a function definition, rather than
in a function prototype as well.
<div class="node">
<a name="Vague-Linkage"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Interface">C++ Interface</a>,
Previous: <a rel="previous" accesskey="p" href="#Restricted-Pointers">Restricted Pointers</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.3 Vague Linkage</h3>
<p><a name="index-vague-linkage-2985"></a>
There are several constructs in C++ which require space in the object
file but are not clearly tied to a single translation unit. We say that
these constructs have “vague linkage”. Typically such constructs are
emitted wherever they are needed, though sometimes we can be more
clever.
<dl>
<dt>Inline Functions<dd>Inline functions are typically defined in a header file which can be
included in many different compilations. Hopefully they can usually be
inlined, but sometimes an out-of-line copy is necessary, if the address
of the function is taken or if inlining fails. In general, we emit an
out-of-line copy in all translation units where one is needed. As an
exception, we only emit inline virtual functions with the vtable, since
it will always require a copy.
<p>Local static variables and string constants used in an inline function
are also considered to have vague linkage, since they must be shared
between all inlined and out-of-line instances of the function.
<br><dt>VTables<dd><a name="index-vtable-2986"></a>C++ virtual functions are implemented in most compilers using a lookup
table, known as a vtable. The vtable contains pointers to the virtual
functions provided by a class, and each object of the class contains a
pointer to its vtable (or vtables, in some multiple-inheritance
situations). If the class declares any non-inline, non-pure virtual
functions, the first one is chosen as the “key method” for the class,
and the vtable is only emitted in the translation unit where the key
method is defined.
<p><em>Note:</em> If the chosen key method is later defined as inline, the
vtable will still be emitted in every translation unit which defines it.
Make sure that any inline virtuals are declared inline in the class
body, even if they are not defined there.
<br><dt>type_info objects<dd><a name="index-type_005finfo-2987"></a><a name="index-RTTI-2988"></a>C++ requires information about types to be written out in order to
implement ‘<samp><span class="samp">dynamic_cast</span></samp>’, ‘<samp><span class="samp">typeid</span></samp>’ and exception handling.
For polymorphic classes (classes with virtual functions), the type_info
object is written out along with the vtable so that ‘<samp><span class="samp">dynamic_cast</span></samp>’
can determine the dynamic type of a class object at runtime. For all
other types, we write out the type_info object when it is used: when
applying ‘<samp><span class="samp">typeid</span></samp>’ to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.
<br><dt>Template Instantiations<dd>Most everything in this section also applies to template instantiations,
but there are other options as well.
See <a href="#Template-Instantiation">Where's the Template?</a>.
</dl>
<p>When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
these constructs will be discarded at link time. This is known as
COMDAT support.
<p>On targets that don't support COMDAT, but do support weak symbols, GCC
will use them. This way one copy will override all the others, but
the unused copies will still take up space in the executable.
<p>For targets which do not support either COMDAT or weak symbols,
most entities with vague linkage will be emitted as local symbols to
avoid duplicate definition errors from the linker. This will not happen
for local statics in inlines, however, as having multiple copies will
almost certainly break things.
<p>See <a href="#C_002b_002b-Interface">Declarations and Definitions in One Header</a>, for
another way to control placement of these constructs.
<div class="node">
<a name="C++-Interface"></a>
<a name="C_002b_002b-Interface"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Template-Instantiation">Template Instantiation</a>,
Previous: <a rel="previous" accesskey="p" href="#Vague-Linkage">Vague Linkage</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.4 #pragma interface and implementation</h3>
<p><a name="index-interface-and-implementation-headers_002c-C_002b_002b-2989"></a><a name="index-C_002b_002b-interface-and-implementation-headers-2990"></a><a name="index-pragmas_002c-interface-and-implementation-2991"></a>
<code>#pragma interface</code> and <code>#pragma implementation</code> provide the
user with a way of explicitly directing the compiler to emit entities
with vague linkage (and debugging information) in a particular
translation unit.
<p><em>Note:</em> As of GCC 2.7.2, these <code>#pragma</code>s are not useful in
most cases, because of COMDAT support and the “key method” heuristic
mentioned in <a href="#Vague-Linkage">Vague Linkage</a>. Using them can actually cause your
program to grow due to unnecessary out-of-line copies of inline
functions. Currently (3.4) the only benefit of these
<code>#pragma</code>s is reduced duplication of debugging information, and
that should be addressed soon on DWARF 2 targets with the use of
COMDAT groups.
<dl>
<dt><code>#pragma interface</code><dt><code>#pragma interface "</code><var>subdir</var><code>/</code><var>objects</var><code>.h"</code><dd><a name="index-g_t_0023pragma-interface-2992"></a>Use this directive in <em>header files</em> that define object classes, to save
space in most of the object files that use those classes. Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions. You can use this pragma to avoid such duplication. When a
header file containing ‘<samp><span class="samp">#pragma interface</span></samp>’ is included in a
compilation, this auxiliary information will not be generated (unless
the main input source file itself uses ‘<samp><span class="samp">#pragma implementation</span></samp>’).
Instead, the object files will contain references to be resolved at link
time.
<p>The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories. If you
use this form, you must specify the same string to ‘<samp><span class="samp">#pragma
implementation</span></samp>’.
<br><dt><code>#pragma implementation</code><dt><code>#pragma implementation "</code><var>objects</var><code>.h"</code><dd><a name="index-g_t_0023pragma-implementation-2993"></a>Use this pragma in a <em>main input file</em>, when you want full output from
included header files to be generated (and made globally visible). The
included header file, in turn, should use ‘<samp><span class="samp">#pragma interface</span></samp>’.
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.
<p><a name="index-implied-_0040code_007b_0023pragma-implementation_007d-2994"></a><a name="index-g_t_0040code_007b_0023pragma-implementation_007d_002c-implied-2995"></a><a name="index-naming-convention_002c-implementation-headers-2996"></a>If you use ‘<samp><span class="samp">#pragma implementation</span></samp>’ with no argument, it applies to
an include file with the same basename<a rel="footnote" href="#fn-4" name="fnd-4"><sup>4</sup></a> as your source
file. For example, in <samp><span class="file">allclass.cc</span></samp>, giving just
‘<samp><span class="samp">#pragma implementation</span></samp>’
by itself is equivalent to ‘<samp><span class="samp">#pragma implementation "allclass.h"</span></samp>’.
<p>In versions of GNU C++ prior to 2.6.0 <samp><span class="file">allclass.h</span></samp> was treated as
an implementation file whenever you would include it from
<samp><span class="file">allclass.cc</span></samp> even if you never specified ‘<samp><span class="samp">#pragma
implementation</span></samp>’. This was deemed to be more trouble than it was worth,
however, and disabled.
<p>Use the string argument if you want a single implementation file to
include code from multiple header files. (You must also use
‘<samp><span class="samp">#include</span></samp>’ to include the header file; ‘<samp><span class="samp">#pragma
implementation</span></samp>’ only specifies how to use the file—it doesn't actually
include it.)
<p>There is no way to split up the contents of a single header file into
multiple implementation files.
</dl>
<p><a name="index-inlining-and-C_002b_002b-pragmas-2997"></a><a name="index-C_002b_002b-pragmas_002c-effect-on-inlining-2998"></a><a name="index-pragmas-in-C_002b_002b_002c-effect-on-inlining-2999"></a>‘<samp><span class="samp">#pragma implementation</span></samp>’ and ‘<samp><span class="samp">#pragma interface</span></samp>’ also have an
effect on function inlining.
<p>If you define a class in a header file marked with ‘<samp><span class="samp">#pragma
interface</span></samp>’, the effect on an inline function defined in that class is
similar to an explicit <code>extern</code> declaration—the compiler emits
no code at all to define an independent version of the function. Its
definition is used only for inlining with its callers.
<p><a name="index-fno_002dimplement_002dinlines-3000"></a>Conversely, when you include the same header file in a main source file
that declares it as ‘<samp><span class="samp">#pragma implementation</span></samp>’, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid
emitting the function by compiling with <samp><span class="option">-fno-implement-inlines</span></samp>.
If any calls were not inlined, you will get linker errors.
<div class="node">
<a name="Template-Instantiation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Bound-member-functions">Bound member functions</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Interface">C++ Interface</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.5 Where's the Template?</h3>
<p><a name="index-template-instantiation-3001"></a>
C++ templates are the first language feature to require more
intelligence from the environment than one usually finds on a UNIX
system. Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise. There are two basic approaches to this
problem, which are referred to as the Borland model and the Cfront model.
<dl>
<dt>Borland model<dd>Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together. The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about. This disadvantage is that compilation time
is increased because the template code is being compiled repeatedly.
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.
<br><dt>Cfront model<dd>The AT&T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored. A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository. At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker. The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories. Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately.
</dl>
<p>When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
Borland model. On other systems, G++ implements neither automatic
model.
<p>A future version of G++ will support a hybrid model whereby the compiler
will emit any instantiations for which the template definition is
included in the compile, and store template definitions and
instantiation context information into the object file for the rest.
The link wrapper will extract that information as necessary and invoke
the compiler to produce the remaining instantiations. The linker will
then combine duplicate instantiations.
<p>In the mean time, you have the following options for dealing with
template instantiations:
<ol type=1 start=1>
<li><a name="index-frepo-3002"></a>Compile your template-using code with <samp><span class="option">-frepo</span></samp>. The compiler will
generate files with the extension ‘<samp><span class="samp">.rpo</span></samp>’ listing all of the
template instantiations used in the corresponding object files which
could be instantiated there; the link wrapper, ‘<samp><span class="samp">collect2</span></samp>’, will
then update the ‘<samp><span class="samp">.rpo</span></samp>’ files to tell the compiler where to place
those instantiations and rebuild any affected object files. The
link-time overhead is negligible after the first pass, as the compiler
will continue to place the instantiations in the same files.
<p>This is your best option for application code written for the Borland
model, as it will just work. Code written for the Cfront model will
need to be modified so that the template definitions are available at
one or more points of instantiation; usually this is as simple as adding
<code>#include <tmethods.cc></code> to the end of each template header.
<p>For library code, if you want the library to provide all of the template
instantiations it needs, just try to link all of its object files
together; the link will fail, but cause the instantiations to be
generated as a side effect. Be warned, however, that this may cause
conflicts if multiple libraries try to provide the same instantiations.
For greater control, use explicit instantiation as described in the next
option.
<li><a name="index-fno_002dimplicit_002dtemplates-3003"></a>Compile your code with <samp><span class="option">-fno-implicit-templates</span></samp> to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use. This approach requires more knowledge of exactly
which instances you need than do the others, but it's less
mysterious and allows greater control. You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like
<pre class="smallexample"> #include "Foo.h"
#include "Foo.cc"
template class Foo<int>;
template ostream& operator <<
(ostream&, const Foo<int>&);
</pre>
<p>for each of the instances you need, and create a template instantiation
library from those.
<p>If you are using Cfront-model code, you can probably get away with not
using <samp><span class="option">-fno-implicit-templates</span></samp> when compiling files that don't
‘<samp><span class="samp">#include</span></samp>’ the member template definitions.
<p>If you use one big file to do the instantiations, you may want to
compile it without <samp><span class="option">-fno-implicit-templates</span></samp> so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.
<p>G++ has extended the template instantiation syntax given in the ISO
standard to allow forward declaration of explicit instantiations
(with <code>extern</code>), instantiation of the compiler support data for a
template class (i.e. the vtable) without instantiating any of its
members (with <code>inline</code>), and instantiation of only the static data
members of a template class, without the support data or member
functions (with (<code>static</code>):
<pre class="smallexample"> extern template int max (int, int);
inline template class Foo<int>;
static template class Foo<int>;
</pre>
<li>Do nothing. Pretend G++ does implement automatic instantiation
management. Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates it
uses. In a large program, this can lead to an unacceptable amount of code
duplication.
</ol>
<div class="node">
<a name="Bound-member-functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Attributes">C++ Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Template-Instantiation">Template Instantiation</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.6 Extracting the function pointer from a bound pointer to member function</h3>
<p><a name="index-pmf-3004"></a><a name="index-pointer-to-member-function-3005"></a><a name="index-bound-pointer-to-member-function-3006"></a>
In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the ‘<samp><span class="samp">this</span></samp>’ pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function. If you are using
PMFs in an inner loop, you should really reconsider that decision. If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.
<p>Note that you will still be paying the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU. This is also true of normal
virtual function calls.
<p>The syntax for this extension is
<pre class="smallexample"> extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);
fptr p = (fptr)(a.*fp);
</pre>
<p>For PMF constants (i.e. expressions of the form ‘<samp><span class="samp">&Klasse::Member</span></samp>’),
no object is needed to obtain the address of the function. They can be
converted to function pointers directly:
<pre class="smallexample"> fptr p1 = (fptr)(&A::foo);
</pre>
<p><a name="index-Wno_002dpmf_002dconversions-3007"></a>You must specify <samp><span class="option">-Wno-pmf-conversions</span></samp> to use this extension.
<div class="node">
<a name="C++-Attributes"></a>
<a name="C_002b_002b-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Namespace-Association">Namespace Association</a>,
Previous: <a rel="previous" accesskey="p" href="#Bound-member-functions">Bound member functions</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.7 C++-Specific Variable, Function, and Type Attributes</h3>
<p>Some attributes only make sense for C++ programs.
<dl>
<dt><code>init_priority (</code><var>priority</var><code>)</code><dd><a name="index-init_005fpriority-attribute-3008"></a>
<p>In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
<em>in a given translation unit</em>. No guarantee is made for initializations
across translation units. However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
<code>init_priority</code> attribute by specifying a relative <var>priority</var>,
a constant integral expression currently bounded between 101 and 65535
inclusive. Lower numbers indicate a higher priority.
<p>In the following example, <code>A</code> would normally be created before
<code>B</code>, but the <code>init_priority</code> attribute has reversed that order:
<pre class="smallexample"> Some_Class A __attribute__ ((init_priority (2000)));
Some_Class B __attribute__ ((init_priority (543)));
</pre>
<p class="noindent">Note that the particular values of <var>priority</var> do not matter; only their
relative ordering.
<br><dt><code>java_interface</code><dd><a name="index-java_005finterface-attribute-3009"></a>
This type attribute informs C++ that the class is a Java interface. It may
only be applied to classes declared within an <code>extern "Java"</code> block.
Calls to methods declared in this interface will be dispatched using GCJ's
interface table mechanism, instead of regular virtual table dispatch.
</dl>
<p>See also <a href="#Namespace-Association">Namespace Association</a>.
<div class="node">
<a name="Namespace-Association"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-Traits">Type Traits</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Attributes">C++ Attributes</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.8 Namespace Association</h3>
<p><strong>Caution:</strong> The semantics of this extension are not fully
defined. Users should refrain from using this extension as its
semantics may change subtly over time. It is possible that this
extension will be removed in future versions of G++.
<p>A using-directive with <code>__attribute ((strong))</code> is stronger
than a normal using-directive in two ways:
<ul>
<li>Templates from the used namespace can be specialized and explicitly
instantiated as though they were members of the using namespace.
<li>The using namespace is considered an associated namespace of all
templates in the used namespace for purposes of argument-dependent
name lookup.
</ul>
<p>The used namespace must be nested within the using namespace so that
normal unqualified lookup works properly.
<p>This is useful for composing a namespace transparently from
implementation namespaces. For example:
<pre class="smallexample"> namespace std {
namespace debug {
template <class T> struct A { };
}
using namespace debug __attribute ((__strong__));
template <> struct A<int> { }; // <span class="roman">ok to specialize</span>
template <class T> void f (A<T>);
}
int main()
{
f (std::A<float>()); // <span class="roman">lookup finds</span> std::f
f (std::A<int>());
}
</pre>
<div class="node">
<a name="Type-Traits"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Java-Exceptions">Java Exceptions</a>,
Previous: <a rel="previous" accesskey="p" href="#Namespace-Association">Namespace Association</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.9 Type Traits</h3>
<p>The C++ front-end implements syntactic extensions that allow to
determine at compile time various characteristics of a type (or of a
pair of types).
<dl>
<dt><code>__has_nothrow_assign (type)</code><dd>If <code>type</code> is const qualified or is a reference type then the trait is
false. Otherwise if <code>__has_trivial_assign (type)</code> is true then the trait
is true, else if <code>type</code> is a cv class or union type with copy assignment
operators that are known not to throw an exception then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete type, an array
type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_nothrow_copy (type)</code><dd>If <code>__has_trivial_copy (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type with copy constructors that
are known not to throw an exception then the trait is true, else it is false.
Requires: <code>type</code> shall be a complete type, an array type of
unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_nothrow_constructor (type)</code><dd>If <code>__has_trivial_constructor (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type (or array
thereof) with a default constructor that is known not to throw an
exception then the trait is true, else it is false. Requires:
<code>type</code> shall be a complete type, an array type of unknown bound,
or is a <code>void</code> type.
<br><dt><code>__has_trivial_assign (type)</code><dd>If <code>type</code> is const qualified or is a reference type then the trait is
false. Otherwise if <code>__is_pod (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type with a trivial
copy assignment ([class.copy]) then the trait is true, else it is
false. Requires: <code>type</code> shall be a complete type, an array type
of unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_trivial_copy (type)</code><dd>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type
then the trait is true, else if <code>type</code> is a cv class or union type
with a trivial copy constructor ([class.copy]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, an array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_trivial_constructor (type)</code><dd>If <code>__is_pod (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type (or array thereof) with a
trivial default constructor ([class.ctor]) then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete type, an
array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_trivial_destructor (type)</code><dd>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type then
the trait is true, else if <code>type</code> is a cv class or union type (or
array thereof) with a trivial destructor ([class.dtor]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, an array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__has_virtual_destructor (type)</code><dd>If <code>type</code> is a class type with a virtual destructor
([class.dtor]) then the trait is true, else it is false. Requires:
<code>type</code> shall be a complete type, an array type of unknown bound,
or is a <code>void</code> type.
<br><dt><code>__is_abstract (type)</code><dd>If <code>type</code> is an abstract class ([class.abstract]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, an array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__is_base_of (base_type, derived_type)</code><dd>If <code>base_type</code> is a base class of <code>derived_type</code>
([class.derived]) then the trait is true, otherwise it is false.
Top-level cv qualifications of <code>base_type</code> and
<code>derived_type</code> are ignored. For the purposes of this trait, a
class type is considered is own base. Requires: if <code>__is_class
(base_type)</code> and <code>__is_class (derived_type)</code> are true and
<code>base_type</code> and <code>derived_type</code> are not the same type
(disregarding cv-qualifiers), <code>derived_type</code> shall be a complete
type. Diagnostic is produced if this requirement is not met.
<br><dt><code>__is_class (type)</code><dd>If <code>type</code> is a cv class type, and not a union type
([basic.compound]) the trait is true, else it is false.
<br><dt><code>__is_empty (type)</code><dd>If <code>__is_class (type)</code> is false then the trait is false.
Otherwise <code>type</code> is considered empty if and only if: <code>type</code>
has no non-static data members, or all non-static data members, if
any, are bit-fields of length 0, and <code>type</code> has no virtual
members, and <code>type</code> has no virtual base classes, and <code>type</code>
has no base classes <code>base_type</code> for which
<code>__is_empty (base_type)</code> is false. Requires: <code>type</code> shall
be a complete type, an array type of unknown bound, or is a
<code>void</code> type.
<br><dt><code>__is_enum (type)</code><dd>If <code>type</code> is a cv enumeration type ([basic.compound]) the trait is
true, else it is false.
<br><dt><code>__is_pod (type)</code><dd>If <code>type</code> is a cv POD type ([basic.types]) then the trait is true,
else it is false. Requires: <code>type</code> shall be a complete type,
an array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__is_polymorphic (type)</code><dd>If <code>type</code> is a polymorphic class ([class.virtual]) then the trait
is true, else it is false. Requires: <code>type</code> shall be a complete
type, an array type of unknown bound, or is a <code>void</code> type.
<br><dt><code>__is_union (type)</code><dd>If <code>type</code> is a cv union type ([basic.compound]) the trait is
true, else it is false.
</dl>
<div class="node">
<a name="Java-Exceptions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Deprecated-Features">Deprecated Features</a>,
Previous: <a rel="previous" accesskey="p" href="#Type-Traits">Type Traits</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.10 Java Exceptions</h3>
<p>The Java language uses a slightly different exception handling model
from C++. Normally, GNU C++ will automatically detect when you are
writing C++ code that uses Java exceptions, and handle them
appropriately. However, if C++ code only needs to execute destructors
when Java exceptions are thrown through it, GCC will guess incorrectly.
Sample problematic code is:
<pre class="smallexample"> struct S { ~S(); };
extern void bar(); // <span class="roman">is written in Java, and may throw exceptions</span>
void foo()
{
S s;
bar();
}
</pre>
<p class="noindent">The usual effect of an incorrect guess is a link failure, complaining of
a missing routine called ‘<samp><span class="samp">__gxx_personality_v0</span></samp>’.
<p>You can inform the compiler that Java exceptions are to be used in a
translation unit, irrespective of what it might think, by writing
‘<samp><span class="samp">#pragma GCC java_exceptions<!-- /@w --></span></samp>’ at the head of the file. This
‘<samp><span class="samp">#pragma</span></samp>’ must appear before any functions that throw or catch
exceptions, or run destructors when exceptions are thrown through them.
<p>You cannot mix Java and C++ exceptions in the same translation unit. It
is believed to be safe to throw a C++ exception from one file through
another file compiled for the Java exception model, or vice versa, but
there may be bugs in this area.
<div class="node">
<a name="Deprecated-Features"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Backwards-Compatibility">Backwards Compatibility</a>,
Previous: <a rel="previous" accesskey="p" href="#Java-Exceptions">Java Exceptions</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.11 Deprecated Features</h3>
<p>In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving. Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives. Using the old features might cause a warning in
some cases that the feature will be dropped in the future. In other
cases, the feature might be gone already.
<p>While the list below is not exhaustive, it documents some of the options
that are now deprecated:
<dl>
<dt><code>-fexternal-templates</code><dt><code>-falt-external-templates</code><dd>These are two of the many ways for G++ to implement template
instantiation. See <a href="#Template-Instantiation">Template Instantiation</a>. The C++ standard clearly
defines how template definitions have to be organized across
implementation units. G++ has an implicit instantiation mechanism that
should work just fine for standard-conforming code.
<br><dt><code>-fstrict-prototype</code><dt><code>-fno-strict-prototype</code><dd>Previously it was possible to use an empty prototype parameter list to
indicate an unspecified number of parameters (like C), rather than no
parameters, as C++ demands. This feature has been removed, except where
it is required for backwards compatibility. See <a href="#Backwards-Compatibility">Backwards Compatibility</a>.
</dl>
<p>G++ allows a virtual function returning ‘<samp><span class="samp">void *</span></samp>’ to be overridden
by one returning a different pointer type. This extension to the
covariant return type rules is now deprecated and will be removed from a
future version.
<p>The G++ minimum and maximum operators (‘<samp><span class="samp"><?</span></samp>’ and ‘<samp><span class="samp">>?</span></samp>’) and
their compound forms (‘<samp><span class="samp"><?=</span></samp>’) and ‘<samp><span class="samp">>?=</span></samp>’) have been deprecated
and are now removed from G++. Code using these operators should be
modified to use <code>std::min</code> and <code>std::max</code> instead.
<p>The named return value extension has been deprecated, and is now
removed from G++.
<p>The use of initializer lists with new expressions has been deprecated,
and is now removed from G++.
<p>Floating and complex non-type template parameters have been deprecated,
and are now removed from G++.
<p>The implicit typename extension has been deprecated and is now
removed from G++.
<p>The use of default arguments in function pointers, function typedefs
and other places where they are not permitted by the standard is
deprecated and will be removed from a future version of G++.
<p>G++ allows floating-point literals to appear in integral constant expressions,
e.g. ‘<samp><span class="samp"> enum E { e = int(2.2 * 3.7) } </span></samp>’
This extension is deprecated and will be removed from a future version.
<p>G++ allows static data members of const floating-point type to be declared
with an initializer in a class definition. The standard only allows
initializers for static members of const integral types and const
enumeration types so this extension has been deprecated and will be removed
from a future version.
<div class="node">
<a name="Backwards-Compatibility"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Deprecated-Features">Deprecated Features</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>
</div>
<h3 class="section">6.12 Backwards Compatibility</h3>
<p><a name="index-Backwards-Compatibility-3010"></a><a name="index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d-3011"></a>
Now that there is a definitive ISO standard C++, G++ has a specification
to adhere to. The C++ language evolved over time, and features that
used to be acceptable in previous drafts of the standard, such as the ARM
[Annotated C++ Reference Manual], are no longer accepted. In order to allow
compilation of C++ written to such drafts, G++ contains some backwards
compatibilities. <em>All such backwards compatibility features are
liable to disappear in future versions of G++.</em> They should be considered
deprecated. See <a href="#Deprecated-Features">Deprecated Features</a>.
<dl>
<dt><code>For scope</code><dd>If a variable is declared at for scope, it used to remain in scope until
the end of the scope which contained the for statement (rather than just
within the for scope). G++ retains this, but issues a warning, if such a
variable is accessed outside the for scope.
<br><dt><code>Implicit C language</code><dd>Old C system header files did not contain an <code>extern "C" {...}</code>
scope to set the language. On such systems, all header files are
implicitly scoped inside a C language scope. Also, an empty prototype
<code>()</code> will be treated as an unspecified number of arguments, rather
than no arguments, as C++ demands.
</dl>
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Objective-C"></a>
<a name="Objective_002dC"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Compatibility">Compatibility</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Extensions">C++ Extensions</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- node-name, next, previous, up -->
<h2 class="chapter">7 GNU Objective-C runtime features</h2>
<p>This document is meant to describe some of the GNU Objective-C runtime
features. It is not intended to teach you Objective-C, there are several
resources on the Internet that present the language. Questions and
comments about this document to Ovidiu Predescu
<a href="mailto:ovidiu@cup.hp.com">ovidiu@cup.hp.com</a>.
<ul class="menu">
<li><a accesskey="1" href="#Executing-code-before-main">Executing code before main</a>
<li><a accesskey="2" href="#Type-encoding">Type encoding</a>
<li><a accesskey="3" href="#Garbage-Collection">Garbage Collection</a>
<li><a accesskey="4" href="#Constant-string-objects">Constant string objects</a>
<li><a accesskey="5" href="#compatibility_005falias">compatibility_alias</a>
</ul>
<div class="node">
<a name="Executing-code-before-main"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-encoding">Type encoding</a>,
Previous: <a rel="previous" accesskey="p" href="#Objective_002dC">Objective-C</a>,
Up: <a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>
</div>
<h3 class="section">7.1 <code>+load</code>: Executing code before main</h3>
<p>The GNU Objective-C runtime provides a way that allows you to execute
code before the execution of the program enters the <code>main</code>
function. The code is executed on a per-class and a per-category basis,
through a special class method <code>+load</code>.
<p>This facility is very useful if you want to initialize global variables
which can be accessed by the program directly, without sending a message
to the class first. The usual way to initialize global variables, in the
<code>+initialize</code> method, might not be useful because
<code>+initialize</code> is only called when the first message is sent to a
class object, which in some cases could be too late.
<p>Suppose for example you have a <code>FileStream</code> class that declares
<code>Stdin</code>, <code>Stdout</code> and <code>Stderr</code> as global variables, like
below:
<pre class="smallexample">
FileStream *Stdin = nil;
FileStream *Stdout = nil;
FileStream *Stderr = nil;
@implementation FileStream
+ (void)initialize
{
Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];
}
/* <span class="roman">Other methods here</span> */
@end
</pre>
<p>In this example, the initialization of <code>Stdin</code>, <code>Stdout</code> and
<code>Stderr</code> in <code>+initialize</code> occurs too late. The programmer can
send a message to one of these objects before the variables are actually
initialized, thus sending messages to the <code>nil</code> object. The
<code>+initialize</code> method which actually initializes the global
variables is not invoked until the first message is sent to the class
object. The solution would require these variables to be initialized
just before entering <code>main</code>.
<p>The correct solution of the above problem is to use the <code>+load</code>
method instead of <code>+initialize</code>:
<pre class="smallexample">
@implementation FileStream
+ (void)load
{
Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];
}
/* <span class="roman">Other methods here</span> */
@end
</pre>
<p>The <code>+load</code> is a method that is not overridden by categories. If a
class and a category of it both implement <code>+load</code>, both methods are
invoked. This allows some additional initializations to be performed in
a category.
<p>This mechanism is not intended to be a replacement for <code>+initialize</code>.
You should be aware of its limitations when you decide to use it
instead of <code>+initialize</code>.
<ul class="menu">
<li><a accesskey="1" href="#What-you-can-and-what-you-cannot-do-in-_002bload">What you can and what you cannot do in +load</a>
</ul>
<div class="node">
<a name="What-you-can-and-what-you-cannot-do-in-+load"></a>
<a name="What-you-can-and-what-you-cannot-do-in-_002bload"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Executing-code-before-main">Executing code before main</a>,
Up: <a rel="up" accesskey="u" href="#Executing-code-before-main">Executing code before main</a>
</div>
<h4 class="subsection">7.1.1 What you can and what you cannot do in <code>+load</code></h4>
<p>The <code>+load</code> implementation in the GNU runtime guarantees you the following
things:
<ul>
<li>you can write whatever C code you like;
<li>you can send messages to Objective-C constant strings (<code>@"this is a
constant string"</code>);
<li>you can allocate and send messages to objects whose class is implemented
in the same file;
<li>the <code>+load</code> implementation of all super classes of a class are executed before the <code>+load</code> of that class is executed;
<li>the <code>+load</code> implementation of a class is executed before the
<code>+load</code> implementation of any category.
</ul>
<p>In particular, the following things, even if they can work in a
particular case, are not guaranteed:
<ul>
<li>allocation of or sending messages to arbitrary objects;
<li>allocation of or sending messages to objects whose classes have a
category implemented in the same file;
</ul>
<p>You should make no assumptions about receiving <code>+load</code> in sibling
classes when you write <code>+load</code> of a class. The order in which
sibling classes receive <code>+load</code> is not guaranteed.
<p>The order in which <code>+load</code> and <code>+initialize</code> are called could
be problematic if this matters. If you don't allocate objects inside
<code>+load</code>, it is guaranteed that <code>+load</code> is called before
<code>+initialize</code>. If you create an object inside <code>+load</code> the
<code>+initialize</code> method of object's class is invoked even if
<code>+load</code> was not invoked. Note if you explicitly call <code>+load</code>
on a class, <code>+initialize</code> will be called first. To avoid possible
problems try to implement only one of these methods.
<p>The <code>+load</code> method is also invoked when a bundle is dynamically
loaded into your running program. This happens automatically without any
intervening operation from you. When you write bundles and you need to
write <code>+load</code> you can safely create and send messages to objects whose
classes already exist in the running program. The same restrictions as
above apply to classes defined in bundle.
<div class="node">
<a name="Type-encoding"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Garbage-Collection">Garbage Collection</a>,
Previous: <a rel="previous" accesskey="p" href="#Executing-code-before-main">Executing code before main</a>,
Up: <a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>
</div>
<h3 class="section">7.2 Type encoding</h3>
<p>The Objective-C compiler generates type encodings for all the
types. These type encodings are used at runtime to find out information
about selectors and methods and about objects and classes.
<p>The types are encoded in the following way:
<!-- @sp 1 -->
<p><table summary=""><tr align="left"><td valign="top" width="25%"><code>_Bool</code>
</td><td valign="top" width="75%"><code>B</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>char</code>
</td><td valign="top" width="75%"><code>c</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned char</code>
</td><td valign="top" width="75%"><code>C</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>short</code>
</td><td valign="top" width="75%"><code>s</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned short</code>
</td><td valign="top" width="75%"><code>S</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>int</code>
</td><td valign="top" width="75%"><code>i</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned int</code>
</td><td valign="top" width="75%"><code>I</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>long</code>
</td><td valign="top" width="75%"><code>l</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned long</code>
</td><td valign="top" width="75%"><code>L</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>long long</code>
</td><td valign="top" width="75%"><code>q</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned long long</code>
</td><td valign="top" width="75%"><code>Q</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>float</code>
</td><td valign="top" width="75%"><code>f</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>double</code>
</td><td valign="top" width="75%"><code>d</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>void</code>
</td><td valign="top" width="75%"><code>v</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>id</code>
</td><td valign="top" width="75%"><code>@</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>Class</code>
</td><td valign="top" width="75%"><code>#</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>SEL</code>
</td><td valign="top" width="75%"><code>:</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>char*</code>
</td><td valign="top" width="75%"><code>*</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">unknown type
</td><td valign="top" width="75%"><code>?</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">Complex types
</td><td valign="top" width="75%"><code>j</code> followed by the inner type. For example <code>_Complex double</code> is encoded as "jd".
<br></td></tr><tr align="left"><td valign="top" width="25%">bit-fields
</td><td valign="top" width="75%"><code>b</code> followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below)
<br></td></tr></table>
<!-- @sp 1 -->
<p>The encoding of bit-fields has changed to allow bit-fields to be properly
handled by the runtime functions that compute sizes and alignments of
types that contain bit-fields. The previous encoding contained only the
size of the bit-field. Using only this information it is not possible to
reliably compute the size occupied by the bit-field. This is very
important in the presence of the Boehm's garbage collector because the
objects are allocated using the typed memory facility available in this
collector. The typed memory allocation requires information about where
the pointers are located inside the object.
<p>The position in the bit-field is the position, counting in bits, of the
bit closest to the beginning of the structure.
<p>The non-atomic types are encoded as follows:
<!-- @sp 1 -->
<p><table summary=""><tr align="left"><td valign="top" width="20%">pointers
</td><td valign="top" width="80%">‘<samp><span class="samp">^</span></samp>’ followed by the pointed type.
<br></td></tr><tr align="left"><td valign="top" width="20%">arrays
</td><td valign="top" width="80%">‘<samp><span class="samp">[</span></samp>’ followed by the number of elements in the array followed by the type of the elements followed by ‘<samp><span class="samp">]</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">structures
</td><td valign="top" width="80%">‘<samp><span class="samp">{</span></samp>’ followed by the name of the structure (or ‘<samp><span class="samp">?</span></samp>’ if the structure is unnamed), the ‘<samp><span class="samp">=</span></samp>’ sign, the type of the members and by ‘<samp><span class="samp">}</span></samp>’
<br></td></tr><tr align="left"><td valign="top" width="20%">unions
</td><td valign="top" width="80%">‘<samp><span class="samp">(</span></samp>’ followed by the name of the structure (or ‘<samp><span class="samp">?</span></samp>’ if the union is unnamed), the ‘<samp><span class="samp">=</span></samp>’ sign, the type of the members followed by ‘<samp><span class="samp">)</span></samp>’
<br></td></tr></table>
<p>Here are some types and their encodings, as they are generated by the
compiler on an i386 machine:
<pre class="sp">
</pre>
<p><table summary=""><tr align="left"><td valign="top" width="25%">Objective-C type
</td><td valign="top" width="75%">Compiler encoding
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample"> int a[10];
</pre>
<p></td><td valign="top" width="75%"><code>[10i]</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample"> struct {
int i;
float f[3];
int a:3;
int b:2;
char c;
}
</pre>
<p></td><td valign="top" width="75%"><code>{?=i[3f]b128i3b131i2c}</code>
<br></td></tr></table>
<pre class="sp">
</pre>
In addition to the types the compiler also encodes the type
specifiers. The table below describes the encoding of the current
Objective-C type specifiers:
<pre class="sp">
</pre>
<p><table summary=""><tr align="left"><td valign="top" width="25%">Specifier
</td><td valign="top" width="75%">Encoding
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>const</code>
</td><td valign="top" width="75%"><code>r</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>in</code>
</td><td valign="top" width="75%"><code>n</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>inout</code>
</td><td valign="top" width="75%"><code>N</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>out</code>
</td><td valign="top" width="75%"><code>o</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>bycopy</code>
</td><td valign="top" width="75%"><code>O</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>oneway</code>
</td><td valign="top" width="75%"><code>V</code>
<br></td></tr></table>
<pre class="sp">
</pre>
The type specifiers are encoded just before the type. Unlike types
however, the type specifiers are only encoded when they appear in method
argument types.
<div class="node">
<a name="Garbage-Collection"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constant-string-objects">Constant string objects</a>,
Previous: <a rel="previous" accesskey="p" href="#Type-encoding">Type encoding</a>,
Up: <a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>
</div>
<h3 class="section">7.3 Garbage Collection</h3>
<p>Support for a new memory management policy has been added by using a
powerful conservative garbage collector, known as the
Boehm-Demers-Weiser conservative garbage collector. It is available from
<a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">http://www.hpl.hp.com/personal/Hans_Boehm/gc/</a><!-- /@w -->.
<p>To enable the support for it you have to configure the compiler using an
additional argument, <samp><span class="option">--enable-objc-gc</span></samp><!-- /@w -->. You need to have
garbage collector installed before building the compiler. This will
build an additional runtime library which has several enhancements to
support the garbage collector. The new library has a new name,
<samp><span class="file">libobjc_gc.a</span></samp> to not conflict with the non-garbage-collected
library.
<p>When the garbage collector is used, the objects are allocated using the
so-called typed memory allocation mechanism available in the
Boehm-Demers-Weiser collector. This mode requires precise information on
where pointers are located inside objects. This information is computed
once per class, immediately after the class has been initialized.
<p>There is a new runtime function <code>class_ivar_set_gcinvisible()</code>
which can be used to declare a so-called <dfn>weak pointer</dfn>
reference. Such a pointer is basically hidden for the garbage collector;
this can be useful in certain situations, especially when you want to
keep track of the allocated objects, yet allow them to be
collected. This kind of pointers can only be members of objects, you
cannot declare a global pointer as a weak reference. Every type which is
a pointer type can be declared a weak pointer, including <code>id</code>,
<code>Class</code> and <code>SEL</code>.
<p>Here is an example of how to use this feature. Suppose you want to
implement a class whose instances hold a weak pointer reference; the
following class does this:
<pre class="smallexample">
@interface WeakPointer : Object
{
const void* weakPointer;
}
- initWithPointer:(const void*)p;
- (const void*)weakPointer;
@end
@implementation WeakPointer
+ (void)initialize
{
class_ivar_set_gcinvisible (self, "weakPointer", YES);
}
- initWithPointer:(const void*)p
{
weakPointer = p;
return self;
}
- (const void*)weakPointer
{
return weakPointer;
}
@end
</pre>
<p>Weak pointers are supported through a new type character specifier
represented by the ‘<samp><span class="samp">!</span></samp>’ character. The
<code>class_ivar_set_gcinvisible()</code> function adds or removes this
specifier to the string type description of the instance variable named
as argument.
<!-- ========================================================================= -->
<div class="node">
<a name="Constant-string-objects"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#compatibility_005falias">compatibility_alias</a>,
Previous: <a rel="previous" accesskey="p" href="#Garbage-Collection">Garbage Collection</a>,
Up: <a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>
</div>
<h3 class="section">7.4 Constant string objects</h3>
<p>GNU Objective-C provides constant string objects that are generated
directly by the compiler. You declare a constant string object by
prefixing a C constant string with the character ‘<samp><span class="samp">@</span></samp>’:
<pre class="smallexample"> id myString = @"this is a constant string object";
</pre>
<p>The constant string objects are by default instances of the
<code>NXConstantString</code> class which is provided by the GNU Objective-C
runtime. To get the definition of this class you must include the
<samp><span class="file">objc/NXConstStr.h</span></samp> header file.
<p>User defined libraries may want to implement their own constant string
class. To be able to support them, the GNU Objective-C compiler provides
a new command line options <samp><span class="option">-fconstant-string-class=</span><var>class-name</var></samp>.
The provided class should adhere to a strict structure, the same
as <code>NXConstantString</code>'s structure:
<pre class="smallexample">
@interface MyConstantStringClass
{
Class isa;
char *c_string;
unsigned int len;
}
@end
</pre>
<p><code>NXConstantString</code> inherits from <code>Object</code>; user class
libraries may choose to inherit the customized constant string class
from a different class than <code>Object</code>. There is no requirement in
the methods the constant string class has to implement, but the final
ivar layout of the class must be the compatible with the given
structure.
<p>When the compiler creates the statically allocated constant string
object, the <code>c_string</code> field will be filled by the compiler with
the string; the <code>length</code> field will be filled by the compiler with
the string length; the <code>isa</code> pointer will be filled with
<code>NULL</code> by the compiler, and it will later be fixed up automatically
at runtime by the GNU Objective-C runtime library to point to the class
which was set by the <samp><span class="option">-fconstant-string-class</span></samp> option when the
object file is loaded (if you wonder how it works behind the scenes, the
name of the class to use, and the list of static objects to fixup, are
stored by the compiler in the object file in a place where the GNU
runtime library will find them at runtime).
<p>As a result, when a file is compiled with the
<samp><span class="option">-fconstant-string-class</span></samp> option, all the constant string objects
will be instances of the class specified as argument to this option. It
is possible to have multiple compilation units referring to different
constant string classes, neither the compiler nor the linker impose any
restrictions in doing this.
<!-- ========================================================================= -->
<div class="node">
<a name="compatibility_alias"></a>
<a name="compatibility_005falias"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Constant-string-objects">Constant string objects</a>,
Up: <a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>
</div>
<h3 class="section">7.5 compatibility_alias</h3>
<p>This is a feature of the Objective-C compiler rather than of the
runtime, anyway since it is documented nowhere and its existence was
forgotten, we are documenting it here.
<p>The keyword <code>@compatibility_alias</code> allows you to define a class name
as equivalent to another class name. For example:
<pre class="smallexample"> @compatibility_alias WOApplication GSWApplication;
</pre>
<p>tells the compiler that each time it encounters <code>WOApplication</code> as
a class name, it should replace it with <code>GSWApplication</code> (that is,
<code>WOApplication</code> is just an alias for <code>GSWApplication</code>).
<p>There are some constraints on how this can be used—
<ul>
<li><code>WOApplication</code> (the alias) must not be an existing class;
<li><code>GSWApplication</code> (the real class) must be an existing class.
</ul>
<!-- Copyright (C) 2002, 2004 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Compatibility"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Gcov">Gcov</a>,
Previous: <a rel="previous" accesskey="p" href="#Objective_002dC">Objective-C</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">8 Binary Compatibility</h2>
<p><a name="index-binary-compatibility-3012"></a><a name="index-ABI-3013"></a><a name="index-application-binary-interface-3014"></a>
Binary compatibility encompasses several related concepts:
<dl>
<dt><dfn>application binary interface (ABI)</dfn><dd>The set of runtime conventions followed by all of the tools that deal
with binary representations of a program, including compilers, assemblers,
linkers, and language runtime support.
Some ABIs are formal with a written specification, possibly designed
by multiple interested parties. Others are simply the way things are
actually done by a particular set of tools.
<br><dt><dfn>ABI conformance</dfn><dd>A compiler conforms to an ABI if it generates code that follows all of
the specifications enumerated by that ABI.
A library conforms to an ABI if it is implemented according to that ABI.
An application conforms to an ABI if it is built using tools that conform
to that ABI and does not contain source code that specifically changes
behavior specified by the ABI.
<br><dt><dfn>calling conventions</dfn><dd>Calling conventions are a subset of an ABI that specify of how arguments
are passed and function results are returned.
<br><dt><dfn>interoperability</dfn><dd>Different sets of tools are interoperable if they generate files that
can be used in the same program. The set of tools includes compilers,
assemblers, linkers, libraries, header files, startup files, and debuggers.
Binaries produced by different sets of tools are not interoperable unless
they implement the same ABI. This applies to different versions of the
same tools as well as tools from different vendors.
<br><dt><dfn>intercallability</dfn><dd>Whether a function in a binary built by one set of tools can call a
function in a binary built by a different set of tools is a subset
of interoperability.
<br><dt><dfn>implementation-defined features</dfn><dd>Language standards include lists of implementation-defined features whose
behavior can vary from one implementation to another. Some of these
features are normally covered by a platform's ABI and others are not.
The features that are not covered by an ABI generally affect how a
program behaves, but not intercallability.
<br><dt><dfn>compatibility</dfn><dd>Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility.
</dl>
<p>The application binary interface implemented by a C or C++ compiler
affects code generation and runtime support for:
<ul>
<li>size and alignment of data types
<li>layout of structured types
<li>calling conventions
<li>register usage conventions
<li>interfaces for runtime arithmetic support
<li>object file formats
</ul>
<p>In addition, the application binary interface implemented by a C++ compiler
affects code generation and runtime support for:
<ul>
<li>name mangling
<li>exception handling
<li>invoking constructors and destructors
<li>layout, alignment, and padding of classes
<li>layout and alignment of virtual tables
</ul>
<p>Some GCC compilation options cause the compiler to generate code that
does not conform to the platform's default ABI. Other options cause
different program behavior for implementation-defined features that are
not covered by an ABI. These options are provided for consistency with
other compilers that do not follow the platform's default ABI or the
usual behavior of implementation-defined features for the platform.
Be very careful about using such options.
<p>Most platforms have a well-defined ABI that covers C code, but ABIs
that cover C++ functionality are not yet common.
<p>Starting with GCC 3.2, GCC binary conventions for C++ are based on a
written, vendor-neutral C++ ABI that was designed to be specific to
64-bit Itanium but also includes generic specifications that apply to
any platform.
This C++ ABI is also implemented by other compiler vendors on some
platforms, notably GNU/Linux and BSD systems.
We have tried hard to provide a stable ABI that will be compatible with
future GCC releases, but it is possible that we will encounter problems
that make this difficult. Such problems could include different
interpretations of the C++ ABI by different vendors, bugs in the ABI, or
bugs in the implementation of the ABI in different compilers.
GCC's <samp><span class="option">-Wabi</span></samp> switch warns when G++ generates code that is
probably not compatible with the C++ ABI.
<p>The C++ library used with a C++ compiler includes the Standard C++
Library, with functionality defined in the C++ Standard, plus language
runtime support. The runtime support is included in a C++ ABI, but there
is no formal ABI for the Standard C++ Library. Two implementations
of that library are interoperable if one follows the de-facto ABI of the
other and if they are both built with the same compiler, or with compilers
that conform to the same ABI for C++ compiler and runtime support.
<p>When G++ and another C++ compiler conform to the same C++ ABI, but the
implementations of the Standard C++ Library that they normally use do not
follow the same ABI for the Standard C++ Library, object files built with
those compilers can be used in the same program only if they use the same
C++ library. This requires specifying the location of the C++ library
header files when invoking the compiler whose usual library is not being
used. The location of GCC's C++ header files depends on how the GCC
build was configured, but can be seen by using the G++ <samp><span class="option">-v</span></samp> option.
With default configuration options for G++ 3.3 the compile line for a
different C++ compiler needs to include
<pre class="smallexample"> -I<var>gcc_install_directory</var>/include/c++/3.3
</pre>
<p>Similarly, compiling code with G++ that must use a C++ library other
than the GNU C++ library requires specifying the location of the header
files for that other library.
<p>The most straightforward way to link a program to use a particular
C++ library is to use a C++ driver that specifies that C++ library by
default. The <samp><span class="command">g++</span></samp> driver, for example, tells the linker where
to find GCC's C++ library (<samp><span class="file">libstdc++</span></samp>) plus the other libraries
and startup files it needs, in the proper order.
<p>If a program must use a different C++ library and it's not possible
to do the final link using a C++ driver that uses that library by default,
it is necessary to tell <samp><span class="command">g++</span></samp> the location and name of that
library. It might also be necessary to specify different startup files
and other runtime support libraries, and to suppress the use of GCC's
support libraries with one or more of the options <samp><span class="option">-nostdlib</span></samp>,
<samp><span class="option">-nostartfiles</span></samp>, and <samp><span class="option">-nodefaultlibs</span></samp>.
<!-- Copyright (C) 1996, 1997, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2008 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Gcov"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Trouble">Trouble</a>,
Previous: <a rel="previous" accesskey="p" href="#Compatibility">Compatibility</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">9 <samp><span class="command">gcov</span></samp>—a Test Coverage Program</h2>
<p><samp><span class="command">gcov</span></samp> is a tool you can use in conjunction with GCC to
test code coverage in your programs.
<ul class="menu">
<li><a accesskey="1" href="#Gcov-Intro">Gcov Intro</a>: Introduction to gcov.
<li><a accesskey="2" href="#Invoking-Gcov">Invoking Gcov</a>: How to use gcov.
<li><a accesskey="3" href="#Gcov-and-Optimization">Gcov and Optimization</a>: Using gcov with GCC optimization.
<li><a accesskey="4" href="#Gcov-Data-Files">Gcov Data Files</a>: The files used by gcov.
<li><a accesskey="5" href="#Cross_002dprofiling">Cross-profiling</a>: Data file relocation.
</ul>
<div class="node">
<a name="Gcov-Intro"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Invoking-Gcov">Invoking Gcov</a>,
Up: <a rel="up" accesskey="u" href="#Gcov">Gcov</a>
</div>
<h3 class="section">9.1 Introduction to <samp><span class="command">gcov</span></samp></h3>
<!-- man begin DESCRIPTION -->
<p><samp><span class="command">gcov</span></samp> is a test coverage program. Use it in concert with GCC
to analyze your programs to help create more efficient, faster running
code and to discover untested parts of your program. You can use
<samp><span class="command">gcov</span></samp> as a profiling tool to help discover where your
optimization efforts will best affect your code. You can also use
<samp><span class="command">gcov</span></samp> along with the other profiling tool, <samp><span class="command">gprof</span></samp>, to
assess which parts of your code use the greatest amount of computing
time.
<p>Profiling tools help you analyze your code's performance. Using a
profiler such as <samp><span class="command">gcov</span></samp> or <samp><span class="command">gprof</span></samp>, you can find out some
basic performance statistics, such as:
<ul>
<li>how often each line of code executes
<li>what lines of code are actually executed
<li>how much computing time each section of code uses
</ul>
<p>Once you know these things about how your code works when compiled, you
can look at each module to see which modules should be optimized.
<samp><span class="command">gcov</span></samp> helps you determine where to work on optimization.
<p>Software developers also use coverage testing in concert with
testsuites, to make sure software is actually good enough for a release.
Testsuites can verify that a program works as expected; a coverage
program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need
to be added to the testsuites to create both better testing and a better
final product.
<p>You should compile your code without optimization if you plan to use
<samp><span class="command">gcov</span></samp> because the optimization, by combining some lines of code
into one function, may not give you as much information as you need to
look for `hot spots' where the code is using a great deal of computer
time. Likewise, because <samp><span class="command">gcov</span></samp> accumulates statistics by line (at
the lowest resolution), it works best with a programming style that
places only one statement on each line. If you use complicated macros
that expand to loops or to other control structures, the statistics are
less helpful—they only report on the line where the macro call
appears. If your complex macros behave like functions, you can replace
them with inline functions to solve this problem.
<p><samp><span class="command">gcov</span></samp> creates a logfile called <samp><var>sourcefile</var><span class="file">.gcov</span></samp> which
indicates how many times each line of a source file <samp><var>sourcefile</var><span class="file">.c</span></samp>
has executed. You can use these logfiles along with <samp><span class="command">gprof</span></samp> to aid
in fine-tuning the performance of your programs. <samp><span class="command">gprof</span></samp> gives
timing information you can use along with the information you get from
<samp><span class="command">gcov</span></samp>.
<p><samp><span class="command">gcov</span></samp> works only on code compiled with GCC. It is not
compatible with any other profiling or test coverage mechanism.
<!-- man end -->
<div class="node">
<a name="Invoking-Gcov"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Gcov-and-Optimization">Gcov and Optimization</a>,
Previous: <a rel="previous" accesskey="p" href="#Gcov-Intro">Gcov Intro</a>,
Up: <a rel="up" accesskey="u" href="#Gcov">Gcov</a>
</div>
<h3 class="section">9.2 Invoking <samp><span class="command">gcov</span></samp></h3>
<pre class="smallexample"> gcov <span class="roman">[</span><var>options</var><span class="roman">]</span> <var>sourcefiles</var>
</pre>
<p><samp><span class="command">gcov</span></samp> accepts the following options:
<!-- man begin OPTIONS -->
<dl>
<dt><code>-h</code><dt><code>--help</code><dd>Display help about using <samp><span class="command">gcov</span></samp> (on the standard output), and
exit without doing any further processing.
<br><dt><code>-v</code><dt><code>--version</code><dd>Display the <samp><span class="command">gcov</span></samp> version number (on the standard output),
and exit without doing any further processing.
<br><dt><code>-a</code><dt><code>--all-blocks</code><dd>Write individual execution counts for every basic block. Normally gcov
outputs execution counts only for the main blocks of a line. With this
option you can determine if blocks within a single line are not being
executed.
<br><dt><code>-b</code><dt><code>--branch-probabilities</code><dd>Write branch frequencies to the output file, and write branch summary
info to the standard output. This option allows you to see how often
each branch in your program was taken. Unconditional branches will not
be shown, unless the <samp><span class="option">-u</span></samp> option is given.
<br><dt><code>-c</code><dt><code>--branch-counts</code><dd>Write branch frequencies as the number of branches taken, rather than
the percentage of branches taken.
<br><dt><code>-n</code><dt><code>--no-output</code><dd>Do not create the <samp><span class="command">gcov</span></samp> output file.
<br><dt><code>-l</code><dt><code>--long-file-names</code><dd>Create long file names for included source files. For example, if the
header file <samp><span class="file">x.h</span></samp> contains code, and was included in the file
<samp><span class="file">a.c</span></samp>, then running <samp><span class="command">gcov</span></samp> on the file <samp><span class="file">a.c</span></samp> will produce
an output file called <samp><span class="file">a.c##x.h.gcov</span></samp> instead of <samp><span class="file">x.h.gcov</span></samp>.
This can be useful if <samp><span class="file">x.h</span></samp> is included in multiple source
files. If you use the ‘<samp><span class="samp">-p</span></samp>’ option, both the including and
included file names will be complete path names.
<br><dt><code>-p</code><dt><code>--preserve-paths</code><dd>Preserve complete path information in the names of generated
<samp><span class="file">.gcov</span></samp> files. Without this option, just the filename component is
used. With this option, all directories are used, with ‘<samp><span class="samp">/</span></samp>’ characters
translated to ‘<samp><span class="samp">#</span></samp>’ characters, <samp><span class="file">.</span></samp> directory components
removed and <samp><span class="file">..</span></samp>
components renamed to ‘<samp><span class="samp">^</span></samp>’. This is useful if sourcefiles are in several
different directories. It also affects the ‘<samp><span class="samp">-l</span></samp>’ option.
<br><dt><code>-f</code><dt><code>--function-summaries</code><dd>Output summaries for each function in addition to the file level summary.
<br><dt><code>-o </code><var>directory|file</var><dt><code>--object-directory </code><var>directory</var><dt><code>--object-file </code><var>file</var><dd>Specify either the directory containing the gcov data files, or the
object path name. The <samp><span class="file">.gcno</span></samp>, and
<samp><span class="file">.gcda</span></samp> data files are searched for using this option. If a directory
is specified, the data files are in that directory and named after the
source file name, without its extension. If a file is specified here,
the data files are named after that file, without its extension. If this
option is not supplied, it defaults to the current directory.
<br><dt><code>-u</code><dt><code>--unconditional-branches</code><dd>When branch probabilities are given, include those of unconditional branches.
Unconditional branches are normally not interesting.
</dl>
<p><samp><span class="command">gcov</span></samp> should be run with the current directory the same as that
when you invoked the compiler. Otherwise it will not be able to locate
the source files. <samp><span class="command">gcov</span></samp> produces files called
<samp><var>mangledname</var><span class="file">.gcov</span></samp> in the current directory. These contain
the coverage information of the source file they correspond to.
One <samp><span class="file">.gcov</span></samp> file is produced for each source file containing code,
which was compiled to produce the data files. The <var>mangledname</var> part
of the output file name is usually simply the source file name, but can
be something more complicated if the ‘<samp><span class="samp">-l</span></samp>’ or ‘<samp><span class="samp">-p</span></samp>’ options are
given. Refer to those options for details.
<p>The <samp><span class="file">.gcov</span></samp> files contain the ‘<samp><span class="samp">:</span></samp>’ separated fields along with
program source code. The format is
<pre class="smallexample"> <var>execution_count</var>:<var>line_number</var>:<var>source line text</var>
</pre>
<p>Additional block information may succeed each line, when requested by
command line option. The <var>execution_count</var> is ‘<samp><span class="samp">-</span></samp>’ for lines
containing no code and ‘<samp><span class="samp">#####</span></samp>’ for lines which were never executed.
Some lines of information at the start have <var>line_number</var> of zero.
<p>The preamble lines are of the form
<pre class="smallexample"> -:0:<var>tag</var>:<var>value</var>
</pre>
<p>The ordering and number of these preamble lines will be augmented as
<samp><span class="command">gcov</span></samp> development progresses — do not rely on them remaining
unchanged. Use <var>tag</var> to locate a particular preamble line.
<p>The additional block information is of the form
<pre class="smallexample"> <var>tag</var> <var>information</var>
</pre>
<p>The <var>information</var> is human readable, but designed to be simple
enough for machine parsing too.
<p>When printing percentages, 0% and 100% are only printed when the values
are <em>exactly</em> 0% and 100% respectively. Other values which would
conventionally be rounded to 0% or 100% are instead printed as the
nearest non-boundary value.
<p>When using <samp><span class="command">gcov</span></samp>, you must first compile your program with two
special GCC options: ‘<samp><span class="samp">-fprofile-arcs -ftest-coverage</span></samp>’.
This tells the compiler to generate additional information needed by
gcov (basically a flow graph of the program) and also includes
additional code in the object files for generating the extra profiling
information needed by gcov. These additional files are placed in the
directory where the object file is located.
<p>Running the program will cause profile output to be generated. For each
source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, an accompanying
<samp><span class="file">.gcda</span></samp> file will be placed in the object file directory.
<p>Running <samp><span class="command">gcov</span></samp> with your program's source file names as arguments
will now produce a listing of the code along with frequency of execution
for each line. For example, if your program is called <samp><span class="file">tmp.c</span></samp>, this
is what you see when you use the basic <samp><span class="command">gcov</span></samp> facility:
<pre class="smallexample"> $ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
90.00% of 10 source lines executed in file tmp.c
Creating tmp.c.gcov.
</pre>
<p>The file <samp><span class="file">tmp.c.gcov</span></samp> contains output from <samp><span class="command">gcov</span></samp>.
Here is a sample:
<pre class="smallexample"> -: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
1: 4:{
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
10: 10: total += i;
-: 11:
1: 12: if (total != 45)
#####: 13: printf ("Failure\n");
-: 14: else
1: 15: printf ("Success\n");
1: 16: return 0;
-: 17:}
</pre>
<p>When you use the <samp><span class="option">-a</span></samp> option, you will get individual block
counts, and the output looks like this:
<pre class="smallexample"> -: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
1: 4:{
1: 4-block 0
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
11: 9-block 0
10: 10: total += i;
10: 10-block 0
-: 11:
1: 12: if (total != 45)
1: 12-block 0
#####: 13: printf ("Failure\n");
$$$$$: 13-block 0
-: 14: else
1: 15: printf ("Success\n");
1: 15-block 0
1: 16: return 0;
1: 16-block 0
-: 17:}
</pre>
<p>In this mode, each basic block is only shown on one line – the last
line of the block. A multi-line block will only contribute to the
execution count of that last line, and other lines will not be shown
to contain code, unless previous blocks end on those lines.
The total execution count of a line is shown and subsequent lines show
the execution counts for individual blocks that end on that line. After each
block, the branch and call counts of the block will be shown, if the
<samp><span class="option">-b</span></samp> option is given.
<p>Because of the way GCC instruments calls, a call count can be shown
after a line with no individual blocks.
As you can see, line 13 contains a basic block that was not executed.
<p>When you use the <samp><span class="option">-b</span></samp> option, your output looks like this:
<pre class="smallexample"> $ gcov -b tmp.c
90.00% of 10 source lines executed in file tmp.c
80.00% of 5 branches executed in file tmp.c
80.00% of 5 branches taken at least once in file tmp.c
50.00% of 2 calls executed in file tmp.c
Creating tmp.c.gcov.
</pre>
<p>Here is a sample of a resulting <samp><span class="file">tmp.c.gcov</span></samp> file:
<pre class="smallexample"> -: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
function main called 1 returned 1 blocks executed 75%
1: 4:{
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 10: total += i;
-: 11:
1: 12: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 13: printf ("Failure\n");
call 0 never executed
-: 14: else
1: 15: printf ("Success\n");
call 0 called 1 returned 100%
1: 16: return 0;
-: 17:}
</pre>
<p>For each function, a line is printed showing how many times the function
is called, how many times it returns and what percentage of the
function's blocks were executed.
<p>For each basic block, a line is printed after the last line of the basic
block describing the branch or call that ends the basic block. There can
be multiple branches and calls listed for a single source line if there
are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map
these branches and calls back to source constructs. In general, though,
the lowest numbered branch or call will correspond to the leftmost construct
on the source line.
<p>For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise, the
message “never executed” is printed.
<p>For a call, if it was executed at least once, then a percentage
indicating the number of times the call returned divided by the number
of times the call was executed will be printed. This will usually be
100%, but may be less for functions that call <code>exit</code> or <code>longjmp</code>,
and thus may not return every time they are called.
<p>The execution counts are cumulative. If the example program were
executed again without removing the <samp><span class="file">.gcda</span></samp> file, the count for the
number of times each line in the source was executed would be added to
the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a
number of program runs as part of a test verification suite, or to
provide more accurate long-term information over a large number of
program runs.
<p>The data in the <samp><span class="file">.gcda</span></samp> files is saved immediately before the program
exits. For each source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, the
profiling code first attempts to read in an existing <samp><span class="file">.gcda</span></samp> file; if
the file doesn't match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the
new execution counts and finally writes the data to the file.
<div class="node">
<a name="Gcov-and-Optimization"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Gcov-Data-Files">Gcov Data Files</a>,
Previous: <a rel="previous" accesskey="p" href="#Invoking-Gcov">Invoking Gcov</a>,
Up: <a rel="up" accesskey="u" href="#Gcov">Gcov</a>
</div>
<h3 class="section">9.3 Using <samp><span class="command">gcov</span></samp> with GCC Optimization</h3>
<p>If you plan to use <samp><span class="command">gcov</span></samp> to help optimize your code, you must
first compile your program with two special GCC options:
‘<samp><span class="samp">-fprofile-arcs -ftest-coverage</span></samp>’. Aside from that, you can use any
other GCC options; but if you want to prove that every single line
in your program was executed, you should not compile with optimization
at the same time. On some machines the optimizer can eliminate some
simple code lines by combining them with other lines. For example, code
like this:
<pre class="smallexample"> if (a != b)
c = 1;
else
c = 0;
</pre>
<p class="noindent">can be compiled into one instruction on some machines. In this case,
there is no way for <samp><span class="command">gcov</span></samp> to calculate separate execution counts
for each line because there isn't separate code for each line. Hence
the <samp><span class="command">gcov</span></samp> output looks like this if you compiled the program with
optimization:
<pre class="smallexample"> 100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
</pre>
<p>The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because there
was only one instruction representing all four of these lines. However,
the output does not indicate how many times the result was 0 and how
many times the result was 1.
<p>Inlineable functions can create unexpected line counts. Line counts are
shown for the source code of the inlineable function, but what is shown
depends on where the function is inlined, or if it is not inlined at all.
<p>If the function is not inlined, the compiler must emit an out of line
copy of the function, in any object file that needs it. If
<samp><span class="file">fileA.o</span></samp> and <samp><span class="file">fileB.o</span></samp> both contain out of line bodies of a
particular inlineable function, they will also both contain coverage
counts for that function. When <samp><span class="file">fileA.o</span></samp> and <samp><span class="file">fileB.o</span></samp> are
linked together, the linker will, on many systems, select one of those
out of line bodies for all calls to that function, and remove or ignore
the other. Unfortunately, it will not remove the coverage counters for
the unused function body. Hence when instrumented, all but one use of
that function will show zero counts.
<p>If the function is inlined in several places, the block structure in
each location might not be the same. For instance, a condition might
now be calculable at compile time in some instances. Because the
coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.
<!-- man end -->
<div class="node">
<a name="Gcov-Data-Files"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Cross_002dprofiling">Cross-profiling</a>,
Previous: <a rel="previous" accesskey="p" href="#Gcov-and-Optimization">Gcov and Optimization</a>,
Up: <a rel="up" accesskey="u" href="#Gcov">Gcov</a>
</div>
<h3 class="section">9.4 Brief description of <samp><span class="command">gcov</span></samp> data files</h3>
<p><samp><span class="command">gcov</span></samp> uses two files for profiling. The names of these files
are derived from the original <em>object</em> file by substituting the
file suffix with either <samp><span class="file">.gcno</span></samp>, or <samp><span class="file">.gcda</span></samp>. All of these files
are placed in the same directory as the object file, and contain data
stored in a platform-independent format.
<p>The <samp><span class="file">.gcno</span></samp> file is generated when the source file is compiled with
the GCC <samp><span class="option">-ftest-coverage</span></samp> option. It contains information to
reconstruct the basic block graphs and assign source line numbers to
blocks.
<p>The <samp><span class="file">.gcda</span></samp> file is generated when a program containing object files
built with the GCC <samp><span class="option">-fprofile-arcs</span></samp> option is executed. A
separate <samp><span class="file">.gcda</span></samp> file is created for each object file compiled with
this option. It contains arc transition counts, and some summary
information.
<p>The full details of the file format is specified in <samp><span class="file">gcov-io.h</span></samp>,
and functions provided in that header file should be used to access the
coverage files.
<div class="node">
<a name="Cross-profiling"></a>
<a name="Cross_002dprofiling"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Gcov-Data-Files">Gcov Data Files</a>,
Up: <a rel="up" accesskey="u" href="#Gcov">Gcov</a>
</div>
<h3 class="section">9.5 Data file relocation to support cross-profiling</h3>
<p>Running the program will cause profile output to be generated. For each
source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, an accompanying <samp><span class="file">.gcda</span></samp>
file will be placed in the object file directory. That implicitly requires
running the program on the same system as it was built or having the same
absolute directory structure on the target system. The program will try
to create the needed directory structure, if it is not already present.
<p>To support cross-profiling, a program compiled with <samp><span class="option">-fprofile-arcs</span></samp>
can relocate the data files based on two environment variables:
<ul>
<li>GCOV_PREFIX contains the prefix to add to the absolute paths
in the object file. Prefix must be absolute as well, otherwise its
value is ignored. The default is no prefix.
<li>GCOV_PREFIX_STRIP indicates the how many initial directory names to strip off
the hardwired absolute paths. Default value is 0.
<p><em>Note:</em> GCOV_PREFIX_STRIP has no effect if GCOV_PREFIX is undefined, empty
or non-absolute.
</ul>
<p>For example, if the object file <samp><span class="file">/user/build/foo.o</span></samp> was built with
<samp><span class="option">-fprofile-arcs</span></samp>, the final executable will try to create the data file
<samp><span class="file">/user/build/foo.gcda</span></samp> when running on the target system. This will
fail if the corresponding directory does not exist and it is unable to create
it. This can be overcome by, for example, setting the environment as
‘<samp><span class="samp">GCOV_PREFIX=/target/run</span></samp>’ and ‘<samp><span class="samp">GCOV_PREFIX_STRIP=1</span></samp>’. Such a
setting will name the data file <samp><span class="file">/target/run/build/foo.gcda</span></samp>.
<p>You must move the data files to the expected directory tree in order to
use them for profile directed optimizations (<samp><span class="option">--use-profile</span></samp>), or to
use the <samp><span class="command">gcov</span></samp> tool.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Trouble"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Bugs">Bugs</a>,
Previous: <a rel="previous" accesskey="p" href="#Gcov">Gcov</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">10 Known Causes of Trouble with GCC</h2>
<p><a name="index-bugs_002c-known-3015"></a><a name="index-installation-trouble-3016"></a><a name="index-known-causes-of-trouble-3017"></a>
This section describes known problems that affect users of GCC. Most
of these are not GCC bugs per se—if they were, we would fix them.
But the result for a user may be like the result of a bug.
<p>Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people's opinions differ as to what is best.
<ul class="menu">
<li><a accesskey="1" href="#Actual-Bugs">Actual Bugs</a>: Bugs we will fix later.
<li><a accesskey="2" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>: Common problems of cross compiling with GCC.
<li><a accesskey="3" href="#Interoperation">Interoperation</a>: Problems using GCC with other compilers,
and with certain linkers, assemblers and debuggers.
<li><a accesskey="4" href="#Incompatibilities">Incompatibilities</a>: GCC is incompatible with traditional C.
<li><a accesskey="5" href="#Fixed-Headers">Fixed Headers</a>: GCC uses corrected versions of system header files.
This is necessary, but doesn't always work smoothly.
<li><a accesskey="6" href="#Standard-Libraries">Standard Libraries</a>: GCC uses the system C library, which might not be
compliant with the ISO C standard.
<li><a accesskey="7" href="#Disappointments">Disappointments</a>: Regrettable things we can't change, but not quite bugs.
<li><a accesskey="8" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>: Common misunderstandings with GNU C++.
<li><a accesskey="9" href="#Protoize-Caveats">Protoize Caveats</a>: Things to watch out for when using <code>protoize</code>.
<li><a href="#Non_002dbugs">Non-bugs</a>: Things we think are right, but some others disagree.
<li><a href="#Warnings-and-Errors">Warnings and Errors</a>: Which problems in your code get warnings,
and which get errors.
</ul>
<div class="node">
<a name="Actual-Bugs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.1 Actual Bugs We Haven't Fixed Yet</h3>
<ul>
<li>The <code>fixincludes</code> script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be
unmounted while <code>fixincludes</code> is running. This would seem to be a
bug in the automounter. We don't know any good way to work around it.
<li>The <code>fixproto</code> script will sometimes add prototypes for the
<code>sigsetjmp</code> and <code>siglongjmp</code> functions that reference the
<code>jmp_buf</code> type before that type is defined. To work around this,
edit the offending file and place the typedef in front of the
prototypes.
</ul>
<div class="node">
<a name="Cross-Compiler-Problems"></a>
<a name="Cross_002dCompiler-Problems"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Interoperation">Interoperation</a>,
Previous: <a rel="previous" accesskey="p" href="#Actual-Bugs">Actual Bugs</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.2 Cross-Compiler Problems</h3>
<p>You may run into problems with cross compilation on certain machines,
for several reasons.
<ul>
<li>At present, the program <samp><span class="file">mips-tfile</span></samp> which adds debug
support to object files on MIPS systems does not work in a cross
compile environment.
</ul>
<div class="node">
<a name="Interoperation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Incompatibilities">Incompatibilities</a>,
Previous: <a rel="previous" accesskey="p" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.3 Interoperation</h3>
<p>This section lists various difficulties encountered in using GCC
together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.
<ul>
<li>On many platforms, GCC supports a different ABI for C++ than do other
compilers, so the object files compiled by GCC cannot be used with object
files generated by another C++ compiler.
<p>An area where the difference is most apparent is name mangling. The use
of different name mangling is intentional, to protect you from more subtle
problems.
Compilers differ as to many internal details of C++ implementation,
including: how class instances are laid out, how multiple inheritance is
implemented, and how virtual function calls are handled. If the name
encoding were made the same, your programs would link against libraries
provided from other compilers—but the programs would then crash when
run. Incompatible libraries are then detected at link time, rather than
at run time.
<li>On some BSD systems, including some versions of Ultrix, use of profiling
causes static variable destructors (currently used only in C++) not to
be run.
<li>On some SGI systems, when you use <samp><span class="option">-lgl_s</span></samp> as an option,
it gets translated magically to ‘<samp><span class="samp">-lgl_s -lX11_s -lc_s</span></samp>’.
Naturally, this does not happen when you use GCC.
You must specify all three options explicitly.
<li>On a SPARC, GCC aligns all values of type <code>double</code> on an 8-byte
boundary, and it expects every <code>double</code> to be so aligned. The Sun
compiler usually gives <code>double</code> values 8-byte alignment, with one
exception: function arguments of type <code>double</code> may not be aligned.
<p>As a result, if a function compiled with Sun CC takes the address of an
argument of type <code>double</code> and passes this pointer of type
<code>double *</code> to a function compiled with GCC, dereferencing the
pointer may cause a fatal signal.
<p>One way to solve this problem is to compile your entire program with GCC.
Another solution is to modify the function that is compiled with
Sun CC to copy the argument into a local variable; local variables
are always properly aligned. A third solution is to modify the function
that uses the pointer to dereference it via the following function
<code>access_double</code> instead of directly with ‘<samp><span class="samp">*</span></samp>’:
<pre class="smallexample"> inline double
access_double (double *unaligned_ptr)
{
union d2i { double d; int i[2]; };
union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;
u.i[0] = p->i[0];
u.i[1] = p->i[1];
return u.d;
}
</pre>
<p class="noindent">Storing into the pointer can be done likewise with the same union.
<li>On Solaris, the <code>malloc</code> function in the <samp><span class="file">libmalloc.a</span></samp> library
may allocate memory that is only 4 byte aligned. Since GCC on the
SPARC assumes that doubles are 8 byte aligned, this may result in a
fatal signal if doubles are stored in memory allocated by the
<samp><span class="file">libmalloc.a</span></samp> library.
<p>The solution is to not use the <samp><span class="file">libmalloc.a</span></samp> library. Use instead
<code>malloc</code> and related functions from <samp><span class="file">libc.a</span></samp>; they do not have
this problem.
<li>On the HP PA machine, ADB sometimes fails to work on functions compiled
with GCC. Specifically, it fails to work on functions that use
<code>alloca</code> or variable-size arrays. This is because GCC doesn't
generate HP-UX unwind descriptors for such functions. It may even be
impossible to generate them.
<li>Debugging (<samp><span class="option">-g</span></samp>) is not supported on the HP PA machine, unless you use
the preliminary GNU tools.
<li>Taking the address of a label may generate errors from the HP-UX
PA assembler. GAS for the PA does not have this problem.
<li>Using floating point parameters for indirect calls to static functions
will not work when using the HP assembler. There simply is no way for GCC
to specify what registers hold arguments for static functions when using
the HP assembler. GAS for the PA does not have this problem.
<li>In extremely rare cases involving some very large functions you may
receive errors from the HP linker complaining about an out of bounds
unconditional branch offset. This used to occur more often in previous
versions of GCC, but is now exceptionally rare. If you should run
into it, you can work around by making your function smaller.
<li>GCC compiled code sometimes emits warnings from the HP-UX assembler of
the form:
<pre class="smallexample"> (warning) Use of GR3 when
frame >= 8192 may cause conflict.
</pre>
<p>These warnings are harmless and can be safely ignored.
<li>In extremely rare cases involving some very large functions you may
receive errors from the AIX Assembler complaining about a displacement
that is too large. If you should run into it, you can work around by
making your function smaller.
<li>The <samp><span class="file">libstdc++.a</span></samp> library in GCC relies on the SVR4 dynamic
linker semantics which merges global symbols between libraries and
applications, especially necessary for C++ streams functionality.
This is not the default behavior of AIX shared libraries and dynamic
linking. <samp><span class="file">libstdc++.a</span></samp> is built on AIX with “runtime-linking”
enabled so that symbol merging can occur. To utilize this feature,
the application linked with <samp><span class="file">libstdc++.a</span></samp> must include the
<samp><span class="option">-Wl,-brtl</span></samp> flag on the link line. G++ cannot impose this
because this option may interfere with the semantics of the user
program and users may not always use ‘<samp><span class="samp">g++</span></samp>’ to link his or her
application. Applications are not required to use the
<samp><span class="option">-Wl,-brtl</span></samp> flag on the link line—the rest of the
<samp><span class="file">libstdc++.a</span></samp> library which is not dependent on the symbol
merging semantics will continue to function correctly.
<li>An application can interpose its own definition of functions for
functions invoked by <samp><span class="file">libstdc++.a</span></samp> with “runtime-linking”
enabled on AIX. To accomplish this the application must be linked
with “runtime-linking” option and the functions explicitly must be
exported by the application (<samp><span class="option">-Wl,-brtl,-bE:exportfile</span></samp>).
<li>AIX on the RS/6000 provides support (NLS) for environments outside of
the United States. Compilers and assemblers use NLS to support
locale-specific representations of various objects including
floating-point numbers (‘<samp><span class="samp">.</span></samp>’ vs ‘<samp><span class="samp">,</span></samp>’ for separating decimal
fractions). There have been problems reported where the library linked
with GCC does not produce the same floating-point formats that the
assembler accepts. If you have this problem, set the <samp><span class="env">LANG</span></samp>
environment variable to ‘<samp><span class="samp">C</span></samp>’ or ‘<samp><span class="samp">En_US</span></samp>’.
<li><a name="index-fdollars_002din_002didentifiers-3018"></a>Even if you specify <samp><span class="option">-fdollars-in-identifiers</span></samp>,
you cannot successfully use ‘<samp><span class="samp">$</span></samp>’ in identifiers on the RS/6000 due
to a restriction in the IBM assembler. GAS supports these
identifiers.
</ul>
<div class="node">
<a name="Incompatibilities"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Fixed-Headers">Fixed Headers</a>,
Previous: <a rel="previous" accesskey="p" href="#Interoperation">Interoperation</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.4 Incompatibilities of GCC</h3>
<p><a name="index-incompatibilities-of-GCC-3019"></a><a name="index-traditional-3020"></a>
There are several noteworthy incompatibilities between GNU C and K&R
(non-ISO) versions of C.
<a name="index-string-constants-3021"></a>
<a name="index-read_002donly-strings-3022"></a>
<a name="index-shared-strings-3023"></a>
<ul><li>GCC normally makes string constants read-only. If several
identical-looking string constants are used, GCC stores only one
copy of the string.
<p><a name="index-g_t_0040code_007bmktemp_007d_002c-and-constant-strings-3024"></a>One consequence is that you cannot call <code>mktemp</code> with a string
constant argument. The function <code>mktemp</code> always alters the
string its argument points to.
<p><a name="index-g_t_0040code_007bsscanf_007d_002c-and-constant-strings-3025"></a><a name="index-g_t_0040code_007bfscanf_007d_002c-and-constant-strings-3026"></a><a name="index-g_t_0040code_007bscanf_007d_002c-and-constant-strings-3027"></a>Another consequence is that <code>sscanf</code> does not work on some very
old systems when passed a string constant as its format control string
or input. This is because <code>sscanf</code> incorrectly tries to write
into the string constant. Likewise <code>fscanf</code> and <code>scanf</code>.
<p>The solution to these problems is to change the program to use
<code>char</code>-array variables with initialization strings for these
purposes instead of string constants.
<li><code>-2147483648</code> is positive.
<p>This is because 2147483648 cannot fit in the type <code>int</code>, so
(following the ISO C rules) its data type is <code>unsigned long int</code>.
Negating this value yields 2147483648 again.
<li>GCC does not substitute macro arguments when they appear inside of
string constants. For example, the following macro in GCC
<pre class="smallexample"> #define foo(a) "a"
</pre>
<p class="noindent">will produce output <code>"a"</code> regardless of what the argument <var>a</var> is.
<p><a name="index-g_t_0040code_007bsetjmp_007d-incompatibilities-3028"></a><a name="index-g_t_0040code_007blongjmp_007d-incompatibilities-3029"></a><li>When you use <code>setjmp</code> and <code>longjmp</code>, the only automatic
variables guaranteed to remain valid are those declared
<code>volatile</code>. This is a consequence of automatic register
allocation. Consider this function:
<pre class="smallexample"> jmp_buf j;
foo ()
{
int a, b;
a = fun1 ();
if (setjmp (j))
return a;
a = fun2 ();
/* <code>longjmp (j)</code><span class="roman"> may occur in </span><code>fun3</code><span class="roman">.</span> */
return a + fun3 ();
}
</pre>
<p>Here <code>a</code> may or may not be restored to its first value when the
<code>longjmp</code> occurs. If <code>a</code> is allocated in a register, then
its first value is restored; otherwise, it keeps the last value stored
in it.
<p><a name="index-W-3030"></a>If you use the <samp><span class="option">-W</span></samp> option with the <samp><span class="option">-O</span></samp> option, you will
get a warning when GCC thinks such a problem might be possible.
<li>Programs that use preprocessing directives in the middle of macro
arguments do not work with GCC. For example, a program like this
will not work:
<pre class="smallexample"> foobar (
#define luser
hack)
</pre>
<p>ISO C does not permit such a construct.
<li>K&R compilers allow comments to cross over an inclusion boundary
(i.e. started in an include file and ended in the including file).
<p><a name="index-external-declaration-scope-3031"></a><a name="index-scope-of-external-declarations-3032"></a><a name="index-declaration-scope-3033"></a><li>Declarations of external variables and functions within a block apply
only to the block containing the declaration. In other words, they
have the same scope as any other declaration in the same place.
<p>In some other C compilers, a <code>extern</code> declaration affects all the
rest of the file even if it happens within a block.
<li>In traditional C, you can combine <code>long</code>, etc., with a typedef name,
as shown here:
<pre class="smallexample"> typedef int foo;
typedef long foo bar;
</pre>
<p>In ISO C, this is not allowed: <code>long</code> and other type modifiers
require an explicit <code>int</code>.
<p><a name="index-typedef-names-as-function-parameters-3034"></a><li>PCC allows typedef names to be used as function parameters.
<li>Traditional C allows the following erroneous pair of declarations to
appear together in a given scope:
<pre class="smallexample"> typedef int foo;
typedef foo foo;
</pre>
<li>GCC treats all characters of identifiers as significant. According to
K&R-1 (2.2), “No more than the first eight characters are significant,
although more may be used.”. Also according to K&R-1 (2.2), “An
identifier is a sequence of letters and digits; the first character must
be a letter. The underscore _ counts as a letter.”, but GCC also
allows dollar signs in identifiers.
<p><a name="index-whitespace-3035"></a><li>PCC allows whitespace in the middle of compound assignment operators
such as ‘<samp><span class="samp">+=</span></samp>’. GCC, following the ISO standard, does not
allow this.
<p><a name="index-apostrophes-3036"></a><a name="index-g_t_0027-3037"></a><li>GCC complains about unterminated character constants inside of
preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if these
comments contain apostrophes, GCC will probably report an error. For
example, this code would produce an error:
<pre class="smallexample"> #if 0
You can't expect this to work.
#endif
</pre>
<p>The best solution to such a problem is to put the text into an actual
C comment delimited by ‘<samp><span class="samp">/*...*/</span></samp>’.
<li>Many user programs contain the declaration ‘<samp><span class="samp">long time ();</span></samp>’. In the
past, the system header files on many systems did not actually declare
<code>time</code>, so it did not matter what type your program declared it to
return. But in systems with ISO C headers, <code>time</code> is declared to
return <code>time_t</code>, and if that is not the same as <code>long</code>, then
‘<samp><span class="samp">long time ();</span></samp>’ is erroneous.
<p>The solution is to change your program to use appropriate system headers
(<code><time.h></code> on systems with ISO C headers) and not to declare
<code>time</code> if the system header files declare it, or failing that to
use <code>time_t</code> as the return type of <code>time</code>.
<p><a name="index-g_t_0040code_007bfloat_007d-as-function-value-type-3038"></a><li>When compiling functions that return <code>float</code>, PCC converts it to
a double. GCC actually returns a <code>float</code>. If you are concerned
with PCC compatibility, you should declare your functions to return
<code>double</code>; you might as well say what you mean.
<p><a name="index-structures-3039"></a><a name="index-unions-3040"></a><li>When compiling functions that return structures or unions, GCC
output code normally uses a method different from that used on most
versions of Unix. As a result, code compiled with GCC cannot call
a structure-returning function compiled with PCC, and vice versa.
<p>The method used by GCC is as follows: a structure or union which is
1, 2, 4 or 8 bytes long is returned like a scalar. A structure or union
with any other size is stored into an address supplied by the caller
(usually in a special, fixed register, but on some machines it is passed
on the stack). The target hook <code>TARGET_STRUCT_VALUE_RTX</code>
tells GCC where to pass this address.
<p>By contrast, PCC on most target machines returns structures and unions
of any size by copying the data into an area of static storage, and then
returning the address of that storage as if it were a pointer value.
The caller must copy the data from that memory area to the place where
the value is wanted. GCC does not use this method because it is
slower and nonreentrant.
<p>On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GCC on most of these machines uses a
compatible convention when returning structures and unions in memory,
but still returns small structures and unions in registers.
<p><a name="index-fpcc_002dstruct_002dreturn-3041"></a>You can tell GCC to use a compatible convention for all structure and
union returning with the option <samp><span class="option">-fpcc-struct-return</span></samp>.
<p><a name="index-preprocessing-tokens-3042"></a><a name="index-preprocessing-numbers-3043"></a><li>GCC complains about program fragments such as ‘<samp><span class="samp">0x74ae-0x4000</span></samp>’
which appear to be two hexadecimal constants separated by the minus
operator. Actually, this string is a single <dfn>preprocessing token</dfn>.
Each such token must correspond to one token in C. Since this does not,
GCC prints an error message. Although it may appear obvious that what
is meant is an operator and two values, the ISO C standard specifically
requires that this be treated as erroneous.
<p>A <dfn>preprocessing token</dfn> is a <dfn>preprocessing number</dfn> if it
begins with a digit and is followed by letters, underscores, digits,
periods and ‘<samp><span class="samp">e+</span></samp>’, ‘<samp><span class="samp">e-</span></samp>’, ‘<samp><span class="samp">E+</span></samp>’, ‘<samp><span class="samp">E-</span></samp>’, ‘<samp><span class="samp">p+</span></samp>’,
‘<samp><span class="samp">p-</span></samp>’, ‘<samp><span class="samp">P+</span></samp>’, or ‘<samp><span class="samp">P-</span></samp>’ character sequences. (In strict C89
mode, the sequences ‘<samp><span class="samp">p+</span></samp>’, ‘<samp><span class="samp">p-</span></samp>’, ‘<samp><span class="samp">P+</span></samp>’ and ‘<samp><span class="samp">P-</span></samp>’ cannot
appear in preprocessing numbers.)
<p>To make the above program fragment valid, place whitespace in front of
the minus sign. This whitespace will end the preprocessing number.
</ul>
<div class="node">
<a name="Fixed-Headers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Standard-Libraries">Standard Libraries</a>,
Previous: <a rel="previous" accesskey="p" href="#Incompatibilities">Incompatibilities</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.5 Fixed Header Files</h3>
<p>GCC needs to install corrected versions of some system header files.
This is because most target systems have some header files that won't
work with GCC unless they are changed. Some have bugs, some are
incompatible with ISO C, and some depend on special features of other
compilers.
<p>Installing GCC automatically creates and installs the fixed header
files, by running a program called <code>fixincludes</code>. Normally, you
don't need to pay attention to this. But there are cases where it
doesn't do the right thing automatically.
<ul>
<li>If you update the system's header files, such as by installing a new
system version, the fixed header files of GCC are not automatically
updated. They can be updated using the <samp><span class="command">mkheaders</span></samp> script
installed in
<samp><var>libexecdir</var><span class="file">/gcc/</span><var>target</var><span class="file">/</span><var>version</var><span class="file">/install-tools/</span></samp>.
<li>On some systems, header file directories contain
machine-specific symbolic links in certain places. This makes it
possible to share most of the header files among hosts running the
same version of the system on different machine models.
<p>The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.
<p>It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links so
as to use the proper set, but you'll have to do this by hand.
</ul>
<div class="node">
<a name="Standard-Libraries"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Disappointments">Disappointments</a>,
Previous: <a rel="previous" accesskey="p" href="#Fixed-Headers">Fixed Headers</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.6 Standard Libraries</h3>
<p><a name="index-Wall-3044"></a>GCC by itself attempts to be a conforming freestanding implementation.
See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
what this means. Beyond the library facilities required of such an
implementation, the rest of the C library is supplied by the vendor of
the operating system. If that C library doesn't conform to the C
standards, then your programs might get warnings (especially when using
<samp><span class="option">-Wall</span></samp>) that you don't expect.
<p>For example, the <code>sprintf</code> function on SunOS 4.1.3 returns
<code>char *</code> while the C standard says that <code>sprintf</code> returns an
<code>int</code>. The <code>fixincludes</code> program could make the prototype for
this function match the Standard, but that would be wrong, since the
function will still return <code>char *</code>.
<p>If you need a Standard compliant library, then you need to find one, as
GCC does not provide one. The GNU C library (called <code>glibc</code>)
provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for
GNU/Linux and HURD-based GNU systems; no recent version of it supports
other systems, though some very old versions did. Version 2.2 of the
GNU C library includes nearly complete C99 support. You could also ask
your operating system vendor if newer libraries are available.
<div class="node">
<a name="Disappointments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>,
Previous: <a rel="previous" accesskey="p" href="#Standard-Libraries">Standard Libraries</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.7 Disappointments and Misunderstandings</h3>
<p>These problems are perhaps regrettable, but we don't know any practical
way around them.
<ul>
<li>Certain local variables aren't recognized by debuggers when you compile
with optimization.
<p>This occurs because sometimes GCC optimizes the variable out of
existence. There is no way to tell the debugger how to compute the
value such a variable “would have had”, and it is not clear that would
be desirable anyway. So GCC simply does not mention the eliminated
variable when it writes debugging information.
<p>You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.
<p><a name="index-conflicting-types-3045"></a><a name="index-scope-of-declaration-3046"></a><li>Users often think it is a bug when GCC reports an error for code
like this:
<pre class="smallexample"> int foo (struct mumble *);
struct mumble { ... };
int foo (struct mumble *x)
{ ... }
</pre>
<p>This code really is erroneous, because the scope of <code>struct
mumble</code> in the prototype is limited to the argument list containing it.
It does not refer to the <code>struct mumble</code> defined with file scope
immediately below—they are two unrelated types with similar names in
different scopes.
<p>But in the definition of <code>foo</code>, the file-scope type is used
because that is available to be inherited. Thus, the definition and
the prototype do not match, and you get an error.
<p>This behavior may seem silly, but it's what the ISO standard specifies.
It is easy enough for you to make your code work by moving the
definition of <code>struct mumble</code> above the prototype. It's not worth
being incompatible with ISO C just to avoid an error for the example
shown above.
<li>Accesses to bit-fields even in volatile objects works by accessing larger
objects, such as a byte or a word. You cannot rely on what size of
object is accessed in order to read or write the bit-field; it may even
vary for a given bit-field according to the precise usage.
<p>If you care about controlling the amount of memory that is accessed, use
volatile but do not use bit-fields.
<li>GCC comes with shell scripts to fix certain known problems in system
header files. They install corrected copies of various header files in
a special directory where only GCC will normally look for them. The
scripts adapt to various systems by searching all the system header
files for the problem cases that we know about.
<p>If new system header files are installed, nothing automatically arranges
to update the corrected header files. They can be updated using the
<samp><span class="command">mkheaders</span></samp> script installed in
<samp><var>libexecdir</var><span class="file">/gcc/</span><var>target</var><span class="file">/</span><var>version</var><span class="file">/install-tools/</span></samp>.
<li><a name="index-floating-point-precision-3047"></a>On 68000 and x86 systems, for instance, you can get paradoxical results
if you test the precise values of floating point numbers. For example,
you can find that a floating point value which is not a NaN is not equal
to itself. This results from the fact that the floating point registers
hold a few more bits of precision than fit in a <code>double</code> in memory.
Compiled code moves values between memory and floating point registers
at its convenience, and moving them into memory truncates them.
<p><a name="index-ffloat_002dstore-3048"></a>You can partially avoid this problem by using the <samp><span class="option">-ffloat-store</span></samp>
option (see <a href="#Optimize-Options">Optimize Options</a>).
<li>On AIX and other platforms without weak symbol support, templates
need to be instantiated explicitly and symbols for static members
of templates will not be generated.
<li>On AIX, GCC scans object files and library archives for static
constructors and destructors when linking an application before the
linker prunes unreferenced symbols. This is necessary to prevent the
AIX linker from mistakenly assuming that static constructor or
destructor are unused and removing them before the scanning can occur.
All static constructors and destructors found will be referenced even
though the modules in which they occur may not be used by the program.
This may lead to both increased executable size and unexpected symbol
references.
</ul>
<div class="node">
<a name="C++-Misunderstandings"></a>
<a name="C_002b_002b-Misunderstandings"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Protoize-Caveats">Protoize Caveats</a>,
Previous: <a rel="previous" accesskey="p" href="#Disappointments">Disappointments</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.8 Common Misunderstandings with GNU C++</h3>
<p><a name="index-misunderstandings-in-C_002b_002b-3049"></a><a name="index-surprises-in-C_002b_002b-3050"></a><a name="index-C_002b_002b-misunderstandings-3051"></a>C++ is a complex language and an evolving one, and its standard
definition (the ISO C++ standard) was only recently completed. As a
result, your C++ compiler may occasionally surprise you, even when its
behavior is correct. This section discusses some areas that frequently
give rise to questions of this sort.
<ul class="menu">
<li><a accesskey="1" href="#Static-Definitions">Static Definitions</a>: Static member declarations are not definitions
<li><a accesskey="2" href="#Name-lookup">Name lookup</a>: Name lookup, templates, and accessing members of base classes
<li><a accesskey="3" href="#Temporaries">Temporaries</a>: Temporaries may vanish before you expect
<li><a accesskey="4" href="#Copy-Assignment">Copy Assignment</a>: Copy Assignment operators copy virtual bases twice
</ul>
<div class="node">
<a name="Static-Definitions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Name-lookup">Name lookup</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>
</div>
<h4 class="subsection">10.8.1 Declare <em>and</em> Define Static Members</h4>
<p><a name="index-C_002b_002b-static-data_002c-declaring-and-defining-3052"></a><a name="index-static-data-in-C_002b_002b_002c-declaring-and-defining-3053"></a><a name="index-declaring-static-data-in-C_002b_002b-3054"></a><a name="index-defining-static-data-in-C_002b_002b-3055"></a>When a class has static data members, it is not enough to <em>declare</em>
the static member; you must also <em>define</em> it. For example:
<pre class="smallexample"> class Foo
{
...
void method();
static int bar;
};
</pre>
<p>This declaration only establishes that the class <code>Foo</code> has an
<code>int</code> named <code>Foo::bar</code>, and a member function named
<code>Foo::method</code>. But you still need to define <em>both</em>
<code>method</code> and <code>bar</code> elsewhere. According to the ISO
standard, you must supply an initializer in one (and only one) source
file, such as:
<pre class="smallexample"> int Foo::bar = 0;
</pre>
<p>Other C++ compilers may not correctly implement the standard behavior.
As a result, when you switch to <samp><span class="command">g++</span></samp> from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: <samp><span class="command">g++</span></samp> reports as undefined
symbols any static data members that lack definitions.
<div class="node">
<a name="Name-lookup"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Temporaries">Temporaries</a>,
Previous: <a rel="previous" accesskey="p" href="#Static-Definitions">Static Definitions</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>
</div>
<h4 class="subsection">10.8.2 Name lookup, templates, and accessing members of base classes</h4>
<p><a name="index-base-class-members-3056"></a><a name="index-two_002dstage-name-lookup-3057"></a><a name="index-dependent-name-lookup-3058"></a>
The C++ standard prescribes that all names that are not dependent on
template parameters are bound to their present definitions when parsing
a template function or class.<a rel="footnote" href="#fn-5" name="fnd-5"><sup>5</sup></a> Only names that are dependent are looked up at the point
of instantiation. For example, consider
<pre class="smallexample"> void foo(double);
struct A {
template <typename T>
void f () {
foo (1); // <span class="roman">1</span>
int i = N; // <span class="roman">2</span>
T t;
t.bar(); // <span class="roman">3</span>
foo (t); // <span class="roman">4</span>
}
static const int N;
};
</pre>
<p>Here, the names <code>foo</code> and <code>N</code> appear in a context that does
not depend on the type of <code>T</code>. The compiler will thus require that
they are defined in the context of use in the template, not only before
the point of instantiation, and will here use <code>::foo(double)</code> and
<code>A::N</code>, respectively. In particular, it will convert the integer
value to a <code>double</code> when passing it to <code>::foo(double)</code>.
<p>Conversely, <code>bar</code> and the call to <code>foo</code> in the fourth marked
line are used in contexts that do depend on the type of <code>T</code>, so
they are only looked up at the point of instantiation, and you can
provide declarations for them after declaring the template, but before
instantiating it. In particular, if you instantiate <code>A::f<int></code>,
the last line will call an overloaded <code>::foo(int)</code> if one was
provided, even if after the declaration of <code>struct A</code>.
<p>This distinction between lookup of dependent and non-dependent names is
called two-stage (or dependent) name lookup. G++ implements it
since version 3.4.
<p>Two-stage name lookup sometimes leads to situations with behavior
different from non-template codes. The most common is probably this:
<pre class="smallexample"> template <typename T> struct Base {
int i;
};
template <typename T> struct Derived : public Base<T> {
int get_i() { return i; }
};
</pre>
<p>In <code>get_i()</code>, <code>i</code> is not used in a dependent context, so the
compiler will look for a name declared at the enclosing namespace scope
(which is the global scope here). It will not look into the base class,
since that is dependent and you may declare specializations of
<code>Base</code> even after declaring <code>Derived</code>, so the compiler can't
really know what <code>i</code> would refer to. If there is no global
variable <code>i</code>, then you will get an error message.
<p>In order to make it clear that you want the member of the base class,
you need to defer lookup until instantiation time, at which the base
class is known. For this, you need to access <code>i</code> in a dependent
context, by either using <code>this->i</code> (remember that <code>this</code> is of
type <code>Derived<T>*</code>, so is obviously dependent), or using
<code>Base<T>::i</code>. Alternatively, <code>Base<T>::i</code> might be brought
into scope by a <code>using</code>-declaration.
<p>Another, similar example involves calling member functions of a base
class:
<pre class="smallexample"> template <typename T> struct Base {
int f();
};
template <typename T> struct Derived : Base<T> {
int g() { return f(); };
};
</pre>
<p>Again, the call to <code>f()</code> is not dependent on template arguments
(there are no arguments that depend on the type <code>T</code>, and it is also
not otherwise specified that the call should be in a dependent context).
Thus a global declaration of such a function must be available, since
the one in the base class is not visible until instantiation time. The
compiler will consequently produce the following error message:
<pre class="smallexample"> x.cc: In member function `int Derived<T>::g()':
x.cc:6: error: there are no arguments to `f' that depend on a template
parameter, so a declaration of `f' must be available
x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but
allowing the use of an undeclared name is deprecated)
</pre>
<p>To make the code valid either use <code>this->f()</code>, or
<code>Base<T>::f()</code>. Using the <samp><span class="option">-fpermissive</span></samp> flag will also let
the compiler accept the code, by marking all function calls for which no
declaration is visible at the time of definition of the template for
later lookup at instantiation time, as if it were a dependent call.
We do not recommend using <samp><span class="option">-fpermissive</span></samp> to work around invalid
code, and it will also only catch cases where functions in base classes
are called, not where variables in base classes are used (as in the
example above).
<p>Note that some compilers (including G++ versions prior to 3.4) get these
examples wrong and accept above code without an error. Those compilers
do not implement two-stage name lookup correctly.
<div class="node">
<a name="Temporaries"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Copy-Assignment">Copy Assignment</a>,
Previous: <a rel="previous" accesskey="p" href="#Name-lookup">Name lookup</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>
</div>
<h4 class="subsection">10.8.3 Temporaries May Vanish Before You Expect</h4>
<p><a name="index-temporaries_002c-lifetime-of-3059"></a><a name="index-portions-of-temporary-objects_002c-pointers-to-3060"></a>It is dangerous to use pointers or references to <em>portions</em> of a
temporary object. The compiler may very well delete the object before
you expect it to, leaving a pointer to garbage. The most common place
where this problem crops up is in classes like string classes,
especially ones that define a conversion function to type <code>char *</code>
or <code>const char *</code>—which is one reason why the standard
<code>string</code> class requires you to call the <code>c_str</code> member
function. However, any class that returns a pointer to some internal
structure is potentially subject to this problem.
<p>For example, a program may use a function <code>strfunc</code> that returns
<code>string</code> objects, and another function <code>charfunc</code> that
operates on pointers to <code>char</code>:
<pre class="smallexample"> string strfunc ();
void charfunc (const char *);
void
f ()
{
const char *p = strfunc().c_str();
...
charfunc (p);
...
charfunc (p);
}
</pre>
<p class="noindent">In this situation, it may seem reasonable to save a pointer to the C
string returned by the <code>c_str</code> member function and use that rather
than call <code>c_str</code> repeatedly. However, the temporary string
created by the call to <code>strfunc</code> is destroyed after <code>p</code> is
initialized, at which point <code>p</code> is left pointing to freed memory.
<p>Code like this may run successfully under some other compilers,
particularly obsolete cfront-based compilers that delete temporaries
along with normal local variables. However, the GNU C++ behavior is
standard-conforming, so if your program depends on late destruction of
temporaries it is not portable.
<p>The safe way to write such code is to give the temporary a name, which
forces it to remain until the end of the scope of the name. For
example:
<pre class="smallexample"> const string& tmp = strfunc ();
charfunc (tmp.c_str ());
</pre>
<div class="node">
<a name="Copy-Assignment"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Temporaries">Temporaries</a>,
Up: <a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>
</div>
<h4 class="subsection">10.8.4 Implicit Copy-Assignment for Virtual Bases</h4>
<p>When a base class is virtual, only one subobject of the base class
belongs to each full object. Also, the constructors and destructors are
invoked only once, and called from the most-derived class. However, such
objects behave unspecified when being assigned. For example:
<pre class="smallexample"> struct Base{
char *name;
Base(char *n) : name(strdup(n)){}
Base& operator= (const Base& other){
free (name);
name = strdup (other.name);
}
};
struct A:virtual Base{
int val;
A():Base("A"){}
};
struct B:virtual Base{
int bval;
B():Base("B"){}
};
struct Derived:public A, public B{
Derived():Base("Derived"){}
};
void func(Derived &d1, Derived &d2)
{
d1 = d2;
}
</pre>
<p>The C++ standard specifies that ‘<samp><span class="samp">Base::Base</span></samp>’ is only called once
when constructing or copy-constructing a Derived object. It is
unspecified whether ‘<samp><span class="samp">Base::operator=</span></samp>’ is called more than once when
the implicit copy-assignment for Derived objects is invoked (as it is
inside ‘<samp><span class="samp">func</span></samp>’ in the example).
<p>G++ implements the “intuitive” algorithm for copy-assignment: assign all
direct bases, then assign all members. In that algorithm, the virtual
base subobject can be encountered more than once. In the example, copying
proceeds in the following order: ‘<samp><span class="samp">val</span></samp>’, ‘<samp><span class="samp">name</span></samp>’ (via
<code>strdup</code>), ‘<samp><span class="samp">bval</span></samp>’, and ‘<samp><span class="samp">name</span></samp>’ again.
<p>If application code relies on copy-assignment, a user-defined
copy-assignment operator removes any uncertainties. With such an
operator, the application can define whether and how the virtual base
subobject is assigned.
<div class="node">
<a name="Protoize-Caveats"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Non_002dbugs">Non-bugs</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.9 Caveats of using <samp><span class="command">protoize</span></samp></h3>
<p>The conversion programs <samp><span class="command">protoize</span></samp> and <samp><span class="command">unprotoize</span></samp> can
sometimes change a source file in a way that won't work unless you
rearrange it.
<ul>
<li><samp><span class="command">protoize</span></samp> can insert references to a type name or type tag before
the definition, or in a file where they are not defined.
<p>If this happens, compiler error messages should show you where the new
references are, so fixing the file by hand is straightforward.
<li>There are some C constructs which <samp><span class="command">protoize</span></samp> cannot figure out.
For example, it can't determine argument types for declaring a
pointer-to-function variable; this you must do by hand. <samp><span class="command">protoize</span></samp>
inserts a comment containing ‘<samp><span class="samp">???</span></samp>’ each time it finds such a
variable; so you can find all such variables by searching for this
string. ISO C does not require declaring the argument types of
pointer-to-function types.
<li>Using <samp><span class="command">unprotoize</span></samp> can easily introduce bugs. If the program
relied on prototypes to bring about conversion of arguments, these
conversions will not take place in the program without prototypes.
One case in which you can be sure <samp><span class="command">unprotoize</span></samp> is safe is when
you are removing prototypes that were made with <samp><span class="command">protoize</span></samp>; if
the program worked before without any prototypes, it will work again
without them.
<p><a name="index-Wtraditional_002dconversion-3061"></a>You can find all the places where this problem might occur by compiling
the program with the <samp><span class="option">-Wtraditional-conversion</span></samp> option. It
prints a warning whenever an argument is converted.
<li>Both conversion programs can be confused if there are macro calls in and
around the text to be converted. In other words, the standard syntax
for a declaration or definition must not result from expanding a macro.
This problem is inherent in the design of C and cannot be fixed. If
only a few functions have confusing macro calls, you can easily convert
them manually.
<li><samp><span class="command">protoize</span></samp> cannot get the argument types for a function whose
definition was not actually compiled due to preprocessing conditionals.
When this happens, <samp><span class="command">protoize</span></samp> changes nothing in regard to such
a function. <samp><span class="command">protoize</span></samp> tries to detect such instances and warn
about them.
<p>You can generally work around this problem by using <samp><span class="command">protoize</span></samp> step
by step, each time specifying a different set of <samp><span class="option">-D</span></samp> options for
compilation, until all of the functions have been converted. There is
no automatic way to verify that you have got them all, however.
<li>Confusion may result if there is an occasion to convert a function
declaration or definition in a region of source code where there is more
than one formal parameter list present. Thus, attempts to convert code
containing multiple (conditionally compiled) versions of a single
function header (in the same vicinity) may not produce the desired (or
expected) results.
<p>If you plan on converting source files which contain such code, it is
recommended that you first make sure that each conditionally compiled
region of source code which contains an alternative function header also
contains at least one additional follower token (past the final right
parenthesis of the function header). This should circumvent the
problem.
<li><samp><span class="command">unprotoize</span></samp> can become confused when trying to convert a function
definition or declaration which contains a declaration for a
pointer-to-function formal argument which has the same name as the
function being defined or declared. We recommend you avoid such choices
of formal parameter names.
<li>You might also want to correct some of the indentation by hand and break
long lines. (The conversion programs don't write lines longer than
eighty characters in any case.)
</ul>
<div class="node">
<a name="Non-bugs"></a>
<a name="Non_002dbugs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Warnings-and-Errors">Warnings and Errors</a>,
Previous: <a rel="previous" accesskey="p" href="#Protoize-Caveats">Protoize Caveats</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.10 Certain Changes We Don't Want to Make</h3>
<p>This section lists changes that people frequently request, but which
we do not make because we think GCC is better without them.
<ul>
<li>Checking the number and type of arguments to a function which has an
old-fashioned definition and no prototype.
<p>Such a feature would work only occasionally—only for calls that appear
in the same file as the called function, following the definition. The
only way to check all calls reliably is to add a prototype for the
function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.
<li>Warning about using an expression whose type is signed as a shift count.
<p>Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.
<li>Warning about assigning a signed value to an unsigned variable.
<p>Such assignments must be very common; warning about them would cause
more annoyance than good.
<li>Warning when a non-void function value is ignored.
<p>C contains many standard functions that return a value that most
programs choose to ignore. One obvious example is <code>printf</code>.
Warning about this practice only leads the defensive programmer to
clutter programs with dozens of casts to <code>void</code>. Such casts are
required so frequently that they become visual noise. Writing those
casts becomes so automatic that they no longer convey useful
information about the intentions of the programmer. For functions
where the return value should never be ignored, use the
<code>warn_unused_result</code> function attribute (see <a href="#Function-Attributes">Function Attributes</a>).
<li><a name="index-fshort_002denums-3062"></a>Making <samp><span class="option">-fshort-enums</span></samp> the default.
<p>This would cause storage layout to be incompatible with most other C
compilers. And it doesn't seem very important, given that you can get
the same result in other ways. The case where it matters most is when
the enumeration-valued object is inside a structure, and in that case
you can specify a field width explicitly.
<li>Making bit-fields unsigned by default on particular machines where “the
ABI standard” says to do so.
<p>The ISO C standard leaves it up to the implementation whether a bit-field
declared plain <code>int</code> is signed or not. This in effect creates two
alternative dialects of C.
<p><a name="index-fsigned_002dbitfields-3063"></a><a name="index-funsigned_002dbitfields-3064"></a>The GNU C compiler supports both dialects; you can specify the signed
dialect with <samp><span class="option">-fsigned-bitfields</span></samp> and the unsigned dialect with
<samp><span class="option">-funsigned-bitfields</span></samp>. However, this leaves open the question of
which dialect to use by default.
<p>Currently, the preferred dialect makes plain bit-fields signed, because
this is simplest. Since <code>int</code> is the same as <code>signed int</code> in
every other context, it is cleanest for them to be the same in bit-fields
as well.
<p>Some computer manufacturers have published Application Binary Interface
standards which specify that plain bit-fields should be unsigned. It is
a mistake, however, to say anything about this issue in an ABI. This is
because the handling of plain bit-fields distinguishes two dialects of C.
Both dialects are meaningful on every type of machine. Whether a
particular object file was compiled using signed bit-fields or unsigned
is of no concern to other object files, even if they access the same
bit-fields in the same data structures.
<p>A given program is written in one or the other of these two dialects.
The program stands a chance to work on most any machine if it is
compiled with the proper dialect. It is unlikely to work at all if
compiled with the wrong dialect.
<p>Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would be
inconvenienced if the compiler treated plain bit-fields differently on
certain machines.
<p>Occasionally users write programs intended only for a particular machine
type. On these occasions, the users would benefit if the GNU C compiler
were to support by default the same dialect as the other compilers on
that machine. But such applications are rare. And users writing a
program to run on more than one type of machine cannot possibly benefit
from this kind of compatibility.
<p>This is why GCC does and will treat plain bit-fields in the same
fashion on all types of machines (by default).
<p>There are some arguments for making bit-fields unsigned by default on all
machines. If, for example, this becomes a universal de facto standard,
it would make sense for GCC to go along with it. This is something
to be considered in the future.
<p>(Of course, users strongly concerned about portability should indicate
explicitly in each bit-field whether it is signed or not. In this way,
they write programs which have the same meaning in both C dialects.)
<li><a name="index-ansi-3065"></a><a name="index-std-3066"></a>Undefining <code>__STDC__</code> when <samp><span class="option">-ansi</span></samp> is not used.
<p>Currently, GCC defines <code>__STDC__</code> unconditionally. This provides
good results in practice.
<p>Programmers normally use conditionals on <code>__STDC__</code> to ask whether
it is safe to use certain features of ISO C, such as function
prototypes or ISO token concatenation. Since plain <samp><span class="command">gcc</span></samp> supports
all the features of ISO C, the correct answer to these questions is
“yes”.
<p>Some users try to use <code>__STDC__</code> to check for the availability of
certain library facilities. This is actually incorrect usage in an ISO
C program, because the ISO C standard says that a conforming
freestanding implementation should define <code>__STDC__</code> even though it
does not have the library facilities. ‘<samp><span class="samp">gcc -ansi -pedantic</span></samp>’ is a
conforming freestanding implementation, and it is therefore required to
define <code>__STDC__</code>, even though it does not come with an ISO C
library.
<p>Sometimes people say that defining <code>__STDC__</code> in a compiler that
does not completely conform to the ISO C standard somehow violates the
standard. This is illogical. The standard is a standard for compilers
that claim to support ISO C, such as ‘<samp><span class="samp">gcc -ansi</span></samp>’—not for other
compilers such as plain <samp><span class="command">gcc</span></samp>. Whatever the ISO C standard says
is relevant to the design of plain <samp><span class="command">gcc</span></samp> without <samp><span class="option">-ansi</span></samp> only
for pragmatic reasons, not as a requirement.
<p>GCC normally defines <code>__STDC__</code> to be 1, and in addition
defines <code>__STRICT_ANSI__</code> if you specify the <samp><span class="option">-ansi</span></samp> option,
or a <samp><span class="option">-std</span></samp> option for strict conformance to some version of ISO C.
On some hosts, system include files use a different convention, where
<code>__STDC__</code> is normally 0, but is 1 if the user specifies strict
conformance to the C Standard. GCC follows the host convention when
processing system include files, but when processing user files it follows
the usual GNU C convention.
<li>Undefining <code>__STDC__</code> in C++.
<p>Programs written to compile with C++-to-C translators get the
value of <code>__STDC__</code> that goes with the C compiler that is
subsequently used. These programs must test <code>__STDC__</code>
to determine what kind of C preprocessor that compiler uses:
whether they should concatenate tokens in the ISO C fashion
or in the traditional fashion.
<p>These programs work properly with GNU C++ if <code>__STDC__</code> is defined.
They would not work otherwise.
<p>In addition, many header files are written to provide prototypes in ISO
C but not in traditional C. Many of these header files can work without
change in C++ provided <code>__STDC__</code> is defined. If <code>__STDC__</code>
is not defined, they will all fail, and will all need to be changed to
test explicitly for C++ as well.
<li>Deleting “empty” loops.
<p>Historically, GCC has not deleted “empty” loops under the
assumption that the most likely reason you would put one in a program is
to have a delay, so deleting them will not make real programs run any
faster.
<p>However, the rationale here is that optimization of a nonempty loop
cannot produce an empty one. This held for carefully written C compiled
with less powerful optimizers but is not always the case for carefully
written C++ or with more powerful optimizers.
Thus GCC will remove operations from loops whenever it can determine
those operations are not externally visible (apart from the time taken
to execute them, of course). In case the loop can be proved to be finite,
GCC will also remove the loop itself.
<p>Be aware of this when performing timing tests, for instance the
following loop can be completely removed, provided
<code>some_expression</code> can provably not change any global state.
<pre class="smallexample"> {
int sum = 0;
int ix;
for (ix = 0; ix != 10000; ix++)
sum += some_expression;
}
</pre>
<p>Even though <code>sum</code> is accumulated in the loop, no use is made of
that summation, so the accumulation can be removed.
<li>Making side effects happen in the same order as in some other compiler.
<p><a name="index-side-effects_002c-order-of-evaluation-3067"></a><a name="index-order-of-evaluation_002c-side-effects-3068"></a>It is never safe to depend on the order of evaluation of side effects.
For example, a function call like this may very well behave differently
from one compiler to another:
<pre class="smallexample"> void func (int, int);
int i = 2;
func (i++, i++);
</pre>
<p>There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order. Either increment might happen first. <code>func</code> might get the
arguments ‘<samp><span class="samp">2, 3</span></samp>’, or it might get ‘<samp><span class="samp">3, 2</span></samp>’, or even ‘<samp><span class="samp">2, 2</span></samp>’.
<li>Making certain warnings into errors by default.
<p>Some ISO C testsuites report failure when the compiler does not produce
an error message for a certain program.
<p><a name="index-pedantic_002derrors-3069"></a>ISO C requires a “diagnostic” message for certain kinds of invalid
programs, but a warning is defined by GCC to count as a diagnostic. If
GCC produces a warning but not an error, that is correct ISO C support.
If testsuites call this “failure”, they should be run with the GCC
option <samp><span class="option">-pedantic-errors</span></samp>, which will turn these warnings into
errors.
</ul>
<div class="node">
<a name="Warnings-and-Errors"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Non_002dbugs">Non-bugs</a>,
Up: <a rel="up" accesskey="u" href="#Trouble">Trouble</a>
</div>
<h3 class="section">10.11 Warning Messages and Error Messages</h3>
<p><a name="index-error-messages-3070"></a><a name="index-warnings-vs-errors-3071"></a><a name="index-messages_002c-warning-and-error-3072"></a>The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:
<ul>
<li><dfn>Errors</dfn> report problems that make it impossible to compile your
program. GCC reports errors with the source file name and line
number where the problem is apparent.
<li><dfn>Warnings</dfn> report other unusual conditions in your code that
<em>may</em> indicate a problem, although compilation can (and does)
proceed. Warning messages also report the source file name and line
number, but include the text ‘<samp><span class="samp">warning:</span></samp>’ to distinguish them
from error messages.
</ul>
<p>Warnings may indicate danger points where you should check to make sure
that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the <samp><span class="option">-W</span></samp>
options (for instance, <samp><span class="option">-Wall</span></samp> requests a variety of useful
warnings).
<p><a name="index-pedantic-3073"></a><a name="index-pedantic_002derrors-3074"></a>GCC always tries to compile your program if possible; it never
gratuitously rejects a program whose meaning is clear merely because
(for instance) it fails to conform to a standard. In some cases,
however, the C and C++ standards specify that certain extensions are
forbidden, and a diagnostic <em>must</em> be issued by a conforming
compiler. The <samp><span class="option">-pedantic</span></samp> option tells GCC to issue warnings in
such cases; <samp><span class="option">-pedantic-errors</span></samp> says to make them errors instead.
This does not mean that <em>all</em> non-ISO constructs get warnings
or errors.
<p>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>, for
more detail on these and related command-line options.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2003, 2004, 2007 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Bugs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Service">Service</a>,
Previous: <a rel="previous" accesskey="p" href="#Trouble">Trouble</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">11 Reporting Bugs</h2>
<p><a name="index-bugs-3075"></a><a name="index-reporting-bugs-3076"></a>
Your bug reports play an essential role in making GCC reliable.
<p>When you encounter a problem, the first thing to do is to see if it is
already known. See <a href="#Trouble">Trouble</a>. If it isn't known, then you should
report the problem.
<ul class="menu">
<li><a accesskey="1" href="#Bug-Criteria">Criteria</a>: Have you really found a bug?
<li><a accesskey="2" href="#Bug-Reporting">Reporting</a>: How to report a bug effectively.
<li><a accesskey="3" href="#Trouble">Known</a>: Known problems.
<li><a accesskey="4" href="#Service">Help</a>: Where to ask for help.
</ul>
<div class="node">
<a name="Bug-Criteria"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Bug-Reporting">Bug Reporting</a>,
Up: <a rel="up" accesskey="u" href="#Bugs">Bugs</a>
</div>
<h3 class="section">11.1 Have You Found a Bug?</h3>
<p><a name="index-bug-criteria-3077"></a>
If you are not sure whether you have found a bug, here are some guidelines:
<a name="index-fatal-signal-3078"></a>
<a name="index-core-dump-3079"></a>
<ul><li>If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug. Reliable compilers never crash.
<p><a name="index-invalid-assembly-code-3080"></a><a name="index-assembly-code_002c-invalid-3081"></a><li>If the compiler produces invalid assembly code, for any input whatever
(except an <code>asm</code> statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.
<p><a name="index-undefined-behavior-3082"></a><a name="index-undefined-function-value-3083"></a><a name="index-increment-operators-3084"></a><li>If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.
<p>However, you must double-check to make sure, because you may have a
program whose behavior is undefined, which happened by chance to give
the desired results with another C or C++ compiler.
<p>For example, in many nonoptimizing compilers, you can write ‘<samp><span class="samp">x;</span></samp>’
at the end of a function instead of ‘<samp><span class="samp">return x;</span></samp>’, with the same
results. But the value of the function is undefined if <code>return</code>
is omitted; it is not a bug when GCC produces different results.
<p>Problems often result from expressions with two increment operators,
as in <code>f (*p++, *p++)</code>. Your previous compiler might have
interpreted that expression the way you intended; GCC might
interpret it another way. Neither compiler is wrong. The bug is
in your code.
<p>After you have localized the error to a single source line, it should
be easy to check for these things. If your program is correct and
well defined, you have found a compiler bug.
<li>If the compiler produces an error message for valid input, that is a
compiler bug.
<p><a name="index-invalid-input-3085"></a><li>If the compiler does not produce an error message for invalid input,
that is a compiler bug. However, you should note that your idea of
“invalid input” might be someone else's idea of “an extension” or
“support for traditional practice”.
<li>If you are an experienced user of one of the languages GCC supports, your
suggestions for improvement of GCC are welcome in any case.
</ul>
<div class="node">
<a name="Bug-Reporting"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Bug-Criteria">Bug Criteria</a>,
Up: <a rel="up" accesskey="u" href="#Bugs">Bugs</a>
</div>
<h3 class="section">11.2 How and where to Report Bugs</h3>
<p><a name="index-compiler-bugs_002c-reporting-3086"></a>
Bugs should be reported to the bug database at <a href="file:///usr/share/doc/gcc-4.4/README.Bugs">file:///usr/share/doc/gcc-4.4/README.Bugs</a>.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Service"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Contributing">Contributing</a>,
Previous: <a rel="previous" accesskey="p" href="#Bugs">Bugs</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">12 How To Get Help with GCC</h2>
<p>If you need help installing, using or changing GCC, there are two
ways to find it:
<ul>
<li>Send a message to a suitable network mailing list. First try
<a href="mailto:gcc-help@gcc.gnu.org">gcc-help@gcc.gnu.org</a> (for help installing or using GCC), and if
that brings no response, try <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>. For help
changing GCC, ask <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>. If you think you have found
a bug in GCC, please report it following the instructions at
see <a href="#Bug-Reporting">Bug Reporting</a>.
<li>Look in the service directory for someone who might help you for a fee.
The service directory is found at
<a href="http://www.fsf.org/resources/service">http://www.fsf.org/resources/service</a>.
</ul>
<p>For further information, see
<a href="http://gcc.gnu.org/faq.html#support">http://gcc.gnu.org/faq.html#support</a>.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2004, 2006 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Funding">Funding</a>,
Previous: <a rel="previous" accesskey="p" href="#Service">Service</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">13 Contributing to GCC Development</h2>
<p>If you would like to help pretest GCC releases to assure they work well,
current development sources are available by SVN (see
<a href="http://gcc.gnu.org/svn.html">http://gcc.gnu.org/svn.html</a>). Source and binary snapshots are
also available for FTP; see <a href="http://gcc.gnu.org/snapshots.html">http://gcc.gnu.org/snapshots.html</a>.
<p>If you would like to work on improvements to GCC, please read the
advice at these URLs:
<pre class="smallexample"> <a href="http://gcc.gnu.org/contribute.html">http://gcc.gnu.org/contribute.html</a>
<a href="http://gcc.gnu.org/contributewhy.html">http://gcc.gnu.org/contributewhy.html</a>
</pre>
<p class="noindent">for information on how to make useful contributions and avoid
duplication of effort. Suggested projects are listed at
<a href="http://gcc.gnu.org/projects/">http://gcc.gnu.org/projects/</a>.
<div class="node">
<a name="Funding"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GNU-Project">GNU Project</a>,
Previous: <a rel="previous" accesskey="p" href="#Contributing">Contributing</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">Funding Free Software</h2>
<p>If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development. The most effective approach known is to encourage
commercial redistributors to donate.
<p>Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers—the Free Software Foundation, and others.
<p>The way to convince distributors to do this is to demand it and expect
it from them. So when you compare distributors, judge them partly by
how much they give to free software development. Show distributors
they must compete to be the one who gives the most.
<p>To make this approach work, you must insist on numbers that you can
compare, such as, “We will donate ten dollars to the Frobnitz project
for each disk sold.” Don't be satisfied with a vague promise, such as
“A portion of the profits are donated,” since it doesn't give a basis
for comparison.
<p>Even a precise fraction “of the profits from this disk” is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit.
If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.
<p>Some redistributors do development work themselves. This is useful too;
but to keep everyone honest, you need to inquire how much they do, and
what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection contribute more;
major new features or packages contribute the most.
<p>By establishing the idea that supporting further development is “the
proper thing to do” when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.
<!-- man end -->
<pre class="display"> <!-- man begin COPYRIGHT -->
Copyright © 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.
<!-- man end -->
</pre>
<!-- Copyright (C) 2001 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="GNU-Project"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Copying">Copying</a>,
Previous: <a rel="previous" accesskey="p" href="#Funding">Funding</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">The GNU Project and GNU/Linux</h2>
<p>The GNU Project was launched in 1984 to develop a complete Unix-like
operating system which is free software: the GNU system. (GNU is a
recursive acronym for “GNU's Not Unix”; it is pronounced
“guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often
referred to as “Linux”, they are more accurately called GNU/Linux
systems.
<p>For more information, see:
<pre class="smallexample"> <a href="http://www.gnu.org/">http://www.gnu.org/</a>
<a href="http://www.gnu.org/gnu/linux-and-gnu.html">http://www.gnu.org/gnu/linux-and-gnu.html</a>
</pre>
<div class="node">
<a name="Copying"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Previous: <a rel="previous" accesskey="p" href="#GNU-Project">GNU Project</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">GNU General Public License</h2>
<div align="center">Version 3, 29 June 2007</div>
<!-- This file is intended to be included in another file. -->
<pre class="display"> Copyright © 2007 Free Software Foundation, Inc. <a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
</pre>
<h3 class="heading">Preamble</h3>
<p>The GNU General Public License is a free, copyleft license for
software and other kinds of works.
<p>The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You
can apply it to your programs, too.
<p>When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
<p>To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
<p>For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
<p>Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
<p>For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
<p>Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
<p>Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
<p>The precise terms and conditions for copying, distribution and
modification follow.
<h3 class="heading">TERMS AND CONDITIONS</h3>
<ol type=1 start=0>
<li>Definitions.
<p>“This License” refers to version 3 of the GNU General Public License.
<p>“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
<p>“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.
<p>To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
<p>A “covered work” means either the unmodified Program or a work based
on the Program.
<p>To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
<p>To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
<p>An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
<li>Source Code.
<p>The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.
<p>A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
<p>The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
<p>The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
<p>The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
<p>The Corresponding Source for a work in source code form is that same
work.
<li>Basic Permissions.
<p>All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
<p>You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
<p>Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
<li>Protecting Users' Legal Rights From Anti-Circumvention Law.
<p>No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
<p>When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
<li>Conveying Verbatim Copies.
<p>You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
<p>You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
<li>Conveying Modified Source Versions.
<p>You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
<ol type=a start=1>
<li>The work must carry prominent notices stating that you modified it,
and giving a relevant date.
<li>The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.
<li>You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.
<li>If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.
</ol>
<p>A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
<li>Conveying Non-Source Forms.
<p>You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
<ol type=a start=1>
<li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.
<li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.
<li>Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.
<li>Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.
<li>Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.
</ol>
<p>A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
<p>A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
<p>“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
<p>If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
<p>The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
<p>Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
<li>Additional Terms.
<p>“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
<p>When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
<p>Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
<ol type=a start=1>
<li>Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or
<li>Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or
<li>Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
<li>Limiting the use for publicity purposes of names of licensors or
authors of the material; or
<li>Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or
<li>Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.
</ol>
<p>All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
<p>If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
<p>Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
<li>Termination.
<p>You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
<li>Acceptance Not Required for Having Copies.
<p>You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
<li>Automatic Licensing of Downstream Recipients.
<p>Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
<p>An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
<p>You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
<li>Patents.
<p>A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's “contributor version”.
<p>A contributor's “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
<p>Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
<p>In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
<p>If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
<p>If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
<p>A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
<p>Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
<li>No Surrender of Others' Freedom.
<p>If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
<li>Use with the GNU Affero General Public License.
<p>Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
<li>Revised Versions of this License.
<p>The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
<p>Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.
<p>If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
<p>Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
<li>Disclaimer of Warranty.
<p>THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
<li>Limitation of Liability.
<p>IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
<li>Interpretation of Sections 15 and 16.
<p>If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
</ol>
<h3 class="heading">END OF TERMS AND CONDITIONS</h3>
<h3 class="heading">How to Apply These Terms to Your New Programs</h3>
<p>If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
<p>To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.
<pre class="smallexample"> <var>one line to give the program's name and a brief idea of what it does.</var>
Copyright (C) <var>year</var> <var>name of author</var>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</pre>
<p>Also add information on how to contact you by electronic and paper mail.
<p>If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<pre class="smallexample"> <var>program</var> Copyright (C) <var>year</var> <var>name of author</var>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘<samp><span class="samp">show w</span></samp>’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘<samp><span class="samp">show c</span></samp>’ for details.
</pre>
<p>The hypothetical commands ‘<samp><span class="samp">show w</span></samp>’ and ‘<samp><span class="samp">show c</span></samp>’ should show
the appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an “about box”.
<p>You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
<p>The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <a href="http://www.gnu.org/philosophy/why-not-lgpl.html">http://www.gnu.org/philosophy/why-not-lgpl.html</a>.
<!-- man end -->
<!-- -->
<!-- GFDL -->
<!-- -->
<!-- Special handling for inclusion in the install manual. -->
<!-- man begin DESCRIPTION -->
<div class="node">
<a name="GNU-Free-Documentation-License"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Contributors">Contributors</a>,
Previous: <a rel="previous" accesskey="p" href="#Copying">Copying</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">GNU Free Documentation License</h2>
<p><a name="index-FDL_002c-GNU-Free-Documentation-License-3087"></a><div align="center">Version 1.2, November 2002</div>
<pre class="display"> Copyright © 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</pre>
<ol type=1 start=0>
<li>PREAMBLE
<p>The purpose of this License is to make a manual, textbook, or other
functional and useful document <dfn>free</dfn> in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
<p>This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
<p>We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
<li>APPLICABILITY AND DEFINITIONS
<p>This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
<p>A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
<p>A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
<p>The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
<p>The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
<p>A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.
<p>Examples of suitable formats for Transparent copies include plain
<span class="sc">ascii</span> without markup, Texinfo input format, LaTeX input
format, <acronym>SGML</acronym> or <acronym>XML</acronym> using a publicly available
<acronym>DTD</acronym>, and standard-conforming simple <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> designed for human modification. Examples
of transparent image formats include <acronym>PNG</acronym>, <acronym>XCF</acronym> and
<acronym>JPG</acronym>. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, <acronym>SGML</acronym> or
<acronym>XML</acronym> for which the <acronym>DTD</acronym> and/or processing tools are
not generally available, and the machine-generated <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> produced by some word processors for
output purposes only.
<p>The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
<p>A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
<p>The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
<li>VERBATIM COPYING
<p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
<p>You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
<li>COPYING IN QUANTITY
<p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
<p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
<p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
<p>It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
<li>MODIFICATIONS
<p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
<ol type=A start=1>
<li>Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.
<li>List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.
<li>State on the Title page the name of the publisher of the
Modified Version, as the publisher.
<li>Preserve all the copyright notices of the Document.
<li>Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
<li>Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.
<li>Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.
<li>Include an unaltered copy of this License.
<li>Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
<li>Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
<li>For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.
<li>Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
<li>Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.
<li>Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.
<li>Preserve any Warranty Disclaimers.
</ol>
<p>If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
<p>You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
<p>You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
<p>The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
<li>COMBINING DOCUMENTS
<p>You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
<p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
<p>In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”
<li>COLLECTIONS OF DOCUMENTS
<p>You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
<p>You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
<li>AGGREGATION WITH INDEPENDENT WORKS
<p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
<p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
<li>TRANSLATION
<p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
<p>If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
<li>TERMINATION
<p>You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.
<li>FUTURE REVISIONS OF THIS LICENSE
<p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
<a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>.
<p>Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.
</ol>
<h3 class="unnumberedsec">ADDENDUM: How to use this License for your documents</h3>
<p>To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:
<pre class="smallexample"> Copyright (C) <var>year</var> <var>your name</var>.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
</pre>
<p>If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:
<pre class="smallexample"> with the Invariant Sections being <var>list their titles</var>, with
the Front-Cover Texts being <var>list</var>, and with the Back-Cover Texts
being <var>list</var>.
</pre>
<p>If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
<p>If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
<!-- Local Variables: -->
<!-- ispell-local-pdict: "ispell-dict" -->
<!-- End: -->
<!-- man end -->
<!-- Copyright (C) 1988,1989,1992,1993,1994,1995,1996,1997,1998,1999,2000, -->
<!-- 2001,2002,2003,2004,2005,2006,2007,2008,2009 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Option-Index">Option Index</a>,
Previous: <a rel="previous" accesskey="p" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Contributors to GCC</h2>
<p><a name="index-contributors-3088"></a>
The GCC project would like to thank its many contributors. Without them the
project would not have been nearly as successful as it has been. Any omissions
in this list are accidental. Feel free to contact
<a href="mailto:law@redhat.com">law@redhat.com</a> or <a href="mailto:gerald@pfeifer.com">gerald@pfeifer.com</a> if you have been left
out or some of your contributions are not listed. Please keep this list in
alphabetical order.
<ul>
<li>Analog Devices helped implement the support for complex data types
and iterators.
<li>John David Anglin for threading-related fixes and improvements to
libstdc++-v3, and the HP-UX port.
<li>James van Artsdalen wrote the code that makes efficient use of
the Intel 80387 register stack.
<li>Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series
port.
<li>Alasdair Baird for various bug fixes.
<li>Giovanni Bajo for analyzing lots of complicated C++ problem reports.
<li>Peter Barada for his work to improve code generation for new
ColdFire cores.
<li>Gerald Baumgartner added the signature extension to the C++ front end.
<li>Godmar Back for his Java improvements and encouragement.
<li>Scott Bambrough for help porting the Java compiler.
<li>Wolfgang Bangerth for processing tons of bug reports.
<li>Jon Beniston for his Microsoft Windows port of Java.
<li>Daniel Berlin for better DWARF2 support, faster/better optimizations,
improved alias analysis, plus migrating GCC to Bugzilla.
<li>Geoff Berry for his Java object serialization work and various patches.
<li>Uros Bizjak for the implementation of x87 math built-in functions and
for various middle end and i386 back end improvements and bug fixes.
<li>Eric Blake for helping to make GCJ and libgcj conform to the
specifications.
<li>Janne Blomqvist for contributions to GNU Fortran.
<li>Segher Boessenkool for various fixes.
<li>Hans-J. Boehm for his <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">garbage collector</a>, IA-64 libffi port, and other Java work.
<li>Neil Booth for work on cpplib, lang hooks, debug hooks and other
miscellaneous clean-ups.
<li>Steven Bosscher for integrating the GNU Fortran front end into GCC and for
contributing to the tree-ssa branch.
<li>Eric Botcazou for fixing middle- and backend bugs left and right.
<li>Per Bothner for his direction via the steering committee and various
improvements to the infrastructure for supporting new languages. Chill
front end implementation. Initial implementations of
cpplib, fix-header, config.guess, libio, and past C++ library (libg++)
maintainer. Dreaming up, designing and implementing much of GCJ.
<li>Devon Bowen helped port GCC to the Tahoe.
<li>Don Bowman for mips-vxworks contributions.
<li>Dave Brolley for work on cpplib and Chill.
<li>Paul Brook for work on the ARM architecture and maintaining GNU Fortran.
<li>Robert Brown implemented the support for Encore 32000 systems.
<li>Christian Bruel for improvements to local store elimination.
<li>Herman A.J. ten Brugge for various fixes.
<li>Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
<li>Joe Buck for his direction via the steering committee.
<li>Craig Burley for leadership of the G77 Fortran effort.
<li>Stephan Buys for contributing Doxygen notes for libstdc++.
<li>Paolo Carlini for libstdc++ work: lots of efficiency improvements to
the C++ strings, streambufs and formatted I/O, hard detective work on
the frustrating localization issues, and keeping up with the problem reports.
<li>John Carr for his alias work, SPARC hacking, infrastructure improvements,
previous contributions to the steering committee, loop optimizations, etc.
<li>Stephane Carrez for 68HC11 and 68HC12 ports.
<li>Steve Chamberlain for support for the Renesas SH and H8 processors
and the PicoJava processor, and for GCJ config fixes.
<li>Glenn Chambers for help with the GCJ FAQ.
<li>John-Marc Chandonia for various libgcj patches.
<li>Scott Christley for his Objective-C contributions.
<li>Eric Christopher for his Java porting help and clean-ups.
<li>Branko Cibej for more warning contributions.
<li>The <a href="http://www.gnu.org/software/classpath/">GNU Classpath project</a>
for all of their merged runtime code.
<li>Nick Clifton for arm, mcore, fr30, v850, m32r work, <samp><span class="option">--help</span></samp>, and
other random hacking.
<li>Michael Cook for libstdc++ cleanup patches to reduce warnings.
<li>R. Kelley Cook for making GCC buildable from a read-only directory as
well as other miscellaneous build process and documentation clean-ups.
<li>Ralf Corsepius for SH testing and minor bug fixing.
<li>Stan Cox for care and feeding of the x86 port and lots of behind
the scenes hacking.
<li>Alex Crain provided changes for the 3b1.
<li>Ian Dall for major improvements to the NS32k port.
<li>Paul Dale for his work to add uClinux platform support to the
m68k backend.
<li>Dario Dariol contributed the four varieties of sample programs
that print a copy of their source.
<li>Russell Davidson for fstream and stringstream fixes in libstdc++.
<li>Bud Davis for work on the G77 and GNU Fortran compilers.
<li>Mo DeJong for GCJ and libgcj bug fixes.
<li>DJ Delorie for the DJGPP port, build and libiberty maintenance,
various bug fixes, and the M32C port.
<li>Arnaud Desitter for helping to debug GNU Fortran.
<li>Gabriel Dos Reis for contributions to G++, contributions and
maintenance of GCC diagnostics infrastructure, libstdc++-v3,
including <code>valarray<></code>, <code>complex<></code>, maintaining the numerics library
(including that pesky <code><limits></code> :-) and keeping up-to-date anything
to do with numbers.
<li>Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99
support, CFG dumping support, etc., plus support of the C++ runtime
libraries including for all kinds of C interface issues, contributing and
maintaining <code>complex<></code>, sanity checking and disbursement, configuration
architecture, libio maintenance, and early math work.
<li>Zdenek Dvorak for a new loop unroller and various fixes.
<li>Richard Earnshaw for his ongoing work with the ARM.
<li>David Edelsohn for his direction via the steering committee, ongoing work
with the RS6000/PowerPC port, help cleaning up Haifa loop changes,
doing the entire AIX port of libstdc++ with his bare hands, and for
ensuring GCC properly keeps working on AIX.
<li>Kevin Ediger for the floating point formatting of num_put::do_put in
libstdc++.
<li>Phil Edwards for libstdc++ work including configuration hackery,
documentation maintainer, chief breaker of the web pages, the occasional
iostream bug fix, and work on shared library symbol versioning.
<li>Paul Eggert for random hacking all over GCC.
<li>Mark Elbrecht for various DJGPP improvements, and for libstdc++
configuration support for locales and fstream-related fixes.
<li>Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
<li>Christian Ehrhardt for dealing with bug reports.
<li>Ben Elliston for his work to move the Objective-C runtime into its
own subdirectory and for his work on autoconf.
<li>Revital Eres for work on the PowerPC 750CL port.
<li>Marc Espie for OpenBSD support.
<li>Doug Evans for much of the global optimization framework, arc, m32r,
and SPARC work.
<li>Christopher Faylor for his work on the Cygwin port and for caring and
feeding the gcc.gnu.org box and saving its users tons of spam.
<li>Fred Fish for BeOS support and Ada fixes.
<li>Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
<li>Peter Gerwinski for various bug fixes and the Pascal front end.
<li>Kaveh R. Ghazi for his direction via the steering committee, amazing
work to make ‘<samp><span class="samp">-W -Wall -W* -Werror</span></samp>’ useful, and continuously
testing GCC on a plethora of platforms. Kaveh extends his gratitude to
the <a href="http://www.caip.rutgers.edu">CAIP Center</a> at Rutgers
University for providing him with computing resources to work on Free
Software since the late 1980s.
<li>John Gilmore for a donation to the FSF earmarked improving GNU Java.
<li>Judy Goldberg for c++ contributions.
<li>Torbjorn Granlund for various fixes and the c-torture testsuite,
multiply- and divide-by-constant optimization, improved long long
support, improved leaf function register allocation, and his direction
via the steering committee.
<li>Anthony Green for his <samp><span class="option">-Os</span></samp> contributions and Java front end work.
<li>Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
<li>Michael K. Gschwind contributed the port to the PDP-11.
<li>Ron Guilmette implemented the <samp><span class="command">protoize</span></samp> and <samp><span class="command">unprotoize</span></samp>
tools, the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on the
Intel 386 and 860 support.
<li>Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
<li>Bruno Haible for improvements in the runtime overhead for EH, new
warnings and assorted bug fixes.
<li>Andrew Haley for his amazing Java compiler and library efforts.
<li>Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
<li>Michael Hayes for various thankless work he's done trying to get
the c30/c40 ports functional. Lots of loop and unroll improvements and
fixes.
<li>Dara Hazeghi for wading through myriads of target-specific bug reports.
<li>Kate Hedstrom for staking the G77 folks with an initial testsuite.
<li>Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop
opts, and generally fixing lots of old problems we've ignored for
years, flow rewrite and lots of further stuff, including reviewing
tons of patches.
<li>Aldy Hernandez for working on the PowerPC port, SIMD support, and
various fixes.
<li>Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.
<li>Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
<li>Katherine Holcomb for work on GNU Fortran.
<li>Manfred Hollstein for his ongoing work to keep the m88k alive, lots
of testing and bug fixing, particularly of GCC configury code.
<li>Steve Holmgren for MachTen patches.
<li>Jan Hubicka for his x86 port improvements.
<li>Falk Hueffner for working on C and optimization bug reports.
<li>Bernardo Innocenti for his m68k work, including merging of
ColdFire improvements and uClinux support.
<li>Christian Iseli for various bug fixes.
<li>Kamil Iskra for general m68k hacking.
<li>Lee Iverson for random fixes and MIPS testing.
<li>Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
<li>Jakub Jelinek for his SPARC work and sibling call optimizations as well
as lots of bug fixes and test cases, and for improving the Java build
system.
<li>Janis Johnson for ia64 testing and fixes, her quality improvement
sidetracks, and web page maintenance.
<li>Kean Johnston for SCO OpenServer support and various fixes.
<li>Tim Josling for the sample language treelang based originally on Richard
Kenner's “toy” language.
<li>Nicolai Josuttis for additional libstdc++ documentation.
<li>Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
<li>Steven G. Kargl for work on GNU Fortran.
<li>David Kashtan of SRI adapted GCC to VMS.
<li>Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of
strings, especially member functions, and for auto_ptr fixes.
<li>Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux
and his automatic regression tester.
<li>Brendan Kehoe for his ongoing work with G++ and for a lot of early work
in just about every part of libstdc++.
<li>Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.
<li>Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes. He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination and delay slot scheduling. Richard Kenner was also the
head maintainer of GCC for several years.
<li>Mumit Khan for various contributions to the Cygwin and Mingw32 ports and
maintaining binary releases for Microsoft Windows hosts, and for massive libstdc++
porting work to Cygwin/Mingw32.
<li>Robin Kirkham for cpu32 support.
<li>Mark Klein for PA improvements.
<li>Thomas Koenig for various bug fixes.
<li>Bruce Korb for the new and improved fixincludes code.
<li>Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
<li>Charles LaBrec contributed the support for the Integrated Solutions
68020 system.
<li>Asher Langton and Mike Kumbera for contributing Cray pointer support
to GNU Fortran, and for other GNU Fortran improvements.
<li>Jeff Law for his direction via the steering committee, coordinating the
entire egcs project and GCC 2.95, rolling out snapshots and releases,
handling merges from GCC2, reviewing tons of patches that might have
fallen through the cracks else, and random but extensive hacking.
<li>Marc Lehmann for his direction via the steering committee and helping
with analysis and improvements of x86 performance.
<li>Victor Leikehman for work on GNU Fortran.
<li>Ted Lemon wrote parts of the RTL reader and printer.
<li>Kriang Lerdsuwanakij for C++ improvements including template as template
parameter support, and many C++ fixes.
<li>Warren Levy for tremendous work on libgcj (Java Runtime Library) and
random work on the Java front end.
<li>Alain Lichnewsky ported GCC to the MIPS CPU.
<li>Oskar Liljeblad for hacking on AWT and his many Java bug reports and
patches.
<li>Robert Lipe for OpenServer support, new testsuites, testing, etc.
<li>Chen Liqin for various S+core related fixes/improvement, and for
maintaining the S+core port.
<li>Weiwen Liu for testing and various bug fixes.
<li>Manuel López-Ibáñez for improving <samp><span class="option">-Wconversion</span></samp> and
many other diagnostics fixes and improvements.
<li>Dave Love for his ongoing work with the Fortran front end and
runtime libraries.
<li>Martin von Löwis for internal consistency checking infrastructure,
various C++ improvements including namespace support, and tons of
assistance with libstdc++/compiler merges.
<li>H.J. Lu for his previous contributions to the steering committee, many x86
bug reports, prototype patches, and keeping the GNU/Linux ports working.
<li>Greg McGary for random fixes and (someday) bounded pointers.
<li>Andrew MacLeod for his ongoing work in building a real EH system,
various code generation improvements, work on the global optimizer, etc.
<li>Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking
improvements to compile-time performance, overall knowledge and
direction in the area of instruction scheduling, and design and
implementation of the automaton based instruction scheduler.
<li>Bob Manson for his behind the scenes work on dejagnu.
<li>Philip Martin for lots of libstdc++ string and vector iterator fixes and
improvements, and string clean up and testsuites.
<li>All of the Mauve project
<a href="http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD">contributors</a>,
for Java test code.
<li>Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
<li>Adam Megacz for his work on the Microsoft Windows port of GCJ.
<li>Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
powerpc, haifa, ECOFF debug support, and other assorted hacking.
<li>Jason Merrill for his direction via the steering committee and leading
the G++ effort.
<li>Martin Michlmayr for testing GCC on several architectures using the
entire Debian archive.
<li>David Miller for his direction via the steering committee, lots of
SPARC work, improvements in jump.c and interfacing with the Linux kernel
developers.
<li>Gary Miller ported GCC to Charles River Data Systems machines.
<li>Alfred Minarik for libstdc++ string and ios bug fixes, and turning the
entire libstdc++ testsuite namespace-compatible.
<li>Mark Mitchell for his direction via the steering committee, mountains of
C++ work, load/store hoisting out of loops, alias analysis improvements,
ISO C <code>restrict</code> support, and serving as release manager for GCC 3.x.
<li>Alan Modra for various GNU/Linux bits and testing.
<li>Toon Moene for his direction via the steering committee, Fortran
maintenance, and his ongoing work to make us make Fortran run fast.
<li>Jason Molenda for major help in the care and feeding of all the services
on the gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web
services, ftp services, etc etc. Doing all this work on scrap paper and
the backs of envelopes would have been<small class="dots">...</small> difficult.
<li>Catherine Moore for fixing various ugly problems we have sent her
way, including the haifa bug which was killing the Alpha & PowerPC
Linux kernels.
<li>Mike Moreton for his various Java patches.
<li>David Mosberger-Tang for various Alpha improvements, and for the initial
IA-64 port.
<li>Stephen Moshier contributed the floating point emulator that assists in
cross-compilation and permits support for floating point numbers wider
than 64 bits and for ISO C99 support.
<li>Bill Moyer for his behind the scenes work on various issues.
<li>Philippe De Muyter for his work on the m68k port.
<li>Joseph S. Myers for his work on the PDP-11 port, format checking and ISO
C99 support, and continuous emphasis on (and contributions to) documentation.
<li>Nathan Myers for his work on libstdc++-v3: architecture and authorship
through the first three snapshots, including implementation of locale
infrastructure, string, shadow C headers, and the initial project
documentation (DESIGN, CHECKLIST, and so forth). Later, more work on
MT-safe string and shadow headers.
<li>Felix Natter for documentation on porting libstdc++.
<li>Nathanael Nerode for cleaning up the configuration/build process.
<li>NeXT, Inc. donated the front end that supports the Objective-C
language.
<li>Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search
engine setup, various documentation fixes and other small fixes.
<li>Geoff Noer for his work on getting cygwin native builds working.
<li>Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
tracking web pages, GIMPLE tuples, and assorted fixes.
<li>David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.
<li>Alexandre Oliva for various build infrastructure improvements, scripts and
amazing testing work, including keeping libtool issues sane and happy.
<li>Stefan Olsson for work on mt_alloc.
<li>Melissa O'Neill for various NeXT fixes.
<li>Rainer Orth for random MIPS work, including improvements to GCC's o32
ABI support, improvements to dejagnu's MIPS support, Java configuration
clean-ups and porting work, etc.
<li>Hartmut Penner for work on the s390 port.
<li>Paul Petersen wrote the machine description for the Alliant FX/8.
<li>Alexandre Petit-Bianco for implementing much of the Java compiler and
continued Java maintainership.
<li>Matthias Pfaller for major improvements to the NS32k port.
<li>Gerald Pfeifer for his direction via the steering committee, pointing
out lots of problems we need to solve, maintenance of the web pages, and
taking care of documentation maintenance in general.
<li>Andrew Pinski for processing bug reports by the dozen.
<li>Ovidiu Predescu for his work on the Objective-C front end and runtime
libraries.
<li>Jerry Quinn for major performance improvements in C++ formatted I/O.
<li>Ken Raeburn for various improvements to checker, MIPS ports and various
cleanups in the compiler.
<li>Rolf W. Rasmussen for hacking on AWT.
<li>David Reese of Sun Microsystems contributed to the Solaris on PowerPC
port.
<li>Volker Reichelt for keeping up with the problem reports.
<li>Joern Rennecke for maintaining the sh port, loop, regmove & reload
hacking.
<li>Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD
port, threading fixes, thread-related configury changes, critical
threading documentation, and solutions to really tricky I/O problems,
as well as keeping GCC properly working on FreeBSD and continuous testing.
<li>Craig Rodrigues for processing tons of bug reports.
<li>Ola Rönnerup for work on mt_alloc.
<li>Gavin Romig-Koch for lots of behind the scenes MIPS work.
<li>David Ronis inspired and encouraged Craig to rewrite the G77
documentation in texinfo format by contributing a first pass at a
translation of the old <samp><span class="file">g77-0.5.16/f/DOC</span></samp> file.
<li>Ken Rose for fixes to GCC's delay slot filling code.
<li>Paul Rubin wrote most of the preprocessor.
<li>Pétur Runólfsson for major performance improvements in C++ formatted I/O and
large file support in C++ filebuf.
<li>Chip Salzenberg for libstdc++ patches and improvements to locales, traits,
Makefiles, libio, libtool hackery, and “long long” support.
<li>Juha Sarlin for improvements to the H8 code generator.
<li>Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
<li>Roger Sayle for improvements to constant folding and GCC's RTL optimizers
as well as for fixing numerous bugs.
<li>Bradley Schatz for his work on the GCJ FAQ.
<li>Peter Schauer wrote the code to allow debugging to work on the Alpha.
<li>William Schelter did most of the work on the Intel 80386 support.
<li>Tobias Schlüter for work on GNU Fortran.
<li>Bernd Schmidt for various code generation improvements and major
work in the reload pass as well a serving as release manager for
GCC 2.95.3.
<li>Peter Schmid for constant testing of libstdc++—especially application
testing, going above and beyond what was requested for the release
criteria—and libstdc++ header file tweaks.
<li>Jason Schroeder for jcf-dump patches.
<li>Andreas Schwab for his work on the m68k port.
<li>Lars Segerlund for work on GNU Fortran.
<li>Joel Sherrill for his direction via the steering committee, RTEMS
contributions and RTEMS testing.
<li>Nathan Sidwell for many C++ fixes/improvements.
<li>Jeffrey Siegal for helping RMS with the original design of GCC, some
code which handles the parse tree and RTL data structures, constant
folding and help with the original VAX & m68k ports.
<li>Kenny Simpson for prompting libstdc++ fixes due to defect reports from
the LWG (thereby keeping GCC in line with updates from the ISO).
<li>Franz Sirl for his ongoing work with making the PPC port stable
for GNU/Linux.
<li>Andrey Slepuhin for assorted AIX hacking.
<li>Trevor Smigiel for contributing the SPU port.
<li>Christopher Smith did the port for Convex machines.
<li>Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
<li>Randy Smith finished the Sun FPA support.
<li>Scott Snyder for queue, iterator, istream, and string fixes and libstdc++
testsuite entries. Also for providing the patch to G77 to add
rudimentary support for <code>INTEGER*1</code>, <code>INTEGER*2</code>, and
<code>LOGICAL*1</code>.
<li>Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
<li>Richard Stallman, for writing the original GCC and launching the GNU project.
<li>Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.
<li>Nigel Stephens for various mips16 related fixes/improvements.
<li>Jonathan Stone wrote the machine description for the Pyramid computer.
<li>Graham Stott for various infrastructure improvements.
<li>John Stracke for his Java HTTP protocol fixes.
<li>Mike Stump for his Elxsi port, G++ contributions over the years and more
recently his vxworks contributions
<li>Jeff Sturm for Java porting help, bug fixes, and encouragement.
<li>Shigeya Suzuki for this fixes for the bsdi platforms.
<li>Ian Lance Taylor for his mips16 work, general configury hacking,
fixincludes, etc.
<li>Holger Teutsch provided the support for the Clipper CPU.
<li>Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.
<li>Philipp Thomas for random bug fixes throughout the compiler
<li>Jason Thorpe for thread support in libstdc++ on NetBSD.
<li>Kresten Krab Thorup wrote the run time support for the Objective-C
language and the fantastic Java bytecode interpreter.
<li>Michael Tiemann for random bug fixes, the first instruction scheduler,
initial C++ support, function integration, NS32k, SPARC and M88k
machine description work, delay slot scheduling.
<li>Andreas Tobler for his work porting libgcj to Darwin.
<li>Teemu Torma for thread safe exception handling support.
<li>Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the VAX machine description.
<li>Daniel Towner and Hariharan Sandanagobalane contributed and
maintain the picoChip port.
<li>Tom Tromey for internationalization support and for his many Java
contributions and libgcj maintainership.
<li>Lassi Tuura for improvements to config.guess to determine HP processor
types.
<li>Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
<li>Andy Vaught for the design and initial implementation of the GNU Fortran
front end.
<li>Brent Verner for work with the libstdc++ cshadow files and their
associated configure steps.
<li>Todd Vierling for contributions for NetBSD ports.
<li>Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
guidance.
<li>Dean Wakerley for converting the install documentation from HTML to texinfo
in time for GCC 3.0.
<li>Krister Walfridsson for random bug fixes.
<li>Feng Wang for contributions to GNU Fortran.
<li>Stephen M. Webb for time and effort on making libstdc++ shadow files
work with the tricky Solaris 8+ headers, and for pushing the build-time
header tree.
<li>John Wehle for various improvements for the x86 code generator,
related infrastructure improvements to help x86 code generation,
value range propagation and other work, WE32k port.
<li>Ulrich Weigand for work on the s390 port.
<li>Zack Weinberg for major work on cpplib and various other bug fixes.
<li>Matt Welsh for help with Linux Threads support in GCJ.
<li>Urban Widmark for help fixing java.io.
<li>Mark Wielaard for new Java library code and his work integrating with
Classpath.
<li>Dale Wiles helped port GCC to the Tahoe.
<li>Bob Wilson from Tensilica, Inc. for the Xtensa port.
<li>Jim Wilson for his direction via the steering committee, tackling hard
problems in various places that nobody else wanted to work on, strength
reduction and other loop optimizations.
<li>Paul Woegerer and Tal Agmon for the CRX port.
<li>Carlo Wood for various fixes.
<li>Tom Wood for work on the m88k port.
<li>Canqun Yang for work on GNU Fortran.
<li>Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).
<li>Kevin Zachmann helped port GCC to the Tahoe.
<li>Ayal Zaks for Swing Modulo Scheduling (SMS).
<li>Xiaoqiang Zhang for work on GNU Fortran.
<li>Gilles Zunino for help porting Java to Irix.
</ul>
<p>The following people are recognized for their contributions to GNAT,
the Ada front end of GCC:
<ul>
<li>Bernard Banner
<li>Romain Berrendonner
<li>Geert Bosch
<li>Emmanuel Briot
<li>Joel Brobecker
<li>Ben Brosgol
<li>Vincent Celier
<li>Arnaud Charlet
<li>Chien Chieng
<li>Cyrille Comar
<li>Cyrille Crozes
<li>Robert Dewar
<li>Gary Dismukes
<li>Robert Duff
<li>Ed Falis
<li>Ramon Fernandez
<li>Sam Figueroa
<li>Vasiliy Fofanov
<li>Michael Friess
<li>Franco Gasperoni
<li>Ted Giering
<li>Matthew Gingell
<li>Laurent Guerby
<li>Jerome Guitton
<li>Olivier Hainque
<li>Jerome Hugues
<li>Hristian Kirtchev
<li>Jerome Lambourg
<li>Bruno Leclerc
<li>Albert Lee
<li>Sean McNeil
<li>Javier Miranda
<li>Laurent Nana
<li>Pascal Obry
<li>Dong-Ik Oh
<li>Laurent Pautet
<li>Brett Porter
<li>Thomas Quinot
<li>Nicolas Roche
<li>Pat Rogers
<li>Jose Ruiz
<li>Douglas Rupp
<li>Sergey Rybin
<li>Gail Schenker
<li>Ed Schonberg
<li>Nicolas Setton
<li>Samuel Tardieu
</ul>
<p>The following people are recognized for their contributions of new
features, bug reports, testing and integration of classpath/libgcj for
GCC version 4.1:
<ul>
<li>Lillian Angel for <code>JTree</code> implementation and lots Free Swing
additions and bug fixes.
<li>Wolfgang Baer for <code>GapContent</code> bug fixes.
<li>Anthony Balkissoon for <code>JList</code>, Free Swing 1.5 updates and mouse event
fixes, lots of Free Swing work including <code>JTable</code> editing.
<li>Stuart Ballard for RMI constant fixes.
<li>Goffredo Baroncelli for <code>HTTPURLConnection</code> fixes.
<li>Gary Benson for <code>MessageFormat</code> fixes.
<li>Daniel Bonniot for <code>Serialization</code> fixes.
<li>Chris Burdess for lots of gnu.xml and http protocol fixes, <code>StAX</code>
and <code>DOM xml:id</code> support.
<li>Ka-Hing Cheung for <code>TreePath</code> and <code>TreeSelection</code> fixes.
<li>Archie Cobbs for build fixes, VM interface updates,
<code>URLClassLoader</code> updates.
<li>Kelley Cook for build fixes.
<li>Martin Cordova for Suggestions for better <code>SocketTimeoutException</code>.
<li>David Daney for <code>BitSet</code> bug fixes, <code>HttpURLConnection</code>
rewrite and improvements.
<li>Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D
support. Lots of imageio framework additions, lots of AWT and Free
Swing bug fixes.
<li>Jeroen Frijters for <code>ClassLoader</code> and nio cleanups, serialization fixes,
better <code>Proxy</code> support, bug fixes and IKVM integration.
<li>Santiago Gala for <code>AccessControlContext</code> fixes.
<li>Nicolas Geoffray for <code>VMClassLoader</code> and <code>AccessController</code>
improvements.
<li>David Gilbert for <code>basic</code> and <code>metal</code> icon and plaf support
and lots of documenting, Lots of Free Swing and metal theme
additions. <code>MetalIconFactory</code> implementation.
<li>Anthony Green for <code>MIDI</code> framework, <code>ALSA</code> and <code>DSSI</code>
providers.
<li>Andrew Haley for <code>Serialization</code> and <code>URLClassLoader</code> fixes,
gcj build speedups.
<li>Kim Ho for <code>JFileChooser</code> implementation.
<li>Andrew John Hughes for <code>Locale</code> and net fixes, URI RFC2986
updates, <code>Serialization</code> fixes, <code>Properties</code> XML support and
generic branch work, VMIntegration guide update.
<li>Bastiaan Huisman for <code>TimeZone</code> bug fixing.
<li>Andreas Jaeger for mprec updates.
<li>Paul Jenner for better <samp><span class="option">-Werror</span></samp> support.
<li>Ito Kazumitsu for <code>NetworkInterface</code> implementation and updates.
<li>Roman Kennke for <code>BoxLayout</code>, <code>GrayFilter</code> and
<code>SplitPane</code>, plus bug fixes all over. Lots of Free Swing work
including styled text.
<li>Simon Kitching for <code>String</code> cleanups and optimization suggestions.
<li>Michael Koch for configuration fixes, <code>Locale</code> updates, bug and
build fixes.
<li>Guilhem Lavaux for configuration, thread and channel fixes and Kaffe
integration. JCL native <code>Pointer</code> updates. Logger bug fixes.
<li>David Lichteblau for JCL support library global/local reference
cleanups.
<li>Aaron Luchko for JDWP updates and documentation fixes.
<li>Ziga Mahkovec for <code>Graphics2D</code> upgraded to Cairo 0.5 and new regex
features.
<li>Sven de Marothy for BMP imageio support, CSS and <code>TextLayout</code>
fixes. <code>GtkImage</code> rewrite, 2D, awt, free swing and date/time fixes and
implementing the Qt4 peers.
<li>Casey Marshall for crypto algorithm fixes, <code>FileChannel</code> lock,
<code>SystemLogger</code> and <code>FileHandler</code> rotate implementations, NIO
<code>FileChannel.map</code> support, security and policy updates.
<li>Bryce McKinlay for RMI work.
<li>Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
testing and documenting.
<li>Kalle Olavi Niemitalo for build fixes.
<li>Rainer Orth for build fixes.
<li>Andrew Overholt for <code>File</code> locking fixes.
<li>Ingo Proetel for <code>Image</code>, <code>Logger</code> and <code>URLClassLoader</code>
updates.
<li>Olga Rodimina for <code>MenuSelectionManager</code> implementation.
<li>Jan Roehrich for <code>BasicTreeUI</code> and <code>JTree</code> fixes.
<li>Julian Scheid for documentation updates and gjdoc support.
<li>Christian Schlichtherle for zip fixes and cleanups.
<li>Robert Schuster for documentation updates and beans fixes,
<code>TreeNode</code> enumerations and <code>ActionCommand</code> and various
fixes, XML and URL, AWT and Free Swing bug fixes.
<li>Keith Seitz for lots of JDWP work.
<li>Christian Thalinger for 64-bit cleanups, Configuration and VM
interface fixes and <code>CACAO</code> integration, <code>fdlibm</code> updates.
<li>Gael Thomas for <code>VMClassLoader</code> boot packages support suggestions.
<li>Andreas Tobler for Darwin and Solaris testing and fixing, <code>Qt4</code>
support for Darwin/OS X, <code>Graphics2D</code> support, <code>gtk+</code>
updates.
<li>Dalibor Topic for better <code>DEBUG</code> support, build cleanups and
Kaffe integration. <code>Qt4</code> build infrastructure, <code>SHA1PRNG</code>
and <code>GdkPixbugDecoder</code> updates.
<li>Tom Tromey for Eclipse integration, generics work, lots of bug fixes
and gcj integration including coordinating The Big Merge.
<li>Mark Wielaard for bug fixes, packaging and release management,
<code>Clipboard</code> implementation, system call interrupts and network
timeouts and <code>GdkPixpufDecoder</code> fixes.
</ul>
<p>In addition to the above, all of which also contributed time and energy in
testing GCC, we would like to thank the following for their contributions
to testing:
<ul>
<li>Michael Abd-El-Malek
<li>Thomas Arend
<li>Bonzo Armstrong
<li>Steven Ashe
<li>Chris Baldwin
<li>David Billinghurst
<li>Jim Blandy
<li>Stephane Bortzmeyer
<li>Horst von Brand
<li>Frank Braun
<li>Rodney Brown
<li>Sidney Cadot
<li>Bradford Castalia
<li>Robert Clark
<li>Jonathan Corbet
<li>Ralph Doncaster
<li>Richard Emberson
<li>Levente Farkas
<li>Graham Fawcett
<li>Mark Fernyhough
<li>Robert A. French
<li>Jörgen Freyh
<li>Mark K. Gardner
<li>Charles-Antoine Gauthier
<li>Yung Shing Gene
<li>David Gilbert
<li>Simon Gornall
<li>Fred Gray
<li>John Griffin
<li>Patrik Hagglund
<li>Phil Hargett
<li>Amancio Hasty
<li>Takafumi Hayashi
<li>Bryan W. Headley
<li>Kevin B. Hendricks
<li>Joep Jansen
<li>Christian Joensson
<li>Michel Kern
<li>David Kidd
<li>Tobias Kuipers
<li>Anand Krishnaswamy
<li>A. O. V. Le Blanc
<li>llewelly
<li>Damon Love
<li>Brad Lucier
<li>Matthias Klose
<li>Martin Knoblauch
<li>Rick Lutowski
<li>Jesse Macnish
<li>Stefan Morrell
<li>Anon A. Mous
<li>Matthias Mueller
<li>Pekka Nikander
<li>Rick Niles
<li>Jon Olson
<li>Magnus Persson
<li>Chris Pollard
<li>Richard Polton
<li>Derk Reefman
<li>David Rees
<li>Paul Reilly
<li>Tom Reilly
<li>Torsten Rueger
<li>Danny Sadinoff
<li>Marc Schifer
<li>Erik Schnetter
<li>Wayne K. Schroll
<li>David Schuler
<li>Vin Shelton
<li>Tim Souder
<li>Adam Sulmicki
<li>Bill Thorson
<li>George Talbot
<li>Pedro A. M. Vazquez
<li>Gregory Warnes
<li>Ian Watson
<li>David E. Young
<li>And many others
</ul>
<p>And finally we'd like to thank everyone who uses the compiler, provides
feedback and generally reminds us why we're doing this work in the first
place.
<!-- -->
<!-- Indexes -->
<!-- -->
<div class="node">
<a name="Option-Index"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Keyword-Index">Keyword Index</a>,
Previous: <a rel="previous" accesskey="p" href="#Contributors">Contributors</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Option Index</h2>
<p>GCC's command line options are indexed here without any initial ‘<samp><span class="samp">-</span></samp>’
or ‘<samp><span class="samp">--</span></samp>’. Where an option has both positive and negative forms
(such as <samp><span class="option">-f</span><var>option</var></samp> and <samp><span class="option">-fno-</span><var>option</var></samp>),
relevant entries in the manual are indexed under the most appropriate
form; it may sometimes be useful to look up both forms.
<ul class="index-op" compact>
<li><a href="#index-g_t_0023_0023_0023-80"><code>###</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-g_t_002dfdump_002dstatistics-585"><code>-fdump-statistics</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-A-871"><code>A</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-all_005fload-1070"><code>all_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-allowable_005fclient-1077"><code>allowable_client</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ansi-3065"><code>ansi</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-ansi-2892"><code>ansi</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ansi-842"><code>ansi</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ansi-97"><code>ansi</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ansi-56"><code>ansi</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-arch_005ferrors_005ffatal-1071"><code>arch_errors_fatal</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-aux_002dinfo-100"><code>aux-info</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-b-941"><code>b</code></a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-B-926"><code>B</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-bcopy_002dbuiltin-1628"><code>bcopy-builtin</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-Bdynamic-1946"><code>Bdynamic</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-bind_005fat_005fload-1072"><code>bind_at_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Bstatic-1945"><code>Bstatic</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-bundle-1073"><code>bundle</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-bundle_005floader-1074"><code>bundle_loader</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-c-892"><code>c</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-C-878"><code>C</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-c-74"><code>c</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-client_005fname-1078"><code>client_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-combine-82"><code>combine</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-compatibility_005fversion-1079"><code>compatibility_version</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-coverage-498"><code>coverage</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-current_005fversion-1080"><code>current_version</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-D-810"><code>D</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-d-502"><code>d</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dA-571"><code>dA</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dD-873"><code>dD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dD-572"><code>dD</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dead_005fstrip-1081"><code>dead_strip</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dependency_002dfile-1082"><code>dependency-file</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dH-573"><code>dH</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dI-875"><code>dI</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dM-872"><code>dM</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dm-574"><code>dm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dN-874"><code>dN</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dP-576"><code>dP</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dp-575"><code>dp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dU-876"><code>dU</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dumpmachine-626"><code>dumpmachine</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dumpspecs-628"><code>dumpspecs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dumpversion-627"><code>dumpversion</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dv-577"><code>dv</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dx-578"><code>dx</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dy-579"><code>dy</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dylib_005ffile-1083"><code>dylib_file</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dylinker_005finstall_005fname-1084"><code>dylinker_install_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dynamic-1085"><code>dynamic</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dynamiclib-1075"><code>dynamiclib</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-E-894"><code>E</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-E-76"><code>E</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-EB-1483"><code>EB</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-EB-949"><code>EB</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-EL-1484"><code>EL</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-EL-948"><code>EL</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-exported_005fsymbols_005flist-1086"><code>exported_symbols_list</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-F-1061"><code>F</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-fabi_002dversion-128"><code>fabi-version</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-falign_002darrays-755"><code>falign-arrays</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002dfunctions-756"><code>falign-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002djumps-759"><code>falign-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002dlabels-757"><code>falign-labels</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002dloops-758"><code>falign-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fargument_002dalias-2006"><code>fargument-alias</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fargument_002dnoalias-2007"><code>fargument-noalias</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fargument_002dnoalias_002danything-2009"><code>fargument-noalias-anything</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fargument_002dnoalias_002dglobal-2008"><code>fargument-noalias-global</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fassociative_002dmath-774"><code>fassociative-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fasynchronous_002dunwind_002dtables-1975"><code>fasynchronous-unwind-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fauto_002dinc_002ddec-676"><code>fauto-inc-dec</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbounds_002dcheck-1969"><code>fbounds-check</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fbranch_002dprobabilities-785"><code>fbranch-probabilities</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbranch_002dtarget_002dload_002doptimize-797"><code>fbranch-target-load-optimize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbranch_002dtarget_002dload_002doptimize2-798"><code>fbranch-target-load-optimize2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbtr_002dbb_002dexclusive-799"><code>fbtr-bb-exclusive</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcall_002dsaved-1995"><code>fcall-saved</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fcall_002dused-1994"><code>fcall-used</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fcaller_002dsaves-706"><code>fcaller-saves</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcheck_002ddata_002ddeps-728"><code>fcheck-data-deps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcheck_002dnew-130"><code>fcheck-new</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fcommon-2339"><code>fcommon</code></a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-fcond_002dmismatch-117"><code>fcond-mismatch</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fconserve_002dspace-131"><code>fconserve-space</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fconserve_002dstack-707"><code>fconserve-stack</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fconstant_002dstring_002dclass-188"><code>fconstant-string-class</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fcprop_002dregisters-764"><code>fcprop-registers</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcrossjumping-675"><code>fcrossjumping</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcse_002dfollow_002djumps-666"><code>fcse-follow-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcse_002dskip_002dblocks-667"><code>fcse-skip-blocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcx_002dfortran_002drules-784"><code>fcx-fortran-rules</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcx_002dlimited_002drange-783"><code>fcx-limited-range</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdata_002dsections-796"><code>fdata-sections</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdbg_002dcnt-501"><code>fdbg-cnt</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdbg_002dcnt_002dlist-500"><code>fdbg-cnt-list</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdce-677"><code>fdce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdebug_002dprefix_002dmap-484"><code>fdebug-prefix-map</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdelayed_002dbranch-689"><code>fdelayed-branch</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdelete_002dnull_002dpointer_002dchecks-681"><code>fdelete-null-pointer-checks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdiagnostics_002dshow_002dlocation-214"><code>fdiagnostics-show-location</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fdiagnostics_002dshow_002doption-215"><code>fdiagnostics-show-option</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fdirectives_002donly-857"><code>fdirectives-only</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fdollars_002din_002didentifiers-3018"><code>fdollars-in-identifiers</code></a>: <a href="#Interoperation">Interoperation</a></li>
<li><a href="#index-fdollars_002din_002didentifiers-858"><code>fdollars-in-identifiers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fdpic-1868"><code>fdpic</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-fdse-678"><code>fdse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdump_002dclass_002dhierarchy-583"><code>fdump-class-hierarchy</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dipa-584"><code>fdump-ipa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dnoaddr-580"><code>fdump-noaddr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dalignments-503"><code>fdump-rtl-alignments</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dall-570"><code>fdump-rtl-all</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dasmcons-504"><code>fdump-rtl-asmcons</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dauto_005finc_005fdec-505"><code>fdump-rtl-auto_inc_dec</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbarriers-506"><code>fdump-rtl-barriers</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbbpart-507"><code>fdump-rtl-bbpart</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbbro-508"><code>fdump-rtl-bbro</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbtl2-509"><code>fdump-rtl-btl2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbypass-511"><code>fdump-rtl-bypass</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce1-514"><code>fdump-rtl-ce1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce2-515"><code>fdump-rtl-ce2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce3-516"><code>fdump-rtl-ce3</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcombine-512"><code>fdump-rtl-combine</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcompgotos-513"><code>fdump-rtl-compgotos</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcprop_005fhardreg-517"><code>fdump-rtl-cprop_hardreg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcsa-518"><code>fdump-rtl-csa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcse1-519"><code>fdump-rtl-cse1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcse2-520"><code>fdump-rtl-cse2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddbr-522"><code>fdump-rtl-dbr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce-521"><code>fdump-rtl-dce</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce1-523"><code>fdump-rtl-dce1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce2-524"><code>fdump-rtl-dce2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddfinish-569"><code>fdump-rtl-dfinish</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddfinit-568"><code>fdump-rtl-dfinit</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002deh-525"><code>fdump-rtl-eh</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002deh_005franges-526"><code>fdump-rtl-eh_ranges</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dexpand-527"><code>fdump-rtl-expand</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dfwprop1-528"><code>fdump-rtl-fwprop1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dfwprop2-529"><code>fdump-rtl-fwprop2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dgcse1-530"><code>fdump-rtl-gcse1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dgcse2-531"><code>fdump-rtl-gcse2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinit_002dregs-532"><code>fdump-rtl-init-regs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinitvals-533"><code>fdump-rtl-initvals</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinto_005fcfglayout-534"><code>fdump-rtl-into_cfglayout</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dira-535"><code>fdump-rtl-ira</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002djump-536"><code>fdump-rtl-jump</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dloop2-537"><code>fdump-rtl-loop2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dmach-538"><code>fdump-rtl-mach</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dmode_005fsw-539"><code>fdump-rtl-mode_sw</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002doutof_005fcfglayout-541"><code>fdump-rtl-outof_cfglayout</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpeephole2-542"><code>fdump-rtl-peephole2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpostreload-543"><code>fdump-rtl-postreload</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpro_005fand_005fepilogue-544"><code>fdump-rtl-pro_and_epilogue</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dregclass-565"><code>fdump-rtl-regclass</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dregmove-545"><code>fdump-rtl-regmove</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002drnreg-540"><code>fdump-rtl-rnreg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsched1-546"><code>fdump-rtl-sched1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsched2-547"><code>fdump-rtl-sched2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsee-548"><code>fdump-rtl-see</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dseqabstr-549"><code>fdump-rtl-seqabstr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dshorten-550"><code>fdump-rtl-shorten</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsibling-551"><code>fdump-rtl-sibling</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsms-557"><code>fdump-rtl-sms</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit1-552"><code>fdump-rtl-split1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit2-553"><code>fdump-rtl-split2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit3-554"><code>fdump-rtl-split3</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit4-555"><code>fdump-rtl-split4</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit5-556"><code>fdump-rtl-split5</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dstack-558"><code>fdump-rtl-stack</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubreg1-559"><code>fdump-rtl-subreg1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubreg2-560"><code>fdump-rtl-subreg2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish-567"><code>fdump-rtl-subregs_of_mode_finish</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit-566"><code>fdump-rtl-subregs_of_mode_init</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dunshare-561"><code>fdump-rtl-unshare</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dvartrack-562"><code>fdump-rtl-vartrack</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dvregs-563"><code>fdump-rtl-vregs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dweb-564"><code>fdump-rtl-web</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtranslation_002dunit-582"><code>fdump-translation-unit</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree-586"><code>fdump-tree</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dalias-592"><code>fdump-tree-alias</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dall-611"><code>fdump-tree-all</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dccp-593"><code>fdump-tree-ccp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcfg-588"><code>fdump-tree-cfg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dch-590"><code>fdump-tree-ch</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcopyprop-597"><code>fdump-tree-copyprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcopyrename-607"><code>fdump-tree-copyrename</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddce-599"><code>fdump-tree-dce</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddom-603"><code>fdump-tree-dom</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddse-604"><code>fdump-tree-dse</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dforwprop-606"><code>fdump-tree-forwprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dfre-596"><code>fdump-tree-fre</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dgimple-587"><code>fdump-tree-gimple</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dmudflap-600"><code>fdump-tree-mudflap</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dnrv-608"><code>fdump-tree-nrv</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dphiopt-605"><code>fdump-tree-phiopt</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dpre-595"><code>fdump-tree-pre</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dsink-602"><code>fdump-tree-sink</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dsra-601"><code>fdump-tree-sra</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dssa-591"><code>fdump-tree-ssa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dstore_005fcopyprop-598"><code>fdump-tree-store_copyprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dstoreccp-594"><code>fdump-tree-storeccp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvcg-589"><code>fdump-tree-vcg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvect-609"><code>fdump-tree-vect</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvrp-610"><code>fdump-tree-vrp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dunnumbered-581"><code>fdump-unnumbered</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdwarf2_002dcfi_002dasm-485"><code>fdwarf2-cfi-asm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fearly_002dinlining-648"><code>fearly-inlining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-feliminate_002ddwarf2_002ddups-481"><code>feliminate-dwarf2-dups</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-feliminate_002dunused_002ddebug_002dsymbols-474"><code>feliminate-unused-debug-symbols</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-feliminate_002dunused_002ddebug_002dtypes-629"><code>feliminate-unused-debug-types</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fexceptions-1972"><code>fexceptions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fexec_002dcharset-862"><code>fexec-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fexpensive_002doptimizations-682"><code>fexpensive-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fextended_002didentifiers-859"><code>fextended-identifiers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ffast_002dmath-771"><code>ffast-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffinite_002dmath_002donly-776"><code>ffinite-math-only</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffix_002dand_002dcontinue-1068"><code>ffix-and-continue</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ffixed-1993"><code>ffixed</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ffloat_002dstore-3048"><code>ffloat-store</code></a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-ffloat_002dstore-769"><code>ffloat-store</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffor_002dscope-136"><code>ffor-scope</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fforward_002dpropagate-640"><code>fforward-propagate</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffreestanding-2235"><code>ffreestanding</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-ffreestanding-243"><code>ffreestanding</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-ffreestanding-106"><code>ffreestanding</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ffreestanding-59"><code>ffreestanding</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ffriend_002dinjection-133"><code>ffriend-injection</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-ffunction_002dsections-795"><code>ffunction-sections</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse-669"><code>fgcse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dafter_002dreload-673"><code>fgcse-after-reload</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dlas-672"><code>fgcse-las</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dlm-670"><code>fgcse-lm</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dsm-671"><code>fgcse-sm</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgnu_002druntime-189"><code>fgnu-runtime</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fgnu89_002dinline-99"><code>fgnu89-inline</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fhosted-104"><code>fhosted</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fif_002dconversion-679"><code>fif-conversion</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fif_002dconversion2-680"><code>fif-conversion2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-filelist-1087"><code>filelist</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-findirect_002ddata-1069"><code>findirect-data</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-findirect_002dinlining-645"><code>findirect-inlining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finhibit_002dsize_002ddirective-1983"><code>finhibit-size-directive</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finline_002dfunctions-646"><code>finline-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dfunctions_002dcalled_002donce-647"><code>finline-functions-called-once</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dlimit-649"><code>finline-limit</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dsmall_002dfunctions-644"><code>finline-small-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finput_002dcharset-866"><code>finput-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-finstrument_002dfunctions-2266"><code>finstrument-functions</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-finstrument_002dfunctions-1997"><code>finstrument-functions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finstrument_002dfunctions_002dexclude_002dfile_002dlist-1998"><code>finstrument-functions-exclude-file-list</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist-1999"><code>finstrument-functions-exclude-function-list</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fipa_002dcp-716"><code>fipa-cp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dcp_002dclone-717"><code>fipa-cp-clone</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dmatrix_002dreorg-718"><code>fipa-matrix-reorg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dpta-715"><code>fipa-pta</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dpure_002dconst-712"><code>fipa-pure-const</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dreference-713"><code>fipa-reference</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dstruct_002dreorg-714"><code>fipa-struct-reorg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fira_002dcoalesce-685"><code>fira-coalesce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fira_002dverbose-688"><code>fira-verbose</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fivopts-731"><code>fivopts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fkeep_002dinline_002dfunctions-2369"><code>fkeep-inline-functions</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-fkeep_002dinline_002dfunctions-650"><code>fkeep-inline-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fkeep_002dstatic_002dconsts-651"><code>fkeep-static-consts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-flat_005fnamespace-1088"><code>flat_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-flax_002dvector_002dconversions-118"><code>flax-vector-conversions</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fleading_002dunderscore-2010"><code>fleading-underscore</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fmem_002dreport-493"><code>fmem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fmerge_002dall_002dconstants-653"><code>fmerge-all-constants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmerge_002dconstants-652"><code>fmerge-constants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmerge_002ddebug_002dstrings-482"><code>fmerge-debug-strings</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fmessage_002dlength-213"><code>fmessage-length</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fmodulo_002dsched-654"><code>fmodulo-sched</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmodulo_002dsched_002dallow_002dregmoves-655"><code>fmodulo-sched-allow-regmoves</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmove_002dloop_002dinvariants-793"><code>fmove-loop-invariants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fms_002dextensions-2971"><code>fms-extensions</code></a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-fms_002dextensions-142"><code>fms-extensions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fms_002dextensions-110"><code>fms-extensions</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fmudflap-659"><code>fmudflap</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmudflapir-661"><code>fmudflapir</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmudflapth-660"><code>fmudflapth</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fnext_002druntime-190"><code>fnext-runtime</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fno_002daccess_002dcontrol-129"><code>fno-access-control</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dasm-101"><code>fno-asm</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dbranch_002dcount_002dreg-656"><code>fno-branch-count-reg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dbuiltin-2891"><code>fno-builtin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fno_002dbuiltin-2236"><code>fno-builtin</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-fno_002dbuiltin-244"><code>fno-builtin</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-fno_002dbuiltin-102"><code>fno-builtin</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dcommon-2340"><code>fno-common</code></a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-fno_002dcommon-1981"><code>fno-common</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002ddeduce_002dinit_002dlist-132"><code>fno-deduce-init-list</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002ddefault_002dinline-2375"><code>fno-default-inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-fno_002ddefault_002dinline-638"><code>fno-default-inline</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002ddefault_002dinline-158"><code>fno-default-inline</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002ddefer_002dpop-639"><code>fno-defer-pop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002ddwarf2_002dcfi_002dasm-486"><code>fno-dwarf2-cfi-asm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002delide_002dconstructors-134"><code>fno-elide-constructors</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002denforce_002deh_002dspecs-135"><code>fno-enforce-eh-specs</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dfor_002dscope-137"><code>fno-for-scope</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dfunction_002dcse-657"><code>fno-function-cse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dgnu_002dkeywords-138"><code>fno-gnu-keywords</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dguess_002dbranch_002dprobability-749"><code>fno-guess-branch-probability</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dident-1982"><code>fno-ident</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dimplement_002dinlines-3000"><code>fno-implement-inlines</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-fno_002dimplement_002dinlines-141"><code>fno-implement-inlines</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dimplicit_002dinline_002dtemplates-140"><code>fno-implicit-inline-templates</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dimplicit_002dtemplates-3003"><code>fno-implicit-templates</code></a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-fno_002dimplicit_002dtemplates-139"><code>fno-implicit-templates</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dinline-643"><code>fno-inline</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dira_002dshare_002dsave_002dslots-686"><code>fno-ira-share-save-slots</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dira_002dshare_002dspill_002dslots-687"><code>fno-ira-share-spill-slots</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002djump_002dtables-1992"><code>fno-jump-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dmath_002derrno-772"><code>fno-math-errno</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dmerge_002ddebug_002dstrings-483"><code>fno-merge-debug-strings</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002dnil_002dreceivers-191"><code>fno-nil-receivers</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fno_002dnonansi_002dbuiltins-143"><code>fno-nonansi-builtins</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002doperator_002dnames-144"><code>fno-operator-names</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002doptional_002ddiags-145"><code>fno-optional-diags</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dpeephole-747"><code>fno-peephole</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dpeephole2-748"><code>fno-peephole2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002drtti-148"><code>fno-rtti</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dsched_002dinterblock-692"><code>fno-sched-interblock</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dsched_002dspec-693"><code>fno-sched-spec</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dshow_002dcolumn-870"><code>fno-show-column</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fno_002dsigned_002dbitfields-123"><code>fno-signed-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dsigned_002dzeros-777"><code>fno-signed-zeros</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dstack_002dlimit-2003"><code>fno-stack-limit</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dthreadsafe_002dstatics-151"><code>fno-threadsafe-statics</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dtoplevel_002dreorder-761"><code>fno-toplevel-reorder</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dtrapping_002dmath-778"><code>fno-trapping-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dunsigned_002dbitfields-124"><code>fno-unsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002duse_002dcxa_002dget_002dexception_002dptr-153"><code>fno-use-cxa-get-exception-ptr</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dweak-156"><code>fno-weak</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dworking_002ddirectory-869"><code>fno-working-directory</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fno_002dzero_002dinitialized_002din_002dbss-658"><code>fno-zero-initialized-in-bss</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fnon_002dcall_002dexceptions-1973"><code>fnon-call-exceptions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fobjc_002dcall_002dcxx_002dcdtors-192"><code>fobjc-call-cxx-cdtors</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002ddirect_002ddispatch-193"><code>fobjc-direct-dispatch</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dexceptions-194"><code>fobjc-exceptions</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dgc-195"><code>fobjc-gc</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fomit_002dframe_002dpointer-641"><code>fomit-frame-pointer</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fopenmp-108"><code>fopenmp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-foptimize_002dregister_002dmove-683"><code>foptimize-register-move</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-foptimize_002dsibling_002dcalls-642"><code>foptimize-sibling-calls</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-force_005fcpusubtype_005fALL-1076"><code>force_cpusubtype_ALL</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-force_005fflat_005fnamespace-1089"><code>force_flat_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-fpack_002dstruct-1996"><code>fpack-struct</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpcc_002dstruct_002dreturn-3041"><code>fpcc-struct-return</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-fpcc_002dstruct_002dreturn-1976"><code>fpcc-struct-return</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpch_002ddeps-839"><code>fpch-deps</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fpch_002dpreprocess-840"><code>fpch-preprocess</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fpeel_002dloops-792"><code>fpeel-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpermissive-146"><code>fpermissive</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fPIC-1989"><code>fPIC</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpic-1986"><code>fpic</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fPIE-1991"><code>fPIE</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpie-1990"><code>fpie</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpost_002dipa_002dmem_002dreport-495"><code>fpost-ipa-mem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fpre_002dipa_002dmem_002dreport-494"><code>fpre-ipa-mem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fpredictive_002dcommoning-745"><code>fpredictive-commoning</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprefetch_002dloop_002darrays-746"><code>fprefetch-loop-arrays</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpreprocessed-860"><code>fpreprocessed</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fprofile_002darcs-2898"><code>fprofile-arcs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fprofile_002darcs-496"><code>fprofile-arcs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fprofile_002dcorrection-765"><code>fprofile-correction</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002ddir-766"><code>fprofile-dir</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002dgenerate-767"><code>fprofile-generate</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002duse-768"><code>fprofile-use</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002dvalues-786"><code>fprofile-values</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpromote_002dloop_002dindices-804"><code>fpromote-loop-indices</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frandom_002dstring-613"><code>frandom-string</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-freciprocal_002dmath-775"><code>freciprocal-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frecord_002dgcc_002dswitches-1985"><code>frecord-gcc-switches</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-freg_002dstruct_002dreturn-1977"><code>freg-struct-return</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fregmove-684"><code>fregmove</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fremove_002dlocal_002dstatics-803"><code>fremove-local-statics</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frename_002dregisters-788"><code>frename-registers</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dblocks-750"><code>freorder-blocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dblocks_002dand_002dpartition-751"><code>freorder-blocks-and-partition</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dfunctions-752"><code>freorder-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freplace_002dobjc_002dclasses-196"><code>freplace-objc-classes</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-frepo-3002"><code>frepo</code></a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-frepo-147"><code>frepo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-frerun_002dcse_002dafter_002dloop-668"><code>frerun-cse-after-loop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freschedule_002dmodulo_002dscheduled_002dloops-701"><code>freschedule-modulo-scheduled-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frounding_002dmath-779"><code>frounding-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frtl_002dabstract_002dsequences-780"><code>frtl-abstract-sequences</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dspec_002dload-694"><code>fsched-spec-load</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dspec_002dload_002ddangerous-695"><code>fsched-spec-load-dangerous</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dstalled_002dinsns-696"><code>fsched-stalled-insns</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dstalled_002dinsns_002ddep-697"><code>fsched-stalled-insns-dep</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dverbose-614"><code>fsched-verbose</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fsched2_002duse_002dsuperblocks-698"><code>fsched2-use-superblocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched2_002duse_002dtraces-699"><code>fsched2-use-traces</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fschedule_002dinsns-690"><code>fschedule-insns</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fschedule_002dinsns2-691"><code>fschedule-insns2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsection_002danchors-802"><code>fsection-anchors</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsee-700"><code>fsee</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsel_002dsched_002dpipelining-704"><code>fsel-sched-pipelining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsel_002dsched_002dpipelining_002douter_002dloops-705"><code>fsel-sched-pipelining-outer-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fselective_002dscheduling-702"><code>fselective-scheduling</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fselective_002dscheduling2-703"><code>fselective-scheduling2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fshort_002ddouble-1979"><code>fshort-double</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fshort_002denums-3062"><code>fshort-enums</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-fshort_002denums-2358"><code>fshort-enums</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-fshort_002denums-2039"><code>fshort-enums</code></a>: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></li>
<li><a href="#index-fshort_002denums-1978"><code>fshort-enums</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fshort_002dwchar-1980"><code>fshort-wchar</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fsignaling_002dnans-781"><code>fsignaling-nans</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsigned_002dbitfields-3063"><code>fsigned-bitfields</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-fsigned_002dbitfields-121"><code>fsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fsigned_002dchar-2036"><code>fsigned-char</code></a>: <a href="#Characters-implementation">Characters implementation</a></li>
<li><a href="#index-fsigned_002dchar-120"><code>fsigned-char</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fsingle_002dprecision_002dconstant-782"><code>fsingle-precision-constant</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsplit_002divs_002din_002dunroller-743"><code>fsplit-ivs-in-unroller</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsplit_002dwide_002dtypes-665"><code>fsplit-wide-types</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstack_002dcheck-2000"><code>fstack-check</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dlimit_002dregister-2001"><code>fstack-limit-register</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dlimit_002dsymbol-2002"><code>fstack-limit-symbol</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dprotector-800"><code>fstack-protector</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstack_002dprotector_002dall-801"><code>fstack-protector-all</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstats-149"><code>fstats</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fstrict_002daliasing-753"><code>fstrict-aliasing</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstrict_002doverflow-754"><code>fstrict-overflow</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsyntax_002donly-222"><code>fsyntax-only</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-ftabstop-861"><code>ftabstop</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ftemplate_002ddepth-150"><code>ftemplate-depth</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-ftest_002dcoverage-499"><code>ftest-coverage</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fthread_002djumps-664"><code>fthread-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftime_002dreport-492"><code>ftime-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-ftls_002dmodel-2011"><code>ftls-model</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ftracer-740"><code>ftracer</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftrapv-1970"><code>ftrapv</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ftree_002dbuiltin_002dcall_002ddce-722"><code>ftree-builtin-call-dce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dccp-720"><code>ftree-ccp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dch-725"><code>ftree-ch</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dcopy_002dprop-711"><code>ftree-copy-prop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dcopyrename-734"><code>ftree-copyrename</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddce-721"><code>ftree-dce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddominator_002dopts-723"><code>ftree-dominator-opts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddse-724"><code>ftree-dse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dfre-710"><code>ftree-fre</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002dim-729"><code>ftree-loop-im</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002divcanon-730"><code>ftree-loop-ivcanon</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002dlinear-727"><code>ftree-loop-linear</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002doptimize-726"><code>ftree-loop-optimize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dparallelize_002dloops-732"><code>ftree-parallelize-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dpre-709"><code>ftree-pre</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dreassoc-708"><code>ftree-reassoc</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dsink-719"><code>ftree-sink</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dsra-733"><code>ftree-sra</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dter-735"><code>ftree-ter</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvect_002dloop_002dversion-737"><code>ftree-vect-loop-version</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvectorize-736"><code>ftree-vectorize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvectorizer_002dverbose-612"><code>ftree-vectorizer-verbose</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-ftree_002dvrp-739"><code>ftree-vrp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funit_002dat_002da_002dtime-760"><code>funit-at-a-time</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funroll_002dall_002dloops-742"><code>funroll-all-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funroll_002dloops-741"><code>funroll-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsafe_002dloop_002doptimizations-674"><code>funsafe-loop-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsafe_002dmath_002doptimizations-773"><code>funsafe-math-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsigned_002dbitfields-3064"><code>funsigned-bitfields</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-funsigned_002dbitfields-2038"><code>funsigned-bitfields</code></a>: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></li>
<li><a href="#index-funsigned_002dbitfields-122"><code>funsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-funsigned_002dchar-2037"><code>funsigned-char</code></a>: <a href="#Characters-implementation">Characters implementation</a></li>
<li><a href="#index-funsigned_002dchar-119"><code>funsigned-char</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-funswitch_002dloops-794"><code>funswitch-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funwind_002dtables-1974"><code>funwind-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fuse_002dcxa_002datexit-152"><code>fuse-cxa-atexit</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvar_002dtracking-617"><code>fvar-tracking</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fvariable_002dexpansion_002din_002dunroller-744"><code>fvariable-expansion-in-unroller</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fvect_002dcost_002dmodel-738"><code>fvect-cost-model</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fverbose_002dasm-1984"><code>fverbose-asm</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fvisibility-2012"><code>fvisibility</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fvisibility_002dinlines_002dhidden-154"><code>fvisibility-inlines-hidden</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvisibility_002dms_002dcompat-155"><code>fvisibility-ms-compat</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvpt-787"><code>fvpt</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fweb-762"><code>fweb</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fwhole_002dprogram-763"><code>fwhole-program</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fwide_002dexec_002dcharset-864"><code>fwide-exec-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fworking_002ddirectory-868"><code>fworking-directory</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fwrapv-1971"><code>fwrapv</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fzero_002dlink-197"><code>fzero-link</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-G-1915"><code>G</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-G-1779"><code>G</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-G-1545"><code>G</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-G-1395"><code>G</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-g-471"><code>g</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gcoff-476"><code>gcoff</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gdwarf_002d2-479"><code>gdwarf-2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gen_002ddecls-198"><code>gen-decls</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-gfull-1064"><code>gfull</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ggdb-472"><code>ggdb</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gnu_002dld-1247"><code>gnu-ld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-gstabs-473"><code>gstabs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gstabs_002b-475"><code>gstabs+</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gused-1063"><code>gused</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-gvms-480"><code>gvms</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gxcoff-477"><code>gxcoff</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gxcoff_002b-478"><code>gxcoff+</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-H-885"><code>H</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-headerpad_005fmax_005finstall_005fnames-1090"><code>headerpad_max_install_names</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-help-882"><code>help</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-help-83"><code>help</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-hp_002dld-1248"><code>hp-ld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-I-923"><code>I</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-I-813"><code>I</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-I_002d-929"><code>I-</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-I_002d-844"><code>I-</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-idirafter-849"><code>idirafter</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iframework-1062"><code>iframework</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-imacros-848"><code>imacros</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-image_005fbase-1091"><code>image_base</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-imultilib-854"><code>imultilib</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-include-847"><code>include</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-init-1092"><code>init</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-install_005fname-1093"><code>install_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-iprefix-850"><code>iprefix</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iquote-924"><code>iquote</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-iquote-856"><code>iquote</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-isysroot-853"><code>isysroot</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-isystem-855"><code>isystem</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iwithprefix-851"><code>iwithprefix</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iwithprefixbefore-852"><code>iwithprefixbefore</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-keep_005fprivate_005fexterns-1094"><code>keep_private_externs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-L-925"><code>L</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-l-896"><code>l</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-lobjc-897"><code>lobjc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-M-828"><code>M</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-m1-1828"><code>m1</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m10-1627"><code>m10</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m128bit_002dlong_002ddouble-1271"><code>m128bit-long-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m16_002dbit-1047"><code>m16-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m2-1829"><code>m2</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m210-1478"><code>m210</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m3-1830"><code>m3</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m31-1801"><code>m31</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-m32-1890"><code>m32</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-m32-1696"><code>m32</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-m32-1307"><code>m32</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m32_002dbit-1046"><code>m32-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m32r-1388"><code>m32r</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m32r2-1386"><code>m32r2</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m32rx-1387"><code>m32rx</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m340-1479"><code>m340</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m3dnow-1286"><code>m3dnow</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m3e-1831"><code>m3e</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4-1835"><code>m4</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dnofpu-1832"><code>m4-nofpu</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dsingle-1834"><code>m4-single</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dsingle_002donly-1833"><code>m4-single-only</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m40-1625"><code>m40</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m45-1626"><code>m45</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m4a-1839"><code>m4a</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dnofpu-1836"><code>m4a-nofpu</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dsingle-1838"><code>m4a-single</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dsingle_002donly-1837"><code>m4a-single-only</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4al-1840"><code>m4al</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4byte_002dfunctions-1470"><code>m4byte-functions</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m5200-1419"><code>m5200</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5206e-1420"><code>m5206e</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m528x-1421"><code>m528x</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5307-1422"><code>m5307</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5407-1423"><code>m5407</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m64-1891"><code>m64</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-m64-1800"><code>m64</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-m64-1697"><code>m64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-m64-1308"><code>m64</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m68000-1410"><code>m68000</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68010-1412"><code>m68010</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020-1413"><code>m68020</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020_002d40-1425"><code>m68020-40</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020_002d60-1426"><code>m68020-60</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68030-1415"><code>m68030</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68040-1416"><code>m68040</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68060-1417"><code>m68060</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m6811-1448"><code>m6811</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m6812-1450"><code>m6812</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68881-1428"><code>m68881</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68hc11-1449"><code>m68hc11</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68hc12-1451"><code>m68hc12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68hcs12-1453"><code>m68hcs12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68S12-1452"><code>m68S12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m8_002dbit-1048"><code>m8-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m96bit_002dlong_002ddouble-1270"><code>m96bit-long-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mabi-1757"><code>mabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi-1294"><code>mabi</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mabi-957"><code>mabi</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mabi_002dmmixware-1597"><code>mabi-mmixware</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mabi_003d32-1501"><code>mabi=32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003d64-1504"><code>mabi=64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003deabi-1505"><code>mabi=eabi</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dgnu-1598"><code>mabi=gnu</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mabi_003dibmlongdouble-1760"><code>mabi=ibmlongdouble</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003dieeelongdouble-1761"><code>mabi=ieeelongdouble</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003dn32-1503"><code>mabi=n32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dno_002dspe-1759"><code>mabi=no-spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003do64-1502"><code>mabi=o64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dspe-1758"><code>mabi=spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabicalls-1506"><code>mabicalls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabort_002don_002dnoreturn-977"><code>mabort-on-noreturn</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mabshi-1638"><code>mabshi</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mac0-1623"><code>mac0</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-macc_002d4-1198"><code>macc-4</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-macc_002d8-1199"><code>macc-8</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-maccumulate_002doutgoing_002dargs-1297"><code>maccumulate-outgoing-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-madjust_002dunroll-1863"><code>madjust-unroll</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mads-1766"><code>mads</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix_002dstruct_002dreturn-1755"><code>maix-struct-return</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix32-1703"><code>maix32</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix64-1702"><code>maix64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-malign_002d300-1227"><code>malign-300</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-malign_002ddouble-1268"><code>malign-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-malign_002dint-1439"><code>malign-int</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-malign_002dlabels-1196"><code>malign-labels</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-malign_002dloops-1398"><code>malign-loops</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-malign_002dnatural-1707"><code>malign-natural</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-malign_002dpower-1708"><code>malign-power</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-malloc_002dcc-1178"><code>malloc-cc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-malpha_002das-1146"><code>malpha-as</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-maltivec-1681"><code>maltivec</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mam33-1615"><code>mam33</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mapcs-959"><code>mapcs</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mapcs_002dframe-958"><code>mapcs-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mapp_002dregs-1933"><code>mapp-regs</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mapp_002dregs-1871"><code>mapp-regs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-march-1808"><code>march</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-march-1485"><code>march</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-march-1407"><code>march</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-march-1259"><code>march</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-march-1229"><code>march</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-march-1029"><code>march</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-march-970"><code>march</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-masm_003d_0040var_007bdialect_007d-1262"><code>masm=</code><var>dialect</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mauto_002dincdec-1454"><code>mauto-incdec</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mauto_002dpic-1339"><code>mauto-pic</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mavoid_002dindexed_002daddresses-1722"><code>mavoid-indexed-addresses</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mb-1841"><code>mb</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbackchain-1794"><code>mbackchain</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mbase_002daddresses-1608"><code>mbase-addresses</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mbcopy-1629"><code>mbcopy</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbig-1742"><code>mbig</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbig_002dendian-1743"><code>mbig-endian</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbig_002dendian-1477"><code>mbig-endian</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mbig_002dendian-1325"><code>mbig-endian</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mbig_002dendian-966"><code>mbig-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mbig_002dswitch-1932"><code>mbig-switch</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mbig_002dswitch-1233"><code>mbig-switch</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mbigtable-1845"><code>mbigtable</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbit_002dalign-1731"><code>mbit-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbitfield-1436"><code>mbitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mbitops-1846"><code>mbitops</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbranch_002dcheap-1641"><code>mbranch-cheap</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbranch_002dcost-1587"><code>mbranch-cost</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mbranch_002dcost_003d_0040var_007bnumber_007d-1401"><code>mbranch-cost=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mbranch_002dexpensive-1640"><code>mbranch-expensive</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbranch_002dhints-1906"><code>mbranch-hints</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mbranch_002dlikely-1588"><code>mbranch-likely</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mbranch_002dpredict-1606"><code>mbranch-predict</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mbss_002dplt-1688"><code>mbss-plt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbuild_002dconstants-1145"><code>mbuild-constants</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mbwx-1148"><code>mbwx</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mc68000-1411"><code>mc68000</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mc68020-1414"><code>mc68020</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcall_002dgnu-1753"><code>mcall-gnu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dlinux-1752"><code>mcall-linux</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dnetbsd-1754"><code>mcall-netbsd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dprologues-997"><code>mcall-prologues</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mcall_002dsolaris-1751"><code>mcall-solaris</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dsysv-1748"><code>mcall-sysv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dsysv_002deabi-1749"><code>mcall-sysv-eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dsysv_002dnoeabi-1750"><code>mcall-sysv-noeabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcallee_002dsuper_002dinterworking-989"><code>mcallee-super-interworking</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcaller_002dsuper_002dinterworking-990"><code>mcaller-super-interworking</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcallgraph_002ddata-1472"><code>mcallgraph-data</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mcc_002dinit-1038"><code>mcc-init</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mcfv4e-1424"><code>mcfv4e</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcheck_002dzero_002ddivision-1561"><code>mcheck-zero-division</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mcirrus_002dfix_002dinvalid_002dinsns-982"><code>mcirrus-fix-invalid-insns</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcix-1150"><code>mcix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mcld-1288"><code>mcld</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dembmedany-1895"><code>mcmodel=embmedany</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dkernel-1311"><code>mcmodel=kernel</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dlarge-1313"><code>mcmodel=large</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dmedany-1894"><code>mcmodel=medany</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dmedium-1312"><code>mcmodel=medium</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dmedlow-1892"><code>mcmodel=medlow</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dmedmid-1893"><code>mcmodel=medmid</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dsmall-1310"><code>mcmodel=small</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmpb-1669"><code>mcmpb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcode_002dreadable-1556"><code>mcode-readable</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mcond_002dexec-1207"><code>mcond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mcond_002dmove-1203"><code>mcond-move</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mconsole-1315"><code>mconsole</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mconst_002dalign-1044"><code>mconst-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mconst16-1953"><code>mconst16</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mconstant_002dgp-1338"><code>mconstant-gp</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mcorea-1024"><code>mcorea</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcoreb-1025"><code>mcoreb</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcpu-1883"><code>mcpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcpu-1677"><code>mcpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcpu-1647"><code>mcpu</code></a>: <a href="#picoChip-Options">picoChip Options</a></li>
<li><a href="#index-mcpu-1408"><code>mcpu</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcpu-1260"><code>mcpu</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcpu-1218"><code>mcpu</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mcpu-1164"><code>mcpu</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mcpu-1030"><code>mcpu</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mcpu-968"><code>mcpu</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcpu-951"><code>mcpu</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mcpu32-1418"><code>mcpu32</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcpu_003d-1382"><code>mcpu=</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-mcpu_003d-1002"><code>mcpu=</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcsync_002danomaly-1007"><code>mcsync-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcx16-1289"><code>mcx16</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcygwin-1316"><code>mcygwin</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-MD-837"><code>MD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mdalign-1843"><code>mdalign</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdata-953"><code>mdata</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mdata_002dalign-1042"><code>mdata-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mdebug-1806"><code>mdebug</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mdebug-1397"><code>mdebug</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mdec_002dasm-1645"><code>mdec-asm</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mdisable_002dcallt-1937"><code>mdisable-callt</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mdisable_002dfpregs-1235"><code>mdisable-fpregs</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mdisable_002dindexing-1236"><code>mdisable-indexing</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mdiv-1464"><code>mdiv</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mdiv-1430"><code>mdiv</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mdiv_003d_0040var_007bstrategy_007d-1860"><code>mdiv=</code><var>strategy</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdivide_002dbreaks-1564"><code>mdivide-breaks</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdivide_002dtraps-1563"><code>mdivide-traps</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdivsi3_005flibfunc_003d_0040var_007bname_007d-1861"><code>mdivsi3_libfunc=</code><var>name</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdll-1318"><code>mdll</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mdlmzb-1728"><code>mdlmzb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mdmx-1531"><code>mdmx</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdouble-1182"><code>mdouble</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mdouble_002dfloat-1712"><code>mdouble-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mdouble_002dfloat-1520"><code>mdouble-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdsp-1523"><code>mdsp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdspr2-1525"><code>mdspr2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdual_002dnops-1911"><code>mdual-nops</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mdwarf2_002dasm-1347"><code>mdwarf2-asm</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mdword-1180"><code>mdword</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mdynamic_002dno_002dpic-1744"><code>mdynamic-no-pic</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-meabi-1770"><code>meabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mearly_002dstop_002dbits-1348"><code>mearly-stop-bits</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-meb-1819"><code>meb</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mel-1820"><code>mel</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-melf-1605"><code>melf</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-melf-1053"><code>melf</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-memb-1769"><code>memb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-membedded_002ddata-1552"><code>membedded-data</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-memregs_003d-1384"><code>memregs=</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-mep-1924"><code>mep</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mepsilon-1595"><code>mepsilon</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-merror_002dreloc-1903"><code>merror-reloc</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mesa-1803"><code>mesa</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-metrax100-1034"><code>metrax100</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-metrax4-1033"><code>metrax4</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mexplicit_002drelocs-1559"><code>mexplicit-relocs</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mexplicit_002drelocs-1158"><code>mexplicit-relocs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mextern_002dsdata-1548"><code>mextern-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-MF-832"><code>MF</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mfast_002dfp-1021"><code>mfast-fp</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mfast_002dindirect_002dcalls-1238"><code>mfast-indirect-calls</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mfaster_002dstructs-1881"><code>mfaster-structs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mfdpic-1188"><code>mfdpic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfix-1152"><code>mfix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfix_002dand_002dcontinue-1067"><code>mfix-and-continue</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-mfix_002dcortex_002dm3_002dldrd-955"><code>mfix-cortex-m3-ldrd</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mfix_002djanus_002d2cc-986"><code>mfix-janus-2cc</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfix_002dr10000-1580"><code>mfix-r10000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dr4000-1576"><code>mfix-r4000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dr4400-1578"><code>mfix-r4400</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dsb1-1584"><code>mfix-sb1</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dvr4120-1582"><code>mfix-vr4120</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dvr4130-1583"><code>mfix-vr4130</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfixed_002dcc-1179"><code>mfixed-cc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfixed_002drange-1910"><code>mfixed-range</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mfixed_002drange-1862"><code>mfixed-range</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mfixed_002drange-1350"><code>mfixed-range</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mfixed_002drange-1239"><code>mfixed-range</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mflip_002dmips16-1498"><code>mflip-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfloat_002dabi-962"><code>mfloat-abi</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfloat_002dgprs-1695"><code>mfloat-gprs</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfloat_002dieee-1157"><code>mfloat-ieee</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfloat_002dvax-1156"><code>mfloat-vax</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfloat32-1636"><code>mfloat32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mfloat64-1634"><code>mfloat64</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mflush_002dfunc-1586"><code>mflush-func</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mflush_002dfunc_003d_0040var_007bname_007d-1404"><code>mflush-func=</code><var>name</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mflush_002dtrap_003d_0040var_007bnumber_007d-1402"><code>mflush-trap=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mfmovd-1847"><code>mfmovd</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mfp-973"><code>mfp</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfp_002dexceptions-1590"><code>mfp-exceptions</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfp_002dreg-1137"><code>mfp-reg</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp_002drounding_002dmode-1142"><code>mfp-rounding-mode</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp_002dtrap_002dmode-1141"><code>mfp-trap-mode</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp16_002dformat-974"><code>mfp16-format</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfp32-1515"><code>mfp32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfp64-1516"><code>mfp64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfpe-972"><code>mfpe</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfpr_002d32-1174"><code>mfpr-32</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfpr_002d64-1175"><code>mfpr-64</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfprnd-1667"><code>mfprnd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfpu-1872"><code>mfpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mfpu-1714"><code>mfpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfpu-1621"><code>mfpu</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mfpu-971"><code>mfpu</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfull_002dtoc-1698"><code>mfull-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfused_002dmadd-1955"><code>mfused-madd</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mfused_002dmadd-1812"><code>mfused-madd</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mfused_002dmadd-1724"><code>mfused-madd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfused_002dmadd-1573"><code>mfused-madd</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfused_002dmadd-1305"><code>mfused-madd</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mg-1941"><code>mg</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-MG-833"><code>MG</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mgas-1242"><code>mgas</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mgas-1147"><code>mgas</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mgen_002dcell_002dmicrocode-1685"><code>mgen-cell-microcode</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mgettrcost_003d_0040var_007bnumber_007d-1865"><code>mgettrcost=</code><var>number</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mglibc-1219"><code>mglibc</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-mgnu-1940"><code>mgnu</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-mgnu_002das-1327"><code>mgnu-as</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mgnu_002dld-1329"><code>mgnu-ld</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mgotplt-1052"><code>mgotplt</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mgp32-1513"><code>mgp32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgp64-1514"><code>mgp64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgpopt-1550"><code>mgpopt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgpr_002d32-1172"><code>mgpr-32</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mgpr_002d64-1173"><code>mgpr-64</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mgprel_002dro-1192"><code>mgprel-ro</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mh-1222"><code>mh</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mhard_002ddfp-1790"><code>mhard-dfp</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mhard_002ddfp-1673"><code>mhard-dfp</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mhard_002dfloat-1873"><code>mhard-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mhard_002dfloat-1788"><code>mhard-float</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mhard_002dfloat-1710"><code>mhard-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mhard_002dfloat-1517"><code>mhard-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mhard_002dfloat-1427"><code>mhard-float</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mhard_002dfloat-1176"><code>mhard-float</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mhard_002dfloat-963"><code>mhard-float</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mhard_002dquad_002dfloat-1876"><code>mhard-quad-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mhardlit-1462"><code>mhardlit</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mhint_002dmax_002ddistance-1913"><code>mhint-max-distance</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mhint_002dmax_002dnops-1912"><code>mhint-max-nops</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mhitachi-1848"><code>mhitachi</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-micplb-1027"><code>micplb</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mid_002dshared_002dlibrary-1012"><code>mid-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mieee-1852"><code>mieee</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mieee-1139"><code>mieee</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mieee_002dconformant-1144"><code>mieee-conformant</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mieee_002dfp-1263"><code>mieee-fp</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mieee_002dwith_002dinexact-1140"><code>mieee-with-inexact</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-milp32-1355"><code>milp32</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mimpure_002dtext-1882"><code>mimpure-text</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mincoming_002dstack_002dboundary-1281"><code>mincoming-stack-boundary</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mindexed_002daddressing-1864"><code>mindexed-addressing</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-minline_002dall_002dstringops-1300"><code>minline-all-stringops</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-minline_002dfloat_002ddivide_002dmax_002dthroughput-1341"><code>minline-float-divide-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dfloat_002ddivide_002dmin_002dlatency-1340"><code>minline-float-divide-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dic_005finvalidate-1853"><code>minline-ic_invalidate</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-minline_002dint_002ddivide_002dmax_002dthroughput-1343"><code>minline-int-divide-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dint_002ddivide_002dmin_002dlatency-1342"><code>minline-int-divide-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dplt-1189"><code>minline-plt</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-minline_002dplt-1022"><code>minline-plt</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-minline_002dsqrt_002dmax_002dthroughput-1345"><code>minline-sqrt-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dsqrt_002dmin_002dlatency-1344"><code>minline-sqrt-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dstringops_002ddynamically-1301"><code>minline-stringops-dynamically</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-minmax-1455"><code>minmax</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-minsert_002dsched_002dnops-1747"><code>minsert-sched-nops</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mint16-1630"><code>mint16</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mint32-1632"><code>mint32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mint32-1226"><code>mint32</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mint8-1000"><code>mint8</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-minterlink_002dmips16-1499"><code>minterlink-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-minvalid_002dsymbols-1867"><code>minvalid-symbols</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mips1-1487"><code>mips1</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips16-1495"><code>mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips16e-1496"><code>mips16e</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips2-1488"><code>mips2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips3-1489"><code>mips3</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips32-1491"><code>mips32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips32r2-1492"><code>mips32r2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips3d-1533"><code>mips3d</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips4-1490"><code>mips4</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips64-1493"><code>mips64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips64r2-1494"><code>mips64r2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-misel-1689"><code>misel</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-misize-1854"><code>misize</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-missue_002drate_003d_0040var_007bnumber_007d-1400"><code>missue-rate=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mjals-1569"><code>mjals</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mjump_002din_002ddelay-1234"><code>mjump-in-delay</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mkernel-1065"><code>mkernel</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-mknuthdiv-1601"><code>mknuthdiv</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-ml-1842"><code>ml</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mlarge_002ddata-1161"><code>mlarge-data</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mlarge_002ddata_002dthreshold_003d_0040var_007bnumber_007d-1272"><code>mlarge-data-threshold=</code><var>number</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mlarge_002dmem-1908"><code>mlarge-mem</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mlarge_002dtext-1163"><code>mlarge-text</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mleaf_002did_002dshared_002dlibrary-1014"><code>mleaf-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlibfuncs-1593"><code>mlibfuncs</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mlibrary_002dpic-1197"><code>mlibrary-pic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlinked_002dfp-1194"><code>mlinked-fp</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlinker_002dopt-1244"><code>mlinker-opt</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mlinux-1054"><code>mlinux</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mlittle-1740"><code>mlittle</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlittle_002dendian-1889"><code>mlittle-endian</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mlittle_002dendian-1741"><code>mlittle-endian</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlittle_002dendian-1476"><code>mlittle-endian</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mlittle_002dendian-1326"><code>mlittle-endian</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mlittle_002dendian-965"><code>mlittle-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mllsc-1521"><code>mllsc</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlocal_002dsdata-1546"><code>mlocal-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong_002dcalls-1921"><code>mlong-calls</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mlong_002dcalls-1567"><code>mlong-calls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong_002dcalls-1457"><code>mlong-calls</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mlong_002dcalls-1195"><code>mlong-calls</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlong_002dcalls-1019"><code>mlong-calls</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlong_002dcalls-978"><code>mlong-calls</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mlong_002ddouble_002d128-1793"><code>mlong-double-128</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mlong_002ddouble_002d64-1792"><code>mlong-double-64</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mlong_002dload_002dstore-1240"><code>mlong-load-store</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mlong32-1542"><code>mlong32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong64-1541"><code>mlong64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlongcall-1784"><code>mlongcall</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlongcalls-1963"><code>mlongcalls</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mlow_002d64k-1009"><code>mlow-64k</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlow_002dirq_002dlatency-934"><code>mlow-irq-latency</code></a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-mlp64-1356"><code>mlp64</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-MM-831"><code>MM</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mmac-1823"><code>mmac</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mmac-1058"><code>mmac</code></a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-mmad-1571"><code>mmad</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmangle_002dcpu-950"><code>mmangle-cpu</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mmarvell_002ddiv-975"><code>mmarvell-div</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mmax-1154"><code>mmax</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mmax_002dstack_002dframe-1032"><code>mmax-stack-frame</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mmcu-1539"><code>mmcu</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmcu-994"><code>mmcu</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-MMD-838"><code>MMD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mmedia-1184"><code>mmedia</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmemcpy-1565"><code>mmemcpy</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmemory_002dlatency-1166"><code>mmemory-latency</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mmfcrf-1663"><code>mmfcrf</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmfpgpr-1671"><code>mmfpgpr</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmicromips-1535"><code>mmicromips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mminimal_002dtoc-1701"><code>mminimal-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmmx-1282"><code>mmmx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mmodel_003dlarge-1391"><code>mmodel=large</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmodel_003dmedium-1390"><code>mmodel=medium</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmodel_003dsmall-1389"><code>mmodel=small</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmovbe-1291"><code>mmovbe</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mmt-1537"><code>mmt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmul_002dbug_002dworkaround-1035"><code>mmul-bug-workaround</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mmuladd-1186"><code>mmuladd</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmulhw-1726"><code>mmulhw</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmult_002dbug-1613"><code>mmult-bug</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mmulti_002dcond_002dexec-1211"><code>mmulti-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmulticore-1023"><code>mmulticore</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mmultiple-1716"><code>mmultiple</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmvcle-1804"><code>mmvcle</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mmvme-1765"><code>mmvme</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mn-1224"><code>mn</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mnested_002dcond_002dexec-1213"><code>mnested-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mnew_002dmnemonics-1675"><code>mnew-mnemonics</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mnhwloop-1821"><code>mnhwloop</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mno_002d3dnow-1287"><code>mno-3dnow</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002d4byte_002dfunctions-1471"><code>mno-4byte-functions</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dabicalls-1507"><code>mno-abicalls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dabshi-1639"><code>mno-abshi</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dac0-1624"><code>mno-ac0</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dalign_002ddouble-1269"><code>mno-align-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dalign_002dint-1440"><code>mno-align-int</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dalign_002dloops-1399"><code>mno-align-loops</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dalign_002dstringops-1299"><code>mno-align-stringops</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002daltivec-1682"><code>mno-altivec</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dam33-1616"><code>mno-am33</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dapp_002dregs-1934"><code>mno-app-regs</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dapp_002dregs-1870"><code>mno-app-regs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002davoid_002dindexed_002daddresses-1723"><code>mno-avoid-indexed-addresses</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dbackchain-1795"><code>mno-backchain</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dbase_002daddresses-1609"><code>mno-base-addresses</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dbit_002dalign-1730"><code>mno-bit-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dbitfield-1435"><code>mno-bitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dbranch_002dlikely-1589"><code>mno-branch-likely</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dbranch_002dpredict-1607"><code>mno-branch-predict</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dbwx-1149"><code>mno-bwx</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dcallgraph_002ddata-1473"><code>mno-callgraph-data</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dcheck_002dzero_002ddivision-1562"><code>mno-check-zero-division</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dcirrus_002dfix_002dinvalid_002dinsns-983"><code>mno-cirrus-fix-invalid-insns</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dcix-1151"><code>mno-cix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dcmpb-1670"><code>mno-cmpb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dcond_002dexec-1208"><code>mno-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dcond_002dmove-1204"><code>mno-cond-move</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dconst_002dalign-1045"><code>mno-const-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dconst16-1954"><code>mno-const16</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dcrt0-1618"><code>mno-crt0</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dcsync_002danomaly-1008"><code>mno-csync-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dcygwin-1317"><code>mno-cygwin</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mno_002ddata_002dalign-1043"><code>mno-data-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002ddebug-1807"><code>mno-debug</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002ddiv-1465"><code>mno-div</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002ddiv-1431"><code>mno-div</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002ddlmzb-1729"><code>mno-dlmzb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002ddouble-1183"><code>mno-double</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002ddsp-1524"><code>mno-dsp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002ddspr2-1526"><code>mno-dspr2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002ddwarf2_002dasm-1346"><code>mno-dwarf2-asm</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002ddword-1181"><code>mno-dword</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002deabi-1771"><code>mno-eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dearly_002dstop_002dbits-1349"><code>mno-early-stop-bits</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002deflags-1202"><code>mno-eflags</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dembedded_002ddata-1553"><code>mno-embedded-data</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dep-1923"><code>mno-ep</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002depsilon-1596"><code>mno-epsilon</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dexplicit_002drelocs-1560"><code>mno-explicit-relocs</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dexplicit_002drelocs-1159"><code>mno-explicit-relocs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dextern_002dsdata-1549"><code>mno-extern-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfancy_002dmath_002d387-1267"><code>mno-fancy-math-387</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dfaster_002dstructs-1880"><code>mno-faster-structs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dfix-1153"><code>mno-fix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dfix_002dr10000-1581"><code>mno-fix-r10000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfix_002dr4000-1577"><code>mno-fix-r4000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfix_002dr4400-1579"><code>mno-fix-r4400</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfloat32-1635"><code>mno-float32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dfloat64-1637"><code>mno-float64</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dflush_002dfunc-1405"><code>mno-flush-func</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dflush_002dtrap-1403"><code>mno-flush-trap</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dfp_002din_002dtoc-1699"><code>mno-fp-in-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfp_002dregs-1138"><code>mno-fp-regs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dfp_002dret_002din_002d387-1266"><code>mno-fp-ret-in-387</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dfprnd-1668"><code>mno-fprnd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfpu-1874"><code>mno-fpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1956"><code>mno-fused-madd</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1813"><code>mno-fused-madd</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1725"><code>mno-fused-madd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1574"><code>mno-fused-madd</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dgnu_002das-1328"><code>mno-gnu-as</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dgnu_002dld-1330"><code>mno-gnu-ld</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dgotplt-1051"><code>mno-gotplt</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dgpopt-1551"><code>mno-gpopt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dhard_002ddfp-1791"><code>mno-hard-dfp</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dhard_002ddfp-1674"><code>mno-hard-dfp</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dhardlit-1463"><code>mno-hardlit</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002did_002dshared_002dlibrary-1013"><code>mno-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dieee_002dfp-1264"><code>mno-ieee-fp</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dint16-1633"><code>mno-int16</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dint32-1631"><code>mno-int32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dinterlink_002dmips16-1500"><code>mno-interlink-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dinterrupts-996"><code>mno-interrupts</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mno_002disel-1690"><code>mno-isel</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002djals-1570"><code>mno-jals</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dknuthdiv-1602"><code>mno-knuthdiv</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dleaf_002did_002dshared_002dlibrary-1015"><code>mno-leaf-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlibfuncs-1594"><code>mno-libfuncs</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dllsc-1522"><code>mno-llsc</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlocal_002dsdata-1547"><code>mno-local-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1922"><code>mno-long-calls</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1568"><code>mno-long-calls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1458"><code>mno-long-calls</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1249"><code>mno-long-calls</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1020"><code>mno-long-calls</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-979"><code>mno-long-calls</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dlongcall-1785"><code>mno-longcall</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dlongcalls-1964"><code>mno-longcalls</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dlow_002d64k-1010"><code>mno-low-64k</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlsim-1170"><code>mno-lsim</code></a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-mno_002dmad-1572"><code>mno-mad</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmax-1155"><code>mno-max</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dmcu-1540"><code>mno-mcu</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmdmx-1532"><code>mno-mdmx</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmedia-1185"><code>mno-media</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmemcpy-1566"><code>mno-memcpy</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmfcrf-1664"><code>mno-mfcrf</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmfpgpr-1672"><code>mno-mfpgpr</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmips16-1497"><code>mno-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmips3d-1534"><code>mno-mips3d</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmmicromips-1536"><code>mno-mmicromips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmmx-1283"><code>mno-mmx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dmt-1538"><code>mno-mt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmul_002dbug_002dworkaround-1036"><code>mno-mul-bug-workaround</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dmuladd-1187"><code>mno-muladd</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmulhw-1727"><code>mno-mulhw</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmult_002dbug-1614"><code>mno-mult-bug</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dmulti_002dcond_002dexec-1212"><code>mno-multi-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmultiple-1717"><code>mno-multiple</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmvcle-1805"><code>mno-mvcle</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dnested_002dcond_002dexec-1214"><code>mno-nested-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002doptimize_002dmembar-1216"><code>mno-optimize-membar</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dpack-1201"><code>mno-pack</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dpacked_002dstack-1797"><code>mno-packed-stack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dpaired-1694"><code>mno-paired</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpaired_002dsingle-1530"><code>mno-paired-single</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dpic-1331"><code>mno-pic</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dplt-1509"><code>mno-plt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dpopcntb-1666"><code>mno-popcntb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpower-1652"><code>mno-power</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpower2-1654"><code>mno-power2</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc-1656"><code>mno-powerpc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc_002dgfxopt-1660"><code>mno-powerpc-gfxopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc_002dgpopt-1658"><code>mno-powerpc-gpopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc64-1662"><code>mno-powerpc64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dprolog_002dfunction-1925"><code>mno-prolog-function</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dprologue_002depilogue-1049"><code>mno-prologue-epilogue</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dprototype-1763"><code>mno-prototype</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpush_002dargs-1296"><code>mno-push-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dregister_002dnames-1335"><code>mno-register-names</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dregnames-1783"><code>mno-regnames</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drelax_002dimmediate-1467"><code>mno-relax-immediate</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002drelocatable-1735"><code>mno-relocatable</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drelocatable_002dlib-1737"><code>mno-relocatable-lib</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drtd-1438"><code>mno-rtd</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dscc-1206"><code>mno-scc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dsched_002dar_002ddata_002dspec-1360"><code>mno-sched-ar-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dar_002din_002ddata_002dspec-1366"><code>mno-sched-ar-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dbr_002ddata_002dspec-1357"><code>mno-sched-br-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dbr_002din_002ddata_002dspec-1364"><code>mno-sched-br-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dcontrol_002dldc-1371"><code>mno-sched-control-ldc</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dcontrol_002dspec-1361"><code>mno-sched-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath-1379"><code>mno-sched-count-spec-in-critical-path</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002din_002dcontrol_002dspec-1368"><code>mno-sched-in-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dldc-1370"><code>mno-sched-ldc</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1377"><code>mno-sched-prefer-non-control-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1375"><code>mno-sched-prefer-non-data-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprolog-961"><code>mno-sched-prolog</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dsched_002dspec_002dverbose-1373"><code>mno-sched-spec-verbose</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsdata-1778"><code>mno-sdata</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsdata-1336"><code>mno-sdata</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsep_002ddata-1018"><code>mno-sep-data</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dserialize_002dvolatile-1958"><code>mno-serialize-volatile</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dshort-1433"><code>mno-short</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dside_002deffects-1039"><code>mno-side-effects</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dsingle_002dexit-1611"><code>mno-single-exit</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dslow_002dbytes-1475"><code>mno-slow-bytes</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dsmall_002dexec-1799"><code>mno-small-exec</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dsmartmips-1528"><code>mno-smartmips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dsoft_002dfloat-1135"><code>mno-soft-float</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dspace_002dregs-1237"><code>mno-space-regs</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mno_002dspe-1692"><code>mno-spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dspecld_002danomaly-1006"><code>mno-specld-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dsplit-1643"><code>mno-split</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dsplit_002daddresses-1558"><code>mno-split-addresses</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dsse-1285"><code>mno-sse</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dstack_002dalign-1041"><code>mno-stack-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dstack_002dbias-1897"><code>mno-stack-bias</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dstrict_002dalign-1732"><code>mno-strict-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dstrict_002dalign-1442"><code>mno-strict-align</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dstring-1719"><code>mno-string</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsum_002din_002dtoc-1700"><code>mno-sum-in-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dswdiv-1680"><code>mno-swdiv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsym32-1544"><code>mno-sym32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dtablejump-998"><code>mno-tablejump</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mno_002dtarget_002dalign-1962"><code>mno-target-align</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dtext_002dsection_002dliterals-1960"><code>mno-text-section-literals</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dtoc-1738"><code>mno-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dtoplevel_002dsymbols-1604"><code>mno-toplevel-symbols</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dtpf_002dtrace-1811"><code>mno-tpf-trace</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dunaligned_002ddoubles-1878"><code>mno-unaligned-doubles</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002duninit_002dconst_002din_002drodata-1555"><code>mno-uninit-const-in-rodata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dupdate-1721"><code>mno-update</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dv8plus-1886"><code>mno-v8plus</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dvis-1888"><code>mno-vis</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dvliw_002dbranch-1210"><code>mno-vliw-branch</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dvolatile_002dasm_002dstop-1333"><code>mno-volatile-asm-stop</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dvrsave-1684"><code>mno-vrsave</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dwide_002dbitfields-1469"><code>mno-wide-bitfields</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dxgot-1511"><code>mno-xgot</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dxgot-1445"><code>mno-xgot</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dxl_002dcompat-1705"><code>mno-xl-compat</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dzero_002dextend-1600"><code>mno-zero-extend</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mnobitfield-1434"><code>mnobitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mnomacsave-1851"><code>mnomacsave</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mnominmax-1456"><code>mnominmax</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mnop_002dfun_002ddllimport-1319"><code>mnop-fun-dllimport</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mold_002dmnemonics-1676"><code>mold-mnemonics</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-momit_002dleaf_002dframe_002dpointer-1303"><code>momit-leaf-frame-pointer</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-momit_002dleaf_002dframe_002dpointer-1004"><code>momit-leaf-frame-pointer</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mone_002dbyte_002dbool-1066"><code>mone-byte-bool</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-moptimize_002dmembar-1215"><code>moptimize-membar</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-MP-834"><code>MP</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mpa_002drisc_002d1_002d0-1230"><code>mpa-risc-1-0</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpa_002drisc_002d1_002d1-1231"><code>mpa-risc-1-1</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpa_002drisc_002d2_002d0-1232"><code>mpa-risc-2-0</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpack-1200"><code>mpack</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mpacked_002dstack-1796"><code>mpacked-stack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mpadstruct-1855"><code>mpadstruct</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpaired-1693"><code>mpaired</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpaired_002dsingle-1529"><code>mpaired-single</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mpc32-1276"><code>mpc32</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpc64-1277"><code>mpc64</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpc80-1278"><code>mpc80</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpcrel-1441"><code>mpcrel</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mpdebug-1037"><code>mpdebug</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mpe-1706"><code>mpe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpe_002daligned_002dcommons-1323"><code>mpe-aligned-commons</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mpic_002dregister-981"><code>mpic-register</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mplt-1508"><code>mplt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mpoke_002dfunction_002dname-984"><code>mpoke-function-name</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mpopcntb-1665"><code>mpopcntb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mportable_002druntime-1241"><code>mportable-runtime</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpower-1651"><code>mpower</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpower2-1653"><code>mpower2</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc-1655"><code>mpowerpc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc_002dgfxopt-1659"><code>mpowerpc-gfxopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc_002dgpopt-1657"><code>mpowerpc-gpopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc64-1661"><code>mpowerpc64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mprefergot-1857"><code>mprefergot</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpreferred_002dstack_002dboundary-1280"><code>mpreferred-stack-boundary</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mprioritize_002drestricted_002dinsns-1745"><code>mprioritize-restricted-insns</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mprolog_002dfunction-1926"><code>mprolog-function</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mprologue_002depilogue-1050"><code>mprologue-epilogue</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mprototype-1762"><code>mprototype</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpt_002dfixed-1866"><code>mpt-fixed</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpush_002dargs-1295"><code>mpush-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpush_002dargs-1059"><code>mpush-args</code></a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-MQ-836"><code>MQ</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mr10k_002dcache_002dbarrier-1585"><code>mr10k-cache-barrier</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mrecip-1292"><code>mrecip</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mregister_002dnames-1334"><code>mregister-names</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mregnames-1782"><code>mregnames</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mregparm-1274"><code>mregparm</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mrelax-1844"><code>mrelax</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mrelax-1619"><code>mrelax</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mrelax-1221"><code>mrelax</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mrelax_002dimmediate-1466"><code>mrelax-immediate</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mrelocatable-1734"><code>mrelocatable</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mrelocatable_002dlib-1736"><code>mrelocatable-lib</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mreturn_002dpointer_002don_002dd0-1617"><code>mreturn-pointer-on-d0</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mrodata-954"><code>mrodata</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mrtd-2220"><code>mrtd</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-mrtd-1437"><code>mrtd</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mrtd-1273"><code>mrtd</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mrtp-1943"><code>mrtp</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-ms-1223"><code>ms</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-ms2600-1225"><code>ms2600</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-msafe_002ddma-1904"><code>msafe-dma</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msafe_002dhints-1914"><code>msafe-hints</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msahf-1290"><code>msahf</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mscc-1205"><code>mscc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-msched_002dar_002ddata_002dspec-1359"><code>msched-ar-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dar_002din_002ddata_002dspec-1365"><code>msched-ar-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dbr_002ddata_002dspec-1358"><code>msched-br-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dbr_002din_002ddata_002dspec-1363"><code>msched-br-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dcontrol_002dldc-1372"><code>msched-control-ldc</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dcontrol_002dspec-1362"><code>msched-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dcostly_002ddep-1746"><code>msched-costly-dep</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msched_002dcount_002dspec_002din_002dcritical_002dpath-1380"><code>msched-count-spec-in-critical-path</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002din_002dcontrol_002dspec-1367"><code>msched-in-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dldc-1369"><code>msched-ldc</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1378"><code>msched-prefer-non-control-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1376"><code>msched-prefer-non-data-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dspec_002dverbose-1374"><code>msched-spec-verbose</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mschedule-1243"><code>mschedule</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mscore5-1824"><code>mscore5</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore5u-1825"><code>mscore5u</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore7-1826"><code>mscore7</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore7d-1827"><code>mscore7d</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-msda-1929"><code>msda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-msdata-1775"><code>msdata</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata-1337"><code>msdata</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msdata_003ddata-1776"><code>msdata=data</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003ddefault-1774"><code>msdata=default</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003deabi-1772"><code>msdata=eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003dnone-1777"><code>msdata=none</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003dnone-1392"><code>msdata=none</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdata_003dsdata-1393"><code>msdata=sdata</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdata_003dsysv-1773"><code>msdata=sysv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003duse-1394"><code>msdata=use</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdram-1026"><code>msdram</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msecure_002dplt-1687"><code>msecure-plt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msep_002ddata-1017"><code>msep-data</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mserialize_002dvolatile-1957"><code>mserialize-volatile</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mshared_002dlibrary_002did-1016"><code>mshared-library-id</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mshort-1459"><code>mshort</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mshort-1432"><code>mshort</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-msim-1951"><code>msim</code></a>: <a href="#Xstormy16-Options">Xstormy16 Options</a></li>
<li><a href="#index-msim-1764"><code>msim</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msim-1383"><code>msim</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-msim-1003"><code>msim</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msimple_002dfpu-1713"><code>msimple-fpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msingle_002dexit-1610"><code>msingle-exit</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-msingle_002dfloat-1711"><code>msingle-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msingle_002dfloat-1519"><code>msingle-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msingle_002dpic_002dbase-980"><code>msingle-pic-base</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msio-1246"><code>msio</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-msize-995"><code>msize</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mslow_002dbytes-1474"><code>mslow-bytes</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-msmall_002ddata-1160"><code>msmall-data</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msmall_002dexec-1798"><code>msmall-exec</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-msmall_002dmem-1907"><code>msmall-mem</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msmall_002dmodel-1169"><code>msmall-model</code></a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-msmall_002dtext-1162"><code>msmall-text</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msmartmips-1527"><code>msmartmips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msoft_002dfloat-1875"><code>msoft-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-msoft_002dfloat-1789"><code>msoft-float</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-msoft_002dfloat-1709"><code>msoft-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msoft_002dfloat-1622"><code>msoft-float</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-msoft_002dfloat-1518"><code>msoft-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msoft_002dfloat-1429"><code>msoft-float</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-msoft_002dfloat-1265"><code>msoft-float</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msoft_002dfloat-1245"><code>msoft-float</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-msoft_002dfloat-1177"><code>msoft-float</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-msoft_002dfloat-1136"><code>msoft-float</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msoft_002dfloat-964"><code>msoft-float</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msoft_002dquad_002dfloat-1877"><code>msoft-quad-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-msoft_002dreg_002dcount-1460"><code>msoft-reg-count</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mspace-1927"><code>mspace</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mspace-1856"><code>mspace</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mspe-1691"><code>mspe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mspecld_002danomaly-1005"><code>mspecld-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msplit-1642"><code>msplit</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-msplit_002daddresses-1557"><code>msplit-addresses</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msse-1284"><code>msse</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msse2avx-1306"><code>msse2avx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msseregparm-1275"><code>msseregparm</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstack_002dalign-1040"><code>mstack-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mstack_002dbias-1896"><code>mstack-bias</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mstack_002dcheck_002dl1-1011"><code>mstack-check-l1</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mstack_002dguard-1816"><code>mstack-guard</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mstack_002dincrement-1481"><code>mstack-increment</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mstack_002dsize-1817"><code>mstack-size</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mstackrealign-1279"><code>mstackrealign</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstdmain-1909"><code>mstdmain</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mstrict_002dalign-1733"><code>mstrict-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mstrict_002dalign-1443"><code>mstrict-align</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mstring-1718"><code>mstring</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mstringop_002dstrategy_003d_0040var_007balg_007d-1302"><code>mstringop-strategy=</code><var>alg</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstructure_002dsize_002dboundary-976"><code>mstructure-size-boundary</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msvr4_002dstruct_002dreturn-1756"><code>msvr4-struct-return</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mswdiv-1679"><code>mswdiv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msym32-1543"><code>msym32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mt-1353"><code>mt</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-MT-835"><code>MT</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mtarget_002dalign-1961"><code>mtarget-align</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mtda-1928"><code>mtda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mtext-952"><code>mtext</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mtext_002dsection_002dliterals-1959"><code>mtext-section-literals</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mthread-1320"><code>mthread</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mthreads-1298"><code>mthreads</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mthumb-985"><code>mthumb</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mthumb_002dinterwork-960"><code>mthumb-interwork</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtiny_002dstack-999"><code>mtiny-stack</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mtls_002ddirect_002dseg_002drefs-1304"><code>mtls-direct-seg-refs</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mtls_002dsize-1351"><code>mtls-size</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mtoc-1739"><code>mtoc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mtomcat_002dstats-1217"><code>mtomcat-stats</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mtoplevel_002dsymbols-1603"><code>mtoplevel-symbols</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mtp-991"><code>mtp</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpcs_002dframe-987"><code>mtpcs-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpcs_002dleaf_002dframe-988"><code>mtpcs-leaf-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpf_002dtrace-1810"><code>mtpf-trace</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mtrap_002dprecision-1143"><code>mtrap-precision</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mtune-1884"><code>mtune</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mtune-1809"><code>mtune</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mtune-1678"><code>mtune</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mtune-1486"><code>mtune</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mtune-1409"><code>mtune</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mtune-1352"><code>mtune</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mtune-1258"><code>mtune</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mtune-1165"><code>mtune</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mtune-1031"><code>mtune</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mtune-969"><code>mtune</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-muclibc-1220"><code>muclibc</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-muls-1822"><code>muls</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-multcost_003d_0040var_007bnumber_007d-1859"><code>multcost=</code><var>number</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-multi_005fmodule-1095"><code>multi_module</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-multilib_002dlibrary_002dpic-1193"><code>multilib-library-pic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-multiply_005fdefined-1096"><code>multiply_defined</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-multiply_005fdefined_005funused-1097"><code>multiply_defined_unused</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-munaligned_002ddoubles-1879"><code>munaligned-doubles</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-muninit_002dconst_002din_002drodata-1554"><code>muninit-const-in-rodata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-munix-1939"><code>munix</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-munix_002dasm-1644"><code>munix-asm</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-munsafe_002ddma-1905"><code>munsafe-dma</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mupdate-1720"><code>mupdate</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-musermode-1858"><code>musermode</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mv850-1931"><code>mv850</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e-1936"><code>mv850e</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e1-1935"><code>mv850e1</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv8plus-1885"><code>mv8plus</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mveclibabi-1293"><code>mveclibabi</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mvis-1887"><code>mvis</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mvliw_002dbranch-1209"><code>mvliw-branch</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mvms_002dreturn_002dcodes-1167"><code>mvms-return-codes</code></a>: <a href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a></li>
<li><a href="#index-mvolatile_002dasm_002dstop-1332"><code>mvolatile-asm-stop</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mvr4130_002dalign-1591"><code>mvr4130-align</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mvrsave-1683"><code>mvrsave</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mvxworks-1768"><code>mvxworks</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mwarn_002dcell_002dmicrocode-1686"><code>mwarn-cell-microcode</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mwarn_002ddynamicstack-1815"><code>mwarn-dynamicstack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mwarn_002dframesize-1814"><code>mwarn-framesize</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mwarn_002dreloc-1902"><code>mwarn-reloc</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mwide_002dbitfields-1468"><code>mwide-bitfields</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mwin32-1321"><code>mwin32</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mwindows-1322"><code>mwindows</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mword_002drelocations-992"><code>mword-relocations</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mwords_002dlittle_002dendian-967"><code>mwords-little-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mxgot-1510"><code>mxgot</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mxgot-1444"><code>mxgot</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mxilinx_002dfpu-1715"><code>mxilinx-fpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mxl_002dcompat-1704"><code>mxl-compat</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-myellowknife-1767"><code>myellowknife</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mzarch-1802"><code>mzarch</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mzda-1930"><code>mzda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mzero_002dextend-1599"><code>mzero-extend</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-no_002dintegrated_002dcpp-112"><code>no-integrated-cpp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-no_002dlsim-1480"><code>no-lsim</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-no_002dred_002dzone-1309"><code>no-red-zone</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-no_005fdead_005fstrip_005finits_005fand_005fterms-1099"><code>no_dead_strip_inits_and_terms</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-noall_005fload-1098"><code>noall_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nocpp-1575"><code>nocpp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-nodefaultlibs-899"><code>nodefaultlibs</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-nofixprebinding-1100"><code>nofixprebinding</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nolibdld-1251"><code>nolibdld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-nomultidefs-1101"><code>nomultidefs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-non_002dstatic-1944"><code>non-static</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-noprebind-1102"><code>noprebind</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-noseglinkedit-1103"><code>noseglinkedit</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nostartfiles-898"><code>nostartfiles</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-nostdinc-845"><code>nostdinc</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-nostdinc_002b_002b-846"><code>nostdinc++</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-nostdinc_002b_002b-157"><code>nostdinc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-nostdlib-900"><code>nostdlib</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-o-814"><code>o</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-O-632"><code>O</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-o-78"><code>o</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-O0-636"><code>O0</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O1-633"><code>O1</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O2-634"><code>O2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O3-635"><code>O3</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-Os-637"><code>Os</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-P-877"><code>P</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-p-488"><code>p</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-pagezero_005fsize-1104"><code>pagezero_size</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-param-805"><code>param</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-pass_002dexit_002dcodes-73"><code>pass-exit-codes</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-pedantic-3073"><code>pedantic</code></a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-pedantic-2455"><code>pedantic</code></a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-pedantic-2042"><code>pedantic</code></a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-pedantic-826"><code>pedantic</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-pedantic-230"><code>pedantic</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-pedantic-57"><code>pedantic</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-pedantic_002derrors-3074"><code>pedantic-errors</code></a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-pedantic_002derrors-3069"><code>pedantic-errors</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-pedantic_002derrors-827"><code>pedantic-errors</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-pedantic_002derrors-231"><code>pedantic-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-pedantic_002derrors-58"><code>pedantic-errors</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-pg-490"><code>pg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-pie-907"><code>pie</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-pipe-81"><code>pipe</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-prebind-1105"><code>prebind</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-prebind_005fall_005ftwolevel_005fmodules-1106"><code>prebind_all_twolevel_modules</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-print_002dfile_002dname-618"><code>print-file-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dlibgcc_002dfile_002dname-622"><code>print-libgcc-file-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmulti_002ddirectory-619"><code>print-multi-directory</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmulti_002dlib-620"><code>print-multi-lib</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dobjc_002druntime_002dinfo-209"><code>print-objc-runtime-info</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-print_002dprog_002dname-621"><code>print-prog-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsearch_002ddirs-623"><code>print-search-dirs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsysroot-624"><code>print-sysroot</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsysroot_002dheaders_002dsuffix-625"><code>print-sysroot-headers-suffix</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-private_005fbundle-1107"><code>private_bundle</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-pthread-1900"><code>pthread</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-pthread-1786"><code>pthread</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-pthread-1354"><code>pthread</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-pthreads-1899"><code>pthreads</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-Q-491"><code>Q</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-Qn-1917"><code>Qn</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-Qy-1916"><code>Qy</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-rdynamic-908"><code>rdynamic</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-read_005fonly_005frelocs-1108"><code>read_only_relocs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-remap-881"><code>remap</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-s-909"><code>s</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-S-893"><code>S</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-S-75"><code>S</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-save_002dtemps-615"><code>save-temps</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-sectalign-1109"><code>sectalign</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectcreate-1113"><code>sectcreate</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectobjectsymbols-1110"><code>sectobjectsymbols</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectorder-1115"><code>sectorder</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg1addr-1112"><code>seg1addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg_005faddr_005ftable-1119"><code>seg_addr_table</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg_005faddr_005ftable_005ffilename-1120"><code>seg_addr_table_filename</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segaddr-1116"><code>segaddr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seglinkedit-1121"><code>seglinkedit</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segprot-1122"><code>segprot</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segs_005fread_005fonly_005faddr-1117"><code>segs_read_only_addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segs_005fread_005fwrite_005faddr-1118"><code>segs_read_write_addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-shared-911"><code>shared</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-shared_002dlibgcc-912"><code>shared-libgcc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-sim-1055"><code>sim</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-sim2-1056"><code>sim2</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-single_005fmodule-1125"><code>single_module</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-specs-927"><code>specs</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-static-1252"><code>static</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-static-1126"><code>static</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-static-910"><code>static</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-static_002dlibgcc-913"><code>static-libgcc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-std-3066"><code>std</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-std-2893"><code>std</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-std-98"><code>std</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-std-55"><code>std</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-std_003d-843"><code>std=</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-sub_005flibrary-1127"><code>sub_library</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sub_005fumbrella-1128"><code>sub_umbrella</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-symbolic-914"><code>symbolic</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-sysroot-928"><code>sysroot</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-T-915"><code>T</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-target_002dhelp-883"><code>target-help</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-target_002dhelp-84"><code>target-help</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-threads-1898"><code>threads</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-threads-1253"><code>threads</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-time-616"><code>time</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-tls-1191"><code>tls</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-TLS-1190"><code>TLS</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-traditional-3020"><code>traditional</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-traditional-116"><code>traditional</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-traditional_002dcpp-879"><code>traditional-cpp</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-traditional_002dcpp-115"><code>traditional-cpp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-trigraphs-880"><code>trigraphs</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-trigraphs-111"><code>trigraphs</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-twolevel_005fnamespace-1129"><code>twolevel_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-u-919"><code>u</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-U-811"><code>U</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-umbrella-1130"><code>umbrella</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-undef-812"><code>undef</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-undefined-1131"><code>undefined</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-unexported_005fsymbols_005flist-1132"><code>unexported_symbols_list</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-V-942"><code>V</code></a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-v-884"><code>v</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-v-79"><code>v</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-version-886"><code>version</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-version-85"><code>version</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-W-3030"><code>W</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-w-825"><code>w</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-W-234"><code>W</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-w-223"><code>w</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wa-887"><code>Wa</code></a>: <a href="#Assembler-Options">Assembler Options</a></li>
<li><a href="#index-Wabi-159"><code>Wabi</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Waddress-380"><code>Waddress</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Waggregate_002dreturn-384"><code>Waggregate-return</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wall-3044"><code>Wall</code></a>: <a href="#Standard-Libraries">Standard Libraries</a></li>
<li><a href="#index-Wall-815"><code>Wall</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wall-232"><code>Wall</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Warray_002dbounds-324"><code>Warray-bounds</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wassign_002dintercept-199"><code>Wassign-intercept</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wattributes-387"><code>Wattributes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wbad_002dfunction_002dcast-357"><code>Wbad-function-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wbuiltin_002dmacro_002dredefined-389"><code>Wbuiltin-macro-redefined</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcast_002dalign-361"><code>Wcast-align</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcast_002dqual-359"><code>Wcast-qual</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wchar_002dsubscripts-237"><code>Wchar-subscripts</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wclobbered-365"><code>Wclobbered</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcomment-816"><code>Wcomment</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wcomment-239"><code>Wcomment</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcomments-817"><code>Wcomments</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wconversion-367"><code>Wconversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcoverage_002dmismatch-216"><code>Wcoverage-mismatch</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-Wctor_002ddtor_002dprivacy-161"><code>Wctor-dtor-privacy</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wdeclaration_002dafter_002dstatement-338"><code>Wdeclaration-after-statement</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdeprecated-420"><code>Wdeprecated</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdeprecated_002ddeclarations-422"><code>Wdeprecated-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdisabled_002doptimization-460"><code>Wdisabled-optimization</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdiv_002dby_002dzero-326"><code>Wdiv-by-zero</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-weak_005freference_005fmismatches-1133"><code>weak_reference_mismatches</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Weffc_002b_002b-169"><code>Weffc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wempty_002dbody-369"><code>Wempty-body</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wendif_002dlabels-822"><code>Wendif-labels</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wendif_002dlabels-343"><code>Wendif-labels</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wenum_002dcompare-371"><code>Wenum-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Werror-823"><code>Werror</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Werror-224"><code>Werror</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Werror_003d-226"><code>Werror=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wextra-235"><code>Wextra</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wfatal_002derrors-228"><code>Wfatal-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wfloat_002dequal-332"><code>Wfloat-equal</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat-2234"><code>Wformat</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Wformat-241"><code>Wformat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dcontains_002dnul-248"><code>Wformat-contains-nul</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dextra_002dargs-250"><code>Wformat-extra-args</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dnonliteral-2238"><code>Wformat-nonliteral</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Wformat_002dnonliteral-253"><code>Wformat-nonliteral</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dsecurity-255"><code>Wformat-security</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dy2k-245"><code>Wformat-y2k</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dzero_002dlength-252"><code>Wformat-zero-length</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_003d2-257"><code>Wformat=2</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wframe_002dlarger_002dthan-348"><code>Wframe-larger-than</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-whatsloaded-1134"><code>whatsloaded</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-whyload-1111"><code>whyload</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Wignored_002dqualifiers-269"><code>Wignored-qualifiers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit-267"><code>Wimplicit</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit_002dfunction_002ddeclaration-265"><code>Wimplicit-function-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit_002dint-263"><code>Wimplicit-int</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winit_002dself-261"><code>Winit-self</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winline-2370"><code>Winline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-Winline-442"><code>Winline</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wint_002dto_002dpointer_002dcast-447"><code>Wint-to-pointer-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winvalid_002doffsetof-445"><code>Winvalid-offsetof</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winvalid_002dpch-450"><code>Winvalid-pch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wl-918"><code>Wl</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-Wlarger_002dthan_002d_0040var_007blen_007d-347"><code>Wlarger-than-</code><var>len</var></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlarger_002dthan_003d_0040var_007blen_007d-346"><code>Wlarger-than=</code><var>len</var></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlogical_002dop-382"><code>Wlogical-op</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlong_002dlong-452"><code>Wlong-long</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmain-271"><code>Wmain</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dbraces-273"><code>Wmissing-braces</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002ddeclarations-400"><code>Wmissing-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dfield_002dinitializers-402"><code>Wmissing-field-initializers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dformat_002dattribute-409"><code>Wmissing-format-attribute</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dinclude_002ddirs-275"><code>Wmissing-include-dirs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dnoreturn-407"><code>Wmissing-noreturn</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dparameter_002dtype-396"><code>Wmissing-parameter-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dprototypes-398"><code>Wmissing-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmultichar-414"><code>Wmultichar</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnested_002dexterns-438"><code>Wnested-externs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dabi-160"><code>Wno-abi</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002daddress-381"><code>Wno-address</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002daggregate_002dreturn-385"><code>Wno-aggregate-return</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dall-233"><code>Wno-all</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002darray_002dbounds-323"><code>Wno-array-bounds</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dassign_002dintercept-200"><code>Wno-assign-intercept</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dattributes-386"><code>Wno-attributes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dbad_002dfunction_002dcast-358"><code>Wno-bad-function-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dbuiltin_002dmacro_002dredefined-388"><code>Wno-builtin-macro-redefined</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcast_002dalign-362"><code>Wno-cast-align</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcast_002dqual-360"><code>Wno-cast-qual</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dchar_002dsubscripts-238"><code>Wno-char-subscripts</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dclobbered-366"><code>Wno-clobbered</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcomment-240"><code>Wno-comment</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dconversion-368"><code>Wno-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dctor_002ddtor_002dprivacy-162"><code>Wno-ctor-dtor-privacy</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002ddeclaration_002dafter_002dstatement-339"><code>Wno-declaration-after-statement</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddeprecated-419"><code>Wno-deprecated</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddeprecated_002ddeclarations-421"><code>Wno-deprecated-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddisabled_002doptimization-461"><code>Wno-disabled-optimization</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddiv_002dby_002dzero-325"><code>Wno-div-by-zero</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002deffc_002b_002b-170"><code>Wno-effc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dempty_002dbody-370"><code>Wno-empty-body</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dendif_002dlabels-342"><code>Wno-endif-labels</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002denum_002dcompare-372"><code>Wno-enum-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002derror-225"><code>Wno-error</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002derror_003d-227"><code>Wno-error=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dextra-236"><code>Wno-extra</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dfatal_002derrors-229"><code>Wno-fatal-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dfloat_002dequal-333"><code>Wno-float-equal</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat-242"><code>Wno-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dcontains_002dnul-247"><code>Wno-format-contains-nul</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dextra_002dargs-249"><code>Wno-format-extra-args</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dnonliteral-254"><code>Wno-format-nonliteral</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dsecurity-256"><code>Wno-format-security</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dy2k-246"><code>Wno-format-y2k</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dzero_002dlength-251"><code>Wno-format-zero-length</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_003d2-258"><code>Wno-format=2</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dignored_002dqualifiers-270"><code>Wno-ignored-qualifiers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit-268"><code>Wno-implicit</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit_002dfunction_002ddeclaration-266"><code>Wno-implicit-function-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit_002dint-264"><code>Wno-implicit-int</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinit_002dself-262"><code>Wno-init-self</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinline-443"><code>Wno-inline</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dint_002dto_002dpointer_002dcast-446"><code>Wno-int-to-pointer-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinvalid_002doffsetof-444"><code>Wno-invalid-offsetof</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinvalid_002dpch-451"><code>Wno-invalid-pch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dlogical_002dop-383"><code>Wno-logical-op</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dlong_002dlong-453"><code>Wno-long-long</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmain-272"><code>Wno-main</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dbraces-274"><code>Wno-missing-braces</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002ddeclarations-401"><code>Wno-missing-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dfield_002dinitializers-403"><code>Wno-missing-field-initializers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dformat_002dattribute-410"><code>Wno-missing-format-attribute</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dinclude_002ddirs-276"><code>Wno-missing-include-dirs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dnoreturn-408"><code>Wno-missing-noreturn</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dparameter_002dtype-397"><code>Wno-missing-parameter-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dprototypes-399"><code>Wno-missing-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmudflap-466"><code>Wno-mudflap</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmultichar-413"><code>Wno-multichar</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dnested_002dexterns-439"><code>Wno-nested-externs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dnon_002dtemplate_002dfriend-173"><code>Wno-non-template-friend</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dnon_002dvirtual_002ddtor-164"><code>Wno-non-virtual-dtor</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dnonnull-260"><code>Wno-nonnull</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002dcast-176"><code>Wno-old-style-cast</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002ddeclaration-393"><code>Wno-old-style-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002ddefinition-395"><code>Wno-old-style-definition</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverflow-423"><code>Wno-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverlength_002dstrings-468"><code>Wno-overlength-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverloaded_002dvirtual-178"><code>Wno-overloaded-virtual</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002doverride_002dinit-426"><code>Wno-override-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpacked-431"><code>Wno-packed</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpacked_002dbitfield_002dcompat-433"><code>Wno-packed-bitfield-compat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpadded-435"><code>Wno-padded</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dparentheses-278"><code>Wno-parentheses</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpedantic_002dms_002dformat-351"><code>Wno-pedantic-ms-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpmf_002dconversions-3007"><code>Wno-pmf-conversions</code></a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-Wno_002dpmf_002dconversions-181"><code>Wno-pmf-conversions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dpointer_002darith-354"><code>Wno-pointer-arith</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpointer_002dsign-463"><code>Wno-pointer-sign</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpointer_002dto_002dint_002dcast-448"><code>Wno-pointer-to-int-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpoison_002dsystem_002ddirectories-331"><code>Wno-poison-system-directories</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpragmas-315"><code>Wno-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dprotocol-201"><code>Wno-protocol</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dredundant_002ddecls-437"><code>Wno-redundant-decls</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dreorder-166"><code>Wno-reorder</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dreturn_002dtype-282"><code>Wno-return-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dselector-204"><code>Wno-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dsequence_002dpoint-280"><code>Wno-sequence-point</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dshadow-345"><code>Wno-shadow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dcompare-374"><code>Wno-sign-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dconversion-379"><code>Wno-sign-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dpromo-184"><code>Wno-sign-promo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dstack_002dprotector-465"><code>Wno-stack-protector</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002daliasing-318"><code>Wno-strict-aliasing</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002daliasing_003dn-320"><code>Wno-strict-aliasing=n</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dnull_002dsentinel-172"><code>Wno-strict-null-sentinel</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dstrict_002doverflow-322"><code>Wno-strict-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dprototypes-391"><code>Wno-strict-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dselector_002dmatch-206"><code>Wno-strict-selector-match</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dswitch-284"><code>Wno-switch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dswitch_002ddefault-286"><code>Wno-switch-default</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dswitch_002denum-288"><code>Wno-switch-enum</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsync_002dnand-290"><code>Wno-sync-nand</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsystem_002dheaders-328"><code>Wno-system-headers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtraditional-335"><code>Wno-traditional</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtraditional_002dconversion-337"><code>Wno-traditional-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtrigraphs-292"><code>Wno-trigraphs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtype_002dlimits-356"><code>Wno-type-limits</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dundeclared_002dselector-208"><code>Wno-undeclared-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dundef-341"><code>Wno-undef</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002duninitialized-308"><code>Wno-uninitialized</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunknown_002dpragmas-311"><code>Wno-unknown-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunreachable_002dcode-441"><code>Wno-unreachable-code</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunsafe_002dloop_002doptimizations-350"><code>Wno-unsafe-loop-optimizations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused-306"><code>Wno-unused</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dfunction-294"><code>Wno-unused-function</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dlabel-296"><code>Wno-unused-label</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dparameter-298"><code>Wno-unused-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dresult-300"><code>Wno-unused-result</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dvalue-304"><code>Wno-unused-value</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dvariable-302"><code>Wno-unused-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvariadic_002dmacros-455"><code>Wno-variadic-macros</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvla-457"><code>Wno-vla</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvolatile_002dregister_002dvar-459"><code>Wno-volatile-register-var</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dwrite_002dstrings-364"><code>Wno-write-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnon_002dtemplate_002dfriend-174"><code>Wnon-template-friend</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wnon_002dvirtual_002ddtor-163"><code>Wnon-virtual-dtor</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wnonnull-259"><code>Wnonnull</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnormalized_003d-415"><code>Wnormalized=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wold_002dstyle_002dcast-175"><code>Wold-style-cast</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wold_002dstyle_002ddeclaration-392"><code>Wold-style-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wold_002dstyle_002ddefinition-394"><code>Wold-style-definition</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverflow-424"><code>Woverflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverlength_002dstrings-467"><code>Woverlength-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverloaded_002dvirtual-177"><code>Woverloaded-virtual</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Woverride_002dinit-425"><code>Woverride-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wp-808"><code>Wp</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wpacked-430"><code>Wpacked</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpacked_002dbitfield_002dcompat-432"><code>Wpacked-bitfield-compat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpadded-434"><code>Wpadded</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wparentheses-277"><code>Wparentheses</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpedantic_002dms_002dformat-352"><code>Wpedantic-ms-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpmf_002dconversions-182"><code>Wpmf-conversions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wpointer_002darith-2173"><code>Wpointer-arith</code></a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-Wpointer_002darith-353"><code>Wpointer-arith</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpointer_002dsign-462"><code>Wpointer-sign</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpointer_002dto_002dint_002dcast-449"><code>Wpointer-to-int-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpragmas-316"><code>Wpragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wprotocol-202"><code>Wprotocol</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-wrapper-86"><code>wrapper</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-Wredundant_002ddecls-436"><code>Wredundant-decls</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wreorder-165"><code>Wreorder</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wreturn_002dtype-281"><code>Wreturn-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wselector-203"><code>Wselector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wsequence_002dpoint-279"><code>Wsequence-point</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wshadow-344"><code>Wshadow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dcompare-373"><code>Wsign-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dconversion-378"><code>Wsign-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dpromo-183"><code>Wsign-promo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wstack_002dprotector-464"><code>Wstack-protector</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002daliasing-317"><code>Wstrict-aliasing</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002daliasing_003dn-319"><code>Wstrict-aliasing=n</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dnull_002dsentinel-171"><code>Wstrict-null-sentinel</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wstrict_002doverflow-321"><code>Wstrict-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dprototypes-390"><code>Wstrict-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dselector_002dmatch-205"><code>Wstrict-selector-match</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wswitch-283"><code>Wswitch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wswitch_002ddefault-285"><code>Wswitch-default</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wswitch_002denum-287"><code>Wswitch-enum</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsync_002dnand-289"><code>Wsync-nand</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsystem_002dheaders-824"><code>Wsystem-headers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wsystem_002dheaders-327"><code>Wsystem-headers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtraditional-819"><code>Wtraditional</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wtraditional-334"><code>Wtraditional</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtraditional_002dconversion-3061"><code>Wtraditional-conversion</code></a>: <a href="#Protoize-Caveats">Protoize Caveats</a></li>
<li><a href="#index-Wtraditional_002dconversion-336"><code>Wtraditional-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtrigraphs-818"><code>Wtrigraphs</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wtrigraphs-291"><code>Wtrigraphs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtype_002dlimits-355"><code>Wtype-limits</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wundeclared_002dselector-207"><code>Wundeclared-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wundef-820"><code>Wundef</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wundef-340"><code>Wundef</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wuninitialized-307"><code>Wuninitialized</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunknown_002dpragmas-310"><code>Wunknown-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunreachable_002dcode-440"><code>Wunreachable-code</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunsafe_002dloop_002doptimizations-349"><code>Wunsafe-loop-optimizations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused-305"><code>Wunused</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dfunction-293"><code>Wunused-function</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dlabel-295"><code>Wunused-label</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dmacros-821"><code>Wunused-macros</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wunused_002dparameter-297"><code>Wunused-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dresult-299"><code>Wunused-result</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dvalue-303"><code>Wunused-value</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dvariable-301"><code>Wunused-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvariadic_002dmacros-454"><code>Wvariadic-macros</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvla-456"><code>Wvla</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvolatile_002dregister_002dvar-458"><code>Wvolatile-register-var</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wwrite_002dstrings-363"><code>Wwrite-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-x-841"><code>x</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-x-72"><code>x</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-Xassembler-888"><code>Xassembler</code></a>: <a href="#Assembler-Options">Assembler Options</a></li>
<li><a href="#index-Xbind_002dlazy-1947"><code>Xbind-lazy</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-Xbind_002dnow-1948"><code>Xbind-now</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-Xlinker-917"><code>Xlinker</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-Xpreprocessor-809"><code>Xpreprocessor</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Ym-1919"><code>Ym</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-YP-1918"><code>YP</code></a>: <a href="#System-V-Options">System V Options</a></li>
</ul><div class="node">
<a name="Keyword-Index"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Option-Index">Option Index</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Keyword Index</h2>
<ul class="index-cp" compact>
<li><a href="#index-g_t_0040samp_007b_0021_007d-in-constraint-2421">‘<samp><span class="samp">!</span></samp>’ in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040samp_007b_0023_007d-in-constraint-2430">‘<samp><span class="samp">#</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0023pragma-2943">#pragma</a>: <a href="#Pragmas">Pragmas</a></li>
<li><a href="#index-g_t_0023pragma-implementation-2993"><code>#pragma implementation</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0040code_007b_0023pragma-implementation_007d_002c-implied-2995"><code>#pragma implementation</code>, implied</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0023pragma-interface-2992"><code>#pragma interface</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0040code_007b_0023pragma_007d_002c-reason-for-not-using-2321"><code>#pragma</code>, reason for not using</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0024-2330">$</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-g_t_0040samp_007b_0025_007d-in-constraint-2429">‘<samp><span class="samp">%</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0025include-931">%include</a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0025include_005fnoerr-932">%include_noerr</a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0025rename-933">%rename</a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0040samp_007b_0026_007d-in-constraint-2427">‘<samp><span class="samp">&</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0027-3037">'</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0028-2062"><code>(</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_0040samp_007b_002a_007d-in-constraint-2431">‘<samp><span class="samp">*</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040samp_007b_002b_007d-in-constraint-2426">‘<samp><span class="samp">+</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnodefaultlibs_007d-904"><samp><span class="option">-lgcc</span></samp>, use with <samp><span class="option">-nodefaultlibs</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnostdlib_007d-901"><samp><span class="option">-lgcc</span></samp>, use with <samp><span class="option">-nostdlib</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dnodefaultlibs_007d-and-unresolved-references-905"><samp><span class="option">-nodefaultlibs</span></samp> and unresolved references</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dnostdlib_007d-and-unresolved-references-902"><samp><span class="option">-nostdlib</span></samp> and unresolved references</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1781">.sdata/.sdata2 references (PowerPC)</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-g_t_002f_002f-2327">//</a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-g_t_0040samp_007b0_007d-in-constraint-2407">‘<samp><span class="samp">0</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003c_007d-in-constraint-2392">‘<samp><span class="samp"><</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003d_007d-in-constraint-2425">‘<samp><span class="samp">=</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040samp_007b_003e_007d-in-constraint-2393">‘<samp><span class="samp">></span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003f_007d-in-constraint-2419">‘<samp><span class="samp">?</span></samp>’ in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040code_007b_003f_003a_007d-extensions-2076"><code>?:</code> extensions</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-g_t_003f_003a-side-effect-2078">?: side effect</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-g_t_0040samp_007b_005f_007d-in-variables-in-macros-2068">‘<samp><span class="samp">_</span></samp>’ in variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fclear_005fcache-2900"><code>__builtin___clear_cache</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005ffprintf_005fchk-2495"><code>__builtin___fprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk-2480"><code>__builtin___memcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemmove_005fchk-2482"><code>__builtin___memmove_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk-2481"><code>__builtin___mempcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemset_005fchk-2483"><code>__builtin___memset_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fprintf_005fchk-2493"><code>__builtin___printf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk-2490"><code>__builtin___snprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fsprintf_005fchk-2489"><code>__builtin___sprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk-2485"><code>__builtin___stpcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrcat_005fchk-2487"><code>__builtin___strcat_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk-2484"><code>__builtin___strcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrncat_005fchk-2488"><code>__builtin___strncat_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk-2486"><code>__builtin___strncpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk-2496"><code>__builtin___vfprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvprintf_005fchk-2494"><code>__builtin___vprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk-2492"><code>__builtin___vsnprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk-2491"><code>__builtin___vsprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fapply-2060"><code>__builtin_apply</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fapply_005fargs-2059"><code>__builtin_apply_args</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fbswap32-2940"><code>__builtin_bswap32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fbswap64-2941"><code>__builtin_bswap64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fchoose_005fexpr-2895"><code>__builtin_choose_expr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclz-2923"><code>__builtin_clz</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclzl-2928"><code>__builtin_clzl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclzll-2933"><code>__builtin_clzll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fconstant_005fp-2896"><code>__builtin_constant_p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctz-2924"><code>__builtin_ctz</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctzl-2929"><code>__builtin_ctzl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctzll-2934"><code>__builtin_ctzll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fexpect-2897"><code>__builtin_expect</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffs-2922"><code>__builtin_ffs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffsl-2927"><code>__builtin_ffsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffsll-2932"><code>__builtin_ffsll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ffpclassify-2499"><code>__builtin_fpclassify</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fframe_005faddress-2460"><code>__builtin_frame_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fval-2902"><code>__builtin_huge_val</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fvalf-2903"><code>__builtin_huge_valf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fvall-2904"><code>__builtin_huge_vall</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finf-2906"><code>__builtin_inf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd128-2909"><code>__builtin_infd128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd32-2907"><code>__builtin_infd32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd64-2908"><code>__builtin_infd64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finff-2910"><code>__builtin_inff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfl-2911"><code>__builtin_infl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisfinite-2500"><code>__builtin_isfinite</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisgreater-2502"><code>__builtin_isgreater</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisgreaterequal-2503"><code>__builtin_isgreaterequal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisinf_005fsign-2504"><code>__builtin_isinf_sign</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisless-2505"><code>__builtin_isless</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fislessequal-2506"><code>__builtin_islessequal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fislessgreater-2507"><code>__builtin_islessgreater</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisnormal-2501"><code>__builtin_isnormal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisunordered-2508"><code>__builtin_isunordered</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnan-2913"><code>__builtin_nan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand128-2916"><code>__builtin_nand128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand32-2914"><code>__builtin_nand32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand64-2915"><code>__builtin_nand64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnanf-2917"><code>__builtin_nanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnanl-2918"><code>__builtin_nanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnans-2919"><code>__builtin_nans</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnansf-2920"><code>__builtin_nansf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnansl-2921"><code>__builtin_nansl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fobject_005fsize-2479"><code>__builtin_object_size</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005foffsetof-2461"><code>__builtin_offsetof</code></a>: <a href="#Offsetof">Offsetof</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparity-2926"><code>__builtin_parity</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparityl-2931"><code>__builtin_parityl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparityll-2936"><code>__builtin_parityll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcount-2925"><code>__builtin_popcount</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcountl-2930"><code>__builtin_popcountl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcountll-2935"><code>__builtin_popcountll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowi-2509"><code>__builtin_powi</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowif-2510"><code>__builtin_powif</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowil-2511"><code>__builtin_powil</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fprefetch-2901"><code>__builtin_prefetch</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005freturn-2061"><code>__builtin_return</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005freturn_005faddress-2459"><code>__builtin_return_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ftrap-2899"><code>__builtin_trap</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ftypes_005fcompatible_005fp-2894"><code>__builtin_types_compatible_p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fcomplex_005f_005f_007d-keyword-2086"><code>__complex__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fdeclspec_0028dllexport_0029_007d-2226"><code>__declspec(dllexport)</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fdeclspec_0028dllimport_0029_007d-2227"><code>__declspec(dllimport)</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_005f_005fextension_005f_005f-2454"><code>__extension__</code></a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffloat128_007d-data-type-2092"><code>__float128</code> data type</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffloat80_007d-data-type-2091"><code>__float80</code> data type</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffp16_007d-data-type-2098"><code>__fp16</code> data type</a>: <a href="#Half_002dPrecision">Half-Precision</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffunc_005f_005f_007d-identifier-2456"><code>__func__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fFUNCTION_005f_005f_007d-identifier-2457"><code>__FUNCTION__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fimag_005f_005f_007d-keyword-2088"><code>__imag__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fPRETTY_005fFUNCTION_005f_005f_007d-identifier-2458"><code>__PRETTY_FUNCTION__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005freal_005f_005f_007d-keyword-2087"><code>__real__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_005f_005fSTDC_005fHOSTED_005f_005f-54"><code>__STDC_HOSTED__</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-g_t_005f_005fsync_005fadd_005fand_005ffetch-2468"><code>__sync_add_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fand_005fand_005ffetch-2471"><code>__sync_and_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fbool_005fcompare_005fand_005fswap-2474"><code>__sync_bool_compare_and_swap</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fadd-2462"><code>__sync_fetch_and_add</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fand-2465"><code>__sync_fetch_and_and</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fnand-2467"><code>__sync_fetch_and_nand</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005for-2464"><code>__sync_fetch_and_or</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fsub-2463"><code>__sync_fetch_and_sub</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fxor-2466"><code>__sync_fetch_and_xor</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005flock_005frelease-2478"><code>__sync_lock_release</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005flock_005ftest_005fand_005fset-2477"><code>__sync_lock_test_and_set</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fnand_005fand_005ffetch-2473"><code>__sync_nand_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005for_005fand_005ffetch-2470"><code>__sync_or_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fsub_005fand_005ffetch-2469"><code>__sync_sub_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fsynchronize-2476"><code>__sync_synchronize</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fval_005fcompare_005fand_005fswap-2475"><code>__sync_val_compare_and_swap</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fxor_005fand_005ffetch-2472"><code>__sync_xor_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fthread-2974">__thread</a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-g_t_0040code_007b_005fAccum_007d-data-type-2112"><code>_Accum</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007b_005fComplex_007d-keyword-2085"><code>_Complex</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal128_007d-data-type-2102"><code>_Decimal128</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal32_007d-data-type-2100"><code>_Decimal32</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal64_007d-data-type-2101"><code>_Decimal64</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_005fexit-2513"><code>_exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005fExit-2512"><code>_Exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007b_005fFract_007d-data-type-2111"><code>_Fract</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007b_005fSat_007d-data-type-2113"><code>_Sat</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-ABI-3013">ABI</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-abort-2514"><code>abort</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-abs-2515"><code>abs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-accessing-volatiles-2978">accessing volatiles</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-acos-2516"><code>acos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosf-2517"><code>acosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosh-2518"><code>acosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acoshf-2519"><code>acoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acoshl-2520"><code>acoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosl-2521"><code>acosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Ada-5">Ada</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-additional-floating-types-2090">additional floating types</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-address-constraints-2413">address constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-address-of-a-label-2053">address of a label</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-address_005foperand-2415"><code>address_operand</code></a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007balias_007d-attribute-2210"><code>alias</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-aliasing-of-parameters-2004">aliasing of parameters</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2357"><code>aligned</code> attribute</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2335"><code>aligned</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2211"><code>aligned</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alignment-2361">alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-g_t_0040code_007balloc_005fsize_007d-attribute-2212"><code>alloc_size</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alloca-2522"><code>alloca</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007balloca_007d-vs-variable_002dlength-arrays-2158"><code>alloca</code> vs variable-length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor_002e-2263">Allow nesting in an interrupt handler on the Blackfin processor.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alternate-keywords-2452">alternate keywords</a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-g_t_0040code_007balways_005finline_007d-function-attribute-2213"><code>always_inline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-AMD-x86_002d64-Options-1257">AMD x86-64 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-AMD1-49">AMD1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C-23">ANSI C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C-standard-22">ANSI C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C89-24">ANSI C89</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-support-95">ANSI support</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ANSI-X3_002e159_002d1989-26">ANSI X3.159-1989</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-apostrophes-3036">apostrophes</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-application-binary-interface-3014">application binary interface</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-ARC-Options-947">ARC Options</a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d-3011">ARM [Annotated C++ Reference Manual]</a>: <a href="#Backwards-Compatibility">Backwards Compatibility</a></li>
<li><a href="#index-ARM-options-956">ARM options</a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-arrays-of-length-zero-2146">arrays of length zero</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-arrays-of-variable-length-2153">arrays of variable length</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-arrays_002c-non_002dlvalue-2167">arrays, non-lvalue</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-g_t_0040code_007bartificial_007d-function-attribute-2215"><code>artificial</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-asin-2523"><code>asin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinf-2524"><code>asinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinh-2525"><code>asinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinhf-2526"><code>asinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinhl-2527"><code>asinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinl-2528"><code>asinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007basm_007d-constraints-2384"><code>asm</code> constraints</a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-g_t_0040code_007basm_007d-expressions-2378"><code>asm</code> expressions</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-assembler-instructions-2379">assembler instructions</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-assembler-names-for-identifiers-2434">assembler names for identifiers</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-assembly-code_002c-invalid-3081">assembly code, invalid</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-atan-2529"><code>atan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2-2530"><code>atan2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2f-2531"><code>atan2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2l-2532"><code>atan2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanf-2533"><code>atanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanh-2534"><code>atanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanhf-2535"><code>atanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanhl-2536"><code>atanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanl-2537"><code>atanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-attribute-of-types-2355">attribute of types</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-attribute-of-variables-2333">attribute of variables</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-attribute-syntax-2323">attribute syntax</a>: <a href="#Attribute-Syntax">Attribute Syntax</a></li>
<li><a href="#index-autoincrement_002fdecrement-addressing-2390">autoincrement/decrement addressing</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-automatic-_0040code_007binline_007d-for-C_002b_002b-member-fns-2371">automatic <code>inline</code> for C++ member fns</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-AVR-Options-993">AVR Options</a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-Backwards-Compatibility-3010">Backwards Compatibility</a>: <a href="#Backwards-Compatibility">Backwards Compatibility</a></li>
<li><a href="#index-base-class-members-3056">base class members</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-bcmp-2538"><code>bcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bbelow100_007d-attribute-2353"><code>below100</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-binary-compatibility-3012">binary compatibility</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-Binary-constants-using-the-_0040samp_007b0b_007d-prefix-2975">Binary constants using the ‘<samp><span class="samp">0b</span></samp>’ prefix</a>: <a href="#Binary-constants">Binary constants</a></li>
<li><a href="#index-Blackfin-Options-1001">Blackfin Options</a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-bound-pointer-to-member-function-3006">bound pointer to member function</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-bounds-checking-662">bounds checking</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-bug-criteria-3077">bug criteria</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-bugs-3075">bugs</a>: <a href="#Bugs">Bugs</a></li>
<li><a href="#index-bugs_002c-known-3015">bugs, known</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-built_002din-functions-2498">built-in functions</a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-built_002din-functions-103">built-in functions</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-bzero-2539"><code>bzero</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-C-compilation-options-65">C compilation options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-C-intermediate-output_002c-nonexistent-19">C intermediate output, nonexistent</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-C-language-extensions-2041">C language extensions</a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-C-language_002c-traditional-114">C language, traditional</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-C-standard-20">C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C-standards-21">C standards</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-c_002b_002b-90"><code>c++</code></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-C_002b_002b-13">C++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-C_002b_002b-comments-2328">C++ comments</a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-C_002b_002b-compilation-options-66">C++ compilation options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-C_002b_002b-interface-and-implementation-headers-2990">C++ interface and implementation headers</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-C_002b_002b-language-extensions-2977">C++ language extensions</a>: <a href="#C_002b_002b-Extensions">C++ Extensions</a></li>
<li><a href="#index-C_002b_002b-member-fns_002c-automatically-_0040code_007binline_007d-2374">C++ member fns, automatically <code>inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-C_002b_002b-misunderstandings-3051">C++ misunderstandings</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-C_002b_002b-options_002c-command-line-126">C++ options, command line</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-C_002b_002b-pragmas_002c-effect-on-inlining-2998">C++ pragmas, effect on inlining</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-C_002b_002b-source-file-suffixes-88">C++ source file suffixes</a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-C_002b_002b-static-data_002c-declaring-and-defining-3052">C++ static data, declaring and defining</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-C89-25">C89</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C90-33">C90</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C94-35">C94</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C95-37">C95</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C99-39">C99</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C9X-41">C9X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C_005fINCLUDE_005fPATH-2026"><code>C_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-cabs-2540"><code>cabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cabsf-2541"><code>cabsf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cabsl-2542"><code>cabsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacos-2543"><code>cacos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosf-2544"><code>cacosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosh-2545"><code>cacosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacoshf-2546"><code>cacoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacoshl-2547"><code>cacoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosl-2548"><code>cacosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-calling-functions-through-the-function-vector-on-H8_002f300_002c-M16C_002c-M32C-and-SH2A-processors-2239">calling functions through the function vector on H8/300, M16C, M32C and SH2A processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-calloc-2549"><code>calloc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-carg-2550"><code>carg</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cargf-2551"><code>cargf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cargl-2552"><code>cargl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-case-labels-in-initializers-2183">case labels in initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-case-ranges-2187">case ranges</a>: <a href="#Case-Ranges">Case Ranges</a></li>
<li><a href="#index-casin-2553"><code>casin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinf-2554"><code>casinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinh-2555"><code>casinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinhf-2556"><code>casinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinhl-2557"><code>casinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinl-2558"><code>casinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cast-to-a-union-2189">cast to a union</a>: <a href="#Cast-to-Union">Cast to Union</a></li>
<li><a href="#index-catan-2559"><code>catan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanf-2560"><code>catanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanh-2561"><code>catanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanhf-2562"><code>catanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanhl-2563"><code>catanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanl-2564"><code>catanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrt-2565"><code>cbrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrtf-2566"><code>cbrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrtl-2567"><code>cbrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccos-2568"><code>ccos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosf-2569"><code>ccosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosh-2570"><code>ccosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccoshf-2571"><code>ccoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccoshl-2572"><code>ccoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosl-2573"><code>ccosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceil-2574"><code>ceil</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceilf-2575"><code>ceilf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceill-2576"><code>ceill</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexp-2577"><code>cexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexpf-2578"><code>cexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexpl-2579"><code>cexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-character-set_002c-execution-863">character set, execution</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-character-set_002c-input-867">character set, input</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-character-set_002c-input-normalization-418">character set, input normalization</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-character-set_002c-wide-execution-865">character set, wide execution</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-cimag-2580"><code>cimag</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cimagf-2581"><code>cimagf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cimagl-2582"><code>cimagl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bcleanup_007d-attribute-2336"><code>cleanup</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-clog-2583"><code>clog</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-clogf-2584"><code>clogf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-clogl-2585"><code>clogl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-COBOL-10">COBOL</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-code-generation-conventions-1966">code generation conventions</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-code_002c-mixed-with-declarations-2193">code, mixed with declarations</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-g_t_0040code_007bcold_007d-function-attribute-2274"><code>cold</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-command-options-63">command options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-comments_002c-C_002b_002b-style-2329">comments, C++ style</a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-g_t_0040code_007bcommon_007d-attribute-2337"><code>common</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-comparison-of-signed-and-unsigned-values_002c-warning-376">comparison of signed and unsigned values, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-compiler-bugs_002c-reporting-3086">compiler bugs, reporting</a>: <a href="#Bug-Reporting">Bug Reporting</a></li>
<li><a href="#index-compiler-compared-to-C_002b_002b-preprocessor-17">compiler compared to C++ preprocessor</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-compiler-options_002c-C_002b_002b-125">compiler options, C++</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-185">compiler options, Objective-C and Objective-C++</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-compiler-version_002c-specifying-939">compiler version, specifying</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-COMPILER_005fPATH-2021"><code>COMPILER_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-complex-conjugation-2089">complex conjugation</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-complex-numbers-2084">complex numbers</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-compound-literals-2180">compound literals</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-computed-gotos-2051">computed gotos</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-conditional-expressions_002c-extensions-2072">conditional expressions, extensions</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-conflicting-types-3045">conflicting types</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-conj-2586"><code>conj</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-conjf-2587"><code>conjf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-conjl-2588"><code>conjl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bconst_007d-applied-to-function-2202"><code>const</code> applied to function</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bconst_007d-function-attribute-2221"><code>const</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-constants-in-constraints-2396">constants in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-constraint-modifier-characters-2424">constraint modifier characters</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-constraint_002c-matching-2410">constraint, matching</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-constraints_002c-_0040code_007basm_007d-2383">constraints, <code>asm</code></a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-constraints_002c-machine-specific-2433">constraints, machine specific</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-constructing-calls-2057">constructing calls</a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-constructor-expressions-2176">constructor expressions</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-g_t_0040code_007bconstructor_007d-function-attribute-2223"><code>constructor</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-contributors-3088">contributors</a>: <a href="#Contributors">Contributors</a></li>
<li><a href="#index-copysign-2589"><code>copysign</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-copysignf-2590"><code>copysignf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-copysignl-2591"><code>copysignl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-core-dump-3079">core dump</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-cos-2592"><code>cos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosf-2593"><code>cosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosh-2594"><code>cosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-coshf-2595"><code>coshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-coshl-2596"><code>coshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosl-2597"><code>cosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-CPATH-2025"><code>CPATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-CPLUS_005fINCLUDE_005fPATH-2027"><code>CPLUS_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-cpow-2598"><code>cpow</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cpowf-2599"><code>cpowf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cpowl-2600"><code>cpowl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cproj-2601"><code>cproj</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cprojf-2602"><code>cprojf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cprojl-2603"><code>cprojl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-creal-2604"><code>creal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-crealf-2605"><code>crealf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-creall-2606"><code>creall</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-CRIS-Options-1028">CRIS Options</a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-cross-compiling-936">cross compiling</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-CRX-Options-1057">CRX Options</a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-csin-2607"><code>csin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinf-2608"><code>csinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinh-2609"><code>csinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinhf-2610"><code>csinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinhl-2611"><code>csinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinl-2612"><code>csinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrt-2613"><code>csqrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrtf-2614"><code>csqrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrtl-2615"><code>csqrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctan-2616"><code>ctan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanf-2617"><code>ctanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanh-2618"><code>ctanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanhf-2619"><code>ctanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanhl-2620"><code>ctanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanl-2621"><code>ctanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Darwin-options-1060">Darwin options</a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dcgettext-2622"><code>dcgettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bDD_007d-integer-suffix-2107"><code>DD</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdd_007d-integer-suffix-2104"><code>dd</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-deallocating-variable-length-arrays-2157">deallocating variable length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-debugging-information-options-470">debugging information options</a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-decimal-floating-types-2099">decimal floating types</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-declaration-scope-3033">declaration scope</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-declarations-inside-expressions-2044">declarations inside expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-declarations_002c-mixed-with-code-2192">declarations, mixed with code</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-declaring-attributes-of-functions-2195">declaring attributes of functions</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-declaring-static-data-in-C_002b_002b-3054">declaring static data in C++</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-defining-static-data-in-C_002b_002b-3055">defining static data in C++</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-dependencies-for-make-as-output-2030">dependencies for make as output</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-dependencies_002c-make-830">dependencies, make</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-DEPENDENCIES_005fOUTPUT-2029"><code>DEPENDENCIES_OUTPUT</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-dependent-name-lookup-3058">dependent name lookup</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-g_t_0040code_007bdeprecated_007d-attribute-2341"><code>deprecated</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bdeprecated_007d-attribute_002e-2225"><code>deprecated</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-designated-initializers-2184">designated initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-designator-lists-2186">designator lists</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-designators-2185">designators</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-g_t_0040code_007bdestructor_007d-function-attribute-2224"><code>destructor</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bDF_007d-integer-suffix-2106"><code>DF</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdf_007d-integer-suffix-2103"><code>df</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-dgettext-2623"><code>dgettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-diagnostic-messages-211">diagnostic messages</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-dialect-options-92">dialect options</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-digits-in-constraint-2408">digits in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-directory-options-920">directory options</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-g_t_0040code_007bDL_007d-integer-suffix-2108"><code>DL</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdl_007d-integer-suffix-2105"><code>dl</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-dollar-signs-in-identifier-names-2331">dollar signs in identifier names</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-double_002dword-arithmetic-2080">double-word arithmetic</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-downward-funargs-2055">downward funargs</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-drem-2624"><code>drem</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-dremf-2625"><code>dremf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-dreml-2626"><code>dreml</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bE_007d-in-constraint-2400">‘<samp><span class="samp">E</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-earlyclobber-operand-2428">earlyclobber operand</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-eight-bit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S-2228">eight bit data on the H8/300, H8/300H, and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-empty-structures-2150">empty structures</a>: <a href="#Empty-Structures">Empty Structures</a></li>
<li><a href="#index-environment-variables-2013">environment variables</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-erf-2627"><code>erf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfc-2628"><code>erfc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfcf-2629"><code>erfcf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfcl-2630"><code>erfcl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erff-2631"><code>erff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfl-2632"><code>erfl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007berror_007d-function-attribute-2217"><code>error</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-error-messages-3070">error messages</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-escaped-newlines-2164">escaped newlines</a>: <a href="#Escaped-Newlines">Escaped Newlines</a></li>
<li><a href="#index-exception-handler-functions-on-the-Blackfin-processor-2229">exception handler functions on the Blackfin processor</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-exclamation-point-2422">exclamation point</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-exit-2633"><code>exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp-2634"><code>exp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10-2635"><code>exp10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10f-2636"><code>exp10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10l-2637"><code>exp10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2-2638"><code>exp2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2f-2639"><code>exp2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2l-2640"><code>exp2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expf-2641"><code>expf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expl-2642"><code>expl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-explicit-register-variables-2437">explicit register variables</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-expm1-2643"><code>expm1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expm1f-2644"><code>expm1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expm1l-2645"><code>expm1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expressions-containing-statements-2045">expressions containing statements</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-expressions_002c-constructor-2179">expressions, constructor</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-extended-_0040code_007basm_007d-2377">extended <code>asm</code></a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-extensible-constraints-2417">extensible constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-extensions_002c-_0040code_007b_003f_003a_007d-2075">extensions, <code>?:</code></a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-extensions_002c-C-language-2040">extensions, C language</a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-extensions_002c-C_002b_002b-language-2976">extensions, C++ language</a>: <a href="#C_002b_002b-Extensions">C++ Extensions</a></li>
<li><a href="#index-external-declaration-scope-3031">external declaration scope</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bexternally_005fvisible_007d-attribute_002e-2230"><code>externally_visible</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bF_007d-in-constraint-2401">‘<samp><span class="samp">F</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-fabs-2646"><code>fabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fabsf-2647"><code>fabsf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fabsl-2648"><code>fabsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fatal-signal-3078">fatal signal</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-fdim-2649"><code>fdim</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fdimf-2650"><code>fdimf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fdiml-2651"><code>fdiml</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FDL_002c-GNU-Free-Documentation-License-3087">FDL, GNU Free Documentation License</a>: <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#index-ffs-2652"><code>ffs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-file-name-suffix-71">file name suffix</a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-file-names-891">file names</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-fixed_002dpoint-types-2110">fixed-point types</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bflatten_007d-function-attribute-2216"><code>flatten</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-flexible-array-members-2149">flexible array members</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-g_t_0040code_007bfloat_007d-as-function-value-type-3038"><code>float</code> as function value type</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-floating-point-precision-3047">floating point precision</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-floating-point-precision-770">floating point precision</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floor-2653"><code>floor</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-floorf-2654"><code>floorf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-floorl-2655"><code>floorl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fma-2656"><code>fma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaf-2657"><code>fmaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmal-2658"><code>fmal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmax-2659"><code>fmax</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaxf-2660"><code>fmaxf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaxl-2661"><code>fmaxl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmin-2662"><code>fmin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fminf-2663"><code>fminf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fminl-2664"><code>fminl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmod-2665"><code>fmod</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmodf-2666"><code>fmodf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmodl-2667"><code>fmodl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bforce_005falign_005farg_005fpointer_007d-attribute-2278"><code>force_align_arg_pointer</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bformat_007d-function-attribute-2233"><code>format</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bformat_005farg_007d-function-attribute-2237"><code>format_arg</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Fortran-6">Fortran</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-forwarding-calls-2058">forwarding calls</a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-fprintf-2668"><code>fprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fprintf_005funlocked-2669"><code>fprintf_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fputs-2670"><code>fputs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fputs_005funlocked-2671"><code>fputs_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FR30-Options-1168">FR30 Options</a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-freestanding-environment-51">freestanding environment</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-freestanding-implementation-50">freestanding implementation</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-frexp-2672"><code>frexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-frexpf-2673"><code>frexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-frexpl-2674"><code>frexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FRV-Options-1171">FRV Options</a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-fscanf-2675"><code>fscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bfscanf_007d_002c-and-constant-strings-3026"><code>fscanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-function-addressability-on-the-M32R_002fD-2257">function addressability on the M32R/D</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function-attributes-2194">function attributes</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function-pointers_002c-arithmetic-2171">function pointers, arithmetic</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-function-prototype-declarations-2324">function prototype declarations</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-function-without-a-prologue_002fepilogue-code-2261">function without a prologue/epilogue code</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function_002c-size-of-pointer-to-2172">function, size of pointer to</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-functions-called-via-pointer-on-the-RS_002f6000-and-PowerPC-2250">functions called via pointer on the RS/6000 and PowerPC</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-in-arbitrary-sections-2199">functions in arbitrary sections</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-are-passed-arguments-in-registers-on-the-386-2205">functions that are passed arguments in registers on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-behave-like-malloc-2200">functions that behave like malloc</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-do-not-pop-the-argument-stack-on-the-386-2207">functions that do not pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-do-pop-the-argument-stack-on-the-386-2219">functions that do pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-different-compilation-options-on-the-386-2208">functions that have different compilation options on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-different-optimization-options-2209">functions that have different optimization options</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-no-side-effects-2198">functions that have no side effects</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-never-return-2196">functions that never return</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-pop-the-argument-stack-on-the-386-2206">functions that pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-return-more-than-once-2197">functions that return more than once</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-which-do-not-handle-memory-bank-switching-on-68HC11_002f68HC12-2262">functions which do not handle memory bank switching on 68HC11/68HC12</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-which-handle-memory-bank-switching-2231">functions which handle memory bank switching</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-with-non_002dnull-pointer-arguments-2204">functions with non-null pointer arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-with-_0040code_007bprintf_007d_002c-_0040code_007bscanf_007d_002c-_0040code_007bstrftime_007d-or-_0040code_007bstrfmon_007d-style-arguments-2203">functions with <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bg_007d-in-constraint-2405">‘<samp><span class="samp">g</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bG_007d-in-constraint-2402">‘<samp><span class="samp">G</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_002b_002b-89"><code>g++</code></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-G_002b_002b-14">G++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-gamma-2676"><code>gamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gamma_005fr-2679"><code>gamma_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammaf-2677"><code>gammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammaf_005fr-2680"><code>gammaf_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammal-2678"><code>gammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammal_005fr-2681"><code>gammal_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-GCC-2">GCC</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GCC-command-options-62">GCC command options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-GCC_005fEXEC_005fPREFIX-2020"><code>GCC_EXEC_PREFIX</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-g_t_0040code_007bgcc_005fstruct_007d-2360"><code>gcc_struct</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007bgcc_005fstruct_007d-attribute-2352"><code>gcc_struct</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040command_007bgcov_007d-497"><samp><span class="command">gcov</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gettext-2682"><code>gettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-global-offset-table-1987">global offset table</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-global-register-after-_0040code_007blongjmp_007d-2445">global register after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-global-register-variables-2441">global register variables</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-GNAT-16">GNAT</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GNU-C-Compiler-4">GNU C Compiler</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GNU-Compiler-Collection-3">GNU Compiler Collection</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-g_t_0040code_007bgnu_005finline_007d-function-attribute-2214"><code>gnu_inline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-goto-with-computed-label-2052">goto with computed label</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-g_t_0040command_007bgprof_007d-489"><samp><span class="command">gprof</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-grouping-options-67">grouping options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-g_t_0040samp_007bH_007d-in-constraint-2403">‘<samp><span class="samp">H</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-half_002dprecision-floating-point-2097">half-precision floating point</a>: <a href="#Half_002dPrecision">Half-Precision</a></li>
<li><a href="#index-hardware-models-and-configurations_002c-specifying-945">hardware models and configurations, specifying</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-hex-floats-2109">hex floats</a>: <a href="#Hex-Floats">Hex Floats</a></li>
<li><a href="#index-g_t_0040code_007bHK_007d-fixed_002dsuffix-2138"><code>HK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bhk_007d-fixed_002dsuffix-2122"><code>hk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-hosted-environment-105">hosted environment</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-hosted-environment-53">hosted environment</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-hosted-implementation-52">hosted implementation</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-g_t_0040code_007bhot_007d-function-attribute-2273"><code>hot</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-HPPA-Options-1228">HPPA Options</a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-g_t_0040code_007bHR_007d-fixed_002dsuffix-2130"><code>HR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bhr_007d-fixed_002dsuffix-2114"><code>hr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-hypot-2683"><code>hypot</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-hypotf-2684"><code>hypotf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-hypotl-2685"><code>hypotl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bI_007d-in-constraint-2399">‘<samp><span class="samp">I</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bi_007d-in-constraint-2397">‘<samp><span class="samp">i</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-i386-and-x86_002d64-Windows-Options-1314">i386 and x86-64 Windows Options</a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-i386-Options-1254">i386 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-IA_002d64-Options-1324">IA-64 Options</a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-IBM-RS_002f6000-and-PowerPC-Options-1650">IBM RS/6000 and PowerPC Options</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-identifier-names_002c-dollar-signs-in-2332">identifier names, dollar signs in</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-identifiers_002c-names-in-assembler-code-2436">identifiers, names in assembler code</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-ilogb-2686"><code>ilogb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ilogbf-2687"><code>ilogbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ilogbl-2688"><code>ilogbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-imaxabs-2689"><code>imaxabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-implementation_002ddefined-behavior_002c-C-language-2035">implementation-defined behavior, C language</a>: <a href="#C-Implementation">C Implementation</a></li>
<li><a href="#index-implied-_0040code_007b_0023pragma-implementation_007d-2994">implied <code>#pragma implementation</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-incompatibilities-of-GCC-3019">incompatibilities of GCC</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-increment-operators-3084">increment operators</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-index-2690"><code>index</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-indirect-calls-on-ARM-2249">indirect calls on ARM</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-indirect-calls-on-MIPS-2251">indirect calls on MIPS</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-init_005fpriority-attribute-3008">init_priority attribute</a>: <a href="#C_002b_002b-Attributes">C++ Attributes</a></li>
<li><a href="#index-initializations-in-expressions-2177">initializations in expressions</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-initializers-with-labeled-elements-2181">initializers with labeled elements</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-initializers_002c-non_002dconstant-2174">initializers, non-constant</a>: <a href="#Initializers">Initializers</a></li>
<li><a href="#index-g_t_0040code_007binline_007d-automatic-for-C_002b_002b-member-fns-2372"><code>inline</code> automatic for C++ member fns</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inline-functions-2364">inline functions</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inline-functions_002c-omission-of-2368">inline functions, omission of</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inlining-and-C_002b_002b-pragmas-2997">inlining and C++ pragmas</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-installation-trouble-3016">installation trouble</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-integrating-function-code-2365">integrating function code</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-Intel-386-Options-1256">Intel 386 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-interface-and-implementation-headers_002c-C_002b_002b-2989">interface and implementation headers, C++</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-intermediate-C-version_002c-nonexistent-18">intermediate C version, nonexistent</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-interrupt-handler-functions-2240">interrupt handler functions</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-handler-functions-on-the-Blackfin_002c-m68k_002c-H8_002f300-and-SH-processors-2244">interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-service-routines-on-ARM-2246">interrupt service routines on ARM</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-thread-functions-on-fido-2245">interrupt thread functions on fido</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-introduction-1">introduction</a>: <a href="#Top">Top</a></li>
<li><a href="#index-invalid-assembly-code-3080">invalid assembly code</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-invalid-input-3085">invalid input</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-invoking-_0040command_007bg_002b_002b_007d-91">invoking <samp><span class="command">g++</span></samp></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-isalnum-2691"><code>isalnum</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isalpha-2692"><code>isalpha</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isascii-2693"><code>isascii</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isblank-2694"><code>isblank</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iscntrl-2695"><code>iscntrl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isdigit-2696"><code>isdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isgraph-2697"><code>isgraph</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-islower-2698"><code>islower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ISO-9899-32">ISO 9899</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C-29">ISO C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C-standard-28">ISO C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C90-30">ISO C90</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C94-34">ISO C94</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C95-36">ISO C95</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C99-38">ISO C99</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C9X-40">ISO C9X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-support-96">ISO support</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ISO_002fIEC-9899-31">ISO/IEC 9899</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-isprint-2699"><code>isprint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ispunct-2700"><code>ispunct</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isspace-2701"><code>isspace</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isupper-2702"><code>isupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswalnum-2703"><code>iswalnum</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswalpha-2704"><code>iswalpha</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswblank-2705"><code>iswblank</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswcntrl-2706"><code>iswcntrl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswdigit-2707"><code>iswdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswgraph-2708"><code>iswgraph</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswlower-2709"><code>iswlower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswprint-2710"><code>iswprint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswpunct-2711"><code>iswpunct</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswspace-2712"><code>iswspace</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswupper-2713"><code>iswupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswxdigit-2714"><code>iswxdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isxdigit-2715"><code>isxdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0-2716"><code>j0</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0f-2717"><code>j0f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0l-2718"><code>j0l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1-2719"><code>j1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1f-2720"><code>j1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1l-2721"><code>j1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Java-7">Java</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-java_005finterface-attribute-3009">java_interface attribute</a>: <a href="#C_002b_002b-Attributes">C++ Attributes</a></li>
<li><a href="#index-jn-2722"><code>jn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-jnf-2723"><code>jnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-jnl-2724"><code>jnl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bK_007d-fixed_002dsuffix-2139"><code>K</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bk_007d-fixed_002dsuffix-2123"><code>k</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bkeep_005finterrupts_005fmasked_007d-attribute-2242"><code>keep_interrupts_masked</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-keywords_002c-alternate-2453">keywords, alternate</a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-known-causes-of-trouble-3017">known causes of trouble</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_007d-variable-attribute-2347"><code>l1_data</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_005fA_007d-variable-attribute-2348"><code>l1_data_A</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_005fB_007d-variable-attribute-2349"><code>l1_data_B</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005ftext_007d-function-attribute-2248"><code>l1_text</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-labeled-elements-in-initializers-2182">labeled elements in initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-labels-as-values-2050">labels as values</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-labs-2725"><code>labs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-LANG-2014"><code>LANG</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-language-dialect-options-93">language dialect options</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-LC_005fALL-2017"><code>LC_ALL</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-LC_005fCTYPE-2015"><code>LC_CTYPE</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-LC_005fMESSAGES-2016"><code>LC_MESSAGES</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-ldexp-2726"><code>ldexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ldexpf-2727"><code>ldexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ldexpl-2728"><code>ldexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-length_002dzero-arrays-2148">length-zero arrays</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-lgamma-2729"><code>lgamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgamma_005fr-2732"><code>lgamma_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammaf-2730"><code>lgammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammaf_005fr-2733"><code>lgammaf_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammal-2731"><code>lgammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammal_005fr-2734"><code>lgammal_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Libraries-895">Libraries</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-LIBRARY_005fPATH-2022"><code>LIBRARY_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-link-options-889">link options</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-linker-script-916">linker script</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040code_007bLK_007d-fixed_002dsuffix-2140"><code>LK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007blk_007d-fixed_002dsuffix-2124"><code>lk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bLL_007d-integer-suffix-2082"><code>LL</code> integer suffix</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-llabs-2735"><code>llabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bLLK_007d-fixed_002dsuffix-2141"><code>LLK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bllk_007d-fixed_002dsuffix-2125"><code>llk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bLLR_007d-fixed_002dsuffix-2133"><code>LLR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bllr_007d-fixed_002dsuffix-2117"><code>llr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-llrint-2736"><code>llrint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llrintf-2737"><code>llrintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llrintl-2738"><code>llrintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llround-2739"><code>llround</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llroundf-2740"><code>llroundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llroundl-2741"><code>llroundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-load-address-instruction-2411">load address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-local-labels-2048">local labels</a>: <a href="#Local-Labels">Local Labels</a></li>
<li><a href="#index-local-variables-in-macros-2069">local variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-local-variables_002c-specifying-registers-2449">local variables, specifying registers</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-locale-2018">locale</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-locale-definition-2024">locale definition</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-log-2742"><code>log</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10-2743"><code>log10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10f-2744"><code>log10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10l-2745"><code>log10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1p-2746"><code>log1p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1pf-2747"><code>log1pf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1pl-2748"><code>log1pl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2-2749"><code>log2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2f-2750"><code>log2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2l-2751"><code>log2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logb-2752"><code>logb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logbf-2753"><code>logbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logbl-2754"><code>logbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logf-2755"><code>logf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logl-2756"><code>logl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007blong-long_007d-data-types-2079"><code>long long</code> data types</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-longjmp-2447"><code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007blongjmp_007d-incompatibilities-3029"><code>longjmp</code> incompatibilities</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007blongjmp_007d-warnings-309"><code>longjmp</code> warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bLR_007d-fixed_002dsuffix-2132"><code>LR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007blr_007d-fixed_002dsuffix-2116"><code>lr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-lrint-2757"><code>lrint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lrintf-2758"><code>lrintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lrintl-2759"><code>lrintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lround-2760"><code>lround</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lroundf-2761"><code>lroundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lroundl-2762"><code>lroundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bm_007d-in-constraint-2386">‘<samp><span class="samp">m</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-M32C-options-1381">M32C options</a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-M32R_002fD-options-1385">M32R/D options</a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-M680x0-options-1406">M680x0 options</a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-M68hc1x-options-1447">M68hc1x options</a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-machine-dependent-options-946">machine dependent options</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-machine-specific-constraints-2432">machine specific constraints</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-macro-with-variable-arguments-2161">macro with variable arguments</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-macros-containing-_0040code_007basm_007d-2381">macros containing <code>asm</code></a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-macros_002c-inline-alternative-2367">macros, inline alternative</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-macros_002c-local-labels-2049">macros, local labels</a>: <a href="#Local-Labels">Local Labels</a></li>
<li><a href="#index-macros_002c-local-variables-in-2071">macros, local variables in</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-macros_002c-statements-in-expressions-2046">macros, statements in expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-macros_002c-types-of-arguments-2066">macros, types of arguments</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-make-829">make</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-malloc-2763"><code>malloc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bmalloc_007d-attribute-2252"><code>malloc</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-matching-constraint-2409">matching constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-MCore-options-1461">MCore options</a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-member-fns_002c-automatically-_0040code_007binline_007d-2373">member fns, automatically <code>inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-memchr-2764"><code>memchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memcmp-2765"><code>memcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memcpy-2766"><code>memcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memory-references-in-constraints-2387">memory references in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-mempcpy-2767"><code>mempcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memset-2768"><code>memset</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Mercury-11">Mercury</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-message-formatting-212">message formatting</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-messages_002c-warning-219">messages, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-messages_002c-warning-and-error-3072">messages, warning and error</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-g_t_0040code_007bmicromips_007d-attribute-2255"><code>micromips</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-middle_002doperands_002c-omitted-2074">middle-operands, omitted</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-MIPS-options-1482">MIPS options</a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-g_t_0040code_007bmips16_007d-attribute-2253"><code>mips16</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-misunderstandings-in-C_002b_002b-3049">misunderstandings in C++</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-mixed-declarations-and-code-2191">mixed declarations and code</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-g_t_0040code_007bmktemp_007d_002c-and-constant-strings-3024"><code>mktemp</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-MMIX-Options-1592">MMIX Options</a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-MN10300-options-1612">MN10300 options</a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-g_t_0040code_007bmode_007d-attribute-2342"><code>mode</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-modf-2769"><code>modf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modff-2770"><code>modff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modfl-2771"><code>modfl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modifiers-in-constraints-2423">modifiers in constraints</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007bms_005fabi_007d-attribute-2259"><code>ms_abi</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bms_005fstruct_007d-2359"><code>ms_struct</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007bms_005fstruct_007d-attribute-2351"><code>ms_struct</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-mudflap-663">mudflap</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-multiple-alternative-constraints-2418">multiple alternative constraints</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-multiprecision-arithmetic-2081">multiprecision arithmetic</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-g_t_0040samp_007bn_007d-in-constraint-2398">‘<samp><span class="samp">n</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-names-used-in-assembler-code-2435">names used in assembler code</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-naming-convention_002c-implementation-headers-2996">naming convention, implementation headers</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-nearbyint-2772"><code>nearbyint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nearbyintf-2773"><code>nearbyintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nearbyintl-2774"><code>nearbyintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nested-functions-2054">nested functions</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-newlines-_0028escaped_0029-2165">newlines (escaped)</a>: <a href="#Escaped-Newlines">Escaped Newlines</a></li>
<li><a href="#index-nextafter-2775"><code>nextafter</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nextafterf-2776"><code>nextafterf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nextafterl-2777"><code>nextafterl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttoward-2778"><code>nexttoward</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttowardf-2779"><code>nexttowardf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttowardl-2780"><code>nexttowardl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-NFC-416">NFC</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-NFKC-417">NFKC</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-NMI-handler-functions-on-the-Blackfin-processor-2264">NMI handler functions on the Blackfin processor</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bno_005finstrument_005ffunction_007d-function-attribute-2265"><code>no_instrument_function</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnocommon_007d-attribute-2338"><code>nocommon</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnoinline_007d-function-attribute-2267"><code>noinline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnomicromips_007d-attribute-2256"><code>nomicromips</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnomips16_007d-attribute-2254"><code>nomips16</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-non_002dconstant-initializers-2175">non-constant initializers</a>: <a href="#Initializers">Initializers</a></li>
<li><a href="#index-non_002dstatic-inline-function-2376">non-static inline function</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-g_t_0040code_007bnonnull_007d-function-attribute-2268"><code>nonnull</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnoreturn_007d-function-attribute-2269"><code>noreturn</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnothrow_007d-function-attribute-2270"><code>nothrow</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bo_007d-in-constraint-2389">‘<samp><span class="samp">o</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-OBJC_005fINCLUDE_005fPATH-2028"><code>OBJC_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-Objective_002dC-60">Objective-C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Objective_002dC-8">Objective-C</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command-line-186">Objective-C and Objective-C++ options, command line</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Objective_002dC_002b_002b-61">Objective-C++</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Objective_002dC_002b_002b-9">Objective-C++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-offsettable-address-2388">offsettable address</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-old_002dstyle-function-definitions-2325">old-style function definitions</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-omitted-middle_002doperands-2073">omitted middle-operands</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-open-coding-2366">open coding</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-openmp-parallel-109">openmp parallel</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-operand-constraints_002c-_0040code_007basm_007d-2382">operand constraints, <code>asm</code></a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-g_t_0040code_007boptimize_007d-function-attribute-2271"><code>optimize</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-optimize-options-630">optimize options</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-options-to-control-diagnostics-formatting-210">options to control diagnostics formatting</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-options-to-control-warnings-217">options to control warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-options_002c-C_002b_002b-127">options, C++</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-options_002c-code-generation-1967">options, code generation</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-options_002c-debugging-469">options, debugging</a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-options_002c-dialect-94">options, dialect</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-options_002c-directory-search-921">options, directory search</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-options_002c-GCC-command-64">options, GCC command</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-grouping-68">options, grouping</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-linking-890">options, linking</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-187">options, Objective-C and Objective-C++</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-options_002c-optimization-631">options, optimization</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-options_002c-order-70">options, order</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-preprocessor-807">options, preprocessor</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-order-of-evaluation_002c-side-effects-3068">order of evaluation, side effects</a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-order-of-options-69">order of options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-other-register-constraints-2416">other register constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-output-file-option-77">output file option</a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-overloaded-virtual-fn_002c-warning-179">overloaded virtual fn, warning</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-g_t_0040samp_007bp_007d-in-constraint-2414">‘<samp><span class="samp">p</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007bpacked_007d-attribute-2343"><code>packed</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-parameter-forward-declaration-2159">parameter forward declaration</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-parameters_002c-aliased-2005">parameters, aliased</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-Pascal-12">Pascal</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-PDP_002d11-Options-1620">PDP-11 Options</a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-PIC-1988">PIC</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-picoChip-options-1646">picoChip options</a>: <a href="#picoChip-Options">picoChip Options</a></li>
<li><a href="#index-pmf-3004">pmf</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-pointer-arguments-2222">pointer arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-pointer-to-member-function-3005">pointer to member function</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-portions-of-temporary-objects_002c-pointers-to-3060">portions of temporary objects, pointers to</a>: <a href="#Temporaries">Temporaries</a></li>
<li><a href="#index-pow-2781"><code>pow</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10-2782"><code>pow10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10f-2783"><code>pow10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10l-2784"><code>pow10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-PowerPC-options-1648">PowerPC options</a>: <a href="#PowerPC-Options">PowerPC Options</a></li>
<li><a href="#index-powf-2785"><code>powf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-powl-2786"><code>powl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pragma-GCC-optimize-2965">pragma GCC optimize</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-pop_005foptions-2967">pragma GCC pop_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-push_005foptions-2966">pragma GCC push_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-reset_005foptions-2968">pragma GCC reset_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-target-2964">pragma GCC target</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma_002c-align-2953">pragma, align</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-diagnostic-2959">pragma, diagnostic</a>: <a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a></li>
<li><a href="#index-pragma_002c-extern_005fprefix-2957">pragma, extern_prefix</a>: <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a></li>
<li><a href="#index-pragma_002c-fini-2954">pragma, fini</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-init-2955">pragma, init</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-long_005fcalls-2944">pragma, long_calls</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-long_005fcalls_005foff-2946">pragma, long_calls_off</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-longcall-2948">pragma, longcall</a>: <a href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a></li>
<li><a href="#index-pragma_002c-mark-2949">pragma, mark</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-memregs-2947">pragma, memregs</a>: <a href="#M32C-Pragmas">M32C Pragmas</a></li>
<li><a href="#index-pragma_002c-no_005flong_005fcalls-2945">pragma, no_long_calls</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-options-align-2950">pragma, options align</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-pop_005fmacro-2963">pragma, pop_macro</a>: <a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></li>
<li><a href="#index-pragma_002c-push_005fmacro-2962">pragma, push_macro</a>: <a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></li>
<li><a href="#index-pragma_002c-reason-for-not-using-2322">pragma, reason for not using</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-pragma_002c-redefine_005fextname-2956">pragma, redefine_extname</a>: <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a></li>
<li><a href="#index-pragma_002c-segment-2951">pragma, segment</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-unused-2952">pragma, unused</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-visibility-2961">pragma, visibility</a>: <a href="#Visibility-Pragmas">Visibility Pragmas</a></li>
<li><a href="#index-pragma_002c-weak-2958">pragma, weak</a>: <a href="#Weak-Pragmas">Weak Pragmas</a></li>
<li><a href="#index-pragmas-2942">pragmas</a>: <a href="#Pragmas">Pragmas</a></li>
<li><a href="#index-pragmas-in-C_002b_002b_002c-effect-on-inlining-2999">pragmas in C++, effect on inlining</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-pragmas_002c-interface-and-implementation-2991">pragmas, interface and implementation</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-pragmas_002c-warning-of-unknown-314">pragmas, warning of unknown</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-precompiled-headers-2033">precompiled headers</a>: <a href="#Precompiled-Headers">Precompiled Headers</a></li>
<li><a href="#index-preprocessing-numbers-3043">preprocessing numbers</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-preprocessing-tokens-3042">preprocessing tokens</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-preprocessor-options-806">preprocessor options</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-printf-2787"><code>printf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-printf_005funlocked-2788"><code>printf_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040command_007bprof_007d-487"><samp><span class="command">prof</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-g_t_0040code_007bprogmem_007d-variable-attribute-2354"><code>progmem</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-promotion-of-formal-parameters-2326">promotion of formal parameters</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-g_t_0040code_007bpure_007d-function-attribute-2272"><code>pure</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-push-address-instruction-2412">push address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-putchar-2789"><code>putchar</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-puts-2790"><code>puts</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bQ_007d-floating-point-suffix-2096"><code>Q</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bq_007d-floating-point-suffix-2094"><code>q</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bqsort_007d_002c-and-global-register-variables-2443"><code>qsort</code>, and global register variables</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-question-mark-2420">question mark</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040code_007bR_007d-fixed_002dsuffix-2131"><code>R</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007br_007d-fixed_002dsuffix-2115"><code>r</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040samp_007br_007d-in-constraint-2394">‘<samp><span class="samp">r</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-ranges-in-case-statements-2188">ranges in case statements</a>: <a href="#Case-Ranges">Case Ranges</a></li>
<li><a href="#index-read_002donly-strings-3022">read-only strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-register-variable-after-_0040code_007blongjmp_007d-2444">register variable after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-registers-2380">registers</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-registers-for-local-variables-2451">registers for local variables</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-registers-in-constraints-2395">registers in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-registers_002c-global-allocation-2440">registers, global allocation</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-registers_002c-global-variables-in-2442">registers, global variables in</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007bregparm_007d-attribute-2275"><code>regparm</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-relocation-truncated-to-fit-_0028ColdFire_0029-1446">relocation truncated to fit (ColdFire)</a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-relocation-truncated-to-fit-_0028MIPS_0029-1512">relocation truncated to fit (MIPS)</a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-remainder-2791"><code>remainder</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remainderf-2792"><code>remainderf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remainderl-2793"><code>remainderl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquo-2794"><code>remquo</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquof-2795"><code>remquof</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquol-2796"><code>remquol</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-reordering_002c-warning-167">reordering, warning</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-reporting-bugs-3076">reporting bugs</a>: <a href="#Bugs">Bugs</a></li>
<li><a href="#index-g_t_0040code_007bresbank_007d-attribute-2279"><code>resbank</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-rest-argument-_0028in-macro_0029-2162">rest argument (in macro)</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-restricted-pointers-2982">restricted pointers</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-restricted-references-2983">restricted references</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-restricted-this-pointer-2984">restricted this pointer</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-g_t_0040code_007breturns_005ftwice_007d-attribute-2280"><code>returns_twice</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-rindex-2797"><code>rindex</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rint-2798"><code>rint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rintf-2799"><code>rintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rintl-2800"><code>rintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-round-2801"><code>round</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-roundf-2802"><code>roundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-roundl-2803"><code>roundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-RS_002f6000-and-PowerPC-Options-1649">RS/6000 and PowerPC Options</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-RTTI-2988">RTTI</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-run_002dtime-options-1968">run-time options</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-g_t_0040samp_007bs_007d-in-constraint-2404">‘<samp><span class="samp">s</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-S_002f390-and-zSeries-Options-1787">S/390 and zSeries Options</a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-save-all-registers-on-the-Blackfin_002c-H8_002f300_002c-H8_002f300H_002c-and-H8S-2281">save all registers on the Blackfin, H8/300, H8/300H, and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-scalb-2804"><code>scalb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbf-2805"><code>scalbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbl-2806"><code>scalbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbln-2807"><code>scalbln</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalblnf-2808"><code>scalblnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbn-2810"><code>scalbn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbnf-2811"><code>scalbnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bscanf_007d_002c-and-constant-strings-3027"><code>scanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-scanfnl-2812"><code>scanfnl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scope-of-a-variable-length-array-2155">scope of a variable length array</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-scope-of-declaration-3046">scope of declaration</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-scope-of-external-declarations-3032">scope of external declarations</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-Score-Options-1818">Score Options</a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-search-path-922">search path</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-g_t_0040code_007bsection_007d-function-attribute-2282"><code>section</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bsection_007d-variable-attribute-2344"><code>section</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bsentinel_007d-function-attribute-2283"><code>sentinel</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-setjmp-2448"><code>setjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007bsetjmp_007d-incompatibilities-3028"><code>setjmp</code> incompatibilities</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-shared-strings-3023">shared strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bshared_007d-variable-attribute-2345"><code>shared</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-side-effect-in-_003f_003a-2077">side effect in ?:</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-side-effects_002c-macro-argument-2047">side effects, macro argument</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-side-effects_002c-order-of-evaluation-3067">side effects, order of evaluation</a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-signal-handler-functions-on-the-AVR-processors-2284">signal handler functions on the AVR processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-signbit-2813"><code>signbit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd128-2818"><code>signbitd128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd32-2816"><code>signbitd32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd64-2817"><code>signbitd64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitf-2814"><code>signbitf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitl-2815"><code>signbitl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signed-and-unsigned-values_002c-comparison-warning-377">signed and unsigned values, comparison warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-significand-2819"><code>significand</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-significandf-2820"><code>significandf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-significandl-2821"><code>significandl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-simple-constraints-2385">simple constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-sin-2822"><code>sin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincos-2823"><code>sincos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincosf-2824"><code>sincosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincosl-2825"><code>sincosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinf-2826"><code>sinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinh-2827"><code>sinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinhf-2828"><code>sinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinhl-2829"><code>sinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinl-2830"><code>sinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sizeof-2065"><code>sizeof</code></a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-smaller-data-references-1396">smaller data references</a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-smaller-data-references-_0028PowerPC_0029-1780">smaller data references (PowerPC)</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-snprintf-2831"><code>snprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-SPARC-options-1869">SPARC options</a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-Spec-Files-930">Spec Files</a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-specified-registers-2439">specified registers</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-specifying-compiler-version-and-target-machine-938">specifying compiler version and target machine</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-specifying-hardware-config-944">specifying hardware config</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-specifying-machine-version-937">specifying machine version</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-specifying-registers-for-local-variables-2450">specifying registers for local variables</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-speed-of-compilation-2034">speed of compilation</a>: <a href="#Precompiled-Headers">Precompiled Headers</a></li>
<li><a href="#index-sprintf-2832"><code>sprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-SPU-options-1901">SPU options</a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-sqrt-2833"><code>sqrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sqrtf-2834"><code>sqrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sqrtl-2835"><code>sqrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sscanf-2836"><code>sscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bsscanf_007d_002c-and-constant-strings-3025"><code>sscanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bsseregparm_007d-attribute-2277"><code>sseregparm</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-statements-inside-expressions-2043">statements inside expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-static-data-in-C_002b_002b_002c-declaring-and-defining-3053">static data in C++, declaring and defining</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-stpcpy-2837"><code>stpcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-stpncpy-2838"><code>stpncpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcasecmp-2839"><code>strcasecmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcat-2840"><code>strcat</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strchr-2841"><code>strchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcmp-2842"><code>strcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcpy-2843"><code>strcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcspn-2844"><code>strcspn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strdup-2845"><code>strdup</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strfmon-2846"><code>strfmon</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strftime-2847"><code>strftime</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-string-constants-3021">string constants</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-strlen-2848"><code>strlen</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncasecmp-2849"><code>strncasecmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncat-2850"><code>strncat</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncmp-2851"><code>strncmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncpy-2852"><code>strncpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strndup-2853"><code>strndup</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strpbrk-2854"><code>strpbrk</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strrchr-2855"><code>strrchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strspn-2856"><code>strspn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strstr-2857"><code>strstr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-struct-2969">struct</a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-structures-3039">structures</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-structures_002c-constructor-expression-2178">structures, constructor expression</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-submodel-options-943">submodel options</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-subscripting-2166">subscripting</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-subscripting-and-function-values-2168">subscripting and function values</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-suffixes-for-C_002b_002b-source-87">suffixes for C++ source</a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-SUNPRO_005fDEPENDENCIES-2031"><code>SUNPRO_DEPENDENCIES</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-suppressing-warnings-220">suppressing warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-surprises-in-C_002b_002b-3050">surprises in C++</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-syntax-checking-221">syntax checking</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bsyscall_005flinkage_007d-attribute-2286"><code>syscall_linkage</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-system-headers_002c-warnings-from-330">system headers, warnings from</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bsysv_005fabi_007d-attribute-2260"><code>sysv_abi</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-tan-2858"><code>tan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanf-2859"><code>tanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanh-2860"><code>tanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanhf-2861"><code>tanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanhl-2862"><code>tanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanl-2863"><code>tanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007btarget_007d-function-attribute-2287"><code>target</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-target-machine_002c-specifying-940">target machine, specifying</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-target-options-935">target options</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022abm_0022_0029_007d-attribute-2288"><code>target("abm")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022aes_0022_0029_007d-attribute-2289"><code>target("aes")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022align_002dstringops_0022_0029_007d-attribute-2308"><code>target("align-stringops")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022arch_003d_0040var_007bARCH_007d_0022_0029_007d-attribute-2310"><code>target("arch=</code><var>ARCH</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022cld_0022_0029_007d-attribute-2302"><code>target("cld")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fancy_002dmath_002d387_0022_0029_007d-attribute-2303"><code>target("fancy-math-387")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fpmath_003d_0040var_007bFPMATH_007d_0022_0029_007d-attribute-2312"><code>target("fpmath=</code><var>FPMATH</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fused_002dmadd_0022_0029_007d-attribute-2304"><code>target("fused-madd")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022ieee_002dfp_0022_0029_007d-attribute-2305"><code>target("ieee-fp")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022inline_002dall_002dstringops_0022_0029_007d-attribute-2306"><code>target("inline-all-stringops")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022inline_002dstringops_002ddynamically_0022_0029_007d-attribute-2307"><code>target("inline-stringops-dynamically")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022mmx_0022_0029_007d-attribute-2290"><code>target("mmx")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022pclmul_0022_0029_007d-attribute-2291"><code>target("pclmul")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022popcnt_0022_0029_007d-attribute-2292"><code>target("popcnt")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022recip_0022_0029_007d-attribute-2309"><code>target("recip")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse_0022_0029_007d-attribute-2293"><code>target("sse")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse2_0022_0029_007d-attribute-2294"><code>target("sse2")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse3_0022_0029_007d-attribute-2295"><code>target("sse3")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_0022_0029_007d-attribute-2296"><code>target("sse4")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_002e1_0022_0029_007d-attribute-2297"><code>target("sse4.1")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_002e2_0022_0029_007d-attribute-2298"><code>target("sse4.2")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4a_0022_0029_007d-attribute-2299"><code>target("sse4a")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse5_0022_0029_007d-attribute-2300"><code>target("sse5")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022ssse3_0022_0029_007d-attribute-2301"><code>target("ssse3")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022tune_003d_0040var_007bTUNE_007d_0022_0029_007d-attribute-2311"><code>target("tune=</code><var>TUNE</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-TC1-43">TC1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-TC2-45">TC2</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-TC3-47">TC3</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigenda-42">Technical Corrigenda</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-1-44">Technical Corrigendum 1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-2-46">Technical Corrigendum 2</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-3-48">Technical Corrigendum 3</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-template-instantiation-3001">template instantiation</a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-temporaries_002c-lifetime-of-3059">temporaries, lifetime of</a>: <a href="#Temporaries">Temporaries</a></li>
<li><a href="#index-tgamma-2864"><code>tgamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tgammaf-2865"><code>tgammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tgammal-2866"><code>tgammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Thread_002dLocal-Storage-2972">Thread-Local Storage</a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-thunks-2056">thunks</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-tiny-data-section-on-the-H8_002f300H-and-H8S-2313">tiny data section on the H8/300H and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040acronym_007bTLS_007d-2973"><acronym>TLS</acronym></a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-g_t_0040code_007btls_005fmodel_007d-attribute-2346"><code>tls_model</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-TMPDIR-2019"><code>TMPDIR</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-toascii-2867"><code>toascii</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tolower-2868"><code>tolower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-toupper-2869"><code>toupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-towlower-2870"><code>towlower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-towupper-2871"><code>towupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-traditional-C-language-113">traditional C language</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-trunc-2872"><code>trunc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-truncf-2873"><code>truncf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-truncl-2874"><code>truncl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-two_002dstage-name-lookup-3057">two-stage name lookup</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-type-alignment-2362">type alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-type-attributes-2356">type attributes</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-type_005finfo-2987">type_info</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-typedef-names-as-function-parameters-3034">typedef names as function parameters</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-typeof-2064"><code>typeof</code></a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_0040code_007bUHK_007d-fixed_002dsuffix-2142"><code>UHK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buhk_007d-fixed_002dsuffix-2126"><code>uhk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bUHR_007d-fixed_002dsuffix-2134"><code>UHR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buhr_007d-fixed_002dsuffix-2118"><code>uhr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bUK_007d-fixed_002dsuffix-2143"><code>UK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buk_007d-fixed_002dsuffix-2127"><code>uk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULK_007d-fixed_002dsuffix-2144"><code>ULK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bulk_007d-fixed_002dsuffix-2128"><code>ulk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULL_007d-integer-suffix-2083"><code>ULL</code> integer suffix</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-g_t_0040code_007bULLK_007d-fixed_002dsuffix-2145"><code>ULLK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bullk_007d-fixed_002dsuffix-2129"><code>ullk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULLR_007d-fixed_002dsuffix-2137"><code>ULLR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bullr_007d-fixed_002dsuffix-2121"><code>ullr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULR_007d-fixed_002dsuffix-2136"><code>ULR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bulr_007d-fixed_002dsuffix-2120"><code>ulr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-undefined-behavior-3082">undefined behavior</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-undefined-function-value-3083">undefined function value</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-underscores-in-variables-in-macros-2067">underscores in variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-union-2970">union</a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-union_002c-casting-to-a-2190">union, casting to a</a>: <a href="#Cast-to-Union">Cast to Union</a></li>
<li><a href="#index-unions-3040">unions</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-unknown-pragmas_002c-warning-313">unknown pragmas, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-unresolved-references-and-_0040option_007b_002dnodefaultlibs_007d-906">unresolved references and <samp><span class="option">-nodefaultlibs</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-unresolved-references-and-_0040option_007b_002dnostdlib_007d-903">unresolved references and <samp><span class="option">-nostdlib</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040code_007bunused_007d-attribute_002e-2314"><code>unused</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bUR_007d-fixed_002dsuffix-2135"><code>UR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bur_007d-fixed_002dsuffix-2119"><code>ur</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buse_005fdebug_005fexception_005freturn_007d-attribute-2243"><code>use_debug_exception_return</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007buse_005fshadow_005fregister_005fset_007d-attribute-2241"><code>use_shadow_register_set</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bused_007d-attribute_002e-2315"><code>used</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-User-stack-pointer-in-interrupts-on-the-Blackfin-2247">User stack pointer in interrupts on the Blackfin</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bV_007d-in-constraint-2391">‘<samp><span class="samp">V</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-V850-Options-1920">V850 Options</a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-vague-linkage-2985">vague linkage</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-value-after-_0040code_007blongjmp_007d-2446">value after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-variable-addressability-on-the-IA_002d64-2258">variable addressability on the IA-64</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-variable-addressability-on-the-M32R_002fD-2350">variable addressability on the M32R/D</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-variable-alignment-2363">variable alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-variable-attributes-2334">variable attributes</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-variable-number-of-arguments-2160">variable number of arguments</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-variable_002dlength-array-scope-2156">variable-length array scope</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-variable_002dlength-arrays-2152">variable-length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-variables-in-specified-registers-2438">variables in specified registers</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-variables_002c-local_002c-in-macros-2070">variables, local, in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-variadic-macros-2163">variadic macros</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-VAX-options-1938">VAX options</a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-g_t_0040code_007bversion_005fid_007d-attribute-2316"><code>version_id</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-vfprintf-2875"><code>vfprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vfscanf-2876"><code>vfscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bvisibility_007d-attribute-2317"><code>visibility</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-VLAs-2154">VLAs</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-void-pointers_002c-arithmetic-2169">void pointers, arithmetic</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-void_002c-size-of-pointer-to-2170">void, size of pointer to</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-volatile-access-2981">volatile access</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-g_t_0040code_007bvolatile_007d-applied-to-function-2201"><code>volatile</code> applied to function</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-volatile-read-2979">volatile read</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-volatile-write-2980">volatile write</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-vprintf-2877"><code>vprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vscanf-2878"><code>vscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsnprintf-2879"><code>vsnprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsprintf-2880"><code>vsprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsscanf-2881"><code>vsscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vtable-2986">vtable</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-VxWorks-Options-1942">VxWorks Options</a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-g_t_0040code_007bW_007d-floating-point-suffix-2095"><code>W</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bw_007d-floating-point-suffix-2093"><code>w</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bwarn_005funused_005fresult_007d-attribute-2318"><code>warn_unused_result</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-warning-for-comparison-of-signed-and-unsigned-values-375">warning for comparison of signed and unsigned values</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warning-for-overloaded-virtual-fn-180">warning for overloaded virtual fn</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-warning-for-reordering-of-member-initializers-168">warning for reordering of member initializers</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-warning-for-unknown-pragmas-312">warning for unknown pragmas</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bwarning_007d-function-attribute-2218"><code>warning</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-warning-messages-218">warning messages</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warnings-from-system-headers-329">warnings from system headers</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warnings-vs-errors-3071">warnings vs errors</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-g_t_0040code_007bweak_007d-attribute-2319"><code>weak</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bweakref_007d-attribute-2320"><code>weakref</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-whitespace-3035">whitespace</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040samp_007bX_007d-in-constraint-2406">‘<samp><span class="samp">X</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-X3_002e159_002d1989-27">X3.159-1989</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-x86_002d64-options-1949">x86-64 options</a>: <a href="#x86_002d64-Options">x86-64 Options</a></li>
<li><a href="#index-x86_002d64-Options-1255">x86-64 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-Xstormy16-Options-1950">Xstormy16 Options</a>: <a href="#Xstormy16-Options">Xstormy16 Options</a></li>
<li><a href="#index-Xtensa-Options-1952">Xtensa Options</a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-y0-2882"><code>y0</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y0f-2883"><code>y0f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y0l-2884"><code>y0l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1-2885"><code>y1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1f-2886"><code>y1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1l-2887"><code>y1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-yn-2888"><code>yn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ynf-2889"><code>ynf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ynl-2890"><code>ynl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-zero_002dlength-arrays-2147">zero-length arrays</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-zero_002dsize-structures-2151">zero-size structures</a>: <a href="#Empty-Structures">Empty Structures</a></li>
<li><a href="#index-zSeries-options-1965">zSeries options</a>: <a href="#zSeries-Options">zSeries Options</a></li>
</ul><!-- -->
<!-- Epilogue -->
<!-- -->
<div class="footnote">
<hr>
<a name="texinfo-footnotes-in-document"></a><h4>Footnotes</h4><p class="footnote"><small>[<a name="fn-1" href="#fnd-1">1</a>]</small> On some systems, ‘<samp><span class="samp">gcc -shared</span></samp>’
needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘<samp><span class="samp">gcc -shared</span></samp>’ must select the correct support
libraries to link against. Failing to supply the correct flags may lead
to subtle defects. Supplying them in cases where they are not necessary
is innocuous.</p>
<p class="footnote"><small>[<a name="fn-2" href="#fnd-2">2</a>]</small> Future versions of GCC may zero-extend, or use
a target-defined <code>ptr_extend</code> pattern. Do not rely on sign extension.</p>
<p class="footnote"><small>[<a name="fn-3" href="#fnd-3">3</a>]</small> The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.</p>
<p class="footnote"><small>[<a name="fn-4" href="#fnd-4">4</a>]</small> A file's <dfn>basename</dfn>
was the name stripped of all leading path information and of trailing
suffixes, such as ‘<samp><span class="samp">.h</span></samp>’ or ‘<samp><span class="samp">.C</span></samp>’ or ‘<samp><span class="samp">.cc</span></samp>’.</p>
<p class="footnote"><small>[<a name="fn-5" href="#fnd-5">5</a>]</small> The C++ standard just uses the
term “dependent” for names that depend on the type or value of
template parameters. This shorter term will also be used in the rest of
this section.</p>
<hr></div>
</body></html>
|