/usr/share/doc/gcc-4.6-base/gccint.html is in gcc-4.6-doc 4.6.3-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 | <html lang="en">
<head>
<title>GNU Compiler Collection (GCC) Internals</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Compiler Collection (GCC) Internals">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="top" href="#Top">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2010 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
"GNU Free Documentation License".
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
This file documents the internals of the GNU compilers.
<pre class="sp">
</pre>
Copyright © 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2010 Free Software Foundation, Inc.
<p>Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being “Funding Free Software”, the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the section entitled
“GNU Free Documentation License”.
<p>(a) The FSF's Front-Cover Text is:
<p>A GNU Manual
<p>(b) The FSF's Back-Cover Text is:
<p>You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
<pre class="sp">
</pre>
<div class="shortcontents">
<h2>Short Contents</h2>
<ul>
<li><a href="#toc_Top">Introduction</a></li>
<li><a href="#toc_Contributing">1 Contributing to GCC Development</a></li>
<li><a href="#toc_Portability">2 GCC and Portability</a></li>
<li><a href="#toc_Interface">3 Interfacing to GCC Output</a></li>
<li><a href="#toc_Libgcc">4 The GCC low-level runtime library</a></li>
<li><a href="#toc_Languages">5 Language Front Ends in GCC</a></li>
<li><a href="#toc_Source-Tree">6 Source Tree Structure and Build System</a></li>
<li><a href="#toc_Testsuites">7 Testsuites</a></li>
<li><a href="#toc_Options">8 Option specification files</a></li>
<li><a href="#toc_Passes">9 Passes and Files of the Compiler</a></li>
<li><a href="#toc_RTL">10 RTL Representation</a></li>
<li><a href="#toc_GENERIC">11 GENERIC</a></li>
<li><a href="#toc_GIMPLE">12 GIMPLE</a></li>
<li><a href="#toc_Tree-SSA">13 Analysis and Optimization of GIMPLE tuples</a></li>
<li><a href="#toc_Loop-Analysis-and-Representation">14 Analysis and Representation of Loops</a></li>
<li><a href="#toc_Control-Flow">15 Control Flow Graph</a></li>
<li><a href="#toc_Machine-Desc">16 Machine Descriptions</a></li>
<li><a href="#toc_Target-Macros">17 Target Description Macros and Functions</a></li>
<li><a href="#toc_Host-Config">18 Host Configuration</a></li>
<li><a href="#toc_Fragments">19 Makefile Fragments</a></li>
<li><a href="#toc_Collect2">20 <code>collect2</code></a></li>
<li><a href="#toc_Header-Dirs">21 Standard Header File Directories</a></li>
<li><a href="#toc_Type-Information">22 Memory Management and Type Information</a></li>
<li><a href="#toc_Plugins">23 Plugins</a></li>
<li><a href="#toc_LTO">24 Link Time Optimization</a></li>
<li><a href="#toc_Funding">Funding Free Software</a></li>
<li><a href="#toc_GNU-Project">The GNU Project and GNU/Linux</a></li>
<li><a href="#toc_Copying">GNU General Public License</a></li>
<li><a href="#toc_GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#toc_Contributors">Contributors to GCC</a></li>
<li><a href="#toc_Option-Index">Option Index</a></li>
<li><a href="#toc_Concept-Index">Concept Index</a></li>
</ul>
</div>
<div class="contents">
<h2>Table of Contents</h2>
<ul>
<li><a name="toc_Top" href="#Top">Introduction</a>
<li><a name="toc_Contributing" href="#Contributing">1 Contributing to GCC Development</a>
<li><a name="toc_Portability" href="#Portability">2 GCC and Portability</a>
<li><a name="toc_Interface" href="#Interface">3 Interfacing to GCC Output</a>
<li><a name="toc_Libgcc" href="#Libgcc">4 The GCC low-level runtime library</a>
<ul>
<li><a href="#Integer-library-routines">4.1 Routines for integer arithmetic</a>
<ul>
<li><a href="#Integer-library-routines">4.1.1 Arithmetic functions</a>
<li><a href="#Integer-library-routines">4.1.2 Comparison functions</a>
<li><a href="#Integer-library-routines">4.1.3 Trapping arithmetic functions</a>
<li><a href="#Integer-library-routines">4.1.4 Bit operations</a>
</li></ul>
<li><a href="#Soft-float-library-routines">4.2 Routines for floating point emulation</a>
<ul>
<li><a href="#Soft-float-library-routines">4.2.1 Arithmetic functions</a>
<li><a href="#Soft-float-library-routines">4.2.2 Conversion functions</a>
<li><a href="#Soft-float-library-routines">4.2.3 Comparison functions</a>
<li><a href="#Soft-float-library-routines">4.2.4 Other floating-point functions</a>
</li></ul>
<li><a href="#Decimal-float-library-routines">4.3 Routines for decimal floating point emulation</a>
<ul>
<li><a href="#Decimal-float-library-routines">4.3.1 Arithmetic functions</a>
<li><a href="#Decimal-float-library-routines">4.3.2 Conversion functions</a>
<li><a href="#Decimal-float-library-routines">4.3.3 Comparison functions</a>
</li></ul>
<li><a href="#Fixed_002dpoint-fractional-library-routines">4.4 Routines for fixed-point fractional emulation</a>
<ul>
<li><a href="#Fixed_002dpoint-fractional-library-routines">4.4.1 Arithmetic functions</a>
<li><a href="#Fixed_002dpoint-fractional-library-routines">4.4.2 Comparison functions</a>
<li><a href="#Fixed_002dpoint-fractional-library-routines">4.4.3 Conversion functions</a>
</li></ul>
<li><a href="#Exception-handling-routines">4.5 Language-independent routines for exception handling</a>
<li><a href="#Miscellaneous-routines">4.6 Miscellaneous runtime library routines</a>
<ul>
<li><a href="#Miscellaneous-routines">4.6.1 Cache control functions</a>
<li><a href="#Miscellaneous-routines">4.6.2 Split stack functions and variables</a>
</li></ul>
</li></ul>
<li><a name="toc_Languages" href="#Languages">5 Language Front Ends in GCC</a>
<li><a name="toc_Source-Tree" href="#Source-Tree">6 Source Tree Structure and Build System</a>
<ul>
<li><a href="#Configure-Terms">6.1 Configure Terms and History</a>
<li><a href="#Top-Level">6.2 Top Level Source Directory</a>
<li><a href="#gcc-Directory">6.3 The <samp><span class="file">gcc</span></samp> Subdirectory</a>
<ul>
<li><a href="#Subdirectories">6.3.1 Subdirectories of <samp><span class="file">gcc</span></samp></a>
<li><a href="#Configuration">6.3.2 Configuration in the <samp><span class="file">gcc</span></samp> Directory</a>
<ul>
<li><a href="#Config-Fragments">6.3.2.1 Scripts Used by <samp><span class="file">configure</span></samp></a>
<li><a href="#System-Config">6.3.2.2 The <samp><span class="file">config.build</span></samp>; <samp><span class="file">config.host</span></samp>; and <samp><span class="file">config.gcc</span></samp> Files</a>
<li><a href="#Configuration-Files">6.3.2.3 Files Created by <code>configure</code></a>
</li></ul>
<li><a href="#Build">6.3.3 Build System in the <samp><span class="file">gcc</span></samp> Directory</a>
<li><a href="#Makefile">6.3.4 Makefile Targets</a>
<li><a href="#Library-Files">6.3.5 Library Source Files and Headers under the <samp><span class="file">gcc</span></samp> Directory</a>
<li><a href="#Headers">6.3.6 Headers Installed by GCC</a>
<li><a href="#Documentation">6.3.7 Building Documentation</a>
<ul>
<li><a href="#Texinfo-Manuals">6.3.7.1 Texinfo Manuals</a>
<li><a href="#Man-Page-Generation">6.3.7.2 Man Page Generation</a>
<li><a href="#Miscellaneous-Docs">6.3.7.3 Miscellaneous Documentation</a>
</li></ul>
<li><a href="#Front-End">6.3.8 Anatomy of a Language Front End</a>
<ul>
<li><a href="#Front-End-Directory">6.3.8.1 The Front End <samp><var>language</var></samp> Directory</a>
<li><a href="#Front-End-Config">6.3.8.2 The Front End <samp><span class="file">config-lang.in</span></samp> File</a>
<li><a href="#Front-End-Makefile">6.3.8.3 The Front End <samp><span class="file">Make-lang.in</span></samp> File</a>
</li></ul>
<li><a href="#Back-End">6.3.9 Anatomy of a Target Back End</a>
</li></ul>
</li></ul>
<li><a name="toc_Testsuites" href="#Testsuites">7 Testsuites</a>
<ul>
<li><a href="#Test-Idioms">7.1 Idioms Used in Testsuite Code</a>
<li><a href="#Test-Directives">7.2 Directives used within DejaGnu tests</a>
<ul>
<li><a href="#Directives">7.2.1 Syntax and Descriptions of test directives</a>
<ul>
<li><a href="#Directives">7.2.1.1 Specify how to build the test</a>
<li><a href="#Directives">7.2.1.2 Specify additional compiler options</a>
<li><a href="#Directives">7.2.1.3 Modify the test timeout value</a>
<li><a href="#Directives">7.2.1.4 Skip a test for some targets</a>
<li><a href="#Directives">7.2.1.5 Expect a test to fail for some targets</a>
<li><a href="#Directives">7.2.1.6 Expect the test executable to fail</a>
<li><a href="#Directives">7.2.1.7 Verify compiler messages</a>
<li><a href="#Directives">7.2.1.8 Verify output of the test executable</a>
<li><a href="#Directives">7.2.1.9 Specify additional files for a test</a>
<li><a href="#Directives">7.2.1.10 Add checks at the end of a test</a>
</li></ul>
<li><a href="#Selectors">7.2.2 Selecting targets to which a test applies</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3 Keywords describing target attributes</a>
<ul>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.1 Data type sizes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.2 Fortran-specific attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.3 Vector-specific attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.4 Thread Local Storage attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.5 Decimal floating point attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.6 ARM-specific attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.7 MIPS-specific attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.8 PowerPC-specific attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.9 Other hardware attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.10 Environment attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.11 Other attributes</a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.12 Local to tests in <code>gcc.target/i386</code></a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.13 Local to tests in <code>gcc.target/spu/ea</code></a>
<li><a href="#Effective_002dTarget-Keywords">7.2.3.14 Local to tests in <code>gcc.test-framework</code></a>
</li></ul>
<li><a href="#Add-Options">7.2.4 Features for <code>dg-add-options</code></a>
<li><a href="#Require-Support">7.2.5 Variants of <code>dg-require-</code><var>support</var></a>
<li><a href="#Final-Actions">7.2.6 Commands for use in <code>dg-final</code></a>
<ul>
<li><a href="#Final-Actions">7.2.6.1 Scan a particular file</a>
<li><a href="#Final-Actions">7.2.6.2 Scan the assembly output</a>
<li><a href="#Final-Actions">7.2.6.3 Scan optimization dump files</a>
<li><a href="#Final-Actions">7.2.6.4 Verify that an output files exists or not</a>
<li><a href="#Final-Actions">7.2.6.5 Check for LTO tests</a>
<li><a href="#Final-Actions">7.2.6.6 Checks for <samp><span class="command">gcov</span></samp> tests</a>
<li><a href="#Final-Actions">7.2.6.7 Clean up generated test files</a>
</li></ul>
</li></ul>
<li><a href="#Ada-Tests">7.3 Ada Language Testsuites</a>
<li><a href="#C-Tests">7.4 C Language Testsuites</a>
<li><a href="#libgcj-Tests">7.5 The Java library testsuites.</a>
<li><a href="#LTO-Testing">7.6 Support for testing link-time optimizations</a>
<li><a href="#gcov-Testing">7.7 Support for testing <samp><span class="command">gcov</span></samp></a>
<li><a href="#profopt-Testing">7.8 Support for testing profile-directed optimizations</a>
<li><a href="#compat-Testing">7.9 Support for testing binary compatibility</a>
<li><a href="#Torture-Tests">7.10 Support for torture testing using multiple options</a>
</li></ul>
<li><a name="toc_Options" href="#Options">8 Option specification files</a>
<ul>
<li><a href="#Option-file-format">8.1 Option file format</a>
<li><a href="#Option-properties">8.2 Option properties</a>
</li></ul>
<li><a name="toc_Passes" href="#Passes">9 Passes and Files of the Compiler</a>
<ul>
<li><a href="#Parsing-pass">9.1 Parsing pass</a>
<li><a href="#Gimplification-pass">9.2 Gimplification pass</a>
<li><a href="#Pass-manager">9.3 Pass manager</a>
<li><a href="#Tree-SSA-passes">9.4 Tree SSA passes</a>
<li><a href="#RTL-passes">9.5 RTL passes</a>
</li></ul>
<li><a name="toc_RTL" href="#RTL">10 RTL Representation</a>
<ul>
<li><a href="#RTL-Objects">10.1 RTL Object Types</a>
<li><a href="#RTL-Classes">10.2 RTL Classes and Formats</a>
<li><a href="#Accessors">10.3 Access to Operands</a>
<li><a href="#Special-Accessors">10.4 Access to Special Operands</a>
<li><a href="#Flags">10.5 Flags in an RTL Expression</a>
<li><a href="#Machine-Modes">10.6 Machine Modes</a>
<li><a href="#Constants">10.7 Constant Expression Types</a>
<li><a href="#Regs-and-Memory">10.8 Registers and Memory</a>
<li><a href="#Arithmetic">10.9 RTL Expressions for Arithmetic</a>
<li><a href="#Comparisons">10.10 Comparison Operations</a>
<li><a href="#Bit_002dFields">10.11 Bit-Fields</a>
<li><a href="#Vector-Operations">10.12 Vector Operations</a>
<li><a href="#Conversions">10.13 Conversions</a>
<li><a href="#RTL-Declarations">10.14 Declarations</a>
<li><a href="#Side-Effects">10.15 Side Effect Expressions</a>
<li><a href="#Incdec">10.16 Embedded Side-Effects on Addresses</a>
<li><a href="#Assembler">10.17 Assembler Instructions as Expressions</a>
<li><a href="#Debug-Information">10.18 Variable Location Debug Information in RTL</a>
<li><a href="#Insns">10.19 Insns</a>
<li><a href="#Calls">10.20 RTL Representation of Function-Call Insns</a>
<li><a href="#Sharing">10.21 Structure Sharing Assumptions</a>
<li><a href="#Reading-RTL">10.22 Reading RTL</a>
</li></ul>
<li><a name="toc_GENERIC" href="#GENERIC">11 GENERIC</a>
<ul>
<li><a href="#Deficiencies">11.1 Deficiencies</a>
<li><a href="#Tree-overview">11.2 Overview</a>
<ul>
<li><a href="#Macros-and-Functions">11.2.1 Trees</a>
<li><a href="#Identifiers">11.2.2 Identifiers</a>
<li><a href="#Containers">11.2.3 Containers</a>
</li></ul>
<li><a href="#Types">11.3 Types</a>
<li><a href="#Declarations">11.4 Declarations</a>
<ul>
<li><a href="#Working-with-declarations">11.4.1 Working with declarations</a>
<li><a href="#Internal-structure">11.4.2 Internal structure</a>
<ul>
<li><a href="#Current-structure-hierarchy">11.4.2.1 Current structure hierarchy</a>
<li><a href="#Adding-new-DECL-node-types">11.4.2.2 Adding new DECL node types</a>
</li></ul>
</li></ul>
<li><a href="#Attributes">11.5 Attributes in trees</a>
<li><a href="#Expression-trees">11.6 Expressions</a>
<ul>
<li><a href="#Constant-expressions">11.6.1 Constant expressions</a>
<li><a href="#Storage-References">11.6.2 References to storage</a>
<li><a href="#Unary-and-Binary-Expressions">11.6.3 Unary and Binary Expressions</a>
<li><a href="#Vectors">11.6.4 Vectors</a>
</li></ul>
<li><a href="#Statements">11.7 Statements</a>
<ul>
<li><a href="#Basic-Statements">11.7.1 Basic Statements</a>
<li><a href="#Blocks">11.7.2 Blocks</a>
<li><a href="#Statement-Sequences">11.7.3 Statement Sequences</a>
<li><a href="#Empty-Statements">11.7.4 Empty Statements</a>
<li><a href="#Jumps">11.7.5 Jumps</a>
<li><a href="#Cleanups">11.7.6 Cleanups</a>
<li><a href="#OpenMP">11.7.7 OpenMP</a>
</li></ul>
<li><a href="#Functions">11.8 Functions</a>
<ul>
<li><a href="#Function-Basics">11.8.1 Function Basics</a>
<li><a href="#Function-Properties">11.8.2 Function Properties</a>
</li></ul>
<li><a href="#Language_002ddependent-trees">11.9 Language-dependent trees</a>
<li><a href="#C-and-C_002b_002b-Trees">11.10 C and C++ Trees</a>
<ul>
<li><a href="#Types-for-C_002b_002b">11.10.1 Types for C++</a>
<li><a href="#Namespaces">11.10.2 Namespaces</a>
<li><a href="#Classes">11.10.3 Classes</a>
<li><a href="#Functions-for-C_002b_002b">11.10.4 Functions for C++</a>
<li><a href="#Statements-for-C_002b_002b">11.10.5 Statements for C++</a>
<ul>
<li><a href="#Statements-for-C_002b_002b">11.10.5.1 Statements</a>
</li></ul>
<li><a href="#C_002b_002b-Expressions">11.10.6 C++ Expressions</a>
</li></ul>
<li><a href="#Java-Trees">11.11 Java Trees</a>
</li></ul>
<li><a name="toc_GIMPLE" href="#GIMPLE">12 GIMPLE</a>
<ul>
<li><a href="#Tuple-representation">12.1 Tuple representation</a>
<ul>
<li><a href="#Tuple-representation">12.1.1 <code>gimple_statement_base</code> (gsbase)</a>
<li><a href="#Tuple-representation">12.1.2 <code>gimple_statement_with_ops</code></a>
<li><a href="#Tuple-representation">12.1.3 <code>gimple_statement_with_memory_ops</code></a>
</li></ul>
<li><a href="#GIMPLE-instruction-set">12.2 GIMPLE instruction set</a>
<li><a href="#GIMPLE-Exception-Handling">12.3 Exception Handling</a>
<li><a href="#Temporaries">12.4 Temporaries</a>
<li><a href="#Operands">12.5 Operands</a>
<ul>
<li><a href="#Compound-Expressions">12.5.1 Compound Expressions</a>
<li><a href="#Compound-Lvalues">12.5.2 Compound Lvalues</a>
<li><a href="#Conditional-Expressions">12.5.3 Conditional Expressions</a>
<li><a href="#Logical-Operators">12.5.4 Logical Operators</a>
<li><a href="#Logical-Operators">12.5.5 Manipulating operands</a>
<li><a href="#Logical-Operators">12.5.6 Operand vector allocation</a>
<li><a href="#Logical-Operators">12.5.7 Operand validation</a>
<li><a href="#Logical-Operators">12.5.8 Statement validation</a>
</li></ul>
<li><a href="#Manipulating-GIMPLE-statements">12.6 Manipulating GIMPLE statements</a>
<ul>
<li><a href="#Manipulating-GIMPLE-statements">12.6.1 Common accessors</a>
</li></ul>
<li><a href="#Tuple-specific-accessors">12.7 Tuple specific accessors</a>
<ul>
<li><a href="#_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e">12.7.1 <code>GIMPLE_ASM</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e">12.7.2 <code>GIMPLE_ASSIGN</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e">12.7.3 <code>GIMPLE_BIND</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e">12.7.4 <code>GIMPLE_CALL</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e">12.7.5 <code>GIMPLE_CATCH</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e">12.7.6 <code>GIMPLE_COND</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e">12.7.7 <code>GIMPLE_DEBUG</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e">12.7.8 <code>GIMPLE_EH_FILTER</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e">12.7.9 <code>GIMPLE_LABEL</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e">12.7.10 <code>GIMPLE_NOP</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e">12.7.11 <code>GIMPLE_OMP_ATOMIC_LOAD</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e">12.7.12 <code>GIMPLE_OMP_ATOMIC_STORE</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e">12.7.13 <code>GIMPLE_OMP_CONTINUE</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e">12.7.14 <code>GIMPLE_OMP_CRITICAL</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e">12.7.15 <code>GIMPLE_OMP_FOR</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e">12.7.16 <code>GIMPLE_OMP_MASTER</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e">12.7.17 <code>GIMPLE_OMP_ORDERED</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e">12.7.18 <code>GIMPLE_OMP_PARALLEL</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e">12.7.19 <code>GIMPLE_OMP_RETURN</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e">12.7.20 <code>GIMPLE_OMP_SECTION</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e">12.7.21 <code>GIMPLE_OMP_SECTIONS</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e">12.7.22 <code>GIMPLE_OMP_SINGLE</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e">12.7.23 <code>GIMPLE_PHI</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e">12.7.24 <code>GIMPLE_RESX</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e">12.7.25 <code>GIMPLE_RETURN</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e">12.7.26 <code>GIMPLE_SWITCH</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e">12.7.27 <code>GIMPLE_TRY</code></a>
<li><a href="#_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e">12.7.28 <code>GIMPLE_WITH_CLEANUP_EXPR</code></a>
</li></ul>
<li><a href="#GIMPLE-sequences">12.8 GIMPLE sequences</a>
<li><a href="#Sequence-iterators">12.9 Sequence iterators</a>
<li><a href="#Adding-a-new-GIMPLE-statement-code">12.10 Adding a new GIMPLE statement code</a>
<li><a href="#Statement-and-operand-traversals">12.11 Statement and operand traversals</a>
</li></ul>
<li><a name="toc_Tree-SSA" href="#Tree-SSA">13 Analysis and Optimization of GIMPLE tuples</a>
<ul>
<li><a href="#Annotations">13.1 Annotations</a>
<li><a href="#SSA-Operands">13.2 SSA Operands</a>
<ul>
<li><a href="#SSA-Operands">13.2.1 Operand Iterators And Access Routines</a>
<li><a href="#SSA-Operands">13.2.2 Immediate Uses</a>
</li></ul>
<li><a href="#SSA">13.3 Static Single Assignment</a>
<ul>
<li><a href="#SSA">13.3.1 Preserving the SSA form</a>
<li><a href="#SSA">13.3.2 Preserving the virtual SSA form</a>
<li><a href="#SSA">13.3.3 Examining <code>SSA_NAME</code> nodes</a>
<li><a href="#SSA">13.3.4 Walking use-def chains</a>
<li><a href="#SSA">13.3.5 Walking the dominator tree</a>
</li></ul>
<li><a href="#Alias-analysis">13.4 Alias analysis</a>
<li><a href="#Memory-model">13.5 Memory model</a>
</li></ul>
<li><a name="toc_Loop-Analysis-and-Representation" href="#Loop-Analysis-and-Representation">14 Analysis and Representation of Loops</a>
<ul>
<li><a href="#Loop-representation">14.1 Loop representation</a>
<li><a href="#Loop-querying">14.2 Loop querying</a>
<li><a href="#Loop-manipulation">14.3 Loop manipulation</a>
<li><a href="#LCSSA">14.4 Loop-closed SSA form</a>
<li><a href="#Scalar-evolutions">14.5 Scalar evolutions</a>
<li><a href="#loop_002div">14.6 IV analysis on RTL</a>
<li><a href="#Number-of-iterations">14.7 Number of iterations analysis</a>
<li><a href="#Dependency-analysis">14.8 Data Dependency Analysis</a>
<li><a href="#Lambda">14.9 Linear loop transformations framework</a>
<li><a href="#Omega">14.10 Omega a solver for linear programming problems</a>
</li></ul>
<li><a name="toc_Control-Flow" href="#Control-Flow">15 Control Flow Graph</a>
<ul>
<li><a href="#Basic-Blocks">15.1 Basic Blocks</a>
<li><a href="#Edges">15.2 Edges</a>
<li><a href="#Profile-information">15.3 Profile information</a>
<li><a href="#Maintaining-the-CFG">15.4 Maintaining the CFG</a>
<li><a href="#Liveness-information">15.5 Liveness information</a>
</li></ul>
<li><a name="toc_Machine-Desc" href="#Machine-Desc">16 Machine Descriptions</a>
<ul>
<li><a href="#Overview">16.1 Overview of How the Machine Description is Used</a>
<li><a href="#Patterns">16.2 Everything about Instruction Patterns</a>
<li><a href="#Example">16.3 Example of <code>define_insn</code></a>
<li><a href="#RTL-Template">16.4 RTL Template</a>
<li><a href="#Output-Template">16.5 Output Templates and Operand Substitution</a>
<li><a href="#Output-Statement">16.6 C Statements for Assembler Output</a>
<li><a href="#Predicates">16.7 Predicates</a>
<ul>
<li><a href="#Machine_002dIndependent-Predicates">16.7.1 Machine-Independent Predicates</a>
<li><a href="#Defining-Predicates">16.7.2 Defining Machine-Specific Predicates</a>
</li></ul>
<li><a href="#Constraints">16.8 Operand Constraints</a>
<ul>
<li><a href="#Simple-Constraints">16.8.1 Simple Constraints</a>
<li><a href="#Multi_002dAlternative">16.8.2 Multiple Alternative Constraints</a>
<li><a href="#Class-Preferences">16.8.3 Register Class Preferences</a>
<li><a href="#Modifiers">16.8.4 Constraint Modifier Characters</a>
<li><a href="#Machine-Constraints">16.8.5 Constraints for Particular Machines</a>
<li><a href="#Disable-Insn-Alternatives">16.8.6 Disable insn alternatives using the <code>enabled</code> attribute</a>
<li><a href="#Define-Constraints">16.8.7 Defining Machine-Specific Constraints</a>
<li><a href="#C-Constraint-Interface">16.8.8 Testing constraints from C</a>
</li></ul>
<li><a href="#Standard-Names">16.9 Standard Pattern Names For Generation</a>
<li><a href="#Pattern-Ordering">16.10 When the Order of Patterns Matters</a>
<li><a href="#Dependent-Patterns">16.11 Interdependence of Patterns</a>
<li><a href="#Jump-Patterns">16.12 Defining Jump Instruction Patterns</a>
<li><a href="#Looping-Patterns">16.13 Defining Looping Instruction Patterns</a>
<li><a href="#Insn-Canonicalizations">16.14 Canonicalization of Instructions</a>
<li><a href="#Expander-Definitions">16.15 Defining RTL Sequences for Code Generation</a>
<li><a href="#Insn-Splitting">16.16 Defining How to Split Instructions</a>
<li><a href="#Including-Patterns">16.17 Including Patterns in Machine Descriptions.</a>
<ul>
<li><a href="#Including-Patterns">16.17.1 RTL Generation Tool Options for Directory Search</a>
</li></ul>
<li><a href="#Peephole-Definitions">16.18 Machine-Specific Peephole Optimizers</a>
<ul>
<li><a href="#define_005fpeephole">16.18.1 RTL to Text Peephole Optimizers</a>
<li><a href="#define_005fpeephole2">16.18.2 RTL to RTL Peephole Optimizers</a>
</li></ul>
<li><a href="#Insn-Attributes">16.19 Instruction Attributes</a>
<ul>
<li><a href="#Defining-Attributes">16.19.1 Defining Attributes and their Values</a>
<li><a href="#Expressions">16.19.2 Attribute Expressions</a>
<li><a href="#Tagging-Insns">16.19.3 Assigning Attribute Values to Insns</a>
<li><a href="#Attr-Example">16.19.4 Example of Attribute Specifications</a>
<li><a href="#Insn-Lengths">16.19.5 Computing the Length of an Insn</a>
<li><a href="#Constant-Attributes">16.19.6 Constant Attributes</a>
<li><a href="#Delay-Slots">16.19.7 Delay Slot Scheduling</a>
<li><a href="#Processor-pipeline-description">16.19.8 Specifying processor pipeline description</a>
</li></ul>
<li><a href="#Conditional-Execution">16.20 Conditional Execution</a>
<li><a href="#Constant-Definitions">16.21 Constant Definitions</a>
<li><a href="#Iterators">16.22 Iterators</a>
<ul>
<li><a href="#Mode-Iterators">16.22.1 Mode Iterators</a>
<ul>
<li><a href="#Defining-Mode-Iterators">16.22.1.1 Defining Mode Iterators</a>
<li><a href="#Substitutions">16.22.1.2 Substitution in Mode Iterators</a>
<li><a href="#Examples">16.22.1.3 Mode Iterator Examples</a>
</li></ul>
<li><a href="#Code-Iterators">16.22.2 Code Iterators</a>
</li></ul>
</li></ul>
<li><a name="toc_Target-Macros" href="#Target-Macros">17 Target Description Macros and Functions</a>
<ul>
<li><a href="#Target-Structure">17.1 The Global <code>targetm</code> Variable</a>
<li><a href="#Driver">17.2 Controlling the Compilation Driver, <samp><span class="file">gcc</span></samp></a>
<li><a href="#Run_002dtime-Target">17.3 Run-time Target Specification</a>
<li><a href="#Per_002dFunction-Data">17.4 Defining data structures for per-function information.</a>
<li><a href="#Storage-Layout">17.5 Storage Layout</a>
<li><a href="#Type-Layout">17.6 Layout of Source Language Data Types</a>
<li><a href="#Registers">17.7 Register Usage</a>
<ul>
<li><a href="#Register-Basics">17.7.1 Basic Characteristics of Registers</a>
<li><a href="#Allocation-Order">17.7.2 Order of Allocation of Registers</a>
<li><a href="#Values-in-Registers">17.7.3 How Values Fit in Registers</a>
<li><a href="#Leaf-Functions">17.7.4 Handling Leaf Functions</a>
<li><a href="#Stack-Registers">17.7.5 Registers That Form a Stack</a>
</li></ul>
<li><a href="#Register-Classes">17.8 Register Classes</a>
<li><a href="#Old-Constraints">17.9 Obsolete Macros for Defining Constraints</a>
<li><a href="#Stack-and-Calling">17.10 Stack Layout and Calling Conventions</a>
<ul>
<li><a href="#Frame-Layout">17.10.1 Basic Stack Layout</a>
<li><a href="#Exception-Handling">17.10.2 Exception Handling Support</a>
<li><a href="#Stack-Checking">17.10.3 Specifying How Stack Checking is Done</a>
<li><a href="#Frame-Registers">17.10.4 Registers That Address the Stack Frame</a>
<li><a href="#Elimination">17.10.5 Eliminating Frame Pointer and Arg Pointer</a>
<li><a href="#Stack-Arguments">17.10.6 Passing Function Arguments on the Stack</a>
<li><a href="#Register-Arguments">17.10.7 Passing Arguments in Registers</a>
<li><a href="#Scalar-Return">17.10.8 How Scalar Function Values Are Returned</a>
<li><a href="#Aggregate-Return">17.10.9 How Large Values Are Returned</a>
<li><a href="#Caller-Saves">17.10.10 Caller-Saves Register Allocation</a>
<li><a href="#Function-Entry">17.10.11 Function Entry and Exit</a>
<li><a href="#Profiling">17.10.12 Generating Code for Profiling</a>
<li><a href="#Tail-Calls">17.10.13 Permitting tail calls</a>
<li><a href="#Stack-Smashing-Protection">17.10.14 Stack smashing protection</a>
</li></ul>
<li><a href="#Varargs">17.11 Implementing the Varargs Macros</a>
<li><a href="#Trampolines">17.12 Trampolines for Nested Functions</a>
<li><a href="#Library-Calls">17.13 Implicit Calls to Library Routines</a>
<li><a href="#Addressing-Modes">17.14 Addressing Modes</a>
<li><a href="#Anchored-Addresses">17.15 Anchored Addresses</a>
<li><a href="#Condition-Code">17.16 Condition Code Status</a>
<ul>
<li><a href="#CC0-Condition-Codes">17.16.1 Representation of condition codes using <code>(cc0)</code></a>
<li><a href="#MODE_005fCC-Condition-Codes">17.16.2 Representation of condition codes using registers</a>
<li><a href="#Cond-Exec-Macros">17.16.3 Macros to control conditional execution</a>
</li></ul>
<li><a href="#Costs">17.17 Describing Relative Costs of Operations</a>
<li><a href="#Scheduling">17.18 Adjusting the Instruction Scheduler</a>
<li><a href="#Sections">17.19 Dividing the Output into Sections (Texts, Data, <small class="dots">...</small>)</a>
<li><a href="#PIC">17.20 Position Independent Code</a>
<li><a href="#Assembler-Format">17.21 Defining the Output Assembler Language</a>
<ul>
<li><a href="#File-Framework">17.21.1 The Overall Framework of an Assembler File</a>
<li><a href="#Data-Output">17.21.2 Output of Data</a>
<li><a href="#Uninitialized-Data">17.21.3 Output of Uninitialized Variables</a>
<li><a href="#Label-Output">17.21.4 Output and Generation of Labels</a>
<li><a href="#Initialization">17.21.5 How Initialization Functions Are Handled</a>
<li><a href="#Macros-for-Initialization">17.21.6 Macros Controlling Initialization Routines</a>
<li><a href="#Instruction-Output">17.21.7 Output of Assembler Instructions</a>
<li><a href="#Dispatch-Tables">17.21.8 Output of Dispatch Tables</a>
<li><a href="#Exception-Region-Output">17.21.9 Assembler Commands for Exception Regions</a>
<li><a href="#Alignment-Output">17.21.10 Assembler Commands for Alignment</a>
</li></ul>
<li><a href="#Debugging-Info">17.22 Controlling Debugging Information Format</a>
<ul>
<li><a href="#All-Debuggers">17.22.1 Macros Affecting All Debugging Formats</a>
<li><a href="#DBX-Options">17.22.2 Specific Options for DBX Output</a>
<li><a href="#DBX-Hooks">17.22.3 Open-Ended Hooks for DBX Format</a>
<li><a href="#File-Names-and-DBX">17.22.4 File Names in DBX Format</a>
<li><a href="#SDB-and-DWARF">17.22.5 Macros for SDB and DWARF Output</a>
<li><a href="#VMS-Debug">17.22.6 Macros for VMS Debug Format</a>
</li></ul>
<li><a href="#Floating-Point">17.23 Cross Compilation and Floating Point</a>
<li><a href="#Mode-Switching">17.24 Mode Switching Instructions</a>
<li><a href="#Target-Attributes">17.25 Defining target-specific uses of <code>__attribute__</code></a>
<li><a href="#Emulated-TLS">17.26 Emulating TLS</a>
<li><a href="#MIPS-Coprocessors">17.27 Defining coprocessor specifics for MIPS targets.</a>
<li><a href="#PCH-Target">17.28 Parameters for Precompiled Header Validity Checking</a>
<li><a href="#C_002b_002b-ABI">17.29 C++ ABI parameters</a>
<li><a href="#Named-Address-Spaces">17.30 Adding support for named address spaces</a>
<li><a href="#Misc">17.31 Miscellaneous Parameters</a>
</li></ul>
<li><a name="toc_Host-Config" href="#Host-Config">18 Host Configuration</a>
<ul>
<li><a href="#Host-Common">18.1 Host Common</a>
<li><a href="#Filesystem">18.2 Host Filesystem</a>
<li><a href="#Host-Misc">18.3 Host Misc</a>
</li></ul>
<li><a name="toc_Fragments" href="#Fragments">19 Makefile Fragments</a>
<ul>
<li><a href="#Target-Fragment">19.1 Target Makefile Fragments</a>
<li><a href="#Host-Fragment">19.2 Host Makefile Fragments</a>
</li></ul>
<li><a name="toc_Collect2" href="#Collect2">20 <code>collect2</code></a>
<li><a name="toc_Header-Dirs" href="#Header-Dirs">21 Standard Header File Directories</a>
<li><a name="toc_Type-Information" href="#Type-Information">22 Memory Management and Type Information</a>
<ul>
<li><a href="#GTY-Options">22.1 The Inside of a <code>GTY(())</code></a>
<li><a href="#GGC-Roots">22.2 Marking Roots for the Garbage Collector</a>
<li><a href="#Files">22.3 Source Files Containing Type Information</a>
<li><a href="#Invoking-the-garbage-collector">22.4 How to invoke the garbage collector</a>
<li><a href="#Troubleshooting">22.5 Troubleshooting the garbage collector</a>
</li></ul>
<li><a name="toc_Plugins" href="#Plugins">23 Plugins</a>
<ul>
<li><a href="#Plugins">23.1 Loading Plugins</a>
<li><a href="#Plugins">23.2 Plugin API</a>
<ul>
<li><a href="#Plugins">23.2.1 Plugin license check</a>
<li><a href="#Plugins">23.2.2 Plugin initialization</a>
<li><a href="#Plugins">23.2.3 Plugin callbacks</a>
</li></ul>
<li><a href="#Plugins">23.3 Interacting with the pass manager</a>
<li><a href="#Plugins">23.4 Interacting with the GCC Garbage Collector</a>
<li><a href="#Plugins">23.5 Giving information about a plugin</a>
<li><a href="#Plugins">23.6 Registering custom attributes or pragmas</a>
<li><a href="#Plugins">23.7 Recording information about pass execution</a>
<li><a href="#Plugins">23.8 Controlling which passes are being run</a>
<li><a href="#Plugins">23.9 Keeping track of available passes</a>
<li><a href="#Plugins">23.10 Building GCC plugins</a>
</li></ul>
<li><a name="toc_LTO" href="#LTO">24 Link Time Optimization</a>
<ul>
<li><a href="#LTO">24.1 Design Overview</a>
<ul>
<li><a href="#LTO">24.1.1 LTO modes of operation</a>
</li></ul>
<li><a href="#LTO">24.2 LTO file sections</a>
<li><a href="#LTO">24.3 Using summary information in IPA passes</a>
<ul>
<li><a href="#LTO">24.3.1 Virtual clones</a>
<li><a href="#LTO">24.3.2 IPA references</a>
<li><a href="#LTO">24.3.3 Jump functions</a>
</li></ul>
<li><a href="#LTO">24.4 Whole program assumptions, linker plugin and symbol visibilities</a>
<li><a href="#LTO">24.5 Internal flags controlling <code>lto1</code></a>
</li></ul>
<li><a name="toc_Funding" href="#Funding">Funding Free Software</a>
<li><a name="toc_GNU-Project" href="#GNU-Project">The GNU Project and GNU/Linux</a>
<li><a name="toc_Copying" href="#Copying">GNU General Public License</a>
<li><a name="toc_GNU-Free-Documentation-License" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>
<ul>
<li><a href="#GNU-Free-Documentation-License">ADDENDUM: How to use this License for your documents</a>
</li></ul>
<li><a name="toc_Contributors" href="#Contributors">Contributors to GCC</a>
<li><a name="toc_Option-Index" href="#Option-Index">Option Index</a>
<li><a name="toc_Concept-Index" href="#Concept-Index">Concept Index</a>
</li></ul>
</div>
<div class="node">
<a name="Top"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Contributing">Contributing</a>,
Up: <a rel="up" accesskey="u" href="#DIR">(DIR)</a>
</div>
<h2 class="unnumbered">Introduction</h2>
<p><a name="index-introduction-1"></a>
This manual documents the internals of the GNU compilers, including
how to port them to new targets and some information about how to
write front ends for new languages. It corresponds to the compilers
(Ubuntu/Linaro 4.6.3-1ubuntu5)
version 4.6.3. The use of the GNU compilers is documented in a
separate manual. See <a href="{No value for `fngcc'}.html#Top">Introduction</a>.
<p>This manual is mainly a reference manual rather than a tutorial. It
discusses how to contribute to GCC (see <a href="#Contributing">Contributing</a>), the
characteristics of the machines supported by GCC as hosts and targets
(see <a href="#Portability">Portability</a>), how GCC relates to the ABIs on such systems
(see <a href="#Interface">Interface</a>), and the characteristics of the languages for
which GCC front ends are written (see <a href="#Languages">Languages</a>). It then
describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is
implemented in GCC.
<p>Additional tutorial information is linked to from
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>.
<ul class="menu">
<li><a accesskey="1" href="#Contributing">Contributing</a>: How to contribute to testing and developing GCC.
<li><a accesskey="2" href="#Portability">Portability</a>: Goals of GCC's portability features.
<li><a accesskey="3" href="#Interface">Interface</a>: Function-call interface of GCC output.
<li><a accesskey="4" href="#Libgcc">Libgcc</a>: Low-level runtime library used by GCC.
<li><a accesskey="5" href="#Languages">Languages</a>: Languages for which GCC front ends are written.
<li><a accesskey="6" href="#Source-Tree">Source Tree</a>: GCC source tree structure and build system.
<li><a accesskey="7" href="#Testsuites">Testsuites</a>: GCC testsuites.
<li><a accesskey="8" href="#Options">Options</a>: Option specification files.
<li><a accesskey="9" href="#Passes">Passes</a>: Order of passes, what they do, and what each file is for.
<li><a href="#GENERIC">GENERIC</a>: Language-independent representation generated by Front Ends
<li><a href="#GIMPLE">GIMPLE</a>: Tuple representation used by Tree SSA optimizers
<li><a href="#Tree-SSA">Tree SSA</a>: Analysis and optimization of GIMPLE
<li><a href="#RTL">RTL</a>: Machine-dependent low-level intermediate representation.
<li><a href="#Control-Flow">Control Flow</a>: Maintaining and manipulating the control flow graph.
<li><a href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>: Analysis and representation of loops
<li><a href="#Machine-Desc">Machine Desc</a>: How to write machine description instruction patterns.
<li><a href="#Target-Macros">Target Macros</a>: How to write the machine description C macros and functions.
<li><a href="#Host-Config">Host Config</a>: Writing the <samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp> file.
<li><a href="#Fragments">Fragments</a>: Writing the <samp><span class="file">t-</span><var>target</var></samp> and <samp><span class="file">x-</span><var>host</var></samp> files.
<li><a href="#Collect2">Collect2</a>: How <code>collect2</code> works; how it finds <code>ld</code>.
<li><a href="#Header-Dirs">Header Dirs</a>: Understanding the standard header file directories.
<li><a href="#Type-Information">Type Information</a>: GCC's memory management; generating type information.
<li><a href="#Plugins">Plugins</a>: Extending the compiler with plugins.
<li><a href="#LTO">LTO</a>: Using Link-Time Optimization.
<li><a href="#Funding">Funding</a>: How to help assure funding for free software.
<li><a href="#GNU-Project">GNU Project</a>: The GNU Project and GNU/Linux.
<li><a href="#Copying">Copying</a>: GNU General Public License says
how you can copy and share GCC.
<li><a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>: How you can copy and share this manual.
<li><a href="#Contributors">Contributors</a>: People who have contributed to GCC.
<li><a href="#Option-Index">Option Index</a>: Index to command line options.
<li><a href="#Concept-Index">Concept Index</a>: Index of concepts and symbol names.
</ul>
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2004, 2006 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Portability">Portability</a>,
Previous: <a rel="previous" accesskey="p" href="#Top">Top</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">1 Contributing to GCC Development</h2>
<p>If you would like to help pretest GCC releases to assure they work well,
current development sources are available by SVN (see
<a href="http://gcc.gnu.org/svn.html">http://gcc.gnu.org/svn.html</a>). Source and binary snapshots are
also available for FTP; see <a href="http://gcc.gnu.org/snapshots.html">http://gcc.gnu.org/snapshots.html</a>.
<p>If you would like to work on improvements to GCC, please read the
advice at these URLs:
<pre class="smallexample"> <a href="http://gcc.gnu.org/contribute.html">http://gcc.gnu.org/contribute.html</a>
<a href="http://gcc.gnu.org/contributewhy.html">http://gcc.gnu.org/contributewhy.html</a>
</pre>
<p class="noindent">for information on how to make useful contributions and avoid
duplication of effort. Suggested projects are listed at
<a href="http://gcc.gnu.org/projects/">http://gcc.gnu.org/projects/</a>.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Portability"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Interface">Interface</a>,
Previous: <a rel="previous" accesskey="p" href="#Contributing">Contributing</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">2 GCC and Portability</h2>
<p><a name="index-portability-2"></a><a name="index-GCC-and-portability-3"></a>
GCC itself aims to be portable to any machine where <code>int</code> is at least
a 32-bit type. It aims to target machines with a flat (non-segmented) byte
addressed data address space (the code address space can be separate).
Target ABIs may have 8, 16, 32 or 64-bit <code>int</code> type. <code>char</code>
can be wider than 8 bits.
<p>GCC gets most of the information about the target machine from a machine
description which gives an algebraic formula for each of the machine's
instructions. This is a very clean way to describe the target. But when
the compiler needs information that is difficult to express in this
fashion, ad-hoc parameters have been defined for machine descriptions.
The purpose of portability is to reduce the total work needed on the
compiler; it was not of interest for its own sake.
<p><a name="index-endianness-4"></a><a name="index-autoincrement-addressing_002c-availability-5"></a><a name="index-abort-6"></a>GCC does not contain machine dependent code, but it does contain code
that depends on machine parameters such as endianness (whether the most
significant byte has the highest or lowest address of the bytes in a word)
and the availability of autoincrement addressing. In the RTL-generation
pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different
combinations of parameters. Often, not all possible cases have been
addressed, but only the common ones or only the ones that have been
encountered. As a result, a new target may require additional
strategies. You will know
if this happens because the compiler will call <code>abort</code>. Fortunately,
the new strategies can be added in a machine-independent fashion, and will
affect only the target machines that need them.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Interface"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Libgcc">Libgcc</a>,
Previous: <a rel="previous" accesskey="p" href="#Portability">Portability</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">3 Interfacing to GCC Output</h2>
<p><a name="index-interfacing-to-GCC-output-7"></a><a name="index-run_002dtime-conventions-8"></a><a name="index-function-call-conventions-9"></a><a name="index-conventions_002c-run_002dtime-10"></a>
GCC is normally configured to use the same function calling convention
normally in use on the target system. This is done with the
machine-description macros described (see <a href="#Target-Macros">Target Macros</a>).
<p><a name="index-unions_002c-returning-11"></a><a name="index-structures_002c-returning-12"></a><a name="index-returning-structures-and-unions-13"></a>However, returning of structure and union values is done differently on
some target machines. As a result, functions compiled with PCC
returning such types cannot be called from code compiled with GCC,
and vice versa. This does not cause trouble often because few Unix
library routines return structures or unions.
<p>GCC code returns structures and unions that are 1, 2, 4 or 8 bytes
long in the same registers used for <code>int</code> or <code>double</code> return
values. (GCC typically allocates variables of such types in
registers also.) Structures and unions of other sizes are returned by
storing them into an address passed by the caller (usually in a
register). The target hook <code>TARGET_STRUCT_VALUE_RTX</code>
tells GCC where to pass this address.
<p>By contrast, PCC on most target machines returns structures and unions
of any size by copying the data into an area of static storage, and then
returning the address of that storage as if it were a pointer value.
The caller must copy the data from that memory area to the place where
the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.
<p>On some target machines, such as RISC machines and the 80386, the
standard system convention is to pass to the subroutine the address of
where to return the value. On these machines, GCC has been
configured to be compatible with the standard compiler, when this method
is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.
<p><a name="index-argument-passing-14"></a><a name="index-passing-arguments-15"></a>GCC uses the system's standard convention for passing arguments. On
some machines, the first few arguments are passed in registers; in
others, all are passed on the stack. It would be possible to use
registers for argument passing on any machine, and this would probably
result in a significant speedup. But the result would be complete
incompatibility with code that follows the standard convention. So this
change is practical only if you are switching to GCC as the sole C
compiler for the system. We may implement register argument passing on
certain machines once we have a complete GNU system so that we can
compile the libraries with GCC.
<p>On some machines (particularly the SPARC), certain types of arguments
are passed “by invisible reference”. This means that the value is
stored in memory, and the address of the memory location is passed to
the subroutine.
<p><a name="index-g_t_0040code_007blongjmp_007d-and-automatic-variables-16"></a>If you use <code>longjmp</code>, beware of automatic variables. ISO C says that
automatic variables that are not declared <code>volatile</code> have undefined
values after a <code>longjmp</code>. And this is all GCC promises to do,
because it is very difficult to restore register variables correctly, and
one of GCC's features is that it can put variables in registers without
your asking it to.
<!-- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- Contributed by Aldy Hernandez <aldy@quesejoda.com> -->
<div class="node">
<a name="Libgcc"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Languages">Languages</a>,
Previous: <a rel="previous" accesskey="p" href="#Interface">Interface</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">4 The GCC low-level runtime library</h2>
<p>GCC provides a low-level runtime library, <samp><span class="file">libgcc.a</span></samp> or
<samp><span class="file">libgcc_s.so.1</span></samp> on some platforms. GCC generates calls to
routines in this library automatically, whenever it needs to perform
some operation that is too complicated to emit inline code for.
<p>Most of the routines in <code>libgcc</code> handle arithmetic operations
that the target processor cannot perform directly. This includes
integer multiply and divide on some machines, and all floating-point
and fixed-point operations on other machines. <code>libgcc</code> also includes
routines for exception handling, and a handful of miscellaneous operations.
<p>Some of these routines can be defined in mostly machine-independent C.
Others must be hand-written in assembly language for each processor
that needs them.
<p>GCC will also generate calls to C library routines, such as
<code>memcpy</code> and <code>memset</code>, in some cases. The set of routines
that GCC may possibly use is documented in <a href="{No value for `fngcc'}.html#Other-Builtins">Other Builtins</a>.
<p>These routines take arguments and return values of a specific machine
mode, not a specific C type. See <a href="#Machine-Modes">Machine Modes</a>, for an explanation
of this concept. For illustrative purposes, in this chapter the
floating point type <code>float</code> is assumed to correspond to <code>SFmode</code>;
<code>double</code> to <code>DFmode</code>; and <code>long double<!-- /@w --></code> to both
<code>TFmode</code> and <code>XFmode</code>. Similarly, the integer types <code>int</code>
and <code>unsigned int<!-- /@w --></code> correspond to <code>SImode</code>; <code>long</code> and
<code>unsigned long<!-- /@w --></code> to <code>DImode</code>; and <code>long long<!-- /@w --></code> and
<code>unsigned long long<!-- /@w --></code> to <code>TImode</code>.
<ul class="menu">
<li><a accesskey="1" href="#Integer-library-routines">Integer library routines</a>
<li><a accesskey="2" href="#Soft-float-library-routines">Soft float library routines</a>
<li><a accesskey="3" href="#Decimal-float-library-routines">Decimal float library routines</a>
<li><a accesskey="4" href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a>
<li><a accesskey="5" href="#Exception-handling-routines">Exception handling routines</a>
<li><a accesskey="6" href="#Miscellaneous-routines">Miscellaneous routines</a>
</ul>
<div class="node">
<a name="Integer-library-routines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Soft-float-library-routines">Soft float library routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.1 Routines for integer arithmetic</h3>
<p>The integer arithmetic routines are used on platforms that don't provide
hardware support for arithmetic operations on some modes.
<h4 class="subsection">4.1.1 Arithmetic functions</h4>
<div class="defun">
— Runtime Function: int <b>__ashlsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fashlsi3-17"></a></var><br>
— Runtime Function: long <b>__ashldi3</b> (<var>long a, int b</var>)<var><a name="index-g_t_005f_005fashldi3-18"></a></var><br>
— Runtime Function: long long <b>__ashlti3</b> (<var>long long a, int b</var>)<var><a name="index-g_t_005f_005fashlti3-19"></a></var><br>
<blockquote><p>These functions return the result of shifting <var>a</var> left by <var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__ashrsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fashrsi3-20"></a></var><br>
— Runtime Function: long <b>__ashrdi3</b> (<var>long a, int b</var>)<var><a name="index-g_t_005f_005fashrdi3-21"></a></var><br>
— Runtime Function: long long <b>__ashrti3</b> (<var>long long a, int b</var>)<var><a name="index-g_t_005f_005fashrti3-22"></a></var><br>
<blockquote><p>These functions return the result of arithmetically shifting <var>a</var> right
by <var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__divsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fdivsi3-23"></a></var><br>
— Runtime Function: long <b>__divdi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fdivdi3-24"></a></var><br>
— Runtime Function: long long <b>__divti3</b> (<var>long long a, long long b</var>)<var><a name="index-g_t_005f_005fdivti3-25"></a></var><br>
<blockquote><p>These functions return the quotient of the signed division of <var>a</var> and
<var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__lshrsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005flshrsi3-26"></a></var><br>
— Runtime Function: long <b>__lshrdi3</b> (<var>long a, int b</var>)<var><a name="index-g_t_005f_005flshrdi3-27"></a></var><br>
— Runtime Function: long long <b>__lshrti3</b> (<var>long long a, int b</var>)<var><a name="index-g_t_005f_005flshrti3-28"></a></var><br>
<blockquote><p>These functions return the result of logically shifting <var>a</var> right by
<var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__modsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fmodsi3-29"></a></var><br>
— Runtime Function: long <b>__moddi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fmoddi3-30"></a></var><br>
— Runtime Function: long long <b>__modti3</b> (<var>long long a, long long b</var>)<var><a name="index-g_t_005f_005fmodti3-31"></a></var><br>
<blockquote><p>These functions return the remainder of the signed division of <var>a</var>
and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__mulsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fmulsi3-32"></a></var><br>
— Runtime Function: long <b>__muldi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fmuldi3-33"></a></var><br>
— Runtime Function: long long <b>__multi3</b> (<var>long long a, long long b</var>)<var><a name="index-g_t_005f_005fmulti3-34"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: long <b>__negdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fnegdi2-35"></a></var><br>
— Runtime Function: long long <b>__negti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fnegti2-36"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned int <b>__udivsi3</b> (<var>unsigned int a, unsigned int b</var>)<var><a name="index-g_t_005f_005fudivsi3-37"></a></var><br>
— Runtime Function: unsigned long <b>__udivdi3</b> (<var>unsigned long a, unsigned long b</var>)<var><a name="index-g_t_005f_005fudivdi3-38"></a></var><br>
— Runtime Function: unsigned long long <b>__udivti3</b> (<var>unsigned long long a, unsigned long long b</var>)<var><a name="index-g_t_005f_005fudivti3-39"></a></var><br>
<blockquote><p>These functions return the quotient of the unsigned division of <var>a</var>
and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned long <b>__udivmoddi3</b> (<var>unsigned long a, unsigned long b, unsigned long *c</var>)<var><a name="index-g_t_005f_005fudivmoddi3-40"></a></var><br>
— Runtime Function: unsigned long long <b>__udivti3</b> (<var>unsigned long long a, unsigned long long b, unsigned long long *c</var>)<var><a name="index-g_t_005f_005fudivti3-41"></a></var><br>
<blockquote><p>These functions calculate both the quotient and remainder of the unsigned
division of <var>a</var> and <var>b</var>. The return value is the quotient, and
the remainder is placed in variable pointed to by <var>c</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned int <b>__umodsi3</b> (<var>unsigned int a, unsigned int b</var>)<var><a name="index-g_t_005f_005fumodsi3-42"></a></var><br>
— Runtime Function: unsigned long <b>__umoddi3</b> (<var>unsigned long a, unsigned long b</var>)<var><a name="index-g_t_005f_005fumoddi3-43"></a></var><br>
— Runtime Function: unsigned long long <b>__umodti3</b> (<var>unsigned long long a, unsigned long long b</var>)<var><a name="index-g_t_005f_005fumodti3-44"></a></var><br>
<blockquote><p>These functions return the remainder of the unsigned division of <var>a</var>
and <var>b</var>.
</p></blockquote></div>
<h4 class="subsection">4.1.2 Comparison functions</h4>
<p>The following functions implement integral comparisons. These functions
implement a low-level compare, upon which the higher level comparison
operators (such as less than and greater than or equal to) can be
constructed. The returned values lie in the range zero to two, to allow
the high-level operators to be implemented by testing the returned
result using either signed or unsigned comparison.
<div class="defun">
— Runtime Function: int <b>__cmpdi2</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fcmpdi2-45"></a></var><br>
— Runtime Function: int <b>__cmpti2</b> (<var>long long a, long long b</var>)<var><a name="index-g_t_005f_005fcmpti2-46"></a></var><br>
<blockquote><p>These functions perform a signed comparison of <var>a</var> and <var>b</var>. If
<var>a</var> is less than <var>b</var>, they return 0; if <var>a</var> is greater than
<var>b</var>, they return 2; and if <var>a</var> and <var>b</var> are equal they return 1.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__ucmpdi2</b> (<var>unsigned long a, unsigned long b</var>)<var><a name="index-g_t_005f_005fucmpdi2-47"></a></var><br>
— Runtime Function: int <b>__ucmpti2</b> (<var>unsigned long long a, unsigned long long b</var>)<var><a name="index-g_t_005f_005fucmpti2-48"></a></var><br>
<blockquote><p>These functions perform an unsigned comparison of <var>a</var> and <var>b</var>.
If <var>a</var> is less than <var>b</var>, they return 0; if <var>a</var> is greater than
<var>b</var>, they return 2; and if <var>a</var> and <var>b</var> are equal they return 1.
</p></blockquote></div>
<h4 class="subsection">4.1.3 Trapping arithmetic functions</h4>
<p>The following functions implement trapping arithmetic. These functions
call the libc function <code>abort</code> upon signed arithmetic overflow.
<div class="defun">
— Runtime Function: int <b>__absvsi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fabsvsi2-49"></a></var><br>
— Runtime Function: long <b>__absvdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fabsvdi2-50"></a></var><br>
<blockquote><p>These functions return the absolute value of <var>a</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__addvsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005faddvsi3-51"></a></var><br>
— Runtime Function: long <b>__addvdi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005faddvdi3-52"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var>; that is
<var>a</var><code> + </code><var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__mulvsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fmulvsi3-53"></a></var><br>
— Runtime Function: long <b>__mulvdi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fmulvdi3-54"></a></var><br>
<blockquote><p>The functions return the product of <var>a</var> and <var>b</var>; that is
<var>a</var><code> * </code><var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__negvsi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fnegvsi2-55"></a></var><br>
— Runtime Function: long <b>__negvdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fnegvdi2-56"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var>; that is <code>-</code><var>a</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__subvsi3</b> (<var>int a, int b</var>)<var><a name="index-g_t_005f_005fsubvsi3-57"></a></var><br>
— Runtime Function: long <b>__subvdi3</b> (<var>long a, long b</var>)<var><a name="index-g_t_005f_005fsubvdi3-58"></a></var><br>
<blockquote><p>These functions return the difference between <var>b</var> and <var>a</var>;
that is <var>a</var><code> - </code><var>b</var>.
</p></blockquote></div>
<h4 class="subsection">4.1.4 Bit operations</h4>
<div class="defun">
— Runtime Function: int <b>__clzsi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fclzsi2-59"></a></var><br>
— Runtime Function: int <b>__clzdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fclzdi2-60"></a></var><br>
— Runtime Function: int <b>__clzti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fclzti2-61"></a></var><br>
<blockquote><p>These functions return the number of leading 0-bits in <var>a</var>, starting
at the most significant bit position. If <var>a</var> is zero, the result is
undefined.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__ctzsi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fctzsi2-62"></a></var><br>
— Runtime Function: int <b>__ctzdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fctzdi2-63"></a></var><br>
— Runtime Function: int <b>__ctzti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fctzti2-64"></a></var><br>
<blockquote><p>These functions return the number of trailing 0-bits in <var>a</var>, starting
at the least significant bit position. If <var>a</var> is zero, the result is
undefined.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__ffsdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fffsdi2-65"></a></var><br>
— Runtime Function: int <b>__ffsti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fffsti2-66"></a></var><br>
<blockquote><p>These functions return the index of the least significant 1-bit in <var>a</var>,
or the value zero if <var>a</var> is zero. The least significant bit is index
one.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__paritysi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fparitysi2-67"></a></var><br>
— Runtime Function: int <b>__paritydi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fparitydi2-68"></a></var><br>
— Runtime Function: int <b>__parityti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fparityti2-69"></a></var><br>
<blockquote><p>These functions return the value zero if the number of bits set in
<var>a</var> is even, and the value one otherwise.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__popcountsi2</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fpopcountsi2-70"></a></var><br>
— Runtime Function: int <b>__popcountdi2</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fpopcountdi2-71"></a></var><br>
— Runtime Function: int <b>__popcountti2</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fpopcountti2-72"></a></var><br>
<blockquote><p>These functions return the number of bits set in <var>a</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int32_t <b>__bswapsi2</b> (<var>int32_t a</var>)<var><a name="index-g_t_005f_005fbswapsi2-73"></a></var><br>
— Runtime Function: int64_t <b>__bswapdi2</b> (<var>int64_t a</var>)<var><a name="index-g_t_005f_005fbswapdi2-74"></a></var><br>
<blockquote><p>These functions return the <var>a</var> byteswapped.
</p></blockquote></div>
<div class="node">
<a name="Soft-float-library-routines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Decimal-float-library-routines">Decimal float library routines</a>,
Previous: <a rel="previous" accesskey="p" href="#Integer-library-routines">Integer library routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.2 Routines for floating point emulation</h3>
<p><a name="index-soft-float-library-75"></a><a name="index-arithmetic-library-76"></a><a name="index-math-library-77"></a><a name="index-msoft_002dfloat-78"></a>
The software floating point library is used on machines which do not
have hardware support for floating point. It is also used whenever
<samp><span class="option">-msoft-float</span></samp> is used to disable generation of floating point
instructions. (Not all targets support this switch.)
<p>For compatibility with other compilers, the floating point emulation
routines can be renamed with the <code>DECLARE_LIBRARY_RENAMES</code> macro
(see <a href="#Library-Calls">Library Calls</a>). In this section, the default names are used.
<p>Presently the library does not support <code>XFmode</code>, which is used
for <code>long double</code> on some architectures.
<h4 class="subsection">4.2.1 Arithmetic functions</h4>
<div class="defun">
— Runtime Function: float <b>__addsf3</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005faddsf3-79"></a></var><br>
— Runtime Function: double <b>__adddf3</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fadddf3-80"></a></var><br>
— Runtime Function: long double <b>__addtf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005faddtf3-81"></a></var><br>
— Runtime Function: long double <b>__addxf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005faddxf3-82"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__subsf3</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fsubsf3-83"></a></var><br>
— Runtime Function: double <b>__subdf3</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fsubdf3-84"></a></var><br>
— Runtime Function: long double <b>__subtf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fsubtf3-85"></a></var><br>
— Runtime Function: long double <b>__subxf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fsubxf3-86"></a></var><br>
<blockquote><p>These functions return the difference between <var>b</var> and <var>a</var>;
that is, <var>a</var> - <var>b</var><!-- /@w -->.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__mulsf3</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fmulsf3-87"></a></var><br>
— Runtime Function: double <b>__muldf3</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fmuldf3-88"></a></var><br>
— Runtime Function: long double <b>__multf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fmultf3-89"></a></var><br>
— Runtime Function: long double <b>__mulxf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fmulxf3-90"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__divsf3</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fdivsf3-91"></a></var><br>
— Runtime Function: double <b>__divdf3</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fdivdf3-92"></a></var><br>
— Runtime Function: long double <b>__divtf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fdivtf3-93"></a></var><br>
— Runtime Function: long double <b>__divxf3</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fdivxf3-94"></a></var><br>
<blockquote><p>These functions return the quotient of <var>a</var> and <var>b</var>; that is,
<var>a</var> / <var>b</var><!-- /@w -->.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__negsf2</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fnegsf2-95"></a></var><br>
— Runtime Function: double <b>__negdf2</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fnegdf2-96"></a></var><br>
— Runtime Function: long double <b>__negtf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fnegtf2-97"></a></var><br>
— Runtime Function: long double <b>__negxf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fnegxf2-98"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var>. They simply flip the
sign bit, so they can produce negative zero and negative NaN.
</p></blockquote></div>
<h4 class="subsection">4.2.2 Conversion functions</h4>
<div class="defun">
— Runtime Function: double <b>__extendsfdf2</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fextendsfdf2-99"></a></var><br>
— Runtime Function: long double <b>__extendsftf2</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fextendsftf2-100"></a></var><br>
— Runtime Function: long double <b>__extendsfxf2</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fextendsfxf2-101"></a></var><br>
— Runtime Function: long double <b>__extenddftf2</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fextenddftf2-102"></a></var><br>
— Runtime Function: long double <b>__extenddfxf2</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fextenddfxf2-103"></a></var><br>
<blockquote><p>These functions extend <var>a</var> to the wider mode of their return
type.
</p></blockquote></div>
<div class="defun">
— Runtime Function: double <b>__truncxfdf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ftruncxfdf2-104"></a></var><br>
— Runtime Function: double <b>__trunctfdf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ftrunctfdf2-105"></a></var><br>
— Runtime Function: float <b>__truncxfsf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ftruncxfsf2-106"></a></var><br>
— Runtime Function: float <b>__trunctfsf2</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ftrunctfsf2-107"></a></var><br>
— Runtime Function: float <b>__truncdfsf2</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ftruncdfsf2-108"></a></var><br>
<blockquote><p>These functions truncate <var>a</var> to the narrower mode of their return
type, rounding toward zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__fixsfsi</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixsfsi-109"></a></var><br>
— Runtime Function: int <b>__fixdfsi</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixdfsi-110"></a></var><br>
— Runtime Function: int <b>__fixtfsi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixtfsi-111"></a></var><br>
— Runtime Function: int <b>__fixxfsi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixxfsi-112"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to a signed integer, rounding toward zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: long <b>__fixsfdi</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixsfdi-113"></a></var><br>
— Runtime Function: long <b>__fixdfdi</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixdfdi-114"></a></var><br>
— Runtime Function: long <b>__fixtfdi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixtfdi-115"></a></var><br>
— Runtime Function: long <b>__fixxfdi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixxfdi-116"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to a signed long, rounding toward zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: long long <b>__fixsfti</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixsfti-117"></a></var><br>
— Runtime Function: long long <b>__fixdfti</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixdfti-118"></a></var><br>
— Runtime Function: long long <b>__fixtfti</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixtfti-119"></a></var><br>
— Runtime Function: long long <b>__fixxfti</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixxfti-120"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to a signed long long, rounding toward zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned int <b>__fixunssfsi</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixunssfsi-121"></a></var><br>
— Runtime Function: unsigned int <b>__fixunsdfsi</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixunsdfsi-122"></a></var><br>
— Runtime Function: unsigned int <b>__fixunstfsi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunstfsi-123"></a></var><br>
— Runtime Function: unsigned int <b>__fixunsxfsi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunsxfsi-124"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to an unsigned integer, rounding
toward zero. Negative values all become zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned long <b>__fixunssfdi</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixunssfdi-125"></a></var><br>
— Runtime Function: unsigned long <b>__fixunsdfdi</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixunsdfdi-126"></a></var><br>
— Runtime Function: unsigned long <b>__fixunstfdi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunstfdi-127"></a></var><br>
— Runtime Function: unsigned long <b>__fixunsxfdi</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunsxfdi-128"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to an unsigned long, rounding
toward zero. Negative values all become zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned long long <b>__fixunssfti</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffixunssfti-129"></a></var><br>
— Runtime Function: unsigned long long <b>__fixunsdfti</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffixunsdfti-130"></a></var><br>
— Runtime Function: unsigned long long <b>__fixunstfti</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunstfti-131"></a></var><br>
— Runtime Function: unsigned long long <b>__fixunsxfti</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005ffixunsxfti-132"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to an unsigned long long, rounding
toward zero. Negative values all become zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floatsisf</b> (<var>int i</var>)<var><a name="index-g_t_005f_005ffloatsisf-133"></a></var><br>
— Runtime Function: double <b>__floatsidf</b> (<var>int i</var>)<var><a name="index-g_t_005f_005ffloatsidf-134"></a></var><br>
— Runtime Function: long double <b>__floatsitf</b> (<var>int i</var>)<var><a name="index-g_t_005f_005ffloatsitf-135"></a></var><br>
— Runtime Function: long double <b>__floatsixf</b> (<var>int i</var>)<var><a name="index-g_t_005f_005ffloatsixf-136"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, a signed integer, to floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floatdisf</b> (<var>long i</var>)<var><a name="index-g_t_005f_005ffloatdisf-137"></a></var><br>
— Runtime Function: double <b>__floatdidf</b> (<var>long i</var>)<var><a name="index-g_t_005f_005ffloatdidf-138"></a></var><br>
— Runtime Function: long double <b>__floatditf</b> (<var>long i</var>)<var><a name="index-g_t_005f_005ffloatditf-139"></a></var><br>
— Runtime Function: long double <b>__floatdixf</b> (<var>long i</var>)<var><a name="index-g_t_005f_005ffloatdixf-140"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, a signed long, to floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floattisf</b> (<var>long long i</var>)<var><a name="index-g_t_005f_005ffloattisf-141"></a></var><br>
— Runtime Function: double <b>__floattidf</b> (<var>long long i</var>)<var><a name="index-g_t_005f_005ffloattidf-142"></a></var><br>
— Runtime Function: long double <b>__floattitf</b> (<var>long long i</var>)<var><a name="index-g_t_005f_005ffloattitf-143"></a></var><br>
— Runtime Function: long double <b>__floattixf</b> (<var>long long i</var>)<var><a name="index-g_t_005f_005ffloattixf-144"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, a signed long long, to floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floatunsisf</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005ffloatunsisf-145"></a></var><br>
— Runtime Function: double <b>__floatunsidf</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005ffloatunsidf-146"></a></var><br>
— Runtime Function: long double <b>__floatunsitf</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005ffloatunsitf-147"></a></var><br>
— Runtime Function: long double <b>__floatunsixf</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005ffloatunsixf-148"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, an unsigned integer, to floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floatundisf</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005ffloatundisf-149"></a></var><br>
— Runtime Function: double <b>__floatundidf</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005ffloatundidf-150"></a></var><br>
— Runtime Function: long double <b>__floatunditf</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005ffloatunditf-151"></a></var><br>
— Runtime Function: long double <b>__floatundixf</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005ffloatundixf-152"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, an unsigned long, to floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__floatuntisf</b> (<var>unsigned long long i</var>)<var><a name="index-g_t_005f_005ffloatuntisf-153"></a></var><br>
— Runtime Function: double <b>__floatuntidf</b> (<var>unsigned long long i</var>)<var><a name="index-g_t_005f_005ffloatuntidf-154"></a></var><br>
— Runtime Function: long double <b>__floatuntitf</b> (<var>unsigned long long i</var>)<var><a name="index-g_t_005f_005ffloatuntitf-155"></a></var><br>
— Runtime Function: long double <b>__floatuntixf</b> (<var>unsigned long long i</var>)<var><a name="index-g_t_005f_005ffloatuntixf-156"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, an unsigned long long, to floating point.
</p></blockquote></div>
<h4 class="subsection">4.2.3 Comparison functions</h4>
<p>There are two sets of basic comparison functions.
<div class="defun">
— Runtime Function: int <b>__cmpsf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fcmpsf2-157"></a></var><br>
— Runtime Function: int <b>__cmpdf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fcmpdf2-158"></a></var><br>
— Runtime Function: int <b>__cmptf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fcmptf2-159"></a></var><br>
<blockquote><p>These functions calculate a <=> b. That is, if <var>a</var> is less
than <var>b</var>, they return −1; if <var>a</var> is greater than <var>b</var>, they
return 1; and if <var>a</var> and <var>b</var> are equal they return 0. If
either argument is NaN they return 1, but you should not rely on this;
if NaN is a possibility, use one of the higher-level comparison
functions.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__unordsf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005funordsf2-160"></a></var><br>
— Runtime Function: int <b>__unorddf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005funorddf2-161"></a></var><br>
— Runtime Function: int <b>__unordtf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005funordtf2-162"></a></var><br>
<blockquote><p>These functions return a nonzero value if either argument is NaN, otherwise 0.
</p></blockquote></div>
<p>There is also a complete group of higher level functions which
correspond directly to comparison operators. They implement the ISO C
semantics for floating-point comparisons, taking NaN into account.
Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as
<pre class="smallexample"> if (__unord<var>X</var>f2 (a, b))
return <var>E</var>;
return __cmp<var>X</var>f2 (a, b);
</pre>
<p class="noindent">where <var>E</var> is a constant chosen to give the proper behavior for
NaN. Thus, the meaning of the return value is different for each set.
Do not rely on this implementation; only the semantics documented
below are guaranteed.
<div class="defun">
— Runtime Function: int <b>__eqsf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005feqsf2-163"></a></var><br>
— Runtime Function: int <b>__eqdf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005feqdf2-164"></a></var><br>
— Runtime Function: int <b>__eqtf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005feqtf2-165"></a></var><br>
<blockquote><p>These functions return zero if neither argument is NaN, and <var>a</var> and
<var>b</var> are equal.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__nesf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fnesf2-166"></a></var><br>
— Runtime Function: int <b>__nedf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fnedf2-167"></a></var><br>
— Runtime Function: int <b>__netf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fnetf2-168"></a></var><br>
<blockquote><p>These functions return a nonzero value if either argument is NaN, or
if <var>a</var> and <var>b</var> are unequal.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__gesf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fgesf2-169"></a></var><br>
— Runtime Function: int <b>__gedf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fgedf2-170"></a></var><br>
— Runtime Function: int <b>__getf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fgetf2-171"></a></var><br>
<blockquote><p>These functions return a value greater than or equal to zero if
neither argument is NaN, and <var>a</var> is greater than or equal to
<var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__ltsf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fltsf2-172"></a></var><br>
— Runtime Function: int <b>__ltdf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fltdf2-173"></a></var><br>
— Runtime Function: int <b>__lttf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005flttf2-174"></a></var><br>
<blockquote><p>These functions return a value less than zero if neither argument is
NaN, and <var>a</var> is strictly less than <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__lesf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005flesf2-175"></a></var><br>
— Runtime Function: int <b>__ledf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fledf2-176"></a></var><br>
— Runtime Function: int <b>__letf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fletf2-177"></a></var><br>
<blockquote><p>These functions return a value less than or equal to zero if neither
argument is NaN, and <var>a</var> is less than or equal to <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__gtsf2</b> (<var>float a, float b</var>)<var><a name="index-g_t_005f_005fgtsf2-178"></a></var><br>
— Runtime Function: int <b>__gtdf2</b> (<var>double a, double b</var>)<var><a name="index-g_t_005f_005fgtdf2-179"></a></var><br>
— Runtime Function: int <b>__gttf2</b> (<var>long double a, long double b</var>)<var><a name="index-g_t_005f_005fgttf2-180"></a></var><br>
<blockquote><p>These functions return a value greater than zero if neither argument
is NaN, and <var>a</var> is strictly greater than <var>b</var>.
</p></blockquote></div>
<h4 class="subsection">4.2.4 Other floating-point functions</h4>
<div class="defun">
— Runtime Function: float <b>__powisf2</b> (<var>float a, int b</var>)<var><a name="index-g_t_005f_005fpowisf2-181"></a></var><br>
— Runtime Function: double <b>__powidf2</b> (<var>double a, int b</var>)<var><a name="index-g_t_005f_005fpowidf2-182"></a></var><br>
— Runtime Function: long double <b>__powitf2</b> (<var>long double a, int b</var>)<var><a name="index-g_t_005f_005fpowitf2-183"></a></var><br>
— Runtime Function: long double <b>__powixf2</b> (<var>long double a, int b</var>)<var><a name="index-g_t_005f_005fpowixf2-184"></a></var><br>
<blockquote><p>These functions convert raise <var>a</var> to the power <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: complex float <b>__mulsc3</b> (<var>float a, float b, float c, float d</var>)<var><a name="index-g_t_005f_005fmulsc3-185"></a></var><br>
— Runtime Function: complex double <b>__muldc3</b> (<var>double a, double b, double c, double d</var>)<var><a name="index-g_t_005f_005fmuldc3-186"></a></var><br>
— Runtime Function: complex long double <b>__multc3</b> (<var>long double a, long double b, long double c, long double d</var>)<var><a name="index-g_t_005f_005fmultc3-187"></a></var><br>
— Runtime Function: complex long double <b>__mulxc3</b> (<var>long double a, long double b, long double c, long double d</var>)<var><a name="index-g_t_005f_005fmulxc3-188"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> + i<var>b</var> and
<var>c</var> + i<var>d</var>, following the rules of C99 Annex G.
</p></blockquote></div>
<div class="defun">
— Runtime Function: complex float <b>__divsc3</b> (<var>float a, float b, float c, float d</var>)<var><a name="index-g_t_005f_005fdivsc3-189"></a></var><br>
— Runtime Function: complex double <b>__divdc3</b> (<var>double a, double b, double c, double d</var>)<var><a name="index-g_t_005f_005fdivdc3-190"></a></var><br>
— Runtime Function: complex long double <b>__divtc3</b> (<var>long double a, long double b, long double c, long double d</var>)<var><a name="index-g_t_005f_005fdivtc3-191"></a></var><br>
— Runtime Function: complex long double <b>__divxc3</b> (<var>long double a, long double b, long double c, long double d</var>)<var><a name="index-g_t_005f_005fdivxc3-192"></a></var><br>
<blockquote><p>These functions return the quotient of <var>a</var> + i<var>b</var> and
<var>c</var> + i<var>d</var> (i.e., (<var>a</var> + i<var>b</var>) / (<var>c</var>
+ i<var>d</var>)), following the rules of C99 Annex G.
</p></blockquote></div>
<div class="node">
<a name="Decimal-float-library-routines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a>,
Previous: <a rel="previous" accesskey="p" href="#Soft-float-library-routines">Soft float library routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.3 Routines for decimal floating point emulation</h3>
<p><a name="index-decimal-float-library-193"></a><a name="index-IEEE-754_002d2008-194"></a>
The software decimal floating point library implements IEEE 754-2008
decimal floating point arithmetic and is only activated on selected
targets.
<p>The software decimal floating point library supports either DPD
(Densely Packed Decimal) or BID (Binary Integer Decimal) encoding
as selected at configure time.
<h4 class="subsection">4.3.1 Arithmetic functions</h4>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_addsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005faddsd3-195"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_addsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005faddsd3-196"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_adddd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fadddd3-197"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_adddd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fadddd3-198"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_addtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005faddtd3-199"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_addtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005faddtd3-200"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_subsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fsubsd3-201"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_subsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fsubsd3-202"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_subdd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fsubdd3-203"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_subdd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fsubdd3-204"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_subtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fsubtd3-205"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_subtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fsubtd3-206"></a></var><br>
<blockquote><p>These functions return the difference between <var>b</var> and <var>a</var>;
that is, <var>a</var> - <var>b</var><!-- /@w -->.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_mulsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fmulsd3-207"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_mulsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fmulsd3-208"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_muldd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fmuldd3-209"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_muldd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fmuldd3-210"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_multd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fmultd3-211"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_multd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fmultd3-212"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_divsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fdivsd3-213"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_divsd3</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fdivsd3-214"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_divdd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fdivdd3-215"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_divdd3</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fdivdd3-216"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_divtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fdivtd3-217"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_divtd3</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fdivtd3-218"></a></var><br>
<blockquote><p>These functions return the quotient of <var>a</var> and <var>b</var>; that is,
<var>a</var> / <var>b</var><!-- /@w -->.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_negsd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fnegsd2-219"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_negsd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fnegsd2-220"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_negdd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005fnegdd2-221"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_negdd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005fnegdd2-222"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_negtd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005fnegtd2-223"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_negtd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005fnegtd2-224"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var>. They simply flip the
sign bit, so they can produce negative zero and negative NaN.
</p></blockquote></div>
<h4 class="subsection">4.3.2 Conversion functions</h4>
<div class="defun">
— Runtime Function: _Decimal64 <b>__dpd_extendsddd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsddd2-225"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_extendsddd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsddd2-226"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extendsdtd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsdtd2-227"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extendsdtd2</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsdtd2-228"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extendddtd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendddtd2-229"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extendddtd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendddtd2-230"></a></var><br>
— Runtime Function: _Decimal32 <b>__dpd_truncddsd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncddsd2-231"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_truncddsd2</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncddsd2-232"></a></var><br>
— Runtime Function: _Decimal32 <b>__dpd_trunctdsd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctdsd2-233"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_trunctdsd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctdsd2-234"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_trunctddd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctddd2-235"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_trunctddd2</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctddd2-236"></a></var><br>
<blockquote><p>These functions convert the value <var>a</var> from one decimal floating type
to another.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal64 <b>__dpd_extendsfdd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsfdd-237"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_extendsfdd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsfdd-238"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extendsftd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsftd-239"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extendsftd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsftd-240"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extenddftd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fdpd_005fextenddftd-241"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extenddftd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fbid_005fextenddftd-242"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extendxftd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendxftd-243"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extendxftd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005fextendxftd-244"></a></var><br>
— Runtime Function: _Decimal32 <b>__dpd_truncdfsd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncdfsd-245"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_truncdfsd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncdfsd-246"></a></var><br>
— Runtime Function: _Decimal32 <b>__dpd_truncxfsd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncxfsd-247"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_truncxfsd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncxfsd-248"></a></var><br>
— Runtime Function: _Decimal32 <b>__dpd_trunctfsd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctfsd-249"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_trunctfsd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctfsd-250"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_truncxfdd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncxfdd-251"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_truncxfdd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncxfdd-252"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_trunctfdd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctfdd-253"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_trunctfdd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctfdd-254"></a></var><br>
<blockquote><p>These functions convert the value of <var>a</var> from a binary floating type
to a decimal floating type of a different size.
</p></blockquote></div>
<div class="defun">
— Runtime Function: float <b>__dpd_truncddsf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncddsf-255"></a></var><br>
— Runtime Function: float <b>__bid_truncddsf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncddsf-256"></a></var><br>
— Runtime Function: float <b>__dpd_trunctdsf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctdsf-257"></a></var><br>
— Runtime Function: float <b>__bid_trunctdsf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctdsf-258"></a></var><br>
— Runtime Function: double <b>__dpd_extendsddf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsddf-259"></a></var><br>
— Runtime Function: double <b>__bid_extendsddf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsddf-260"></a></var><br>
— Runtime Function: double <b>__dpd_trunctddf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctddf-261"></a></var><br>
— Runtime Function: double <b>__bid_trunctddf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctddf-262"></a></var><br>
— Runtime Function: long double <b>__dpd_extendsdxf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsdxf-263"></a></var><br>
— Runtime Function: long double <b>__bid_extendsdxf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsdxf-264"></a></var><br>
— Runtime Function: long double <b>__dpd_extendddxf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendddxf-265"></a></var><br>
— Runtime Function: long double <b>__bid_extendddxf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendddxf-266"></a></var><br>
— Runtime Function: long double <b>__dpd_trunctdxf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctdxf-267"></a></var><br>
— Runtime Function: long double <b>__bid_trunctdxf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctdxf-268"></a></var><br>
— Runtime Function: long double <b>__dpd_extendsdtf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsdtf-269"></a></var><br>
— Runtime Function: long double <b>__bid_extendsdtf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsdtf-270"></a></var><br>
— Runtime Function: long double <b>__dpd_extendddtf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendddtf-271"></a></var><br>
— Runtime Function: long double <b>__bid_extendddtf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005fextendddtf-272"></a></var><br>
<blockquote><p>These functions convert the value of <var>a</var> from a decimal floating type
to a binary floating type of a different size.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_extendsfsd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendsfsd-273"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_extendsfsd</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fbid_005fextendsfsd-274"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_extenddfdd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fdpd_005fextenddfdd-275"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_extenddfdd</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fbid_005fextenddfdd-276"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_extendtftd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fdpd_005fextendtftd-277"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_extendtftd</b> (<var>long double a</var>)<var><a name="index-g_t_005f_005fbid_005fextendtftd-278"></a></var><br>
— Runtime Function: float <b>__dpd_truncsdsf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncsdsf-279"></a></var><br>
— Runtime Function: float <b>__bid_truncsdsf</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncsdsf-280"></a></var><br>
— Runtime Function: double <b>__dpd_truncdddf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftruncdddf-281"></a></var><br>
— Runtime Function: double <b>__bid_truncdddf</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ftruncdddf-282"></a></var><br>
— Runtime Function: long double <b>__dpd_trunctdtf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ftrunctdtf-283"></a></var><br>
— Runtime Function: long double <b>__bid_trunctdtf</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ftrunctdtf-284"></a></var><br>
<blockquote><p>These functions convert the value of <var>a</var> between decimal and
binary floating types of the same size.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_fixsdsi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixsdsi-285"></a></var><br>
— Runtime Function: int <b>__bid_fixsdsi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixsdsi-286"></a></var><br>
— Runtime Function: int <b>__dpd_fixddsi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixddsi-287"></a></var><br>
— Runtime Function: int <b>__bid_fixddsi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixddsi-288"></a></var><br>
— Runtime Function: int <b>__dpd_fixtdsi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixtdsi-289"></a></var><br>
— Runtime Function: int <b>__bid_fixtdsi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixtdsi-290"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to a signed integer.
</p></blockquote></div>
<div class="defun">
— Runtime Function: long <b>__dpd_fixsddi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixsddi-291"></a></var><br>
— Runtime Function: long <b>__bid_fixsddi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixsddi-292"></a></var><br>
— Runtime Function: long <b>__dpd_fixdddi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixdddi-293"></a></var><br>
— Runtime Function: long <b>__bid_fixdddi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixdddi-294"></a></var><br>
— Runtime Function: long <b>__dpd_fixtddi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixtddi-295"></a></var><br>
— Runtime Function: long <b>__bid_fixtddi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixtddi-296"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to a signed long.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned int <b>__dpd_fixunssdsi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunssdsi-297"></a></var><br>
— Runtime Function: unsigned int <b>__bid_fixunssdsi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunssdsi-298"></a></var><br>
— Runtime Function: unsigned int <b>__dpd_fixunsddsi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunsddsi-299"></a></var><br>
— Runtime Function: unsigned int <b>__bid_fixunsddsi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunsddsi-300"></a></var><br>
— Runtime Function: unsigned int <b>__dpd_fixunstdsi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunstdsi-301"></a></var><br>
— Runtime Function: unsigned int <b>__bid_fixunstdsi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunstdsi-302"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to an unsigned integer. Negative values all become zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned long <b>__dpd_fixunssddi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunssddi-303"></a></var><br>
— Runtime Function: unsigned long <b>__bid_fixunssddi</b> (<var>_Decimal32 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunssddi-304"></a></var><br>
— Runtime Function: unsigned long <b>__dpd_fixunsdddi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunsdddi-305"></a></var><br>
— Runtime Function: unsigned long <b>__bid_fixunsdddi</b> (<var>_Decimal64 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunsdddi-306"></a></var><br>
— Runtime Function: unsigned long <b>__dpd_fixunstddi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fdpd_005ffixunstddi-307"></a></var><br>
— Runtime Function: unsigned long <b>__bid_fixunstddi</b> (<var>_Decimal128 a</var>)<var><a name="index-g_t_005f_005fbid_005ffixunstddi-308"></a></var><br>
<blockquote><p>These functions convert <var>a</var> to an unsigned long. Negative values
all become zero.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_floatsisd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatsisd-309"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_floatsisd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatsisd-310"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_floatsidd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatsidd-311"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_floatsidd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatsidd-312"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_floatsitd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatsitd-313"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_floatsitd</b> (<var>int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatsitd-314"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, a signed integer, to decimal floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_floatdisd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatdisd-315"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_floatdisd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatdisd-316"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_floatdidd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatdidd-317"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_floatdidd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatdidd-318"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_floatditd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatditd-319"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_floatditd</b> (<var>long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatditd-320"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, a signed long, to decimal floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_floatunssisd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunssisd-321"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_floatunssisd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunssisd-322"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_floatunssidd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunssidd-323"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_floatunssidd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunssidd-324"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_floatunssitd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunssitd-325"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_floatunssitd</b> (<var>unsigned int i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunssitd-326"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, an unsigned integer, to decimal floating point.
</p></blockquote></div>
<div class="defun">
— Runtime Function: _Decimal32 <b>__dpd_floatunsdisd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunsdisd-327"></a></var><br>
— Runtime Function: _Decimal32 <b>__bid_floatunsdisd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunsdisd-328"></a></var><br>
— Runtime Function: _Decimal64 <b>__dpd_floatunsdidd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunsdidd-329"></a></var><br>
— Runtime Function: _Decimal64 <b>__bid_floatunsdidd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunsdidd-330"></a></var><br>
— Runtime Function: _Decimal128 <b>__dpd_floatunsditd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fdpd_005ffloatunsditd-331"></a></var><br>
— Runtime Function: _Decimal128 <b>__bid_floatunsditd</b> (<var>unsigned long i</var>)<var><a name="index-g_t_005f_005fbid_005ffloatunsditd-332"></a></var><br>
<blockquote><p>These functions convert <var>i</var>, an unsigned long, to decimal floating point.
</p></blockquote></div>
<h4 class="subsection">4.3.3 Comparison functions</h4>
<div class="defun">
— Runtime Function: int <b>__dpd_unordsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005funordsd2-333"></a></var><br>
— Runtime Function: int <b>__bid_unordsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005funordsd2-334"></a></var><br>
— Runtime Function: int <b>__dpd_unorddd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005funorddd2-335"></a></var><br>
— Runtime Function: int <b>__bid_unorddd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005funorddd2-336"></a></var><br>
— Runtime Function: int <b>__dpd_unordtd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005funordtd2-337"></a></var><br>
— Runtime Function: int <b>__bid_unordtd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005funordtd2-338"></a></var><br>
<blockquote><p>These functions return a nonzero value if either argument is NaN, otherwise 0.
</p></blockquote></div>
<p>There is also a complete group of higher level functions which
correspond directly to comparison operators. They implement the ISO C
semantics for floating-point comparisons, taking NaN into account.
Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as
<pre class="smallexample"> if (__bid_unord<var>X</var>d2 (a, b))
return <var>E</var>;
return __bid_cmp<var>X</var>d2 (a, b);
</pre>
<p class="noindent">where <var>E</var> is a constant chosen to give the proper behavior for
NaN. Thus, the meaning of the return value is different for each set.
Do not rely on this implementation; only the semantics documented
below are guaranteed.
<div class="defun">
— Runtime Function: int <b>__dpd_eqsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005feqsd2-339"></a></var><br>
— Runtime Function: int <b>__bid_eqsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005feqsd2-340"></a></var><br>
— Runtime Function: int <b>__dpd_eqdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005feqdd2-341"></a></var><br>
— Runtime Function: int <b>__bid_eqdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005feqdd2-342"></a></var><br>
— Runtime Function: int <b>__dpd_eqtd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005feqtd2-343"></a></var><br>
— Runtime Function: int <b>__bid_eqtd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005feqtd2-344"></a></var><br>
<blockquote><p>These functions return zero if neither argument is NaN, and <var>a</var> and
<var>b</var> are equal.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_nesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fnesd2-345"></a></var><br>
— Runtime Function: int <b>__bid_nesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fnesd2-346"></a></var><br>
— Runtime Function: int <b>__dpd_nedd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fnedd2-347"></a></var><br>
— Runtime Function: int <b>__bid_nedd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fnedd2-348"></a></var><br>
— Runtime Function: int <b>__dpd_netd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fnetd2-349"></a></var><br>
— Runtime Function: int <b>__bid_netd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fnetd2-350"></a></var><br>
<blockquote><p>These functions return a nonzero value if either argument is NaN, or
if <var>a</var> and <var>b</var> are unequal.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_gesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgesd2-351"></a></var><br>
— Runtime Function: int <b>__bid_gesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fgesd2-352"></a></var><br>
— Runtime Function: int <b>__dpd_gedd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgedd2-353"></a></var><br>
— Runtime Function: int <b>__bid_gedd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fgedd2-354"></a></var><br>
— Runtime Function: int <b>__dpd_getd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgetd2-355"></a></var><br>
— Runtime Function: int <b>__bid_getd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fgetd2-356"></a></var><br>
<blockquote><p>These functions return a value greater than or equal to zero if
neither argument is NaN, and <var>a</var> is greater than or equal to
<var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_ltsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fltsd2-357"></a></var><br>
— Runtime Function: int <b>__bid_ltsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fltsd2-358"></a></var><br>
— Runtime Function: int <b>__dpd_ltdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fltdd2-359"></a></var><br>
— Runtime Function: int <b>__bid_ltdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fltdd2-360"></a></var><br>
— Runtime Function: int <b>__dpd_lttd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005flttd2-361"></a></var><br>
— Runtime Function: int <b>__bid_lttd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005flttd2-362"></a></var><br>
<blockquote><p>These functions return a value less than zero if neither argument is
NaN, and <var>a</var> is strictly less than <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_lesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005flesd2-363"></a></var><br>
— Runtime Function: int <b>__bid_lesd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005flesd2-364"></a></var><br>
— Runtime Function: int <b>__dpd_ledd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fledd2-365"></a></var><br>
— Runtime Function: int <b>__bid_ledd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fledd2-366"></a></var><br>
— Runtime Function: int <b>__dpd_letd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fletd2-367"></a></var><br>
— Runtime Function: int <b>__bid_letd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fletd2-368"></a></var><br>
<blockquote><p>These functions return a value less than or equal to zero if neither
argument is NaN, and <var>a</var> is less than or equal to <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: int <b>__dpd_gtsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgtsd2-369"></a></var><br>
— Runtime Function: int <b>__bid_gtsd2</b> (<var>_Decimal32 a, _Decimal32 b</var>)<var><a name="index-g_t_005f_005fbid_005fgtsd2-370"></a></var><br>
— Runtime Function: int <b>__dpd_gtdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgtdd2-371"></a></var><br>
— Runtime Function: int <b>__bid_gtdd2</b> (<var>_Decimal64 a, _Decimal64 b</var>)<var><a name="index-g_t_005f_005fbid_005fgtdd2-372"></a></var><br>
— Runtime Function: int <b>__dpd_gttd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fdpd_005fgttd2-373"></a></var><br>
— Runtime Function: int <b>__bid_gttd2</b> (<var>_Decimal128 a, _Decimal128 b</var>)<var><a name="index-g_t_005f_005fbid_005fgttd2-374"></a></var><br>
<blockquote><p>These functions return a value greater than zero if neither argument
is NaN, and <var>a</var> is strictly greater than <var>b</var>.
</p></blockquote></div>
<div class="node">
<a name="Fixed-point-fractional-library-routines"></a>
<a name="Fixed_002dpoint-fractional-library-routines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Exception-handling-routines">Exception handling routines</a>,
Previous: <a rel="previous" accesskey="p" href="#Decimal-float-library-routines">Decimal float library routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.4 Routines for fixed-point fractional emulation</h3>
<p><a name="index-fixed_002dpoint-fractional-library-375"></a><a name="index-fractional-types-376"></a><a name="index-Embedded-C-377"></a>
The software fixed-point library implements fixed-point fractional
arithmetic, and is only activated on selected targets.
<p>For ease of comprehension <code>fract</code> is an alias for the
<code>_Fract</code> type, <code>accum</code> an alias for <code>_Accum</code>, and
<code>sat</code> an alias for <code>_Sat</code>.
<p>For illustrative purposes, in this section the fixed-point fractional type
<code>short fract<!-- /@w --></code> is assumed to correspond to machine mode <code>QQmode</code>;
<code>unsigned short fract<!-- /@w --></code> to <code>UQQmode</code>;
<code>fract</code> to <code>HQmode</code>;
<code>unsigned fract<!-- /@w --></code> to <code>UHQmode</code>;
<code>long fract<!-- /@w --></code> to <code>SQmode</code>;
<code>unsigned long fract<!-- /@w --></code> to <code>USQmode</code>;
<code>long long fract<!-- /@w --></code> to <code>DQmode</code>;
and <code>unsigned long long fract<!-- /@w --></code> to <code>UDQmode</code>.
Similarly the fixed-point accumulator type
<code>short accum<!-- /@w --></code> corresponds to <code>HAmode</code>;
<code>unsigned short accum<!-- /@w --></code> to <code>UHAmode</code>;
<code>accum</code> to <code>SAmode</code>;
<code>unsigned accum<!-- /@w --></code> to <code>USAmode</code>;
<code>long accum<!-- /@w --></code> to <code>DAmode</code>;
<code>unsigned long accum<!-- /@w --></code> to <code>UDAmode</code>;
<code>long long accum<!-- /@w --></code> to <code>TAmode</code>;
and <code>unsigned long long accum<!-- /@w --></code> to <code>UTAmode</code>.
<h4 class="subsection">4.4.1 Arithmetic functions</h4>
<div class="defun">
— Runtime Function: short fract <b>__addqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005faddqq3-378"></a></var><br>
— Runtime Function: fract <b>__addhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005faddhq3-379"></a></var><br>
— Runtime Function: long fract <b>__addsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005faddsq3-380"></a></var><br>
— Runtime Function: long long fract <b>__adddq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fadddq3-381"></a></var><br>
— Runtime Function: unsigned short fract <b>__adduqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fadduqq3-382"></a></var><br>
— Runtime Function: unsigned fract <b>__adduhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fadduhq3-383"></a></var><br>
— Runtime Function: unsigned long fract <b>__addusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005faddusq3-384"></a></var><br>
— Runtime Function: unsigned long long fract <b>__addudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005faddudq3-385"></a></var><br>
— Runtime Function: short accum <b>__addha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005faddha3-386"></a></var><br>
— Runtime Function: accum <b>__addsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005faddsa3-387"></a></var><br>
— Runtime Function: long accum <b>__addda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005faddda3-388"></a></var><br>
— Runtime Function: long long accum <b>__addta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005faddta3-389"></a></var><br>
— Runtime Function: unsigned short accum <b>__adduha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fadduha3-390"></a></var><br>
— Runtime Function: unsigned accum <b>__addusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005faddusa3-391"></a></var><br>
— Runtime Function: unsigned long accum <b>__adduda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fadduda3-392"></a></var><br>
— Runtime Function: unsigned long long accum <b>__adduta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fadduta3-393"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ssaddqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fssaddqq3-394"></a></var><br>
— Runtime Function: fract <b>__ssaddhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fssaddhq3-395"></a></var><br>
— Runtime Function: long fract <b>__ssaddsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fssaddsq3-396"></a></var><br>
— Runtime Function: long long fract <b>__ssadddq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fssadddq3-397"></a></var><br>
— Runtime Function: short accum <b>__ssaddha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fssaddha3-398"></a></var><br>
— Runtime Function: accum <b>__ssaddsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fssaddsa3-399"></a></var><br>
— Runtime Function: long accum <b>__ssaddda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fssaddda3-400"></a></var><br>
— Runtime Function: long long accum <b>__ssaddta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fssaddta3-401"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var> with signed saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__usadduqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fusadduqq3-402"></a></var><br>
— Runtime Function: unsigned fract <b>__usadduhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fusadduhq3-403"></a></var><br>
— Runtime Function: unsigned long fract <b>__usaddusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fusaddusq3-404"></a></var><br>
— Runtime Function: unsigned long long fract <b>__usaddudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fusaddudq3-405"></a></var><br>
— Runtime Function: unsigned short accum <b>__usadduha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fusadduha3-406"></a></var><br>
— Runtime Function: unsigned accum <b>__usaddusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fusaddusa3-407"></a></var><br>
— Runtime Function: unsigned long accum <b>__usadduda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fusadduda3-408"></a></var><br>
— Runtime Function: unsigned long long accum <b>__usadduta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fusadduta3-409"></a></var><br>
<blockquote><p>These functions return the sum of <var>a</var> and <var>b</var> with unsigned saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__subqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fsubqq3-410"></a></var><br>
— Runtime Function: fract <b>__subhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fsubhq3-411"></a></var><br>
— Runtime Function: long fract <b>__subsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fsubsq3-412"></a></var><br>
— Runtime Function: long long fract <b>__subdq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fsubdq3-413"></a></var><br>
— Runtime Function: unsigned short fract <b>__subuqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fsubuqq3-414"></a></var><br>
— Runtime Function: unsigned fract <b>__subuhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fsubuhq3-415"></a></var><br>
— Runtime Function: unsigned long fract <b>__subusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fsubusq3-416"></a></var><br>
— Runtime Function: unsigned long long fract <b>__subudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fsubudq3-417"></a></var><br>
— Runtime Function: short accum <b>__subha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fsubha3-418"></a></var><br>
— Runtime Function: accum <b>__subsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fsubsa3-419"></a></var><br>
— Runtime Function: long accum <b>__subda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fsubda3-420"></a></var><br>
— Runtime Function: long long accum <b>__subta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fsubta3-421"></a></var><br>
— Runtime Function: unsigned short accum <b>__subuha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fsubuha3-422"></a></var><br>
— Runtime Function: unsigned accum <b>__subusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fsubusa3-423"></a></var><br>
— Runtime Function: unsigned long accum <b>__subuda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fsubuda3-424"></a></var><br>
— Runtime Function: unsigned long long accum <b>__subuta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fsubuta3-425"></a></var><br>
<blockquote><p>These functions return the difference of <var>a</var> and <var>b</var>;
that is, <var>a</var><code> - </code><var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__sssubqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fsssubqq3-426"></a></var><br>
— Runtime Function: fract <b>__sssubhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fsssubhq3-427"></a></var><br>
— Runtime Function: long fract <b>__sssubsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fsssubsq3-428"></a></var><br>
— Runtime Function: long long fract <b>__sssubdq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fsssubdq3-429"></a></var><br>
— Runtime Function: short accum <b>__sssubha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fsssubha3-430"></a></var><br>
— Runtime Function: accum <b>__sssubsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fsssubsa3-431"></a></var><br>
— Runtime Function: long accum <b>__sssubda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fsssubda3-432"></a></var><br>
— Runtime Function: long long accum <b>__sssubta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fsssubta3-433"></a></var><br>
<blockquote><p>These functions return the difference of <var>a</var> and <var>b</var> with signed
saturation; that is, <var>a</var><code> - </code><var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__ussubuqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fussubuqq3-434"></a></var><br>
— Runtime Function: unsigned fract <b>__ussubuhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fussubuhq3-435"></a></var><br>
— Runtime Function: unsigned long fract <b>__ussubusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fussubusq3-436"></a></var><br>
— Runtime Function: unsigned long long fract <b>__ussubudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fussubudq3-437"></a></var><br>
— Runtime Function: unsigned short accum <b>__ussubuha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fussubuha3-438"></a></var><br>
— Runtime Function: unsigned accum <b>__ussubusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fussubusa3-439"></a></var><br>
— Runtime Function: unsigned long accum <b>__ussubuda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fussubuda3-440"></a></var><br>
— Runtime Function: unsigned long long accum <b>__ussubuta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fussubuta3-441"></a></var><br>
<blockquote><p>These functions return the difference of <var>a</var> and <var>b</var> with unsigned
saturation; that is, <var>a</var><code> - </code><var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__mulqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fmulqq3-442"></a></var><br>
— Runtime Function: fract <b>__mulhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fmulhq3-443"></a></var><br>
— Runtime Function: long fract <b>__mulsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fmulsq3-444"></a></var><br>
— Runtime Function: long long fract <b>__muldq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fmuldq3-445"></a></var><br>
— Runtime Function: unsigned short fract <b>__muluqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fmuluqq3-446"></a></var><br>
— Runtime Function: unsigned fract <b>__muluhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fmuluhq3-447"></a></var><br>
— Runtime Function: unsigned long fract <b>__mulusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fmulusq3-448"></a></var><br>
— Runtime Function: unsigned long long fract <b>__muludq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fmuludq3-449"></a></var><br>
— Runtime Function: short accum <b>__mulha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fmulha3-450"></a></var><br>
— Runtime Function: accum <b>__mulsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fmulsa3-451"></a></var><br>
— Runtime Function: long accum <b>__mulda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fmulda3-452"></a></var><br>
— Runtime Function: long long accum <b>__multa3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fmulta3-453"></a></var><br>
— Runtime Function: unsigned short accum <b>__muluha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fmuluha3-454"></a></var><br>
— Runtime Function: unsigned accum <b>__mulusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fmulusa3-455"></a></var><br>
— Runtime Function: unsigned long accum <b>__muluda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fmuluda3-456"></a></var><br>
— Runtime Function: unsigned long long accum <b>__muluta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fmuluta3-457"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ssmulqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fssmulqq3-458"></a></var><br>
— Runtime Function: fract <b>__ssmulhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fssmulhq3-459"></a></var><br>
— Runtime Function: long fract <b>__ssmulsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fssmulsq3-460"></a></var><br>
— Runtime Function: long long fract <b>__ssmuldq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fssmuldq3-461"></a></var><br>
— Runtime Function: short accum <b>__ssmulha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fssmulha3-462"></a></var><br>
— Runtime Function: accum <b>__ssmulsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fssmulsa3-463"></a></var><br>
— Runtime Function: long accum <b>__ssmulda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fssmulda3-464"></a></var><br>
— Runtime Function: long long accum <b>__ssmulta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fssmulta3-465"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var> with signed
saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__usmuluqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fusmuluqq3-466"></a></var><br>
— Runtime Function: unsigned fract <b>__usmuluhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fusmuluhq3-467"></a></var><br>
— Runtime Function: unsigned long fract <b>__usmulusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fusmulusq3-468"></a></var><br>
— Runtime Function: unsigned long long fract <b>__usmuludq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fusmuludq3-469"></a></var><br>
— Runtime Function: unsigned short accum <b>__usmuluha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fusmuluha3-470"></a></var><br>
— Runtime Function: unsigned accum <b>__usmulusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fusmulusa3-471"></a></var><br>
— Runtime Function: unsigned long accum <b>__usmuluda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fusmuluda3-472"></a></var><br>
— Runtime Function: unsigned long long accum <b>__usmuluta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fusmuluta3-473"></a></var><br>
<blockquote><p>These functions return the product of <var>a</var> and <var>b</var> with unsigned
saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__divqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fdivqq3-474"></a></var><br>
— Runtime Function: fract <b>__divhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fdivhq3-475"></a></var><br>
— Runtime Function: long fract <b>__divsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fdivsq3-476"></a></var><br>
— Runtime Function: long long fract <b>__divdq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fdivdq3-477"></a></var><br>
— Runtime Function: short accum <b>__divha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fdivha3-478"></a></var><br>
— Runtime Function: accum <b>__divsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fdivsa3-479"></a></var><br>
— Runtime Function: long accum <b>__divda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fdivda3-480"></a></var><br>
— Runtime Function: long long accum <b>__divta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fdivta3-481"></a></var><br>
<blockquote><p>These functions return the quotient of the signed division of <var>a</var>
and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__udivuqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fudivuqq3-482"></a></var><br>
— Runtime Function: unsigned fract <b>__udivuhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fudivuhq3-483"></a></var><br>
— Runtime Function: unsigned long fract <b>__udivusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fudivusq3-484"></a></var><br>
— Runtime Function: unsigned long long fract <b>__udivudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fudivudq3-485"></a></var><br>
— Runtime Function: unsigned short accum <b>__udivuha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fudivuha3-486"></a></var><br>
— Runtime Function: unsigned accum <b>__udivusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fudivusa3-487"></a></var><br>
— Runtime Function: unsigned long accum <b>__udivuda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fudivuda3-488"></a></var><br>
— Runtime Function: unsigned long long accum <b>__udivuta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fudivuta3-489"></a></var><br>
<blockquote><p>These functions return the quotient of the unsigned division of <var>a</var>
and <var>b</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ssdivqq3</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fssdivqq3-490"></a></var><br>
— Runtime Function: fract <b>__ssdivhq3</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fssdivhq3-491"></a></var><br>
— Runtime Function: long fract <b>__ssdivsq3</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fssdivsq3-492"></a></var><br>
— Runtime Function: long long fract <b>__ssdivdq3</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fssdivdq3-493"></a></var><br>
— Runtime Function: short accum <b>__ssdivha3</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fssdivha3-494"></a></var><br>
— Runtime Function: accum <b>__ssdivsa3</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fssdivsa3-495"></a></var><br>
— Runtime Function: long accum <b>__ssdivda3</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fssdivda3-496"></a></var><br>
— Runtime Function: long long accum <b>__ssdivta3</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fssdivta3-497"></a></var><br>
<blockquote><p>These functions return the quotient of the signed division of <var>a</var>
and <var>b</var> with signed saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__usdivuqq3</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fusdivuqq3-498"></a></var><br>
— Runtime Function: unsigned fract <b>__usdivuhq3</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fusdivuhq3-499"></a></var><br>
— Runtime Function: unsigned long fract <b>__usdivusq3</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fusdivusq3-500"></a></var><br>
— Runtime Function: unsigned long long fract <b>__usdivudq3</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fusdivudq3-501"></a></var><br>
— Runtime Function: unsigned short accum <b>__usdivuha3</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fusdivuha3-502"></a></var><br>
— Runtime Function: unsigned accum <b>__usdivusa3</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fusdivusa3-503"></a></var><br>
— Runtime Function: unsigned long accum <b>__usdivuda3</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fusdivuda3-504"></a></var><br>
— Runtime Function: unsigned long long accum <b>__usdivuta3</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fusdivuta3-505"></a></var><br>
<blockquote><p>These functions return the quotient of the unsigned division of <var>a</var>
and <var>b</var> with unsigned saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__negqq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fnegqq2-506"></a></var><br>
— Runtime Function: fract <b>__neghq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fneghq2-507"></a></var><br>
— Runtime Function: long fract <b>__negsq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fnegsq2-508"></a></var><br>
— Runtime Function: long long fract <b>__negdq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fnegdq2-509"></a></var><br>
— Runtime Function: unsigned short fract <b>__neguqq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fneguqq2-510"></a></var><br>
— Runtime Function: unsigned fract <b>__neguhq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fneguhq2-511"></a></var><br>
— Runtime Function: unsigned long fract <b>__negusq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fnegusq2-512"></a></var><br>
— Runtime Function: unsigned long long fract <b>__negudq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fnegudq2-513"></a></var><br>
— Runtime Function: short accum <b>__negha2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fnegha2-514"></a></var><br>
— Runtime Function: accum <b>__negsa2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fnegsa2-515"></a></var><br>
— Runtime Function: long accum <b>__negda2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fnegda2-516"></a></var><br>
— Runtime Function: long long accum <b>__negta2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fnegta2-517"></a></var><br>
— Runtime Function: unsigned short accum <b>__neguha2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fneguha2-518"></a></var><br>
— Runtime Function: unsigned accum <b>__negusa2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fnegusa2-519"></a></var><br>
— Runtime Function: unsigned long accum <b>__neguda2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fneguda2-520"></a></var><br>
— Runtime Function: unsigned long long accum <b>__neguta2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fneguta2-521"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var>.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ssnegqq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fssnegqq2-522"></a></var><br>
— Runtime Function: fract <b>__ssneghq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fssneghq2-523"></a></var><br>
— Runtime Function: long fract <b>__ssnegsq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fssnegsq2-524"></a></var><br>
— Runtime Function: long long fract <b>__ssnegdq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fssnegdq2-525"></a></var><br>
— Runtime Function: short accum <b>__ssnegha2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fssnegha2-526"></a></var><br>
— Runtime Function: accum <b>__ssnegsa2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fssnegsa2-527"></a></var><br>
— Runtime Function: long accum <b>__ssnegda2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fssnegda2-528"></a></var><br>
— Runtime Function: long long accum <b>__ssnegta2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fssnegta2-529"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var> with signed saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__usneguqq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fusneguqq2-530"></a></var><br>
— Runtime Function: unsigned fract <b>__usneguhq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fusneguhq2-531"></a></var><br>
— Runtime Function: unsigned long fract <b>__usnegusq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fusnegusq2-532"></a></var><br>
— Runtime Function: unsigned long long fract <b>__usnegudq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fusnegudq2-533"></a></var><br>
— Runtime Function: unsigned short accum <b>__usneguha2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fusneguha2-534"></a></var><br>
— Runtime Function: unsigned accum <b>__usnegusa2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fusnegusa2-535"></a></var><br>
— Runtime Function: unsigned long accum <b>__usneguda2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fusneguda2-536"></a></var><br>
— Runtime Function: unsigned long long accum <b>__usneguta2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fusneguta2-537"></a></var><br>
<blockquote><p>These functions return the negation of <var>a</var> with unsigned saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ashlqq3</b> (<var>short fract a, int b</var>)<var><a name="index-g_t_005f_005fashlqq3-538"></a></var><br>
— Runtime Function: fract <b>__ashlhq3</b> (<var>fract a, int b</var>)<var><a name="index-g_t_005f_005fashlhq3-539"></a></var><br>
— Runtime Function: long fract <b>__ashlsq3</b> (<var>long fract a, int b</var>)<var><a name="index-g_t_005f_005fashlsq3-540"></a></var><br>
— Runtime Function: long long fract <b>__ashldq3</b> (<var>long long fract a, int b</var>)<var><a name="index-g_t_005f_005fashldq3-541"></a></var><br>
— Runtime Function: unsigned short fract <b>__ashluqq3</b> (<var>unsigned short fract a, int b</var>)<var><a name="index-g_t_005f_005fashluqq3-542"></a></var><br>
— Runtime Function: unsigned fract <b>__ashluhq3</b> (<var>unsigned fract a, int b</var>)<var><a name="index-g_t_005f_005fashluhq3-543"></a></var><br>
— Runtime Function: unsigned long fract <b>__ashlusq3</b> (<var>unsigned long fract a, int b</var>)<var><a name="index-g_t_005f_005fashlusq3-544"></a></var><br>
— Runtime Function: unsigned long long fract <b>__ashludq3</b> (<var>unsigned long long fract a, int b</var>)<var><a name="index-g_t_005f_005fashludq3-545"></a></var><br>
— Runtime Function: short accum <b>__ashlha3</b> (<var>short accum a, int b</var>)<var><a name="index-g_t_005f_005fashlha3-546"></a></var><br>
— Runtime Function: accum <b>__ashlsa3</b> (<var>accum a, int b</var>)<var><a name="index-g_t_005f_005fashlsa3-547"></a></var><br>
— Runtime Function: long accum <b>__ashlda3</b> (<var>long accum a, int b</var>)<var><a name="index-g_t_005f_005fashlda3-548"></a></var><br>
— Runtime Function: long long accum <b>__ashlta3</b> (<var>long long accum a, int b</var>)<var><a name="index-g_t_005f_005fashlta3-549"></a></var><br>
— Runtime Function: unsigned short accum <b>__ashluha3</b> (<var>unsigned short accum a, int b</var>)<var><a name="index-g_t_005f_005fashluha3-550"></a></var><br>
— Runtime Function: unsigned accum <b>__ashlusa3</b> (<var>unsigned accum a, int b</var>)<var><a name="index-g_t_005f_005fashlusa3-551"></a></var><br>
— Runtime Function: unsigned long accum <b>__ashluda3</b> (<var>unsigned long accum a, int b</var>)<var><a name="index-g_t_005f_005fashluda3-552"></a></var><br>
— Runtime Function: unsigned long long accum <b>__ashluta3</b> (<var>unsigned long long accum a, int b</var>)<var><a name="index-g_t_005f_005fashluta3-553"></a></var><br>
<blockquote><p>These functions return the result of shifting <var>a</var> left by <var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__ashrqq3</b> (<var>short fract a, int b</var>)<var><a name="index-g_t_005f_005fashrqq3-554"></a></var><br>
— Runtime Function: fract <b>__ashrhq3</b> (<var>fract a, int b</var>)<var><a name="index-g_t_005f_005fashrhq3-555"></a></var><br>
— Runtime Function: long fract <b>__ashrsq3</b> (<var>long fract a, int b</var>)<var><a name="index-g_t_005f_005fashrsq3-556"></a></var><br>
— Runtime Function: long long fract <b>__ashrdq3</b> (<var>long long fract a, int b</var>)<var><a name="index-g_t_005f_005fashrdq3-557"></a></var><br>
— Runtime Function: short accum <b>__ashrha3</b> (<var>short accum a, int b</var>)<var><a name="index-g_t_005f_005fashrha3-558"></a></var><br>
— Runtime Function: accum <b>__ashrsa3</b> (<var>accum a, int b</var>)<var><a name="index-g_t_005f_005fashrsa3-559"></a></var><br>
— Runtime Function: long accum <b>__ashrda3</b> (<var>long accum a, int b</var>)<var><a name="index-g_t_005f_005fashrda3-560"></a></var><br>
— Runtime Function: long long accum <b>__ashrta3</b> (<var>long long accum a, int b</var>)<var><a name="index-g_t_005f_005fashrta3-561"></a></var><br>
<blockquote><p>These functions return the result of arithmetically shifting <var>a</var> right
by <var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__lshruqq3</b> (<var>unsigned short fract a, int b</var>)<var><a name="index-g_t_005f_005flshruqq3-562"></a></var><br>
— Runtime Function: unsigned fract <b>__lshruhq3</b> (<var>unsigned fract a, int b</var>)<var><a name="index-g_t_005f_005flshruhq3-563"></a></var><br>
— Runtime Function: unsigned long fract <b>__lshrusq3</b> (<var>unsigned long fract a, int b</var>)<var><a name="index-g_t_005f_005flshrusq3-564"></a></var><br>
— Runtime Function: unsigned long long fract <b>__lshrudq3</b> (<var>unsigned long long fract a, int b</var>)<var><a name="index-g_t_005f_005flshrudq3-565"></a></var><br>
— Runtime Function: unsigned short accum <b>__lshruha3</b> (<var>unsigned short accum a, int b</var>)<var><a name="index-g_t_005f_005flshruha3-566"></a></var><br>
— Runtime Function: unsigned accum <b>__lshrusa3</b> (<var>unsigned accum a, int b</var>)<var><a name="index-g_t_005f_005flshrusa3-567"></a></var><br>
— Runtime Function: unsigned long accum <b>__lshruda3</b> (<var>unsigned long accum a, int b</var>)<var><a name="index-g_t_005f_005flshruda3-568"></a></var><br>
— Runtime Function: unsigned long long accum <b>__lshruta3</b> (<var>unsigned long long accum a, int b</var>)<var><a name="index-g_t_005f_005flshruta3-569"></a></var><br>
<blockquote><p>These functions return the result of logically shifting <var>a</var> right
by <var>b</var> bits.
</p></blockquote></div>
<div class="defun">
— Runtime Function: fract <b>__ssashlhq3</b> (<var>fract a, int b</var>)<var><a name="index-g_t_005f_005fssashlhq3-570"></a></var><br>
— Runtime Function: long fract <b>__ssashlsq3</b> (<var>long fract a, int b</var>)<var><a name="index-g_t_005f_005fssashlsq3-571"></a></var><br>
— Runtime Function: long long fract <b>__ssashldq3</b> (<var>long long fract a, int b</var>)<var><a name="index-g_t_005f_005fssashldq3-572"></a></var><br>
— Runtime Function: short accum <b>__ssashlha3</b> (<var>short accum a, int b</var>)<var><a name="index-g_t_005f_005fssashlha3-573"></a></var><br>
— Runtime Function: accum <b>__ssashlsa3</b> (<var>accum a, int b</var>)<var><a name="index-g_t_005f_005fssashlsa3-574"></a></var><br>
— Runtime Function: long accum <b>__ssashlda3</b> (<var>long accum a, int b</var>)<var><a name="index-g_t_005f_005fssashlda3-575"></a></var><br>
— Runtime Function: long long accum <b>__ssashlta3</b> (<var>long long accum a, int b</var>)<var><a name="index-g_t_005f_005fssashlta3-576"></a></var><br>
<blockquote><p>These functions return the result of shifting <var>a</var> left by <var>b</var> bits
with signed saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned short fract <b>__usashluqq3</b> (<var>unsigned short fract a, int b</var>)<var><a name="index-g_t_005f_005fusashluqq3-577"></a></var><br>
— Runtime Function: unsigned fract <b>__usashluhq3</b> (<var>unsigned fract a, int b</var>)<var><a name="index-g_t_005f_005fusashluhq3-578"></a></var><br>
— Runtime Function: unsigned long fract <b>__usashlusq3</b> (<var>unsigned long fract a, int b</var>)<var><a name="index-g_t_005f_005fusashlusq3-579"></a></var><br>
— Runtime Function: unsigned long long fract <b>__usashludq3</b> (<var>unsigned long long fract a, int b</var>)<var><a name="index-g_t_005f_005fusashludq3-580"></a></var><br>
— Runtime Function: unsigned short accum <b>__usashluha3</b> (<var>unsigned short accum a, int b</var>)<var><a name="index-g_t_005f_005fusashluha3-581"></a></var><br>
— Runtime Function: unsigned accum <b>__usashlusa3</b> (<var>unsigned accum a, int b</var>)<var><a name="index-g_t_005f_005fusashlusa3-582"></a></var><br>
— Runtime Function: unsigned long accum <b>__usashluda3</b> (<var>unsigned long accum a, int b</var>)<var><a name="index-g_t_005f_005fusashluda3-583"></a></var><br>
— Runtime Function: unsigned long long accum <b>__usashluta3</b> (<var>unsigned long long accum a, int b</var>)<var><a name="index-g_t_005f_005fusashluta3-584"></a></var><br>
<blockquote><p>These functions return the result of shifting <var>a</var> left by <var>b</var> bits
with unsigned saturation.
</p></blockquote></div>
<h4 class="subsection">4.4.2 Comparison functions</h4>
<p>The following functions implement fixed-point comparisons. These functions
implement a low-level compare, upon which the higher level comparison
operators (such as less than and greater than or equal to) can be
constructed. The returned values lie in the range zero to two, to allow
the high-level operators to be implemented by testing the returned
result using either signed or unsigned comparison.
<div class="defun">
— Runtime Function: int <b>__cmpqq2</b> (<var>short fract a, short fract b</var>)<var><a name="index-g_t_005f_005fcmpqq2-585"></a></var><br>
— Runtime Function: int <b>__cmphq2</b> (<var>fract a, fract b</var>)<var><a name="index-g_t_005f_005fcmphq2-586"></a></var><br>
— Runtime Function: int <b>__cmpsq2</b> (<var>long fract a, long fract b</var>)<var><a name="index-g_t_005f_005fcmpsq2-587"></a></var><br>
— Runtime Function: int <b>__cmpdq2</b> (<var>long long fract a, long long fract b</var>)<var><a name="index-g_t_005f_005fcmpdq2-588"></a></var><br>
— Runtime Function: int <b>__cmpuqq2</b> (<var>unsigned short fract a, unsigned short fract b</var>)<var><a name="index-g_t_005f_005fcmpuqq2-589"></a></var><br>
— Runtime Function: int <b>__cmpuhq2</b> (<var>unsigned fract a, unsigned fract b</var>)<var><a name="index-g_t_005f_005fcmpuhq2-590"></a></var><br>
— Runtime Function: int <b>__cmpusq2</b> (<var>unsigned long fract a, unsigned long fract b</var>)<var><a name="index-g_t_005f_005fcmpusq2-591"></a></var><br>
— Runtime Function: int <b>__cmpudq2</b> (<var>unsigned long long fract a, unsigned long long fract b</var>)<var><a name="index-g_t_005f_005fcmpudq2-592"></a></var><br>
— Runtime Function: int <b>__cmpha2</b> (<var>short accum a, short accum b</var>)<var><a name="index-g_t_005f_005fcmpha2-593"></a></var><br>
— Runtime Function: int <b>__cmpsa2</b> (<var>accum a, accum b</var>)<var><a name="index-g_t_005f_005fcmpsa2-594"></a></var><br>
— Runtime Function: int <b>__cmpda2</b> (<var>long accum a, long accum b</var>)<var><a name="index-g_t_005f_005fcmpda2-595"></a></var><br>
— Runtime Function: int <b>__cmpta2</b> (<var>long long accum a, long long accum b</var>)<var><a name="index-g_t_005f_005fcmpta2-596"></a></var><br>
— Runtime Function: int <b>__cmpuha2</b> (<var>unsigned short accum a, unsigned short accum b</var>)<var><a name="index-g_t_005f_005fcmpuha2-597"></a></var><br>
— Runtime Function: int <b>__cmpusa2</b> (<var>unsigned accum a, unsigned accum b</var>)<var><a name="index-g_t_005f_005fcmpusa2-598"></a></var><br>
— Runtime Function: int <b>__cmpuda2</b> (<var>unsigned long accum a, unsigned long accum b</var>)<var><a name="index-g_t_005f_005fcmpuda2-599"></a></var><br>
— Runtime Function: int <b>__cmputa2</b> (<var>unsigned long long accum a, unsigned long long accum b</var>)<var><a name="index-g_t_005f_005fcmputa2-600"></a></var><br>
<blockquote><p>These functions perform a signed or unsigned comparison of <var>a</var> and
<var>b</var> (depending on the selected machine mode). If <var>a</var> is less
than <var>b</var>, they return 0; if <var>a</var> is greater than <var>b</var>, they
return 2; and if <var>a</var> and <var>b</var> are equal they return 1.
</p></blockquote></div>
<h4 class="subsection">4.4.3 Conversion functions</h4>
<div class="defun">
— Runtime Function: fract <b>__fractqqhq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqhq2-601"></a></var><br>
— Runtime Function: long fract <b>__fractqqsq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqsq2-602"></a></var><br>
— Runtime Function: long long fract <b>__fractqqdq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqdq2-603"></a></var><br>
— Runtime Function: short accum <b>__fractqqha</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqha-604"></a></var><br>
— Runtime Function: accum <b>__fractqqsa</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqsa-605"></a></var><br>
— Runtime Function: long accum <b>__fractqqda</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqda-606"></a></var><br>
— Runtime Function: long long accum <b>__fractqqta</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqta-607"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractqquqq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqquqq-608"></a></var><br>
— Runtime Function: unsigned fract <b>__fractqquhq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqquhq-609"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractqqusq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqusq-610"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractqqudq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqudq-611"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractqquha</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqquha-612"></a></var><br>
— Runtime Function: unsigned accum <b>__fractqqusa</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqusa-613"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractqquda</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqquda-614"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractqquta</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqquta-615"></a></var><br>
— Runtime Function: signed char <b>__fractqqqi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqqi-616"></a></var><br>
— Runtime Function: short <b>__fractqqhi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqhi-617"></a></var><br>
— Runtime Function: int <b>__fractqqsi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqsi-618"></a></var><br>
— Runtime Function: long <b>__fractqqdi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqdi-619"></a></var><br>
— Runtime Function: long long <b>__fractqqti</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqti-620"></a></var><br>
— Runtime Function: float <b>__fractqqsf</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqsf-621"></a></var><br>
— Runtime Function: double <b>__fractqqdf</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractqqdf-622"></a></var><br>
— Runtime Function: short fract <b>__fracthqqq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqqq2-623"></a></var><br>
— Runtime Function: long fract <b>__fracthqsq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqsq2-624"></a></var><br>
— Runtime Function: long long fract <b>__fracthqdq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqdq2-625"></a></var><br>
— Runtime Function: short accum <b>__fracthqha</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqha-626"></a></var><br>
— Runtime Function: accum <b>__fracthqsa</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqsa-627"></a></var><br>
— Runtime Function: long accum <b>__fracthqda</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqda-628"></a></var><br>
— Runtime Function: long long accum <b>__fracthqta</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqta-629"></a></var><br>
— Runtime Function: unsigned short fract <b>__fracthquqq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthquqq-630"></a></var><br>
— Runtime Function: unsigned fract <b>__fracthquhq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthquhq-631"></a></var><br>
— Runtime Function: unsigned long fract <b>__fracthqusq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqusq-632"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fracthqudq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqudq-633"></a></var><br>
— Runtime Function: unsigned short accum <b>__fracthquha</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthquha-634"></a></var><br>
— Runtime Function: unsigned accum <b>__fracthqusa</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqusa-635"></a></var><br>
— Runtime Function: unsigned long accum <b>__fracthquda</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthquda-636"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fracthquta</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthquta-637"></a></var><br>
— Runtime Function: signed char <b>__fracthqqi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqqi-638"></a></var><br>
— Runtime Function: short <b>__fracthqhi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqhi-639"></a></var><br>
— Runtime Function: int <b>__fracthqsi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqsi-640"></a></var><br>
— Runtime Function: long <b>__fracthqdi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqdi-641"></a></var><br>
— Runtime Function: long long <b>__fracthqti</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqti-642"></a></var><br>
— Runtime Function: float <b>__fracthqsf</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqsf-643"></a></var><br>
— Runtime Function: double <b>__fracthqdf</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffracthqdf-644"></a></var><br>
— Runtime Function: short fract <b>__fractsqqq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqqq2-645"></a></var><br>
— Runtime Function: fract <b>__fractsqhq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqhq2-646"></a></var><br>
— Runtime Function: long long fract <b>__fractsqdq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqdq2-647"></a></var><br>
— Runtime Function: short accum <b>__fractsqha</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqha-648"></a></var><br>
— Runtime Function: accum <b>__fractsqsa</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqsa-649"></a></var><br>
— Runtime Function: long accum <b>__fractsqda</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqda-650"></a></var><br>
— Runtime Function: long long accum <b>__fractsqta</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqta-651"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractsquqq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsquqq-652"></a></var><br>
— Runtime Function: unsigned fract <b>__fractsquhq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsquhq-653"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractsqusq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqusq-654"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractsqudq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqudq-655"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractsquha</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsquha-656"></a></var><br>
— Runtime Function: unsigned accum <b>__fractsqusa</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqusa-657"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractsquda</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsquda-658"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractsquta</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsquta-659"></a></var><br>
— Runtime Function: signed char <b>__fractsqqi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqqi-660"></a></var><br>
— Runtime Function: short <b>__fractsqhi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqhi-661"></a></var><br>
— Runtime Function: int <b>__fractsqsi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqsi-662"></a></var><br>
— Runtime Function: long <b>__fractsqdi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqdi-663"></a></var><br>
— Runtime Function: long long <b>__fractsqti</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqti-664"></a></var><br>
— Runtime Function: float <b>__fractsqsf</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqsf-665"></a></var><br>
— Runtime Function: double <b>__fractsqdf</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractsqdf-666"></a></var><br>
— Runtime Function: short fract <b>__fractdqqq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqqq2-667"></a></var><br>
— Runtime Function: fract <b>__fractdqhq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqhq2-668"></a></var><br>
— Runtime Function: long fract <b>__fractdqsq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqsq2-669"></a></var><br>
— Runtime Function: short accum <b>__fractdqha</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqha-670"></a></var><br>
— Runtime Function: accum <b>__fractdqsa</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqsa-671"></a></var><br>
— Runtime Function: long accum <b>__fractdqda</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqda-672"></a></var><br>
— Runtime Function: long long accum <b>__fractdqta</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqta-673"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractdquqq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdquqq-674"></a></var><br>
— Runtime Function: unsigned fract <b>__fractdquhq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdquhq-675"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractdqusq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqusq-676"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractdqudq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqudq-677"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractdquha</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdquha-678"></a></var><br>
— Runtime Function: unsigned accum <b>__fractdqusa</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqusa-679"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractdquda</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdquda-680"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractdquta</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdquta-681"></a></var><br>
— Runtime Function: signed char <b>__fractdqqi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqqi-682"></a></var><br>
— Runtime Function: short <b>__fractdqhi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqhi-683"></a></var><br>
— Runtime Function: int <b>__fractdqsi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqsi-684"></a></var><br>
— Runtime Function: long <b>__fractdqdi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqdi-685"></a></var><br>
— Runtime Function: long long <b>__fractdqti</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqti-686"></a></var><br>
— Runtime Function: float <b>__fractdqsf</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqsf-687"></a></var><br>
— Runtime Function: double <b>__fractdqdf</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractdqdf-688"></a></var><br>
— Runtime Function: short fract <b>__fracthaqq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthaqq-689"></a></var><br>
— Runtime Function: fract <b>__fracthahq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthahq-690"></a></var><br>
— Runtime Function: long fract <b>__fracthasq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthasq-691"></a></var><br>
— Runtime Function: long long fract <b>__fracthadq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthadq-692"></a></var><br>
— Runtime Function: accum <b>__fracthasa2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthasa2-693"></a></var><br>
— Runtime Function: long accum <b>__fracthada2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthada2-694"></a></var><br>
— Runtime Function: long long accum <b>__fracthata2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthata2-695"></a></var><br>
— Runtime Function: unsigned short fract <b>__fracthauqq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthauqq-696"></a></var><br>
— Runtime Function: unsigned fract <b>__fracthauhq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthauhq-697"></a></var><br>
— Runtime Function: unsigned long fract <b>__fracthausq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthausq-698"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fracthaudq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthaudq-699"></a></var><br>
— Runtime Function: unsigned short accum <b>__fracthauha</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthauha-700"></a></var><br>
— Runtime Function: unsigned accum <b>__fracthausa</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthausa-701"></a></var><br>
— Runtime Function: unsigned long accum <b>__fracthauda</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthauda-702"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fracthauta</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthauta-703"></a></var><br>
— Runtime Function: signed char <b>__fracthaqi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthaqi-704"></a></var><br>
— Runtime Function: short <b>__fracthahi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthahi-705"></a></var><br>
— Runtime Function: int <b>__fracthasi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthasi-706"></a></var><br>
— Runtime Function: long <b>__fracthadi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthadi-707"></a></var><br>
— Runtime Function: long long <b>__fracthati</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthati-708"></a></var><br>
— Runtime Function: float <b>__fracthasf</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthasf-709"></a></var><br>
— Runtime Function: double <b>__fracthadf</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffracthadf-710"></a></var><br>
— Runtime Function: short fract <b>__fractsaqq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsaqq-711"></a></var><br>
— Runtime Function: fract <b>__fractsahq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsahq-712"></a></var><br>
— Runtime Function: long fract <b>__fractsasq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsasq-713"></a></var><br>
— Runtime Function: long long fract <b>__fractsadq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsadq-714"></a></var><br>
— Runtime Function: short accum <b>__fractsaha2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsaha2-715"></a></var><br>
— Runtime Function: long accum <b>__fractsada2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsada2-716"></a></var><br>
— Runtime Function: long long accum <b>__fractsata2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsata2-717"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractsauqq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsauqq-718"></a></var><br>
— Runtime Function: unsigned fract <b>__fractsauhq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsauhq-719"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractsausq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsausq-720"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractsaudq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsaudq-721"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractsauha</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsauha-722"></a></var><br>
— Runtime Function: unsigned accum <b>__fractsausa</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsausa-723"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractsauda</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsauda-724"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractsauta</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsauta-725"></a></var><br>
— Runtime Function: signed char <b>__fractsaqi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsaqi-726"></a></var><br>
— Runtime Function: short <b>__fractsahi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsahi-727"></a></var><br>
— Runtime Function: int <b>__fractsasi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsasi-728"></a></var><br>
— Runtime Function: long <b>__fractsadi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsadi-729"></a></var><br>
— Runtime Function: long long <b>__fractsati</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsati-730"></a></var><br>
— Runtime Function: float <b>__fractsasf</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsasf-731"></a></var><br>
— Runtime Function: double <b>__fractsadf</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractsadf-732"></a></var><br>
— Runtime Function: short fract <b>__fractdaqq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdaqq-733"></a></var><br>
— Runtime Function: fract <b>__fractdahq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdahq-734"></a></var><br>
— Runtime Function: long fract <b>__fractdasq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdasq-735"></a></var><br>
— Runtime Function: long long fract <b>__fractdadq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdadq-736"></a></var><br>
— Runtime Function: short accum <b>__fractdaha2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdaha2-737"></a></var><br>
— Runtime Function: accum <b>__fractdasa2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdasa2-738"></a></var><br>
— Runtime Function: long long accum <b>__fractdata2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdata2-739"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractdauqq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdauqq-740"></a></var><br>
— Runtime Function: unsigned fract <b>__fractdauhq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdauhq-741"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractdausq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdausq-742"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractdaudq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdaudq-743"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractdauha</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdauha-744"></a></var><br>
— Runtime Function: unsigned accum <b>__fractdausa</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdausa-745"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractdauda</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdauda-746"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractdauta</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdauta-747"></a></var><br>
— Runtime Function: signed char <b>__fractdaqi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdaqi-748"></a></var><br>
— Runtime Function: short <b>__fractdahi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdahi-749"></a></var><br>
— Runtime Function: int <b>__fractdasi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdasi-750"></a></var><br>
— Runtime Function: long <b>__fractdadi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdadi-751"></a></var><br>
— Runtime Function: long long <b>__fractdati</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdati-752"></a></var><br>
— Runtime Function: float <b>__fractdasf</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdasf-753"></a></var><br>
— Runtime Function: double <b>__fractdadf</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractdadf-754"></a></var><br>
— Runtime Function: short fract <b>__fracttaqq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttaqq-755"></a></var><br>
— Runtime Function: fract <b>__fracttahq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttahq-756"></a></var><br>
— Runtime Function: long fract <b>__fracttasq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttasq-757"></a></var><br>
— Runtime Function: long long fract <b>__fracttadq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttadq-758"></a></var><br>
— Runtime Function: short accum <b>__fracttaha2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttaha2-759"></a></var><br>
— Runtime Function: accum <b>__fracttasa2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttasa2-760"></a></var><br>
— Runtime Function: long accum <b>__fracttada2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttada2-761"></a></var><br>
— Runtime Function: unsigned short fract <b>__fracttauqq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttauqq-762"></a></var><br>
— Runtime Function: unsigned fract <b>__fracttauhq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttauhq-763"></a></var><br>
— Runtime Function: unsigned long fract <b>__fracttausq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttausq-764"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fracttaudq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttaudq-765"></a></var><br>
— Runtime Function: unsigned short accum <b>__fracttauha</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttauha-766"></a></var><br>
— Runtime Function: unsigned accum <b>__fracttausa</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttausa-767"></a></var><br>
— Runtime Function: unsigned long accum <b>__fracttauda</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttauda-768"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fracttauta</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttauta-769"></a></var><br>
— Runtime Function: signed char <b>__fracttaqi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttaqi-770"></a></var><br>
— Runtime Function: short <b>__fracttahi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttahi-771"></a></var><br>
— Runtime Function: int <b>__fracttasi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttasi-772"></a></var><br>
— Runtime Function: long <b>__fracttadi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttadi-773"></a></var><br>
— Runtime Function: long long <b>__fracttati</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttati-774"></a></var><br>
— Runtime Function: float <b>__fracttasf</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttasf-775"></a></var><br>
— Runtime Function: double <b>__fracttadf</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffracttadf-776"></a></var><br>
— Runtime Function: short fract <b>__fractuqqqq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqqq-777"></a></var><br>
— Runtime Function: fract <b>__fractuqqhq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqhq-778"></a></var><br>
— Runtime Function: long fract <b>__fractuqqsq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqsq-779"></a></var><br>
— Runtime Function: long long fract <b>__fractuqqdq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqdq-780"></a></var><br>
— Runtime Function: short accum <b>__fractuqqha</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqha-781"></a></var><br>
— Runtime Function: accum <b>__fractuqqsa</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqsa-782"></a></var><br>
— Runtime Function: long accum <b>__fractuqqda</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqda-783"></a></var><br>
— Runtime Function: long long accum <b>__fractuqqta</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqta-784"></a></var><br>
— Runtime Function: unsigned fract <b>__fractuqquhq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqquhq2-785"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractuqqusq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqusq2-786"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractuqqudq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqudq2-787"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractuqquha</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqquha-788"></a></var><br>
— Runtime Function: unsigned accum <b>__fractuqqusa</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqusa-789"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractuqquda</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqquda-790"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractuqquta</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqquta-791"></a></var><br>
— Runtime Function: signed char <b>__fractuqqqi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqqi-792"></a></var><br>
— Runtime Function: short <b>__fractuqqhi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqhi-793"></a></var><br>
— Runtime Function: int <b>__fractuqqsi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqsi-794"></a></var><br>
— Runtime Function: long <b>__fractuqqdi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqdi-795"></a></var><br>
— Runtime Function: long long <b>__fractuqqti</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqti-796"></a></var><br>
— Runtime Function: float <b>__fractuqqsf</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqsf-797"></a></var><br>
— Runtime Function: double <b>__fractuqqdf</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractuqqdf-798"></a></var><br>
— Runtime Function: short fract <b>__fractuhqqq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqqq-799"></a></var><br>
— Runtime Function: fract <b>__fractuhqhq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqhq-800"></a></var><br>
— Runtime Function: long fract <b>__fractuhqsq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqsq-801"></a></var><br>
— Runtime Function: long long fract <b>__fractuhqdq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqdq-802"></a></var><br>
— Runtime Function: short accum <b>__fractuhqha</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqha-803"></a></var><br>
— Runtime Function: accum <b>__fractuhqsa</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqsa-804"></a></var><br>
— Runtime Function: long accum <b>__fractuhqda</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqda-805"></a></var><br>
— Runtime Function: long long accum <b>__fractuhqta</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqta-806"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractuhquqq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhquqq2-807"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractuhqusq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqusq2-808"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractuhqudq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqudq2-809"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractuhquha</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhquha-810"></a></var><br>
— Runtime Function: unsigned accum <b>__fractuhqusa</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqusa-811"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractuhquda</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhquda-812"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractuhquta</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhquta-813"></a></var><br>
— Runtime Function: signed char <b>__fractuhqqi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqqi-814"></a></var><br>
— Runtime Function: short <b>__fractuhqhi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqhi-815"></a></var><br>
— Runtime Function: int <b>__fractuhqsi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqsi-816"></a></var><br>
— Runtime Function: long <b>__fractuhqdi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqdi-817"></a></var><br>
— Runtime Function: long long <b>__fractuhqti</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqti-818"></a></var><br>
— Runtime Function: float <b>__fractuhqsf</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqsf-819"></a></var><br>
— Runtime Function: double <b>__fractuhqdf</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractuhqdf-820"></a></var><br>
— Runtime Function: short fract <b>__fractusqqq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqqq-821"></a></var><br>
— Runtime Function: fract <b>__fractusqhq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqhq-822"></a></var><br>
— Runtime Function: long fract <b>__fractusqsq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqsq-823"></a></var><br>
— Runtime Function: long long fract <b>__fractusqdq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqdq-824"></a></var><br>
— Runtime Function: short accum <b>__fractusqha</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqha-825"></a></var><br>
— Runtime Function: accum <b>__fractusqsa</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqsa-826"></a></var><br>
— Runtime Function: long accum <b>__fractusqda</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqda-827"></a></var><br>
— Runtime Function: long long accum <b>__fractusqta</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqta-828"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractusquqq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusquqq2-829"></a></var><br>
— Runtime Function: unsigned fract <b>__fractusquhq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusquhq2-830"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractusqudq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqudq2-831"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractusquha</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusquha-832"></a></var><br>
— Runtime Function: unsigned accum <b>__fractusqusa</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqusa-833"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractusquda</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusquda-834"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractusquta</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusquta-835"></a></var><br>
— Runtime Function: signed char <b>__fractusqqi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqqi-836"></a></var><br>
— Runtime Function: short <b>__fractusqhi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqhi-837"></a></var><br>
— Runtime Function: int <b>__fractusqsi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqsi-838"></a></var><br>
— Runtime Function: long <b>__fractusqdi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqdi-839"></a></var><br>
— Runtime Function: long long <b>__fractusqti</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqti-840"></a></var><br>
— Runtime Function: float <b>__fractusqsf</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqsf-841"></a></var><br>
— Runtime Function: double <b>__fractusqdf</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractusqdf-842"></a></var><br>
— Runtime Function: short fract <b>__fractudqqq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqqq-843"></a></var><br>
— Runtime Function: fract <b>__fractudqhq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqhq-844"></a></var><br>
— Runtime Function: long fract <b>__fractudqsq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqsq-845"></a></var><br>
— Runtime Function: long long fract <b>__fractudqdq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqdq-846"></a></var><br>
— Runtime Function: short accum <b>__fractudqha</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqha-847"></a></var><br>
— Runtime Function: accum <b>__fractudqsa</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqsa-848"></a></var><br>
— Runtime Function: long accum <b>__fractudqda</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqda-849"></a></var><br>
— Runtime Function: long long accum <b>__fractudqta</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqta-850"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractudquqq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudquqq2-851"></a></var><br>
— Runtime Function: unsigned fract <b>__fractudquhq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudquhq2-852"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractudqusq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqusq2-853"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractudquha</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudquha-854"></a></var><br>
— Runtime Function: unsigned accum <b>__fractudqusa</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqusa-855"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractudquda</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudquda-856"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractudquta</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudquta-857"></a></var><br>
— Runtime Function: signed char <b>__fractudqqi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqqi-858"></a></var><br>
— Runtime Function: short <b>__fractudqhi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqhi-859"></a></var><br>
— Runtime Function: int <b>__fractudqsi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqsi-860"></a></var><br>
— Runtime Function: long <b>__fractudqdi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqdi-861"></a></var><br>
— Runtime Function: long long <b>__fractudqti</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqti-862"></a></var><br>
— Runtime Function: float <b>__fractudqsf</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqsf-863"></a></var><br>
— Runtime Function: double <b>__fractudqdf</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractudqdf-864"></a></var><br>
— Runtime Function: short fract <b>__fractuhaqq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhaqq-865"></a></var><br>
— Runtime Function: fract <b>__fractuhahq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhahq-866"></a></var><br>
— Runtime Function: long fract <b>__fractuhasq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhasq-867"></a></var><br>
— Runtime Function: long long fract <b>__fractuhadq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhadq-868"></a></var><br>
— Runtime Function: short accum <b>__fractuhaha</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhaha-869"></a></var><br>
— Runtime Function: accum <b>__fractuhasa</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhasa-870"></a></var><br>
— Runtime Function: long accum <b>__fractuhada</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhada-871"></a></var><br>
— Runtime Function: long long accum <b>__fractuhata</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhata-872"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractuhauqq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhauqq-873"></a></var><br>
— Runtime Function: unsigned fract <b>__fractuhauhq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhauhq-874"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractuhausq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhausq-875"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractuhaudq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhaudq-876"></a></var><br>
— Runtime Function: unsigned accum <b>__fractuhausa2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhausa2-877"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractuhauda2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhauda2-878"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractuhauta2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhauta2-879"></a></var><br>
— Runtime Function: signed char <b>__fractuhaqi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhaqi-880"></a></var><br>
— Runtime Function: short <b>__fractuhahi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhahi-881"></a></var><br>
— Runtime Function: int <b>__fractuhasi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhasi-882"></a></var><br>
— Runtime Function: long <b>__fractuhadi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhadi-883"></a></var><br>
— Runtime Function: long long <b>__fractuhati</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhati-884"></a></var><br>
— Runtime Function: float <b>__fractuhasf</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhasf-885"></a></var><br>
— Runtime Function: double <b>__fractuhadf</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractuhadf-886"></a></var><br>
— Runtime Function: short fract <b>__fractusaqq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusaqq-887"></a></var><br>
— Runtime Function: fract <b>__fractusahq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusahq-888"></a></var><br>
— Runtime Function: long fract <b>__fractusasq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusasq-889"></a></var><br>
— Runtime Function: long long fract <b>__fractusadq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusadq-890"></a></var><br>
— Runtime Function: short accum <b>__fractusaha</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusaha-891"></a></var><br>
— Runtime Function: accum <b>__fractusasa</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusasa-892"></a></var><br>
— Runtime Function: long accum <b>__fractusada</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusada-893"></a></var><br>
— Runtime Function: long long accum <b>__fractusata</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusata-894"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractusauqq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusauqq-895"></a></var><br>
— Runtime Function: unsigned fract <b>__fractusauhq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusauhq-896"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractusausq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusausq-897"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractusaudq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusaudq-898"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractusauha2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusauha2-899"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractusauda2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusauda2-900"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractusauta2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusauta2-901"></a></var><br>
— Runtime Function: signed char <b>__fractusaqi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusaqi-902"></a></var><br>
— Runtime Function: short <b>__fractusahi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusahi-903"></a></var><br>
— Runtime Function: int <b>__fractusasi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusasi-904"></a></var><br>
— Runtime Function: long <b>__fractusadi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusadi-905"></a></var><br>
— Runtime Function: long long <b>__fractusati</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusati-906"></a></var><br>
— Runtime Function: float <b>__fractusasf</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusasf-907"></a></var><br>
— Runtime Function: double <b>__fractusadf</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractusadf-908"></a></var><br>
— Runtime Function: short fract <b>__fractudaqq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudaqq-909"></a></var><br>
— Runtime Function: fract <b>__fractudahq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudahq-910"></a></var><br>
— Runtime Function: long fract <b>__fractudasq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudasq-911"></a></var><br>
— Runtime Function: long long fract <b>__fractudadq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudadq-912"></a></var><br>
— Runtime Function: short accum <b>__fractudaha</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudaha-913"></a></var><br>
— Runtime Function: accum <b>__fractudasa</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudasa-914"></a></var><br>
— Runtime Function: long accum <b>__fractudada</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudada-915"></a></var><br>
— Runtime Function: long long accum <b>__fractudata</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudata-916"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractudauqq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudauqq-917"></a></var><br>
— Runtime Function: unsigned fract <b>__fractudauhq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudauhq-918"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractudausq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudausq-919"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractudaudq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudaudq-920"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractudauha2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudauha2-921"></a></var><br>
— Runtime Function: unsigned accum <b>__fractudausa2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudausa2-922"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractudauta2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudauta2-923"></a></var><br>
— Runtime Function: signed char <b>__fractudaqi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudaqi-924"></a></var><br>
— Runtime Function: short <b>__fractudahi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudahi-925"></a></var><br>
— Runtime Function: int <b>__fractudasi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudasi-926"></a></var><br>
— Runtime Function: long <b>__fractudadi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudadi-927"></a></var><br>
— Runtime Function: long long <b>__fractudati</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudati-928"></a></var><br>
— Runtime Function: float <b>__fractudasf</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudasf-929"></a></var><br>
— Runtime Function: double <b>__fractudadf</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractudadf-930"></a></var><br>
— Runtime Function: short fract <b>__fractutaqq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutaqq-931"></a></var><br>
— Runtime Function: fract <b>__fractutahq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutahq-932"></a></var><br>
— Runtime Function: long fract <b>__fractutasq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutasq-933"></a></var><br>
— Runtime Function: long long fract <b>__fractutadq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutadq-934"></a></var><br>
— Runtime Function: short accum <b>__fractutaha</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutaha-935"></a></var><br>
— Runtime Function: accum <b>__fractutasa</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutasa-936"></a></var><br>
— Runtime Function: long accum <b>__fractutada</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutada-937"></a></var><br>
— Runtime Function: long long accum <b>__fractutata</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutata-938"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractutauqq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutauqq-939"></a></var><br>
— Runtime Function: unsigned fract <b>__fractutauhq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutauhq-940"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractutausq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutausq-941"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractutaudq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutaudq-942"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractutauha2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutauha2-943"></a></var><br>
— Runtime Function: unsigned accum <b>__fractutausa2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutausa2-944"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractutauda2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutauda2-945"></a></var><br>
— Runtime Function: signed char <b>__fractutaqi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutaqi-946"></a></var><br>
— Runtime Function: short <b>__fractutahi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutahi-947"></a></var><br>
— Runtime Function: int <b>__fractutasi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutasi-948"></a></var><br>
— Runtime Function: long <b>__fractutadi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutadi-949"></a></var><br>
— Runtime Function: long long <b>__fractutati</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutati-950"></a></var><br>
— Runtime Function: float <b>__fractutasf</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutasf-951"></a></var><br>
— Runtime Function: double <b>__fractutadf</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractutadf-952"></a></var><br>
— Runtime Function: short fract <b>__fractqiqq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiqq-953"></a></var><br>
— Runtime Function: fract <b>__fractqihq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqihq-954"></a></var><br>
— Runtime Function: long fract <b>__fractqisq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqisq-955"></a></var><br>
— Runtime Function: long long fract <b>__fractqidq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqidq-956"></a></var><br>
— Runtime Function: short accum <b>__fractqiha</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiha-957"></a></var><br>
— Runtime Function: accum <b>__fractqisa</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqisa-958"></a></var><br>
— Runtime Function: long accum <b>__fractqida</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqida-959"></a></var><br>
— Runtime Function: long long accum <b>__fractqita</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqita-960"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractqiuqq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiuqq-961"></a></var><br>
— Runtime Function: unsigned fract <b>__fractqiuhq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiuhq-962"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractqiusq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiusq-963"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractqiudq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiudq-964"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractqiuha</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiuha-965"></a></var><br>
— Runtime Function: unsigned accum <b>__fractqiusa</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiusa-966"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractqiuda</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiuda-967"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractqiuta</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005ffractqiuta-968"></a></var><br>
— Runtime Function: short fract <b>__fracthiqq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiqq-969"></a></var><br>
— Runtime Function: fract <b>__fracthihq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthihq-970"></a></var><br>
— Runtime Function: long fract <b>__fracthisq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthisq-971"></a></var><br>
— Runtime Function: long long fract <b>__fracthidq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthidq-972"></a></var><br>
— Runtime Function: short accum <b>__fracthiha</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiha-973"></a></var><br>
— Runtime Function: accum <b>__fracthisa</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthisa-974"></a></var><br>
— Runtime Function: long accum <b>__fracthida</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthida-975"></a></var><br>
— Runtime Function: long long accum <b>__fracthita</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthita-976"></a></var><br>
— Runtime Function: unsigned short fract <b>__fracthiuqq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiuqq-977"></a></var><br>
— Runtime Function: unsigned fract <b>__fracthiuhq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiuhq-978"></a></var><br>
— Runtime Function: unsigned long fract <b>__fracthiusq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiusq-979"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fracthiudq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiudq-980"></a></var><br>
— Runtime Function: unsigned short accum <b>__fracthiuha</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiuha-981"></a></var><br>
— Runtime Function: unsigned accum <b>__fracthiusa</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiusa-982"></a></var><br>
— Runtime Function: unsigned long accum <b>__fracthiuda</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiuda-983"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fracthiuta</b> (<var>short a</var>)<var><a name="index-g_t_005f_005ffracthiuta-984"></a></var><br>
— Runtime Function: short fract <b>__fractsiqq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiqq-985"></a></var><br>
— Runtime Function: fract <b>__fractsihq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsihq-986"></a></var><br>
— Runtime Function: long fract <b>__fractsisq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsisq-987"></a></var><br>
— Runtime Function: long long fract <b>__fractsidq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsidq-988"></a></var><br>
— Runtime Function: short accum <b>__fractsiha</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiha-989"></a></var><br>
— Runtime Function: accum <b>__fractsisa</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsisa-990"></a></var><br>
— Runtime Function: long accum <b>__fractsida</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsida-991"></a></var><br>
— Runtime Function: long long accum <b>__fractsita</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsita-992"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractsiuqq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiuqq-993"></a></var><br>
— Runtime Function: unsigned fract <b>__fractsiuhq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiuhq-994"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractsiusq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiusq-995"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractsiudq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiudq-996"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractsiuha</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiuha-997"></a></var><br>
— Runtime Function: unsigned accum <b>__fractsiusa</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiusa-998"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractsiuda</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiuda-999"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractsiuta</b> (<var>int a</var>)<var><a name="index-g_t_005f_005ffractsiuta-1000"></a></var><br>
— Runtime Function: short fract <b>__fractdiqq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiqq-1001"></a></var><br>
— Runtime Function: fract <b>__fractdihq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdihq-1002"></a></var><br>
— Runtime Function: long fract <b>__fractdisq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdisq-1003"></a></var><br>
— Runtime Function: long long fract <b>__fractdidq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdidq-1004"></a></var><br>
— Runtime Function: short accum <b>__fractdiha</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiha-1005"></a></var><br>
— Runtime Function: accum <b>__fractdisa</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdisa-1006"></a></var><br>
— Runtime Function: long accum <b>__fractdida</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdida-1007"></a></var><br>
— Runtime Function: long long accum <b>__fractdita</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdita-1008"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractdiuqq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiuqq-1009"></a></var><br>
— Runtime Function: unsigned fract <b>__fractdiuhq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiuhq-1010"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractdiusq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiusq-1011"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractdiudq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiudq-1012"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractdiuha</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiuha-1013"></a></var><br>
— Runtime Function: unsigned accum <b>__fractdiusa</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiusa-1014"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractdiuda</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiuda-1015"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractdiuta</b> (<var>long a</var>)<var><a name="index-g_t_005f_005ffractdiuta-1016"></a></var><br>
— Runtime Function: short fract <b>__fracttiqq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiqq-1017"></a></var><br>
— Runtime Function: fract <b>__fracttihq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttihq-1018"></a></var><br>
— Runtime Function: long fract <b>__fracttisq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttisq-1019"></a></var><br>
— Runtime Function: long long fract <b>__fracttidq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttidq-1020"></a></var><br>
— Runtime Function: short accum <b>__fracttiha</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiha-1021"></a></var><br>
— Runtime Function: accum <b>__fracttisa</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttisa-1022"></a></var><br>
— Runtime Function: long accum <b>__fracttida</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttida-1023"></a></var><br>
— Runtime Function: long long accum <b>__fracttita</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttita-1024"></a></var><br>
— Runtime Function: unsigned short fract <b>__fracttiuqq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiuqq-1025"></a></var><br>
— Runtime Function: unsigned fract <b>__fracttiuhq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiuhq-1026"></a></var><br>
— Runtime Function: unsigned long fract <b>__fracttiusq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiusq-1027"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fracttiudq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiudq-1028"></a></var><br>
— Runtime Function: unsigned short accum <b>__fracttiuha</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiuha-1029"></a></var><br>
— Runtime Function: unsigned accum <b>__fracttiusa</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiusa-1030"></a></var><br>
— Runtime Function: unsigned long accum <b>__fracttiuda</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiuda-1031"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fracttiuta</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005ffracttiuta-1032"></a></var><br>
— Runtime Function: short fract <b>__fractsfqq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfqq-1033"></a></var><br>
— Runtime Function: fract <b>__fractsfhq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfhq-1034"></a></var><br>
— Runtime Function: long fract <b>__fractsfsq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfsq-1035"></a></var><br>
— Runtime Function: long long fract <b>__fractsfdq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfdq-1036"></a></var><br>
— Runtime Function: short accum <b>__fractsfha</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfha-1037"></a></var><br>
— Runtime Function: accum <b>__fractsfsa</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfsa-1038"></a></var><br>
— Runtime Function: long accum <b>__fractsfda</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfda-1039"></a></var><br>
— Runtime Function: long long accum <b>__fractsfta</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfta-1040"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractsfuqq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfuqq-1041"></a></var><br>
— Runtime Function: unsigned fract <b>__fractsfuhq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfuhq-1042"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractsfusq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfusq-1043"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractsfudq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfudq-1044"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractsfuha</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfuha-1045"></a></var><br>
— Runtime Function: unsigned accum <b>__fractsfusa</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfusa-1046"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractsfuda</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfuda-1047"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractsfuta</b> (<var>float a</var>)<var><a name="index-g_t_005f_005ffractsfuta-1048"></a></var><br>
— Runtime Function: short fract <b>__fractdfqq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfqq-1049"></a></var><br>
— Runtime Function: fract <b>__fractdfhq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfhq-1050"></a></var><br>
— Runtime Function: long fract <b>__fractdfsq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfsq-1051"></a></var><br>
— Runtime Function: long long fract <b>__fractdfdq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfdq-1052"></a></var><br>
— Runtime Function: short accum <b>__fractdfha</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfha-1053"></a></var><br>
— Runtime Function: accum <b>__fractdfsa</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfsa-1054"></a></var><br>
— Runtime Function: long accum <b>__fractdfda</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfda-1055"></a></var><br>
— Runtime Function: long long accum <b>__fractdfta</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfta-1056"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractdfuqq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfuqq-1057"></a></var><br>
— Runtime Function: unsigned fract <b>__fractdfuhq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfuhq-1058"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractdfusq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfusq-1059"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractdfudq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfudq-1060"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractdfuha</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfuha-1061"></a></var><br>
— Runtime Function: unsigned accum <b>__fractdfusa</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfusa-1062"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractdfuda</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfuda-1063"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractdfuta</b> (<var>double a</var>)<var><a name="index-g_t_005f_005ffractdfuta-1064"></a></var><br>
<blockquote><p>These functions convert from fractional and signed non-fractionals to
fractionals and signed non-fractionals, without saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: fract <b>__satfractqqhq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqhq2-1065"></a></var><br>
— Runtime Function: long fract <b>__satfractqqsq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqsq2-1066"></a></var><br>
— Runtime Function: long long fract <b>__satfractqqdq2</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqdq2-1067"></a></var><br>
— Runtime Function: short accum <b>__satfractqqha</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqha-1068"></a></var><br>
— Runtime Function: accum <b>__satfractqqsa</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqsa-1069"></a></var><br>
— Runtime Function: long accum <b>__satfractqqda</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqda-1070"></a></var><br>
— Runtime Function: long long accum <b>__satfractqqta</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqta-1071"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractqquqq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqquqq-1072"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractqquhq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqquhq-1073"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractqqusq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqusq-1074"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractqqudq</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqudq-1075"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractqquha</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqquha-1076"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractqqusa</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqqusa-1077"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractqquda</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqquda-1078"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractqquta</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005fsatfractqquta-1079"></a></var><br>
— Runtime Function: short fract <b>__satfracthqqq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqqq2-1080"></a></var><br>
— Runtime Function: long fract <b>__satfracthqsq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqsq2-1081"></a></var><br>
— Runtime Function: long long fract <b>__satfracthqdq2</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqdq2-1082"></a></var><br>
— Runtime Function: short accum <b>__satfracthqha</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqha-1083"></a></var><br>
— Runtime Function: accum <b>__satfracthqsa</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqsa-1084"></a></var><br>
— Runtime Function: long accum <b>__satfracthqda</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqda-1085"></a></var><br>
— Runtime Function: long long accum <b>__satfracthqta</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqta-1086"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfracthquqq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthquqq-1087"></a></var><br>
— Runtime Function: unsigned fract <b>__satfracthquhq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthquhq-1088"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfracthqusq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqusq-1089"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfracthqudq</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqudq-1090"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfracthquha</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthquha-1091"></a></var><br>
— Runtime Function: unsigned accum <b>__satfracthqusa</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthqusa-1092"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfracthquda</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthquda-1093"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfracthquta</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005fsatfracthquta-1094"></a></var><br>
— Runtime Function: short fract <b>__satfractsqqq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqqq2-1095"></a></var><br>
— Runtime Function: fract <b>__satfractsqhq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqhq2-1096"></a></var><br>
— Runtime Function: long long fract <b>__satfractsqdq2</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqdq2-1097"></a></var><br>
— Runtime Function: short accum <b>__satfractsqha</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqha-1098"></a></var><br>
— Runtime Function: accum <b>__satfractsqsa</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqsa-1099"></a></var><br>
— Runtime Function: long accum <b>__satfractsqda</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqda-1100"></a></var><br>
— Runtime Function: long long accum <b>__satfractsqta</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqta-1101"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractsquqq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsquqq-1102"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractsquhq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsquhq-1103"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractsqusq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqusq-1104"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractsqudq</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqudq-1105"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractsquha</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsquha-1106"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractsqusa</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsqusa-1107"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractsquda</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsquda-1108"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractsquta</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005fsatfractsquta-1109"></a></var><br>
— Runtime Function: short fract <b>__satfractdqqq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqqq2-1110"></a></var><br>
— Runtime Function: fract <b>__satfractdqhq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqhq2-1111"></a></var><br>
— Runtime Function: long fract <b>__satfractdqsq2</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqsq2-1112"></a></var><br>
— Runtime Function: short accum <b>__satfractdqha</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqha-1113"></a></var><br>
— Runtime Function: accum <b>__satfractdqsa</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqsa-1114"></a></var><br>
— Runtime Function: long accum <b>__satfractdqda</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqda-1115"></a></var><br>
— Runtime Function: long long accum <b>__satfractdqta</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqta-1116"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractdquqq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdquqq-1117"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractdquhq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdquhq-1118"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractdqusq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqusq-1119"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractdqudq</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqudq-1120"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractdquha</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdquha-1121"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractdqusa</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdqusa-1122"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractdquda</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdquda-1123"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractdquta</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractdquta-1124"></a></var><br>
— Runtime Function: short fract <b>__satfracthaqq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthaqq-1125"></a></var><br>
— Runtime Function: fract <b>__satfracthahq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthahq-1126"></a></var><br>
— Runtime Function: long fract <b>__satfracthasq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthasq-1127"></a></var><br>
— Runtime Function: long long fract <b>__satfracthadq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthadq-1128"></a></var><br>
— Runtime Function: accum <b>__satfracthasa2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthasa2-1129"></a></var><br>
— Runtime Function: long accum <b>__satfracthada2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthada2-1130"></a></var><br>
— Runtime Function: long long accum <b>__satfracthata2</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthata2-1131"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfracthauqq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthauqq-1132"></a></var><br>
— Runtime Function: unsigned fract <b>__satfracthauhq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthauhq-1133"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfracthausq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthausq-1134"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfracthaudq</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthaudq-1135"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfracthauha</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthauha-1136"></a></var><br>
— Runtime Function: unsigned accum <b>__satfracthausa</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthausa-1137"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfracthauda</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthauda-1138"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfracthauta</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005fsatfracthauta-1139"></a></var><br>
— Runtime Function: short fract <b>__satfractsaqq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsaqq-1140"></a></var><br>
— Runtime Function: fract <b>__satfractsahq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsahq-1141"></a></var><br>
— Runtime Function: long fract <b>__satfractsasq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsasq-1142"></a></var><br>
— Runtime Function: long long fract <b>__satfractsadq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsadq-1143"></a></var><br>
— Runtime Function: short accum <b>__satfractsaha2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsaha2-1144"></a></var><br>
— Runtime Function: long accum <b>__satfractsada2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsada2-1145"></a></var><br>
— Runtime Function: long long accum <b>__satfractsata2</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsata2-1146"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractsauqq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsauqq-1147"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractsauhq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsauhq-1148"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractsausq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsausq-1149"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractsaudq</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsaudq-1150"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractsauha</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsauha-1151"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractsausa</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsausa-1152"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractsauda</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsauda-1153"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractsauta</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005fsatfractsauta-1154"></a></var><br>
— Runtime Function: short fract <b>__satfractdaqq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdaqq-1155"></a></var><br>
— Runtime Function: fract <b>__satfractdahq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdahq-1156"></a></var><br>
— Runtime Function: long fract <b>__satfractdasq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdasq-1157"></a></var><br>
— Runtime Function: long long fract <b>__satfractdadq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdadq-1158"></a></var><br>
— Runtime Function: short accum <b>__satfractdaha2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdaha2-1159"></a></var><br>
— Runtime Function: accum <b>__satfractdasa2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdasa2-1160"></a></var><br>
— Runtime Function: long long accum <b>__satfractdata2</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdata2-1161"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractdauqq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdauqq-1162"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractdauhq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdauhq-1163"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractdausq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdausq-1164"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractdaudq</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdaudq-1165"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractdauha</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdauha-1166"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractdausa</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdausa-1167"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractdauda</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdauda-1168"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractdauta</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005fsatfractdauta-1169"></a></var><br>
— Runtime Function: short fract <b>__satfracttaqq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttaqq-1170"></a></var><br>
— Runtime Function: fract <b>__satfracttahq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttahq-1171"></a></var><br>
— Runtime Function: long fract <b>__satfracttasq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttasq-1172"></a></var><br>
— Runtime Function: long long fract <b>__satfracttadq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttadq-1173"></a></var><br>
— Runtime Function: short accum <b>__satfracttaha2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttaha2-1174"></a></var><br>
— Runtime Function: accum <b>__satfracttasa2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttasa2-1175"></a></var><br>
— Runtime Function: long accum <b>__satfracttada2</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttada2-1176"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfracttauqq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttauqq-1177"></a></var><br>
— Runtime Function: unsigned fract <b>__satfracttauhq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttauhq-1178"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfracttausq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttausq-1179"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfracttaudq</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttaudq-1180"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfracttauha</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttauha-1181"></a></var><br>
— Runtime Function: unsigned accum <b>__satfracttausa</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttausa-1182"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfracttauda</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttauda-1183"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfracttauta</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005fsatfracttauta-1184"></a></var><br>
— Runtime Function: short fract <b>__satfractuqqqq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqqq-1185"></a></var><br>
— Runtime Function: fract <b>__satfractuqqhq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqhq-1186"></a></var><br>
— Runtime Function: long fract <b>__satfractuqqsq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqsq-1187"></a></var><br>
— Runtime Function: long long fract <b>__satfractuqqdq</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqdq-1188"></a></var><br>
— Runtime Function: short accum <b>__satfractuqqha</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqha-1189"></a></var><br>
— Runtime Function: accum <b>__satfractuqqsa</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqsa-1190"></a></var><br>
— Runtime Function: long accum <b>__satfractuqqda</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqda-1191"></a></var><br>
— Runtime Function: long long accum <b>__satfractuqqta</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqta-1192"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractuqquhq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqquhq2-1193"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractuqqusq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqusq2-1194"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractuqqudq2</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqudq2-1195"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractuqquha</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqquha-1196"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractuqqusa</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqqusa-1197"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractuqquda</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqquda-1198"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractuqquta</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005fsatfractuqquta-1199"></a></var><br>
— Runtime Function: short fract <b>__satfractuhqqq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqqq-1200"></a></var><br>
— Runtime Function: fract <b>__satfractuhqhq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqhq-1201"></a></var><br>
— Runtime Function: long fract <b>__satfractuhqsq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqsq-1202"></a></var><br>
— Runtime Function: long long fract <b>__satfractuhqdq</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqdq-1203"></a></var><br>
— Runtime Function: short accum <b>__satfractuhqha</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqha-1204"></a></var><br>
— Runtime Function: accum <b>__satfractuhqsa</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqsa-1205"></a></var><br>
— Runtime Function: long accum <b>__satfractuhqda</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqda-1206"></a></var><br>
— Runtime Function: long long accum <b>__satfractuhqta</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqta-1207"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractuhquqq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhquqq2-1208"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractuhqusq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqusq2-1209"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractuhqudq2</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqudq2-1210"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractuhquha</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhquha-1211"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractuhqusa</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhqusa-1212"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractuhquda</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhquda-1213"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractuhquta</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005fsatfractuhquta-1214"></a></var><br>
— Runtime Function: short fract <b>__satfractusqqq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqqq-1215"></a></var><br>
— Runtime Function: fract <b>__satfractusqhq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqhq-1216"></a></var><br>
— Runtime Function: long fract <b>__satfractusqsq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqsq-1217"></a></var><br>
— Runtime Function: long long fract <b>__satfractusqdq</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqdq-1218"></a></var><br>
— Runtime Function: short accum <b>__satfractusqha</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqha-1219"></a></var><br>
— Runtime Function: accum <b>__satfractusqsa</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqsa-1220"></a></var><br>
— Runtime Function: long accum <b>__satfractusqda</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqda-1221"></a></var><br>
— Runtime Function: long long accum <b>__satfractusqta</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqta-1222"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractusquqq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusquqq2-1223"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractusquhq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusquhq2-1224"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractusqudq2</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqudq2-1225"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractusquha</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusquha-1226"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractusqusa</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusqusa-1227"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractusquda</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusquda-1228"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractusquta</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005fsatfractusquta-1229"></a></var><br>
— Runtime Function: short fract <b>__satfractudqqq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqqq-1230"></a></var><br>
— Runtime Function: fract <b>__satfractudqhq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqhq-1231"></a></var><br>
— Runtime Function: long fract <b>__satfractudqsq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqsq-1232"></a></var><br>
— Runtime Function: long long fract <b>__satfractudqdq</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqdq-1233"></a></var><br>
— Runtime Function: short accum <b>__satfractudqha</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqha-1234"></a></var><br>
— Runtime Function: accum <b>__satfractudqsa</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqsa-1235"></a></var><br>
— Runtime Function: long accum <b>__satfractudqda</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqda-1236"></a></var><br>
— Runtime Function: long long accum <b>__satfractudqta</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqta-1237"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractudquqq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudquqq2-1238"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractudquhq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudquhq2-1239"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractudqusq2</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqusq2-1240"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractudquha</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudquha-1241"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractudqusa</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudqusa-1242"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractudquda</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudquda-1243"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractudquta</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005fsatfractudquta-1244"></a></var><br>
— Runtime Function: short fract <b>__satfractuhaqq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhaqq-1245"></a></var><br>
— Runtime Function: fract <b>__satfractuhahq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhahq-1246"></a></var><br>
— Runtime Function: long fract <b>__satfractuhasq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhasq-1247"></a></var><br>
— Runtime Function: long long fract <b>__satfractuhadq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhadq-1248"></a></var><br>
— Runtime Function: short accum <b>__satfractuhaha</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhaha-1249"></a></var><br>
— Runtime Function: accum <b>__satfractuhasa</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhasa-1250"></a></var><br>
— Runtime Function: long accum <b>__satfractuhada</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhada-1251"></a></var><br>
— Runtime Function: long long accum <b>__satfractuhata</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhata-1252"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractuhauqq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhauqq-1253"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractuhauhq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhauhq-1254"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractuhausq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhausq-1255"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractuhaudq</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhaudq-1256"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractuhausa2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhausa2-1257"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractuhauda2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhauda2-1258"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractuhauta2</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005fsatfractuhauta2-1259"></a></var><br>
— Runtime Function: short fract <b>__satfractusaqq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusaqq-1260"></a></var><br>
— Runtime Function: fract <b>__satfractusahq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusahq-1261"></a></var><br>
— Runtime Function: long fract <b>__satfractusasq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusasq-1262"></a></var><br>
— Runtime Function: long long fract <b>__satfractusadq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusadq-1263"></a></var><br>
— Runtime Function: short accum <b>__satfractusaha</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusaha-1264"></a></var><br>
— Runtime Function: accum <b>__satfractusasa</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusasa-1265"></a></var><br>
— Runtime Function: long accum <b>__satfractusada</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusada-1266"></a></var><br>
— Runtime Function: long long accum <b>__satfractusata</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusata-1267"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractusauqq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusauqq-1268"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractusauhq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusauhq-1269"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractusausq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusausq-1270"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractusaudq</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusaudq-1271"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractusauha2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusauha2-1272"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractusauda2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusauda2-1273"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractusauta2</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005fsatfractusauta2-1274"></a></var><br>
— Runtime Function: short fract <b>__satfractudaqq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudaqq-1275"></a></var><br>
— Runtime Function: fract <b>__satfractudahq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudahq-1276"></a></var><br>
— Runtime Function: long fract <b>__satfractudasq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudasq-1277"></a></var><br>
— Runtime Function: long long fract <b>__satfractudadq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudadq-1278"></a></var><br>
— Runtime Function: short accum <b>__satfractudaha</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudaha-1279"></a></var><br>
— Runtime Function: accum <b>__satfractudasa</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudasa-1280"></a></var><br>
— Runtime Function: long accum <b>__satfractudada</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudada-1281"></a></var><br>
— Runtime Function: long long accum <b>__satfractudata</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudata-1282"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractudauqq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudauqq-1283"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractudauhq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudauhq-1284"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractudausq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudausq-1285"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractudaudq</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudaudq-1286"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractudauha2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudauha2-1287"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractudausa2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudausa2-1288"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractudauta2</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005fsatfractudauta2-1289"></a></var><br>
— Runtime Function: short fract <b>__satfractutaqq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutaqq-1290"></a></var><br>
— Runtime Function: fract <b>__satfractutahq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutahq-1291"></a></var><br>
— Runtime Function: long fract <b>__satfractutasq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutasq-1292"></a></var><br>
— Runtime Function: long long fract <b>__satfractutadq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutadq-1293"></a></var><br>
— Runtime Function: short accum <b>__satfractutaha</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutaha-1294"></a></var><br>
— Runtime Function: accum <b>__satfractutasa</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutasa-1295"></a></var><br>
— Runtime Function: long accum <b>__satfractutada</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutada-1296"></a></var><br>
— Runtime Function: long long accum <b>__satfractutata</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutata-1297"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractutauqq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutauqq-1298"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractutauhq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutauhq-1299"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractutausq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutausq-1300"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractutaudq</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutaudq-1301"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractutauha2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutauha2-1302"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractutausa2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutausa2-1303"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractutauda2</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005fsatfractutauda2-1304"></a></var><br>
— Runtime Function: short fract <b>__satfractqiqq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiqq-1305"></a></var><br>
— Runtime Function: fract <b>__satfractqihq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqihq-1306"></a></var><br>
— Runtime Function: long fract <b>__satfractqisq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqisq-1307"></a></var><br>
— Runtime Function: long long fract <b>__satfractqidq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqidq-1308"></a></var><br>
— Runtime Function: short accum <b>__satfractqiha</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiha-1309"></a></var><br>
— Runtime Function: accum <b>__satfractqisa</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqisa-1310"></a></var><br>
— Runtime Function: long accum <b>__satfractqida</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqida-1311"></a></var><br>
— Runtime Function: long long accum <b>__satfractqita</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqita-1312"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractqiuqq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiuqq-1313"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractqiuhq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiuhq-1314"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractqiusq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiusq-1315"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractqiudq</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiudq-1316"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractqiuha</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiuha-1317"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractqiusa</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiusa-1318"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractqiuda</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiuda-1319"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractqiuta</b> (<var>signed char a</var>)<var><a name="index-g_t_005f_005fsatfractqiuta-1320"></a></var><br>
— Runtime Function: short fract <b>__satfracthiqq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiqq-1321"></a></var><br>
— Runtime Function: fract <b>__satfracthihq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthihq-1322"></a></var><br>
— Runtime Function: long fract <b>__satfracthisq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthisq-1323"></a></var><br>
— Runtime Function: long long fract <b>__satfracthidq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthidq-1324"></a></var><br>
— Runtime Function: short accum <b>__satfracthiha</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiha-1325"></a></var><br>
— Runtime Function: accum <b>__satfracthisa</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthisa-1326"></a></var><br>
— Runtime Function: long accum <b>__satfracthida</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthida-1327"></a></var><br>
— Runtime Function: long long accum <b>__satfracthita</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthita-1328"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfracthiuqq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiuqq-1329"></a></var><br>
— Runtime Function: unsigned fract <b>__satfracthiuhq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiuhq-1330"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfracthiusq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiusq-1331"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfracthiudq</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiudq-1332"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfracthiuha</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiuha-1333"></a></var><br>
— Runtime Function: unsigned accum <b>__satfracthiusa</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiusa-1334"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfracthiuda</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiuda-1335"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfracthiuta</b> (<var>short a</var>)<var><a name="index-g_t_005f_005fsatfracthiuta-1336"></a></var><br>
— Runtime Function: short fract <b>__satfractsiqq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiqq-1337"></a></var><br>
— Runtime Function: fract <b>__satfractsihq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsihq-1338"></a></var><br>
— Runtime Function: long fract <b>__satfractsisq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsisq-1339"></a></var><br>
— Runtime Function: long long fract <b>__satfractsidq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsidq-1340"></a></var><br>
— Runtime Function: short accum <b>__satfractsiha</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiha-1341"></a></var><br>
— Runtime Function: accum <b>__satfractsisa</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsisa-1342"></a></var><br>
— Runtime Function: long accum <b>__satfractsida</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsida-1343"></a></var><br>
— Runtime Function: long long accum <b>__satfractsita</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsita-1344"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractsiuqq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiuqq-1345"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractsiuhq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiuhq-1346"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractsiusq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiusq-1347"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractsiudq</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiudq-1348"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractsiuha</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiuha-1349"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractsiusa</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiusa-1350"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractsiuda</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiuda-1351"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractsiuta</b> (<var>int a</var>)<var><a name="index-g_t_005f_005fsatfractsiuta-1352"></a></var><br>
— Runtime Function: short fract <b>__satfractdiqq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiqq-1353"></a></var><br>
— Runtime Function: fract <b>__satfractdihq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdihq-1354"></a></var><br>
— Runtime Function: long fract <b>__satfractdisq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdisq-1355"></a></var><br>
— Runtime Function: long long fract <b>__satfractdidq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdidq-1356"></a></var><br>
— Runtime Function: short accum <b>__satfractdiha</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiha-1357"></a></var><br>
— Runtime Function: accum <b>__satfractdisa</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdisa-1358"></a></var><br>
— Runtime Function: long accum <b>__satfractdida</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdida-1359"></a></var><br>
— Runtime Function: long long accum <b>__satfractdita</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdita-1360"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractdiuqq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiuqq-1361"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractdiuhq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiuhq-1362"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractdiusq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiusq-1363"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractdiudq</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiudq-1364"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractdiuha</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiuha-1365"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractdiusa</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiusa-1366"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractdiuda</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiuda-1367"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractdiuta</b> (<var>long a</var>)<var><a name="index-g_t_005f_005fsatfractdiuta-1368"></a></var><br>
— Runtime Function: short fract <b>__satfracttiqq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiqq-1369"></a></var><br>
— Runtime Function: fract <b>__satfracttihq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttihq-1370"></a></var><br>
— Runtime Function: long fract <b>__satfracttisq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttisq-1371"></a></var><br>
— Runtime Function: long long fract <b>__satfracttidq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttidq-1372"></a></var><br>
— Runtime Function: short accum <b>__satfracttiha</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiha-1373"></a></var><br>
— Runtime Function: accum <b>__satfracttisa</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttisa-1374"></a></var><br>
— Runtime Function: long accum <b>__satfracttida</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttida-1375"></a></var><br>
— Runtime Function: long long accum <b>__satfracttita</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttita-1376"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfracttiuqq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiuqq-1377"></a></var><br>
— Runtime Function: unsigned fract <b>__satfracttiuhq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiuhq-1378"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfracttiusq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiusq-1379"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfracttiudq</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiudq-1380"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfracttiuha</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiuha-1381"></a></var><br>
— Runtime Function: unsigned accum <b>__satfracttiusa</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiusa-1382"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfracttiuda</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiuda-1383"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfracttiuta</b> (<var>long long a</var>)<var><a name="index-g_t_005f_005fsatfracttiuta-1384"></a></var><br>
— Runtime Function: short fract <b>__satfractsfqq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfqq-1385"></a></var><br>
— Runtime Function: fract <b>__satfractsfhq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfhq-1386"></a></var><br>
— Runtime Function: long fract <b>__satfractsfsq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfsq-1387"></a></var><br>
— Runtime Function: long long fract <b>__satfractsfdq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfdq-1388"></a></var><br>
— Runtime Function: short accum <b>__satfractsfha</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfha-1389"></a></var><br>
— Runtime Function: accum <b>__satfractsfsa</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfsa-1390"></a></var><br>
— Runtime Function: long accum <b>__satfractsfda</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfda-1391"></a></var><br>
— Runtime Function: long long accum <b>__satfractsfta</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfta-1392"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractsfuqq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfuqq-1393"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractsfuhq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfuhq-1394"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractsfusq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfusq-1395"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractsfudq</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfudq-1396"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractsfuha</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfuha-1397"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractsfusa</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfusa-1398"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractsfuda</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfuda-1399"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractsfuta</b> (<var>float a</var>)<var><a name="index-g_t_005f_005fsatfractsfuta-1400"></a></var><br>
— Runtime Function: short fract <b>__satfractdfqq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfqq-1401"></a></var><br>
— Runtime Function: fract <b>__satfractdfhq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfhq-1402"></a></var><br>
— Runtime Function: long fract <b>__satfractdfsq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfsq-1403"></a></var><br>
— Runtime Function: long long fract <b>__satfractdfdq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfdq-1404"></a></var><br>
— Runtime Function: short accum <b>__satfractdfha</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfha-1405"></a></var><br>
— Runtime Function: accum <b>__satfractdfsa</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfsa-1406"></a></var><br>
— Runtime Function: long accum <b>__satfractdfda</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfda-1407"></a></var><br>
— Runtime Function: long long accum <b>__satfractdfta</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfta-1408"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractdfuqq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfuqq-1409"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractdfuhq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfuhq-1410"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractdfusq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfusq-1411"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractdfudq</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfudq-1412"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractdfuha</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfuha-1413"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractdfusa</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfusa-1414"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractdfuda</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfuda-1415"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractdfuta</b> (<var>double a</var>)<var><a name="index-g_t_005f_005fsatfractdfuta-1416"></a></var><br>
<blockquote><p>The functions convert from fractional and signed non-fractionals to
fractionals, with saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: unsigned char <b>__fractunsqqqi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractunsqqqi-1417"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsqqhi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractunsqqhi-1418"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsqqsi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractunsqqsi-1419"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsqqdi</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractunsqqdi-1420"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsqqti</b> (<var>short fract a</var>)<var><a name="index-g_t_005f_005ffractunsqqti-1421"></a></var><br>
— Runtime Function: unsigned char <b>__fractunshqqi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffractunshqqi-1422"></a></var><br>
— Runtime Function: unsigned short <b>__fractunshqhi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffractunshqhi-1423"></a></var><br>
— Runtime Function: unsigned int <b>__fractunshqsi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffractunshqsi-1424"></a></var><br>
— Runtime Function: unsigned long <b>__fractunshqdi</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffractunshqdi-1425"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunshqti</b> (<var>fract a</var>)<var><a name="index-g_t_005f_005ffractunshqti-1426"></a></var><br>
— Runtime Function: unsigned char <b>__fractunssqqi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractunssqqi-1427"></a></var><br>
— Runtime Function: unsigned short <b>__fractunssqhi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractunssqhi-1428"></a></var><br>
— Runtime Function: unsigned int <b>__fractunssqsi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractunssqsi-1429"></a></var><br>
— Runtime Function: unsigned long <b>__fractunssqdi</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractunssqdi-1430"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunssqti</b> (<var>long fract a</var>)<var><a name="index-g_t_005f_005ffractunssqti-1431"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsdqqi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsdqqi-1432"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsdqhi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsdqhi-1433"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsdqsi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsdqsi-1434"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsdqdi</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsdqdi-1435"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsdqti</b> (<var>long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsdqti-1436"></a></var><br>
— Runtime Function: unsigned char <b>__fractunshaqi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffractunshaqi-1437"></a></var><br>
— Runtime Function: unsigned short <b>__fractunshahi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffractunshahi-1438"></a></var><br>
— Runtime Function: unsigned int <b>__fractunshasi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffractunshasi-1439"></a></var><br>
— Runtime Function: unsigned long <b>__fractunshadi</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffractunshadi-1440"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunshati</b> (<var>short accum a</var>)<var><a name="index-g_t_005f_005ffractunshati-1441"></a></var><br>
— Runtime Function: unsigned char <b>__fractunssaqi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractunssaqi-1442"></a></var><br>
— Runtime Function: unsigned short <b>__fractunssahi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractunssahi-1443"></a></var><br>
— Runtime Function: unsigned int <b>__fractunssasi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractunssasi-1444"></a></var><br>
— Runtime Function: unsigned long <b>__fractunssadi</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractunssadi-1445"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunssati</b> (<var>accum a</var>)<var><a name="index-g_t_005f_005ffractunssati-1446"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsdaqi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractunsdaqi-1447"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsdahi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractunsdahi-1448"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsdasi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractunsdasi-1449"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsdadi</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractunsdadi-1450"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsdati</b> (<var>long accum a</var>)<var><a name="index-g_t_005f_005ffractunsdati-1451"></a></var><br>
— Runtime Function: unsigned char <b>__fractunstaqi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffractunstaqi-1452"></a></var><br>
— Runtime Function: unsigned short <b>__fractunstahi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffractunstahi-1453"></a></var><br>
— Runtime Function: unsigned int <b>__fractunstasi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffractunstasi-1454"></a></var><br>
— Runtime Function: unsigned long <b>__fractunstadi</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffractunstadi-1455"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunstati</b> (<var>long long accum a</var>)<var><a name="index-g_t_005f_005ffractunstati-1456"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsuqqqi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractunsuqqqi-1457"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsuqqhi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractunsuqqhi-1458"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsuqqsi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractunsuqqsi-1459"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsuqqdi</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractunsuqqdi-1460"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsuqqti</b> (<var>unsigned short fract a</var>)<var><a name="index-g_t_005f_005ffractunsuqqti-1461"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsuhqqi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractunsuhqqi-1462"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsuhqhi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractunsuhqhi-1463"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsuhqsi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractunsuhqsi-1464"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsuhqdi</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractunsuhqdi-1465"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsuhqti</b> (<var>unsigned fract a</var>)<var><a name="index-g_t_005f_005ffractunsuhqti-1466"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsusqqi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractunsusqqi-1467"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsusqhi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractunsusqhi-1468"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsusqsi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractunsusqsi-1469"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsusqdi</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractunsusqdi-1470"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsusqti</b> (<var>unsigned long fract a</var>)<var><a name="index-g_t_005f_005ffractunsusqti-1471"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsudqqi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsudqqi-1472"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsudqhi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsudqhi-1473"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsudqsi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsudqsi-1474"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsudqdi</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsudqdi-1475"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsudqti</b> (<var>unsigned long long fract a</var>)<var><a name="index-g_t_005f_005ffractunsudqti-1476"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsuhaqi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractunsuhaqi-1477"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsuhahi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractunsuhahi-1478"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsuhasi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractunsuhasi-1479"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsuhadi</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractunsuhadi-1480"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsuhati</b> (<var>unsigned short accum a</var>)<var><a name="index-g_t_005f_005ffractunsuhati-1481"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsusaqi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractunsusaqi-1482"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsusahi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractunsusahi-1483"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsusasi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractunsusasi-1484"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsusadi</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractunsusadi-1485"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsusati</b> (<var>unsigned accum a</var>)<var><a name="index-g_t_005f_005ffractunsusati-1486"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsudaqi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractunsudaqi-1487"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsudahi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractunsudahi-1488"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsudasi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractunsudasi-1489"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsudadi</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractunsudadi-1490"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsudati</b> (<var>unsigned long accum a</var>)<var><a name="index-g_t_005f_005ffractunsudati-1491"></a></var><br>
— Runtime Function: unsigned char <b>__fractunsutaqi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractunsutaqi-1492"></a></var><br>
— Runtime Function: unsigned short <b>__fractunsutahi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractunsutahi-1493"></a></var><br>
— Runtime Function: unsigned int <b>__fractunsutasi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractunsutasi-1494"></a></var><br>
— Runtime Function: unsigned long <b>__fractunsutadi</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractunsutadi-1495"></a></var><br>
— Runtime Function: unsigned long long <b>__fractunsutati</b> (<var>unsigned long long accum a</var>)<var><a name="index-g_t_005f_005ffractunsutati-1496"></a></var><br>
— Runtime Function: short fract <b>__fractunsqiqq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiqq-1497"></a></var><br>
— Runtime Function: fract <b>__fractunsqihq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqihq-1498"></a></var><br>
— Runtime Function: long fract <b>__fractunsqisq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqisq-1499"></a></var><br>
— Runtime Function: long long fract <b>__fractunsqidq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqidq-1500"></a></var><br>
— Runtime Function: short accum <b>__fractunsqiha</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiha-1501"></a></var><br>
— Runtime Function: accum <b>__fractunsqisa</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqisa-1502"></a></var><br>
— Runtime Function: long accum <b>__fractunsqida</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqida-1503"></a></var><br>
— Runtime Function: long long accum <b>__fractunsqita</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqita-1504"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractunsqiuqq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiuqq-1505"></a></var><br>
— Runtime Function: unsigned fract <b>__fractunsqiuhq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiuhq-1506"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractunsqiusq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiusq-1507"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractunsqiudq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiudq-1508"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractunsqiuha</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiuha-1509"></a></var><br>
— Runtime Function: unsigned accum <b>__fractunsqiusa</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiusa-1510"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractunsqiuda</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiuda-1511"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractunsqiuta</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005ffractunsqiuta-1512"></a></var><br>
— Runtime Function: short fract <b>__fractunshiqq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiqq-1513"></a></var><br>
— Runtime Function: fract <b>__fractunshihq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshihq-1514"></a></var><br>
— Runtime Function: long fract <b>__fractunshisq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshisq-1515"></a></var><br>
— Runtime Function: long long fract <b>__fractunshidq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshidq-1516"></a></var><br>
— Runtime Function: short accum <b>__fractunshiha</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiha-1517"></a></var><br>
— Runtime Function: accum <b>__fractunshisa</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshisa-1518"></a></var><br>
— Runtime Function: long accum <b>__fractunshida</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshida-1519"></a></var><br>
— Runtime Function: long long accum <b>__fractunshita</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshita-1520"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractunshiuqq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiuqq-1521"></a></var><br>
— Runtime Function: unsigned fract <b>__fractunshiuhq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiuhq-1522"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractunshiusq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiusq-1523"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractunshiudq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiudq-1524"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractunshiuha</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiuha-1525"></a></var><br>
— Runtime Function: unsigned accum <b>__fractunshiusa</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiusa-1526"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractunshiuda</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiuda-1527"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractunshiuta</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005ffractunshiuta-1528"></a></var><br>
— Runtime Function: short fract <b>__fractunssiqq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiqq-1529"></a></var><br>
— Runtime Function: fract <b>__fractunssihq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssihq-1530"></a></var><br>
— Runtime Function: long fract <b>__fractunssisq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssisq-1531"></a></var><br>
— Runtime Function: long long fract <b>__fractunssidq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssidq-1532"></a></var><br>
— Runtime Function: short accum <b>__fractunssiha</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiha-1533"></a></var><br>
— Runtime Function: accum <b>__fractunssisa</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssisa-1534"></a></var><br>
— Runtime Function: long accum <b>__fractunssida</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssida-1535"></a></var><br>
— Runtime Function: long long accum <b>__fractunssita</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssita-1536"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractunssiuqq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiuqq-1537"></a></var><br>
— Runtime Function: unsigned fract <b>__fractunssiuhq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiuhq-1538"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractunssiusq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiusq-1539"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractunssiudq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiudq-1540"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractunssiuha</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiuha-1541"></a></var><br>
— Runtime Function: unsigned accum <b>__fractunssiusa</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiusa-1542"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractunssiuda</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiuda-1543"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractunssiuta</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005ffractunssiuta-1544"></a></var><br>
— Runtime Function: short fract <b>__fractunsdiqq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiqq-1545"></a></var><br>
— Runtime Function: fract <b>__fractunsdihq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdihq-1546"></a></var><br>
— Runtime Function: long fract <b>__fractunsdisq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdisq-1547"></a></var><br>
— Runtime Function: long long fract <b>__fractunsdidq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdidq-1548"></a></var><br>
— Runtime Function: short accum <b>__fractunsdiha</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiha-1549"></a></var><br>
— Runtime Function: accum <b>__fractunsdisa</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdisa-1550"></a></var><br>
— Runtime Function: long accum <b>__fractunsdida</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdida-1551"></a></var><br>
— Runtime Function: long long accum <b>__fractunsdita</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdita-1552"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractunsdiuqq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiuqq-1553"></a></var><br>
— Runtime Function: unsigned fract <b>__fractunsdiuhq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiuhq-1554"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractunsdiusq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiusq-1555"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractunsdiudq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiudq-1556"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractunsdiuha</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiuha-1557"></a></var><br>
— Runtime Function: unsigned accum <b>__fractunsdiusa</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiusa-1558"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractunsdiuda</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiuda-1559"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractunsdiuta</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005ffractunsdiuta-1560"></a></var><br>
— Runtime Function: short fract <b>__fractunstiqq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiqq-1561"></a></var><br>
— Runtime Function: fract <b>__fractunstihq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstihq-1562"></a></var><br>
— Runtime Function: long fract <b>__fractunstisq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstisq-1563"></a></var><br>
— Runtime Function: long long fract <b>__fractunstidq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstidq-1564"></a></var><br>
— Runtime Function: short accum <b>__fractunstiha</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiha-1565"></a></var><br>
— Runtime Function: accum <b>__fractunstisa</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstisa-1566"></a></var><br>
— Runtime Function: long accum <b>__fractunstida</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstida-1567"></a></var><br>
— Runtime Function: long long accum <b>__fractunstita</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstita-1568"></a></var><br>
— Runtime Function: unsigned short fract <b>__fractunstiuqq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiuqq-1569"></a></var><br>
— Runtime Function: unsigned fract <b>__fractunstiuhq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiuhq-1570"></a></var><br>
— Runtime Function: unsigned long fract <b>__fractunstiusq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiusq-1571"></a></var><br>
— Runtime Function: unsigned long long fract <b>__fractunstiudq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiudq-1572"></a></var><br>
— Runtime Function: unsigned short accum <b>__fractunstiuha</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiuha-1573"></a></var><br>
— Runtime Function: unsigned accum <b>__fractunstiusa</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiusa-1574"></a></var><br>
— Runtime Function: unsigned long accum <b>__fractunstiuda</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiuda-1575"></a></var><br>
— Runtime Function: unsigned long long accum <b>__fractunstiuta</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005ffractunstiuta-1576"></a></var><br>
<blockquote><p>These functions convert from fractionals to unsigned non-fractionals;
and from unsigned non-fractionals to fractionals, without saturation.
</p></blockquote></div>
<div class="defun">
— Runtime Function: short fract <b>__satfractunsqiqq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiqq-1577"></a></var><br>
— Runtime Function: fract <b>__satfractunsqihq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqihq-1578"></a></var><br>
— Runtime Function: long fract <b>__satfractunsqisq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqisq-1579"></a></var><br>
— Runtime Function: long long fract <b>__satfractunsqidq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqidq-1580"></a></var><br>
— Runtime Function: short accum <b>__satfractunsqiha</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiha-1581"></a></var><br>
— Runtime Function: accum <b>__satfractunsqisa</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqisa-1582"></a></var><br>
— Runtime Function: long accum <b>__satfractunsqida</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqida-1583"></a></var><br>
— Runtime Function: long long accum <b>__satfractunsqita</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqita-1584"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractunsqiuqq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiuqq-1585"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractunsqiuhq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiuhq-1586"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractunsqiusq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiusq-1587"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractunsqiudq</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiudq-1588"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractunsqiuha</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiuha-1589"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractunsqiusa</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiusa-1590"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractunsqiuda</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiuda-1591"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractunsqiuta</b> (<var>unsigned char a</var>)<var><a name="index-g_t_005f_005fsatfractunsqiuta-1592"></a></var><br>
— Runtime Function: short fract <b>__satfractunshiqq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiqq-1593"></a></var><br>
— Runtime Function: fract <b>__satfractunshihq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshihq-1594"></a></var><br>
— Runtime Function: long fract <b>__satfractunshisq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshisq-1595"></a></var><br>
— Runtime Function: long long fract <b>__satfractunshidq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshidq-1596"></a></var><br>
— Runtime Function: short accum <b>__satfractunshiha</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiha-1597"></a></var><br>
— Runtime Function: accum <b>__satfractunshisa</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshisa-1598"></a></var><br>
— Runtime Function: long accum <b>__satfractunshida</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshida-1599"></a></var><br>
— Runtime Function: long long accum <b>__satfractunshita</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshita-1600"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractunshiuqq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiuqq-1601"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractunshiuhq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiuhq-1602"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractunshiusq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiusq-1603"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractunshiudq</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiudq-1604"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractunshiuha</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiuha-1605"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractunshiusa</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiusa-1606"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractunshiuda</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiuda-1607"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractunshiuta</b> (<var>unsigned short a</var>)<var><a name="index-g_t_005f_005fsatfractunshiuta-1608"></a></var><br>
— Runtime Function: short fract <b>__satfractunssiqq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiqq-1609"></a></var><br>
— Runtime Function: fract <b>__satfractunssihq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssihq-1610"></a></var><br>
— Runtime Function: long fract <b>__satfractunssisq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssisq-1611"></a></var><br>
— Runtime Function: long long fract <b>__satfractunssidq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssidq-1612"></a></var><br>
— Runtime Function: short accum <b>__satfractunssiha</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiha-1613"></a></var><br>
— Runtime Function: accum <b>__satfractunssisa</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssisa-1614"></a></var><br>
— Runtime Function: long accum <b>__satfractunssida</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssida-1615"></a></var><br>
— Runtime Function: long long accum <b>__satfractunssita</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssita-1616"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractunssiuqq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiuqq-1617"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractunssiuhq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiuhq-1618"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractunssiusq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiusq-1619"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractunssiudq</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiudq-1620"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractunssiuha</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiuha-1621"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractunssiusa</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiusa-1622"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractunssiuda</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiuda-1623"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractunssiuta</b> (<var>unsigned int a</var>)<var><a name="index-g_t_005f_005fsatfractunssiuta-1624"></a></var><br>
— Runtime Function: short fract <b>__satfractunsdiqq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiqq-1625"></a></var><br>
— Runtime Function: fract <b>__satfractunsdihq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdihq-1626"></a></var><br>
— Runtime Function: long fract <b>__satfractunsdisq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdisq-1627"></a></var><br>
— Runtime Function: long long fract <b>__satfractunsdidq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdidq-1628"></a></var><br>
— Runtime Function: short accum <b>__satfractunsdiha</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiha-1629"></a></var><br>
— Runtime Function: accum <b>__satfractunsdisa</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdisa-1630"></a></var><br>
— Runtime Function: long accum <b>__satfractunsdida</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdida-1631"></a></var><br>
— Runtime Function: long long accum <b>__satfractunsdita</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdita-1632"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractunsdiuqq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiuqq-1633"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractunsdiuhq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiuhq-1634"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractunsdiusq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiusq-1635"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractunsdiudq</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiudq-1636"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractunsdiuha</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiuha-1637"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractunsdiusa</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiusa-1638"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractunsdiuda</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiuda-1639"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractunsdiuta</b> (<var>unsigned long a</var>)<var><a name="index-g_t_005f_005fsatfractunsdiuta-1640"></a></var><br>
— Runtime Function: short fract <b>__satfractunstiqq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiqq-1641"></a></var><br>
— Runtime Function: fract <b>__satfractunstihq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstihq-1642"></a></var><br>
— Runtime Function: long fract <b>__satfractunstisq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstisq-1643"></a></var><br>
— Runtime Function: long long fract <b>__satfractunstidq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstidq-1644"></a></var><br>
— Runtime Function: short accum <b>__satfractunstiha</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiha-1645"></a></var><br>
— Runtime Function: accum <b>__satfractunstisa</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstisa-1646"></a></var><br>
— Runtime Function: long accum <b>__satfractunstida</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstida-1647"></a></var><br>
— Runtime Function: long long accum <b>__satfractunstita</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstita-1648"></a></var><br>
— Runtime Function: unsigned short fract <b>__satfractunstiuqq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiuqq-1649"></a></var><br>
— Runtime Function: unsigned fract <b>__satfractunstiuhq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiuhq-1650"></a></var><br>
— Runtime Function: unsigned long fract <b>__satfractunstiusq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiusq-1651"></a></var><br>
— Runtime Function: unsigned long long fract <b>__satfractunstiudq</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiudq-1652"></a></var><br>
— Runtime Function: unsigned short accum <b>__satfractunstiuha</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiuha-1653"></a></var><br>
— Runtime Function: unsigned accum <b>__satfractunstiusa</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiusa-1654"></a></var><br>
— Runtime Function: unsigned long accum <b>__satfractunstiuda</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiuda-1655"></a></var><br>
— Runtime Function: unsigned long long accum <b>__satfractunstiuta</b> (<var>unsigned long long a</var>)<var><a name="index-g_t_005f_005fsatfractunstiuta-1656"></a></var><br>
<blockquote><p>These functions convert from unsigned non-fractionals to fractionals,
with saturation.
</p></blockquote></div>
<div class="node">
<a name="Exception-handling-routines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Miscellaneous-routines">Miscellaneous routines</a>,
Previous: <a rel="previous" accesskey="p" href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.5 Language-independent routines for exception handling</h3>
<p>document me!
<pre class="smallexample"> _Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR
_Unwind_GetIP
_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume
_Unwind_SetGR
_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table
</pre>
<div class="node">
<a name="Miscellaneous-routines"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Exception-handling-routines">Exception handling routines</a>,
Up: <a rel="up" accesskey="u" href="#Libgcc">Libgcc</a>
</div>
<h3 class="section">4.6 Miscellaneous runtime library routines</h3>
<h4 class="subsection">4.6.1 Cache control functions</h4>
<div class="defun">
— Runtime Function: void <b>__clear_cache</b> (<var>char *beg, char *end</var>)<var><a name="index-g_t_005f_005fclear_005fcache-1657"></a></var><br>
<blockquote><p>This function clears the instruction cache between <var>beg</var> and <var>end</var>.
</p></blockquote></div>
<h4 class="subsection">4.6.2 Split stack functions and variables</h4>
<div class="defun">
— Runtime Function: void * <b>__splitstack_find</b> (<var>void *segment_arg, void *sp, size_t len, void **next_segment, void **next_sp, void **initial_sp</var>)<var><a name="index-g_t_005f_005fsplitstack_005ffind-1658"></a></var><br>
<blockquote><p>When using <samp><span class="option">-fsplit-stack</span></samp>, this call may be used to iterate
over the stack segments. It may be called like this:
<pre class="smallexample"> void *next_segment = NULL;
void *next_sp = NULL;
void *initial_sp = NULL;
void *stack;
size_t stack_size;
while ((stack = __splitstack_find (next_segment, next_sp,
&stack_size, &next_segment,
&next_sp, &initial_sp))
!= NULL)
{
/* Stack segment starts at stack and is
stack_size bytes long. */
}
</pre>
<p>There is no way to iterate over the stack segments of a different
thread. However, what is permitted is for one thread to call this
with the <var>segment_arg</var> and <var>sp</var> arguments NULL, to pass
<var>next_segment</var>, <var>next_sp</var>, and <var>initial_sp</var> to a different
thread, and then to suspend one way or another. A different thread
may run the subsequent <code>__splitstack_find</code> iterations. Of
course, this will only work if the first thread is suspended while the
second thread is calling <code>__splitstack_find</code>. If not, the second
thread could be looking at the stack while it is changing, and
anything could happen.
</p></blockquote></div>
<div class="defun">
— Variable: <b>__morestack_segments</b><var><a name="index-g_t_005f_005fmorestack_005fsegments-1659"></a></var><br>
— Variable: <b>__morestack_current_segment</b><var><a name="index-g_t_005f_005fmorestack_005fcurrent_005fsegment-1660"></a></var><br>
— Variable: <b>__morestack_initial_sp</b><var><a name="index-g_t_005f_005fmorestack_005finitial_005fsp-1661"></a></var><br>
<blockquote><p>Internal variables used by the <samp><span class="option">-fsplit-stack</span></samp> implementation.
</p></blockquote></div>
<!-- Copyright (C) 2002, 2010 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Languages"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Source-Tree">Source Tree</a>,
Previous: <a rel="previous" accesskey="p" href="#Libgcc">Libgcc</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">5 Language Front Ends in GCC</h2>
<p>The interface to front ends for languages in GCC, and in particular
the <code>tree</code> structure (see <a href="#GENERIC">GENERIC</a>), was initially designed for
C, and many aspects of it are still somewhat biased towards C and
C-like languages. It is, however, reasonably well suited to other
procedural languages, and front ends for many such languages have been
written for GCC.
<p>Writing a compiler as a front end for GCC, rather than compiling
directly to assembler or generating C code which is then compiled by
GCC, has several advantages:
<ul>
<li>GCC front ends benefit from the support for many different
target machines already present in GCC.
<li>GCC front ends benefit from all the optimizations in GCC. Some
of these, such as alias analysis, may work better when GCC is
compiling directly from source code then when it is compiling from
generated C code.
<li>Better debugging information is generated when compiling
directly from source code than when going via intermediate generated C
code.
</ul>
<p>Because of the advantages of writing a compiler as a GCC front end,
GCC front ends have also been created for languages very different
from those for which GCC was designed, such as the declarative
logic/functional language Mercury. For these reasons, it may also be
useful to implement compilers created for specialized purposes (for
example, as part of a research project) as GCC front ends.
<!-- Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Source-Tree"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Testsuites">Testsuites</a>,
Previous: <a rel="previous" accesskey="p" href="#Languages">Languages</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">6 Source Tree Structure and Build System</h2>
<p>This chapter describes the structure of the GCC source tree, and how
GCC is built. The user documentation for building and installing GCC
is in a separate manual (<a href="http://gcc.gnu.org/install/">http://gcc.gnu.org/install/</a>), with
which it is presumed that you are familiar.
<ul class="menu">
<li><a accesskey="1" href="#Configure-Terms">Configure Terms</a>: Configuration terminology and history.
<li><a accesskey="2" href="#Top-Level">Top Level</a>: The top level source directory.
<li><a accesskey="3" href="#gcc-Directory">gcc Directory</a>: The <samp><span class="file">gcc</span></samp> subdirectory.
</ul>
<!-- Copyright (C) 2001, 2002, 2004, 2008 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Configure-Terms"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Top-Level">Top Level</a>,
Up: <a rel="up" accesskey="u" href="#Source-Tree">Source Tree</a>
</div>
<h3 class="section">6.1 Configure Terms and History</h3>
<p><a name="index-configure-terms-1662"></a><a name="index-canadian-1663"></a>
The configure and build process has a long and colorful history, and can
be confusing to anyone who doesn't know why things are the way they are.
While there are other documents which describe the configuration process
in detail, here are a few things that everyone working on GCC should
know.
<p>There are three system names that the build knows about: the machine you
are building on (<dfn>build</dfn>), the machine that you are building for
(<dfn>host</dfn>), and the machine that GCC will produce code for
(<dfn>target</dfn>). When you configure GCC, you specify these with
<samp><span class="option">--build=</span></samp>, <samp><span class="option">--host=</span></samp>, and <samp><span class="option">--target=</span></samp>.
<p>Specifying the host without specifying the build should be avoided, as
<samp><span class="command">configure</span></samp> may (and once did) assume that the host you specify
is also the build, which may not be true.
<p>If build, host, and target are all the same, this is called a
<dfn>native</dfn>. If build and host are the same but target is different,
this is called a <dfn>cross</dfn>. If build, host, and target are all
different this is called a <dfn>canadian</dfn> (for obscure reasons dealing
with Canada's political party and the background of the person working
on the build at that time). If host and target are the same, but build
is different, you are using a cross-compiler to build a native for a
different system. Some people call this a <dfn>host-x-host</dfn>,
<dfn>crossed native</dfn>, or <dfn>cross-built native</dfn>. If build and target
are the same, but host is different, you are using a cross compiler to
build a cross compiler that produces code for the machine you're
building on. This is rare, so there is no common way of describing it.
There is a proposal to call this a <dfn>crossback</dfn>.
<p>If build and host are the same, the GCC you are building will also be
used to build the target libraries (like <code>libstdc++</code>). If build and host
are different, you must have already built and installed a cross
compiler that will be used to build the target libraries (if you
configured with <samp><span class="option">--target=foo-bar</span></samp>, this compiler will be called
<samp><span class="command">foo-bar-gcc</span></samp>).
<p>In the case of target libraries, the machine you're building for is the
machine you specified with <samp><span class="option">--target</span></samp>. So, build is the machine
you're building on (no change there), host is the machine you're
building for (the target libraries are built for the target, so host is
the target you specified), and target doesn't apply (because you're not
building a compiler, you're building libraries). The configure/make
process will adjust these variables as needed. It also sets
<code>$with_cross_host</code> to the original <samp><span class="option">--host</span></samp> value in case you
need it.
<p>The <code>libiberty</code> support library is built up to three times: once
for the host, once for the target (even if they are the same), and once
for the build if build and host are different. This allows it to be
used by all programs which are generated in the course of the build
process.
<div class="node">
<a name="Top-Level"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#gcc-Directory">gcc Directory</a>,
Previous: <a rel="previous" accesskey="p" href="#Configure-Terms">Configure Terms</a>,
Up: <a rel="up" accesskey="u" href="#Source-Tree">Source Tree</a>
</div>
<h3 class="section">6.2 Top Level Source Directory</h3>
<p>The top level source directory in a GCC distribution contains several
files and directories that are shared with other software
distributions such as that of GNU Binutils. It also contains several
subdirectories that contain parts of GCC and its runtime libraries:
<dl>
<dt><samp><span class="file">boehm-gc</span></samp><dd>The Boehm conservative garbage collector, used as part of the Java
runtime library.
<br><dt><samp><span class="file">config</span></samp><dd>Autoconf macros and Makefile fragments used throughout the tree.
<br><dt><samp><span class="file">contrib</span></samp><dd>Contributed scripts that may be found useful in conjunction with GCC.
One of these, <samp><span class="file">contrib/texi2pod.pl</span></samp>, is used to generate man
pages from Texinfo manuals as part of the GCC build process.
<br><dt><samp><span class="file">fixincludes</span></samp><dd>The support for fixing system headers to work with GCC. See
<samp><span class="file">fixincludes/README</span></samp> for more information. The headers fixed by
this mechanism are installed in <samp><var>libsubdir</var><span class="file">/include-fixed</span></samp>.
Along with those headers, <samp><span class="file">README-fixinc</span></samp> is also installed, as
<samp><var>libsubdir</var><span class="file">/include-fixed/README</span></samp>.
<br><dt><samp><span class="file">gcc</span></samp><dd>The main sources of GCC itself (except for runtime libraries),
including optimizers, support for different target architectures,
language front ends, and testsuites. See <a href="#gcc-Directory">The <samp><span class="file">gcc</span></samp> Subdirectory</a>, for details.
<br><dt><samp><span class="file">gnattools</span></samp><dd>Support tools for GNAT.
<br><dt><samp><span class="file">include</span></samp><dd>Headers for the <code>libiberty</code> library.
<br><dt><samp><span class="file">intl</span></samp><dd>GNU <code>libintl</code>, from GNU <code>gettext</code>, for systems which do not
include it in <code>libc</code>.
<br><dt><samp><span class="file">libada</span></samp><dd>The Ada runtime library.
<br><dt><samp><span class="file">libcpp</span></samp><dd>The C preprocessor library.
<br><dt><samp><span class="file">libdecnumber</span></samp><dd>The Decimal Float support library.
<br><dt><samp><span class="file">libffi</span></samp><dd>The <code>libffi</code> library, used as part of the Java runtime library.
<br><dt><samp><span class="file">libgcc</span></samp><dd>The GCC runtime library.
<br><dt><samp><span class="file">libgfortran</span></samp><dd>The Fortran runtime library.
<br><dt><samp><span class="file">libgo</span></samp><dd>The Go runtime library. The bulk of this library is mirrored from the
<a href="http://code.google.com/p/go/">master Go repository</a>.
<br><dt><samp><span class="file">libgomp</span></samp><dd>The GNU OpenMP runtime library.
<br><dt><samp><span class="file">libiberty</span></samp><dd>The <code>libiberty</code> library, used for portability and for some
generally useful data structures and algorithms. See <a href="libiberty.html#Top">Introduction</a>, for more information
about this library.
<br><dt><samp><span class="file">libjava</span></samp><dd>The Java runtime library.
<br><dt><samp><span class="file">libmudflap</span></samp><dd>The <code>libmudflap</code> library, used for instrumenting pointer and array
dereferencing operations.
<br><dt><samp><span class="file">libobjc</span></samp><dd>The Objective-C and Objective-C++ runtime library.
<br><dt><samp><span class="file">libssp</span></samp><dd>The Stack protector runtime library.
<br><dt><samp><span class="file">libstdc++-v3</span></samp><dd>The C++ runtime library.
<br><dt><samp><span class="file">lto-plugin</span></samp><dd>Plugin used by <samp><span class="command">gold</span></samp> if link-time optimizations are enabled.
<br><dt><samp><span class="file">maintainer-scripts</span></samp><dd>Scripts used by the <code>gccadmin</code> account on <code>gcc.gnu.org</code>.
<br><dt><samp><span class="file">zlib</span></samp><dd>The <code>zlib</code> compression library, used by the Java front end, as
part of the Java runtime library, and for compressing and uncompressing
GCC's intermediate language in LTO object files.
</dl>
<p>The build system in the top level directory, including how recursion
into subdirectories works and how building runtime libraries for
multilibs is handled, is documented in a separate manual, included
with GNU Binutils. See <a href="configure.html#Top">GNU configure and build system</a>, for details.
<div class="node">
<a name="gcc-Directory"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Top-Level">Top Level</a>,
Up: <a rel="up" accesskey="u" href="#Source-Tree">Source Tree</a>
</div>
<h3 class="section">6.3 The <samp><span class="file">gcc</span></samp> Subdirectory</h3>
<p>The <samp><span class="file">gcc</span></samp> directory contains many files that are part of the C
sources of GCC, other files used as part of the configuration and
build process, and subdirectories including documentation and a
testsuite. The files that are sources of GCC are documented in a
separate chapter. See <a href="#Passes">Passes and Files of the Compiler</a>.
<ul class="menu">
<li><a accesskey="1" href="#Subdirectories">Subdirectories</a>: Subdirectories of <samp><span class="file">gcc</span></samp>.
<li><a accesskey="2" href="#Configuration">Configuration</a>: The configuration process, and the files it uses.
<li><a accesskey="3" href="#Build">Build</a>: The build system in the <samp><span class="file">gcc</span></samp> directory.
<li><a accesskey="4" href="#Makefile">Makefile</a>: Targets in <samp><span class="file">gcc/Makefile</span></samp>.
<li><a accesskey="5" href="#Library-Files">Library Files</a>: Library source files and headers under <samp><span class="file">gcc/</span></samp>.
<li><a accesskey="6" href="#Headers">Headers</a>: Headers installed by GCC.
<li><a accesskey="7" href="#Documentation">Documentation</a>: Building documentation in GCC.
<li><a accesskey="8" href="#Front-End">Front End</a>: Anatomy of a language front end.
<li><a accesskey="9" href="#Back-End">Back End</a>: Anatomy of a target back end.
</ul>
<div class="node">
<a name="Subdirectories"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Configuration">Configuration</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.1 Subdirectories of <samp><span class="file">gcc</span></samp></h4>
<p>The <samp><span class="file">gcc</span></samp> directory contains the following subdirectories:
<dl>
<dt><samp><var>language</var></samp><dd>Subdirectories for various languages. Directories containing a file
<samp><span class="file">config-lang.in</span></samp> are language subdirectories. The contents of
the subdirectories <samp><span class="file">cp</span></samp> (for C++), <samp><span class="file">lto</span></samp> (for LTO),
<samp><span class="file">objc</span></samp> (for Objective-C) and <samp><span class="file">objcp</span></samp> (for Objective-C++) are
documented in this manual (see <a href="#Passes">Passes and Files of the Compiler</a>); those for other languages are not. See <a href="#Front-End">Anatomy of a Language Front End</a>, for details of the files in these
directories.
<br><dt><samp><span class="file">config</span></samp><dd>Configuration files for supported architectures and operating
systems. See <a href="#Back-End">Anatomy of a Target Back End</a>, for
details of the files in this directory.
<br><dt><samp><span class="file">doc</span></samp><dd>Texinfo documentation for GCC, together with automatically generated
man pages and support for converting the installation manual to
HTML. See <a href="#Documentation">Documentation</a>.
<br><dt><samp><span class="file">ginclude</span></samp><dd>System headers installed by GCC, mainly those required by the C
standard of freestanding implementations. See <a href="#Headers">Headers Installed by GCC</a>, for details of when these and other headers are
installed.
<br><dt><samp><span class="file">po</span></samp><dd>Message catalogs with translations of messages produced by GCC into
various languages, <samp><var>language</var><span class="file">.po</span></samp>. This directory also
contains <samp><span class="file">gcc.pot</span></samp>, the template for these message catalogues,
<samp><span class="file">exgettext</span></samp>, a wrapper around <samp><span class="command">gettext</span></samp> to extract the
messages from the GCC sources and create <samp><span class="file">gcc.pot</span></samp>, which is run
by ‘<samp><span class="samp">make gcc.pot</span></samp>’, and <samp><span class="file">EXCLUDES</span></samp>, a list of files from
which messages should not be extracted.
<br><dt><samp><span class="file">testsuite</span></samp><dd>The GCC testsuites (except for those for runtime libraries).
See <a href="#Testsuites">Testsuites</a>.
</dl>
<div class="node">
<a name="Configuration"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Build">Build</a>,
Previous: <a rel="previous" accesskey="p" href="#Subdirectories">Subdirectories</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.2 Configuration in the <samp><span class="file">gcc</span></samp> Directory</h4>
<p>The <samp><span class="file">gcc</span></samp> directory is configured with an Autoconf-generated
script <samp><span class="file">configure</span></samp>. The <samp><span class="file">configure</span></samp> script is generated
from <samp><span class="file">configure.ac</span></samp> and <samp><span class="file">aclocal.m4</span></samp>. From the files
<samp><span class="file">configure.ac</span></samp> and <samp><span class="file">acconfig.h</span></samp>, Autoheader generates the
file <samp><span class="file">config.in</span></samp>. The file <samp><span class="file">cstamp-h.in</span></samp> is used as a
timestamp.
<ul class="menu">
<li><a accesskey="1" href="#Config-Fragments">Config Fragments</a>: Scripts used by <samp><span class="file">configure</span></samp>.
<li><a accesskey="2" href="#System-Config">System Config</a>: The <samp><span class="file">config.build</span></samp>, <samp><span class="file">config.host</span></samp>, and
<samp><span class="file">config.gcc</span></samp> files.
<li><a accesskey="3" href="#Configuration-Files">Configuration Files</a>: Files created by running <samp><span class="file">configure</span></samp>.
</ul>
<div class="node">
<a name="Config-Fragments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#System-Config">System Config</a>,
Up: <a rel="up" accesskey="u" href="#Configuration">Configuration</a>
</div>
<h5 class="subsubsection">6.3.2.1 Scripts Used by <samp><span class="file">configure</span></samp></h5>
<p><samp><span class="file">configure</span></samp> uses some other scripts to help in its work:
<ul>
<li>The standard GNU <samp><span class="file">config.sub</span></samp> and <samp><span class="file">config.guess</span></samp>
files, kept in the top level directory, are used.
<li>The file <samp><span class="file">config.gcc</span></samp> is used to handle configuration
specific to the particular target machine. The file
<samp><span class="file">config.build</span></samp> is used to handle configuration specific to the
particular build machine. The file <samp><span class="file">config.host</span></samp> is used to handle
configuration specific to the particular host machine. (In general,
these should only be used for features that cannot reasonably be tested in
Autoconf feature tests.)
See <a href="#System-Config">The <samp><span class="file">config.build</span></samp>; <samp><span class="file">config.host</span></samp>; and <samp><span class="file">config.gcc</span></samp> Files</a>, for details of the contents of these files.
<li>Each language subdirectory has a file
<samp><var>language</var><span class="file">/config-lang.in</span></samp> that is used for
front-end-specific configuration. See <a href="#Front-End-Config">The Front End <samp><span class="file">config-lang.in</span></samp> File</a>, for details of this file.
<li>A helper script <samp><span class="file">configure.frag</span></samp> is used as part of
creating the output of <samp><span class="file">configure</span></samp>.
</ul>
<div class="node">
<a name="System-Config"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Configuration-Files">Configuration Files</a>,
Previous: <a rel="previous" accesskey="p" href="#Config-Fragments">Config Fragments</a>,
Up: <a rel="up" accesskey="u" href="#Configuration">Configuration</a>
</div>
<h5 class="subsubsection">6.3.2.2 The <samp><span class="file">config.build</span></samp>; <samp><span class="file">config.host</span></samp>; and <samp><span class="file">config.gcc</span></samp> Files</h5>
<p>The <samp><span class="file">config.build</span></samp> file contains specific rules for particular systems
which GCC is built on. This should be used as rarely as possible, as the
behavior of the build system can always be detected by autoconf.
<p>The <samp><span class="file">config.host</span></samp> file contains specific rules for particular systems
which GCC will run on. This is rarely needed.
<p>The <samp><span class="file">config.gcc</span></samp> file contains specific rules for particular systems
which GCC will generate code for. This is usually needed.
<p>Each file has a list of the shell variables it sets, with descriptions, at the
top of the file.
<p>FIXME: document the contents of these files, and what variables should
be set to control build, host and target configuration.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2010 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Configuration-Files"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#System-Config">System Config</a>,
Up: <a rel="up" accesskey="u" href="#Configuration">Configuration</a>
</div>
<h5 class="subsubsection">6.3.2.3 Files Created by <code>configure</code></h5>
<p>Here we spell out what files will be set up by <samp><span class="file">configure</span></samp> in the
<samp><span class="file">gcc</span></samp> directory. Some other files are created as temporary files
in the configuration process, and are not used in the subsequent
build; these are not documented.
<ul>
<li><samp><span class="file">Makefile</span></samp> is constructed from <samp><span class="file">Makefile.in</span></samp>, together with
the host and target fragments (see <a href="#Fragments">Makefile Fragments</a>) <samp><span class="file">t-</span><var>target</var></samp> and <samp><span class="file">x-</span><var>host</var></samp> from
<samp><span class="file">config</span></samp>, if any, and language Makefile fragments
<samp><var>language</var><span class="file">/Make-lang.in</span></samp>.
<li><samp><span class="file">auto-host.h</span></samp> contains information about the host machine
determined by <samp><span class="file">configure</span></samp>. If the host machine is different from
the build machine, then <samp><span class="file">auto-build.h</span></samp> is also created,
containing such information about the build machine.
<li><samp><span class="file">config.status</span></samp> is a script that may be run to recreate the
current configuration.
<li><samp><span class="file">configargs.h</span></samp> is a header containing details of the arguments
passed to <samp><span class="file">configure</span></samp> to configure GCC, and of the thread model
used.
<li><samp><span class="file">cstamp-h</span></samp> is used as a timestamp.
<li>If a language <samp><span class="file">config-lang.in</span></samp> file (see <a href="#Front-End-Config">The Front End <samp><span class="file">config-lang.in</span></samp> File</a>) sets <code>outputs</code>, then
the files listed in <code>outputs</code> there are also generated.
</ul>
<p>The following configuration headers are created from the Makefile,
using <samp><span class="file">mkconfig.sh</span></samp>, rather than directly by <samp><span class="file">configure</span></samp>.
<samp><span class="file">config.h</span></samp>, <samp><span class="file">bconfig.h</span></samp> and <samp><span class="file">tconfig.h</span></samp> all contain the
<samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp> header, if any, appropriate to the host,
build and target machines respectively, the configuration headers for
the target, and some definitions; for the host and build machines,
these include the autoconfigured headers generated by
<samp><span class="file">configure</span></samp>. The other configuration headers are determined by
<samp><span class="file">config.gcc</span></samp>. They also contain the typedefs for <code>rtx</code>,
<code>rtvec</code> and <code>tree</code>.
<ul>
<li><samp><span class="file">config.h</span></samp>, for use in programs that run on the host machine.
<li><samp><span class="file">bconfig.h</span></samp>, for use in programs that run on the build machine.
<li><samp><span class="file">tconfig.h</span></samp>, for use in programs and libraries for the target
machine.
<li><samp><span class="file">tm_p.h</span></samp>, which includes the header <samp><var>machine</var><span class="file">-protos.h</span></samp>
that contains prototypes for functions in the target <samp><span class="file">.c</span></samp> file.
FIXME: why is such a separate header necessary?
</ul>
<div class="node">
<a name="Build"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Makefile">Makefile</a>,
Previous: <a rel="previous" accesskey="p" href="#Configuration">Configuration</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.3 Build System in the <samp><span class="file">gcc</span></samp> Directory</h4>
<p>FIXME: describe the build system, including what is built in what
stages. Also list the various source files that are used in the build
process but aren't source files of GCC itself and so aren't documented
below (see <a href="#Passes">Passes</a>).
<!-- Copyright (C) 2001, 2002, 2003, 2004, 2006, 2008, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Makefile"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Library-Files">Library Files</a>,
Previous: <a rel="previous" accesskey="p" href="#Build">Build</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.4 Makefile Targets</h4>
<p><a name="index-makefile-targets-1664"></a><a name="index-targets_002c-makefile-1665"></a>
These targets are available from the ‘<samp><span class="samp">gcc</span></samp>’ directory:
<dl>
<dt><code>all</code><dd>This is the default target. Depending on what your build/host/target
configuration is, it coordinates all the things that need to be built.
<br><dt><code>doc</code><dd>Produce info-formatted documentation and man pages. Essentially it
calls ‘<samp><span class="samp">make man</span></samp>’ and ‘<samp><span class="samp">make info</span></samp>’.
<br><dt><code>dvi</code><dd>Produce DVI-formatted documentation.
<br><dt><code>pdf</code><dd>Produce PDF-formatted documentation.
<br><dt><code>html</code><dd>Produce HTML-formatted documentation.
<br><dt><code>man</code><dd>Generate man pages.
<br><dt><code>info</code><dd>Generate info-formatted pages.
<br><dt><code>mostlyclean</code><dd>Delete the files made while building the compiler.
<br><dt><code>clean</code><dd>That, and all the other files built by ‘<samp><span class="samp">make all</span></samp>’.
<br><dt><code>distclean</code><dd>That, and all the files created by <samp><span class="command">configure</span></samp>.
<br><dt><code>maintainer-clean</code><dd>Distclean plus any file that can be generated from other files. Note
that additional tools may be required beyond what is normally needed to
build GCC.
<br><dt><code>srcextra</code><dd>Generates files in the source directory that are not version-controlled but
should go into a release tarball.
<br><dt><code>srcinfo</code><dt><code>srcman</code><dd>Copies the info-formatted and manpage documentation into the source
directory usually for the purpose of generating a release tarball.
<br><dt><code>install</code><dd>Installs GCC.
<br><dt><code>uninstall</code><dd>Deletes installed files, though this is not supported.
<br><dt><code>check</code><dd>Run the testsuite. This creates a <samp><span class="file">testsuite</span></samp> subdirectory that
has various <samp><span class="file">.sum</span></samp> and <samp><span class="file">.log</span></samp> files containing the results of
the testing. You can run subsets with, for example, ‘<samp><span class="samp">make check-gcc</span></samp>’.
You can specify specific tests by setting <samp><span class="env">RUNTESTFLAGS</span></samp> to be the name
of the <samp><span class="file">.exp</span></samp> file, optionally followed by (for some tests) an equals
and a file wildcard, like:
<pre class="smallexample"> make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"
</pre>
<p>Note that running the testsuite may require additional tools be
installed, such as Tcl or DejaGnu.
</dl>
<p>The toplevel tree from which you start GCC compilation is not
the GCC directory, but rather a complex Makefile that coordinates
the various steps of the build, including bootstrapping the compiler
and using the new compiler to build target libraries.
<p>When GCC is configured for a native configuration, the default action
for <samp><span class="command">make</span></samp> is to do a full three-stage bootstrap. This means
that GCC is built three times—once with the native compiler, once with
the native-built compiler it just built, and once with the compiler it
built the second time. In theory, the last two should produce the same
results, which ‘<samp><span class="samp">make compare</span></samp>’ can check. Each stage is configured
separately and compiled into a separate directory, to minimize problems
due to ABI incompatibilities between the native compiler and GCC.
<p>If you do a change, rebuilding will also start from the first stage
and “bubble” up the change through the three stages. Each stage
is taken from its build directory (if it had been built previously),
rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the
stage2 build to crash. It does not provide as good coverage of the
compiler as bootstrapping from scratch, but it ensures that the new
code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison
failures<a rel="footnote" href="#fn-1" name="fnd-1"><sup>1</sup></a>.
<p>Other targets available from the top level include:
<dl>
<dt><code>bootstrap-lean</code><dd>Like <code>bootstrap</code>, except that the various stages are removed once
they're no longer needed. This saves disk space.
<br><dt><code>bootstrap2</code><dt><code>bootstrap2-lean</code><dd>Performs only the first two stages of bootstrap. Unlike a three-stage
bootstrap, this does not perform a comparison to test that the compiler
is running properly. Note that the disk space required by a “lean”
bootstrap is approximately independent of the number of stages.
<br><dt><code>stage</code><var>N</var><code>-bubble (</code><var>N</var><code> = 1...4, profile, feedback)</code><dd>Rebuild all the stages up to <var>N</var>, with the appropriate flags,
“bubbling” the changes as described above.
<br><dt><code>all-stage</code><var>N</var><code> (</code><var>N</var><code> = 1...4, profile, feedback)</code><dd>Assuming that stage <var>N</var> has already been built, rebuild it with the
appropriate flags. This is rarely needed.
<br><dt><code>cleanstrap</code><dd>Remove everything (‘<samp><span class="samp">make clean</span></samp>’) and rebuilds (‘<samp><span class="samp">make bootstrap</span></samp>’).
<br><dt><code>compare</code><dd>Compares the results of stages 2 and 3. This ensures that the compiler
is running properly, since it should produce the same object files
regardless of how it itself was compiled.
<br><dt><code>profiledbootstrap</code><dd>Builds a compiler with profiling feedback information. In this case,
the second and third stages are named ‘<samp><span class="samp">profile</span></samp>’ and ‘<samp><span class="samp">feedback</span></samp>’,
respectively. For more information, see
<a href="{No value for `fngccinstall'}.html#Building">Building with profile feedback</a>.
<br><dt><code>restrap</code><dd>Restart a bootstrap, so that everything that was not built with
the system compiler is rebuilt.
<br><dt><code>stage</code><var>N</var><code>-start (</code><var>N</var><code> = 1...4, profile, feedback)</code><dd>For each package that is bootstrapped, rename directories so that,
for example, <samp><span class="file">gcc</span></samp> points to the stage<var>N</var> GCC, compiled
with the stage<var>N-1</var> GCC<a rel="footnote" href="#fn-2" name="fnd-2"><sup>2</sup></a>.
<p>You will invoke this target if you need to test or debug the
stage<var>N</var> GCC. If you only need to execute GCC (but you need
not run ‘<samp><span class="samp">make</span></samp>’ either to rebuild it or to run test suites),
you should be able to work directly in the <samp><span class="file">stage</span><var>N</var><span class="file">-gcc</span></samp>
directory. This makes it easier to debug multiple stages in
parallel.
<br><dt><code>stage</code><dd>For each package that is bootstrapped, relocate its build directory
to indicate its stage. For example, if the <samp><span class="file">gcc</span></samp> directory
points to the stage2 GCC, after invoking this target it will be
renamed to <samp><span class="file">stage2-gcc</span></samp>.
</dl>
<p>If you wish to use non-default GCC flags when compiling the stage2 and
stage3 compilers, set <code>BOOT_CFLAGS</code> on the command line when doing
‘<samp><span class="samp">make</span></samp>’.
<p>Usually, the first stage only builds the languages that the compiler
is written in: typically, C and maybe Ada. If you are debugging a
miscompilation of a different stage2 front-end (for example, of the
Fortran front-end), you may want to have front-ends for other languages
in the first stage as well. To do so, set <code>STAGE1_LANGUAGES</code>
on the command line when doing ‘<samp><span class="samp">make</span></samp>’.
<p>For example, in the aforementioned scenario of debugging a Fortran
front-end miscompilation caused by the stage1 compiler, you may need a
command like
<pre class="example"> make stage2-bubble STAGE1_LANGUAGES=c,fortran
</pre>
<p>Alternatively, you can use per-language targets to build and test
languages that are not enabled by default in stage1. For example,
<samp><span class="command">make f951</span></samp> will build a Fortran compiler even in the stage1
build directory.
<div class="node">
<a name="Library-Files"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Headers">Headers</a>,
Previous: <a rel="previous" accesskey="p" href="#Makefile">Makefile</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.5 Library Source Files and Headers under the <samp><span class="file">gcc</span></samp> Directory</h4>
<p>FIXME: list here, with explanation, all the C source files and headers
under the <samp><span class="file">gcc</span></samp> directory that aren't built into the GCC
executable but rather are part of runtime libraries and object files,
such as <samp><span class="file">crtstuff.c</span></samp> and <samp><span class="file">unwind-dw2.c</span></samp>. See <a href="#Headers">Headers Installed by GCC</a>, for more information about the
<samp><span class="file">ginclude</span></samp> directory.
<div class="node">
<a name="Headers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Documentation">Documentation</a>,
Previous: <a rel="previous" accesskey="p" href="#Library-Files">Library Files</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.6 Headers Installed by GCC</h4>
<p>In general, GCC expects the system C library to provide most of the
headers to be used with it. However, GCC will fix those headers if
necessary to make them work with GCC, and will install some headers
required of freestanding implementations. These headers are installed
in <samp><var>libsubdir</var><span class="file">/include</span></samp>. Headers for non-C runtime
libraries are also installed by GCC; these are not documented here.
(FIXME: document them somewhere.)
<p>Several of the headers GCC installs are in the <samp><span class="file">ginclude</span></samp>
directory. These headers, <samp><span class="file">iso646.h</span></samp>,
<samp><span class="file">stdarg.h</span></samp>, <samp><span class="file">stdbool.h</span></samp>, and <samp><span class="file">stddef.h</span></samp>,
are installed in <samp><var>libsubdir</var><span class="file">/include</span></samp>,
unless the target Makefile fragment (see <a href="#Target-Fragment">Target Fragment</a>)
overrides this by setting <code>USER_H</code>.
<p>In addition to these headers and those generated by fixing system
headers to work with GCC, some other headers may also be installed in
<samp><var>libsubdir</var><span class="file">/include</span></samp>. <samp><span class="file">config.gcc</span></samp> may set
<code>extra_headers</code>; this specifies additional headers under
<samp><span class="file">config</span></samp> to be installed on some systems.
<p>GCC installs its own version of <code><float.h></code>, from <samp><span class="file">ginclude/float.h</span></samp>.
This is done to cope with command-line options that change the
representation of floating point numbers.
<p>GCC also installs its own version of <code><limits.h></code>; this is generated
from <samp><span class="file">glimits.h</span></samp>, together with <samp><span class="file">limitx.h</span></samp> and
<samp><span class="file">limity.h</span></samp> if the system also has its own version of
<code><limits.h></code>. (GCC provides its own header because it is
required of ISO C freestanding implementations, but needs to include
the system header from its own header as well because other standards
such as POSIX specify additional values to be defined in
<code><limits.h></code>.) The system's <code><limits.h></code> header is used via
<samp><var>libsubdir</var><span class="file">/include/syslimits.h</span></samp>, which is copied from
<samp><span class="file">gsyslimits.h</span></samp> if it does not need fixing to work with GCC; if it
needs fixing, <samp><span class="file">syslimits.h</span></samp> is the fixed copy.
<p>GCC can also install <code><tgmath.h></code>. It will do this when
<samp><span class="file">config.gcc</span></samp> sets <code>use_gcc_tgmath</code> to <code>yes</code>.
<div class="node">
<a name="Documentation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Front-End">Front End</a>,
Previous: <a rel="previous" accesskey="p" href="#Headers">Headers</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.7 Building Documentation</h4>
<p>The main GCC documentation is in the form of manuals in Texinfo
format. These are installed in Info format; DVI versions may be
generated by ‘<samp><span class="samp">make dvi</span></samp>’, PDF versions by ‘<samp><span class="samp">make pdf</span></samp>’, and
HTML versions by ‘<samp><span class="samp">make html</span></samp>’. In addition, some man pages are
generated from the Texinfo manuals, there are some other text files
with miscellaneous documentation, and runtime libraries have their own
documentation outside the <samp><span class="file">gcc</span></samp> directory. FIXME: document the
documentation for runtime libraries somewhere.
<ul class="menu">
<li><a accesskey="1" href="#Texinfo-Manuals">Texinfo Manuals</a>: GCC manuals in Texinfo format.
<li><a accesskey="2" href="#Man-Page-Generation">Man Page Generation</a>: Generating man pages from Texinfo manuals.
<li><a accesskey="3" href="#Miscellaneous-Docs">Miscellaneous Docs</a>: Miscellaneous text files with documentation.
</ul>
<div class="node">
<a name="Texinfo-Manuals"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Man-Page-Generation">Man Page Generation</a>,
Up: <a rel="up" accesskey="u" href="#Documentation">Documentation</a>
</div>
<h5 class="subsubsection">6.3.7.1 Texinfo Manuals</h5>
<p>The manuals for GCC as a whole, and the C and C++ front ends, are in
files <samp><span class="file">doc/*.texi</span></samp>. Other front ends have their own manuals in
files <samp><var>language</var><span class="file">/*.texi</span></samp>. Common files
<samp><span class="file">doc/include/*.texi</span></samp> are provided which may be included in
multiple manuals; the following files are in <samp><span class="file">doc/include</span></samp>:
<dl>
<dt><samp><span class="file">fdl.texi</span></samp><dd>The GNU Free Documentation License.
<br><dt><samp><span class="file">funding.texi</span></samp><dd>The section “Funding Free Software”.
<br><dt><samp><span class="file">gcc-common.texi</span></samp><dd>Common definitions for manuals.
<br><dt><samp><span class="file">gpl.texi</span></samp><dt><samp><span class="file">gpl_v3.texi</span></samp><dd>The GNU General Public License.
<br><dt><samp><span class="file">texinfo.tex</span></samp><dd>A copy of <samp><span class="file">texinfo.tex</span></samp> known to work with the GCC manuals.
</dl>
<p>DVI-formatted manuals are generated by ‘<samp><span class="samp">make dvi</span></samp>’, which uses
<samp><span class="command">texi2dvi</span></samp> (via the Makefile macro <code>$(TEXI2DVI)</code>).
PDF-formatted manuals are generated by ‘<samp><span class="samp">make pdf</span></samp>’, which uses
<samp><span class="command">texi2pdf</span></samp> (via the Makefile macro <code>$(TEXI2PDF)</code>). HTML
formatted manuals are generated by ‘<samp><span class="samp">make html</span></samp>’. Info
manuals are generated by ‘<samp><span class="samp">make info</span></samp>’ (which is run as part of
a bootstrap); this generates the manuals in the source directory,
using <samp><span class="command">makeinfo</span></samp> via the Makefile macro <code>$(MAKEINFO)</code>,
and they are included in release distributions.
<p>Manuals are also provided on the GCC web site, in both HTML and
PostScript forms. This is done via the script
<samp><span class="file">maintainer-scripts/update_web_docs_svn</span></samp>. Each manual to be
provided online must be listed in the definition of <code>MANUALS</code> in
that file; a file <samp><var>name</var><span class="file">.texi</span></samp> must only appear once in the
source tree, and the output manual must have the same name as the
source file. (However, other Texinfo files, included in manuals but
not themselves the root files of manuals, may have names that appear
more than once in the source tree.) The manual file
<samp><var>name</var><span class="file">.texi</span></samp> should only include other files in its own
directory or in <samp><span class="file">doc/include</span></samp>. HTML manuals will be generated by
‘<samp><span class="samp">makeinfo --html</span></samp>’, PostScript manuals by <samp><span class="command">texi2dvi</span></samp>
and <samp><span class="command">dvips</span></samp>, and PDF manuals by <samp><span class="command">texi2pdf</span></samp>.
All Texinfo files that are parts of manuals must
be version-controlled, even if they are generated files, for the
generation of online manuals to work.
<p>The installation manual, <samp><span class="file">doc/install.texi</span></samp>, is also provided on
the GCC web site. The HTML version is generated by the script
<samp><span class="file">doc/install.texi2html</span></samp>.
<div class="node">
<a name="Man-Page-Generation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Miscellaneous-Docs">Miscellaneous Docs</a>,
Previous: <a rel="previous" accesskey="p" href="#Texinfo-Manuals">Texinfo Manuals</a>,
Up: <a rel="up" accesskey="u" href="#Documentation">Documentation</a>
</div>
<h5 class="subsubsection">6.3.7.2 Man Page Generation</h5>
<p>Because of user demand, in addition to full Texinfo manuals, man pages
are provided which contain extracts from those manuals. These man
pages are generated from the Texinfo manuals using
<samp><span class="file">contrib/texi2pod.pl</span></samp> and <samp><span class="command">pod2man</span></samp>. (The man page for
<samp><span class="command">g++</span></samp>, <samp><span class="file">cp/g++.1</span></samp>, just contains a ‘<samp><span class="samp">.so</span></samp>’ reference
to <samp><span class="file">gcc.1</span></samp>, but all the other man pages are generated from
Texinfo manuals.)
<p>Because many systems may not have the necessary tools installed to
generate the man pages, they are only generated if the
<samp><span class="file">configure</span></samp> script detects that recent enough tools are
installed, and the Makefiles allow generating man pages to fail
without aborting the build. Man pages are also included in release
distributions. They are generated in the source directory.
<p>Magic comments in Texinfo files starting ‘<samp><span class="samp">@c man</span></samp>’ control what
parts of a Texinfo file go into a man page. Only a subset of Texinfo
is supported by <samp><span class="file">texi2pod.pl</span></samp>, and it may be necessary to add
support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo
macros are provided in <samp><span class="file">doc/include/gcc-common.texi</span></samp> which
<samp><span class="file">texi2pod.pl</span></samp> understands:
<dl>
<dt><code>@gcctabopt</code><dd>Use in the form ‘<samp><span class="samp">@table @gcctabopt</span></samp>’ for tables of options,
where for printed output the effect of ‘<samp><span class="samp">@code</span></samp>’ is better than
that of ‘<samp><span class="samp">@option</span></samp>’ but for man page output a different effect is
wanted.
<br><dt><code>@gccoptlist</code><dd>Use for summary lists of options in manuals.
<br><dt><code>@gol</code><dd>Use at the end of each line inside ‘<samp><span class="samp">@gccoptlist</span></samp>’. This is
necessary to avoid problems with differences in how the
‘<samp><span class="samp">@gccoptlist</span></samp>’ macro is handled by different Texinfo formatters.
</dl>
<p>FIXME: describe the <samp><span class="file">texi2pod.pl</span></samp> input language and magic
comments in more detail.
<div class="node">
<a name="Miscellaneous-Docs"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Man-Page-Generation">Man Page Generation</a>,
Up: <a rel="up" accesskey="u" href="#Documentation">Documentation</a>
</div>
<h5 class="subsubsection">6.3.7.3 Miscellaneous Documentation</h5>
<p>In addition to the formal documentation that is installed by GCC,
there are several other text files in the <samp><span class="file">gcc</span></samp> subdirectory
with miscellaneous documentation:
<dl>
<dt><samp><span class="file">ABOUT-GCC-NLS</span></samp><dd>Notes on GCC's Native Language Support. FIXME: this should be part of
this manual rather than a separate file.
<br><dt><samp><span class="file">ABOUT-NLS</span></samp><dd>Notes on the Free Translation Project.
<br><dt><samp><span class="file">COPYING</span></samp><dt><samp><span class="file">COPYING3</span></samp><dd>The GNU General Public License, Versions 2 and 3.
<br><dt><samp><span class="file">COPYING.LIB</span></samp><dt><samp><span class="file">COPYING3.LIB</span></samp><dd>The GNU Lesser General Public License, Versions 2.1 and 3.
<br><dt><samp><span class="file">*ChangeLog*</span></samp><dt><samp><span class="file">*/ChangeLog*</span></samp><dd>Change log files for various parts of GCC.
<br><dt><samp><span class="file">LANGUAGES</span></samp><dd>Details of a few changes to the GCC front-end interface. FIXME: the
information in this file should be part of general documentation of
the front-end interface in this manual.
<br><dt><samp><span class="file">ONEWS</span></samp><dd>Information about new features in old versions of GCC. (For recent
versions, the information is on the GCC web site.)
<br><dt><samp><span class="file">README.Portability</span></samp><dd>Information about portability issues when writing code in GCC. FIXME:
why isn't this part of this manual or of the GCC Coding Conventions?
</dl>
<p>FIXME: document such files in subdirectories, at least <samp><span class="file">config</span></samp>,
<samp><span class="file">cp</span></samp>, <samp><span class="file">objc</span></samp>, <samp><span class="file">testsuite</span></samp>.
<div class="node">
<a name="Front-End"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Back-End">Back End</a>,
Previous: <a rel="previous" accesskey="p" href="#Documentation">Documentation</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.8 Anatomy of a Language Front End</h4>
<p>A front end for a language in GCC has the following parts:
<ul>
<li>A directory <samp><var>language</var></samp> under <samp><span class="file">gcc</span></samp> containing source
files for that front end. See <a href="#Front-End-Directory">The Front End <samp><var>language</var></samp> Directory</a>, for details.
<li>A mention of the language in the list of supported languages in
<samp><span class="file">gcc/doc/install.texi</span></samp>.
<li>A mention of the name under which the language's runtime library is
recognized by <samp><span class="option">--enable-shared=</span><var>package</var></samp> in the
documentation of that option in <samp><span class="file">gcc/doc/install.texi</span></samp>.
<li>A mention of any special prerequisites for building the front end in
the documentation of prerequisites in <samp><span class="file">gcc/doc/install.texi</span></samp>.
<li>Details of contributors to that front end in
<samp><span class="file">gcc/doc/contrib.texi</span></samp>. If the details are in that front end's
own manual then there should be a link to that manual's list in
<samp><span class="file">contrib.texi</span></samp>.
<li>Information about support for that language in
<samp><span class="file">gcc/doc/frontends.texi</span></samp>.
<li>Information about standards for that language, and the front end's
support for them, in <samp><span class="file">gcc/doc/standards.texi</span></samp>. This may be a
link to such information in the front end's own manual.
<li>Details of source file suffixes for that language and <samp><span class="option">-x
</span><var>lang</var></samp> options supported, in <samp><span class="file">gcc/doc/invoke.texi</span></samp>.
<li>Entries in <code>default_compilers</code> in <samp><span class="file">gcc.c</span></samp> for source file
suffixes for that language.
<li>Preferably testsuites, which may be under <samp><span class="file">gcc/testsuite</span></samp> or
runtime library directories. FIXME: document somewhere how to write
testsuite harnesses.
<li>Probably a runtime library for the language, outside the <samp><span class="file">gcc</span></samp>
directory. FIXME: document this further.
<li>Details of the directories of any runtime libraries in
<samp><span class="file">gcc/doc/sourcebuild.texi</span></samp>.
<li>Check targets in <samp><span class="file">Makefile.def</span></samp> for the top-level <samp><span class="file">Makefile</span></samp>
to check just the compiler or the compiler and runtime library for the
language.
</ul>
<p>If the front end is added to the official GCC source repository, the
following are also necessary:
<ul>
<li>At least one Bugzilla component for bugs in that front end and runtime
libraries. This category needs to be added to the Bugzilla database.
<li>Normally, one or more maintainers of that front end listed in
<samp><span class="file">MAINTAINERS</span></samp>.
<li>Mentions on the GCC web site in <samp><span class="file">index.html</span></samp> and
<samp><span class="file">frontends.html</span></samp>, with any relevant links on
<samp><span class="file">readings.html</span></samp>. (Front ends that are not an official part of
GCC may also be listed on <samp><span class="file">frontends.html</span></samp>, with relevant links.)
<li>A news item on <samp><span class="file">index.html</span></samp>, and possibly an announcement on the
<a href="mailto:gcc-announce@gcc.gnu.org">gcc-announce@gcc.gnu.org</a> mailing list.
<li>The front end's manuals should be mentioned in
<samp><span class="file">maintainer-scripts/update_web_docs_svn</span></samp> (see <a href="#Texinfo-Manuals">Texinfo Manuals</a>)
and the online manuals should be linked to from
<samp><span class="file">onlinedocs/index.html</span></samp>.
<li>Any old releases or CVS repositories of the front end, before its
inclusion in GCC, should be made available on the GCC FTP site
<a href="ftp://gcc.gnu.org/pub/gcc/old-releases/">ftp://gcc.gnu.org/pub/gcc/old-releases/</a>.
<li>The release and snapshot script <samp><span class="file">maintainer-scripts/gcc_release</span></samp>
should be updated to generate appropriate tarballs for this front end.
<li>If this front end includes its own version files that include the
current date, <samp><span class="file">maintainer-scripts/update_version</span></samp> should be
updated accordingly.
</ul>
<ul class="menu">
<li><a accesskey="1" href="#Front-End-Directory">Front End Directory</a>: The front end <samp><var>language</var></samp> directory.
<li><a accesskey="2" href="#Front-End-Config">Front End Config</a>: The front end <samp><span class="file">config-lang.in</span></samp> file.
<li><a accesskey="3" href="#Front-End-Makefile">Front End Makefile</a>: The front end <samp><span class="file">Make-lang.in</span></samp> file.
</ul>
<div class="node">
<a name="Front-End-Directory"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Front-End-Config">Front End Config</a>,
Up: <a rel="up" accesskey="u" href="#Front-End">Front End</a>
</div>
<h5 class="subsubsection">6.3.8.1 The Front End <samp><var>language</var></samp> Directory</h5>
<p>A front end <samp><var>language</var></samp> directory contains the source files
of that front end (but not of any runtime libraries, which should be
outside the <samp><span class="file">gcc</span></samp> directory). This includes documentation, and
possibly some subsidiary programs built alongside the front end.
Certain files are special and other parts of the compiler depend on
their names:
<dl>
<dt><samp><span class="file">config-lang.in</span></samp><dd>This file is required in all language subdirectories. See <a href="#Front-End-Config">The Front End <samp><span class="file">config-lang.in</span></samp> File</a>, for details of
its contents
<br><dt><samp><span class="file">Make-lang.in</span></samp><dd>This file is required in all language subdirectories. See <a href="#Front-End-Makefile">The Front End <samp><span class="file">Make-lang.in</span></samp> File</a>, for details of its
contents.
<br><dt><samp><span class="file">lang.opt</span></samp><dd>This file registers the set of switches that the front end accepts on
the command line, and their <samp><span class="option">--help</span></samp> text. See <a href="#Options">Options</a>.
<br><dt><samp><span class="file">lang-specs.h</span></samp><dd>This file provides entries for <code>default_compilers</code> in
<samp><span class="file">gcc.c</span></samp> which override the default of giving an error that a
compiler for that language is not installed.
<br><dt><samp><var>language</var><span class="file">-tree.def</span></samp><dd>This file, which need not exist, defines any language-specific tree
codes.
</dl>
<div class="node">
<a name="Front-End-Config"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Front-End-Makefile">Front End Makefile</a>,
Previous: <a rel="previous" accesskey="p" href="#Front-End-Directory">Front End Directory</a>,
Up: <a rel="up" accesskey="u" href="#Front-End">Front End</a>
</div>
<h5 class="subsubsection">6.3.8.2 The Front End <samp><span class="file">config-lang.in</span></samp> File</h5>
<p>Each language subdirectory contains a <samp><span class="file">config-lang.in</span></samp> file. In
addition the main directory contains <samp><span class="file">c-config-lang.in</span></samp>, which
contains limited information for the C language. This file is a shell
script that may define some variables describing the language:
<dl>
<dt><code>language</code><dd>This definition must be present, and gives the name of the language
for some purposes such as arguments to <samp><span class="option">--enable-languages</span></samp>.
<br><dt><code>lang_requires</code><dd>If defined, this variable lists (space-separated) language front ends
other than C that this front end requires to be enabled (with the
names given being their <code>language</code> settings). For example, the
Java front end depends on the C++ front end, so sets
‘<samp><span class="samp">lang_requires=c++</span></samp>’.
<br><dt><code>subdir_requires</code><dd>If defined, this variable lists (space-separated) front end directories
other than C that this front end requires to be present. For example,
the Objective-C++ front end uses source files from the C++ and
Objective-C front ends, so sets ‘<samp><span class="samp">subdir_requires="cp objc"</span></samp>’.
<br><dt><code>target_libs</code><dd>If defined, this variable lists (space-separated) targets in the top
level <samp><span class="file">Makefile</span></samp> to build the runtime libraries for this
language, such as <code>target-libobjc</code>.
<br><dt><code>lang_dirs</code><dd>If defined, this variable lists (space-separated) top level
directories (parallel to <samp><span class="file">gcc</span></samp>), apart from the runtime libraries,
that should not be configured if this front end is not built.
<br><dt><code>build_by_default</code><dd>If defined to ‘<samp><span class="samp">no</span></samp>’, this language front end is not built unless
enabled in a <samp><span class="option">--enable-languages</span></samp> argument. Otherwise, front
ends are built by default, subject to any special logic in
<samp><span class="file">configure.ac</span></samp> (as is present to disable the Ada front end if the
Ada compiler is not already installed).
<br><dt><code>boot_language</code><dd>If defined to ‘<samp><span class="samp">yes</span></samp>’, this front end is built in stage1 of the
bootstrap. This is only relevant to front ends written in their own
languages.
<br><dt><code>compilers</code><dd>If defined, a space-separated list of compiler executables that will
be run by the driver. The names here will each end
with ‘<samp><span class="samp">\$(exeext)</span></samp>’.
<br><dt><code>outputs</code><dd>If defined, a space-separated list of files that should be generated
by <samp><span class="file">configure</span></samp> substituting values in them. This mechanism can
be used to create a file <samp><var>language</var><span class="file">/Makefile</span></samp> from
<samp><var>language</var><span class="file">/Makefile.in</span></samp>, but this is deprecated, building
everything from the single <samp><span class="file">gcc/Makefile</span></samp> is preferred.
<br><dt><code>gtfiles</code><dd>If defined, a space-separated list of files that should be scanned by
<samp><span class="file">gengtype.c</span></samp> to generate the garbage collection tables and routines for
this language. This excludes the files that are common to all front
ends. See <a href="#Type-Information">Type Information</a>.
</dl>
<div class="node">
<a name="Front-End-Makefile"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Front-End-Config">Front End Config</a>,
Up: <a rel="up" accesskey="u" href="#Front-End">Front End</a>
</div>
<h5 class="subsubsection">6.3.8.3 The Front End <samp><span class="file">Make-lang.in</span></samp> File</h5>
<p>Each language subdirectory contains a <samp><span class="file">Make-lang.in</span></samp> file. It contains
targets <var>lang</var><code>.</code><var>hook</var> (where <var>lang</var> is the
setting of <code>language</code> in <samp><span class="file">config-lang.in</span></samp>) for the following
values of <var>hook</var>, and any other Makefile rules required to
build those targets (which may if necessary use other Makefiles
specified in <code>outputs</code> in <samp><span class="file">config-lang.in</span></samp>, although this is
deprecated). It also adds any testsuite targets that can use the
standard rule in <samp><span class="file">gcc/Makefile.in</span></samp> to the variable
<code>lang_checks</code>.
<dl>
<dt><code>all.cross</code><dt><code>start.encap</code><dt><code>rest.encap</code><dd>FIXME: exactly what goes in each of these targets?
<br><dt><code>tags</code><dd>Build an <samp><span class="command">etags</span></samp> <samp><span class="file">TAGS</span></samp> file in the language subdirectory
in the source tree.
<br><dt><code>info</code><dd>Build info documentation for the front end, in the build directory.
This target is only called by ‘<samp><span class="samp">make bootstrap</span></samp>’ if a suitable
version of <samp><span class="command">makeinfo</span></samp> is available, so does not need to check
for this, and should fail if an error occurs.
<br><dt><code>dvi</code><dd>Build DVI documentation for the front end, in the build directory.
This should be done using <code>$(TEXI2DVI)</code>, with appropriate
<samp><span class="option">-I</span></samp> arguments pointing to directories of included files.
<br><dt><code>pdf</code><dd>Build PDF documentation for the front end, in the build directory.
This should be done using <code>$(TEXI2PDF)</code>, with appropriate
<samp><span class="option">-I</span></samp> arguments pointing to directories of included files.
<br><dt><code>html</code><dd>Build HTML documentation for the front end, in the build directory.
<br><dt><code>man</code><dd>Build generated man pages for the front end from Texinfo manuals
(see <a href="#Man-Page-Generation">Man Page Generation</a>), in the build directory. This target
is only called if the necessary tools are available, but should ignore
errors so as not to stop the build if errors occur; man pages are
optional and the tools involved may be installed in a broken way.
<br><dt><code>install-common</code><dd>Install everything that is part of the front end, apart from the
compiler executables listed in <code>compilers</code> in
<samp><span class="file">config-lang.in</span></samp>.
<br><dt><code>install-info</code><dd>Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info files
that should be installed.
<br><dt><code>install-man</code><dd>Install man pages for the front end. This target should ignore
errors.
<br><dt><code>install-plugin</code><dd>Install headers needed for plugins.
<br><dt><code>srcextra</code><dd>Copies its dependencies into the source directory. This generally should
be used for generated files such as Bison output files which are not
version-controlled, but should be included in any release tarballs. This
target will be executed during a bootstrap if
‘<samp><span class="samp">--enable-generated-files-in-srcdir</span></samp>’ was specified as a
<samp><span class="file">configure</span></samp> option.
<br><dt><code>srcinfo</code><dt><code>srcman</code><dd>Copies its dependencies into the source directory. These targets will be
executed during a bootstrap if ‘<samp><span class="samp">--enable-generated-files-in-srcdir</span></samp>’
was specified as a <samp><span class="file">configure</span></samp> option.
<br><dt><code>uninstall</code><dd>Uninstall files installed by installing the compiler. This is
currently documented not to be supported, so the hook need not do
anything.
<br><dt><code>mostlyclean</code><dt><code>clean</code><dt><code>distclean</code><dt><code>maintainer-clean</code><dd>The language parts of the standard GNU
‘<samp><span class="samp">*clean</span></samp>’ targets. See <a href="standards.html#Standard-Targets">Standard Targets for Users</a>, for details of the standard
targets. For GCC, <code>maintainer-clean</code> should delete
all generated files in the source directory that are not version-controlled,
but should not delete anything that is.
</dl>
<p><samp><span class="file">Make-lang.in</span></samp> must also define a variable <var>lang</var><code>_OBJS</code>
to a list of host object files that are used by that language.
<div class="node">
<a name="Back-End"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Front-End">Front End</a>,
Up: <a rel="up" accesskey="u" href="#gcc-Directory">gcc Directory</a>
</div>
<h4 class="subsection">6.3.9 Anatomy of a Target Back End</h4>
<p>A back end for a target architecture in GCC has the following parts:
<ul>
<li>A directory <samp><var>machine</var></samp> under <samp><span class="file">gcc/config</span></samp>, containing a
machine description <samp><var>machine</var><span class="file">.md</span></samp> file (see <a href="#Machine-Desc">Machine Descriptions</a>), header files <samp><var>machine</var><span class="file">.h</span></samp> and
<samp><var>machine</var><span class="file">-protos.h</span></samp> and a source file <samp><var>machine</var><span class="file">.c</span></samp>
(see <a href="#Target-Macros">Target Description Macros and Functions</a>),
possibly a target Makefile fragment <samp><span class="file">t-</span><var>machine</var></samp>
(see <a href="#Target-Fragment">The Target Makefile Fragment</a>), and maybe
some other files. The names of these files may be changed from the
defaults given by explicit specifications in <samp><span class="file">config.gcc</span></samp>.
<li>If necessary, a file <samp><var>machine</var><span class="file">-modes.def</span></samp> in the
<samp><var>machine</var></samp> directory, containing additional machine modes to
represent condition codes. See <a href="#Condition-Code">Condition Code</a>, for further details.
<li>An optional <samp><var>machine</var><span class="file">.opt</span></samp> file in the <samp><var>machine</var></samp>
directory, containing a list of target-specific options. You can also
add other option files using the <code>extra_options</code> variable in
<samp><span class="file">config.gcc</span></samp>. See <a href="#Options">Options</a>.
<li>Entries in <samp><span class="file">config.gcc</span></samp> (see <a href="#System-Config">The <samp><span class="file">config.gcc</span></samp> File</a>) for the systems with this target
architecture.
<li>Documentation in <samp><span class="file">gcc/doc/invoke.texi</span></samp> for any command-line
options supported by this target (see <a href="#Run_002dtime-Target">Run-time Target Specification</a>). This means both entries in the summary table
of options and details of the individual options.
<li>Documentation in <samp><span class="file">gcc/doc/extend.texi</span></samp> for any target-specific
attributes supported (see <a href="#Target-Attributes">Defining target-specific uses of <code>__attribute__</code></a>), including where the
same attribute is already supported on some targets, which are
enumerated in the manual.
<li>Documentation in <samp><span class="file">gcc/doc/extend.texi</span></samp> for any target-specific
pragmas supported.
<li>Documentation in <samp><span class="file">gcc/doc/extend.texi</span></samp> of any target-specific
built-in functions supported.
<li>Documentation in <samp><span class="file">gcc/doc/extend.texi</span></samp> of any target-specific
format checking styles supported.
<li>Documentation in <samp><span class="file">gcc/doc/md.texi</span></samp> of any target-specific
constraint letters (see <a href="#Machine-Constraints">Constraints for Particular Machines</a>).
<li>A note in <samp><span class="file">gcc/doc/contrib.texi</span></samp> under the person or people who
contributed the target support.
<li>Entries in <samp><span class="file">gcc/doc/install.texi</span></samp> for all target triplets
supported with this target architecture, giving details of any special
notes about installation for this target, or saying that there are no
special notes if there are none.
<li>Possibly other support outside the <samp><span class="file">gcc</span></samp> directory for runtime
libraries. FIXME: reference docs for this. The <code>libstdc++</code> porting
manual needs to be installed as info for this to work, or to be a
chapter of this manual.
</ul>
<p>If the back end is added to the official GCC source repository, the
following are also necessary:
<ul>
<li>An entry for the target architecture in <samp><span class="file">readings.html</span></samp> on the
GCC web site, with any relevant links.
<li>Details of the properties of the back end and target architecture in
<samp><span class="file">backends.html</span></samp> on the GCC web site.
<li>A news item about the contribution of support for that target
architecture, in <samp><span class="file">index.html</span></samp> on the GCC web site.
<li>Normally, one or more maintainers of that target listed in
<samp><span class="file">MAINTAINERS</span></samp>. Some existing architectures may be unmaintained,
but it would be unusual to add support for a target that does not have
a maintainer when support is added.
</ul>
<div class="node">
<a name="Testsuites"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Options">Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Source-Tree">Source Tree</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">7 Testsuites</h2>
<p>GCC contains several testsuites to help maintain compiler quality.
Most of the runtime libraries and language front ends in GCC have
testsuites. Currently only the C language testsuites are documented
here; FIXME: document the others.
<ul class="menu">
<li><a accesskey="1" href="#Test-Idioms">Test Idioms</a>: Idioms used in testsuite code.
<li><a accesskey="2" href="#Test-Directives">Test Directives</a>: Directives used within DejaGnu tests.
<li><a accesskey="3" href="#Ada-Tests">Ada Tests</a>: The Ada language testsuites.
<li><a accesskey="4" href="#C-Tests">C Tests</a>: The C language testsuites.
<li><a accesskey="5" href="#libgcj-Tests">libgcj Tests</a>: The Java library testsuites.
<li><a accesskey="6" href="#LTO-Testing">LTO Testing</a>: Support for testing link-time optimizations.
<li><a accesskey="7" href="#gcov-Testing">gcov Testing</a>: Support for testing gcov.
<li><a accesskey="8" href="#profopt-Testing">profopt Testing</a>: Support for testing profile-directed optimizations.
<li><a accesskey="9" href="#compat-Testing">compat Testing</a>: Support for testing binary compatibility.
<li><a href="#Torture-Tests">Torture Tests</a>: Support for torture testing using multiple options.
</ul>
<div class="node">
<a name="Test-Idioms"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Test-Directives">Test Directives</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.1 Idioms Used in Testsuite Code</h3>
<p>In general, C testcases have a trailing <samp><span class="file">-</span><var>n</var><span class="file">.c</span></samp>, starting
with <samp><span class="file">-1.c</span></samp>, in case other testcases with similar names are added
later. If the test is a test of some well-defined feature, it should
have a name referring to that feature such as
<samp><var>feature</var><span class="file">-1.c</span></samp>. If it does not test a well-defined feature
but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database,
<samp><span class="file">pr</span><var>bug-number</var><span class="file">-1.c</span></samp> is the appropriate form of name.
Otherwise (for miscellaneous bugs not filed in the GCC bug database),
and previously more generally, test cases are named after the date on
which they were added. This allows people to tell at a glance whether
a test failure is because of a recently found bug that has not yet
been fixed, or whether it may be a regression, but does not give any
other information about the bug or where discussion of it may be
found. Some other language testsuites follow similar conventions.
<p>In the <samp><span class="file">gcc.dg</span></samp> testsuite, it is often necessary to test that an
error is indeed a hard error and not just a warning—for example,
where it is a constraint violation in the C standard, which must
become an error with <samp><span class="option">-pedantic-errors</span></samp>. The following idiom,
where the first line shown is line <var>line</var> of the file and the line
that generates the error, is used for this:
<pre class="smallexample"> /* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "<var>regexp</var>" "<var>message</var>" { target *-*-* } <var>line</var> } */
</pre>
<p>It may be necessary to check that an expression is an integer constant
expression and has a certain value. To check that <var>E</var> has
value <var>V</var>, an idiom similar to the following is used:
<pre class="smallexample"> char x[((E) == (V) ? 1 : -1)];
</pre>
<p>In <samp><span class="file">gcc.dg</span></samp> tests, <code>__typeof__</code> is sometimes used to make
assertions about the types of expressions. See, for example,
<samp><span class="file">gcc.dg/c99-condexpr-1.c</span></samp>. The more subtle uses depend on the
exact rules for the types of conditional expressions in the C
standard; see, for example, <samp><span class="file">gcc.dg/c99-intconst-1.c</span></samp>.
<p>It is useful to be able to test that optimizations are being made
properly. This cannot be done in all cases, but it can be done where
the optimization will lead to code being optimized away (for example,
where flow analysis or alias analysis should show that certain code
cannot be called) or to functions not being called because they have
been expanded as built-in functions. Such tests go in
<samp><span class="file">gcc.c-torture/execute</span></samp>. Where code should be optimized away, a
call to a nonexistent function such as <code>link_failure ()</code> may be
inserted; a definition
<pre class="smallexample"> #ifndef __OPTIMIZE__
void
link_failure (void)
{
abort ();
}
#endif
</pre>
<p class="noindent">will also be needed so that linking still succeeds when the test is
run without optimization. When all calls to a built-in function
should have been optimized and no calls to the non-built-in version of
the function should remain, that function may be defined as
<code>static</code> to call <code>abort ()</code> (although redeclaring a function
as static may not work on all targets).
<p>All testcases must be portable. Target-specific testcases must have
appropriate code to avoid causing failures on unsupported systems;
unfortunately, the mechanisms for this differ by directory.
<p>FIXME: discuss non-C testsuites here.
<div class="node">
<a name="Test-Directives"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Ada-Tests">Ada Tests</a>,
Previous: <a rel="previous" accesskey="p" href="#Test-Idioms">Test Idioms</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.2 Directives used within DejaGnu tests</h3>
<ul class="menu">
<li><a accesskey="1" href="#Directives">Directives</a>: Syntax and descriptions of test directives.
<li><a accesskey="2" href="#Selectors">Selectors</a>: Selecting targets to which a test applies.
<li><a accesskey="3" href="#Effective_002dTarget-Keywords">Effective-Target Keywords</a>: Keywords describing target attributes.
<li><a accesskey="4" href="#Add-Options">Add Options</a>: Features for <code>dg-add-options</code>
<li><a accesskey="5" href="#Require-Support">Require Support</a>: Variants of <code>dg-require-</code><var>support</var>
<li><a accesskey="6" href="#Final-Actions">Final Actions</a>: Commands for use in <code>dg-final</code>
</ul>
<div class="node">
<a name="Directives"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Selectors">Selectors</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.1 Syntax and Descriptions of test directives</h4>
<p>Test directives appear within comments in a test source file and begin
with <code>dg-</code>. Some of these are defined within DejaGnu and others
are local to the GCC testsuite.
<p>The order in which test directives appear in a test can be important:
directives local to GCC sometimes override information used by the
DejaGnu directives, which know nothing about the GCC directives, so the
DejaGnu directives must precede GCC directives.
<p>Several test directives include selectors (see <a href="#Selectors">Selectors</a>)
which are usually preceded by the keyword <code>target</code> or <code>xfail</code>.
<h5 class="subsubsection">7.2.1.1 Specify how to build the test</h5>
<dl>
<dt><code>{ dg-do </code><var>do-what-keyword</var><code> [{ target/xfail </code><var>selector</var><code> }] }</code><dd><var>do-what-keyword</var> specifies how the test is compiled and whether
it is executed. It is one of:
<dl>
<dt><code>preprocess</code><dd>Compile with <samp><span class="option">-E</span></samp> to run only the preprocessor.
<br><dt><code>compile</code><dd>Compile with <samp><span class="option">-S</span></samp> to produce an assembly code file.
<br><dt><code>assemble</code><dd>Compile with <samp><span class="option">-c</span></samp> to produce a relocatable object file.
<br><dt><code>link</code><dd>Compile, assemble, and link to produce an executable file.
<br><dt><code>run</code><dd>Produce and run an executable file, which is expected to return
an exit code of 0.
</dl>
<p>The default is <code>compile</code>. That can be overridden for a set of
tests by redefining <code>dg-do-what-default</code> within the <code>.exp</code>
file for those tests.
<p>If the directive includes the optional ‘<samp><span class="samp">{ target </span><var>selector</var><span class="samp"> }</span></samp>’
then the test is skipped unless the target system matches the
<var>selector</var>.
<p>If <var>do-what-keyword</var> is <code>run</code> and the directive includes
the optional ‘<samp><span class="samp">{ xfail </span><var>selector</var><span class="samp"> }</span></samp>’ and the selector is met
then the test is expected to fail. The <code>xfail</code> clause is ignored
for other values of <var>do-what-keyword</var>; those tests can use
directive <code>dg-xfail-if</code>.
</dl>
<h5 class="subsubsection">7.2.1.2 Specify additional compiler options</h5>
<dl>
<dt><code>{ dg-options </code><var>options</var><code> [{ target </code><var>selector</var><code> }] }</code><dd>This DejaGnu directive provides a list of compiler options, to be used
if the target system matches <var>selector</var>, that replace the default
options used for this set of tests.
<br><dt><code>{ dg-add-options </code><var>feature</var><code> ... }</code><dd>Add any compiler options that are needed to access certain features.
This directive does nothing on targets that enable the features by
default, or that don't provide them at all. It must come after
all <code>dg-options</code> directives.
For supported values of <var>feature</var> see <a href="#Add-Options">Add Options</a>.
</dl>
<h5 class="subsubsection">7.2.1.3 Modify the test timeout value</h5>
<p>The normal timeout limit, in seconds, is found by searching the
following in order:
<ul>
<li>the value defined by an earlier <code>dg-timeout</code> directive in
the test
<li>variable <var>tool_timeout</var> defined by the set of tests
<li><var>gcc</var>,<var>timeout</var> set in the target board
<li>300
</ul>
<dl>
<dt><code>{ dg-timeout </code><var>n</var><code> [{target </code><var>selector</var><code> }] }</code><dd>Set the time limit for the compilation and for the execution of the test
to the specified number of seconds.
<br><dt><code>{ dg-timeout-factor </code><var>x</var><code> [{ target </code><var>selector</var><code> }] }</code><dd>Multiply the normal time limit for compilation and execution of the test
by the specified floating-point factor.
</dl>
<h5 class="subsubsection">7.2.1.4 Skip a test for some targets</h5>
<dl>
<dt><code>{ dg-skip-if </code><var>comment</var><code> { </code><var>selector</var><code> } [{ </code><var>include-opts</var><code> } [{ </code><var>exclude-opts</var><code> }]] }</code><dd>Arguments <var>include-opts</var> and <var>exclude-opts</var> are lists in which
each element is a string of zero or more GCC options.
Skip the test if all of the following conditions are met:
<ul>
<li>the test system is included in <var>selector</var>
<li>for at least one of the option strings in <var>include-opts</var>,
every option from that string is in the set of options with which
the test would be compiled; use ‘<samp><span class="samp">"*"</span></samp>’ for an <var>include-opts</var> list
that matches any options; that is the default if <var>include-opts</var> is
not specified
<li>for each of the option strings in <var>exclude-opts</var>, at least one
option from that string is not in the set of options with which the test
would be compiled; use ‘<samp><span class="samp">""</span></samp>’ for an empty <var>exclude-opts</var> list;
that is the default if <var>exclude-opts</var> is not specified
</ul>
<p>For example, to skip a test if option <code>-Os</code> is present:
<pre class="smallexample"> /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */
</pre>
<p>To skip a test if both options <code>-O2</code> and <code>-g</code> are present:
<pre class="smallexample"> /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */
</pre>
<p>To skip a test if either <code>-O2</code> or <code>-O3</code> is present:
<pre class="smallexample"> /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */
</pre>
<p>To skip a test unless option <code>-Os</code> is present:
<pre class="smallexample"> /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */
</pre>
<p>To skip a test if either <code>-O2</code> or <code>-O3</code> is used with <code>-g</code>
but not if <code>-fpic</code> is also present:
<pre class="smallexample"> /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */
</pre>
<br><dt><code>{ dg-require-effective-target </code><var>keyword</var><code> [{ </code><var>selector</var><code> }] }</code><dd>Skip the test if the test target, including current multilib flags,
is not covered by the effective-target keyword.
If the directive includes the optional ‘<samp><span class="samp">{ </span><var>selector</var><span class="samp"> }</span></samp>’
then the effective-target test is only performed if the target system
matches the <var>selector</var>.
This directive must appear after any <code>dg-do</code> directive in the test
and before any <code>dg-additional-sources</code> directive.
See <a href="#Effective_002dTarget-Keywords">Effective-Target Keywords</a>.
<br><dt><code>{ dg-require-</code><var>support</var><code> args }</code><dd>Skip the test if the target does not provide the required support.
These directives must appear after any <code>dg-do</code> directive in the test
and before any <code>dg-additional-sources</code> directive.
They require at least one argument, which can be an empty string if the
specific procedure does not examine the argument.
See <a href="#Require-Support">Require Support</a>, for a complete list of these directives.
</dl>
<h5 class="subsubsection">7.2.1.5 Expect a test to fail for some targets</h5>
<dl>
<dt><code>{ dg-xfail-if </code><var>comment</var><code> { </code><var>selector</var><code> } [{ </code><var>include-opts</var><code> } [{ </code><var>exclude-opts</var><code> }]] }</code><dd>Expect the test to fail if the conditions (which are the same as for
<code>dg-skip-if</code>) are met. This does not affect the execute step.
<br><dt><code>{ dg-xfail-run-if </code><var>comment</var><code> { </code><var>selector</var><code> } [{ </code><var>include-opts</var><code> } [{ </code><var>exclude-opts</var><code> }]] }</code><dd>Expect the execute step of a test to fail if the conditions (which are
the same as for <code>dg-skip-if</code>) are met.
</dl>
<h5 class="subsubsection">7.2.1.6 Expect the test executable to fail</h5>
<dl>
<dt><code>{ dg-shouldfail </code><var>comment</var><code> [{ </code><var>selector</var><code> } [{ </code><var>include-opts</var><code> } [{ </code><var>exclude-opts</var><code> }]]] }</code><dd>Expect the test executable to return a nonzero exit status if the
conditions (which are the same as for <code>dg-skip-if</code>) are met.
</dl>
<h5 class="subsubsection">7.2.1.7 Verify compiler messages</h5>
<dl>
<dt><code>{ dg-error </code><var>regexp</var><code> [</code><var>comment</var><code> [{ target/xfail </code><var>selector</var><code> } [</code><var>line</var><code>] }]] }</code><dd>This DejaGnu directive appears on a source line that is expected to get
an error message, or else specifies the source line associated with the
message. If there is no message for that line or if the text of that
message is not matched by <var>regexp</var> then the check fails and
<var>comment</var> is included in the <code>FAIL</code> message. The check does
not look for the string ‘<samp><span class="samp">error</span></samp>’ unless it is part of <var>regexp</var>.
<br><dt><code>{ dg-warning </code><var>regexp</var><code> [</code><var>comment</var><code> [{ target/xfail </code><var>selector</var><code> } [</code><var>line</var><code>] }]] }</code><dd>This DejaGnu directive appears on a source line that is expected to get
a warning message, or else specifies the source line associated with the
message. If there is no message for that line or if the text of that
message is not matched by <var>regexp</var> then the check fails and
<var>comment</var> is included in the <code>FAIL</code> message. The check does
not look for the string ‘<samp><span class="samp">warning</span></samp>’ unless it is part of <var>regexp</var>.
<br><dt><code>{ dg-message </code><var>regexp</var><code> [</code><var>comment</var><code> [{ target/xfail </code><var>selector</var><code> } [</code><var>line</var><code>] }]] }</code><dd>The line is expected to get a message other than an error or warning.
If there is no message for that line or if the text of that message is
not matched by <var>regexp</var> then the check fails and <var>comment</var> is
included in the <code>FAIL</code> message.
<br><dt><code>{ dg-bogus </code><var>regexp</var><code> [</code><var>comment</var><code> [{ target/xfail </code><var>selector</var><code> } [</code><var>line</var><code>] }]] }</code><dd>This DejaGnu directive appears on a source line that should not get a
message matching <var>regexp</var>, or else specifies the source line
associated with the bogus message. It is usually used with ‘<samp><span class="samp">xfail</span></samp>’
to indicate that the message is a known problem for a particular set of
targets.
<br><dt><code>{ dg-excess-errors </code><var>comment</var><code> [{ target/xfail </code><var>selector</var><code> }] }</code><dd>This DejaGnu directive indicates that the test is expected to fail due
to compiler messages that are not handled by ‘<samp><span class="samp">dg-error</span></samp>’,
‘<samp><span class="samp">dg-warning</span></samp>’ or ‘<samp><span class="samp">dg-bogus</span></samp>’. For this directive ‘<samp><span class="samp">xfail</span></samp>’
has the same effect as ‘<samp><span class="samp">target</span></samp>’.
<br><dt><code>{ dg-prune-output </code><var>regexp</var><code> }</code><dd>Prune messages matching <var>regexp</var> from the test output.
</dl>
<h5 class="subsubsection">7.2.1.8 Verify output of the test executable</h5>
<dl>
<dt><code>{ dg-output </code><var>regexp</var><code> [{ target/xfail </code><var>selector</var><code> }] }</code><dd>This DejaGnu directive compares <var>regexp</var> to the combined output
that the test executable writes to <samp><span class="file">stdout</span></samp> and <samp><span class="file">stderr</span></samp>.
</dl>
<h5 class="subsubsection">7.2.1.9 Specify additional files for a test</h5>
<dl>
<dt><code>{ dg-additional-files "</code><var>filelist</var><code>" }</code><dd>Specify additional files, other than source files, that must be copied
to the system where the compiler runs.
<br><dt><code>{ dg-additional-sources "</code><var>filelist</var><code>" }</code><dd>Specify additional source files to appear in the compile line
following the main test file.
</dl>
<h5 class="subsubsection">7.2.1.10 Add checks at the end of a test</h5>
<dl>
<dt><code>{ dg-final { </code><var>local-directive</var><code> } }</code><dd>This DejaGnu directive is placed within a comment anywhere in the
source file and is processed after the test has been compiled and run.
Multiple ‘<samp><span class="samp">dg-final</span></samp>’ commands are processed in the order in which
they appear in the source file. See <a href="#Final-Actions">Final Actions</a>, for a list
of directives that can be used within <code>dg-final</code>.
</dl>
<div class="node">
<a name="Selectors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Effective_002dTarget-Keywords">Effective-Target Keywords</a>,
Previous: <a rel="previous" accesskey="p" href="#Directives">Directives</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.2 Selecting targets to which a test applies</h4>
<p>Several test directives include <var>selector</var>s to limit the targets
for which a test is run or to declare that a test is expected to fail
on particular targets.
<p>A selector is:
<ul>
<li>one or more target triplets, possibly including wildcard characters
<li>a single effective-target keyword (see <a href="#Effective_002dTarget-Keywords">Effective-Target Keywords</a>)
<li>a logical expression
</ul>
<p>Depending on the
context, the selector specifies whether a test is skipped and reported
as unsupported or is expected to fail. Use ‘<samp><span class="samp">*-*-*</span></samp>’ to match any
target.
<p>A selector expression appears within curly braces and uses a single
logical operator: one of ‘<samp><span class="samp">!</span></samp>’, ‘<samp><span class="samp">&&</span></samp>’, or ‘<samp><span class="samp">||</span></samp>’. An
operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or
curly braces. For example:
<pre class="smallexample"> { target { ! "hppa*-*-* ia64*-*-*" } }
{ target { powerpc*-*-* && lp64 } }
{ xfail { lp64 || vect_no_align } }
</pre>
<div class="node">
<a name="Effective-Target-Keywords"></a>
<a name="Effective_002dTarget-Keywords"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Add-Options">Add Options</a>,
Previous: <a rel="previous" accesskey="p" href="#Selectors">Selectors</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.3 Keywords describing target attributes</h4>
<p>Effective-target keywords identify sets of targets that support
particular functionality. They are used to limit tests to be run only
for particular targets, or to specify that particular sets of targets
are expected to fail some tests.
<p>Effective-target keywords are defined in <samp><span class="file">lib/target-supports.exp</span></samp> in
the GCC testsuite, with the exception of those that are documented as
being local to a particular test directory.
<p>The ‘<samp><span class="samp">effective target</span></samp>’ takes into account all of the compiler options
with which the test will be compiled, including the multilib options.
By convention, keywords ending in <code>_nocache</code> can also include options
specified for the particular test in an earlier <code>dg-options</code> or
<code>dg-add-options</code> directive.
<h5 class="subsubsection">7.2.3.1 Data type sizes</h5>
<dl>
<dt><code>ilp32</code><dd>Target has 32-bit <code>int</code>, <code>long</code>, and pointers.
<br><dt><code>lp64</code><dd>Target has 32-bit <code>int</code>, 64-bit <code>long</code> and pointers.
<br><dt><code>llp64</code><dd>Target has 32-bit <code>int</code> and <code>long</code>, 64-bit <code>long long</code>
and pointers.
<br><dt><code>double64</code><dd>Target has 64-bit <code>double</code>.
<br><dt><code>double64plus</code><dd>Target has <code>double</code> that is 64 bits or longer.
<br><dt><code>int32plus</code><dd>Target has <code>int</code> that is at 32 bits or longer.
<br><dt><code>int16</code><dd>Target has <code>int</code> that is 16 bits or shorter.
<br><dt><code>large_double</code><dd>Target supports <code>double</code> that is longer than <code>float</code>.
<br><dt><code>large_long_double</code><dd>Target supports <code>long double</code> that is longer than <code>double</code>.
<br><dt><code>ptr32plus</code><dd>Target has pointers that are 32 bits or longer.
<br><dt><code>size32plus</code><dd>Target supports array and structure sizes that are 32 bits or longer.
<br><dt><code>4byte_wchar_t</code><dd>Target has <code>wchar_t</code> that is at least 4 bytes.
</dl>
<h5 class="subsubsection">7.2.3.2 Fortran-specific attributes</h5>
<dl>
<dt><code>fortran_integer_16</code><dd>Target supports Fortran <code>integer</code> that is 16 bytes or longer.
<br><dt><code>fortran_large_int</code><dd>Target supports Fortran <code>integer</code> kinds larger than <code>integer(8)</code>.
<br><dt><code>fortran_large_real</code><dd>Target supports Fortran <code>real</code> kinds larger than <code>real(8)</code>.
</dl>
<h5 class="subsubsection">7.2.3.3 Vector-specific attributes</h5>
<dl>
<dt><code>vect_condition</code><dd>Target supports vector conditional operations.
<br><dt><code>vect_double</code><dd>Target supports hardware vectors of <code>double</code>.
<br><dt><code>vect_float</code><dd>Target supports hardware vectors of <code>float</code>.
<br><dt><code>vect_int</code><dd>Target supports hardware vectors of <code>int</code>.
<br><dt><code>vect_long</code><dd>Target supports hardware vectors of <code>long</code>.
<br><dt><code>vect_long_long</code><dd>Target supports hardware vectors of <code>long long</code>.
<br><dt><code>vect_aligned_arrays</code><dd>Target aligns arrays to vector alignment boundary.
<br><dt><code>vect_hw_misalign</code><dd>Target supports a vector misalign access.
<br><dt><code>vect_no_align</code><dd>Target does not support a vector alignment mechanism.
<br><dt><code>vect_no_int_max</code><dd>Target does not support a vector max instruction on <code>int</code>.
<br><dt><code>vect_no_int_add</code><dd>Target does not support a vector add instruction on <code>int</code>.
<br><dt><code>vect_no_bitwise</code><dd>Target does not support vector bitwise instructions.
<br><dt><code>vect_char_mult</code><dd>Target supports <code>vector char</code> multiplication.
<br><dt><code>vect_short_mult</code><dd>Target supports <code>vector short</code> multiplication.
<br><dt><code>vect_int_mult</code><dd>Target supports <code>vector int</code> multiplication.
<br><dt><code>vect_extract_even_odd</code><dd>Target supports vector even/odd element extraction.
<br><dt><code>vect_extract_even_odd_wide</code><dd>Target supports vector even/odd element extraction of vectors with elements
<code>SImode</code> or larger.
<br><dt><code>vect_interleave</code><dd>Target supports vector interleaving.
<br><dt><code>vect_strided</code><dd>Target supports vector interleaving and extract even/odd.
<br><dt><code>vect_strided_wide</code><dd>Target supports vector interleaving and extract even/odd for wide
element types.
<br><dt><code>vect_perm</code><dd>Target supports vector permutation.
<br><dt><code>vect_shift</code><dd>Target supports a hardware vector shift operation.
<br><dt><code>vect_widen_sum_hi_to_si</code><dd>Target supports a vector widening summation of <code>short</code> operands
into <code>int</code> results, or can promote (unpack) from <code>short</code>
to <code>int</code>.
<br><dt><code>vect_widen_sum_qi_to_hi</code><dd>Target supports a vector widening summation of <code>char</code> operands
into <code>short</code> results, or can promote (unpack) from <code>char</code>
to <code>short</code>.
<br><dt><code>vect_widen_sum_qi_to_si</code><dd>Target supports a vector widening summation of <code>char</code> operands
into <code>int</code> results.
<br><dt><code>vect_widen_mult_qi_to_hi</code><dd>Target supports a vector widening multiplication of <code>char</code> operands
into <code>short</code> results, or can promote (unpack) from <code>char</code> to
<code>short</code> and perform non-widening multiplication of <code>short</code>.
<br><dt><code>vect_widen_mult_hi_to_si</code><dd>Target supports a vector widening multiplication of <code>short</code> operands
into <code>int</code> results, or can promote (unpack) from <code>short</code> to
<code>int</code> and perform non-widening multiplication of <code>int</code>.
<br><dt><code>vect_sdot_qi</code><dd>Target supports a vector dot-product of <code>signed char</code>.
<br><dt><code>vect_udot_qi</code><dd>Target supports a vector dot-product of <code>unsigned char</code>.
<br><dt><code>vect_sdot_hi</code><dd>Target supports a vector dot-product of <code>signed short</code>.
<br><dt><code>vect_udot_hi</code><dd>Target supports a vector dot-product of <code>unsigned short</code>.
<br><dt><code>vect_pack_trunc</code><dd>Target supports a vector demotion (packing) of <code>short</code> to <code>char</code>
and from <code>int</code> to <code>short</code> using modulo arithmetic.
<br><dt><code>vect_unpack</code><dd>Target supports a vector promotion (unpacking) of <code>char</code> to <code>short</code>
and from <code>char</code> to <code>int</code>.
<br><dt><code>vect_intfloat_cvt</code><dd>Target supports conversion from <code>signed int</code> to <code>float</code>.
<br><dt><code>vect_uintfloat_cvt</code><dd>Target supports conversion from <code>unsigned int</code> to <code>float</code>.
<br><dt><code>vect_floatint_cvt</code><dd>Target supports conversion from <code>float</code> to <code>signed int</code>.
<br><dt><code>vect_floatuint_cvt</code><dd>Target supports conversion from <code>float</code> to <code>unsigned int</code>.
</dl>
<h5 class="subsubsection">7.2.3.4 Thread Local Storage attributes</h5>
<dl>
<dt><code>tls</code><dd>Target supports thread-local storage.
<br><dt><code>tls_native</code><dd>Target supports native (rather than emulated) thread-local storage.
<br><dt><code>tls_runtime</code><dd>Test system supports executing TLS executables.
</dl>
<h5 class="subsubsection">7.2.3.5 Decimal floating point attributes</h5>
<dl>
<dt><code>dfp</code><dd>Targets supports compiling decimal floating point extension to C.
<br><dt><code>dfp_nocache</code><dd>Including the options used to compile this particular test, the
target supports compiling decimal floating point extension to C.
<br><dt><code>dfprt</code><dd>Test system can execute decimal floating point tests.
<br><dt><code>dfprt_nocache</code><dd>Including the options used to compile this particular test, the
test system can execute decimal floating point tests.
<br><dt><code>hard_dfp</code><dd>Target generates decimal floating point instructions with current options.
</dl>
<h5 class="subsubsection">7.2.3.6 ARM-specific attributes</h5>
<dl>
<dt><code>arm32</code><dd>ARM target generates 32-bit code.
<br><dt><code>arm_eabi</code><dd>ARM target adheres to the ABI for the ARM Architecture.
<br><dt><code>arm_hard_vfp_ok</code><dd>ARM target supports <code>-mfpu=vfp -mfloat-abi=hard</code>.
Some multilibs may be incompatible with these options.
<br><dt><code>arm_iwmmxt_ok</code><dd>ARM target supports <code>-mcpu=iwmmxt</code>.
Some multilibs may be incompatible with this option.
<br><dt><code>arm_neon</code><dd>ARM target supports generating NEON instructions.
<br><dt><code>arm_neon_hw</code><dd>Test system supports executing NEON instructions.
<br><dt><code>arm_neon_ok</code><dd><a name="arm_005fneon_005fok"></a>ARM Target supports <code>-mfpu=neon -mfloat-abi=softfp</code> or compatible
options. Some multilibs may be incompatible with these options.
<br><dt><code>arm_neon_fp16_ok</code><dd><a name="arm_005fneon_005ffp16_005fok"></a>ARM Target supports <code>-mfpu=neon-fp16 -mfloat-abi=softfp</code> or compatible
options. Some multilibs may be incompatible with these options.
<br><dt><code>arm_thumb1_ok</code><dd>ARM target generates Thumb-1 code for <code>-mthumb</code>.
<br><dt><code>arm_thumb2_ok</code><dd>ARM target generates Thumb-2 code for <code>-mthumb</code>.
<br><dt><code>arm_vfp_ok</code><dd>ARM target supports <code>-mfpu=vfp -mfloat-abi=softfp</code>.
Some multilibs may be incompatible with these options.
</dl>
<h5 class="subsubsection">7.2.3.7 MIPS-specific attributes</h5>
<dl>
<dt><code>mips64</code><dd>MIPS target supports 64-bit instructions.
<br><dt><code>nomips16</code><dd>MIPS target does not produce MIPS16 code.
<br><dt><code>mips16_attribute</code><dd>MIPS target can generate MIPS16 code.
<br><dt><code>mips_loongson</code><dd>MIPS target is a Loongson-2E or -2F target using an ABI that supports
the Loongson vector modes.
<br><dt><code>mips_newabi_large_long_double</code><dd>MIPS target supports <code>long double</code> larger than <code>double</code>
when using the new ABI.
<br><dt><code>mpaired_single</code><dd>MIPS target supports <code>-mpaired-single</code>.
</dl>
<h5 class="subsubsection">7.2.3.8 PowerPC-specific attributes</h5>
<dl>
<dt><code>powerpc64</code><dd>Test system supports executing 64-bit instructions.
<br><dt><code>powerpc_altivec</code><dd>PowerPC target supports AltiVec.
<br><dt><code>powerpc_altivec_ok</code><dd>PowerPC target supports <code>-maltivec</code>.
<br><dt><code>powerpc_fprs</code><dd>PowerPC target supports floating-point registers.
<br><dt><code>powerpc_hard_double</code><dd>PowerPC target supports hardware double-precision floating-point.
<br><dt><code>powerpc_ppu_ok</code><dd>PowerPC target supports <code>-mcpu=cell</code>.
<br><dt><code>powerpc_spe</code><dd>PowerPC target supports PowerPC SPE.
<br><dt><code>powerpc_spe_nocache</code><dd>Including the options used to compile this particular test, the
PowerPC target supports PowerPC SPE.
<br><dt><code>powerpc_spu</code><dd>PowerPC target supports PowerPC SPU.
<br><dt><code>spu_auto_overlay</code><dd>SPU target has toolchain that supports automatic overlay generation.
<br><dt><code>powerpc_vsx_ok</code><dd>PowerPC target supports <code>-mvsx</code>.
<br><dt><code>powerpc_405_nocache</code><dd>Including the options used to compile this particular test, the
PowerPC target supports PowerPC 405.
<br><dt><code>vmx_hw</code><dd>PowerPC target supports executing AltiVec instructions.
</dl>
<h5 class="subsubsection">7.2.3.9 Other hardware attributes</h5>
<dl>
<dt><code>avx</code><dd>Target supports compiling <code>avx</code> instructions.
<br><dt><code>avx_runtime</code><dd>Target supports the execution of <code>avx</code> instructions.
<br><dt><code>cell_hw</code><dd>Test system can execute AltiVec and Cell PPU instructions.
<br><dt><code>coldfire_fpu</code><dd>Target uses a ColdFire FPU.
<br><dt><code>hard_float</code><dd>Target supports FPU instructions.
<br><dt><code>sse</code><dd>Target supports compiling <code>sse</code> instructions.
<br><dt><code>sse_runtime</code><dd>Target supports the execution of <code>sse</code> instructions.
<br><dt><code>sse2</code><dd>Target supports compiling <code>sse2</code> instructions.
<br><dt><code>sse2_runtime</code><dd>Target supports the execution of <code>sse2</code> instructions.
<br><dt><code>sync_char_short</code><dd>Target supports atomic operations on <code>char</code> and <code>short</code>.
<br><dt><code>sync_int_long</code><dd>Target supports atomic operations on <code>int</code> and <code>long</code>.
<br><dt><code>ultrasparc_hw</code><dd>Test environment appears to run executables on a simulator that
accepts only <code>EM_SPARC</code> executables and chokes on <code>EM_SPARC32PLUS</code>
or <code>EM_SPARCV9</code> executables.
<br><dt><code>vect_cmdline_needed</code><dd>Target requires a command line argument to enable a SIMD instruction set.
</dl>
<h5 class="subsubsection">7.2.3.10 Environment attributes</h5>
<dl>
<dt><code>c</code><dd>The language for the compiler under test is C.
<br><dt><code>c++</code><dd>The language for the compiler under test is C++.
<br><dt><code>c99_runtime</code><dd>Target provides a full C99 runtime.
<br><dt><code>correct_iso_cpp_string_wchar_protos</code><dd>Target <code>string.h</code> and <code>wchar.h</code> headers provide C++ required
overloads for <code>strchr</code> etc. functions.
<br><dt><code>dummy_wcsftime</code><dd>Target uses a dummy <code>wcsftime</code> function that always returns zero.
<br><dt><code>fd_truncate</code><dd>Target can truncate a file from a file descriptor, as used by
<samp><span class="file">libgfortran/io/unix.c:fd_truncate</span></samp>; i.e. <code>ftruncate</code> or
<code>chsize</code>.
<br><dt><code>freestanding</code><dd>Target is ‘<samp><span class="samp">freestanding</span></samp>’ as defined in section 4 of the C99 standard.
Effectively, it is a target which supports no extra headers or libraries
other than what is considered essential.
<br><dt><code>init_priority</code><dd>Target supports constructors with initialization priority arguments.
<br><dt><code>inttypes_types</code><dd>Target has the basic signed and unsigned types in <code>inttypes.h</code>.
This is for tests that GCC's notions of these types agree with those
in the header, as some systems have only <code>inttypes.h</code>.
<br><dt><code>lax_strtofp</code><dd>Target might have errors of a few ULP in string to floating-point
conversion functions and overflow is not always detected correctly by
those functions.
<br><dt><code>newlib</code><dd>Target supports Newlib.
<br><dt><code>pow10</code><dd>Target provides <code>pow10</code> function.
<br><dt><code>pthread</code><dd>Target can compile using <code>pthread.h</code> with no errors or warnings.
<br><dt><code>pthread_h</code><dd>Target has <code>pthread.h</code>.
<br><dt><code>run_expensive_tests</code><dd>Expensive testcases (usually those that consume excessive amounts of CPU
time) should be run on this target. This can be enabled by setting the
<samp><span class="env">GCC_TEST_RUN_EXPENSIVE</span></samp> environment variable to a non-empty string.
<br><dt><code>simulator</code><dd>Test system runs executables on a simulator (i.e. slowly) rather than
hardware (i.e. fast).
<br><dt><code>stdint_types</code><dd>Target has the basic signed and unsigned C types in <code>stdint.h</code>.
This will be obsolete when GCC ensures a working <code>stdint.h</code> for
all targets.
<br><dt><code>trampolines</code><dd>Target supports trampolines.
<br><dt><code>uclibc</code><dd>Target supports uClibc.
<br><dt><code>unwrapped</code><dd>Target does not use a status wrapper.
<br><dt><code>vxworks_kernel</code><dd>Target is a VxWorks kernel.
<br><dt><code>vxworks_rtp</code><dd>Target is a VxWorks RTP.
<br><dt><code>wchar</code><dd>Target supports wide characters.
</dl>
<h5 class="subsubsection">7.2.3.11 Other attributes</h5>
<dl>
<dt><code>automatic_stack_alignment</code><dd>Target supports automatic stack alignment.
<br><dt><code>cxa_atexit</code><dd>Target uses <code>__cxa_atexit</code>.
<br><dt><code>default_packed</code><dd>Target has packed layout of structure members by default.
<br><dt><code>fgraphite</code><dd>Target supports Graphite optimizations.
<br><dt><code>fixed_point</code><dd>Target supports fixed-point extension to C.
<br><dt><code>fopenmp</code><dd>Target supports OpenMP via <samp><span class="option">-fopenmp</span></samp>.
<br><dt><code>fpic</code><dd>Target supports <samp><span class="option">-fpic</span></samp> and <samp><span class="option">-fPIC</span></samp>.
<br><dt><code>freorder</code><dd>Target supports <samp><span class="option">-freorder-blocks-and-partition</span></samp>.
<br><dt><code>fstack_protector</code><dd>Target supports <samp><span class="option">-fstack-protector</span></samp>.
<br><dt><code>gas</code><dd>Target uses GNU <samp><span class="command">as</span></samp>.
<br><dt><code>gc_sections</code><dd>Target supports <samp><span class="option">--gc-sections</span></samp>.
<br><dt><code>keeps_null_pointer_checks</code><dd>Target keeps null pointer checks, either due to the use of
<samp><span class="option">-fno-delete-null-pointer-checks</span></samp> or hardwired into the target.
<br><dt><code>lto</code><dd>Compiler has been configured to support link-time optimization (LTO).
<br><dt><code>named_sections</code><dd>Target supports named sections.
<br><dt><code>natural_alignment_32</code><dd>Target uses natural alignment (aligned to type size) for types of
32 bits or less.
<br><dt><code>target_natural_alignment_64</code><dd>Target uses natural alignment (aligned to type size) for types of
64 bits or less.
<br><dt><code>nonpic</code><dd>Target does not generate PIC by default.
<br><dt><code>pcc_bitfield_type_matters</code><dd>Target defines <code>PCC_BITFIELD_TYPE_MATTERS</code>.
<br><dt><code>pe_aligned_commons</code><dd>Target supports <samp><span class="option">-mpe-aligned-commons</span></samp>.
<br><dt><code>section_anchors</code><dd>Target supports section anchors.
<br><dt><code>short_enums</code><dd>Target defaults to short enums.
<br><dt><code>static</code><dd>Target supports <samp><span class="option">-static</span></samp>.
<br><dt><code>static_libgfortran</code><dd>Target supports statically linking ‘<samp><span class="samp">libgfortran</span></samp>’.
<br><dt><code>string_merging</code><dd>Target supports merging string constants at link time.
<br><dt><code>ucn</code><dd>Target supports compiling and assembling UCN.
<br><dt><code>ucn_nocache</code><dd>Including the options used to compile this particular test, the
target supports compiling and assembling UCN.
<br><dt><code>unaligned_stack</code><dd>Target does not guarantee that its <code>STACK_BOUNDARY</code> is greater than
or equal to the required vector alignment.
<br><dt><code>vector_alignment_reachable</code><dd>Vector alignment is reachable for types of 32 bits or less.
<br><dt><code>vector_alignment_reachable_for_64bit</code><dd>Vector alignment is reachable for types of 64 bits or less.
<br><dt><code>wchar_t_char16_t_compatible</code><dd>Target supports <code>wchar_t</code> that is compatible with <code>char16_t</code>.
<br><dt><code>wchar_t_char32_t_compatible</code><dd>Target supports <code>wchar_t</code> that is compatible with <code>char32_t</code>.
</dl>
<h5 class="subsubsection">7.2.3.12 Local to tests in <code>gcc.target/i386</code></h5>
<dl>
<dt><code>3dnow</code><dd>Target supports compiling <code>3dnow</code> instructions.
<br><dt><code>aes</code><dd>Target supports compiling <code>aes</code> instructions.
<br><dt><code>fma4</code><dd>Target supports compiling <code>fma4</code> instructions.
<br><dt><code>ms_hook_prologue</code><dd>Target supports attribute <code>ms_hook_prologue</code>.
<br><dt><code>pclmul</code><dd>Target supports compiling <code>pclmul</code> instructions.
<br><dt><code>sse3</code><dd>Target supports compiling <code>sse3</code> instructions.
<br><dt><code>sse4</code><dd>Target supports compiling <code>sse4</code> instructions.
<br><dt><code>sse4a</code><dd>Target supports compiling <code>sse4a</code> instructions.
<br><dt><code>ssse3</code><dd>Target supports compiling <code>ssse3</code> instructions.
<br><dt><code>vaes</code><dd>Target supports compiling <code>vaes</code> instructions.
<br><dt><code>vpclmul</code><dd>Target supports compiling <code>vpclmul</code> instructions.
<br><dt><code>xop</code><dd>Target supports compiling <code>xop</code> instructions.
</dl>
<h5 class="subsubsection">7.2.3.13 Local to tests in <code>gcc.target/spu/ea</code></h5>
<dl>
<dt><code>ealib</code><dd>Target <code>__ea</code> library functions are available.
</dl>
<h5 class="subsubsection">7.2.3.14 Local to tests in <code>gcc.test-framework</code></h5>
<dl>
<dt><code>no</code><dd>Always returns 0.
<br><dt><code>yes</code><dd>Always returns 1.
</dl>
<div class="node">
<a name="Add-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Require-Support">Require Support</a>,
Previous: <a rel="previous" accesskey="p" href="#Effective_002dTarget-Keywords">Effective-Target Keywords</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.4 Features for <code>dg-add-options</code></h4>
<p>The supported values of <var>feature</var> for directive <code>dg-add-options</code>
are:
<dl>
<dt><code>arm_neon</code><dd>NEON support. Only ARM targets support this feature, and only then
in certain modes; see the <a href="#arm_005fneon_005fok">arm_neon_ok effective target keyword</a>.
<br><dt><code>arm_neon_fp16</code><dd>NEON and half-precision floating point support. Only ARM targets
support this feature, and only then in certain modes; see
the <a href="#arm_005fneon_005fok">arm_neon_fp16_ok effective target keyword</a>.
<br><dt><code>bind_pic_locally</code><dd>Add the target-specific flags needed to enable functions to bind
locally when using pic/PIC passes in the testsuite.
<br><dt><code>c99_runtime</code><dd>Add the target-specific flags needed to access the C99 runtime.
<br><dt><code>ieee</code><dd>Add the target-specific flags needed to enable full IEEE
compliance mode.
<br><dt><code>mips16_attribute</code><dd><code>mips16</code> function attributes.
Only MIPS targets support this feature, and only then in certain modes.
<br><dt><code>tls</code><dd>Add the target-specific flags needed to use thread-local storage.
</dl>
<div class="node">
<a name="Require-Support"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Final-Actions">Final Actions</a>,
Previous: <a rel="previous" accesskey="p" href="#Add-Options">Add Options</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.5 Variants of <code>dg-require-</code><var>support</var></h4>
<p>A few of the <code>dg-require</code> directives take arguments.
<dl>
<dt><code>dg-require-iconv </code><var>codeset</var><dd>Skip the test if the target does not support iconv. <var>codeset</var> is
the codeset to convert to.
<br><dt><code>dg-require-profiling </code><var>profopt</var><dd>Skip the test if the target does not support profiling with option
<var>profopt</var>.
<br><dt><code>dg-require-visibility </code><var>vis</var><dd>Skip the test if the target does not support the <code>visibility</code> attribute.
If <var>vis</var> is <code>""</code>, support for <code>visibility("hidden")</code> is
checked, for <code>visibility("</code><var>vis</var><code>")</code> otherwise.
</dl>
<p>The original <code>dg-require</code> directives were defined before there
was support for effective-target keywords. The directives that do not
take arguments could be replaced with effective-target keywords.
<dl>
<dt><code>dg-require-alias ""</code><dd>Skip the test if the target does not support the ‘<samp><span class="samp">alias</span></samp>’ attribute.
<br><dt><code>dg-require-ascii-locale ""</code><dd>Skip the test if the host does not support an ASCII locale.
<br><dt><code>dg-require-compat-dfp ""</code><dd>Skip this test unless both compilers in a <samp><span class="file">compat</span></samp> testsuite
support decimal floating point.
<br><dt><code>dg-require-cxa-atexit ""</code><dd>Skip the test if the target does not support <code>__cxa_atexit</code>.
This is equivalent to <code>dg-require-effective-target cxa_atexit</code>.
<br><dt><code>dg-require-dll ""</code><dd>Skip the test if the target does not support DLL attributes.
<br><dt><code>dg-require-fork ""</code><dd>Skip the test if the target does not support <code>fork</code>.
<br><dt><code>dg-require-gc-sections ""</code><dd>Skip the test if the target's linker does not support the
<code>--gc-sections</code> flags.
This is equivalent to <code>dg-require-effective-target gc-sections</code>.
<br><dt><code>dg-require-host-local ""</code><dd>Skip the test if the host is remote, rather than the same as the build
system. Some tests are incompatible with DejaGnu's handling of remote
hosts, which involves copying the source file to the host and compiling
it with a relative path and "<code>-o a.out</code>".
<br><dt><code>dg-require-mkfifo ""</code><dd>Skip the test if the target does not support <code>mkfifo</code>.
<br><dt><code>dg-require-named-sections ""</code><dd>Skip the test is the target does not support named sections.
This is equivalent to <code>dg-require-effective-target named_sections</code>.
<br><dt><code>dg-require-weak ""</code><dd>Skip the test if the target does not support weak symbols.
<br><dt><code>dg-require-weak-override ""</code><dd>Skip the test if the target does not support overriding weak symbols.
</dl>
<div class="node">
<a name="Final-Actions"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Require-Support">Require Support</a>,
Up: <a rel="up" accesskey="u" href="#Test-Directives">Test Directives</a>
</div>
<h4 class="subsection">7.2.6 Commands for use in <code>dg-final</code></h4>
<p>The GCC testsuite defines the following directives to be used within
<code>dg-final</code>.
<h5 class="subsubsection">7.2.6.1 Scan a particular file</h5>
<dl>
<dt><code>scan-file </code><var>filename</var> <var>regexp</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regexp</var> matches text in <var>filename</var>.
<br><dt><code>scan-file-not </code><var>filename</var> <var>regexp</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regexp</var> does not match text in <var>filename</var>.
<br><dt><code>scan-module </code><var>module</var> <var>regexp</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regexp</var> matches in Fortran module <var>module</var>.
</dl>
<h5 class="subsubsection">7.2.6.2 Scan the assembly output</h5>
<dl>
<dt><code>scan-assembler </code><var>regex</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> matches text in the test's assembler output.
<br><dt><code>scan-assembler-not </code><var>regex</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> does not match text in the test's assembler output.
<br><dt><code>scan-assembler-times </code><var>regex</var> <var>num</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> is matched exactly <var>num</var> times in the test's
assembler output.
<br><dt><code>scan-assembler-dem </code><var>regex</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> matches text in the test's demangled assembler output.
<br><dt><code>scan-assembler-dem-not </code><var>regex</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> does not match text in the test's demangled assembler
output.
<br><dt><code>scan-hidden </code><var>symbol</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>symbol</var> is defined as a hidden symbol in the test's
assembly output.
<br><dt><code>scan-not-hidden </code><var>symbol</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>symbol</var> is not defined as a hidden symbol in the test's
assembly output.
</dl>
<h5 class="subsubsection">7.2.6.3 Scan optimization dump files</h5>
<p>These commands are available for <var>kind</var> of <code>tree</code>, <code>rtl</code>,
and <code>ipa</code>.
<dl>
<dt><code>scan-</code><var>kind</var><code>-dump </code><var>regex</var> <var>suffix</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> matches text in the dump file with suffix <var>suffix</var>.
<br><dt><code>scan-</code><var>kind</var><code>-dump-not </code><var>regex</var> <var>suffix</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> does not match text in the dump file with suffix
<var>suffix</var>.
<br><dt><code>scan-</code><var>kind</var><code>-dump-times </code><var>regex</var> <var>num</var> <var>suffix</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> is found exactly <var>num</var> times in the dump file
with suffix <var>suffix</var>.
<br><dt><code>scan-</code><var>kind</var><code>-dump-dem </code><var>regex</var> <var>suffix</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> matches demangled text in the dump file with
suffix <var>suffix</var>.
<br><dt><code>scan-</code><var>kind</var><code>-dump-dem-not </code><var>regex</var> <var>suffix</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if <var>regex</var> does not match demangled text in the dump file with
suffix <var>suffix</var>.
</dl>
<h5 class="subsubsection">7.2.6.4 Verify that an output files exists or not</h5>
<dl>
<dt><code>output-exists [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if compiler output file exists.
<br><dt><code>output-exists-not [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if compiler output file does not exist.
</dl>
<h5 class="subsubsection">7.2.6.5 Check for LTO tests</h5>
<dl>
<dt><code>scan-symbol </code><var>regexp</var><code> [{ target/xfail </code><var>selector</var><code> }]</code><dd>Passes if the pattern is present in the final executable.
</dl>
<h5 class="subsubsection">7.2.6.6 Checks for <samp><span class="command">gcov</span></samp> tests</h5>
<dl>
<dt><code>run-gcov </code><var>sourcefile</var><dd>Check line counts in <samp><span class="command">gcov</span></samp> tests.
<br><dt><code>run-gcov [branches] [calls] { </code><var>opts</var> <var>sourcefile</var><code> }</code><dd>Check branch and/or call counts, in addition to line counts, in
<samp><span class="command">gcov</span></samp> tests.
</dl>
<h5 class="subsubsection">7.2.6.7 Clean up generated test files</h5>
<dl>
<dt><code>cleanup-coverage-files</code><dd>Removes coverage data files generated for this test.
<br><dt><code>cleanup-ipa-dump </code><var>suffix</var><dd>Removes IPA dump files generated for this test.
<br><dt><code>cleanup-modules</code><dd>Removes Fortran module files generated for this test.
<br><dt><code>cleanup-profile-file</code><dd>Removes profiling files generated for this test.
<br><dt><code>cleanup-repo-files</code><dd>Removes files generated for this test for <samp><span class="option">-frepo</span></samp>.
<br><dt><code>cleanup-rtl-dump </code><var>suffix</var><dd>Removes RTL dump files generated for this test.
<br><dt><code>cleanup-saved-temps</code><dd>Removes files for the current test which were kept for <samp><span class="option">-save-temps</span></samp>.
<br><dt><code>cleanup-tree-dump </code><var>suffix</var><dd>Removes tree dump files matching <var>suffix</var> which were generated for
this test.
</dl>
<div class="node">
<a name="Ada-Tests"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-Tests">C Tests</a>,
Previous: <a rel="previous" accesskey="p" href="#Test-Directives">Test Directives</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.3 Ada Language Testsuites</h3>
<p>The Ada testsuite includes executable tests from the ACATS 2.5
testsuite, publicly available at
<a href="http://www.adaic.org/compilers/acats/2.5">http://www.adaic.org/compilers/acats/2.5</a>.
<p>These tests are integrated in the GCC testsuite in the
<samp><span class="file">ada/acats</span></samp> directory, and
enabled automatically when running <code>make check</code>, assuming
the Ada language has been enabled when configuring GCC.
<p>You can also run the Ada testsuite independently, using
<code>make check-ada</code>, or run a subset of the tests by specifying which
chapter to run, e.g.:
<pre class="smallexample"> $ make check-ada CHAPTERS="c3 c9"
</pre>
<p>The tests are organized by directory, each directory corresponding to
a chapter of the Ada Reference Manual. So for example, <samp><span class="file">c9</span></samp> corresponds
to chapter 9, which deals with tasking features of the language.
<p>There is also an extra chapter called <samp><span class="file">gcc</span></samp> containing a template for
creating new executable tests, although this is deprecated in favor of
the <samp><span class="file">gnat.dg</span></samp> testsuite.
<p>The tests are run using two <samp><span class="command">sh</span></samp> scripts: <samp><span class="file">run_acats</span></samp> and
<samp><span class="file">run_all.sh</span></samp>. To run the tests using a simulator or a cross
target, see the small
customization section at the top of <samp><span class="file">run_all.sh</span></samp>.
<p>These tests are run using the build tree: they can be run without doing
a <code>make install</code>.
<div class="node">
<a name="C-Tests"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#libgcj-Tests">libgcj Tests</a>,
Previous: <a rel="previous" accesskey="p" href="#Ada-Tests">Ada Tests</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.4 C Language Testsuites</h3>
<p>GCC contains the following C language testsuites, in the
<samp><span class="file">gcc/testsuite</span></samp> directory:
<dl>
<dt><samp><span class="file">gcc.dg</span></samp><dd>This contains tests of particular features of the C compiler, using the
more modern ‘<samp><span class="samp">dg</span></samp>’ harness. Correctness tests for various compiler
features should go here if possible.
<p>Magic comments determine whether the file
is preprocessed, compiled, linked or run. In these tests, error and warning
message texts are compared against expected texts or regular expressions
given in comments. These tests are run with the options ‘<samp><span class="samp">-ansi -pedantic</span></samp>’
unless other options are given in the test. Except as noted below they
are not run with multiple optimization options.
<br><dt><samp><span class="file">gcc.dg/compat</span></samp><dd>This subdirectory contains tests for binary compatibility using
<samp><span class="file">lib/compat.exp</span></samp>, which in turn uses the language-independent support
(see <a href="#compat-Testing">Support for testing binary compatibility</a>).
<br><dt><samp><span class="file">gcc.dg/cpp</span></samp><dd>This subdirectory contains tests of the preprocessor.
<br><dt><samp><span class="file">gcc.dg/debug</span></samp><dd>This subdirectory contains tests for debug formats. Tests in this
subdirectory are run for each debug format that the compiler supports.
<br><dt><samp><span class="file">gcc.dg/format</span></samp><dd>This subdirectory contains tests of the <samp><span class="option">-Wformat</span></samp> format
checking. Tests in this directory are run with and without
<samp><span class="option">-DWIDE</span></samp>.
<br><dt><samp><span class="file">gcc.dg/noncompile</span></samp><dd>This subdirectory contains tests of code that should not compile and
does not need any special compilation options. They are run with
multiple optimization options, since sometimes invalid code crashes
the compiler with optimization.
<br><dt><samp><span class="file">gcc.dg/special</span></samp><dd>FIXME: describe this.
<br><dt><samp><span class="file">gcc.c-torture</span></samp><dd>This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but
it hasn't been done yet.
<br><dt><samp><span class="file">gcc.c-torture/compat</span></samp><dd>FIXME: describe this.
<p>This directory should probably not be used for new tests.
<br><dt><samp><span class="file">gcc.c-torture/compile</span></samp><dd>This testsuite contains test cases that should compile, but do not
need to link or run. These test cases are compiled with several
different combinations of optimization options. All warnings are
disabled for these test cases, so this directory is not suitable if
you wish to test for the presence or absence of compiler warnings.
While special options can be set, and tests disabled on specific
platforms, by the use of <samp><span class="file">.x</span></samp> files, mostly these test cases
should not contain platform dependencies. FIXME: discuss how defines
such as <code>NO_LABEL_VALUES</code> and <code>STACK_SIZE</code> are used.
<br><dt><samp><span class="file">gcc.c-torture/execute</span></samp><dd>This testsuite contains test cases that should compile, link and run;
otherwise the same comments as for <samp><span class="file">gcc.c-torture/compile</span></samp> apply.
<br><dt><samp><span class="file">gcc.c-torture/execute/ieee</span></samp><dd>This contains tests which are specific to IEEE floating point.
<br><dt><samp><span class="file">gcc.c-torture/unsorted</span></samp><dd>FIXME: describe this.
<p>This directory should probably not be used for new tests.
<br><dt><samp><span class="file">gcc.misc-tests</span></samp><dd>This directory contains C tests that require special handling. Some
of these tests have individual expect files, and others share
special-purpose expect files:
<dl>
<dt><samp><code>bprob*.c</code></samp><dd>Test <samp><span class="option">-fbranch-probabilities</span></samp> using
<samp><span class="file">gcc.misc-tests/bprob.exp</span></samp>, which
in turn uses the generic, language-independent framework
(see <a href="#profopt-Testing">Support for testing profile-directed optimizations</a>).
<br><dt><samp><code>gcov*.c</code></samp><dd>Test <samp><span class="command">gcov</span></samp> output using <samp><span class="file">gcov.exp</span></samp>, which in turn uses the
language-independent support (see <a href="#gcov-Testing">Support for testing gcov</a>).
<br><dt><samp><code>i386-pf-*.c</code></samp><dd>Test i386-specific support for data prefetch using <samp><span class="file">i386-prefetch.exp</span></samp>.
</dl>
<br><dt><samp><span class="file">gcc.test-framework</span></samp><dd>
<dl>
<dt><samp><code>dg-*.c</code></samp><dd>Test the testsuite itself using <samp><span class="file">gcc.test-framework/test-framework.exp</span></samp>.
</dl>
</dl>
<p>FIXME: merge in <samp><span class="file">testsuite/README.gcc</span></samp> and discuss the format of
test cases and magic comments more.
<div class="node">
<a name="libgcj-Tests"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#LTO-Testing">LTO Testing</a>,
Previous: <a rel="previous" accesskey="p" href="#C-Tests">C Tests</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.5 The Java library testsuites.</h3>
<p>Runtime tests are executed via ‘<samp><span class="samp">make check</span></samp>’ in the
<samp><var>target</var><span class="file">/libjava/testsuite</span></samp> directory in the build
tree. Additional runtime tests can be checked into this testsuite.
<p>Regression testing of the core packages in libgcj is also covered by the
Mauve testsuite. The <a href="http://sourceware.org/mauve/">Mauve Project</a>
develops tests for the Java Class Libraries. These tests are run as part
of libgcj testing by placing the Mauve tree within the libjava testsuite
sources at <samp><span class="file">libjava/testsuite/libjava.mauve/mauve</span></samp>, or by specifying
the location of that tree when invoking ‘<samp><span class="samp">make</span></samp>’, as in
‘<samp><span class="samp">make MAUVEDIR=~/mauve check</span></samp>’.
<p>To detect regressions, a mechanism in <samp><span class="file">mauve.exp</span></samp> compares the
failures for a test run against the list of expected failures in
<samp><span class="file">libjava/testsuite/libjava.mauve/xfails</span></samp> from the source hierarchy.
Update this file when adding new failing tests to Mauve, or when fixing
bugs in libgcj that had caused Mauve test failures.
<p>We encourage developers to contribute test cases to Mauve.
<div class="node">
<a name="LTO-Testing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#gcov-Testing">gcov Testing</a>,
Previous: <a rel="previous" accesskey="p" href="#libgcj-Tests">libgcj Tests</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.6 Support for testing link-time optimizations</h3>
<p>Tests for link-time optimizations usually require multiple source files
that are compiled separately, perhaps with different sets of options.
There are several special-purpose test directives used for these tests.
<dl>
<dt><code>{ dg-lto-do </code><var>do-what-keyword</var><code> }</code><dd><var>do-what-keyword</var> specifies how the test is compiled and whether
it is executed. It is one of:
<dl>
<dt><code>assemble</code><dd>Compile with <samp><span class="option">-c</span></samp> to produce a relocatable object file.
<br><dt><code>link</code><dd>Compile, assemble, and link to produce an executable file.
<br><dt><code>run</code><dd>Produce and run an executable file, which is expected to return
an exit code of 0.
</dl>
<p>The default is <code>assemble</code>. That can be overridden for a set of
tests by redefining <code>dg-do-what-default</code> within the <code>.exp</code>
file for those tests.
<p>Unlike <code>dg-do</code>, <code>dg-lto-do</code> does not support an optional
‘<samp><span class="samp">target</span></samp>’ or ‘<samp><span class="samp">xfail</span></samp>’ list. Use <code>dg-skip-if</code>,
<code>dg-xfail-if</code>, or <code>dg-xfail-run-if</code>.
<br><dt><code>{ dg-lto-options { { </code><var>options</var><code> } [{ </code><var>options</var><code> }] } [{ target </code><var>selector</var><code> }]}</code><dd>This directive provides a list of one or more sets of compiler options
to override <var>LTO_OPTIONS</var>. Each test will be compiled and run with
each of these sets of options.
<br><dt><code>{ dg-extra-ld-options </code><var>options</var><code> [{ target </code><var>selector</var><code> }]}</code><dd>This directive adds <var>options</var> to the linker options used.
<br><dt><code>{ dg-suppress-ld-options </code><var>options</var><code> [{ target </code><var>selector</var><code> }]}</code><dd>This directive removes <var>options</var> from the set of linker options used.
</dl>
<div class="node">
<a name="gcov-Testing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#profopt-Testing">profopt Testing</a>,
Previous: <a rel="previous" accesskey="p" href="#LTO-Testing">LTO Testing</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.7 Support for testing <samp><span class="command">gcov</span></samp></h3>
<p>Language-independent support for testing <samp><span class="command">gcov</span></samp>, and for checking
that branch profiling produces expected values, is provided by the
expect file <samp><span class="file">lib/gcov.exp</span></samp>. <samp><span class="command">gcov</span></samp> tests also rely on procedures
in <samp><span class="file">lib/gcc-dg.exp</span></samp> to compile and run the test program. A typical
<samp><span class="command">gcov</span></samp> test contains the following DejaGnu commands within comments:
<pre class="smallexample"> { dg-options "-fprofile-arcs -ftest-coverage" }
{ dg-do run { target native } }
{ dg-final { run-gcov sourcefile } }
</pre>
<p>Checks of <samp><span class="command">gcov</span></samp> output can include line counts, branch percentages,
and call return percentages. All of these checks are requested via
commands that appear in comments in the test's source file.
Commands to check line counts are processed by default.
Commands to check branch percentages and call return percentages are
processed if the <samp><span class="command">run-gcov</span></samp> command has arguments <code>branches</code>
or <code>calls</code>, respectively. For example, the following specifies
checking both, as well as passing <samp><span class="option">-b</span></samp> to <samp><span class="command">gcov</span></samp>:
<pre class="smallexample"> { dg-final { run-gcov branches calls { -b sourcefile } } }
</pre>
<p>A line count command appears within a comment on the source line
that is expected to get the specified count and has the form
<code>count(</code><var>cnt</var><code>)</code>. A test should only check line counts for
lines that will get the same count for any architecture.
<p>Commands to check branch percentages (<code>branch</code>) and call
return percentages (<code>returns</code>) are very similar to each other.
A beginning command appears on or before the first of a range of
lines that will report the percentage, and the ending command
follows that range of lines. The beginning command can include a
list of percentages, all of which are expected to be found within
the range. A range is terminated by the next command of the same
kind. A command <code>branch(end)</code> or <code>returns(end)</code> marks
the end of a range without starting a new one. For example:
<pre class="smallexample"> if (i > 10 && j > i && j < 20) /* <span class="roman">branch(27 50 75)</span> */
/* <span class="roman">branch(end)</span> */
foo (i, j);
</pre>
<p>For a call return percentage, the value specified is the
percentage of calls reported to return. For a branch percentage,
the value is either the expected percentage or 100 minus that
value, since the direction of a branch can differ depending on the
target or the optimization level.
<p>Not all branches and calls need to be checked. A test should not
check for branches that might be optimized away or replaced with
predicated instructions. Don't check for calls inserted by the
compiler or ones that might be inlined or optimized away.
<p>A single test can check for combinations of line counts, branch
percentages, and call return percentages. The command to check a
line count must appear on the line that will report that count, but
commands to check branch percentages and call return percentages can
bracket the lines that report them.
<div class="node">
<a name="profopt-Testing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#compat-Testing">compat Testing</a>,
Previous: <a rel="previous" accesskey="p" href="#gcov-Testing">gcov Testing</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.8 Support for testing profile-directed optimizations</h3>
<p>The file <samp><span class="file">profopt.exp</span></samp> provides language-independent support for
checking correct execution of a test built with profile-directed
optimization. This testing requires that a test program be built and
executed twice. The first time it is compiled to generate profile
data, and the second time it is compiled to use the data that was
generated during the first execution. The second execution is to
verify that the test produces the expected results.
<p>To check that the optimization actually generated better code, a
test can be built and run a third time with normal optimizations to
verify that the performance is better with the profile-directed
optimizations. <samp><span class="file">profopt.exp</span></samp> has the beginnings of this kind
of support.
<p><samp><span class="file">profopt.exp</span></samp> provides generic support for profile-directed
optimizations. Each set of tests that uses it provides information
about a specific optimization:
<dl>
<dt><code>tool</code><dd>tool being tested, e.g., <samp><span class="command">gcc</span></samp>
<br><dt><code>profile_option</code><dd>options used to generate profile data
<br><dt><code>feedback_option</code><dd>options used to optimize using that profile data
<br><dt><code>prof_ext</code><dd>suffix of profile data files
<br><dt><code>PROFOPT_OPTIONS</code><dd>list of options with which to run each test, similar to the lists for
torture tests
<br><dt><code>{ dg-final-generate { </code><var>local-directive</var><code> } }</code><dd>This directive is similar to <code>dg-final</code>, but the
<var>local-directive</var> is run after the generation of profile data.
<br><dt><code>{ dg-final-use { </code><var>local-directive</var><code> } }</code><dd>The <var>local-directive</var> is run after the profile data have been
used.
</dl>
<div class="node">
<a name="compat-Testing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Torture-Tests">Torture Tests</a>,
Previous: <a rel="previous" accesskey="p" href="#profopt-Testing">profopt Testing</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.9 Support for testing binary compatibility</h3>
<p>The file <samp><span class="file">compat.exp</span></samp> provides language-independent support for
binary compatibility testing. It supports testing interoperability of
two compilers that follow the same ABI, or of multiple sets of
compiler options that should not affect binary compatibility. It is
intended to be used for testsuites that complement ABI testsuites.
<p>A test supported by this framework has three parts, each in a
separate source file: a main program and two pieces that interact
with each other to split up the functionality being tested.
<dl>
<dt><samp><var>testname</var><span class="file">_main.</span><var>suffix</var></samp><dd>Contains the main program, which calls a function in file
<samp><var>testname</var><span class="file">_x.</span><var>suffix</var></samp>.
<br><dt><samp><var>testname</var><span class="file">_x.</span><var>suffix</var></samp><dd>Contains at least one call to a function in
<samp><var>testname</var><span class="file">_y.</span><var>suffix</var></samp>.
<br><dt><samp><var>testname</var><span class="file">_y.</span><var>suffix</var></samp><dd>Shares data with, or gets arguments from,
<samp><var>testname</var><span class="file">_x.</span><var>suffix</var></samp>.
</dl>
<p>Within each test, the main program and one functional piece are
compiled by the GCC under test. The other piece can be compiled by
an alternate compiler. If no alternate compiler is specified,
then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element
of such a pair specifies options used with the GCC under test, and the
second element of the pair specifies options used with the alternate
compiler. Each test is compiled with each pair of options.
<p><samp><span class="file">compat.exp</span></samp> defines default pairs of compiler options.
These can be overridden by defining the environment variable
<samp><span class="env">COMPAT_OPTIONS</span></samp> as:
<pre class="smallexample"> COMPAT_OPTIONS="[list [list {<var>tst1</var>} {<var>alt1</var>}]
...[list {<var>tstn</var>} {<var>altn</var>}]]"
</pre>
<p>where <var>tsti</var> and <var>alti</var> are lists of options, with <var>tsti</var>
used by the compiler under test and <var>alti</var> used by the alternate
compiler. For example, with
<code>[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]</code>,
the test is first built with <samp><span class="option">-g -O0</span></samp> by the compiler under
test and with <samp><span class="option">-O3</span></samp> by the alternate compiler. The test is
built a second time using <samp><span class="option">-fpic</span></samp> by the compiler under test
and <samp><span class="option">-fPIC -O2</span></samp> by the alternate compiler.
<p>An alternate compiler is specified by defining an environment
variable to be the full pathname of an installed compiler; for C
define <samp><span class="env">ALT_CC_UNDER_TEST</span></samp>, and for C++ define
<samp><span class="env">ALT_CXX_UNDER_TEST</span></samp>. These will be written to the
<samp><span class="file">site.exp</span></samp> file used by DejaGnu. The default is to build each
test with the compiler under test using the first of each pair of
compiler options from <samp><span class="env">COMPAT_OPTIONS</span></samp>. When
<samp><span class="env">ALT_CC_UNDER_TEST</span></samp> or
<samp><span class="env">ALT_CXX_UNDER_TEST</span></samp> is <code>same</code>, each test is built using
the compiler under test but with combinations of the options from
<samp><span class="env">COMPAT_OPTIONS</span></samp>.
<p>To run only the C++ compatibility suite using the compiler under test
and another version of GCC using specific compiler options, do the
following from <samp><var>objdir</var><span class="file">/gcc</span></samp>:
<pre class="smallexample"> rm site.exp
make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="<var>lists as shown above</var>" \
check-c++ \
RUNTESTFLAGS="compat.exp"
</pre>
<p>A test that fails when the source files are compiled with different
compilers, but passes when the files are compiled with the same
compiler, demonstrates incompatibility of the generated code or
runtime support. A test that fails for the alternate compiler but
passes for the compiler under test probably tests for a bug that was
fixed in the compiler under test but is present in the alternate
compiler.
<p>The binary compatibility tests support a small number of test framework
commands that appear within comments in a test file.
<dl>
<dt><code>dg-require-*</code><dd>These commands can be used in <samp><var>testname</var><span class="file">_main.</span><var>suffix</var></samp>
to skip the test if specific support is not available on the target.
<br><dt><code>dg-options</code><dd>The specified options are used for compiling this particular source
file, appended to the options from <samp><span class="env">COMPAT_OPTIONS</span></samp>. When this
command appears in <samp><var>testname</var><span class="file">_main.</span><var>suffix</var></samp> the options
are also used to link the test program.
<br><dt><code>dg-xfail-if</code><dd>This command can be used in a secondary source file to specify that
compilation is expected to fail for particular options on particular
targets.
</dl>
<div class="node">
<a name="Torture-Tests"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#compat-Testing">compat Testing</a>,
Up: <a rel="up" accesskey="u" href="#Testsuites">Testsuites</a>
</div>
<h3 class="section">7.10 Support for torture testing using multiple options</h3>
<p>Throughout the compiler testsuite there are several directories whose
tests are run multiple times, each with a different set of options.
These are known as torture tests.
<samp><span class="file">lib/torture-options.exp</span></samp> defines procedures to
set up these lists:
<dl>
<dt><code>torture-init</code><dd>Initialize use of torture lists.
<br><dt><code>set-torture-options</code><dd>Set lists of torture options to use for tests with and without loops.
Optionally combine a set of torture options with a set of other
options, as is done with Objective-C runtime options.
<br><dt><code>torture-finish</code><dd>Finalize use of torture lists.
</dl>
<p>The <samp><span class="file">.exp</span></samp> file for a set of tests that use torture options must
include calls to these three procedures if:
<ul>
<li>It calls <code>gcc-dg-runtest</code> and overrides <var>DG_TORTURE_OPTIONS</var>.
<li>It calls <var>${tool}</var><code>-torture</code> or
<var>${tool}</var><code>-torture-execute</code>, where <var>tool</var> is <code>c</code>,
<code>fortran</code>, or <code>objc</code>.
<li>It calls <code>dg-pch</code>.
</ul>
<p>It is not necessary for a <samp><span class="file">.exp</span></samp> file that calls <code>gcc-dg-runtest</code>
to call the torture procedures if the tests should use the list in
<var>DG_TORTURE_OPTIONS</var> defined in <samp><span class="file">gcc-dg.exp</span></samp>.
<p>Most uses of torture options can override the default lists by defining
<var>TORTURE_OPTIONS</var> or add to the default list by defining
<var>ADDITIONAL_TORTURE_OPTIONS</var>. Define these in a <samp><span class="file">.dejagnurc</span></samp>
file or add them to the <samp><span class="file">site.exp</span></samp> file; for example
<pre class="smallexample"> set ADDITIONAL_TORTURE_OPTIONS [list \
{ -O2 -ftree-loop-linear } \
{ -O2 -fpeel-loops } ]
</pre>
<!-- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Passes">Passes</a>,
Previous: <a rel="previous" accesskey="p" href="#Testsuites">Testsuites</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">8 Option specification files</h2>
<p><a name="index-option-specification-files-1666"></a><a name="index-g_t_0040samp_007boptc_002dgen_002eawk_007d-1667"></a>
Most GCC command-line options are described by special option
definition files, the names of which conventionally end in
<code>.opt</code>. This chapter describes the format of these files.
<ul class="menu">
<li><a accesskey="1" href="#Option-file-format">Option file format</a>: The general layout of the files
<li><a accesskey="2" href="#Option-properties">Option properties</a>: Supported option properties
</ul>
<div class="node">
<a name="Option-file-format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Option-properties">Option properties</a>,
Up: <a rel="up" accesskey="u" href="#Options">Options</a>
</div>
<h3 class="section">8.1 Option file format</h3>
<p>Option files are a simple list of records in which each field occupies
its own line and in which the records themselves are separated by
blank lines. Comments may appear on their own line anywhere within
the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.
<p>The files can contain the following types of record:
<ul>
<li>A language definition record. These records have two fields: the
string ‘<samp><span class="samp">Language</span></samp>’ and the name of the language. Once a language
has been declared in this way, it can be used as an option property.
See <a href="#Option-properties">Option properties</a>.
<li>A target specific save record to save additional information. These
records have two fields: the string ‘<samp><span class="samp">TargetSave</span></samp>’, and a
declaration type to go in the <code>cl_target_option</code> structure.
<li>A variable record to define a variable used to store option
information. These records have two fields: the string
‘<samp><span class="samp">Variable</span></samp>’, and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing
‘<samp><span class="samp">;</span></samp>’). These records may be used for variables used for many
options where declaring the initializer in a single option definition
record, or duplicating it in many records, would be inappropriate, or
for variables set in option handlers rather than referenced by
<code>Var</code> properties.
<li>A variable record to define a variable used to store option
information. These records have two fields: the string
‘<samp><span class="samp">TargetVariable</span></samp>’, and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing
‘<samp><span class="samp">;</span></samp>’). ‘<samp><span class="samp">TargetVariable</span></samp>’ is a combination of ‘<samp><span class="samp">Variable</span></samp>’
and ‘<samp><span class="samp">TargetSave</span></samp>’ records in that the variable is defined in the
<code>gcc_options</code> structure, but these variables are also stored in
the <code>cl_target_option</code> structure. The variables are saved in the
target save code and restored in the target restore code.
<li>A variable record to record any additional files that the
<samp><span class="file">options.h</span></samp> file should include. This is useful to provide
enumeration or structure definitions needed for target variables.
These records have two fields: the string ‘<samp><span class="samp">HeaderInclude</span></samp>’ and the
name of the include file.
<li>A variable record to record any additional files that the
<samp><span class="file">options.c</span></samp> file should include. This is useful to provide
inline functions needed for target variables and/or <code>#ifdef</code>
sequences to properly set up the initialization. These records have
two fields: the string ‘<samp><span class="samp">SourceInclude</span></samp>’ and the name of the
include file.
<li>An enumeration record to define a set of strings that may be used as
arguments to an option or options. These records have three fields:
the string ‘<samp><span class="samp">Enum</span></samp>’, a space-separated list of properties and help
text used to describe the set of strings in <samp><span class="option">--help</span></samp> output.
Properties use the same format as option properties; the following are
valid:
<dl>
<dt><code>Name(</code><var>name</var><code>)</code><dd>This property is required; <var>name</var> must be a name (suitable for use
in C identifiers) used to identify the set of strings in <code>Enum</code>
option properties.
<br><dt><code>Type(</code><var>type</var><code>)</code><dd>This property is required; <var>type</var> is the C type for variables set
by options using this enumeration together with <code>Var</code>.
<br><dt><code>UnknownError(</code><var>message</var><code>)</code><dd>The message <var>message</var> will be used as an error message if the
argument is invalid; for enumerations without <code>UnknownError</code>, a
generic error message is used. <var>message</var> should contain a single
‘<samp><span class="samp">%qs</span></samp>’ format, which will be used to format the invalid argument.
</dl>
<li>An enumeration value record to define one of the strings in a set
given in an ‘<samp><span class="samp">Enum</span></samp>’ record. These records have two fields: the
string ‘<samp><span class="samp">EnumValue</span></samp>’ and a space-separated list of properties.
Properties use the same format as option properties; the following are
valid:
<dl>
<dt><code>Enum(</code><var>name</var><code>)</code><dd>This property is required; <var>name</var> says which ‘<samp><span class="samp">Enum</span></samp>’ record
this ‘<samp><span class="samp">EnumValue</span></samp>’ record corresponds to.
<br><dt><code>String(</code><var>string</var><code>)</code><dd>This property is required; <var>string</var> is the string option argument
being described by this record.
<br><dt><code>Value(</code><var>value</var><code>)</code><dd>This property is required; it says what value (representable as
<code>int</code>) should be used for the given string.
<br><dt><code>Canonical</code><dd>This property is optional. If present, it says the present string is
the canonical one among all those with the given value. Other strings
yielding that value will be mapped to this one so specs do not need to
handle them.
<br><dt><code>DriverOnly</code><dd>This property is optional. If present, the present string will only
be accepted by the driver. This is used for cases such as
<samp><span class="option">-march=native</span></samp> that are processed by the driver so that
‘<samp><span class="samp">gcc -v</span></samp>’ shows how the options chosen depended on the system on
which the compiler was run.
</dl>
<li>An option definition record. These records have the following fields:
<ol type=1 start=1>
<li>the name of the option, with the leading “-” removed
<li>a space-separated list of option properties (see <a href="#Option-properties">Option properties</a>)
<li>the help text to use for <samp><span class="option">--help</span></samp> (omitted if the second field
contains the <code>Undocumented</code> property).
</ol>
<p>By default, all options beginning with “f”, “W” or “m” are
implicitly assumed to take a “no-” form. This form should not be
listed separately. If an option beginning with one of these letters
does not have a “no-” form, you can use the <code>RejectNegative</code>
property to reject it.
<p>The help text is automatically line-wrapped before being displayed.
Normally the name of the option is printed on the left-hand side of
the output and the help text is printed on the right. However, if the
help text contains a tab character, the text to the left of the tab is
used instead of the option's name and the text to the right of the
tab forms the help text. This allows you to elaborate on what type
of argument the option takes.
<li>A target mask record. These records have one field of the form
‘<samp><span class="samp">Mask(</span><var>x</var><span class="samp">)</span></samp>’. The options-processing script will automatically
allocate a bit in <code>target_flags</code> (see <a href="#Run_002dtime-Target">Run-time Target</a>) for
each mask name <var>x</var> and set the macro <code>MASK_</code><var>x</var> to the
appropriate bitmask. It will also declare a <code>TARGET_</code><var>x</var>
macro that has the value 1 when bit <code>MASK_</code><var>x</var> is set and
0 otherwise.
<p>They are primarily intended to declare target masks that are not
associated with user options, either because these masks represent
internal switches or because the options are not available on all
configurations and yet the masks always need to be defined.
</ul>
<div class="node">
<a name="Option-properties"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Option-file-format">Option file format</a>,
Up: <a rel="up" accesskey="u" href="#Options">Options</a>
</div>
<h3 class="section">8.2 Option properties</h3>
<p>The second field of an option record can specify any of the following
properties. When an option takes an argument, it is enclosed in parentheses
following the option property name. The parser that handles option files
is quite simplistic, and will be tricked by any nested parentheses within
the argument text itself; in this case, the entire option argument can
be wrapped in curly braces within the parentheses to demarcate it, e.g.:
<pre class="smallexample"> Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})
</pre>
<dl>
<dt><code>Common</code><dd>The option is available for all languages and targets.
<br><dt><code>Target</code><dd>The option is available for all languages but is target-specific.
<br><dt><code>Driver</code><dd>The option is handled by the compiler driver using code not shared
with the compilers proper (<samp><span class="file">cc1</span></samp> etc.).
<br><dt><var>language</var><dd>The option is available when compiling for the given language.
<p>It is possible to specify several different languages for the same
option. Each <var>language</var> must have been declared by an earlier
<code>Language</code> record. See <a href="#Option-file-format">Option file format</a>.
<br><dt><code>RejectDriver</code><dd>The option is only handled by the compilers proper (<samp><span class="file">cc1</span></samp> etc.)
and should not be accepted by the driver.
<br><dt><code>RejectNegative</code><dd>The option does not have a “no-” form. All options beginning with
“f”, “W” or “m” are assumed to have a “no-” form unless this
property is used.
<br><dt><code>Negative(</code><var>othername</var><code>)</code><dd>The option will turn off another option <var>othername</var>, which is
the option name with the leading “-” removed. This chain action will
propagate through the <code>Negative</code> property of the option to be
turned off.
<br><dt><code>Joined</code><dt><code>Separate</code><dd>The option takes a mandatory argument. <code>Joined</code> indicates
that the option and argument can be included in the same <code>argv</code>
entry (as with <code>-mflush-func=</code><var>name</var>, for example).
<code>Separate</code> indicates that the option and argument can be
separate <code>argv</code> entries (as with <code>-o</code>). An option is
allowed to have both of these properties.
<br><dt><code>JoinedOrMissing</code><dd>The option takes an optional argument. If the argument is given,
it will be part of the same <code>argv</code> entry as the option itself.
<p>This property cannot be used alongside <code>Joined</code> or <code>Separate</code>.
<br><dt><code>MissingArgError(</code><var>message</var><code>)</code><dd>For an option marked <code>Joined</code> or <code>Separate</code>, the message
<var>message</var> will be used as an error message if the mandatory
argument is missing; for options without <code>MissingArgError</code>, a
generic error message is used. <var>message</var> should contain a single
‘<samp><span class="samp">%qs</span></samp>’ format, which will be used to format the name of the option
passed.
<br><dt><code>Args(</code><var>n</var><code>)</code><dd>For an option marked <code>Separate</code>, indicate that it takes <var>n</var>
arguments. The default is 1.
<br><dt><code>UInteger</code><dd>The option's argument is a non-negative integer. The option parser
will check and convert the argument before passing it to the relevant
option handler. <code>UInteger</code> should also be used on options like
<code>-falign-loops</code> where both <code>-falign-loops</code> and
<code>-falign-loops</code>=<var>n</var> are supported to make sure the saved
options are given a full integer.
<br><dt><code>NoDriverArg</code><dd>For an option marked <code>Separate</code>, the option only takes an
argument in the compiler proper, not in the driver. This is for
compatibility with existing options that are used both directly and
via <samp><span class="option">-Wp,</span></samp>; new options should not have this property.
<br><dt><code>Var(</code><var>var</var><code>)</code><dd>The state of this option should be stored in variable <var>var</var>
(actually a macro for <code>global_options.x_</code><var>var</var>).
The way that the state is stored depends on the type of option:
<ul>
<li>If the option uses the <code>Mask</code> or <code>InverseMask</code> properties,
<var>var</var> is the integer variable that contains the mask.
<li>If the option is a normal on/off switch, <var>var</var> is an integer
variable that is nonzero when the option is enabled. The options
parser will set the variable to 1 when the positive form of the
option is used and 0 when the “no-” form is used.
<li>If the option takes an argument and has the <code>UInteger</code> property,
<var>var</var> is an integer variable that stores the value of the argument.
<li>If the option takes an argument and has the <code>Enum</code> property,
<var>var</var> is a variable (type given in the <code>Type</code> property of the
‘<samp><span class="samp">Enum</span></samp>’ record whose <code>Name</code> property has the same argument as
the <code>Enum</code> property of this option) that stores the value of the
argument.
<li>If the option has the <code>Defer</code> property, <var>var</var> is a pointer to
a <code>VEC(cl_deferred_option,heap)</code> that stores the option for later
processing. (<var>var</var> is declared with type <code>void *</code> and needs
to be cast to <code>VEC(cl_deferred_option,heap)</code> before use.)
<li>Otherwise, if the option takes an argument, <var>var</var> is a pointer to
the argument string. The pointer will be null if the argument is optional
and wasn't given.
</ul>
<p>The option-processing script will usually zero-initialize <var>var</var>.
You can modify this behavior using <code>Init</code>.
<br><dt><code>Var(</code><var>var</var><code>, </code><var>set</var><code>)</code><dd>The option controls an integer variable <var>var</var> and is active when
<var>var</var> equals <var>set</var>. The option parser will set <var>var</var> to
<var>set</var> when the positive form of the option is used and <code>!</code><var>set</var>
when the “no-” form is used.
<p><var>var</var> is declared in the same way as for the single-argument form
described above.
<br><dt><code>Init(</code><var>value</var><code>)</code><dd>The variable specified by the <code>Var</code> property should be statically
initialized to <var>value</var>. If more than one option using the same
variable specifies <code>Init</code>, all must specify the same initializer.
<br><dt><code>Mask(</code><var>name</var><code>)</code><dd>The option is associated with a bit in the <code>target_flags</code>
variable (see <a href="#Run_002dtime-Target">Run-time Target</a>) and is active when that bit is set.
You may also specify <code>Var</code> to select a variable other than
<code>target_flags</code>.
<p>The options-processing script will automatically allocate a unique bit
for the option. If the option is attached to ‘<samp><span class="samp">target_flags</span></samp>’,
the script will set the macro <code>MASK_</code><var>name</var> to the appropriate
bitmask. It will also declare a <code>TARGET_</code><var>name</var> macro that has
the value 1 when the option is active and 0 otherwise. If you use <code>Var</code>
to attach the option to a different variable, the associated macros are
called <code>OPTION_MASK_</code><var>name</var> and <code>OPTION_</code><var>name</var> respectively.
<p>You can disable automatic bit allocation using <code>MaskExists</code>.
<br><dt><code>InverseMask(</code><var>othername</var><code>)</code><dt><code>InverseMask(</code><var>othername</var><code>, </code><var>thisname</var><code>)</code><dd>The option is the inverse of another option that has the
<code>Mask(</code><var>othername</var><code>)</code> property. If <var>thisname</var> is given,
the options-processing script will declare a <code>TARGET_</code><var>thisname</var>
macro that is 1 when the option is active and 0 otherwise.
<br><dt><code>MaskExists</code><dd>The mask specified by the <code>Mask</code> property already exists.
No <code>MASK</code> or <code>TARGET</code> definitions should be added to
<samp><span class="file">options.h</span></samp> in response to this option record.
<p>The main purpose of this property is to support synonymous options.
The first option should use ‘<samp><span class="samp">Mask(</span><var>name</var><span class="samp">)</span></samp>’ and the others
should use ‘<samp><span class="samp">Mask(</span><var>name</var><span class="samp">) MaskExists</span></samp>’.
<br><dt><code>Enum(</code><var>name</var><code>)</code><dd>The option's argument is a string from the set of strings associated
with the corresponding ‘<samp><span class="samp">Enum</span></samp>’ record. The string is checked and
converted to the integer specified in the corresponding
‘<samp><span class="samp">EnumValue</span></samp>’ record before being passed to option handlers.
<br><dt><code>Defer</code><dd>The option should be stored in a vector, specified with <code>Var</code>,
for later processing.
<br><dt><code>Alias(</code><var>opt</var><code>)</code><dt><code>Alias(</code><var>opt</var><code>, </code><var>arg</var><code>)</code><dt><code>Alias(</code><var>opt</var><code>, </code><var>posarg</var><code>, </code><var>negarg</var><code>)</code><dd>The option is an alias for <samp><span class="option">-</span><var>opt</var></samp>. In the first form,
any argument passed to the alias is considered to be passed to
<samp><span class="option">-</span><var>opt</var></samp>, and <samp><span class="option">-</span><var>opt</var></samp> is considered to be
negated if the alias is used in negated form. In the second form, the
alias may not be negated or have an argument, and <var>posarg</var> is
considered to be passed as an argument to <samp><span class="option">-</span><var>opt</var></samp>. In the
third form, the alias may not have an argument, if the alias is used
in the positive form then <var>posarg</var> is considered to be passed to
<samp><span class="option">-</span><var>opt</var></samp>, and if the alias is used in the negative form
then <var>negarg</var> is considered to be passed to <samp><span class="option">-</span><var>opt</var></samp>.
<p>Aliases should not specify <code>Var</code> or <code>Mask</code> or
<code>UInteger</code>. Aliases should normally specify the same languages
as the target of the alias; the flags on the target will be used to
determine any diagnostic for use of an option for the wrong language,
while those on the alias will be used to identify what command-line
text is the option and what text is any argument to that option.
<p>When an <code>Alias</code> definition is used for an option, driver specs do
not need to handle it and no ‘<samp><span class="samp">OPT_</span></samp>’ enumeration value is defined
for it; only the canonical form of the option will be seen in those
places.
<br><dt><code>Ignore</code><dd>This option is ignored apart from printing any warning specified using
<code>Warn</code>. The option will not be seen by specs and no ‘<samp><span class="samp">OPT_</span></samp>’
enumeration value is defined for it.
<br><dt><code>SeparateAlias</code><dd>For an option marked with <code>Joined</code>, <code>Separate</code> and
<code>Alias</code>, the option only acts as an alias when passed a separate
argument; with a joined argument it acts as a normal option, with an
‘<samp><span class="samp">OPT_</span></samp>’ enumeration value. This is for compatibility with the
Java <samp><span class="option">-d</span></samp> option and should not be used for new options.
<br><dt><code>Warn(</code><var>message</var><code>)</code><dd>If this option is used, output the warning <var>message</var>.
<var>message</var> is a format string, either taking a single operand with
a ‘<samp><span class="samp">%qs</span></samp>’ format which is the option name, or not taking any
operands, which is passed to the ‘<samp><span class="samp">warning</span></samp>’ function. If an alias
is marked <code>Warn</code>, the target of the alias must not also be marked
<code>Warn</code>.
<br><dt><code>Report</code><dd>The state of the option should be printed by <samp><span class="option">-fverbose-asm</span></samp>.
<br><dt><code>Warning</code><dd>This is a warning option and should be shown as such in
<samp><span class="option">--help</span></samp> output. This flag does not currently affect anything
other than <samp><span class="option">--help</span></samp>.
<br><dt><code>Optimization</code><dd>This is an optimization option. It should be shown as such in
<samp><span class="option">--help</span></samp> output, and any associated variable named using
<code>Var</code> should be saved and restored when the optimization level is
changed with <code>optimize</code> attributes.
<br><dt><code>Undocumented</code><dd>The option is deliberately missing documentation and should not
be included in the <samp><span class="option">--help</span></samp> output.
<br><dt><code>Condition(</code><var>cond</var><code>)</code><dd>The option should only be accepted if preprocessor condition
<var>cond</var> is true. Note that any C declarations associated with the
option will be present even if <var>cond</var> is false; <var>cond</var> simply
controls whether the option is accepted and whether it is printed in
the <samp><span class="option">--help</span></samp> output.
<br><dt><code>Save</code><dd>Build the <code>cl_target_option</code> structure to hold a copy of the
option, add the functions <code>cl_target_option_save</code> and
<code>cl_target_option_restore</code> to save and restore the options.
<br><dt><code>SetByCombined</code><dd>The option may also be set by a combined option such as
<samp><span class="option">-ffast-math</span></samp>. This causes the <code>gcc_options</code> struct to
have a field <code>frontend_set_</code><var>name</var>, where <var>name</var>
is the name of the field holding the value of this option (without the
leading <code>x_</code>). This gives the front end a way to indicate that
the value has been set explicitly and should not be changed by the
combined option. For example, some front ends use this to prevent
<samp><span class="option">-ffast-math</span></samp> and <samp><span class="option">-fno-fast-math</span></samp> from changing the
value of <samp><span class="option">-fmath-errno</span></samp> for languages that do not use
<code>errno</code>.
</dl>
<!-- markers: BUG TODO -->
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, -->
<!-- 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Passes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GENERIC">GENERIC</a>,
Previous: <a rel="previous" accesskey="p" href="#Options">Options</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">9 Passes and Files of the Compiler</h2>
<p><a name="index-passes-and-files-of-the-compiler-1668"></a><a name="index-files-and-passes-of-the-compiler-1669"></a><a name="index-compiler-passes-and-files-1670"></a>
This chapter is dedicated to giving an overview of the optimization and
code generation passes of the compiler. In the process, it describes
some of the language front end interface, though this description is no
where near complete.
<ul class="menu">
<li><a accesskey="1" href="#Parsing-pass">Parsing pass</a>: The language front end turns text into bits.
<li><a accesskey="2" href="#Gimplification-pass">Gimplification pass</a>: The bits are turned into something we can optimize.
<li><a accesskey="3" href="#Pass-manager">Pass manager</a>: Sequencing the optimization passes.
<li><a accesskey="4" href="#Tree-SSA-passes">Tree SSA passes</a>: Optimizations on a high-level representation.
<li><a accesskey="5" href="#RTL-passes">RTL passes</a>: Optimizations on a low-level representation.
</ul>
<div class="node">
<a name="Parsing-pass"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Gimplification-pass">Gimplification pass</a>,
Up: <a rel="up" accesskey="u" href="#Passes">Passes</a>
</div>
<h3 class="section">9.1 Parsing pass</h3>
<p><a name="index-GENERIC-1671"></a><a name="index-lang_005fhooks_002eparse_005ffile-1672"></a>The language front end is invoked only once, via
<code>lang_hooks.parse_file</code>, to parse the entire input. The language
front end may use any intermediate language representation deemed
appropriate. The C front end uses GENERIC trees (see <a href="#GENERIC">GENERIC</a>), plus
a double handful of language specific tree codes defined in
<samp><span class="file">c-common.def</span></samp>. The Fortran front end uses a completely different
private representation.
<p><a name="index-GIMPLE-1673"></a><a name="index-gimplification-1674"></a><a name="index-gimplifier-1675"></a><a name="index-language_002dindependent-intermediate-representation-1676"></a><a name="index-intermediate-representation-lowering-1677"></a><a name="index-lowering_002c-language_002ddependent-intermediate-representation-1678"></a>At some point the front end must translate the representation used in the
front end to a representation understood by the language-independent
portions of the compiler. Current practice takes one of two forms.
The C front end manually invokes the gimplifier (see <a href="#GIMPLE">GIMPLE</a>) on each function,
and uses the gimplifier callbacks to convert the language-specific tree
nodes directly to GIMPLE before passing the function off to be compiled.
The Fortran front end converts from a private representation to GENERIC,
which is later lowered to GIMPLE when the function is compiled. Which
route to choose probably depends on how well GENERIC (plus extensions)
can be made to match up with the source language and necessary parsing
data structures.
<p>BUG: Gimplification must occur before nested function lowering,
and nested function lowering must be done by the front end before
passing the data off to cgraph.
<p>TODO: Cgraph should control nested function lowering. It would
only be invoked when it is certain that the outer-most function
is used.
<p>TODO: Cgraph needs a gimplify_function callback. It should be
invoked when (1) it is certain that the function is used, (2)
warning flags specified by the user require some amount of
compilation in order to honor, (3) the language indicates that
semantic analysis is not complete until gimplification occurs.
Hum<small class="dots">...</small> this sounds overly complicated. Perhaps we should just
have the front end gimplify always; in most cases it's only one
function call.
<p>The front end needs to pass all function definitions and top level
declarations off to the middle-end so that they can be compiled and
emitted to the object file. For a simple procedural language, it is
usually most convenient to do this as each top level declaration or
definition is seen. There is also a distinction to be made between
generating functional code and generating complete debug information.
The only thing that is absolutely required for functional code is that
function and data <em>definitions</em> be passed to the middle-end. For
complete debug information, function, data and type declarations
should all be passed as well.
<p><a name="index-rest_005fof_005fdecl_005fcompilation-1679"></a><a name="index-rest_005fof_005ftype_005fcompilation-1680"></a><a name="index-cgraph_005ffinalize_005ffunction-1681"></a>In any case, the front end needs each complete top-level function or
data declaration, and each data definition should be passed to
<code>rest_of_decl_compilation</code>. Each complete type definition should
be passed to <code>rest_of_type_compilation</code>. Each function definition
should be passed to <code>cgraph_finalize_function</code>.
<p>TODO: I know rest_of_compilation currently has all sorts of
RTL generation semantics. I plan to move all code generation
bits (both Tree and RTL) to compile_function. Should we hide
cgraph from the front ends and move back to rest_of_compilation
as the official interface? Possibly we should rename all three
interfaces such that the names match in some meaningful way and
that is more descriptive than "rest_of".
<p>The middle-end will, at its option, emit the function and data
definitions immediately or queue them for later processing.
<div class="node">
<a name="Gimplification-pass"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Pass-manager">Pass manager</a>,
Previous: <a rel="previous" accesskey="p" href="#Parsing-pass">Parsing pass</a>,
Up: <a rel="up" accesskey="u" href="#Passes">Passes</a>
</div>
<h3 class="section">9.2 Gimplification pass</h3>
<p><a name="index-gimplification-1682"></a><a name="index-GIMPLE-1683"></a><dfn>Gimplification</dfn> is a whimsical term for the process of converting
the intermediate representation of a function into the GIMPLE language
(see <a href="#GIMPLE">GIMPLE</a>). The term stuck, and so words like “gimplification”,
“gimplify”, “gimplifier” and the like are sprinkled throughout this
section of code.
<p>While a front end may certainly choose to generate GIMPLE directly if
it chooses, this can be a moderately complex process unless the
intermediate language used by the front end is already fairly simple.
Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.
<p><a name="index-gimplify_005ffunction_005ftree-1684"></a><a name="index-gimplify_005fexpr-1685"></a><a name="index-lang_005fhooks_002egimplify_005fexpr-1686"></a>The main entry point to this pass is <code>gimplify_function_tree</code>
located in <samp><span class="file">gimplify.c</span></samp>. From here we process the entire
function gimplifying each statement in turn. The main workhorse
for this pass is <code>gimplify_expr</code>. Approximately everything
passes through here at least once, and it is from here that we
invoke the <code>lang_hooks.gimplify_expr</code> callback.
<p>The callback should examine the expression in question and return
<code>GS_UNHANDLED</code> if the expression is not a language specific
construct that requires attention. Otherwise it should alter the
expression in some way to such that forward progress is made toward
producing valid GIMPLE. If the callback is certain that the
transformation is complete and the expression is valid GIMPLE, it
should return <code>GS_ALL_DONE</code>. Otherwise it should return
<code>GS_OK</code>, which will cause the expression to be processed again.
If the callback encounters an error during the transformation (because
the front end is relying on the gimplification process to finish
semantic checks), it should return <code>GS_ERROR</code>.
<div class="node">
<a name="Pass-manager"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tree-SSA-passes">Tree SSA passes</a>,
Previous: <a rel="previous" accesskey="p" href="#Gimplification-pass">Gimplification pass</a>,
Up: <a rel="up" accesskey="u" href="#Passes">Passes</a>
</div>
<h3 class="section">9.3 Pass manager</h3>
<p>The pass manager is located in <samp><span class="file">passes.c</span></samp>, <samp><span class="file">tree-optimize.c</span></samp>
and <samp><span class="file">tree-pass.h</span></samp>.
Its job is to run all of the individual passes in the correct order,
and take care of standard bookkeeping that applies to every pass.
<p>The theory of operation is that each pass defines a structure that
represents everything we need to know about that pass—when it
should be run, how it should be run, what intermediate language
form or on-the-side data structures it needs. We register the pass
to be run in some particular order, and the pass manager arranges
for everything to happen in the correct order.
<p>The actuality doesn't completely live up to the theory at present.
Command-line switches and <code>timevar_id_t</code> enumerations must still
be defined elsewhere. The pass manager validates constraints but does
not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless,
what is present is useful, and a far sight better than nothing at all.
<p>Each pass should have a unique name.
Each pass may have its own dump file (for GCC debugging purposes).
Passes with a name starting with a star do not dump anything.
Sometimes passes are supposed to share a dump file / option name.
To still give these unique names, you can use a prefix that is delimited
by a space from the part that is used for the dump file / option name.
E.g. When the pass name is "ud dce", the name used for dump file/options
is "dce".
<p>TODO: describe the global variables set up by the pass manager,
and a brief description of how a new pass should use it.
I need to look at what info RTL passes use first<small class="enddots">...</small>
<div class="node">
<a name="Tree-SSA-passes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RTL-passes">RTL passes</a>,
Previous: <a rel="previous" accesskey="p" href="#Pass-manager">Pass manager</a>,
Up: <a rel="up" accesskey="u" href="#Passes">Passes</a>
</div>
<h3 class="section">9.4 Tree SSA passes</h3>
<p>The following briefly describes the Tree optimization passes that are
run after gimplification and what source files they are located in.
<ul>
<li>Remove useless statements
<p>This pass is an extremely simple sweep across the gimple code in which
we identify obviously dead code and remove it. Here we do things like
simplify <code>if</code> statements with constant conditions, remove
exception handling constructs surrounding code that obviously cannot
throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious
stuff quickly rather than wait until later when it's more work to get
rid of it. This pass is located in <samp><span class="file">tree-cfg.c</span></samp> and described by
<code>pass_remove_useless_stmts</code>.
<li>Mudflap declaration registration
<p>If mudflap (see <a href="{No value for `fngcc'}.html#Optimize-Options">-fmudflap -fmudflapth -fmudflapir</a>) is
enabled, we generate code to register some variable declarations with
the mudflap runtime. Specifically, the runtime tracks the lifetimes of
those variable declarations that have their addresses taken, or whose
bounds are unknown at compile time (<code>extern</code>). This pass generates
new exception handling constructs (<code>try</code>/<code>finally</code>), and so
must run before those are lowered. In addition, the pass enqueues
declarations of static variables whose lifetimes extend to the entire
program. The pass is located in <samp><span class="file">tree-mudflap.c</span></samp> and is described
by <code>pass_mudflap_1</code>.
<li>OpenMP lowering
<p>If OpenMP generation (<samp><span class="option">-fopenmp</span></samp>) is enabled, this pass lowers
OpenMP constructs into GIMPLE.
<p>Lowering of OpenMP constructs involves creating replacement
expressions for local variables that have been mapped using data
sharing clauses, exposing the control flow of most synchronization
directives and adding region markers to facilitate the creation of the
control flow graph. The pass is located in <samp><span class="file">omp-low.c</span></samp> and is
described by <code>pass_lower_omp</code>.
<li>OpenMP expansion
<p>If OpenMP generation (<samp><span class="option">-fopenmp</span></samp>) is enabled, this pass expands
parallel regions into their own functions to be invoked by the thread
library. The pass is located in <samp><span class="file">omp-low.c</span></samp> and is described by
<code>pass_expand_omp</code>.
<li>Lower control flow
<p>This pass flattens <code>if</code> statements (<code>COND_EXPR</code>)
and moves lexical bindings (<code>BIND_EXPR</code>) out of line. After
this pass, all <code>if</code> statements will have exactly two <code>goto</code>
statements in its <code>then</code> and <code>else</code> arms. Lexical binding
information for each statement will be found in <code>TREE_BLOCK</code> rather
than being inferred from its position under a <code>BIND_EXPR</code>. This
pass is found in <samp><span class="file">gimple-low.c</span></samp> and is described by
<code>pass_lower_cf</code>.
<li>Lower exception handling control flow
<p>This pass decomposes high-level exception handling constructs
(<code>TRY_FINALLY_EXPR</code> and <code>TRY_CATCH_EXPR</code>) into a form
that explicitly represents the control flow involved. After this
pass, <code>lookup_stmt_eh_region</code> will return a non-negative
number for any statement that may have EH control flow semantics;
examine <code>tree_can_throw_internal</code> or <code>tree_can_throw_external</code>
for exact semantics. Exact control flow may be extracted from
<code>foreach_reachable_handler</code>. The EH region nesting tree is defined
in <samp><span class="file">except.h</span></samp> and built in <samp><span class="file">except.c</span></samp>. The lowering pass
itself is in <samp><span class="file">tree-eh.c</span></samp> and is described by <code>pass_lower_eh</code>.
<li>Build the control flow graph
<p>This pass decomposes a function into basic blocks and creates all of
the edges that connect them. It is located in <samp><span class="file">tree-cfg.c</span></samp> and
is described by <code>pass_build_cfg</code>.
<li>Find all referenced variables
<p>This pass walks the entire function and collects an array of all
variables referenced in the function, <code>referenced_vars</code>. The
index at which a variable is found in the array is used as a UID
for the variable within this function. This data is needed by the
SSA rewriting routines. The pass is located in <samp><span class="file">tree-dfa.c</span></samp>
and is described by <code>pass_referenced_vars</code>.
<li>Enter static single assignment form
<p>This pass rewrites the function such that it is in SSA form. After
this pass, all <code>is_gimple_reg</code> variables will be referenced by
<code>SSA_NAME</code>, and all occurrences of other variables will be
annotated with <code>VDEFS</code> and <code>VUSES</code>; PHI nodes will have
been inserted as necessary for each basic block. This pass is
located in <samp><span class="file">tree-ssa.c</span></samp> and is described by <code>pass_build_ssa</code>.
<li>Warn for uninitialized variables
<p>This pass scans the function for uses of <code>SSA_NAME</code>s that
are fed by default definition. For non-parameter variables, such
uses are uninitialized. The pass is run twice, before and after
optimization (if turned on). In the first pass we only warn for uses that are
positively uninitialized; in the second pass we warn for uses that
are possibly uninitialized. The pass is located in <samp><span class="file">tree-ssa.c</span></samp>
and is defined by <code>pass_early_warn_uninitialized</code> and
<code>pass_late_warn_uninitialized</code>.
<li>Dead code elimination
<p>This pass scans the function for statements without side effects whose
result is unused. It does not do memory life analysis, so any value
that is stored in memory is considered used. The pass is run multiple
times throughout the optimization process. It is located in
<samp><span class="file">tree-ssa-dce.c</span></samp> and is described by <code>pass_dce</code>.
<li>Dominator optimizations
<p>This pass performs trivial dominator-based copy and constant propagation,
expression simplification, and jump threading. It is run multiple times
throughout the optimization process. It is located in <samp><span class="file">tree-ssa-dom.c</span></samp>
and is described by <code>pass_dominator</code>.
<li>Forward propagation of single-use variables
<p>This pass attempts to remove redundant computation by substituting
variables that are used once into the expression that uses them and
seeing if the result can be simplified. It is located in
<samp><span class="file">tree-ssa-forwprop.c</span></samp> and is described by <code>pass_forwprop</code>.
<li>Copy Renaming
<p>This pass attempts to change the name of compiler temporaries involved in
copy operations such that SSA->normal can coalesce the copy away. When compiler
temporaries are copies of user variables, it also renames the compiler
temporary to the user variable resulting in better use of user symbols. It is
located in <samp><span class="file">tree-ssa-copyrename.c</span></samp> and is described by
<code>pass_copyrename</code>.
<li>PHI node optimizations
<p>This pass recognizes forms of PHI inputs that can be represented as
conditional expressions and rewrites them into straight line code.
It is located in <samp><span class="file">tree-ssa-phiopt.c</span></samp> and is described by
<code>pass_phiopt</code>.
<li>May-alias optimization
<p>This pass performs a flow sensitive SSA-based points-to analysis.
The resulting may-alias, must-alias, and escape analysis information
is used to promote variables from in-memory addressable objects to
non-aliased variables that can be renamed into SSA form. We also
update the <code>VDEF</code>/<code>VUSE</code> memory tags for non-renameable
aggregates so that we get fewer false kills. The pass is located
in <samp><span class="file">tree-ssa-alias.c</span></samp> and is described by <code>pass_may_alias</code>.
<p>Interprocedural points-to information is located in
<samp><span class="file">tree-ssa-structalias.c</span></samp> and described by <code>pass_ipa_pta</code>.
<li>Profiling
<p>This pass rewrites the function in order to collect runtime block
and value profiling data. Such data may be fed back into the compiler
on a subsequent run so as to allow optimization based on expected
execution frequencies. The pass is located in <samp><span class="file">predict.c</span></samp> and
is described by <code>pass_profile</code>.
<li>Lower complex arithmetic
<p>This pass rewrites complex arithmetic operations into their component
scalar arithmetic operations. The pass is located in <samp><span class="file">tree-complex.c</span></samp>
and is described by <code>pass_lower_complex</code>.
<li>Scalar replacement of aggregates
<p>This pass rewrites suitable non-aliased local aggregate variables into
a set of scalar variables. The resulting scalar variables are
rewritten into SSA form, which allows subsequent optimization passes
to do a significantly better job with them. The pass is located in
<samp><span class="file">tree-sra.c</span></samp> and is described by <code>pass_sra</code>.
<li>Dead store elimination
<p>This pass eliminates stores to memory that are subsequently overwritten
by another store, without any intervening loads. The pass is located
in <samp><span class="file">tree-ssa-dse.c</span></samp> and is described by <code>pass_dse</code>.
<li>Tail recursion elimination
<p>This pass transforms tail recursion into a loop. It is located in
<samp><span class="file">tree-tailcall.c</span></samp> and is described by <code>pass_tail_recursion</code>.
<li>Forward store motion
<p>This pass sinks stores and assignments down the flowgraph closer to their
use point. The pass is located in <samp><span class="file">tree-ssa-sink.c</span></samp> and is
described by <code>pass_sink_code</code>.
<li>Partial redundancy elimination
<p>This pass eliminates partially redundant computations, as well as
performing load motion. The pass is located in <samp><span class="file">tree-ssa-pre.c</span></samp>
and is described by <code>pass_pre</code>.
<p>Just before partial redundancy elimination, if
<samp><span class="option">-funsafe-math-optimizations</span></samp> is on, GCC tries to convert
divisions to multiplications by the reciprocal. The pass is located
in <samp><span class="file">tree-ssa-math-opts.c</span></samp> and is described by
<code>pass_cse_reciprocal</code>.
<li>Full redundancy elimination
<p>This is a simpler form of PRE that only eliminates redundancies that
occur an all paths. It is located in <samp><span class="file">tree-ssa-pre.c</span></samp> and
described by <code>pass_fre</code>.
<li>Loop optimization
<p>The main driver of the pass is placed in <samp><span class="file">tree-ssa-loop.c</span></samp>
and described by <code>pass_loop</code>.
<p>The optimizations performed by this pass are:
<p>Loop invariant motion. This pass moves only invariants that
would be hard to handle on RTL level (function calls, operations that expand to
nontrivial sequences of insns). With <samp><span class="option">-funswitch-loops</span></samp> it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion. The pass is implemented in <samp><span class="file">tree-ssa-loop-im.c</span></samp>.
<p>Canonical induction variable creation. This pass creates a simple counter
for number of iterations of the loop and replaces the exit condition of the
loop using it, in case when a complicated analysis is necessary to determine
the number of iterations. Later optimizations then may determine the number
easily. The pass is implemented in <samp><span class="file">tree-ssa-loop-ivcanon.c</span></samp>.
<p>Induction variable optimizations. This pass performs standard induction
variable optimizations, including strength reduction, induction variable
merging and induction variable elimination. The pass is implemented in
<samp><span class="file">tree-ssa-loop-ivopts.c</span></samp>.
<p>Loop unswitching. This pass moves the conditional jumps that are invariant
out of the loops. To achieve this, a duplicate of the loop is created for
each possible outcome of conditional jump(s). The pass is implemented in
<samp><span class="file">tree-ssa-loop-unswitch.c</span></samp>. This pass should eventually replace the
RTL level loop unswitching in <samp><span class="file">loop-unswitch.c</span></samp>, but currently
the RTL level pass is not completely redundant yet due to deficiencies
in tree level alias analysis.
<p>The optimizations also use various utility functions contained in
<samp><span class="file">tree-ssa-loop-manip.c</span></samp>, <samp><span class="file">cfgloop.c</span></samp>, <samp><span class="file">cfgloopanal.c</span></samp> and
<samp><span class="file">cfgloopmanip.c</span></samp>.
<p>Vectorization. This pass transforms loops to operate on vector types
instead of scalar types. Data parallelism across loop iterations is exploited
to group data elements from consecutive iterations into a vector and operate
on them in parallel. Depending on available target support the loop is
conceptually unrolled by a factor <code>VF</code> (vectorization factor), which is
the number of elements operated upon in parallel in each iteration, and the
<code>VF</code> copies of each scalar operation are fused to form a vector operation.
Additional loop transformations such as peeling and versioning may take place
to align the number of iterations, and to align the memory accesses in the
loop.
The pass is implemented in <samp><span class="file">tree-vectorizer.c</span></samp> (the main driver),
<samp><span class="file">tree-vect-loop.c</span></samp> and <samp><span class="file">tree-vect-loop-manip.c</span></samp> (loop specific parts
and general loop utilities), <samp><span class="file">tree-vect-slp</span></samp> (loop-aware SLP
functionality), <samp><span class="file">tree-vect-stmts.c</span></samp> and <samp><span class="file">tree-vect-data-refs.c</span></samp>.
Analysis of data references is in <samp><span class="file">tree-data-ref.c</span></samp>.
<p>SLP Vectorization. This pass performs vectorization of straight-line code. The
pass is implemented in <samp><span class="file">tree-vectorizer.c</span></samp> (the main driver),
<samp><span class="file">tree-vect-slp.c</span></samp>, <samp><span class="file">tree-vect-stmts.c</span></samp> and
<samp><span class="file">tree-vect-data-refs.c</span></samp>.
<p>Autoparallelization. This pass splits the loop iteration space to run
into several threads. The pass is implemented in <samp><span class="file">tree-parloops.c</span></samp>.
<p>Graphite is a loop transformation framework based on the polyhedral
model. Graphite stands for Gimple Represented as Polyhedra. The
internals of this infrastructure are documented in
<a href="http://gcc.gnu.org/wiki/Graphite">http://gcc.gnu.org/wiki/Graphite</a><!-- /@w -->. The passes working on
this representation are implemented in the various <samp><span class="file">graphite-*</span></samp>
files.
<li>Tree level if-conversion for vectorizer
<p>This pass applies if-conversion to simple loops to help vectorizer.
We identify if convertible loops, if-convert statements and merge
basic blocks in one big block. The idea is to present loop in such
form so that vectorizer can have one to one mapping between statements
and available vector operations. This pass is located in
<samp><span class="file">tree-if-conv.c</span></samp> and is described by <code>pass_if_conversion</code>.
<li>Conditional constant propagation
<p>This pass relaxes a lattice of values in order to identify those
that must be constant even in the presence of conditional branches.
The pass is located in <samp><span class="file">tree-ssa-ccp.c</span></samp> and is described
by <code>pass_ccp</code>.
<p>A related pass that works on memory loads and stores, and not just
register values, is located in <samp><span class="file">tree-ssa-ccp.c</span></samp> and described by
<code>pass_store_ccp</code>.
<li>Conditional copy propagation
<p>This is similar to constant propagation but the lattice of values is
the “copy-of” relation. It eliminates redundant copies from the
code. The pass is located in <samp><span class="file">tree-ssa-copy.c</span></samp> and described by
<code>pass_copy_prop</code>.
<p>A related pass that works on memory copies, and not just register
copies, is located in <samp><span class="file">tree-ssa-copy.c</span></samp> and described by
<code>pass_store_copy_prop</code>.
<li>Value range propagation
<p>This transformation is similar to constant propagation but
instead of propagating single constant values, it propagates
known value ranges. The implementation is based on Patterson's
range propagation algorithm (Accurate Static Branch Prediction by
Value Range Propagation, J. R. C. Patterson, PLDI '95). In
contrast to Patterson's algorithm, this implementation does not
propagate branch probabilities nor it uses more than a single
range per SSA name. This means that the current implementation
cannot be used for branch prediction (though adapting it would
not be difficult). The pass is located in <samp><span class="file">tree-vrp.c</span></samp> and is
described by <code>pass_vrp</code>.
<li>Folding built-in functions
<p>This pass simplifies built-in functions, as applicable, with constant
arguments or with inferable string lengths. It is located in
<samp><span class="file">tree-ssa-ccp.c</span></samp> and is described by <code>pass_fold_builtins</code>.
<li>Split critical edges
<p>This pass identifies critical edges and inserts empty basic blocks
such that the edge is no longer critical. The pass is located in
<samp><span class="file">tree-cfg.c</span></samp> and is described by <code>pass_split_crit_edges</code>.
<li>Control dependence dead code elimination
<p>This pass is a stronger form of dead code elimination that can
eliminate unnecessary control flow statements. It is located
in <samp><span class="file">tree-ssa-dce.c</span></samp> and is described by <code>pass_cd_dce</code>.
<li>Tail call elimination
<p>This pass identifies function calls that may be rewritten into
jumps. No code transformation is actually applied here, but the
data and control flow problem is solved. The code transformation
requires target support, and so is delayed until RTL. In the
meantime <code>CALL_EXPR_TAILCALL</code> is set indicating the possibility.
The pass is located in <samp><span class="file">tree-tailcall.c</span></samp> and is described by
<code>pass_tail_calls</code>. The RTL transformation is handled by
<code>fixup_tail_calls</code> in <samp><span class="file">calls.c</span></samp>.
<li>Warn for function return without value
<p>For non-void functions, this pass locates return statements that do
not specify a value and issues a warning. Such a statement may have
been injected by falling off the end of the function. This pass is
run last so that we have as much time as possible to prove that the
statement is not reachable. It is located in <samp><span class="file">tree-cfg.c</span></samp> and
is described by <code>pass_warn_function_return</code>.
<li>Mudflap statement annotation
<p>If mudflap is enabled, we rewrite some memory accesses with code to
validate that the memory access is correct. In particular, expressions
involving pointer dereferences (<code>INDIRECT_REF</code>, <code>ARRAY_REF</code>,
etc.) are replaced by code that checks the selected address range
against the mudflap runtime's database of valid regions. This check
includes an inline lookup into a direct-mapped cache, based on
shift/mask operations of the pointer value, with a fallback function
call into the runtime. The pass is located in <samp><span class="file">tree-mudflap.c</span></samp> and
is described by <code>pass_mudflap_2</code>.
<li>Leave static single assignment form
<p>This pass rewrites the function such that it is in normal form. At
the same time, we eliminate as many single-use temporaries as possible,
so the intermediate language is no longer GIMPLE, but GENERIC. The
pass is located in <samp><span class="file">tree-outof-ssa.c</span></samp> and is described by
<code>pass_del_ssa</code>.
<li>Merge PHI nodes that feed into one another
<p>This is part of the CFG cleanup passes. It attempts to join PHI nodes
from a forwarder CFG block into another block with PHI nodes. The
pass is located in <samp><span class="file">tree-cfgcleanup.c</span></samp> and is described by
<code>pass_merge_phi</code>.
<li>Return value optimization
<p>If a function always returns the same local variable, and that local
variable is an aggregate type, then the variable is replaced with the
return value for the function (i.e., the function's DECL_RESULT). This
is equivalent to the C++ named return value optimization applied to
GIMPLE. The pass is located in <samp><span class="file">tree-nrv.c</span></samp> and is described by
<code>pass_nrv</code>.
<li>Return slot optimization
<p>If a function returns a memory object and is called as <code>var =
foo()</code>, this pass tries to change the call so that the address of
<code>var</code> is sent to the caller to avoid an extra memory copy. This
pass is located in <code>tree-nrv.c</code> and is described by
<code>pass_return_slot</code>.
<li>Optimize calls to <code>__builtin_object_size</code>
<p>This is a propagation pass similar to CCP that tries to remove calls
to <code>__builtin_object_size</code> when the size of the object can be
computed at compile-time. This pass is located in
<samp><span class="file">tree-object-size.c</span></samp> and is described by
<code>pass_object_sizes</code>.
<li>Loop invariant motion
<p>This pass removes expensive loop-invariant computations out of loops.
The pass is located in <samp><span class="file">tree-ssa-loop.c</span></samp> and described by
<code>pass_lim</code>.
<li>Loop nest optimizations
<p>This is a family of loop transformations that works on loop nests. It
includes loop interchange, scaling, skewing and reversal and they are
all geared to the optimization of data locality in array traversals
and the removal of dependencies that hamper optimizations such as loop
parallelization and vectorization. The pass is located in
<samp><span class="file">tree-loop-linear.c</span></samp> and described by
<code>pass_linear_transform</code>.
<li>Removal of empty loops
<p>This pass removes loops with no code in them. The pass is located in
<samp><span class="file">tree-ssa-loop-ivcanon.c</span></samp> and described by
<code>pass_empty_loop</code>.
<li>Unrolling of small loops
<p>This pass completely unrolls loops with few iterations. The pass
is located in <samp><span class="file">tree-ssa-loop-ivcanon.c</span></samp> and described by
<code>pass_complete_unroll</code>.
<li>Predictive commoning
<p>This pass makes the code reuse the computations from the previous
iterations of the loops, especially loads and stores to memory.
It does so by storing the values of these computations to a bank
of temporary variables that are rotated at the end of loop. To avoid
the need for this rotation, the loop is then unrolled and the copies
of the loop body are rewritten to use the appropriate version of
the temporary variable. This pass is located in <samp><span class="file">tree-predcom.c</span></samp>
and described by <code>pass_predcom</code>.
<li>Array prefetching
<p>This pass issues prefetch instructions for array references inside
loops. The pass is located in <samp><span class="file">tree-ssa-loop-prefetch.c</span></samp> and
described by <code>pass_loop_prefetch</code>.
<li>Reassociation
<p>This pass rewrites arithmetic expressions to enable optimizations that
operate on them, like redundancy elimination and vectorization. The
pass is located in <samp><span class="file">tree-ssa-reassoc.c</span></samp> and described by
<code>pass_reassoc</code>.
<li>Optimization of <code>stdarg</code> functions
<p>This pass tries to avoid the saving of register arguments into the
stack on entry to <code>stdarg</code> functions. If the function doesn't
use any <code>va_start</code> macros, no registers need to be saved. If
<code>va_start</code> macros are used, the <code>va_list</code> variables don't
escape the function, it is only necessary to save registers that will
be used in <code>va_arg</code> macros. For instance, if <code>va_arg</code> is
only used with integral types in the function, floating point
registers don't need to be saved. This pass is located in
<code>tree-stdarg.c</code> and described by <code>pass_stdarg</code>.
</ul>
<div class="node">
<a name="RTL-passes"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Tree-SSA-passes">Tree SSA passes</a>,
Up: <a rel="up" accesskey="u" href="#Passes">Passes</a>
</div>
<h3 class="section">9.5 RTL passes</h3>
<p>The following briefly describes the RTL generation and optimization
passes that are run after the Tree optimization passes.
<ul>
<li>RTL generation
<!-- Avoiding overfull is tricky here. -->
<p>The source files for RTL generation include
<samp><span class="file">stmt.c</span></samp>,
<samp><span class="file">calls.c</span></samp>,
<samp><span class="file">expr.c</span></samp>,
<samp><span class="file">explow.c</span></samp>,
<samp><span class="file">expmed.c</span></samp>,
<samp><span class="file">function.c</span></samp>,
<samp><span class="file">optabs.c</span></samp>
and <samp><span class="file">emit-rtl.c</span></samp>.
Also, the file
<samp><span class="file">insn-emit.c</span></samp>, generated from the machine description by the
program <code>genemit</code>, is used in this pass. The header file
<samp><span class="file">expr.h</span></samp> is used for communication within this pass.
<p><a name="index-genflags-1687"></a><a name="index-gencodes-1688"></a>The header files <samp><span class="file">insn-flags.h</span></samp> and <samp><span class="file">insn-codes.h</span></samp>,
generated from the machine description by the programs <code>genflags</code>
and <code>gencodes</code>, tell this pass which standard names are available
for use and which patterns correspond to them.
<li>Generation of exception landing pads
<p>This pass generates the glue that handles communication between the
exception handling library routines and the exception handlers within
the function. Entry points in the function that are invoked by the
exception handling library are called <dfn>landing pads</dfn>. The code
for this pass is located in <samp><span class="file">except.c</span></samp>.
<li>Control flow graph cleanup
<p>This pass removes unreachable code, simplifies jumps to next, jumps to
jump, jumps across jumps, etc. The pass is run multiple times.
For historical reasons, it is occasionally referred to as the “jump
optimization pass”. The bulk of the code for this pass is in
<samp><span class="file">cfgcleanup.c</span></samp>, and there are support routines in <samp><span class="file">cfgrtl.c</span></samp>
and <samp><span class="file">jump.c</span></samp>.
<li>Forward propagation of single-def values
<p>This pass attempts to remove redundant computation by substituting
variables that come from a single definition, and
seeing if the result can be simplified. It performs copy propagation
and addressing mode selection. The pass is run twice, with values
being propagated into loops only on the second run. The code is
located in <samp><span class="file">fwprop.c</span></samp>.
<li>Common subexpression elimination
<p>This pass removes redundant computation within basic blocks, and
optimizes addressing modes based on cost. The pass is run twice.
The code for this pass is located in <samp><span class="file">cse.c</span></samp>.
<li>Global common subexpression elimination
<p>This pass performs two
different types of GCSE depending on whether you are optimizing for
size or not (LCM based GCSE tends to increase code size for a gain in
speed, while Morel-Renvoise based GCSE does not).
When optimizing for size, GCSE is done using Morel-Renvoise Partial
Redundancy Elimination, with the exception that it does not try to move
invariants out of loops—that is left to the loop optimization pass.
If MR PRE GCSE is done, code hoisting (aka unification) is also done, as
well as load motion.
If you are optimizing for speed, LCM (lazy code motion) based GCSE is
done. LCM is based on the work of Knoop, Ruthing, and Steffen. LCM
based GCSE also does loop invariant code motion. We also perform load
and store motion when optimizing for speed.
Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation.
The source file for this pass is <samp><span class="file">gcse.c</span></samp>, and the LCM routines
are in <samp><span class="file">lcm.c</span></samp>.
<li>Loop optimization
<p>This pass performs several loop related optimizations.
The source files <samp><span class="file">cfgloopanal.c</span></samp> and <samp><span class="file">cfgloopmanip.c</span></samp> contain
generic loop analysis and manipulation code. Initialization and finalization
of loop structures is handled by <samp><span class="file">loop-init.c</span></samp>.
A loop invariant motion pass is implemented in <samp><span class="file">loop-invariant.c</span></samp>.
Basic block level optimizations—unrolling, peeling and unswitching loops—
are implemented in <samp><span class="file">loop-unswitch.c</span></samp> and <samp><span class="file">loop-unroll.c</span></samp>.
Replacing of the exit condition of loops by special machine-dependent
instructions is handled by <samp><span class="file">loop-doloop.c</span></samp>.
<li>Jump bypassing
<p>This pass is an aggressive form of GCSE that transforms the control
flow graph of a function by propagating constants into conditional
branch instructions. The source file for this pass is <samp><span class="file">gcse.c</span></samp>.
<li>If conversion
<p>This pass attempts to replace conditional branches and surrounding
assignments with arithmetic, boolean value producing comparison
instructions, and conditional move instructions. In the very last
invocation after reload, it will generate predicated instructions
when supported by the target. The code is located in <samp><span class="file">ifcvt.c</span></samp>.
<li>Web construction
<p>This pass splits independent uses of each pseudo-register. This can
improve effect of the other transformation, such as CSE or register
allocation. The code for this pass is located in <samp><span class="file">web.c</span></samp>.
<li>Instruction combination
<p>This pass attempts to combine groups of two or three instructions that
are related by data flow into single instructions. It combines the
RTL expressions for the instructions by substitution, simplifies the
result using algebra, and then attempts to match the result against
the machine description. The code is located in <samp><span class="file">combine.c</span></samp>.
<li>Register movement
<p>This pass looks for cases where matching constraints would force an
instruction to need a reload, and this reload would be a
register-to-register move. It then attempts to change the registers
used by the instruction to avoid the move instruction. The code is
located in <samp><span class="file">regmove.c</span></samp>.
<li>Mode switching optimization
<p>This pass looks for instructions that require the processor to be in a
specific “mode” and minimizes the number of mode changes required to
satisfy all users. What these modes are, and what they apply to are
completely target-specific. The code for this pass is located in
<samp><span class="file">mode-switching.c</span></samp>.
<p><a name="index-modulo-scheduling-1689"></a><a name="index-sms_002c-swing_002c-software-pipelining-1690"></a><li>Modulo scheduling
<p>This pass looks at innermost loops and reorders their instructions
by overlapping different iterations. Modulo scheduling is performed
immediately before instruction scheduling. The code for this pass is
located in <samp><span class="file">modulo-sched.c</span></samp>.
<li>Instruction scheduling
<p>This pass looks for instructions whose output will not be available by
the time that it is used in subsequent instructions. Memory loads and
floating point instructions often have this behavior on RISC machines.
It re-orders instructions within a basic block to try to separate the
definition and use of items that otherwise would cause pipeline
stalls. This pass is performed twice, before and after register
allocation. The code for this pass is located in <samp><span class="file">haifa-sched.c</span></samp>,
<samp><span class="file">sched-deps.c</span></samp>, <samp><span class="file">sched-ebb.c</span></samp>, <samp><span class="file">sched-rgn.c</span></samp> and
<samp><span class="file">sched-vis.c</span></samp>.
<li>Register allocation
<p>These passes make sure that all occurrences of pseudo registers are
eliminated, either by allocating them to a hard register, replacing
them by an equivalent expression (e.g. a constant) or by placing
them on the stack. This is done in several subpasses:
<ul>
<li>Register move optimizations. This pass makes some simple RTL code
transformations which improve the subsequent register allocation. The
source file is <samp><span class="file">regmove.c</span></samp>.
<li>The integrated register allocator (<acronym>IRA</acronym>). It is called
integrated because coalescing, register live range splitting, and hard
register preferencing are done on-the-fly during coloring. It also
has better integration with the reload pass. Pseudo-registers spilled
by the allocator or the reload have still a chance to get
hard-registers if the reload evicts some pseudo-registers from
hard-registers. The allocator helps to choose better pseudos for
spilling based on their live ranges and to coalesce stack slots
allocated for the spilled pseudo-registers. IRA is a regional
register allocator which is transformed into Chaitin-Briggs allocator
if there is one region. By default, IRA chooses regions using
register pressure but the user can force it to use one region or
regions corresponding to all loops.
<p>Source files of the allocator are <samp><span class="file">ira.c</span></samp>, <samp><span class="file">ira-build.c</span></samp>,
<samp><span class="file">ira-costs.c</span></samp>, <samp><span class="file">ira-conflicts.c</span></samp>, <samp><span class="file">ira-color.c</span></samp>,
<samp><span class="file">ira-emit.c</span></samp>, <samp><span class="file">ira-lives</span></samp>, plus header files <samp><span class="file">ira.h</span></samp>
and <samp><span class="file">ira-int.h</span></samp> used for the communication between the allocator
and the rest of the compiler and between the IRA files.
<p><a name="index-reloading-1691"></a><li>Reloading. This pass renumbers pseudo registers with the hardware
registers numbers they were allocated. Pseudo registers that did not
get hard registers are replaced with stack slots. Then it finds
instructions that are invalid because a value has failed to end up in
a register, or has ended up in a register of the wrong kind. It fixes
up these instructions by reloading the problematical values
temporarily into registers. Additional instructions are generated to
do the copying.
<p>The reload pass also optionally eliminates the frame pointer and inserts
instructions to save and restore call-clobbered registers around calls.
<p>Source files are <samp><span class="file">reload.c</span></samp> and <samp><span class="file">reload1.c</span></samp>, plus the header
<samp><span class="file">reload.h</span></samp> used for communication between them.
</ul>
<li>Basic block reordering
<p>This pass implements profile guided code positioning. If profile
information is not available, various types of static analysis are
performed to make the predictions normally coming from the profile
feedback (IE execution frequency, branch probability, etc). It is
implemented in the file <samp><span class="file">bb-reorder.c</span></samp>, and the various
prediction routines are in <samp><span class="file">predict.c</span></samp>.
<li>Variable tracking
<p>This pass computes where the variables are stored at each
position in code and generates notes describing the variable locations
to RTL code. The location lists are then generated according to these
notes to debug information if the debugging information format supports
location lists. The code is located in <samp><span class="file">var-tracking.c</span></samp>.
<li>Delayed branch scheduling
<p>This optional pass attempts to find instructions that can go into the
delay slots of other instructions, usually jumps and calls. The code
for this pass is located in <samp><span class="file">reorg.c</span></samp>.
<li>Branch shortening
<p>On many RISC machines, branch instructions have a limited range.
Thus, longer sequences of instructions must be used for long branches.
In this pass, the compiler figures out what how far each instruction
will be from each other instruction, and therefore whether the usual
instructions, or the longer sequences, must be used for each branch.
The code for this pass is located in <samp><span class="file">final.c</span></samp>.
<li>Register-to-stack conversion
<p>Conversion from usage of some hard registers to usage of a register
stack may be done at this point. Currently, this is supported only
for the floating-point registers of the Intel 80387 coprocessor. The
code for this pass is located in <samp><span class="file">reg-stack.c</span></samp>.
<li>Final
<p>This pass outputs the assembler code for the function. The source files
are <samp><span class="file">final.c</span></samp> plus <samp><span class="file">insn-output.c</span></samp>; the latter is generated
automatically from the machine description by the tool <samp><span class="file">genoutput</span></samp>.
The header file <samp><span class="file">conditions.h</span></samp> is used for communication between
these files. If mudflap is enabled, the queue of deferred declarations
and any addressed constants (e.g., string literals) is processed by
<code>mudflap_finish_file</code> into a synthetic constructor function
containing calls into the mudflap runtime.
<li>Debugging information output
<p>This is run after final because it must output the stack slot offsets
for pseudo registers that did not get hard registers. Source files
are <samp><span class="file">dbxout.c</span></samp> for DBX symbol table format, <samp><span class="file">sdbout.c</span></samp> for
SDB symbol table format, <samp><span class="file">dwarfout.c</span></samp> for DWARF symbol table
format, files <samp><span class="file">dwarf2out.c</span></samp> and <samp><span class="file">dwarf2asm.c</span></samp> for DWARF2
symbol table format, and <samp><span class="file">vmsdbgout.c</span></samp> for VMS debug symbol table
format.
</ul>
<!-- Copyright (C) 1988, 1989, 1992, 1994, 1997, 1998, 1999, 2000, 2001, 2002, -->
<!-- 2003, 2004, 2005, 2006, 2007, 2008, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="RTL"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Control-Flow">Control Flow</a>,
Previous: <a rel="previous" accesskey="p" href="#Tree-SSA">Tree SSA</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">10 RTL Representation</h2>
<p><a name="index-RTL-representation-1692"></a><a name="index-representation-of-RTL-1693"></a><a name="index-Register-Transfer-Language-_0028RTL_0029-1694"></a>
The last part of the compiler work is done on a low-level intermediate
representation called Register Transfer Language. In this language, the
instructions to be output are described, pretty much one by one, in an
algebraic form that describes what the instruction does.
<p>RTL is inspired by Lisp lists. It has both an internal form, made up of
structures that point at other structures, and a textual form that is used
in the machine description and in printed debugging dumps. The textual
form uses nested parentheses to indicate the pointers in the internal form.
<ul class="menu">
<li><a accesskey="1" href="#RTL-Objects">RTL Objects</a>: Expressions vs vectors vs strings vs integers.
<li><a accesskey="2" href="#RTL-Classes">RTL Classes</a>: Categories of RTL expression objects, and their structure.
<li><a accesskey="3" href="#Accessors">Accessors</a>: Macros to access expression operands or vector elts.
<li><a accesskey="4" href="#Special-Accessors">Special Accessors</a>: Macros to access specific annotations on RTL.
<li><a accesskey="5" href="#Flags">Flags</a>: Other flags in an RTL expression.
<li><a accesskey="6" href="#Machine-Modes">Machine Modes</a>: Describing the size and format of a datum.
<li><a accesskey="7" href="#Constants">Constants</a>: Expressions with constant values.
<li><a accesskey="8" href="#Regs-and-Memory">Regs and Memory</a>: Expressions representing register contents or memory.
<li><a accesskey="9" href="#Arithmetic">Arithmetic</a>: Expressions representing arithmetic on other expressions.
<li><a href="#Comparisons">Comparisons</a>: Expressions representing comparison of expressions.
<li><a href="#Bit_002dFields">Bit-Fields</a>: Expressions representing bit-fields in memory or reg.
<li><a href="#Vector-Operations">Vector Operations</a>: Expressions involving vector datatypes.
<li><a href="#Conversions">Conversions</a>: Extending, truncating, floating or fixing.
<li><a href="#RTL-Declarations">RTL Declarations</a>: Declaring volatility, constancy, etc.
<li><a href="#Side-Effects">Side Effects</a>: Expressions for storing in registers, etc.
<li><a href="#Incdec">Incdec</a>: Embedded side-effects for autoincrement addressing.
<li><a href="#Assembler">Assembler</a>: Representing <code>asm</code> with operands.
<li><a href="#Debug-Information">Debug Information</a>: Expressions representing debugging information.
<li><a href="#Insns">Insns</a>: Expression types for entire insns.
<li><a href="#Calls">Calls</a>: RTL representation of function call insns.
<li><a href="#Sharing">Sharing</a>: Some expressions are unique; others *must* be copied.
<li><a href="#Reading-RTL">Reading RTL</a>: Reading textual RTL from a file.
</ul>
<div class="node">
<a name="RTL-Objects"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RTL-Classes">RTL Classes</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.1 RTL Object Types</h3>
<p><a name="index-RTL-object-types-1695"></a>
<a name="index-RTL-integers-1696"></a><a name="index-RTL-strings-1697"></a><a name="index-RTL-vectors-1698"></a><a name="index-RTL-expression-1699"></a><a name="index-RTX-_0028See-RTL_0029-1700"></a>RTL uses five kinds of objects: expressions, integers, wide integers,
strings and vectors. Expressions are the most important ones. An RTL
expression (“RTX”, for short) is a C structure, but it is usually
referred to with a pointer; a type that is given the typedef name
<code>rtx</code>.
<p>An integer is simply an <code>int</code>; their written form uses decimal
digits. A wide integer is an integral object whose type is
<code>HOST_WIDE_INT</code>; their written form uses decimal digits.
<p>A string is a sequence of characters. In core it is represented as a
<code>char *</code> in usual C fashion, and it is written in C syntax as well.
However, strings in RTL may never be null. If you write an empty string in
a machine description, it is represented in core as a null pointer rather
than as a pointer to a null character. In certain contexts, these null
pointers instead of strings are valid. Within RTL code, strings are most
commonly found inside <code>symbol_ref</code> expressions, but they appear in
other contexts in the RTL expressions that make up machine descriptions.
<p>In a machine description, strings are normally written with double
quotes, as you would in C. However, strings in machine descriptions may
extend over many lines, which is invalid C, and adjacent string
constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this
makes the machine description easier to read.
<p>There is also a special syntax for strings, which can be useful when C
code is embedded in a machine description. Wherever a string can
appear, it is also valid to write a C-style brace block. The entire
brace block, including the outermost pair of braces, is considered to be
the string constant. Double quote characters inside the braces are not
special. Therefore, if you write string constants in the C code, you
need not escape each quote character with a backslash.
<p>A vector contains an arbitrary number of pointers to expressions. The
number of elements in the vector is explicitly present in the vector.
The written form of a vector consists of square brackets
(‘<samp><span class="samp">[...]</span></samp>’) surrounding the elements, in sequence and with
whitespace separating them. Vectors of length zero are not created;
null pointers are used instead.
<p><a name="index-expression-codes-1701"></a><a name="index-codes_002c-RTL-expression-1702"></a><a name="index-GET_005fCODE-1703"></a><a name="index-PUT_005fCODE-1704"></a>Expressions are classified by <dfn>expression codes</dfn> (also called RTX
codes). The expression code is a name defined in <samp><span class="file">rtl.def</span></samp>, which is
also (in uppercase) a C enumeration constant. The possible expression
codes and their meanings are machine-independent. The code of an RTX can
be extracted with the macro <code>GET_CODE (</code><var>x</var><code>)</code> and altered with
<code>PUT_CODE (</code><var>x</var><code>, </code><var>newcode</var><code>)</code>.
<p>The expression code determines how many operands the expression contains,
and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell
by looking at an operand what kind of object it is. Instead, you must know
from its context—from the expression code of the containing expression.
For example, in an expression of code <code>subreg</code>, the first operand is
to be regarded as an expression and the second operand as an integer. In
an expression of code <code>plus</code>, there are two operands, both of which
are to be regarded as expressions. In a <code>symbol_ref</code> expression,
there is one operand, which is to be regarded as a string.
<p>Expressions are written as parentheses containing the name of the
expression type, its flags and machine mode if any, and then the operands
of the expression (separated by spaces).
<p>Expression code names in the ‘<samp><span class="samp">md</span></samp>’ file are written in lowercase,
but when they appear in C code they are written in uppercase. In this
manual, they are shown as follows: <code>const_int</code>.
<p><a name="index-g_t_0028nil_0029-1705"></a><a name="index-nil-1706"></a>In a few contexts a null pointer is valid where an expression is normally
wanted. The written form of this is <code>(nil)</code>.
<div class="node">
<a name="RTL-Classes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Accessors">Accessors</a>,
Previous: <a rel="previous" accesskey="p" href="#RTL-Objects">RTL Objects</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.2 RTL Classes and Formats</h3>
<p><a name="index-RTL-classes-1707"></a><a name="index-classes-of-RTX-codes-1708"></a><a name="index-RTX-codes_002c-classes-of-1709"></a><a name="index-GET_005fRTX_005fCLASS-1710"></a>
The various expression codes are divided into several <dfn>classes</dfn>,
which are represented by single characters. You can determine the class
of an RTX code with the macro <code>GET_RTX_CLASS (</code><var>code</var><code>)</code>.
Currently, <samp><span class="file">rtl.def</span></samp> defines these classes:
<dl>
<dt><code>RTX_OBJ</code><dd>An RTX code that represents an actual object, such as a register
(<code>REG</code>) or a memory location (<code>MEM</code>, <code>SYMBOL_REF</code>).
<code>LO_SUM</code>) is also included; instead, <code>SUBREG</code> and
<code>STRICT_LOW_PART</code> are not in this class, but in class <code>x</code>.
<br><dt><code>RTX_CONST_OBJ</code><dd>An RTX code that represents a constant object. <code>HIGH</code> is also
included in this class.
<br><dt><code>RTX_COMPARE</code><dd>An RTX code for a non-symmetric comparison, such as <code>GEU</code> or
<code>LT</code>.
<br><dt><code>RTX_COMM_COMPARE</code><dd>An RTX code for a symmetric (commutative) comparison, such as <code>EQ</code>
or <code>ORDERED</code>.
<br><dt><code>RTX_UNARY</code><dd>An RTX code for a unary arithmetic operation, such as <code>NEG</code>,
<code>NOT</code>, or <code>ABS</code>. This category also includes value extension
(sign or zero) and conversions between integer and floating point.
<br><dt><code>RTX_COMM_ARITH</code><dd>An RTX code for a commutative binary operation, such as <code>PLUS</code> or
<code>AND</code>. <code>NE</code> and <code>EQ</code> are comparisons, so they have class
<code><</code>.
<br><dt><code>RTX_BIN_ARITH</code><dd>An RTX code for a non-commutative binary operation, such as <code>MINUS</code>,
<code>DIV</code>, or <code>ASHIFTRT</code>.
<br><dt><code>RTX_BITFIELD_OPS</code><dd>An RTX code for a bit-field operation. Currently only
<code>ZERO_EXTRACT</code> and <code>SIGN_EXTRACT</code>. These have three inputs
and are lvalues (so they can be used for insertion as well).
See <a href="#Bit_002dFields">Bit-Fields</a>.
<br><dt><code>RTX_TERNARY</code><dd>An RTX code for other three input operations. Currently only
<code>IF_THEN_ELSE</code>, <code>VEC_MERGE</code>, <code>SIGN_EXTRACT</code>,
<code>ZERO_EXTRACT</code>, and <code>FMA</code>.
<br><dt><code>RTX_INSN</code><dd>An RTX code for an entire instruction: <code>INSN</code>, <code>JUMP_INSN</code>, and
<code>CALL_INSN</code>. See <a href="#Insns">Insns</a>.
<br><dt><code>RTX_MATCH</code><dd>An RTX code for something that matches in insns, such as
<code>MATCH_DUP</code>. These only occur in machine descriptions.
<br><dt><code>RTX_AUTOINC</code><dd>An RTX code for an auto-increment addressing mode, such as
<code>POST_INC</code>.
<br><dt><code>RTX_EXTRA</code><dd>All other RTX codes. This category includes the remaining codes used
only in machine descriptions (<code>DEFINE_*</code>, etc.). It also includes
all the codes describing side effects (<code>SET</code>, <code>USE</code>,
<code>CLOBBER</code>, etc.) and the non-insns that may appear on an insn
chain, such as <code>NOTE</code>, <code>BARRIER</code>, and <code>CODE_LABEL</code>.
<code>SUBREG</code> is also part of this class.
</dl>
<p><a name="index-RTL-format-1711"></a>For each expression code, <samp><span class="file">rtl.def</span></samp> specifies the number of
contained objects and their kinds using a sequence of characters
called the <dfn>format</dfn> of the expression code. For example,
the format of <code>subreg</code> is ‘<samp><span class="samp">ei</span></samp>’.
<p><a name="index-RTL-format-characters-1712"></a>These are the most commonly used format characters:
<dl>
<dt><code>e</code><dd>An expression (actually a pointer to an expression).
<br><dt><code>i</code><dd>An integer.
<br><dt><code>w</code><dd>A wide integer.
<br><dt><code>s</code><dd>A string.
<br><dt><code>E</code><dd>A vector of expressions.
</dl>
<p>A few other format characters are used occasionally:
<dl>
<dt><code>u</code><dd>‘<samp><span class="samp">u</span></samp>’ is equivalent to ‘<samp><span class="samp">e</span></samp>’ except that it is printed differently
in debugging dumps. It is used for pointers to insns.
<br><dt><code>n</code><dd>‘<samp><span class="samp">n</span></samp>’ is equivalent to ‘<samp><span class="samp">i</span></samp>’ except that it is printed differently
in debugging dumps. It is used for the line number or code number of a
<code>note</code> insn.
<br><dt><code>S</code><dd>‘<samp><span class="samp">S</span></samp>’ indicates a string which is optional. In the RTL objects in
core, ‘<samp><span class="samp">S</span></samp>’ is equivalent to ‘<samp><span class="samp">s</span></samp>’, but when the object is read,
from an ‘<samp><span class="samp">md</span></samp>’ file, the string value of this operand may be omitted.
An omitted string is taken to be the null string.
<br><dt><code>V</code><dd>‘<samp><span class="samp">V</span></samp>’ indicates a vector which is optional. In the RTL objects in
core, ‘<samp><span class="samp">V</span></samp>’ is equivalent to ‘<samp><span class="samp">E</span></samp>’, but when the object is read
from an ‘<samp><span class="samp">md</span></samp>’ file, the vector value of this operand may be omitted.
An omitted vector is effectively the same as a vector of no elements.
<br><dt><code>B</code><dd>‘<samp><span class="samp">B</span></samp>’ indicates a pointer to basic block structure.
<br><dt><code>0</code><dd>‘<samp><span class="samp">0</span></samp>’ means a slot whose contents do not fit any normal category.
‘<samp><span class="samp">0</span></samp>’ slots are not printed at all in dumps, and are often used in
special ways by small parts of the compiler.
</dl>
<p>There are macros to get the number of operands and the format
of an expression code:
<a name="index-GET_005fRTX_005fLENGTH-1713"></a>
<dl><dt><code>GET_RTX_LENGTH (</code><var>code</var><code>)</code><dd>Number of operands of an RTX of code <var>code</var>.
<p><a name="index-GET_005fRTX_005fFORMAT-1714"></a><br><dt><code>GET_RTX_FORMAT (</code><var>code</var><code>)</code><dd>The format of an RTX of code <var>code</var>, as a C string.
</dl>
<p>Some classes of RTX codes always have the same format. For example, it
is safe to assume that all comparison operations have format <code>ee</code>.
<dl>
<dt><code>1</code><dd>All codes of this class have format <code>e</code>.
<br><dt><code><</code><dt><code>c</code><dt><code>2</code><dd>All codes of these classes have format <code>ee</code>.
<br><dt><code>b</code><dt><code>3</code><dd>All codes of these classes have format <code>eee</code>.
<br><dt><code>i</code><dd>All codes of this class have formats that begin with <code>iuueiee</code>.
See <a href="#Insns">Insns</a>. Note that not all RTL objects linked onto an insn chain
are of class <code>i</code>.
<br><dt><code>o</code><dt><code>m</code><dt><code>x</code><dd>You can make no assumptions about the format of these codes.
</dl>
<div class="node">
<a name="Accessors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Special-Accessors">Special Accessors</a>,
Previous: <a rel="previous" accesskey="p" href="#RTL-Classes">RTL Classes</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.3 Access to Operands</h3>
<p><a name="index-accessors-1715"></a><a name="index-access-to-operands-1716"></a><a name="index-operand-access-1717"></a>
<a name="index-XEXP-1718"></a><a name="index-XINT-1719"></a><a name="index-XWINT-1720"></a><a name="index-XSTR-1721"></a>Operands of expressions are accessed using the macros <code>XEXP</code>,
<code>XINT</code>, <code>XWINT</code> and <code>XSTR</code>. Each of these macros takes
two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,
<pre class="smallexample"> XEXP (<var>x</var>, 2)
</pre>
<p class="noindent">accesses operand 2 of expression <var>x</var>, as an expression.
<pre class="smallexample"> XINT (<var>x</var>, 2)
</pre>
<p class="noindent">accesses the same operand as an integer. <code>XSTR</code>, used in the same
fashion, would access it as a string.
<p>Any operand can be accessed as an integer, as an expression or as a string.
You must choose the correct method of access for the kind of value actually
stored in the operand. You would do this based on the expression code of
the containing expression. That is also how you would know how many
operands there are.
<p>For example, if <var>x</var> is a <code>subreg</code> expression, you know that it has
two operands which can be correctly accessed as <code>XEXP (</code><var>x</var><code>, 0)</code>
and <code>XINT (</code><var>x</var><code>, 1)</code>. If you did <code>XINT (</code><var>x</var><code>, 0)</code>, you
would get the address of the expression operand but cast as an integer;
that might occasionally be useful, but it would be cleaner to write
<code>(int) XEXP (</code><var>x</var><code>, 0)</code>. <code>XEXP (</code><var>x</var><code>, 1)</code> would also
compile without error, and would return the second, integer operand cast as
an expression pointer, which would probably result in a crash when
accessed. Nothing stops you from writing <code>XEXP (</code><var>x</var><code>, 28)</code> either,
but this will access memory past the end of the expression with
unpredictable results.
<p>Access to operands which are vectors is more complicated. You can use the
macro <code>XVEC</code> to get the vector-pointer itself, or the macros
<code>XVECEXP</code> and <code>XVECLEN</code> to access the elements and length of a
vector.
<a name="index-XVEC-1722"></a>
<dl><dt><code>XVEC (</code><var>exp</var><code>, </code><var>idx</var><code>)</code><dd>Access the vector-pointer which is operand number <var>idx</var> in <var>exp</var>.
<p><a name="index-XVECLEN-1723"></a><br><dt><code>XVECLEN (</code><var>exp</var><code>, </code><var>idx</var><code>)</code><dd>Access the length (number of elements) in the vector which is
in operand number <var>idx</var> in <var>exp</var>. This value is an <code>int</code>.
<p><a name="index-XVECEXP-1724"></a><br><dt><code>XVECEXP (</code><var>exp</var><code>, </code><var>idx</var><code>, </code><var>eltnum</var><code>)</code><dd>Access element number <var>eltnum</var> in the vector which is
in operand number <var>idx</var> in <var>exp</var>. This value is an RTX.
<p>It is up to you to make sure that <var>eltnum</var> is not negative
and is less than <code>XVECLEN (</code><var>exp</var><code>, </code><var>idx</var><code>)</code>.
</dl>
<p>All the macros defined in this section expand into lvalues and therefore
can be used to assign the operands, lengths and vector elements as well as
to access them.
<div class="node">
<a name="Special-Accessors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Flags">Flags</a>,
Previous: <a rel="previous" accesskey="p" href="#Accessors">Accessors</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.4 Access to Special Operands</h3>
<p><a name="index-access-to-special-operands-1725"></a>
Some RTL nodes have special annotations associated with them.
<dl>
<dt><code>MEM</code><dd>
<a name="index-MEM_005fALIAS_005fSET-1726"></a>
<dl><dt><code>MEM_ALIAS_SET (</code><var>x</var><code>)</code><dd>If 0, <var>x</var> is not in any alias set, and may alias anything. Otherwise,
<var>x</var> can only alias <code>MEM</code>s in a conflicting alias set. This value
is set in a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may correspond
in some way to types, or other language-level entities, but they need not,
and the back-end makes no such assumptions.
These set numbers are tested with <code>alias_sets_conflict_p</code>.
<p><a name="index-MEM_005fEXPR-1727"></a><br><dt><code>MEM_EXPR (</code><var>x</var><code>)</code><dd>If this register is known to hold the value of some user-level
declaration, this is that tree node. It may also be a
<code>COMPONENT_REF</code>, in which case this is some field reference,
and <code>TREE_OPERAND (</code><var>x</var><code>, 0)</code> contains the declaration,
or another <code>COMPONENT_REF</code>, or null if there is no compile-time
object associated with the reference.
<p><a name="index-MEM_005fOFFSET-1728"></a><br><dt><code>MEM_OFFSET (</code><var>x</var><code>)</code><dd>The offset from the start of <code>MEM_EXPR</code> as a <code>CONST_INT</code> rtx.
<p><a name="index-MEM_005fSIZE-1729"></a><br><dt><code>MEM_SIZE (</code><var>x</var><code>)</code><dd>The size in bytes of the memory reference as a <code>CONST_INT</code> rtx.
This is mostly relevant for <code>BLKmode</code> references as otherwise
the size is implied by the mode.
<p><a name="index-MEM_005fALIGN-1730"></a><br><dt><code>MEM_ALIGN (</code><var>x</var><code>)</code><dd>The known alignment in bits of the memory reference.
<p><a name="index-MEM_005fADDR_005fSPACE-1731"></a><br><dt><code>MEM_ADDR_SPACE (</code><var>x</var><code>)</code><dd>The address space of the memory reference. This will commonly be zero
for the generic address space.
</dl>
<br><dt><code>REG</code><dd>
<a name="index-ORIGINAL_005fREGNO-1732"></a>
<dl><dt><code>ORIGINAL_REGNO (</code><var>x</var><code>)</code><dd>This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.
<p><a name="index-REG_005fEXPR-1733"></a><br><dt><code>REG_EXPR (</code><var>x</var><code>)</code><dd>If this register is known to hold the value of some user-level
declaration, this is that tree node.
<p><a name="index-REG_005fOFFSET-1734"></a><br><dt><code>REG_OFFSET (</code><var>x</var><code>)</code><dd>If this register is known to hold the value of some user-level
declaration, this is the offset into that logical storage.
</dl>
<br><dt><code>SYMBOL_REF</code><dd>
<a name="index-SYMBOL_005fREF_005fDECL-1735"></a>
<dl><dt><code>SYMBOL_REF_DECL (</code><var>x</var><code>)</code><dd>If the <code>symbol_ref</code> <var>x</var> was created for a <code>VAR_DECL</code> or
a <code>FUNCTION_DECL</code>, that tree is recorded here. If this value is
null, then <var>x</var> was created by back end code generation routines,
and there is no associated front end symbol table entry.
<p><code>SYMBOL_REF_DECL</code> may also point to a tree of class <code>'c'</code>,
that is, some sort of constant. In this case, the <code>symbol_ref</code>
is an entry in the per-file constant pool; again, there is no associated
front end symbol table entry.
<p><a name="index-SYMBOL_005fREF_005fCONSTANT-1736"></a><br><dt><code>SYMBOL_REF_CONSTANT (</code><var>x</var><code>)</code><dd>If ‘<samp><span class="samp">CONSTANT_POOL_ADDRESS_P (</span><var>x</var><span class="samp">)</span></samp>’ is true, this is the constant
pool entry for <var>x</var>. It is null otherwise.
<p><a name="index-SYMBOL_005fREF_005fDATA-1737"></a><br><dt><code>SYMBOL_REF_DATA (</code><var>x</var><code>)</code><dd>A field of opaque type used to store <code>SYMBOL_REF_DECL</code> or
<code>SYMBOL_REF_CONSTANT</code>.
<p><a name="index-SYMBOL_005fREF_005fFLAGS-1738"></a><br><dt><code>SYMBOL_REF_FLAGS (</code><var>x</var><code>)</code><dd>In a <code>symbol_ref</code>, this is used to communicate various predicates
about the symbol. Some of these are common enough to be computed by
common code, some are specific to the target. The common bits are:
<a name="index-SYMBOL_005fREF_005fFUNCTION_005fP-1739"></a>
<a name="index-SYMBOL_005fFLAG_005fFUNCTION-1740"></a>
<dl><dt><code>SYMBOL_FLAG_FUNCTION</code><dd>Set if the symbol refers to a function.
<p><a name="index-SYMBOL_005fREF_005fLOCAL_005fP-1741"></a><a name="index-SYMBOL_005fFLAG_005fLOCAL-1742"></a><br><dt><code>SYMBOL_FLAG_LOCAL</code><dd>Set if the symbol is local to this “module”.
See <code>TARGET_BINDS_LOCAL_P</code>.
<p><a name="index-SYMBOL_005fREF_005fEXTERNAL_005fP-1743"></a><a name="index-SYMBOL_005fFLAG_005fEXTERNAL-1744"></a><br><dt><code>SYMBOL_FLAG_EXTERNAL</code><dd>Set if this symbol is not defined in this translation unit.
Note that this is not the inverse of <code>SYMBOL_FLAG_LOCAL</code>.
<p><a name="index-SYMBOL_005fREF_005fSMALL_005fP-1745"></a><a name="index-SYMBOL_005fFLAG_005fSMALL-1746"></a><br><dt><code>SYMBOL_FLAG_SMALL</code><dd>Set if the symbol is located in the small data section.
See <code>TARGET_IN_SMALL_DATA_P</code>.
<p><a name="index-SYMBOL_005fFLAG_005fTLS_005fSHIFT-1747"></a><a name="index-SYMBOL_005fREF_005fTLS_005fMODEL-1748"></a><br><dt><code>SYMBOL_REF_TLS_MODEL (</code><var>x</var><code>)</code><dd>This is a multi-bit field accessor that returns the <code>tls_model</code>
to be used for a thread-local storage symbol. It returns zero for
non-thread-local symbols.
<p><a name="index-SYMBOL_005fREF_005fHAS_005fBLOCK_005fINFO_005fP-1749"></a><a name="index-SYMBOL_005fFLAG_005fHAS_005fBLOCK_005fINFO-1750"></a><br><dt><code>SYMBOL_FLAG_HAS_BLOCK_INFO</code><dd>Set if the symbol has <code>SYMBOL_REF_BLOCK</code> and
<code>SYMBOL_REF_BLOCK_OFFSET</code> fields.
<p><a name="index-SYMBOL_005fREF_005fANCHOR_005fP-1751"></a><a name="index-SYMBOL_005fFLAG_005fANCHOR-1752"></a><a name="index-g_t_0040option_007b_002dfsection_002danchors_007d-1753"></a><br><dt><code>SYMBOL_FLAG_ANCHOR</code><dd>Set if the symbol is used as a section anchor. “Section anchors”
are symbols that have a known position within an <code>object_block</code>
and that can be used to access nearby members of that block.
They are used to implement <samp><span class="option">-fsection-anchors</span></samp>.
<p>If this flag is set, then <code>SYMBOL_FLAG_HAS_BLOCK_INFO</code> will be too.
</dl>
<p>Bits beginning with <code>SYMBOL_FLAG_MACH_DEP</code> are available for
the target's use.
</dl>
<p><a name="index-SYMBOL_005fREF_005fBLOCK-1754"></a><br><dt><code>SYMBOL_REF_BLOCK (</code><var>x</var><code>)</code><dd>If ‘<samp><span class="samp">SYMBOL_REF_HAS_BLOCK_INFO_P (</span><var>x</var><span class="samp">)</span></samp>’, this is the
‘<samp><span class="samp">object_block</span></samp>’ structure to which the symbol belongs,
or <code>NULL</code> if it has not been assigned a block.
<p><a name="index-SYMBOL_005fREF_005fBLOCK_005fOFFSET-1755"></a><br><dt><code>SYMBOL_REF_BLOCK_OFFSET (</code><var>x</var><code>)</code><dd>If ‘<samp><span class="samp">SYMBOL_REF_HAS_BLOCK_INFO_P (</span><var>x</var><span class="samp">)</span></samp>’, this is the offset of <var>x</var>
from the first object in ‘<samp><span class="samp">SYMBOL_REF_BLOCK (</span><var>x</var><span class="samp">)</span></samp>’. The value is
negative if <var>x</var> has not yet been assigned to a block, or it has not
been given an offset within that block.
</dl>
<div class="node">
<a name="Flags"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Machine-Modes">Machine Modes</a>,
Previous: <a rel="previous" accesskey="p" href="#Special-Accessors">Special Accessors</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.5 Flags in an RTL Expression</h3>
<p><a name="index-flags-in-RTL-expression-1756"></a>
RTL expressions contain several flags (one-bit bit-fields)
that are used in certain types of expression. Most often they
are accessed with the following macros, which expand into lvalues.
<a name="index-CONSTANT_005fPOOL_005fADDRESS_005fP-1757"></a>
<a name="index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fu_007d-1758"></a>
<a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bsymbol_005fref_007d-1759"></a>
<dl><dt><code>CONSTANT_POOL_ADDRESS_P (</code><var>x</var><code>)</code><dd>Nonzero in a <code>symbol_ref</code> if it refers to part of the current
function's constant pool. For most targets these addresses are in a
<code>.rodata</code> section entirely separate from the function, but for
some targets the addresses are close to the beginning of the function.
In either case GCC assumes these addresses can be addressed directly,
perhaps with the help of base registers.
Stored in the <code>unchanging</code> field and printed as ‘<samp><span class="samp">/u</span></samp>’.
<p><a name="index-RTL_005fCONST_005fCALL_005fP-1760"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fu_007d-1761"></a><a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bcall_005finsn_007d-1762"></a><br><dt><code>RTL_CONST_CALL_P (</code><var>x</var><code>)</code><dd>In a <code>call_insn</code> indicates that the insn represents a call to a
const function. Stored in the <code>unchanging</code> field and printed as
‘<samp><span class="samp">/u</span></samp>’.
<p><a name="index-RTL_005fPURE_005fCALL_005fP-1763"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fi_007d-1764"></a><a name="index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bcall_005finsn_007d-1765"></a><br><dt><code>RTL_PURE_CALL_P (</code><var>x</var><code>)</code><dd>In a <code>call_insn</code> indicates that the insn represents a call to a
pure function. Stored in the <code>return_val</code> field and printed as
‘<samp><span class="samp">/i</span></samp>’.
<p><a name="index-RTL_005fCONST_005fOR_005fPURE_005fCALL_005fP-1766"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fu_007d-or-_0040samp_007b_002fi_007d-1767"></a><br><dt><code>RTL_CONST_OR_PURE_CALL_P (</code><var>x</var><code>)</code><dd>In a <code>call_insn</code>, true if <code>RTL_CONST_CALL_P</code> or
<code>RTL_PURE_CALL_P</code> is true.
<p><a name="index-RTL_005fLOOPING_005fCONST_005fOR_005fPURE_005fCALL_005fP-1768"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fc_007d-1769"></a><a name="index-g_t_0040code_007bcall_007d_002c-in-_0040code_007bcall_005finsn_007d-1770"></a><br><dt><code>RTL_LOOPING_CONST_OR_PURE_CALL_P (</code><var>x</var><code>)</code><dd>In a <code>call_insn</code> indicates that the insn represents a possibly
infinite looping call to a const or pure function. Stored in the
<code>call</code> field and printed as ‘<samp><span class="samp">/c</span></samp>’. Only true if one of
<code>RTL_CONST_CALL_P</code> or <code>RTL_PURE_CALL_P</code> is true.
<p><a name="index-INSN_005fANNULLED_005fBRANCH_005fP-1771"></a><a name="index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fu_007d-1772"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fu_007d-1773"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fu_007d-1774"></a><a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bjump_005finsn_007d_002c-_0040code_007bcall_005finsn_007d-and-_0040code_007binsn_007d-1775"></a><br><dt><code>INSN_ANNULLED_BRANCH_P (</code><var>x</var><code>)</code><dd>In a <code>jump_insn</code>, <code>call_insn</code>, or <code>insn</code> indicates
that the branch is an annulling one. See the discussion under
<code>sequence</code> below. Stored in the <code>unchanging</code> field and
printed as ‘<samp><span class="samp">/u</span></samp>’.
<p><a name="index-INSN_005fDELETED_005fP-1776"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fv_007d-1777"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fv_007d-1778"></a><a name="index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fv_007d-1779"></a><a name="index-g_t_0040code_007bcode_005flabel_007d-and-_0040samp_007b_002fv_007d-1780"></a><a name="index-g_t_0040code_007bbarrier_007d-and-_0040samp_007b_002fv_007d-1781"></a><a name="index-g_t_0040code_007bnote_007d-and-_0040samp_007b_002fv_007d-1782"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bcall_005finsn_007d_002c-_0040code_007bjump_005finsn_007d_002c-_0040code_007bcode_005flabel_007d_002c-_0040code_007bbarrier_007d_002c-and-_0040code_007bnote_007d-1783"></a><br><dt><code>INSN_DELETED_P (</code><var>x</var><code>)</code><dd>In an <code>insn</code>, <code>call_insn</code>, <code>jump_insn</code>, <code>code_label</code>,
<code>barrier</code>, or <code>note</code>,
nonzero if the insn has been deleted. Stored in the
<code>volatil</code> field and printed as ‘<samp><span class="samp">/v</span></samp>’.
<p><a name="index-INSN_005fFROM_005fTARGET_005fP-1784"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fs_007d-1785"></a><a name="index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fs_007d-1786"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fs_007d-1787"></a><a name="index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007binsn_007d-and-_0040code_007bjump_005finsn_007d-and-_0040code_007bcall_005finsn_007d-1788"></a><br><dt><code>INSN_FROM_TARGET_P (</code><var>x</var><code>)</code><dd>In an <code>insn</code> or <code>jump_insn</code> or <code>call_insn</code> in a delay
slot of a branch, indicates that the insn
is from the target of the branch. If the branch insn has
<code>INSN_ANNULLED_BRANCH_P</code> set, this insn will only be executed if
the branch is taken. For annulled branches with
<code>INSN_FROM_TARGET_P</code> clear, the insn will be executed only if the
branch is not taken. When <code>INSN_ANNULLED_BRANCH_P</code> is not set,
this insn will always be executed. Stored in the <code>in_struct</code>
field and printed as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-LABEL_005fPRESERVE_005fP-1789"></a><a name="index-g_t_0040code_007bcode_005flabel_007d-and-_0040samp_007b_002fi_007d-1790"></a><a name="index-g_t_0040code_007bnote_007d-and-_0040samp_007b_002fi_007d-1791"></a><a name="index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bcode_005flabel_007d-and-_0040code_007bnote_007d-1792"></a><br><dt><code>LABEL_PRESERVE_P (</code><var>x</var><code>)</code><dd>In a <code>code_label</code> or <code>note</code>, indicates that the label is referenced by
code or data not visible to the RTL of a given function.
Labels referenced by a non-local goto will have this bit set. Stored
in the <code>in_struct</code> field and printed as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-LABEL_005fREF_005fNONLOCAL_005fP-1793"></a><a name="index-g_t_0040code_007blabel_005fref_007d-and-_0040samp_007b_002fv_007d-1794"></a><a name="index-g_t_0040code_007breg_005flabel_007d-and-_0040samp_007b_002fv_007d-1795"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007blabel_005fref_007d-and-_0040code_007breg_005flabel_007d-1796"></a><br><dt><code>LABEL_REF_NONLOCAL_P (</code><var>x</var><code>)</code><dd>In <code>label_ref</code> and <code>reg_label</code> expressions, nonzero if this is
a reference to a non-local label.
Stored in the <code>volatil</code> field and printed as ‘<samp><span class="samp">/v</span></samp>’.
<p><a name="index-MEM_005fIN_005fSTRUCT_005fP-1797"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fs_007d-1798"></a><a name="index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bmem_007d-1799"></a><br><dt><code>MEM_IN_STRUCT_P (</code><var>x</var><code>)</code><dd>In <code>mem</code> expressions, nonzero for reference to an entire structure,
union or array, or to a component of one. Zero for references to a
scalar variable or through a pointer to a scalar. If both this flag and
<code>MEM_SCALAR_P</code> are clear, then we don't know whether this <code>mem</code>
is in a structure or not. Both flags should never be simultaneously set.
Stored in the <code>in_struct</code> field and printed as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-MEM_005fKEEP_005fALIAS_005fSET_005fP-1800"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fj_007d-1801"></a><a name="index-g_t_0040code_007bjump_007d_002c-in-_0040code_007bmem_007d-1802"></a><br><dt><code>MEM_KEEP_ALIAS_SET_P (</code><var>x</var><code>)</code><dd>In <code>mem</code> expressions, 1 if we should keep the alias set for this
mem unchanged when we access a component. Set to 1, for example, when we
are already in a non-addressable component of an aggregate.
Stored in the <code>jump</code> field and printed as ‘<samp><span class="samp">/j</span></samp>’.
<p><a name="index-MEM_005fSCALAR_005fP-1803"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fi_007d-1804"></a><a name="index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bmem_007d-1805"></a><br><dt><code>MEM_SCALAR_P (</code><var>x</var><code>)</code><dd>In <code>mem</code> expressions, nonzero for reference to a scalar known not
to be a member of a structure, union, or array. Zero for such
references and for indirections through pointers, even pointers pointing
to scalar types. If both this flag and <code>MEM_IN_STRUCT_P</code> are clear,
then we don't know whether this <code>mem</code> is in a structure or not.
Both flags should never be simultaneously set.
Stored in the <code>return_val</code> field and printed as ‘<samp><span class="samp">/i</span></samp>’.
<p><a name="index-MEM_005fVOLATILE_005fP-1806"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fv_007d-1807"></a><a name="index-g_t_0040code_007basm_005finput_007d-and-_0040samp_007b_002fv_007d-1808"></a><a name="index-g_t_0040code_007basm_005foperands_007d-and-_0040samp_007b_002fv_007d-1809"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bmem_007d_002c-_0040code_007basm_005foperands_007d_002c-and-_0040code_007basm_005finput_007d-1810"></a><br><dt><code>MEM_VOLATILE_P (</code><var>x</var><code>)</code><dd>In <code>mem</code>, <code>asm_operands</code>, and <code>asm_input</code> expressions,
nonzero for volatile memory references.
Stored in the <code>volatil</code> field and printed as ‘<samp><span class="samp">/v</span></samp>’.
<p><a name="index-MEM_005fNOTRAP_005fP-1811"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fc_007d-1812"></a><a name="index-g_t_0040code_007bcall_007d_002c-in-_0040code_007bmem_007d-1813"></a><br><dt><code>MEM_NOTRAP_P (</code><var>x</var><code>)</code><dd>In <code>mem</code>, nonzero for memory references that will not trap.
Stored in the <code>call</code> field and printed as ‘<samp><span class="samp">/c</span></samp>’.
<p><a name="index-MEM_005fPOINTER-1814"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002ff_007d-1815"></a><a name="index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007bmem_007d-1816"></a><br><dt><code>MEM_POINTER (</code><var>x</var><code>)</code><dd>Nonzero in a <code>mem</code> if the memory reference holds a pointer.
Stored in the <code>frame_related</code> field and printed as ‘<samp><span class="samp">/f</span></samp>’.
<p><a name="index-REG_005fFUNCTION_005fVALUE_005fP-1817"></a><a name="index-g_t_0040code_007breg_007d-and-_0040samp_007b_002fi_007d-1818"></a><a name="index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007breg_007d-1819"></a><br><dt><code>REG_FUNCTION_VALUE_P (</code><var>x</var><code>)</code><dd>Nonzero in a <code>reg</code> if it is the place in which this function's
value is going to be returned. (This happens only in a hard
register.) Stored in the <code>return_val</code> field and printed as
‘<samp><span class="samp">/i</span></samp>’.
<p><a name="index-REG_005fPOINTER-1820"></a><a name="index-g_t_0040code_007breg_007d-and-_0040samp_007b_002ff_007d-1821"></a><a name="index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007breg_007d-1822"></a><br><dt><code>REG_POINTER (</code><var>x</var><code>)</code><dd>Nonzero in a <code>reg</code> if the register holds a pointer. Stored in the
<code>frame_related</code> field and printed as ‘<samp><span class="samp">/f</span></samp>’.
<p><a name="index-REG_005fUSERVAR_005fP-1823"></a><a name="index-g_t_0040code_007breg_007d-and-_0040samp_007b_002fv_007d-1824"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007breg_007d-1825"></a><br><dt><code>REG_USERVAR_P (</code><var>x</var><code>)</code><dd>In a <code>reg</code>, nonzero if it corresponds to a variable present in
the user's source code. Zero for temporaries generated internally by
the compiler. Stored in the <code>volatil</code> field and printed as
‘<samp><span class="samp">/v</span></samp>’.
<p>The same hard register may be used also for collecting the values of
functions called by this one, but <code>REG_FUNCTION_VALUE_P</code> is zero
in this kind of use.
<p><a name="index-RTX_005fFRAME_005fRELATED_005fP-1826"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002ff_007d-1827"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002ff_007d-1828"></a><a name="index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002ff_007d-1829"></a><a name="index-g_t_0040code_007bbarrier_007d-and-_0040samp_007b_002ff_007d-1830"></a><a name="index-g_t_0040code_007bset_007d-and-_0040samp_007b_002ff_007d-1831"></a><a name="index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bcall_005finsn_007d_002c-_0040code_007bjump_005finsn_007d_002c-_0040code_007bbarrier_007d_002c-and-_0040code_007bset_007d-1832"></a><br><dt><code>RTX_FRAME_RELATED_P (</code><var>x</var><code>)</code><dd>Nonzero in an <code>insn</code>, <code>call_insn</code>, <code>jump_insn</code>,
<code>barrier</code>, or <code>set</code> which is part of a function prologue
and sets the stack pointer, sets the frame pointer, or saves a register.
This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer.
Stored in the <code>frame_related</code> field and printed as ‘<samp><span class="samp">/f</span></samp>’.
<p>In particular, on RISC targets where there are limits on the sizes of
immediate constants, it is sometimes impossible to reach the register
save area directly from the stack pointer. In that case, a temporary
register is used that is near enough to the register save area, and the
Canonical Frame Address, i.e., DWARF2's logical frame pointer, register
must (temporarily) be changed to be this temporary register. So, the
instruction that sets this temporary register must be marked as
<code>RTX_FRAME_RELATED_P</code>.
<p>If the marked instruction is overly complex (defined in terms of what
<code>dwarf2out_frame_debug_expr</code> can handle), you will also have to
create a <code>REG_FRAME_RELATED_EXPR</code> note and attach it to the
instruction. This note should contain a simple expression of the
computation performed by this instruction, i.e., one that
<code>dwarf2out_frame_debug_expr</code> can handle.
<p>This flag is required for exception handling support on targets with RTL
prologues.
<p><a name="index-MEM_005fREADONLY_005fP-1833"></a><a name="index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fu_007d-1834"></a><a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bmem_007d-1835"></a><br><dt><code>MEM_READONLY_P (</code><var>x</var><code>)</code><dd>Nonzero in a <code>mem</code>, if the memory is statically allocated and read-only.
<p>Read-only in this context means never modified during the lifetime of the
program, not necessarily in ROM or in write-disabled pages. A common
example of the later is a shared library's global offset table. This
table is initialized by the runtime loader, so the memory is technically
writable, but after control is transfered from the runtime loader to the
application, this memory will never be subsequently modified.
<p>Stored in the <code>unchanging</code> field and printed as ‘<samp><span class="samp">/u</span></samp>’.
<p><a name="index-SCHED_005fGROUP_005fP-1836"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fs_007d-1837"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fs_007d-1838"></a><a name="index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fs_007d-1839"></a><a name="index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bjump_005finsn_007d-and-_0040code_007bcall_005finsn_007d-1840"></a><br><dt><code>SCHED_GROUP_P (</code><var>x</var><code>)</code><dd>During instruction scheduling, in an <code>insn</code>, <code>call_insn</code> or
<code>jump_insn</code>, indicates that the
previous insn must be scheduled together with this insn. This is used to
ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, <code>use</code> insns before
a <code>call_insn</code> may not be separated from the <code>call_insn</code>.
Stored in the <code>in_struct</code> field and printed as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-SET_005fIS_005fRETURN_005fP-1841"></a><a name="index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fj_007d-1842"></a><a name="index-g_t_0040code_007bjump_007d_002c-in-_0040code_007binsn_007d-1843"></a><br><dt><code>SET_IS_RETURN_P (</code><var>x</var><code>)</code><dd>For a <code>set</code>, nonzero if it is for a return.
Stored in the <code>jump</code> field and printed as ‘<samp><span class="samp">/j</span></samp>’.
<p><a name="index-SIBLING_005fCALL_005fP-1844"></a><a name="index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fj_007d-1845"></a><a name="index-g_t_0040code_007bjump_007d_002c-in-_0040code_007bcall_005finsn_007d-1846"></a><br><dt><code>SIBLING_CALL_P (</code><var>x</var><code>)</code><dd>For a <code>call_insn</code>, nonzero if the insn is a sibling call.
Stored in the <code>jump</code> field and printed as ‘<samp><span class="samp">/j</span></samp>’.
<p><a name="index-STRING_005fPOOL_005fADDRESS_005fP-1847"></a><a name="index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002ff_007d-1848"></a><a name="index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007bsymbol_005fref_007d-1849"></a><br><dt><code>STRING_POOL_ADDRESS_P (</code><var>x</var><code>)</code><dd>For a <code>symbol_ref</code> expression, nonzero if it addresses this function's
string constant pool.
Stored in the <code>frame_related</code> field and printed as ‘<samp><span class="samp">/f</span></samp>’.
<p><a name="index-SUBREG_005fPROMOTED_005fUNSIGNED_005fP-1850"></a><a name="index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fu_007d-and-_0040samp_007b_002fv_007d-1851"></a><a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bsubreg_007d-1852"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bsubreg_007d-1853"></a><br><dt><code>SUBREG_PROMOTED_UNSIGNED_P (</code><var>x</var><code>)</code><dd>Returns a value greater then zero for a <code>subreg</code> that has
<code>SUBREG_PROMOTED_VAR_P</code> nonzero if the object being referenced is kept
zero-extended, zero if it is kept sign-extended, and less then zero if it is
extended some other way via the <code>ptr_extend</code> instruction.
Stored in the <code>unchanging</code>
field and <code>volatil</code> field, printed as ‘<samp><span class="samp">/u</span></samp>’ and ‘<samp><span class="samp">/v</span></samp>’.
This macro may only be used to get the value it may not be used to change
the value. Use <code>SUBREG_PROMOTED_UNSIGNED_SET</code> to change the value.
<p><a name="index-SUBREG_005fPROMOTED_005fUNSIGNED_005fSET-1854"></a><a name="index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fu_007d-1855"></a><a name="index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bsubreg_007d-1856"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bsubreg_007d-1857"></a><br><dt><code>SUBREG_PROMOTED_UNSIGNED_SET (</code><var>x</var><code>)</code><dd>Set the <code>unchanging</code> and <code>volatil</code> fields in a <code>subreg</code>
to reflect zero, sign, or other extension. If <code>volatil</code> is
zero, then <code>unchanging</code> as nonzero means zero extension and as
zero means sign extension. If <code>volatil</code> is nonzero then some
other type of extension was done via the <code>ptr_extend</code> instruction.
<p><a name="index-SUBREG_005fPROMOTED_005fVAR_005fP-1858"></a><a name="index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fs_007d-1859"></a><a name="index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bsubreg_007d-1860"></a><br><dt><code>SUBREG_PROMOTED_VAR_P (</code><var>x</var><code>)</code><dd>Nonzero in a <code>subreg</code> if it was made when accessing an object that
was promoted to a wider mode in accord with the <code>PROMOTED_MODE</code> machine
description macro (see <a href="#Storage-Layout">Storage Layout</a>). In this case, the mode of
the <code>subreg</code> is the declared mode of the object and the mode of
<code>SUBREG_REG</code> is the mode of the register that holds the object.
Promoted variables are always either sign- or zero-extended to the wider
mode on every assignment. Stored in the <code>in_struct</code> field and
printed as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-SYMBOL_005fREF_005fUSED-1861"></a><a name="index-g_t_0040code_007bused_007d_002c-in-_0040code_007bsymbol_005fref_007d-1862"></a><br><dt><code>SYMBOL_REF_USED (</code><var>x</var><code>)</code><dd>In a <code>symbol_ref</code>, indicates that <var>x</var> has been used. This is
normally only used to ensure that <var>x</var> is only declared external
once. Stored in the <code>used</code> field.
<p><a name="index-SYMBOL_005fREF_005fWEAK-1863"></a><a name="index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fi_007d-1864"></a><a name="index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bsymbol_005fref_007d-1865"></a><br><dt><code>SYMBOL_REF_WEAK (</code><var>x</var><code>)</code><dd>In a <code>symbol_ref</code>, indicates that <var>x</var> has been declared weak.
Stored in the <code>return_val</code> field and printed as ‘<samp><span class="samp">/i</span></samp>’.
<p><a name="index-SYMBOL_005fREF_005fFLAG-1866"></a><a name="index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fv_007d-1867"></a><a name="index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bsymbol_005fref_007d-1868"></a><br><dt><code>SYMBOL_REF_FLAG (</code><var>x</var><code>)</code><dd>In a <code>symbol_ref</code>, this is used as a flag for machine-specific purposes.
Stored in the <code>volatil</code> field and printed as ‘<samp><span class="samp">/v</span></samp>’.
<p>Most uses of <code>SYMBOL_REF_FLAG</code> are historic and may be subsumed
by <code>SYMBOL_REF_FLAGS</code>. Certainly use of <code>SYMBOL_REF_FLAGS</code>
is mandatory if the target requires more than one bit of storage.
<p><a name="index-PREFETCH_005fSCHEDULE_005fBARRIER_005fP-1869"></a><a name="index-g_t_0040code_007bprefetch_007d-and-_0040samp_007b_002fv_007d-1870"></a><a name="index-g_t_0040code_007bvolatile_007d_002c-in-_0040code_007bprefetch_007d-1871"></a><br><dt><code>PREFETCH_SCHEDULE_BARRIER_P (</code><var>x</var><code>)</code><dd>In a <code>prefetch</code>, indicates that the prefetch is a scheduling barrier.
No other INSNs will be moved over it.
Stored in the <code>volatil</code> field and printed as ‘<samp><span class="samp">/v</span></samp>’.
</dl>
<p>These are the fields to which the above macros refer:
<a name="index-call-1872"></a>
<a name="index-g_t_0040samp_007b_002fc_007d-in-RTL-dump-1873"></a>
<dl><dt><code>call</code><dd>In a <code>mem</code>, 1 means that the memory reference will not trap.
<p>In a <code>call</code>, 1 means that this pure or const call may possibly
infinite loop.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/c</span></samp>’.
<p><a name="index-frame_005frelated-1874"></a><a name="index-g_t_0040samp_007b_002ff_007d-in-RTL-dump-1875"></a><br><dt><code>frame_related</code><dd>In an <code>insn</code> or <code>set</code> expression, 1 means that it is part of
a function prologue and sets the stack pointer, sets the frame pointer,
saves a register, or sets up a temporary register to use in place of the
frame pointer.
<p>In <code>reg</code> expressions, 1 means that the register holds a pointer.
<p>In <code>mem</code> expressions, 1 means that the memory reference holds a pointer.
<p>In <code>symbol_ref</code> expressions, 1 means that the reference addresses
this function's string constant pool.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/f</span></samp>’.
<p><a name="index-in_005fstruct-1876"></a><a name="index-g_t_0040samp_007b_002fs_007d-in-RTL-dump-1877"></a><br><dt><code>in_struct</code><dd>In <code>mem</code> expressions, it is 1 if the memory datum referred to is
all or part of a structure or array; 0 if it is (or might be) a scalar
variable. A reference through a C pointer has 0 because the pointer
might point to a scalar variable. This information allows the compiler
to determine something about possible cases of aliasing.
<p>In <code>reg</code> expressions, it is 1 if the register has its entire life
contained within the test expression of some loop.
<p>In <code>subreg</code> expressions, 1 means that the <code>subreg</code> is accessing
an object that has had its mode promoted from a wider mode.
<p>In <code>label_ref</code> expressions, 1 means that the referenced label is
outside the innermost loop containing the insn in which the <code>label_ref</code>
was found.
<p>In <code>code_label</code> expressions, it is 1 if the label may never be deleted.
This is used for labels which are the target of non-local gotos. Such a
label that would have been deleted is replaced with a <code>note</code> of type
<code>NOTE_INSN_DELETED_LABEL</code>.
<p>In an <code>insn</code> during dead-code elimination, 1 means that the insn is
dead code.
<p>In an <code>insn</code> or <code>jump_insn</code> during reorg for an insn in the
delay slot of a branch,
1 means that this insn is from the target of the branch.
<p>In an <code>insn</code> during instruction scheduling, 1 means that this insn
must be scheduled as part of a group together with the previous insn.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/s</span></samp>’.
<p><a name="index-return_005fval-1878"></a><a name="index-g_t_0040samp_007b_002fi_007d-in-RTL-dump-1879"></a><br><dt><code>return_val</code><dd>In <code>reg</code> expressions, 1 means the register contains
the value to be returned by the current function. On
machines that pass parameters in registers, the same register number
may be used for parameters as well, but this flag is not set on such
uses.
<p>In <code>mem</code> expressions, 1 means the memory reference is to a scalar
known not to be a member of a structure, union, or array.
<p>In <code>symbol_ref</code> expressions, 1 means the referenced symbol is weak.
<p>In <code>call</code> expressions, 1 means the call is pure.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/i</span></samp>’.
<p><a name="index-jump-1880"></a><a name="index-g_t_0040samp_007b_002fj_007d-in-RTL-dump-1881"></a><br><dt><code>jump</code><dd>In a <code>mem</code> expression, 1 means we should keep the alias set for this
mem unchanged when we access a component.
<p>In a <code>set</code>, 1 means it is for a return.
<p>In a <code>call_insn</code>, 1 means it is a sibling call.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/j</span></samp>’.
<p><a name="index-unchanging-1882"></a><a name="index-g_t_0040samp_007b_002fu_007d-in-RTL-dump-1883"></a><br><dt><code>unchanging</code><dd>In <code>reg</code> and <code>mem</code> expressions, 1 means
that the value of the expression never changes.
<p>In <code>subreg</code> expressions, it is 1 if the <code>subreg</code> references an
unsigned object whose mode has been promoted to a wider mode.
<p>In an <code>insn</code> or <code>jump_insn</code> in the delay slot of a branch
instruction, 1 means an annulling branch should be used.
<p>In a <code>symbol_ref</code> expression, 1 means that this symbol addresses
something in the per-function constant pool.
<p>In a <code>call_insn</code> 1 means that this instruction is a call to a const
function.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/u</span></samp>’.
<p><a name="index-used-1884"></a><br><dt><code>used</code><dd>This flag is used directly (without an access macro) at the end of RTL
generation for a function, to count the number of times an expression
appears in insns. Expressions that appear more than once are copied,
according to the rules for shared structure (see <a href="#Sharing">Sharing</a>).
<p>For a <code>reg</code>, it is used directly (without an access macro) by the
leaf register renumbering code to ensure that each register is only
renumbered once.
<p>In a <code>symbol_ref</code>, it indicates that an external declaration for
the symbol has already been written.
<p><a name="index-volatil-1885"></a><a name="index-g_t_0040samp_007b_002fv_007d-in-RTL-dump-1886"></a><br><dt><code>volatil</code><dd><a name="index-volatile-memory-references-1887"></a>In a <code>mem</code>, <code>asm_operands</code>, or <code>asm_input</code>
expression, it is 1 if the memory
reference is volatile. Volatile memory references may not be deleted,
reordered or combined.
<p>In a <code>symbol_ref</code> expression, it is used for machine-specific
purposes.
<p>In a <code>reg</code> expression, it is 1 if the value is a user-level variable.
0 indicates an internal compiler temporary.
<p>In an <code>insn</code>, 1 means the insn has been deleted.
<p>In <code>label_ref</code> and <code>reg_label</code> expressions, 1 means a reference
to a non-local label.
<p>In <code>prefetch</code> expressions, 1 means that the containing insn is a
scheduling barrier.
<p>In an RTL dump, this flag is represented as ‘<samp><span class="samp">/v</span></samp>’.
</dl>
<div class="node">
<a name="Machine-Modes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constants">Constants</a>,
Previous: <a rel="previous" accesskey="p" href="#Flags">Flags</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.6 Machine Modes</h3>
<p><a name="index-machine-modes-1888"></a>
<a name="index-enum-machine_005fmode-1889"></a>A machine mode describes a size of data object and the representation used
for it. In the C code, machine modes are represented by an enumeration
type, <code>enum machine_mode</code>, defined in <samp><span class="file">machmode.def</span></samp>. Each RTL
expression has room for a machine mode and so do certain kinds of tree
expressions (declarations and types, to be precise).
<p>In debugging dumps and machine descriptions, the machine mode of an RTL
expression is written after the expression code with a colon to separate
them. The letters ‘<samp><span class="samp">mode</span></samp>’ which appear at the end of each machine mode
name are omitted. For example, <code>(reg:SI 38)</code> is a <code>reg</code>
expression with machine mode <code>SImode</code>. If the mode is
<code>VOIDmode</code>, it is not written at all.
<p>Here is a table of machine modes. The term “byte” below refers to an
object of <code>BITS_PER_UNIT</code> bits (see <a href="#Storage-Layout">Storage Layout</a>).
<a name="index-BImode-1890"></a>
<dl><dt><code>BImode</code><dd>“Bit” mode represents a single bit, for predicate registers.
<p><a name="index-QImode-1891"></a><br><dt><code>QImode</code><dd>“Quarter-Integer” mode represents a single byte treated as an integer.
<p><a name="index-HImode-1892"></a><br><dt><code>HImode</code><dd>“Half-Integer” mode represents a two-byte integer.
<p><a name="index-PSImode-1893"></a><br><dt><code>PSImode</code><dd>“Partial Single Integer” mode represents an integer which occupies
four bytes but which doesn't really use all four. On some machines,
this is the right mode to use for pointers.
<p><a name="index-SImode-1894"></a><br><dt><code>SImode</code><dd>“Single Integer” mode represents a four-byte integer.
<p><a name="index-PDImode-1895"></a><br><dt><code>PDImode</code><dd>“Partial Double Integer” mode represents an integer which occupies
eight bytes but which doesn't really use all eight. On some machines,
this is the right mode to use for certain pointers.
<p><a name="index-DImode-1896"></a><br><dt><code>DImode</code><dd>“Double Integer” mode represents an eight-byte integer.
<p><a name="index-TImode-1897"></a><br><dt><code>TImode</code><dd>“Tetra Integer” (?) mode represents a sixteen-byte integer.
<p><a name="index-OImode-1898"></a><br><dt><code>OImode</code><dd>“Octa Integer” (?) mode represents a thirty-two-byte integer.
<p><a name="index-QFmode-1899"></a><br><dt><code>QFmode</code><dd>“Quarter-Floating” mode represents a quarter-precision (single byte)
floating point number.
<p><a name="index-HFmode-1900"></a><br><dt><code>HFmode</code><dd>“Half-Floating” mode represents a half-precision (two byte) floating
point number.
<p><a name="index-TQFmode-1901"></a><br><dt><code>TQFmode</code><dd>“Three-Quarter-Floating” (?) mode represents a three-quarter-precision
(three byte) floating point number.
<p><a name="index-SFmode-1902"></a><br><dt><code>SFmode</code><dd>“Single Floating” mode represents a four byte floating point number.
In the common case, of a processor with IEEE arithmetic and 8-bit bytes,
this is a single-precision IEEE floating point number; it can also be
used for double-precision (on processors with 16-bit bytes) and
single-precision VAX and IBM types.
<p><a name="index-DFmode-1903"></a><br><dt><code>DFmode</code><dd>“Double Floating” mode represents an eight byte floating point number.
In the common case, of a processor with IEEE arithmetic and 8-bit bytes,
this is a double-precision IEEE floating point number.
<p><a name="index-XFmode-1904"></a><br><dt><code>XFmode</code><dd>“Extended Floating” mode represents an IEEE extended floating point
number. This mode only has 80 meaningful bits (ten bytes). Some
processors require such numbers to be padded to twelve bytes, others
to sixteen; this mode is used for either.
<p><a name="index-SDmode-1905"></a><br><dt><code>SDmode</code><dd>“Single Decimal Floating” mode represents a four byte decimal
floating point number (as distinct from conventional binary floating
point).
<p><a name="index-DDmode-1906"></a><br><dt><code>DDmode</code><dd>“Double Decimal Floating” mode represents an eight byte decimal
floating point number.
<p><a name="index-TDmode-1907"></a><br><dt><code>TDmode</code><dd>“Tetra Decimal Floating” mode represents a sixteen byte decimal
floating point number all 128 of whose bits are meaningful.
<p><a name="index-TFmode-1908"></a><br><dt><code>TFmode</code><dd>“Tetra Floating” mode represents a sixteen byte floating point number
all 128 of whose bits are meaningful. One common use is the
IEEE quad-precision format.
<p><a name="index-QQmode-1909"></a><br><dt><code>QQmode</code><dd>“Quarter-Fractional” mode represents a single byte treated as a signed
fractional number. The default format is “s.7”.
<p><a name="index-HQmode-1910"></a><br><dt><code>HQmode</code><dd>“Half-Fractional” mode represents a two-byte signed fractional number.
The default format is “s.15”.
<p><a name="index-SQmode-1911"></a><br><dt><code>SQmode</code><dd>“Single Fractional” mode represents a four-byte signed fractional number.
The default format is “s.31”.
<p><a name="index-DQmode-1912"></a><br><dt><code>DQmode</code><dd>“Double Fractional” mode represents an eight-byte signed fractional number.
The default format is “s.63”.
<p><a name="index-TQmode-1913"></a><br><dt><code>TQmode</code><dd>“Tetra Fractional” mode represents a sixteen-byte signed fractional number.
The default format is “s.127”.
<p><a name="index-UQQmode-1914"></a><br><dt><code>UQQmode</code><dd>“Unsigned Quarter-Fractional” mode represents a single byte treated as an
unsigned fractional number. The default format is “.8”.
<p><a name="index-UHQmode-1915"></a><br><dt><code>UHQmode</code><dd>“Unsigned Half-Fractional” mode represents a two-byte unsigned fractional
number. The default format is “.16”.
<p><a name="index-USQmode-1916"></a><br><dt><code>USQmode</code><dd>“Unsigned Single Fractional” mode represents a four-byte unsigned fractional
number. The default format is “.32”.
<p><a name="index-UDQmode-1917"></a><br><dt><code>UDQmode</code><dd>“Unsigned Double Fractional” mode represents an eight-byte unsigned
fractional number. The default format is “.64”.
<p><a name="index-UTQmode-1918"></a><br><dt><code>UTQmode</code><dd>“Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned
fractional number. The default format is “.128”.
<p><a name="index-HAmode-1919"></a><br><dt><code>HAmode</code><dd>“Half-Accumulator” mode represents a two-byte signed accumulator.
The default format is “s8.7”.
<p><a name="index-SAmode-1920"></a><br><dt><code>SAmode</code><dd>“Single Accumulator” mode represents a four-byte signed accumulator.
The default format is “s16.15”.
<p><a name="index-DAmode-1921"></a><br><dt><code>DAmode</code><dd>“Double Accumulator” mode represents an eight-byte signed accumulator.
The default format is “s32.31”.
<p><a name="index-TAmode-1922"></a><br><dt><code>TAmode</code><dd>“Tetra Accumulator” mode represents a sixteen-byte signed accumulator.
The default format is “s64.63”.
<p><a name="index-UHAmode-1923"></a><br><dt><code>UHAmode</code><dd>“Unsigned Half-Accumulator” mode represents a two-byte unsigned accumulator.
The default format is “8.8”.
<p><a name="index-USAmode-1924"></a><br><dt><code>USAmode</code><dd>“Unsigned Single Accumulator” mode represents a four-byte unsigned
accumulator. The default format is “16.16”.
<p><a name="index-UDAmode-1925"></a><br><dt><code>UDAmode</code><dd>“Unsigned Double Accumulator” mode represents an eight-byte unsigned
accumulator. The default format is “32.32”.
<p><a name="index-UTAmode-1926"></a><br><dt><code>UTAmode</code><dd>“Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned
accumulator. The default format is “64.64”.
<p><a name="index-CCmode-1927"></a><br><dt><code>CCmode</code><dd>“Condition Code” mode represents the value of a condition code, which
is a machine-specific set of bits used to represent the result of a
comparison operation. Other machine-specific modes may also be used for
the condition code. These modes are not used on machines that use
<code>cc0</code> (see <a href="#Condition-Code">Condition Code</a>).
<p><a name="index-BLKmode-1928"></a><br><dt><code>BLKmode</code><dd>“Block” mode represents values that are aggregates to which none of
the other modes apply. In RTL, only memory references can have this mode,
and only if they appear in string-move or vector instructions. On machines
which have no such instructions, <code>BLKmode</code> will not appear in RTL.
<p><a name="index-VOIDmode-1929"></a><br><dt><code>VOIDmode</code><dd>Void mode means the absence of a mode or an unspecified mode.
For example, RTL expressions of code <code>const_int</code> have mode
<code>VOIDmode</code> because they can be taken to have whatever mode the context
requires. In debugging dumps of RTL, <code>VOIDmode</code> is expressed by
the absence of any mode.
<p><a name="index-QCmode-1930"></a><a name="index-HCmode-1931"></a><a name="index-SCmode-1932"></a><a name="index-DCmode-1933"></a><a name="index-XCmode-1934"></a><a name="index-TCmode-1935"></a><br><dt><code>QCmode, HCmode, SCmode, DCmode, XCmode, TCmode</code><dd>These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in <code>QFmode</code>,
<code>HFmode</code>, <code>SFmode</code>, <code>DFmode</code>, <code>XFmode</code>, and
<code>TFmode</code>, respectively.
<p><a name="index-CQImode-1936"></a><a name="index-CHImode-1937"></a><a name="index-CSImode-1938"></a><a name="index-CDImode-1939"></a><a name="index-CTImode-1940"></a><a name="index-COImode-1941"></a><br><dt><code>CQImode, CHImode, CSImode, CDImode, CTImode, COImode</code><dd>These modes stand for a complex number represented as a pair of integer
values. The integer values are in <code>QImode</code>, <code>HImode</code>,
<code>SImode</code>, <code>DImode</code>, <code>TImode</code>, and <code>OImode</code>,
respectively.
</dl>
<p>The machine description defines <code>Pmode</code> as a C macro which expands
into the machine mode used for addresses. Normally this is the mode
whose size is <code>BITS_PER_WORD</code>, <code>SImode</code> on 32-bit machines.
<p>The only modes which a machine description <i>must</i> support are
<code>QImode</code>, and the modes corresponding to <code>BITS_PER_WORD</code>,
<code>FLOAT_TYPE_SIZE</code> and <code>DOUBLE_TYPE_SIZE</code>.
The compiler will attempt to use <code>DImode</code> for 8-byte structures and
unions, but this can be prevented by overriding the definition of
<code>MAX_FIXED_MODE_SIZE</code>. Alternatively, you can have the compiler
use <code>TImode</code> for 16-byte structures and unions. Likewise, you can
arrange for the C type <code>short int</code> to avoid using <code>HImode</code>.
<p><a name="index-mode-classes-1942"></a>Very few explicit references to machine modes remain in the compiler and
these few references will soon be removed. Instead, the machine modes
are divided into mode classes. These are represented by the enumeration
type <code>enum mode_class</code> defined in <samp><span class="file">machmode.h</span></samp>. The possible
mode classes are:
<a name="index-MODE_005fINT-1943"></a>
<dl><dt><code>MODE_INT</code><dd>Integer modes. By default these are <code>BImode</code>, <code>QImode</code>,
<code>HImode</code>, <code>SImode</code>, <code>DImode</code>, <code>TImode</code>, and
<code>OImode</code>.
<p><a name="index-MODE_005fPARTIAL_005fINT-1944"></a><br><dt><code>MODE_PARTIAL_INT</code><dd>The “partial integer” modes, <code>PQImode</code>, <code>PHImode</code>,
<code>PSImode</code> and <code>PDImode</code>.
<p><a name="index-MODE_005fFLOAT-1945"></a><br><dt><code>MODE_FLOAT</code><dd>Floating point modes. By default these are <code>QFmode</code>,
<code>HFmode</code>, <code>TQFmode</code>, <code>SFmode</code>, <code>DFmode</code>,
<code>XFmode</code> and <code>TFmode</code>.
<p><a name="index-MODE_005fDECIMAL_005fFLOAT-1946"></a><br><dt><code>MODE_DECIMAL_FLOAT</code><dd>Decimal floating point modes. By default these are <code>SDmode</code>,
<code>DDmode</code> and <code>TDmode</code>.
<p><a name="index-MODE_005fFRACT-1947"></a><br><dt><code>MODE_FRACT</code><dd>Signed fractional modes. By default these are <code>QQmode</code>, <code>HQmode</code>,
<code>SQmode</code>, <code>DQmode</code> and <code>TQmode</code>.
<p><a name="index-MODE_005fUFRACT-1948"></a><br><dt><code>MODE_UFRACT</code><dd>Unsigned fractional modes. By default these are <code>UQQmode</code>, <code>UHQmode</code>,
<code>USQmode</code>, <code>UDQmode</code> and <code>UTQmode</code>.
<p><a name="index-MODE_005fACCUM-1949"></a><br><dt><code>MODE_ACCUM</code><dd>Signed accumulator modes. By default these are <code>HAmode</code>,
<code>SAmode</code>, <code>DAmode</code> and <code>TAmode</code>.
<p><a name="index-MODE_005fUACCUM-1950"></a><br><dt><code>MODE_UACCUM</code><dd>Unsigned accumulator modes. By default these are <code>UHAmode</code>,
<code>USAmode</code>, <code>UDAmode</code> and <code>UTAmode</code>.
<p><a name="index-MODE_005fCOMPLEX_005fINT-1951"></a><br><dt><code>MODE_COMPLEX_INT</code><dd>Complex integer modes. (These are not currently implemented).
<p><a name="index-MODE_005fCOMPLEX_005fFLOAT-1952"></a><br><dt><code>MODE_COMPLEX_FLOAT</code><dd>Complex floating point modes. By default these are <code>QCmode</code>,
<code>HCmode</code>, <code>SCmode</code>, <code>DCmode</code>, <code>XCmode</code>, and
<code>TCmode</code>.
<p><a name="index-MODE_005fFUNCTION-1953"></a><br><dt><code>MODE_FUNCTION</code><dd>Algol or Pascal function variables including a static chain.
(These are not currently implemented).
<p><a name="index-MODE_005fCC-1954"></a><br><dt><code>MODE_CC</code><dd>Modes representing condition code values. These are <code>CCmode</code> plus
any <code>CC_MODE</code> modes listed in the <samp><var>machine</var><span class="file">-modes.def</span></samp>.
See <a href="#Jump-Patterns">Jump Patterns</a>,
also see <a href="#Condition-Code">Condition Code</a>.
<p><a name="index-MODE_005fRANDOM-1955"></a><br><dt><code>MODE_RANDOM</code><dd>This is a catchall mode class for modes which don't fit into the above
classes. Currently <code>VOIDmode</code> and <code>BLKmode</code> are in
<code>MODE_RANDOM</code>.
</dl>
<p>Here are some C macros that relate to machine modes:
<a name="index-GET_005fMODE-1956"></a>
<dl><dt><code>GET_MODE (</code><var>x</var><code>)</code><dd>Returns the machine mode of the RTX <var>x</var>.
<p><a name="index-PUT_005fMODE-1957"></a><br><dt><code>PUT_MODE (</code><var>x</var><code>, </code><var>newmode</var><code>)</code><dd>Alters the machine mode of the RTX <var>x</var> to be <var>newmode</var>.
<p><a name="index-NUM_005fMACHINE_005fMODES-1958"></a><br><dt><code>NUM_MACHINE_MODES</code><dd>Stands for the number of machine modes available on the target
machine. This is one greater than the largest numeric value of any
machine mode.
<p><a name="index-GET_005fMODE_005fNAME-1959"></a><br><dt><code>GET_MODE_NAME (</code><var>m</var><code>)</code><dd>Returns the name of mode <var>m</var> as a string.
<p><a name="index-GET_005fMODE_005fCLASS-1960"></a><br><dt><code>GET_MODE_CLASS (</code><var>m</var><code>)</code><dd>Returns the mode class of mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fWIDER_005fMODE-1961"></a><br><dt><code>GET_MODE_WIDER_MODE (</code><var>m</var><code>)</code><dd>Returns the next wider natural mode. For example, the expression
<code>GET_MODE_WIDER_MODE (QImode)</code> returns <code>HImode</code>.
<p><a name="index-GET_005fMODE_005fSIZE-1962"></a><br><dt><code>GET_MODE_SIZE (</code><var>m</var><code>)</code><dd>Returns the size in bytes of a datum of mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fBITSIZE-1963"></a><br><dt><code>GET_MODE_BITSIZE (</code><var>m</var><code>)</code><dd>Returns the size in bits of a datum of mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fIBIT-1964"></a><br><dt><code>GET_MODE_IBIT (</code><var>m</var><code>)</code><dd>Returns the number of integral bits of a datum of fixed-point mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fFBIT-1965"></a><br><dt><code>GET_MODE_FBIT (</code><var>m</var><code>)</code><dd>Returns the number of fractional bits of a datum of fixed-point mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fMASK-1966"></a><br><dt><code>GET_MODE_MASK (</code><var>m</var><code>)</code><dd>Returns a bitmask containing 1 for all bits in a word that fit within
mode <var>m</var>. This macro can only be used for modes whose bitsize is
less than or equal to <code>HOST_BITS_PER_INT</code>.
<p><a name="index-GET_005fMODE_005fALIGNMENT-1967"></a><br><dt><code>GET_MODE_ALIGNMENT (</code><var>m</var><code>)</code><dd>Return the required alignment, in bits, for an object of mode <var>m</var>.
<p><a name="index-GET_005fMODE_005fUNIT_005fSIZE-1968"></a><br><dt><code>GET_MODE_UNIT_SIZE (</code><var>m</var><code>)</code><dd>Returns the size in bytes of the subunits of a datum of mode <var>m</var>.
This is the same as <code>GET_MODE_SIZE</code> except in the case of complex
modes. For them, the unit size is the size of the real or imaginary
part.
<p><a name="index-GET_005fMODE_005fNUNITS-1969"></a><br><dt><code>GET_MODE_NUNITS (</code><var>m</var><code>)</code><dd>Returns the number of units contained in a mode, i.e.,
<code>GET_MODE_SIZE</code> divided by <code>GET_MODE_UNIT_SIZE</code>.
<p><a name="index-GET_005fCLASS_005fNARROWEST_005fMODE-1970"></a><br><dt><code>GET_CLASS_NARROWEST_MODE (</code><var>c</var><code>)</code><dd>Returns the narrowest mode in mode class <var>c</var>.
</dl>
<p><a name="index-byte_005fmode-1971"></a><a name="index-word_005fmode-1972"></a>The global variables <code>byte_mode</code> and <code>word_mode</code> contain modes
whose classes are <code>MODE_INT</code> and whose bitsizes are either
<code>BITS_PER_UNIT</code> or <code>BITS_PER_WORD</code>, respectively. On 32-bit
machines, these are <code>QImode</code> and <code>SImode</code>, respectively.
<div class="node">
<a name="Constants"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Regs-and-Memory">Regs and Memory</a>,
Previous: <a rel="previous" accesskey="p" href="#Machine-Modes">Machine Modes</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.7 Constant Expression Types</h3>
<p><a name="index-RTL-constants-1973"></a><a name="index-RTL-constant-expression-types-1974"></a>
The simplest RTL expressions are those that represent constant values.
<a name="index-const_005fint-1975"></a>
<dl><dt><code>(const_int </code><var>i</var><code>)</code><dd>This type of expression represents the integer value <var>i</var>. <var>i</var>
is customarily accessed with the macro <code>INTVAL</code> as in
<code>INTVAL (</code><var>exp</var><code>)</code>, which is equivalent to <code>XWINT (</code><var>exp</var><code>, 0)</code>.
<p>Constants generated for modes with fewer bits than <code>HOST_WIDE_INT</code>
must be sign extended to full width (e.g., with <code>gen_int_mode</code>).
<p><a name="index-const0_005frtx-1976"></a><a name="index-const1_005frtx-1977"></a><a name="index-const2_005frtx-1978"></a><a name="index-constm1_005frtx-1979"></a>There is only one expression object for the integer value zero; it is
the value of the variable <code>const0_rtx</code>. Likewise, the only
expression for integer value one is found in <code>const1_rtx</code>, the only
expression for integer value two is found in <code>const2_rtx</code>, and the
only expression for integer value negative one is found in
<code>constm1_rtx</code>. Any attempt to create an expression of code
<code>const_int</code> and value zero, one, two or negative one will return
<code>const0_rtx</code>, <code>const1_rtx</code>, <code>const2_rtx</code> or
<code>constm1_rtx</code> as appropriate.
<p><a name="index-const_005ftrue_005frtx-1980"></a>Similarly, there is only one object for the integer whose value is
<code>STORE_FLAG_VALUE</code>. It is found in <code>const_true_rtx</code>. If
<code>STORE_FLAG_VALUE</code> is one, <code>const_true_rtx</code> and
<code>const1_rtx</code> will point to the same object. If
<code>STORE_FLAG_VALUE</code> is −1, <code>const_true_rtx</code> and
<code>constm1_rtx</code> will point to the same object.
<p><a name="index-const_005fdouble-1981"></a><br><dt><code>(const_double:</code><var>m</var> <var>i0</var> <var>i1</var><code> ...)</code><dd>Represents either a floating-point constant of mode <var>m</var> or an
integer constant too large to fit into <code>HOST_BITS_PER_WIDE_INT</code>
bits but small enough to fit within twice that number of bits (GCC
does not provide a mechanism to represent even larger constants). In
the latter case, <var>m</var> will be <code>VOIDmode</code>.
<p><a name="index-CONST_005fDOUBLE_005fLOW-1982"></a>If <var>m</var> is <code>VOIDmode</code>, the bits of the value are stored in
<var>i0</var> and <var>i1</var>. <var>i0</var> is customarily accessed with the macro
<code>CONST_DOUBLE_LOW</code> and <var>i1</var> with <code>CONST_DOUBLE_HIGH</code>.
<p>If the constant is floating point (regardless of its precision), then
the number of integers used to store the value depends on the size of
<code>REAL_VALUE_TYPE</code> (see <a href="#Floating-Point">Floating Point</a>). The integers
represent a floating point number, but not precisely in the target
machine's or host machine's floating point format. To convert them to
the precise bit pattern used by the target machine, use the macro
<code>REAL_VALUE_TO_TARGET_DOUBLE</code> and friends (see <a href="#Data-Output">Data Output</a>).
<p><a name="index-const_005ffixed-1983"></a><br><dt><code>(const_fixed:</code><var>m</var><code> ...)</code><dd>Represents a fixed-point constant of mode <var>m</var>.
The operand is a data structure of type <code>struct fixed_value</code> and
is accessed with the macro <code>CONST_FIXED_VALUE</code>. The high part of
data is accessed with <code>CONST_FIXED_VALUE_HIGH</code>; the low part is
accessed with <code>CONST_FIXED_VALUE_LOW</code>.
<p><a name="index-const_005fvector-1984"></a><br><dt><code>(const_vector:</code><var>m</var><code> [</code><var>x0</var> <var>x1</var><code> ...])</code><dd>Represents a vector constant. The square brackets stand for the vector
containing the constant elements. <var>x0</var>, <var>x1</var> and so on are
the <code>const_int</code>, <code>const_double</code> or <code>const_fixed</code> elements.
<p>The number of units in a <code>const_vector</code> is obtained with the macro
<code>CONST_VECTOR_NUNITS</code> as in <code>CONST_VECTOR_NUNITS (</code><var>v</var><code>)</code>.
<p>Individual elements in a vector constant are accessed with the macro
<code>CONST_VECTOR_ELT</code> as in <code>CONST_VECTOR_ELT (</code><var>v</var><code>, </code><var>n</var><code>)</code>
where <var>v</var> is the vector constant and <var>n</var> is the element
desired.
<p><a name="index-const_005fstring-1985"></a><br><dt><code>(const_string </code><var>str</var><code>)</code><dd>Represents a constant string with value <var>str</var>. Currently this is
used only for insn attributes (see <a href="#Insn-Attributes">Insn Attributes</a>) since constant
strings in C are placed in memory.
<p><a name="index-symbol_005fref-1986"></a><br><dt><code>(symbol_ref:</code><var>mode</var> <var>symbol</var><code>)</code><dd>Represents the value of an assembler label for data. <var>symbol</var> is
a string that describes the name of the assembler label. If it starts
with a ‘<samp><span class="samp">*</span></samp>’, the label is the rest of <var>symbol</var> not including
the ‘<samp><span class="samp">*</span></samp>’. Otherwise, the label is <var>symbol</var>, usually prefixed
with ‘<samp><span class="samp">_</span></samp>’.
<p>The <code>symbol_ref</code> contains a mode, which is usually <code>Pmode</code>.
Usually that is the only mode for which a symbol is directly valid.
<p><a name="index-label_005fref-1987"></a><br><dt><code>(label_ref:</code><var>mode</var> <var>label</var><code>)</code><dd>Represents the value of an assembler label for code. It contains one
operand, an expression, which must be a <code>code_label</code> or a <code>note</code>
of type <code>NOTE_INSN_DELETED_LABEL</code> that appears in the instruction
sequence to identify the place where the label should go.
<p>The reason for using a distinct expression type for code label
references is so that jump optimization can distinguish them.
<p>The <code>label_ref</code> contains a mode, which is usually <code>Pmode</code>.
Usually that is the only mode for which a label is directly valid.
<p><a name="index-const-1988"></a><br><dt><code>(const:</code><var>m</var> <var>exp</var><code>)</code><dd>Represents a constant that is the result of an assembly-time
arithmetic computation. The operand, <var>exp</var>, is an expression that
contains only constants (<code>const_int</code>, <code>symbol_ref</code> and
<code>label_ref</code> expressions) combined with <code>plus</code> and
<code>minus</code>. However, not all combinations are valid, since the
assembler cannot do arbitrary arithmetic on relocatable symbols.
<p><var>m</var> should be <code>Pmode</code>.
<p><a name="index-high-1989"></a><br><dt><code>(high:</code><var>m</var> <var>exp</var><code>)</code><dd>Represents the high-order bits of <var>exp</var>, usually a
<code>symbol_ref</code>. The number of bits is machine-dependent and is
normally the number of bits specified in an instruction that initializes
the high order bits of a register. It is used with <code>lo_sum</code> to
represent the typical two-instruction sequence used in RISC machines to
reference a global memory location.
<p><var>m</var> should be <code>Pmode</code>.
</dl>
<p><a name="index-CONST0_005fRTX-1990"></a><a name="index-CONST1_005fRTX-1991"></a><a name="index-CONST2_005fRTX-1992"></a>The macro <code>CONST0_RTX (</code><var>mode</var><code>)</code> refers to an expression with
value 0 in mode <var>mode</var>. If mode <var>mode</var> is of mode class
<code>MODE_INT</code>, it returns <code>const0_rtx</code>. If mode <var>mode</var> is of
mode class <code>MODE_FLOAT</code>, it returns a <code>CONST_DOUBLE</code>
expression in mode <var>mode</var>. Otherwise, it returns a
<code>CONST_VECTOR</code> expression in mode <var>mode</var>. Similarly, the macro
<code>CONST1_RTX (</code><var>mode</var><code>)</code> refers to an expression with value 1 in
mode <var>mode</var> and similarly for <code>CONST2_RTX</code>. The
<code>CONST1_RTX</code> and <code>CONST2_RTX</code> macros are undefined
for vector modes.
<div class="node">
<a name="Regs-and-Memory"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Arithmetic">Arithmetic</a>,
Previous: <a rel="previous" accesskey="p" href="#Constants">Constants</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.8 Registers and Memory</h3>
<p><a name="index-RTL-register-expressions-1993"></a><a name="index-RTL-memory-expressions-1994"></a>
Here are the RTL expression types for describing access to machine
registers and to main memory.
<a name="index-reg-1995"></a>
<a name="index-hard-registers-1996"></a>
<a name="index-pseudo-registers-1997"></a>
<dl><dt><code>(reg:</code><var>m</var> <var>n</var><code>)</code><dd>For small values of the integer <var>n</var> (those that are less than
<code>FIRST_PSEUDO_REGISTER</code>), this stands for a reference to machine
register number <var>n</var>: a <dfn>hard register</dfn>. For larger values of
<var>n</var>, it stands for a temporary value or <dfn>pseudo register</dfn>.
The compiler's strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard
registers or into memory references.
<p><var>m</var> is the machine mode of the reference. It is necessary because
machines can generally refer to each register in more than one mode.
For example, a register may contain a full word but there may be
instructions to refer to it as a half word or as a single byte, as
well as instructions to refer to it as a floating point number of
various precisions.
<p>Even for a register that the machine can access in only one mode,
the mode must always be specified.
<p>The symbol <code>FIRST_PSEUDO_REGISTER</code> is defined by the machine
description, since the number of hard registers on the machine is an
invariant characteristic of the machine. Note, however, that not
all of the machine registers must be general registers. All the
machine registers that can be used for storage of data are given
hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.
<p>A hard register may be accessed in various modes throughout one
function, but each pseudo register is given a natural mode
and is accessed only in that mode. When it is necessary to describe
an access to a pseudo register using a nonnatural mode, a <code>subreg</code>
expression is used.
<p>A <code>reg</code> expression with a machine mode that specifies more than
one word of data may actually stand for several consecutive registers.
If in addition the register number specifies a hardware register, then
it actually represents several consecutive hardware registers starting
with the specified one.
<p>Each pseudo register number used in a function's RTL code is
represented by a unique <code>reg</code> expression.
<p><a name="index-FIRST_005fVIRTUAL_005fREGISTER-1998"></a><a name="index-LAST_005fVIRTUAL_005fREGISTER-1999"></a>Some pseudo register numbers, those within the range of
<code>FIRST_VIRTUAL_REGISTER</code> to <code>LAST_VIRTUAL_REGISTER</code> only
appear during the RTL generation phase and are eliminated before the
optimization phases. These represent locations in the stack frame that
cannot be determined until RTL generation for the function has been
completed. The following virtual register numbers are defined:
<a name="index-VIRTUAL_005fINCOMING_005fARGS_005fREGNUM-2000"></a>
<dl><dt><code>VIRTUAL_INCOMING_ARGS_REGNUM</code><dd>This points to the first word of the incoming arguments passed on the
stack. Normally these arguments are placed there by the caller, but the
callee may have pushed some arguments that were previously passed in
registers.
<p><a name="index-g_t_0040code_007bFIRST_005fPARM_005fOFFSET_007d-and-virtual-registers-2001"></a><a name="index-g_t_0040code_007bARG_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2002"></a>When RTL generation is complete, this virtual register is replaced
by the sum of the register given by <code>ARG_POINTER_REGNUM</code> and the
value of <code>FIRST_PARM_OFFSET</code>.
<p><a name="index-VIRTUAL_005fSTACK_005fVARS_005fREGNUM-2003"></a><a name="index-g_t_0040code_007bFRAME_005fGROWS_005fDOWNWARD_007d-and-virtual-registers-2004"></a><br><dt><code>VIRTUAL_STACK_VARS_REGNUM</code><dd>If <code>FRAME_GROWS_DOWNWARD</code> is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it points
to the first variable on the stack.
<p><a name="index-g_t_0040code_007bSTARTING_005fFRAME_005fOFFSET_007d-and-virtual-registers-2005"></a><a name="index-g_t_0040code_007bFRAME_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2006"></a><code>VIRTUAL_STACK_VARS_REGNUM</code> is replaced with the sum of the
register given by <code>FRAME_POINTER_REGNUM</code> and the value
<code>STARTING_FRAME_OFFSET</code>.
<p><a name="index-VIRTUAL_005fSTACK_005fDYNAMIC_005fREGNUM-2007"></a><br><dt><code>VIRTUAL_STACK_DYNAMIC_REGNUM</code><dd>This points to the location of dynamically allocated memory on the stack
immediately after the stack pointer has been adjusted by the amount of
memory desired.
<p><a name="index-g_t_0040code_007bSTACK_005fDYNAMIC_005fOFFSET_007d-and-virtual-registers-2008"></a><a name="index-g_t_0040code_007bSTACK_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2009"></a>This virtual register is replaced by the sum of the register given by
<code>STACK_POINTER_REGNUM</code> and the value <code>STACK_DYNAMIC_OFFSET</code>.
<p><a name="index-VIRTUAL_005fOUTGOING_005fARGS_005fREGNUM-2010"></a><br><dt><code>VIRTUAL_OUTGOING_ARGS_REGNUM</code><dd>This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed using
push insns should always use <code>STACK_POINTER_REGNUM</code>).
<p><a name="index-g_t_0040code_007bSTACK_005fPOINTER_005fOFFSET_007d-and-virtual-registers-2011"></a>This virtual register is replaced by the sum of the register given by
<code>STACK_POINTER_REGNUM</code> and the value <code>STACK_POINTER_OFFSET</code>.
</dl>
<p><a name="index-subreg-2012"></a><br><dt><code>(subreg:</code><var>m1</var> <var>reg:m2</var> <var>bytenum</var><code>)</code><dd>
<code>subreg</code> expressions are used to refer to a register in a machine
mode other than its natural one, or to refer to one register of
a multi-part <code>reg</code> that actually refers to several registers.
<p>Each pseudo register has a natural mode. If it is necessary to
operate on it in a different mode, the register must be
enclosed in a <code>subreg</code>.
<p>There are currently three supported types for the first operand of a
<code>subreg</code>:
<ul>
<li>pseudo registers
This is the most common case. Most <code>subreg</code>s have pseudo
<code>reg</code>s as their first operand.
<li>mem
<code>subreg</code>s of <code>mem</code> were common in earlier versions of GCC and
are still supported. During the reload pass these are replaced by plain
<code>mem</code>s. On machines that do not do instruction scheduling, use of
<code>subreg</code>s of <code>mem</code> are still used, but this is no longer
recommended. Such <code>subreg</code>s are considered to be
<code>register_operand</code>s rather than <code>memory_operand</code>s before and
during reload. Because of this, the scheduling passes cannot properly
schedule instructions with <code>subreg</code>s of <code>mem</code>, so for machines
that do scheduling, <code>subreg</code>s of <code>mem</code> should never be used.
To support this, the combine and recog passes have explicit code to
inhibit the creation of <code>subreg</code>s of <code>mem</code> when
<code>INSN_SCHEDULING</code> is defined.
<p>The use of <code>subreg</code>s of <code>mem</code> after the reload pass is an area
that is not well understood and should be avoided. There is still some
code in the compiler to support this, but this code has possibly rotted.
This use of <code>subreg</code>s is discouraged and will most likely not be
supported in the future.
<li>hard registers
It is seldom necessary to wrap hard registers in <code>subreg</code>s; such
registers would normally reduce to a single <code>reg</code> rtx. This use of
<code>subreg</code>s is discouraged and may not be supported in the future.
</ul>
<p><code>subreg</code>s of <code>subreg</code>s are not supported. Using
<code>simplify_gen_subreg</code> is the recommended way to avoid this problem.
<p><code>subreg</code>s come in two distinct flavors, each having its own
usage and rules:
<dl>
<dt>Paradoxical subregs<dd>When <var>m1</var> is strictly wider than <var>m2</var>, the <code>subreg</code>
expression is called <dfn>paradoxical</dfn>. The canonical test for this
class of <code>subreg</code> is:
<pre class="smallexample"> GET_MODE_SIZE (<var>m1</var>) > GET_MODE_SIZE (<var>m2</var>)
</pre>
<p>Paradoxical <code>subreg</code>s can be used as both lvalues and rvalues.
When used as an lvalue, the low-order bits of the source value
are stored in <var>reg</var> and the high-order bits are discarded.
When used as an rvalue, the low-order bits of the <code>subreg</code> are
taken from <var>reg</var> while the high-order bits may or may not be
defined.
<p>The high-order bits of rvalues are in the following circumstances:
<ul>
<li><code>subreg</code>s of <code>mem</code>
When <var>m2</var> is smaller than a word, the macro <code>LOAD_EXTEND_OP</code>,
can control how the high-order bits are defined.
<li><code>subreg</code> of <code>reg</code>s
The upper bits are defined when <code>SUBREG_PROMOTED_VAR_P</code> is true.
<code>SUBREG_PROMOTED_UNSIGNED_P</code> describes what the upper bits hold.
Such subregs usually represent local variables, register variables
and parameter pseudo variables that have been promoted to a wider mode.
</ul>
<p><var>bytenum</var> is always zero for a paradoxical <code>subreg</code>, even on
big-endian targets.
<p>For example, the paradoxical <code>subreg</code>:
<pre class="smallexample"> (set (subreg:SI (reg:HI <var>x</var>) 0) <var>y</var>)
</pre>
<p>stores the lower 2 bytes of <var>y</var> in <var>x</var> and discards the upper
2 bytes. A subsequent:
<pre class="smallexample"> (set <var>z</var> (subreg:SI (reg:HI <var>x</var>) 0))
</pre>
<p>would set the lower two bytes of <var>z</var> to <var>y</var> and set the upper
two bytes to an unknown value assuming <code>SUBREG_PROMOTED_VAR_P</code> is
false.
<br><dt>Normal subregs<dd>When <var>m1</var> is at least as narrow as <var>m2</var> the <code>subreg</code>
expression is called <dfn>normal</dfn>.
<p>Normal <code>subreg</code>s restrict consideration to certain bits of
<var>reg</var>. There are two cases. If <var>m1</var> is smaller than a word,
the <code>subreg</code> refers to the least-significant part (or
<dfn>lowpart</dfn>) of one word of <var>reg</var>. If <var>m1</var> is word-sized or
greater, the <code>subreg</code> refers to one or more complete words.
<p>When used as an lvalue, <code>subreg</code> is a word-based accessor.
Storing to a <code>subreg</code> modifies all the words of <var>reg</var> that
overlap the <code>subreg</code>, but it leaves the other words of <var>reg</var>
alone.
<p>When storing to a normal <code>subreg</code> that is smaller than a word,
the other bits of the referenced word are usually left in an undefined
state. This laxity makes it easier to generate efficient code for
such instructions. To represent an instruction that preserves all the
bits outside of those in the <code>subreg</code>, use <code>strict_low_part</code>
or <code>zero_extract</code> around the <code>subreg</code>.
<p><var>bytenum</var> must identify the offset of the first byte of the
<code>subreg</code> from the start of <var>reg</var>, assuming that <var>reg</var> is
laid out in memory order. The memory order of bytes is defined by
two target macros, <code>WORDS_BIG_ENDIAN</code> and <code>BYTES_BIG_ENDIAN</code>:
<ul>
<li><a name="index-g_t_0040code_007bWORDS_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsubreg_007d-2013"></a><code>WORDS_BIG_ENDIAN</code>, if set to 1, says that byte number zero is
part of the most significant word; otherwise, it is part of the least
significant word.
<li><a name="index-g_t_0040code_007bBYTES_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsubreg_007d-2014"></a><code>BYTES_BIG_ENDIAN</code>, if set to 1, says that byte number zero is
the most significant byte within a word; otherwise, it is the least
significant byte within a word.
</ul>
<p><a name="index-g_t_0040code_007bFLOAT_005fWORDS_005fBIG_005fENDIAN_007d_002c-_0028lack-of_0029-effect-on-_0040code_007bsubreg_007d-2015"></a>On a few targets, <code>FLOAT_WORDS_BIG_ENDIAN</code> disagrees with
<code>WORDS_BIG_ENDIAN</code>. However, most parts of the compiler treat
floating point values as if they had the same endianness as integer
values. This works because they handle them solely as a collection of
integer values, with no particular numerical value. Only real.c and
the runtime libraries care about <code>FLOAT_WORDS_BIG_ENDIAN</code>.
<p>Thus,
<pre class="smallexample"> (subreg:HI (reg:SI <var>x</var>) 2)
</pre>
<p>on a <code>BYTES_BIG_ENDIAN</code>, ‘<samp><span class="samp">UNITS_PER_WORD == 4</span></samp>’ target is the same as
<pre class="smallexample"> (subreg:HI (reg:SI <var>x</var>) 0)
</pre>
<p>on a little-endian, ‘<samp><span class="samp">UNITS_PER_WORD == 4</span></samp>’ target. Both
<code>subreg</code>s access the lower two bytes of register <var>x</var>.
</dl>
<p>A <code>MODE_PARTIAL_INT</code> mode behaves as if it were as wide as the
corresponding <code>MODE_INT</code> mode, except that it has an unknown
number of undefined bits. For example:
<pre class="smallexample"> (subreg:PSI (reg:SI 0) 0)
</pre>
<p>accesses the whole of ‘<samp><span class="samp">(reg:SI 0)</span></samp>’, but the exact relationship
between the <code>PSImode</code> value and the <code>SImode</code> value is not
defined. If we assume ‘<samp><span class="samp">UNITS_PER_WORD <= 4</span></samp>’, then the following
two <code>subreg</code>s:
<pre class="smallexample"> (subreg:PSI (reg:DI 0) 0)
(subreg:PSI (reg:DI 0) 4)
</pre>
<p>represent independent 4-byte accesses to the two halves of
‘<samp><span class="samp">(reg:DI 0)</span></samp>’. Both <code>subreg</code>s have an unknown number
of undefined bits.
<p>If ‘<samp><span class="samp">UNITS_PER_WORD <= 2</span></samp>’ then these two <code>subreg</code>s:
<pre class="smallexample"> (subreg:HI (reg:PSI 0) 0)
(subreg:HI (reg:PSI 0) 2)
</pre>
<p>represent independent 2-byte accesses that together span the whole
of ‘<samp><span class="samp">(reg:PSI 0)</span></samp>’. Storing to the first <code>subreg</code> does not
affect the value of the second, and vice versa. ‘<samp><span class="samp">(reg:PSI 0)</span></samp>’
has an unknown number of undefined bits, so the assignment:
<pre class="smallexample"> (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))
</pre>
<p>does not guarantee that ‘<samp><span class="samp">(subreg:HI (reg:PSI 0) 0)</span></samp>’ has the
value ‘<samp><span class="samp">(reg:HI 4)</span></samp>’.
<p><a name="index-g_t_0040code_007bCANNOT_005fCHANGE_005fMODE_005fCLASS_007d-and-subreg-semantics-2016"></a>The rules above apply to both pseudo <var>reg</var>s and hard <var>reg</var>s.
If the semantics are not correct for particular combinations of
<var>m1</var>, <var>m2</var> and hard <var>reg</var>, the target-specific code
must ensure that those combinations are never used. For example:
<pre class="smallexample"> CANNOT_CHANGE_MODE_CLASS (<var>m2</var>, <var>m1</var>, <var>class</var>)
</pre>
<p>must be true for every class <var>class</var> that includes <var>reg</var>.
<p><a name="index-SUBREG_005fREG-2017"></a><a name="index-SUBREG_005fBYTE-2018"></a>The first operand of a <code>subreg</code> expression is customarily accessed
with the <code>SUBREG_REG</code> macro and the second operand is customarily
accessed with the <code>SUBREG_BYTE</code> macro.
<p>It has been several years since a platform in which
<code>BYTES_BIG_ENDIAN</code> not equal to <code>WORDS_BIG_ENDIAN</code> has
been tested. Anyone wishing to support such a platform in the future
may be confronted with code rot.
<p><a name="index-scratch-2019"></a><a name="index-scratch-operands-2020"></a><br><dt><code>(scratch:</code><var>m</var><code>)</code><dd>This represents a scratch register that will be required for the
execution of a single instruction and not used subsequently. It is
converted into a <code>reg</code> by either the local register allocator or
the reload pass.
<p><code>scratch</code> is usually present inside a <code>clobber</code> operation
(see <a href="#Side-Effects">Side Effects</a>).
<p><a name="index-cc0-2021"></a><a name="index-condition-code-register-2022"></a><br><dt><code>(cc0)</code><dd>This refers to the machine's condition code register. It has no
operands and may not have a machine mode. There are two ways to use it:
<ul>
<li>To stand for a complete set of condition code flags. This is best on
most machines, where each comparison sets the entire series of flags.
<p>With this technique, <code>(cc0)</code> may be validly used in only two
contexts: as the destination of an assignment (in test and compare
instructions) and in comparison operators comparing against zero
(<code>const_int</code> with value zero; that is to say, <code>const0_rtx</code>).
<li>To stand for a single flag that is the result of a single condition.
This is useful on machines that have only a single flag bit, and in
which comparison instructions must specify the condition to test.
<p>With this technique, <code>(cc0)</code> may be validly used in only two
contexts: as the destination of an assignment (in test and compare
instructions) where the source is a comparison operator, and as the
first operand of <code>if_then_else</code> (in a conditional branch).
</ul>
<p><a name="index-cc0_005frtx-2023"></a>There is only one expression object of code <code>cc0</code>; it is the
value of the variable <code>cc0_rtx</code>. Any attempt to create an
expression of code <code>cc0</code> will return <code>cc0_rtx</code>.
<p>Instructions can set the condition code implicitly. On many machines,
nearly all instructions set the condition code based on the value that
they compute or store. It is not necessary to record these actions
explicitly in the RTL because the machine description includes a
prescription for recognizing the instructions that do so (by means of
the macro <code>NOTICE_UPDATE_CC</code>). See <a href="#Condition-Code">Condition Code</a>. Only
instructions whose sole purpose is to set the condition code, and
instructions that use the condition code, need mention <code>(cc0)</code>.
<p>On some machines, the condition code register is given a register number
and a <code>reg</code> is used instead of <code>(cc0)</code>. This is usually the
preferable approach if only a small subset of instructions modify the
condition code. Other machines store condition codes in general
registers; in such cases a pseudo register should be used.
<p>Some machines, such as the SPARC and RS/6000, have two sets of
arithmetic instructions, one that sets and one that does not set the
condition code. This is best handled by normally generating the
instruction that does not set the condition code, and making a pattern
that both performs the arithmetic and sets the condition code register
(which would not be <code>(cc0)</code> in this case). For examples, search
for ‘<samp><span class="samp">addcc</span></samp>’ and ‘<samp><span class="samp">andcc</span></samp>’ in <samp><span class="file">sparc.md</span></samp>.
<p><a name="index-pc-2024"></a><br><dt><code>(pc)</code><dd><a name="index-program-counter-2025"></a>This represents the machine's program counter. It has no operands and
may not have a machine mode. <code>(pc)</code> may be validly used only in
certain specific contexts in jump instructions.
<p><a name="index-pc_005frtx-2026"></a>There is only one expression object of code <code>pc</code>; it is the value
of the variable <code>pc_rtx</code>. Any attempt to create an expression of
code <code>pc</code> will return <code>pc_rtx</code>.
<p>All instructions that do not jump alter the program counter implicitly
by incrementing it, but there is no need to mention this in the RTL.
<p><a name="index-mem-2027"></a><br><dt><code>(mem:</code><var>m</var> <var>addr</var> <var>alias</var><code>)</code><dd>This RTX represents a reference to main memory at an address
represented by the expression <var>addr</var>. <var>m</var> specifies how large
a unit of memory is accessed. <var>alias</var> specifies an alias set for the
reference. In general two items are in different alias sets if they cannot
reference the same memory address.
<p>The construct <code>(mem:BLK (scratch))</code> is considered to alias all
other memories. Thus it may be used as a memory barrier in epilogue
stack deallocation patterns.
<p><a name="index-concat-2028"></a><br><dt><code>(concat</code><var>m</var> <var>rtx</var> <var>rtx</var><code>)</code><dd>This RTX represents the concatenation of two other RTXs. This is used
for complex values. It should only appear in the RTL attached to
declarations and during RTL generation. It should not appear in the
ordinary insn chain.
<p><a name="index-concatn-2029"></a><br><dt><code>(concatn</code><var>m</var><code> [</code><var>rtx</var><code> ...])</code><dd>This RTX represents the concatenation of all the <var>rtx</var> to make a
single value. Like <code>concat</code>, this should only appear in
declarations, and not in the insn chain.
</dl>
<div class="node">
<a name="Arithmetic"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Comparisons">Comparisons</a>,
Previous: <a rel="previous" accesskey="p" href="#Regs-and-Memory">Regs and Memory</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.9 RTL Expressions for Arithmetic</h3>
<p><a name="index-arithmetic_002c-in-RTL-2030"></a><a name="index-math_002c-in-RTL-2031"></a><a name="index-RTL-expressions-for-arithmetic-2032"></a>
Unless otherwise specified, all the operands of arithmetic expressions
must be valid for mode <var>m</var>. An operand is valid for mode <var>m</var>
if it has mode <var>m</var>, or if it is a <code>const_int</code> or
<code>const_double</code> and <var>m</var> is a mode of class <code>MODE_INT</code>.
<p>For commutative binary operations, constants should be placed in the
second operand.
<a name="index-plus-2033"></a>
<a name="index-ss_005fplus-2034"></a>
<a name="index-us_005fplus-2035"></a>
<a name="index-RTL-sum-2036"></a>
<a name="index-RTL-addition-2037"></a>
<a name="index-RTL-addition-with-signed-saturation-2038"></a>
<a name="index-RTL-addition-with-unsigned-saturation-2039"></a>
<dl><dt><code>(plus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(ss_plus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(us_plus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>
These three expressions all represent the sum of the values
represented by <var>x</var> and <var>y</var> carried out in machine mode
<var>m</var>. They differ in their behavior on overflow of integer modes.
<code>plus</code> wraps round modulo the width of <var>m</var>; <code>ss_plus</code>
saturates at the maximum signed value representable in <var>m</var>;
<code>us_plus</code> saturates at the maximum unsigned value.
<!-- ??? What happens on overflow of floating point modes? -->
<p><a name="index-lo_005fsum-2040"></a><br><dt><code>(lo_sum:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>
This expression represents the sum of <var>x</var> and the low-order bits
of <var>y</var>. It is used with <code>high</code> (see <a href="#Constants">Constants</a>) to
represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.
<p>The number of low order bits is machine-dependent but is
normally the number of bits in a <code>Pmode</code> item minus the number of
bits set by <code>high</code>.
<p><var>m</var> should be <code>Pmode</code>.
<p><a name="index-minus-2041"></a><a name="index-ss_005fminus-2042"></a><a name="index-us_005fminus-2043"></a><a name="index-RTL-difference-2044"></a><a name="index-RTL-subtraction-2045"></a><a name="index-RTL-subtraction-with-signed-saturation-2046"></a><a name="index-RTL-subtraction-with-unsigned-saturation-2047"></a><br><dt><code>(minus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(ss_minus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(us_minus:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>
These three expressions represent the result of subtracting <var>y</var>
from <var>x</var>, carried out in mode <var>M</var>. Behavior on overflow is
the same as for the three variants of <code>plus</code> (see above).
<p><a name="index-compare-2048"></a><a name="index-RTL-comparison-2049"></a><br><dt><code>(compare:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the result of subtracting <var>y</var> from <var>x</var> for purposes
of comparison. The result is computed without overflow, as if with
infinite precision.
<p>Of course, machines can't really subtract with infinite precision.
However, they can pretend to do so when only the sign of the result will
be used, which is the case when the result is stored in the condition
code. And that is the <em>only</em> way this kind of expression may
validly be used: as a value to be stored in the condition codes, either
<code>(cc0)</code> or a register. See <a href="#Comparisons">Comparisons</a>.
<p>The mode <var>m</var> is not related to the modes of <var>x</var> and <var>y</var>, but
instead is the mode of the condition code value. If <code>(cc0)</code> is
used, it is <code>VOIDmode</code>. Otherwise it is some mode in class
<code>MODE_CC</code>, often <code>CCmode</code>. See <a href="#Condition-Code">Condition Code</a>. If <var>m</var>
is <code>VOIDmode</code> or <code>CCmode</code>, the operation returns sufficient
information (in an unspecified format) so that any comparison operator
can be applied to the result of the <code>COMPARE</code> operation. For other
modes in class <code>MODE_CC</code>, the operation only returns a subset of
this information.
<p>Normally, <var>x</var> and <var>y</var> must have the same mode. Otherwise,
<code>compare</code> is valid only if the mode of <var>x</var> is in class
<code>MODE_INT</code> and <var>y</var> is a <code>const_int</code> or
<code>const_double</code> with mode <code>VOIDmode</code>. The mode of <var>x</var>
determines what mode the comparison is to be done in; thus it must not
be <code>VOIDmode</code>.
<p>If one of the operands is a constant, it should be placed in the
second operand and the comparison code adjusted as appropriate.
<p>A <code>compare</code> specifying two <code>VOIDmode</code> constants is not valid
since there is no way to know in what mode the comparison is to be
performed; the comparison must either be folded during the compilation
or the first operand must be loaded into a register while its mode is
still known.
<p><a name="index-neg-2050"></a><a name="index-ss_005fneg-2051"></a><a name="index-us_005fneg-2052"></a><a name="index-negation-2053"></a><a name="index-negation-with-signed-saturation-2054"></a><a name="index-negation-with-unsigned-saturation-2055"></a><br><dt><code>(neg:</code><var>m</var> <var>x</var><code>)</code><dt><code>(ss_neg:</code><var>m</var> <var>x</var><code>)</code><dt><code>(us_neg:</code><var>m</var> <var>x</var><code>)</code><dd>These two expressions represent the negation (subtraction from zero) of
the value represented by <var>x</var>, carried out in mode <var>m</var>. They
differ in the behavior on overflow of integer modes. In the case of
<code>neg</code>, the negation of the operand may be a number not representable
in mode <var>m</var>, in which case it is truncated to <var>m</var>. <code>ss_neg</code>
and <code>us_neg</code> ensure that an out-of-bounds result saturates to the
maximum or minimum signed or unsigned value.
<p><a name="index-mult-2056"></a><a name="index-ss_005fmult-2057"></a><a name="index-us_005fmult-2058"></a><a name="index-multiplication-2059"></a><a name="index-product-2060"></a><a name="index-multiplication-with-signed-saturation-2061"></a><a name="index-multiplication-with-unsigned-saturation-2062"></a><br><dt><code>(mult:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(ss_mult:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(us_mult:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the signed product of the values represented by <var>x</var> and
<var>y</var> carried out in machine mode <var>m</var>.
<code>ss_mult</code> and <code>us_mult</code> ensure that an out-of-bounds result
saturates to the maximum or minimum signed or unsigned value.
<p>Some machines support a multiplication that generates a product wider
than the operands. Write the pattern for this as
<pre class="smallexample"> (mult:<var>m</var> (sign_extend:<var>m</var> <var>x</var>) (sign_extend:<var>m</var> <var>y</var>))
</pre>
<p>where <var>m</var> is wider than the modes of <var>x</var> and <var>y</var>, which need
not be the same.
<p>For unsigned widening multiplication, use the same idiom, but with
<code>zero_extend</code> instead of <code>sign_extend</code>.
<p><a name="index-fma-2063"></a><br><dt><code>(fma:</code><var>m</var> <var>x</var> <var>y</var> <var>z</var><code>)</code><dd>Represents the <code>fma</code>, <code>fmaf</code>, and <code>fmal</code> builtin
functions that do a combined multiply of <var>x</var> and <var>y</var> and then
adding to<var>z</var> without doing an intermediate rounding step.
<p><a name="index-div-2064"></a><a name="index-ss_005fdiv-2065"></a><a name="index-division-2066"></a><a name="index-signed-division-2067"></a><a name="index-signed-division-with-signed-saturation-2068"></a><a name="index-quotient-2069"></a><br><dt><code>(div:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(ss_div:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the quotient in signed division of <var>x</var> by <var>y</var>,
carried out in machine mode <var>m</var>. If <var>m</var> is a floating point
mode, it represents the exact quotient; otherwise, the integerized
quotient.
<code>ss_div</code> ensures that an out-of-bounds result saturates to the maximum
or minimum signed value.
<p>Some machines have division instructions in which the operands and
quotient widths are not all the same; you should represent
such instructions using <code>truncate</code> and <code>sign_extend</code> as in,
<pre class="smallexample"> (truncate:<var>m1</var> (div:<var>m2</var> <var>x</var> (sign_extend:<var>m2</var> <var>y</var>)))
</pre>
<p><a name="index-udiv-2070"></a><a name="index-unsigned-division-2071"></a><a name="index-unsigned-division-with-unsigned-saturation-2072"></a><a name="index-division-2073"></a><br><dt><code>(udiv:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(us_div:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>div</code> but represents unsigned division.
<code>us_div</code> ensures that an out-of-bounds result saturates to the maximum
or minimum unsigned value.
<p><a name="index-mod-2074"></a><a name="index-umod-2075"></a><a name="index-remainder-2076"></a><a name="index-division-2077"></a><br><dt><code>(mod:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(umod:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>div</code> and <code>udiv</code> but represent the remainder instead of
the quotient.
<p><a name="index-smin-2078"></a><a name="index-smax-2079"></a><a name="index-signed-minimum-2080"></a><a name="index-signed-maximum-2081"></a><br><dt><code>(smin:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(smax:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the smaller (for <code>smin</code>) or larger (for <code>smax</code>) of
<var>x</var> and <var>y</var>, interpreted as signed values in mode <var>m</var>.
When used with floating point, if both operands are zeros, or if either
operand is <code>NaN</code>, then it is unspecified which of the two operands
is returned as the result.
<p><a name="index-umin-2082"></a><a name="index-umax-2083"></a><a name="index-unsigned-minimum-and-maximum-2084"></a><br><dt><code>(umin:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(umax:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>smin</code> and <code>smax</code>, but the values are interpreted as unsigned
integers.
<p><a name="index-not-2085"></a><a name="index-complement_002c-bitwise-2086"></a><a name="index-bitwise-complement-2087"></a><br><dt><code>(not:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the bitwise complement of the value represented by <var>x</var>,
carried out in mode <var>m</var>, which must be a fixed-point machine mode.
<p><a name="index-and-2088"></a><a name="index-logical_002dand_002c-bitwise-2089"></a><a name="index-bitwise-logical_002dand-2090"></a><br><dt><code>(and:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the bitwise logical-and of the values represented by
<var>x</var> and <var>y</var>, carried out in machine mode <var>m</var>, which must be
a fixed-point machine mode.
<p><a name="index-ior-2091"></a><a name="index-inclusive_002dor_002c-bitwise-2092"></a><a name="index-bitwise-inclusive_002dor-2093"></a><br><dt><code>(ior:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the bitwise inclusive-or of the values represented by <var>x</var>
and <var>y</var>, carried out in machine mode <var>m</var>, which must be a
fixed-point mode.
<p><a name="index-xor-2094"></a><a name="index-exclusive_002dor_002c-bitwise-2095"></a><a name="index-bitwise-exclusive_002dor-2096"></a><br><dt><code>(xor:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Represents the bitwise exclusive-or of the values represented by <var>x</var>
and <var>y</var>, carried out in machine mode <var>m</var>, which must be a
fixed-point mode.
<p><a name="index-ashift-2097"></a><a name="index-ss_005fashift-2098"></a><a name="index-us_005fashift-2099"></a><a name="index-left-shift-2100"></a><a name="index-shift-2101"></a><a name="index-arithmetic-shift-2102"></a><a name="index-arithmetic-shift-with-signed-saturation-2103"></a><a name="index-arithmetic-shift-with-unsigned-saturation-2104"></a><br><dt><code>(ashift:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dt><code>(ss_ashift:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dt><code>(us_ashift:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dd>These three expressions represent the result of arithmetically shifting <var>x</var>
left by <var>c</var> places. They differ in their behavior on overflow of integer
modes. An <code>ashift</code> operation is a plain shift with no special behavior
in case of a change in the sign bit; <code>ss_ashift</code> and <code>us_ashift</code>
saturates to the minimum or maximum representable value if any of the bits
shifted out differs from the final sign bit.
<p><var>x</var> have mode <var>m</var>, a fixed-point machine mode. <var>c</var>
be a fixed-point mode or be a constant with mode <code>VOIDmode</code>; which
mode is determined by the mode called for in the machine description
entry for the left-shift instruction. For example, on the VAX, the mode
of <var>c</var> is <code>QImode</code> regardless of <var>m</var>.
<p><a name="index-lshiftrt-2105"></a><a name="index-right-shift-2106"></a><a name="index-ashiftrt-2107"></a><br><dt><code>(lshiftrt:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dt><code>(ashiftrt:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dd>Like <code>ashift</code> but for right shift. Unlike the case for left shift,
these two operations are distinct.
<p><a name="index-rotate-2108"></a><a name="index-rotate-2109"></a><a name="index-left-rotate-2110"></a><a name="index-rotatert-2111"></a><a name="index-right-rotate-2112"></a><br><dt><code>(rotate:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dt><code>(rotatert:</code><var>m</var> <var>x</var> <var>c</var><code>)</code><dd>Similar but represent left and right rotate. If <var>c</var> is a constant,
use <code>rotate</code>.
<p><a name="index-abs-2113"></a><a name="index-ss_005fabs-2114"></a><a name="index-absolute-value-2115"></a><br><dt><code>(abs:</code><var>m</var> <var>x</var><code>)</code><br><dt><code>(ss_abs:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the absolute value of <var>x</var>, computed in mode <var>m</var>.
<code>ss_abs</code> ensures that an out-of-bounds result saturates to the
maximum signed value.
<p><a name="index-sqrt-2116"></a><a name="index-square-root-2117"></a><br><dt><code>(sqrt:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the square root of <var>x</var>, computed in mode <var>m</var>.
Most often <var>m</var> will be a floating point mode.
<p><a name="index-ffs-2118"></a><br><dt><code>(ffs:</code><var>m</var> <var>x</var><code>)</code><dd>Represents one plus the index of the least significant 1-bit in
<var>x</var>, represented as an integer of mode <var>m</var>. (The value is
zero if <var>x</var> is zero.) The mode of <var>x</var> need not be <var>m</var>;
depending on the target machine, various mode combinations may be
valid.
<p><a name="index-clz-2119"></a><br><dt><code>(clz:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the number of leading 0-bits in <var>x</var>, represented as an
integer of mode <var>m</var>, starting at the most significant bit position.
If <var>x</var> is zero, the value is determined by
<code>CLZ_DEFINED_VALUE_AT_ZERO</code> (see <a href="#Misc">Misc</a>). Note that this is one of
the few expressions that is not invariant under widening. The mode of
<var>x</var> will usually be an integer mode.
<p><a name="index-ctz-2120"></a><br><dt><code>(ctz:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the number of trailing 0-bits in <var>x</var>, represented as an
integer of mode <var>m</var>, starting at the least significant bit position.
If <var>x</var> is zero, the value is determined by
<code>CTZ_DEFINED_VALUE_AT_ZERO</code> (see <a href="#Misc">Misc</a>). Except for this case,
<code>ctz(x)</code> is equivalent to <code>ffs(</code><var>x</var><code>) - 1</code>. The mode of
<var>x</var> will usually be an integer mode.
<p><a name="index-popcount-2121"></a><br><dt><code>(popcount:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the number of 1-bits in <var>x</var>, represented as an integer of
mode <var>m</var>. The mode of <var>x</var> will usually be an integer mode.
<p><a name="index-parity-2122"></a><br><dt><code>(parity:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the number of 1-bits modulo 2 in <var>x</var>, represented as an
integer of mode <var>m</var>. The mode of <var>x</var> will usually be an integer
mode.
<p><a name="index-bswap-2123"></a><br><dt><code>(bswap:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the value <var>x</var> with the order of bytes reversed, carried out
in mode <var>m</var>, which must be a fixed-point machine mode.
</dl>
<div class="node">
<a name="Comparisons"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Bit_002dFields">Bit-Fields</a>,
Previous: <a rel="previous" accesskey="p" href="#Arithmetic">Arithmetic</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.10 Comparison Operations</h3>
<p><a name="index-RTL-comparison-operations-2124"></a>
Comparison operators test a relation on two operands and are considered
to represent a machine-dependent nonzero value described by, but not
necessarily equal to, <code>STORE_FLAG_VALUE</code> (see <a href="#Misc">Misc</a>)
if the relation holds, or zero if it does not, for comparison operators
whose results have a `MODE_INT' mode,
<code>FLOAT_STORE_FLAG_VALUE</code> (see <a href="#Misc">Misc</a>) if the relation holds, or
zero if it does not, for comparison operators that return floating-point
values, and a vector of either <code>VECTOR_STORE_FLAG_VALUE</code> (see <a href="#Misc">Misc</a>)
if the relation holds, or of zeros if it does not, for comparison operators
that return vector results.
The mode of the comparison operation is independent of the mode
of the data being compared. If the comparison operation is being tested
(e.g., the first operand of an <code>if_then_else</code>), the mode must be
<code>VOIDmode</code>.
<p><a name="index-condition-codes-2125"></a>There are two ways that comparison operations may be used. The
comparison operators may be used to compare the condition codes
<code>(cc0)</code> against zero, as in <code>(eq (cc0) (const_int 0))</code>. Such
a construct actually refers to the result of the preceding instruction
in which the condition codes were set. The instruction setting the
condition code must be adjacent to the instruction using the condition
code; only <code>note</code> insns may separate them.
<p>Alternatively, a comparison operation may directly compare two data
objects. The mode of the comparison is determined by the operands; they
must both be valid for a common machine mode. A comparison with both
operands constant would be invalid as the machine mode could not be
deduced from it, but such a comparison should never exist in RTL due to
constant folding.
<p>In the example above, if <code>(cc0)</code> were last set to
<code>(compare </code><var>x</var> <var>y</var><code>)</code>, the comparison operation is
identical to <code>(eq </code><var>x</var> <var>y</var><code>)</code>. Usually only one style
of comparisons is supported on a particular machine, but the combine
pass will try to merge the operations to produce the <code>eq</code> shown
in case it exists in the context of the particular insn involved.
<p>Inequality comparisons come in two flavors, signed and unsigned. Thus,
there are distinct expression codes <code>gt</code> and <code>gtu</code> for signed and
unsigned greater-than. These can produce different results for the same
pair of integer values: for example, 1 is signed greater-than −1 but not
unsigned greater-than, because −1 when regarded as unsigned is actually
<code>0xffffffff</code> which is greater than 1.
<p>The signed comparisons are also used for floating point values. Floating
point comparisons are distinguished by the machine modes of the operands.
<a name="index-eq-2126"></a>
<a name="index-equal-2127"></a>
<dl><dt><code>(eq:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd><code>STORE_FLAG_VALUE</code> if the values represented by <var>x</var> and <var>y</var>
are equal, otherwise 0.
<p><a name="index-ne-2128"></a><a name="index-not-equal-2129"></a><br><dt><code>(ne:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd><code>STORE_FLAG_VALUE</code> if the values represented by <var>x</var> and <var>y</var>
are not equal, otherwise 0.
<p><a name="index-gt-2130"></a><a name="index-greater-than-2131"></a><br><dt><code>(gt:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd><code>STORE_FLAG_VALUE</code> if the <var>x</var> is greater than <var>y</var>. If they
are fixed-point, the comparison is done in a signed sense.
<p><a name="index-gtu-2132"></a><a name="index-greater-than-2133"></a><a name="index-unsigned-greater-than-2134"></a><br><dt><code>(gtu:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>gt</code> but does unsigned comparison, on fixed-point numbers only.
<p><a name="index-lt-2135"></a><a name="index-less-than-2136"></a><a name="index-ltu-2137"></a><a name="index-unsigned-less-than-2138"></a><br><dt><code>(lt:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(ltu:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>gt</code> and <code>gtu</code> but test for “less than”.
<p><a name="index-ge-2139"></a><a name="index-greater-than-2140"></a><a name="index-geu-2141"></a><a name="index-unsigned-greater-than-2142"></a><br><dt><code>(ge:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(geu:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>gt</code> and <code>gtu</code> but test for “greater than or equal”.
<p><a name="index-le-2143"></a><a name="index-less-than-or-equal-2144"></a><a name="index-leu-2145"></a><a name="index-unsigned-less-than-2146"></a><br><dt><code>(le:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dt><code>(leu:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>Like <code>gt</code> and <code>gtu</code> but test for “less than or equal”.
<p><a name="index-if_005fthen_005felse-2147"></a><br><dt><code>(if_then_else </code><var>cond</var> <var>then</var> <var>else</var><code>)</code><dd>This is not a comparison operation but is listed here because it is
always used in conjunction with a comparison operation. To be
precise, <var>cond</var> is a comparison expression. This expression
represents a choice, according to <var>cond</var>, between the value
represented by <var>then</var> and the one represented by <var>else</var>.
<p>On most machines, <code>if_then_else</code> expressions are valid only
to express conditional jumps.
<p><a name="index-cond-2148"></a><br><dt><code>(cond [</code><var>test1</var> <var>value1</var> <var>test2</var> <var>value2</var><code> ...] </code><var>default</var><code>)</code><dd>Similar to <code>if_then_else</code>, but more general. Each of <var>test1</var>,
<var>test2</var>, <small class="dots">...</small> is performed in turn. The result of this expression is
the <var>value</var> corresponding to the first nonzero test, or <var>default</var> if
none of the tests are nonzero expressions.
<p>This is currently not valid for instruction patterns and is supported only
for insn attributes. See <a href="#Insn-Attributes">Insn Attributes</a>.
</dl>
<div class="node">
<a name="Bit-Fields"></a>
<a name="Bit_002dFields"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Vector-Operations">Vector Operations</a>,
Previous: <a rel="previous" accesskey="p" href="#Comparisons">Comparisons</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.11 Bit-Fields</h3>
<p><a name="index-bit_002dfields-2149"></a>
Special expression codes exist to represent bit-field instructions.
<a name="index-sign_005fextract-2150"></a>
<a name="index-g_t_0040code_007bBITS_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsign_005fextract_007d-2151"></a>
<dl><dt><code>(sign_extract:</code><var>m</var> <var>loc</var> <var>size</var> <var>pos</var><code>)</code><dd>This represents a reference to a sign-extended bit-field contained or
starting in <var>loc</var> (a memory or register reference). The bit-field
is <var>size</var> bits wide and starts at bit <var>pos</var>. The compilation
option <code>BITS_BIG_ENDIAN</code> says which end of the memory unit
<var>pos</var> counts from.
<p>If <var>loc</var> is in memory, its mode must be a single-byte integer mode.
If <var>loc</var> is in a register, the mode to use is specified by the
operand of the <code>insv</code> or <code>extv</code> pattern
(see <a href="#Standard-Names">Standard Names</a>) and is usually a full-word integer mode,
which is the default if none is specified.
<p>The mode of <var>pos</var> is machine-specific and is also specified
in the <code>insv</code> or <code>extv</code> pattern.
<p>The mode <var>m</var> is the same as the mode that would be used for
<var>loc</var> if it were a register.
<p>A <code>sign_extract</code> can not appear as an lvalue, or part thereof,
in RTL.
<p><a name="index-zero_005fextract-2152"></a><br><dt><code>(zero_extract:</code><var>m</var> <var>loc</var> <var>size</var> <var>pos</var><code>)</code><dd>Like <code>sign_extract</code> but refers to an unsigned or zero-extended
bit-field. The same sequence of bits are extracted, but they
are filled to an entire word with zeros instead of by sign-extension.
<p>Unlike <code>sign_extract</code>, this type of expressions can be lvalues
in RTL; they may appear on the left side of an assignment, indicating
insertion of a value into the specified bit-field.
</dl>
<div class="node">
<a name="Vector-Operations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Conversions">Conversions</a>,
Previous: <a rel="previous" accesskey="p" href="#Bit_002dFields">Bit-Fields</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.12 Vector Operations</h3>
<p><a name="index-vector-operations-2153"></a>
All normal RTL expressions can be used with vector modes; they are
interpreted as operating on each part of the vector independently.
Additionally, there are a few new expressions to describe specific vector
operations.
<a name="index-vec_005fmerge-2154"></a>
<dl><dt><code>(vec_merge:</code><var>m</var> <var>vec1</var> <var>vec2</var> <var>items</var><code>)</code><dd>This describes a merge operation between two vectors. The result is a vector
of mode <var>m</var>; its elements are selected from either <var>vec1</var> or
<var>vec2</var>. Which elements are selected is described by <var>items</var>, which
is a bit mask represented by a <code>const_int</code>; a zero bit indicates the
corresponding element in the result vector is taken from <var>vec2</var> while
a set bit indicates it is taken from <var>vec1</var>.
<p><a name="index-vec_005fselect-2155"></a><br><dt><code>(vec_select:</code><var>m</var> <var>vec1</var> <var>selection</var><code>)</code><dd>This describes an operation that selects parts of a vector. <var>vec1</var> is
the source vector, and <var>selection</var> is a <code>parallel</code> that contains a
<code>const_int</code> for each of the subparts of the result vector, giving the
number of the source subpart that should be stored into it.
The result mode <var>m</var> is either the submode for a single element of
<var>vec1</var> (if only one subpart is selected), or another vector mode
with that element submode (if multiple subparts are selected).
<p><a name="index-vec_005fconcat-2156"></a><br><dt><code>(vec_concat:</code><var>m</var> <var>vec1</var> <var>vec2</var><code>)</code><dd>Describes a vector concat operation. The result is a concatenation of the
vectors <var>vec1</var> and <var>vec2</var>; its length is the sum of the lengths of
the two inputs.
<p><a name="index-vec_005fduplicate-2157"></a><br><dt><code>(vec_duplicate:</code><var>m</var> <var>vec</var><code>)</code><dd>This operation converts a small vector into a larger one by duplicating the
input values. The output vector mode must have the same submodes as the
input vector mode, and the number of output parts must be an integer multiple
of the number of input parts.
</dl>
<div class="node">
<a name="Conversions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RTL-Declarations">RTL Declarations</a>,
Previous: <a rel="previous" accesskey="p" href="#Vector-Operations">Vector Operations</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.13 Conversions</h3>
<p><a name="index-conversions-2158"></a><a name="index-machine-mode-conversions-2159"></a>
All conversions between machine modes must be represented by
explicit conversion operations. For example, an expression
which is the sum of a byte and a full word cannot be written as
<code>(plus:SI (reg:QI 34) (reg:SI 80))</code> because the <code>plus</code>
operation requires two operands of the same machine mode.
Therefore, the byte-sized operand is enclosed in a conversion
operation, as in
<pre class="smallexample"> (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
</pre>
<p>The conversion operation is not a mere placeholder, because there
may be more than one way of converting from a given starting mode
to the desired final mode. The conversion operation code says how
to do it.
<p>For all conversion operations, <var>x</var> must not be <code>VOIDmode</code>
because the mode in which to do the conversion would not be known.
The conversion must either be done at compile-time or <var>x</var>
must be placed into a register.
<a name="index-sign_005fextend-2160"></a>
<dl><dt><code>(sign_extend:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of sign-extending the value <var>x</var>
to machine mode <var>m</var>. <var>m</var> must be a fixed-point mode
and <var>x</var> a fixed-point value of a mode narrower than <var>m</var>.
<p><a name="index-zero_005fextend-2161"></a><br><dt><code>(zero_extend:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of zero-extending the value <var>x</var>
to machine mode <var>m</var>. <var>m</var> must be a fixed-point mode
and <var>x</var> a fixed-point value of a mode narrower than <var>m</var>.
<p><a name="index-float_005fextend-2162"></a><br><dt><code>(float_extend:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of extending the value <var>x</var>
to machine mode <var>m</var>. <var>m</var> must be a floating point mode
and <var>x</var> a floating point value of a mode narrower than <var>m</var>.
<p><a name="index-truncate-2163"></a><br><dt><code>(truncate:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of truncating the value <var>x</var>
to machine mode <var>m</var>. <var>m</var> must be a fixed-point mode
and <var>x</var> a fixed-point value of a mode wider than <var>m</var>.
<p><a name="index-ss_005ftruncate-2164"></a><br><dt><code>(ss_truncate:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of truncating the value <var>x</var>
to machine mode <var>m</var>, using signed saturation in the case of
overflow. Both <var>m</var> and the mode of <var>x</var> must be fixed-point
modes.
<p><a name="index-us_005ftruncate-2165"></a><br><dt><code>(us_truncate:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of truncating the value <var>x</var>
to machine mode <var>m</var>, using unsigned saturation in the case of
overflow. Both <var>m</var> and the mode of <var>x</var> must be fixed-point
modes.
<p><a name="index-float_005ftruncate-2166"></a><br><dt><code>(float_truncate:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of truncating the value <var>x</var>
to machine mode <var>m</var>. <var>m</var> must be a floating point mode
and <var>x</var> a floating point value of a mode wider than <var>m</var>.
<p><a name="index-float-2167"></a><br><dt><code>(float:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting fixed point value <var>x</var>,
regarded as signed, to floating point mode <var>m</var>.
<p><a name="index-unsigned_005ffloat-2168"></a><br><dt><code>(unsigned_float:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting fixed point value <var>x</var>,
regarded as unsigned, to floating point mode <var>m</var>.
<p><a name="index-fix-2169"></a><br><dt><code>(fix:</code><var>m</var> <var>x</var><code>)</code><dd>When <var>m</var> is a floating-point mode, represents the result of
converting floating point value <var>x</var> (valid for mode <var>m</var>) to an
integer, still represented in floating point mode <var>m</var>, by rounding
towards zero.
<p>When <var>m</var> is a fixed-point mode, represents the result of
converting floating point value <var>x</var> to mode <var>m</var>, regarded as
signed. How rounding is done is not specified, so this operation may
be used validly in compiling C code only for integer-valued operands.
<p><a name="index-unsigned_005ffix-2170"></a><br><dt><code>(unsigned_fix:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting floating point value <var>x</var> to
fixed point mode <var>m</var>, regarded as unsigned. How rounding is done
is not specified.
<p><a name="index-fract_005fconvert-2171"></a><br><dt><code>(fract_convert:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting fixed-point value <var>x</var> to
fixed-point mode <var>m</var>, signed integer value <var>x</var> to
fixed-point mode <var>m</var>, floating-point value <var>x</var> to
fixed-point mode <var>m</var>, fixed-point value <var>x</var> to integer mode <var>m</var>
regarded as signed, or fixed-point value <var>x</var> to floating-point mode <var>m</var>.
When overflows or underflows happen, the results are undefined.
<p><a name="index-sat_005ffract-2172"></a><br><dt><code>(sat_fract:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting fixed-point value <var>x</var> to
fixed-point mode <var>m</var>, signed integer value <var>x</var> to
fixed-point mode <var>m</var>, or floating-point value <var>x</var> to
fixed-point mode <var>m</var>.
When overflows or underflows happen, the results are saturated to the
maximum or the minimum.
<p><a name="index-unsigned_005ffract_005fconvert-2173"></a><br><dt><code>(unsigned_fract_convert:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting fixed-point value <var>x</var> to
integer mode <var>m</var> regarded as unsigned, or unsigned integer value <var>x</var> to
fixed-point mode <var>m</var>.
When overflows or underflows happen, the results are undefined.
<p><a name="index-unsigned_005fsat_005ffract-2174"></a><br><dt><code>(unsigned_sat_fract:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the result of converting unsigned integer value <var>x</var> to
fixed-point mode <var>m</var>.
When overflows or underflows happen, the results are saturated to the
maximum or the minimum.
</dl>
<div class="node">
<a name="RTL-Declarations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Side-Effects">Side Effects</a>,
Previous: <a rel="previous" accesskey="p" href="#Conversions">Conversions</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.14 Declarations</h3>
<p><a name="index-RTL-declarations-2175"></a><a name="index-declarations_002c-RTL-2176"></a>
Declaration expression codes do not represent arithmetic operations
but rather state assertions about their operands.
<a name="index-strict_005flow_005fpart-2177"></a>
<a name="index-g_t_0040code_007bsubreg_007d_002c-in-_0040code_007bstrict_005flow_005fpart_007d-2178"></a>
<dl><dt><code>(strict_low_part (subreg:</code><var>m</var><code> (reg:</code><var>n</var> <var>r</var><code>) 0))</code><dd>This expression code is used in only one context: as the destination operand of a
<code>set</code> expression. In addition, the operand of this expression
must be a non-paradoxical <code>subreg</code> expression.
<p>The presence of <code>strict_low_part</code> says that the part of the
register which is meaningful in mode <var>n</var>, but is not part of
mode <var>m</var>, is not to be altered. Normally, an assignment to such
a subreg is allowed to have undefined effects on the rest of the
register when <var>m</var> is less than a word.
</dl>
<div class="node">
<a name="Side-Effects"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Incdec">Incdec</a>,
Previous: <a rel="previous" accesskey="p" href="#RTL-Declarations">RTL Declarations</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.15 Side Effect Expressions</h3>
<p><a name="index-RTL-side-effect-expressions-2179"></a>
The expression codes described so far represent values, not actions.
But machine instructions never produce values; they are meaningful
only for their side effects on the state of the machine. Special
expression codes are used to represent side effects.
<p>The body of an instruction is always one of these side effect codes;
the codes described above, which represent values, appear only as
the operands of these.
<a name="index-set-2180"></a>
<dl><dt><code>(set </code><var>lval</var> <var>x</var><code>)</code><dd>Represents the action of storing the value of <var>x</var> into the place
represented by <var>lval</var>. <var>lval</var> must be an expression
representing a place that can be stored in: <code>reg</code> (or <code>subreg</code>,
<code>strict_low_part</code> or <code>zero_extract</code>), <code>mem</code>, <code>pc</code>,
<code>parallel</code>, or <code>cc0</code>.
<p>If <var>lval</var> is a <code>reg</code>, <code>subreg</code> or <code>mem</code>, it has a
machine mode; then <var>x</var> must be valid for that mode.
<p>If <var>lval</var> is a <code>reg</code> whose machine mode is less than the full
width of the register, then it means that the part of the register
specified by the machine mode is given the specified value and the
rest of the register receives an undefined value. Likewise, if
<var>lval</var> is a <code>subreg</code> whose machine mode is narrower than
the mode of the register, the rest of the register can be changed in
an undefined way.
<p>If <var>lval</var> is a <code>strict_low_part</code> of a subreg, then the part
of the register specified by the machine mode of the <code>subreg</code> is
given the value <var>x</var> and the rest of the register is not changed.
<p>If <var>lval</var> is a <code>zero_extract</code>, then the referenced part of
the bit-field (a memory or register reference) specified by the
<code>zero_extract</code> is given the value <var>x</var> and the rest of the
bit-field is not changed. Note that <code>sign_extract</code> can not
appear in <var>lval</var>.
<p>If <var>lval</var> is <code>(cc0)</code>, it has no machine mode, and <var>x</var> may
be either a <code>compare</code> expression or a value that may have any mode.
The latter case represents a “test” instruction. The expression
<code>(set (cc0) (reg:</code><var>m</var> <var>n</var><code>))</code> is equivalent to
<code>(set (cc0) (compare (reg:</code><var>m</var> <var>n</var><code>) (const_int 0)))</code>.
Use the former expression to save space during the compilation.
<p>If <var>lval</var> is a <code>parallel</code>, it is used to represent the case of
a function returning a structure in multiple registers. Each element
of the <code>parallel</code> is an <code>expr_list</code> whose first operand is a
<code>reg</code> and whose second operand is a <code>const_int</code> representing the
offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure
is also passed partly in memory.
<p><a name="index-jump-instructions-and-_0040code_007bset_007d-2181"></a><a name="index-g_t_0040code_007bif_005fthen_005felse_007d-usage-2182"></a>If <var>lval</var> is <code>(pc)</code>, we have a jump instruction, and the
possibilities for <var>x</var> are very limited. It may be a
<code>label_ref</code> expression (unconditional jump). It may be an
<code>if_then_else</code> (conditional jump), in which case either the
second or the third operand must be <code>(pc)</code> (for the case which
does not jump) and the other of the two must be a <code>label_ref</code>
(for the case which does jump). <var>x</var> may also be a <code>mem</code> or
<code>(plus:SI (pc) </code><var>y</var><code>)</code>, where <var>y</var> may be a <code>reg</code> or a
<code>mem</code>; these unusual patterns are used to represent jumps through
branch tables.
<p>If <var>lval</var> is neither <code>(cc0)</code> nor <code>(pc)</code>, the mode of
<var>lval</var> must not be <code>VOIDmode</code> and the mode of <var>x</var> must be
valid for the mode of <var>lval</var>.
<p><a name="index-SET_005fDEST-2183"></a><a name="index-SET_005fSRC-2184"></a><var>lval</var> is customarily accessed with the <code>SET_DEST</code> macro and
<var>x</var> with the <code>SET_SRC</code> macro.
<p><a name="index-return-2185"></a><br><dt><code>(return)</code><dd>As the sole expression in a pattern, represents a return from the
current function, on machines where this can be done with one
instruction, such as VAXen. On machines where a multi-instruction
“epilogue” must be executed in order to return from the function,
returning is done by jumping to a label which precedes the epilogue, and
the <code>return</code> expression code is never used.
<p>Inside an <code>if_then_else</code> expression, represents the value to be
placed in <code>pc</code> to return to the caller.
<p>Note that an insn pattern of <code>(return)</code> is logically equivalent to
<code>(set (pc) (return))</code>, but the latter form is never used.
<p><a name="index-call-2186"></a><br><dt><code>(call </code><var>function</var> <var>nargs</var><code>)</code><dd>Represents a function call. <var>function</var> is a <code>mem</code> expression
whose address is the address of the function to be called.
<var>nargs</var> is an expression which can be used for two purposes: on
some machines it represents the number of bytes of stack argument; on
others, it represents the number of argument registers.
<p>Each machine has a standard machine mode which <var>function</var> must
have. The machine description defines macro <code>FUNCTION_MODE</code> to
expand into the requisite mode name. The purpose of this mode is to
specify what kind of addressing is allowed, on machines where the
allowed kinds of addressing depend on the machine mode being
addressed.
<p><a name="index-clobber-2187"></a><br><dt><code>(clobber </code><var>x</var><code>)</code><dd>Represents the storing or possible storing of an unpredictable,
undescribed value into <var>x</var>, which must be a <code>reg</code>,
<code>scratch</code>, <code>parallel</code> or <code>mem</code> expression.
<p>One place this is used is in string instructions that store standard
values into particular hard registers. It may not be worth the
trouble to describe the values that are stored, but it is essential to
inform the compiler that the registers will be altered, lest it
attempt to keep data in them across the string instruction.
<p>If <var>x</var> is <code>(mem:BLK (const_int 0))</code> or
<code>(mem:BLK (scratch))</code>, it means that all memory
locations must be presumed clobbered. If <var>x</var> is a <code>parallel</code>,
it has the same meaning as a <code>parallel</code> in a <code>set</code> expression.
<p>Note that the machine description classifies certain hard registers as
“call-clobbered”. All function call instructions are assumed by
default to clobber these registers, so there is no need to use
<code>clobber</code> expressions to indicate this fact. Also, each function
call is assumed to have the potential to alter any memory location,
unless the function is declared <code>const</code>.
<p>If the last group of expressions in a <code>parallel</code> are each a
<code>clobber</code> expression whose arguments are <code>reg</code> or
<code>match_scratch</code> (see <a href="#RTL-Template">RTL Template</a>) expressions, the combiner
phase can add the appropriate <code>clobber</code> expressions to an insn it
has constructed when doing so will cause a pattern to be matched.
<p>This feature can be used, for example, on a machine that whose multiply
and add instructions don't use an MQ register but which has an
add-accumulate instruction that does clobber the MQ register. Similarly,
a combined instruction might require a temporary register while the
constituent instructions might not.
<p>When a <code>clobber</code> expression for a register appears inside a
<code>parallel</code> with other side effects, the register allocator
guarantees that the register is unoccupied both before and after that
insn if it is a hard register clobber. For pseudo-register clobber,
the register allocator and the reload pass do not assign the same hard
register to the clobber and the input operands if there is an insn
alternative containing the ‘<samp><span class="samp">&</span></samp>’ constraint (see <a href="#Modifiers">Modifiers</a>) for
the clobber and the hard register is in register classes of the
clobber in the alternative. You can clobber either a specific hard
register, a pseudo register, or a <code>scratch</code> expression; in the
latter two cases, GCC will allocate a hard register that is available
there for use as a temporary.
<p>For instructions that require a temporary register, you should use
<code>scratch</code> instead of a pseudo-register because this will allow the
combiner phase to add the <code>clobber</code> when required. You do this by
coding (<code>clobber</code> (<code>match_scratch</code> <small class="dots">...</small>)). If you do
clobber a pseudo register, use one which appears nowhere else—generate
a new one each time. Otherwise, you may confuse CSE.
<p>There is one other known use for clobbering a pseudo register in a
<code>parallel</code>: when one of the input operands of the insn is also
clobbered by the insn. In this case, using the same pseudo register in
the clobber and elsewhere in the insn produces the expected results.
<p><a name="index-use-2188"></a><br><dt><code>(use </code><var>x</var><code>)</code><dd>Represents the use of the value of <var>x</var>. It indicates that the
value in <var>x</var> at this point in the program is needed, even though
it may not be apparent why this is so. Therefore, the compiler will
not attempt to delete previous instructions whose only effect is to
store a value in <var>x</var>. <var>x</var> must be a <code>reg</code> expression.
<p>In some situations, it may be tempting to add a <code>use</code> of a
register in a <code>parallel</code> to describe a situation where the value
of a special register will modify the behavior of the instruction.
A hypothetical example might be a pattern for an addition that can
either wrap around or use saturating addition depending on the value
of a special control register:
<pre class="smallexample"> (parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)] 0))
(use (reg:SI 1))])
</pre>
<p class="noindent">This will not work, several of the optimizers only look at expressions
locally; it is very likely that if you have multiple insns with
identical inputs to the <code>unspec</code>, they will be optimized away even
if register 1 changes in between.
<p>This means that <code>use</code> can <em>only</em> be used to describe
that the register is live. You should think twice before adding
<code>use</code> statements, more often you will want to use <code>unspec</code>
instead. The <code>use</code> RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use
in patterns where the compiler knows for other reasons that the result
of the whole pattern is variable, such as ‘<samp><span class="samp">movmem</span><var>m</var></samp>’ or
‘<samp><span class="samp">call</span></samp>’ patterns.
<p>During the reload phase, an insn that has a <code>use</code> as pattern
can carry a reg_equal note. These <code>use</code> insns will be deleted
before the reload phase exits.
<p>During the delayed branch scheduling phase, <var>x</var> may be an insn.
This indicates that <var>x</var> previously was located at this place in the
code and its data dependencies need to be taken into account. These
<code>use</code> insns will be deleted before the delayed branch scheduling
phase exits.
<p><a name="index-parallel-2189"></a><br><dt><code>(parallel [</code><var>x0</var> <var>x1</var><code> ...])</code><dd>Represents several side effects performed in parallel. The square
brackets stand for a vector; the operand of <code>parallel</code> is a
vector of expressions. <var>x0</var>, <var>x1</var> and so on are individual
side effect expressions—expressions of code <code>set</code>, <code>call</code>,
<code>return</code>, <code>clobber</code> or <code>use</code>.
<p>“In parallel” means that first all the values used in the individual
side-effects are computed, and second all the actual side-effects are
performed. For example,
<pre class="smallexample"> (parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])
</pre>
<p class="noindent">says unambiguously that the values of hard register 1 and the memory
location addressed by it are interchanged. In both places where
<code>(reg:SI 1)</code> appears as a memory address it refers to the value
in register 1 <em>before</em> the execution of the insn.
<p>It follows that it is <em>incorrect</em> to use <code>parallel</code> and
expect the result of one <code>set</code> to be available for the next one.
For example, people sometimes attempt to represent a jump-if-zero
instruction this way:
<pre class="smallexample"> (parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else
(eq (cc0) (const_int 0))
(label_ref ...)
(pc)))])
</pre>
<p class="noindent">But this is incorrect, because it says that the jump condition depends
on the condition code value <em>before</em> this instruction, not on the
new value that is set by this instruction.
<p><a name="index-peephole-optimization_002c-RTL-representation-2190"></a>Peephole optimization, which takes place together with final assembly
code output, can produce insns whose patterns consist of a <code>parallel</code>
whose elements are the operands needed to output the resulting
assembler code—often <code>reg</code>, <code>mem</code> or constant expressions.
This would not be well-formed RTL at any other stage in compilation,
but it is ok then because no further optimization remains to be done.
However, the definition of the macro <code>NOTICE_UPDATE_CC</code>, if
any, must deal with such insns if you define any peephole optimizations.
<p><a name="index-cond_005fexec-2191"></a><br><dt><code>(cond_exec [</code><var>cond</var> <var>expr</var><code>])</code><dd>Represents a conditionally executed expression. The <var>expr</var> is
executed only if the <var>cond</var> is nonzero. The <var>cond</var> expression
must not have side-effects, but the <var>expr</var> may very well have
side-effects.
<p><a name="index-sequence-2192"></a><br><dt><code>(sequence [</code><var>insns</var><code> ...])</code><dd>Represents a sequence of insns. Each of the <var>insns</var> that appears
in the vector is suitable for appearing in the chain of insns, so it
must be an <code>insn</code>, <code>jump_insn</code>, <code>call_insn</code>,
<code>code_label</code>, <code>barrier</code> or <code>note</code>.
<p>A <code>sequence</code> RTX is never placed in an actual insn during RTL
generation. It represents the sequence of insns that result from a
<code>define_expand</code> <em>before</em> those insns are passed to
<code>emit_insn</code> to insert them in the chain of insns. When actually
inserted, the individual sub-insns are separated out and the
<code>sequence</code> is forgotten.
<p>After delay-slot scheduling is completed, an insn and all the insns that
reside in its delay slots are grouped together into a <code>sequence</code>.
The insn requiring the delay slot is the first insn in the vector;
subsequent insns are to be placed in the delay slot.
<p><code>INSN_ANNULLED_BRANCH_P</code> is set on an insn in a delay slot to
indicate that a branch insn should be used that will conditionally annul
the effect of the insns in the delay slots. In such a case,
<code>INSN_FROM_TARGET_P</code> indicates that the insn is from the target of
the branch and should be executed only if the branch is taken; otherwise
the insn should be executed only if the branch is not taken.
See <a href="#Delay-Slots">Delay Slots</a>.
</dl>
<p>These expression codes appear in place of a side effect, as the body of
an insn, though strictly speaking they do not always describe side
effects as such:
<a name="index-asm_005finput-2193"></a>
<dl><dt><code>(asm_input </code><var>s</var><code>)</code><dd>Represents literal assembler code as described by the string <var>s</var>.
<p><a name="index-unspec-2194"></a><a name="index-unspec_005fvolatile-2195"></a><br><dt><code>(unspec [</code><var>operands</var><code> ...] </code><var>index</var><code>)</code><dt><code>(unspec_volatile [</code><var>operands</var><code> ...] </code><var>index</var><code>)</code><dd>Represents a machine-specific operation on <var>operands</var>. <var>index</var>
selects between multiple machine-specific operations.
<code>unspec_volatile</code> is used for volatile operations and operations
that may trap; <code>unspec</code> is used for other operations.
<p>These codes may appear inside a <code>pattern</code> of an
insn, inside a <code>parallel</code>, or inside an expression.
<p><a name="index-addr_005fvec-2196"></a><br><dt><code>(addr_vec:</code><var>m</var><code> [</code><var>lr0</var> <var>lr1</var><code> ...])</code><dd>Represents a table of jump addresses. The vector elements <var>lr0</var>,
etc., are <code>label_ref</code> expressions. The mode <var>m</var> specifies
how much space is given to each address; normally <var>m</var> would be
<code>Pmode</code>.
<p><a name="index-addr_005fdiff_005fvec-2197"></a><br><dt><code>(addr_diff_vec:</code><var>m</var> <var>base</var><code> [</code><var>lr0</var> <var>lr1</var><code> ...] </code><var>min</var> <var>max</var> <var>flags</var><code>)</code><dd>Represents a table of jump addresses expressed as offsets from
<var>base</var>. The vector elements <var>lr0</var>, etc., are <code>label_ref</code>
expressions and so is <var>base</var>. The mode <var>m</var> specifies how much
space is given to each address-difference. <var>min</var> and <var>max</var>
are set up by branch shortening and hold a label with a minimum and a
maximum address, respectively. <var>flags</var> indicates the relative
position of <var>base</var>, <var>min</var> and <var>max</var> to the containing insn
and of <var>min</var> and <var>max</var> to <var>base</var>. See rtl.def for details.
<p><a name="index-prefetch-2198"></a><br><dt><code>(prefetch:</code><var>m</var> <var>addr</var> <var>rw</var> <var>locality</var><code>)</code><dd>Represents prefetch of memory at address <var>addr</var>.
Operand <var>rw</var> is 1 if the prefetch is for data to be written, 0 otherwise;
targets that do not support write prefetches should treat this as a normal
prefetch.
Operand <var>locality</var> specifies the amount of temporal locality; 0 if there
is none or 1, 2, or 3 for increasing levels of temporal locality;
targets that do not support locality hints should ignore this.
<p>This insn is used to minimize cache-miss latency by moving data into a
cache before it is accessed. It should use only non-faulting data prefetch
instructions.
</dl>
<div class="node">
<a name="Incdec"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Assembler">Assembler</a>,
Previous: <a rel="previous" accesskey="p" href="#Side-Effects">Side Effects</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.16 Embedded Side-Effects on Addresses</h3>
<p><a name="index-RTL-preincrement-2199"></a><a name="index-RTL-postincrement-2200"></a><a name="index-RTL-predecrement-2201"></a><a name="index-RTL-postdecrement-2202"></a>
Six special side-effect expression codes appear as memory addresses.
<a name="index-pre_005fdec-2203"></a>
<dl><dt><code>(pre_dec:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the side effect of decrementing <var>x</var> by a standard
amount and represents also the value that <var>x</var> has after being
decremented. <var>x</var> must be a <code>reg</code> or <code>mem</code>, but most
machines allow only a <code>reg</code>. <var>m</var> must be the machine mode
for pointers on the machine in use. The amount <var>x</var> is decremented
by is the length in bytes of the machine mode of the containing memory
reference of which this expression serves as the address. Here is an
example of its use:
<pre class="smallexample"> (mem:DF (pre_dec:SI (reg:SI 39)))
</pre>
<p class="noindent">This says to decrement pseudo register 39 by the length of a <code>DFmode</code>
value and use the result to address a <code>DFmode</code> value.
<p><a name="index-pre_005finc-2204"></a><br><dt><code>(pre_inc:</code><var>m</var> <var>x</var><code>)</code><dd>Similar, but specifies incrementing <var>x</var> instead of decrementing it.
<p><a name="index-post_005fdec-2205"></a><br><dt><code>(post_dec:</code><var>m</var> <var>x</var><code>)</code><dd>Represents the same side effect as <code>pre_dec</code> but a different
value. The value represented here is the value <var>x</var> has <i>before</i>
being decremented.
<p><a name="index-post_005finc-2206"></a><br><dt><code>(post_inc:</code><var>m</var> <var>x</var><code>)</code><dd>Similar, but specifies incrementing <var>x</var> instead of decrementing it.
<p><a name="index-post_005fmodify-2207"></a><br><dt><code>(post_modify:</code><var>m</var> <var>x</var> <var>y</var><code>)</code><dd>
Represents the side effect of setting <var>x</var> to <var>y</var> and
represents <var>x</var> before <var>x</var> is modified. <var>x</var> must be a
<code>reg</code> or <code>mem</code>, but most machines allow only a <code>reg</code>.
<var>m</var> must be the machine mode for pointers on the machine in use.
<p>The expression <var>y</var> must be one of three forms:
<code>(plus:</code><var>m</var> <var>x</var> <var>z</var><code>)</code>,
<code>(minus:</code><var>m</var> <var>x</var> <var>z</var><code>)</code>, or
<code>(plus:</code><var>m</var> <var>x</var> <var>i</var><code>)</code>,
where <var>z</var> is an index register and <var>i</var> is a constant.
<p>Here is an example of its use:
<pre class="smallexample"> (mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))
</pre>
<p>This says to modify pseudo register 42 by adding the contents of pseudo
register 48 to it, after the use of what ever 42 points to.
<p><a name="index-pre_005fmodify-2208"></a><br><dt><code>(pre_modify:</code><var>m</var> <var>x</var> <var>expr</var><code>)</code><dd>Similar except side effects happen before the use.
</dl>
<p>These embedded side effect expressions must be used with care. Instruction
patterns may not use them. Until the ‘<samp><span class="samp">flow</span></samp>’ pass of the compiler,
they may occur only to represent pushes onto the stack. The ‘<samp><span class="samp">flow</span></samp>’
pass finds cases where registers are incremented or decremented in one
instruction and used as an address shortly before or after; these cases are
then transformed to use pre- or post-increment or -decrement.
<p>If a register used as the operand of these expressions is used in
another address in an insn, the original value of the register is used.
Uses of the register outside of an address are not permitted within the
same insn as a use in an embedded side effect expression because such
insns behave differently on different machines and hence must be treated
as ambiguous and disallowed.
<p>An instruction that can be represented with an embedded side effect
could also be represented using <code>parallel</code> containing an additional
<code>set</code> to describe how the address register is altered. This is not
done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as
additional parallel stores would require doubling the number of entries
in the machine description.
<div class="node">
<a name="Assembler"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Debug-Information">Debug Information</a>,
Previous: <a rel="previous" accesskey="p" href="#Incdec">Incdec</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.17 Assembler Instructions as Expressions</h3>
<p><a name="index-assembler-instructions-in-RTL-2209"></a>
<a name="index-g_t_0040code_007basm_005foperands_007d_002c-usage-2210"></a>The RTX code <code>asm_operands</code> represents a value produced by a
user-specified assembler instruction. It is used to represent
an <code>asm</code> statement with arguments. An <code>asm</code> statement with
a single output operand, like this:
<pre class="smallexample"> asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
</pre>
<p class="noindent">is represented using a single <code>asm_operands</code> RTX which represents
the value that is stored in <code>outputvar</code>:
<pre class="smallexample"> (set <var>rtx-for-outputvar</var>
(asm_operands "foo %1,%2,%0" "a" 0
[<var>rtx-for-addition-result</var> <var>rtx-for-*z</var>]
[(asm_input:<var>m1</var> "g")
(asm_input:<var>m2</var> "di")]))
</pre>
<p class="noindent">Here the operands of the <code>asm_operands</code> RTX are the assembler
template string, the output-operand's constraint, the index-number of the
output operand among the output operands specified, a vector of input
operand RTX's, and a vector of input-operand modes and constraints. The
mode <var>m1</var> is the mode of the sum <code>x+y</code>; <var>m2</var> is that of
<code>*z</code>.
<p>When an <code>asm</code> statement has multiple output values, its insn has
several such <code>set</code> RTX's inside of a <code>parallel</code>. Each <code>set</code>
contains an <code>asm_operands</code>; all of these share the same assembler
template and vectors, but each contains the constraint for the respective
output operand. They are also distinguished by the output-operand index
number, which is 0, 1, <small class="dots">...</small> for successive output operands.
<div class="node">
<a name="Debug-Information"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Insns">Insns</a>,
Previous: <a rel="previous" accesskey="p" href="#Assembler">Assembler</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.18 Variable Location Debug Information in RTL</h3>
<p><a name="index-Variable-Location-Debug-Information-in-RTL-2211"></a>
Variable tracking relies on <code>MEM_EXPR</code> and <code>REG_EXPR</code>
annotations to determine what user variables memory and register
references refer to.
<p>Variable tracking at assignments uses these notes only when they refer
to variables that live at fixed locations (e.g., addressable
variables, global non-automatic variables). For variables whose
location may vary, it relies on the following types of notes.
<a name="index-var_005flocation-2212"></a>
<dl><dt><code>(var_location:</code><var>mode</var> <var>var</var> <var>exp</var> <var>stat</var><code>)</code><dd>Binds variable <code>var</code>, a tree, to value <var>exp</var>, an RTL
expression. It appears only in <code>NOTE_INSN_VAR_LOCATION</code> and
<code>DEBUG_INSN</code>s, with slightly different meanings. <var>mode</var>, if
present, represents the mode of <var>exp</var>, which is useful if it is a
modeless expression. <var>stat</var> is only meaningful in notes,
indicating whether the variable is known to be initialized or
uninitialized.
<p><a name="index-debug_005fexpr-2213"></a><br><dt><code>(debug_expr:</code><var>mode</var> <var>decl</var><code>)</code><dd>Stands for the value bound to the <code>DEBUG_EXPR_DECL</code> <var>decl</var>,
that points back to it, within value expressions in
<code>VAR_LOCATION</code> nodes.
</dl>
<div class="node">
<a name="Insns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Calls">Calls</a>,
Previous: <a rel="previous" accesskey="p" href="#Debug-Information">Debug Information</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.19 Insns</h3>
<p><a name="index-insns-2214"></a>
The RTL representation of the code for a function is a doubly-linked
chain of objects called <dfn>insns</dfn>. Insns are expressions with
special codes that are used for no other purpose. Some insns are
actual instructions; others represent dispatch tables for <code>switch</code>
statements; others represent labels to jump to or various sorts of
declarative information.
<p>In addition to its own specific data, each insn must have a unique
id-number that distinguishes it from all other insns in the current
function (after delayed branch scheduling, copies of an insn with the
same id-number may be present in multiple places in a function, but
these copies will always be identical and will only appear inside a
<code>sequence</code>), and chain pointers to the preceding and following
insns. These three fields occupy the same position in every insn,
independent of the expression code of the insn. They could be accessed
with <code>XEXP</code> and <code>XINT</code>, but instead three special macros are
always used:
<a name="index-INSN_005fUID-2215"></a>
<dl><dt><code>INSN_UID (</code><var>i</var><code>)</code><dd>Accesses the unique id of insn <var>i</var>.
<p><a name="index-PREV_005fINSN-2216"></a><br><dt><code>PREV_INSN (</code><var>i</var><code>)</code><dd>Accesses the chain pointer to the insn preceding <var>i</var>.
If <var>i</var> is the first insn, this is a null pointer.
<p><a name="index-NEXT_005fINSN-2217"></a><br><dt><code>NEXT_INSN (</code><var>i</var><code>)</code><dd>Accesses the chain pointer to the insn following <var>i</var>.
If <var>i</var> is the last insn, this is a null pointer.
</dl>
<p><a name="index-get_005finsns-2218"></a><a name="index-get_005flast_005finsn-2219"></a>The first insn in the chain is obtained by calling <code>get_insns</code>; the
last insn is the result of calling <code>get_last_insn</code>. Within the
chain delimited by these insns, the <code>NEXT_INSN</code> and
<code>PREV_INSN</code> pointers must always correspond: if <var>insn</var> is not
the first insn,
<pre class="smallexample"> NEXT_INSN (PREV_INSN (<var>insn</var>)) == <var>insn</var>
</pre>
<p class="noindent">is always true and if <var>insn</var> is not the last insn,
<pre class="smallexample"> PREV_INSN (NEXT_INSN (<var>insn</var>)) == <var>insn</var>
</pre>
<p class="noindent">is always true.
<p>After delay slot scheduling, some of the insns in the chain might be
<code>sequence</code> expressions, which contain a vector of insns. The value
of <code>NEXT_INSN</code> in all but the last of these insns is the next insn
in the vector; the value of <code>NEXT_INSN</code> of the last insn in the vector
is the same as the value of <code>NEXT_INSN</code> for the <code>sequence</code> in
which it is contained. Similar rules apply for <code>PREV_INSN</code>.
<p>This means that the above invariants are not necessarily true for insns
inside <code>sequence</code> expressions. Specifically, if <var>insn</var> is the
first insn in a <code>sequence</code>, <code>NEXT_INSN (PREV_INSN (</code><var>insn</var><code>))</code>
is the insn containing the <code>sequence</code> expression, as is the value
of <code>PREV_INSN (NEXT_INSN (</code><var>insn</var><code>))</code> if <var>insn</var> is the last
insn in the <code>sequence</code> expression. You can use these expressions
to find the containing <code>sequence</code> expression.
<p>Every insn has one of the following expression codes:
<a name="index-insn-2220"></a>
<dl><dt><code>insn</code><dd>The expression code <code>insn</code> is used for instructions that do not jump
and do not do function calls. <code>sequence</code> expressions are always
contained in insns with code <code>insn</code> even if one of those insns
should jump or do function calls.
<p>Insns with code <code>insn</code> have four additional fields beyond the three
mandatory ones listed above. These four are described in a table below.
<p><a name="index-jump_005finsn-2221"></a><br><dt><code>jump_insn</code><dd>The expression code <code>jump_insn</code> is used for instructions that may
jump (or, more generally, may contain <code>label_ref</code> expressions to
which <code>pc</code> can be set in that instruction). If there is an
instruction to return from the current function, it is recorded as a
<code>jump_insn</code>.
<p><a name="index-JUMP_005fLABEL-2222"></a><code>jump_insn</code> insns have the same extra fields as <code>insn</code> insns,
accessed in the same way and in addition contain a field
<code>JUMP_LABEL</code> which is defined once jump optimization has completed.
<p>For simple conditional and unconditional jumps, this field contains
the <code>code_label</code> to which this insn will (possibly conditionally)
branch. In a more complex jump, <code>JUMP_LABEL</code> records one of the
labels that the insn refers to; other jump target labels are recorded
as <code>REG_LABEL_TARGET</code> notes. The exception is <code>addr_vec</code>
and <code>addr_diff_vec</code>, where <code>JUMP_LABEL</code> is <code>NULL_RTX</code>
and the only way to find the labels is to scan the entire body of the
insn.
<p>Return insns count as jumps, but since they do not refer to any
labels, their <code>JUMP_LABEL</code> is <code>NULL_RTX</code>.
<p><a name="index-call_005finsn-2223"></a><br><dt><code>call_insn</code><dd>The expression code <code>call_insn</code> is used for instructions that may do
function calls. It is important to distinguish these instructions because
they imply that certain registers and memory locations may be altered
unpredictably.
<p><a name="index-CALL_005fINSN_005fFUNCTION_005fUSAGE-2224"></a><code>call_insn</code> insns have the same extra fields as <code>insn</code> insns,
accessed in the same way and in addition contain a field
<code>CALL_INSN_FUNCTION_USAGE</code>, which contains a list (chain of
<code>expr_list</code> expressions) containing <code>use</code> and <code>clobber</code>
expressions that denote hard registers and <code>MEM</code>s used or
clobbered by the called function.
<p>A <code>MEM</code> generally points to a stack slots in which arguments passed
to the libcall by reference (see <a href="#Register-Arguments">TARGET_PASS_BY_REFERENCE</a>) are stored. If the argument is
caller-copied (see <a href="#Register-Arguments">TARGET_CALLEE_COPIES</a>),
the stack slot will be mentioned in <code>CLOBBER</code> and <code>USE</code>
entries; if it's callee-copied, only a <code>USE</code> will appear, and the
<code>MEM</code> may point to addresses that are not stack slots.
<p><code>CLOBBER</code>ed registers in this list augment registers specified in
<code>CALL_USED_REGISTERS</code> (see <a href="#Register-Basics">Register Basics</a>).
<p><a name="index-code_005flabel-2225"></a><a name="index-CODE_005fLABEL_005fNUMBER-2226"></a><br><dt><code>code_label</code><dd>A <code>code_label</code> insn represents a label that a jump insn can jump
to. It contains two special fields of data in addition to the three
standard ones. <code>CODE_LABEL_NUMBER</code> is used to hold the <dfn>label
number</dfn>, a number that identifies this label uniquely among all the
labels in the compilation (not just in the current function).
Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘<samp><span class="samp">L</span><var>n</var></samp>’ where <var>n</var> is
the label number.
<p>When a <code>code_label</code> appears in an RTL expression, it normally
appears within a <code>label_ref</code> which represents the address of
the label, as a number.
<p>Besides as a <code>code_label</code>, a label can also be represented as a
<code>note</code> of type <code>NOTE_INSN_DELETED_LABEL</code>.
<p><a name="index-LABEL_005fNUSES-2227"></a>The field <code>LABEL_NUSES</code> is only defined once the jump optimization
phase is completed. It contains the number of times this label is
referenced in the current function.
<p><a name="index-LABEL_005fKIND-2228"></a><a name="index-SET_005fLABEL_005fKIND-2229"></a><a name="index-LABEL_005fALT_005fENTRY_005fP-2230"></a><a name="index-alternate-entry-points-2231"></a>The field <code>LABEL_KIND</code> differentiates four different types of
labels: <code>LABEL_NORMAL</code>, <code>LABEL_STATIC_ENTRY</code>,
<code>LABEL_GLOBAL_ENTRY</code>, and <code>LABEL_WEAK_ENTRY</code>. The only labels
that do not have type <code>LABEL_NORMAL</code> are <dfn>alternate entry
points</dfn> to the current function. These may be static (visible only in
the containing translation unit), global (exposed to all translation
units), or weak (global, but can be overridden by another symbol with the
same name).
<p>Much of the compiler treats all four kinds of label identically. Some
of it needs to know whether or not a label is an alternate entry point;
for this purpose, the macro <code>LABEL_ALT_ENTRY_P</code> is provided. It is
equivalent to testing whether ‘<samp><span class="samp">LABEL_KIND (label) == LABEL_NORMAL</span></samp>’.
The only place that cares about the distinction between static, global,
and weak alternate entry points, besides the front-end code that creates
them, is the function <code>output_alternate_entry_point</code>, in
<samp><span class="file">final.c</span></samp>.
<p>To set the kind of a label, use the <code>SET_LABEL_KIND</code> macro.
<p><a name="index-barrier-2232"></a><br><dt><code>barrier</code><dd>Barriers are placed in the instruction stream when control cannot flow
past them. They are placed after unconditional jump instructions to
indicate that the jumps are unconditional and after calls to
<code>volatile</code> functions, which do not return (e.g., <code>exit</code>).
They contain no information beyond the three standard fields.
<p><a name="index-note-2233"></a><a name="index-NOTE_005fLINE_005fNUMBER-2234"></a><a name="index-NOTE_005fSOURCE_005fFILE-2235"></a><br><dt><code>note</code><dd><code>note</code> insns are used to represent additional debugging and
declarative information. They contain two nonstandard fields, an
integer which is accessed with the macro <code>NOTE_LINE_NUMBER</code> and a
string accessed with <code>NOTE_SOURCE_FILE</code>.
<p>If <code>NOTE_LINE_NUMBER</code> is positive, the note represents the
position of a source line and <code>NOTE_SOURCE_FILE</code> is the source file name
that the line came from. These notes control generation of line
number data in the assembler output.
<p>Otherwise, <code>NOTE_LINE_NUMBER</code> is not really a line number but a
code with one of the following values (and <code>NOTE_SOURCE_FILE</code>
must contain a null pointer):
<a name="index-NOTE_005fINSN_005fDELETED-2236"></a>
<dl><dt><code>NOTE_INSN_DELETED</code><dd>Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.
<p><a name="index-NOTE_005fINSN_005fDELETED_005fLABEL-2237"></a><br><dt><code>NOTE_INSN_DELETED_LABEL</code><dd>This marks what used to be a <code>code_label</code>, but was not used for other
purposes than taking its address and was transformed to mark that no
code jumps to it.
<p><a name="index-NOTE_005fINSN_005fBLOCK_005fBEG-2238"></a><a name="index-NOTE_005fINSN_005fBLOCK_005fEND-2239"></a><br><dt><code>NOTE_INSN_BLOCK_BEG</code><dt><code>NOTE_INSN_BLOCK_END</code><dd>These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output
of debugging information.
<p><a name="index-NOTE_005fINSN_005fEH_005fREGION_005fBEG-2240"></a><a name="index-NOTE_005fINSN_005fEH_005fREGION_005fEND-2241"></a><br><dt><code>NOTE_INSN_EH_REGION_BEG</code><dt><code>NOTE_INSN_EH_REGION_END</code><dd>These types of notes indicate the position of the beginning and end of a
level of scoping for exception handling. <code>NOTE_BLOCK_NUMBER</code>
identifies which <code>CODE_LABEL</code> or <code>note</code> of type
<code>NOTE_INSN_DELETED_LABEL</code> is associated with the given region.
<p><a name="index-NOTE_005fINSN_005fLOOP_005fBEG-2242"></a><a name="index-NOTE_005fINSN_005fLOOP_005fEND-2243"></a><br><dt><code>NOTE_INSN_LOOP_BEG</code><dt><code>NOTE_INSN_LOOP_END</code><dd>These types of notes indicate the position of the beginning and end
of a <code>while</code> or <code>for</code> loop. They enable the loop optimizer
to find loops quickly.
<p><a name="index-NOTE_005fINSN_005fLOOP_005fCONT-2244"></a><br><dt><code>NOTE_INSN_LOOP_CONT</code><dd>Appears at the place in a loop that <code>continue</code> statements jump to.
<p><a name="index-NOTE_005fINSN_005fLOOP_005fVTOP-2245"></a><br><dt><code>NOTE_INSN_LOOP_VTOP</code><dd>This note indicates the place in a loop where the exit test begins for
those loops in which the exit test has been duplicated. This position
becomes another virtual start of the loop when considering loop
invariants.
<p><a name="index-NOTE_005fINSN_005fFUNCTION_005fBEG-2246"></a><br><dt><code>NOTE_INSN_FUNCTION_BEG</code><dd>Appears at the start of the function body, after the function
prologue.
<p><a name="index-NOTE_005fINSN_005fVAR_005fLOCATION-2247"></a><a name="index-NOTE_005fVAR_005fLOCATION-2248"></a><br><dt><code>NOTE_INSN_VAR_LOCATION</code><dd>This note is used to generate variable location debugging information.
It indicates that the user variable in its <code>VAR_LOCATION</code> operand
is at the location given in the RTL expression, or holds a value that
can be computed by evaluating the RTL expression from that static
point in the program up to the next such note for the same user
variable.
</dl>
<p>These codes are printed symbolically when they appear in debugging dumps.
<p><a name="index-debug_005finsn-2249"></a><a name="index-INSN_005fVAR_005fLOCATION-2250"></a><br><dt><code>debug_insn</code><dd>The expression code <code>debug_insn</code> is used for pseudo-instructions
that hold debugging information for variable tracking at assignments
(see <samp><span class="option">-fvar-tracking-assignments</span></samp> option). They are the RTL
representation of <code>GIMPLE_DEBUG</code> statements
(<a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a>), with a <code>VAR_LOCATION</code> operand that
binds a user variable tree to an RTL representation of the
<code>value</code> in the corresponding statement. A <code>DEBUG_EXPR</code> in
it stands for the value bound to the corresponding
<code>DEBUG_EXPR_DECL</code>.
<p>Throughout optimization passes, binding information is kept in
pseudo-instruction form, so that, unlike notes, it gets the same
treatment and adjustments that regular instructions would. It is the
variable tracking pass that turns these pseudo-instructions into var
location notes, analyzing control flow, value equivalences and changes
to registers and memory referenced in value expressions, propagating
the values of debug temporaries and determining expressions that can
be used to compute the value of each user variable at as many points
(ranges, actually) in the program as possible.
<p>Unlike <code>NOTE_INSN_VAR_LOCATION</code>, the value expression in an
<code>INSN_VAR_LOCATION</code> denotes a value at that specific point in the
program, rather than an expression that can be evaluated at any later
point before an overriding <code>VAR_LOCATION</code> is encountered. E.g.,
if a user variable is bound to a <code>REG</code> and then a subsequent insn
modifies the <code>REG</code>, the note location would keep mapping the user
variable to the register across the insn, whereas the insn location
would keep the variable bound to the value, so that the variable
tracking pass would emit another location note for the variable at the
point in which the register is modified.
</dl>
<p><a name="index-g_t_0040code_007bTImode_007d_002c-in-_0040code_007binsn_007d-2251"></a><a name="index-g_t_0040code_007bHImode_007d_002c-in-_0040code_007binsn_007d-2252"></a><a name="index-g_t_0040code_007bQImode_007d_002c-in-_0040code_007binsn_007d-2253"></a>The machine mode of an insn is normally <code>VOIDmode</code>, but some
phases use the mode for various purposes.
<p>The common subexpression elimination pass sets the mode of an insn to
<code>QImode</code> when it is the first insn in a block that has already
been processed.
<p>The second Haifa scheduling pass, for targets that can multiple issue,
sets the mode of an insn to <code>TImode</code> when it is believed that the
instruction begins an issue group. That is, when the instruction
cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.
<p>Here is a table of the extra fields of <code>insn</code>, <code>jump_insn</code>
and <code>call_insn</code> insns:
<a name="index-PATTERN-2254"></a>
<dl><dt><code>PATTERN (</code><var>i</var><code>)</code><dd>An expression for the side effect performed by this insn. This must be
one of the following codes: <code>set</code>, <code>call</code>, <code>use</code>,
<code>clobber</code>, <code>return</code>, <code>asm_input</code>, <code>asm_output</code>,
<code>addr_vec</code>, <code>addr_diff_vec</code>, <code>trap_if</code>, <code>unspec</code>,
<code>unspec_volatile</code>, <code>parallel</code>, <code>cond_exec</code>, or <code>sequence</code>. If it is a <code>parallel</code>,
each element of the <code>parallel</code> must be one these codes, except that
<code>parallel</code> expressions cannot be nested and <code>addr_vec</code> and
<code>addr_diff_vec</code> are not permitted inside a <code>parallel</code> expression.
<p><a name="index-INSN_005fCODE-2255"></a><br><dt><code>INSN_CODE (</code><var>i</var><code>)</code><dd>An integer that says which pattern in the machine description matches
this insn, or −1 if the matching has not yet been attempted.
<p>Such matching is never attempted and this field remains −1 on an insn
whose pattern consists of a single <code>use</code>, <code>clobber</code>,
<code>asm_input</code>, <code>addr_vec</code> or <code>addr_diff_vec</code> expression.
<p><a name="index-asm_005fnoperands-2256"></a>Matching is also never attempted on insns that result from an <code>asm</code>
statement. These contain at least one <code>asm_operands</code> expression.
The function <code>asm_noperands</code> returns a non-negative value for
such insns.
<p>In the debugging output, this field is printed as a number followed by
a symbolic representation that locates the pattern in the <samp><span class="file">md</span></samp>
file as some small positive or negative offset from a named pattern.
<p><a name="index-LOG_005fLINKS-2257"></a><br><dt><code>LOG_LINKS (</code><var>i</var><code>)</code><dd>A list (chain of <code>insn_list</code> expressions) giving information about
dependencies between instructions within a basic block. Neither a jump
nor a label may come between the related insns. These are only used by
the schedulers and by combine. This is a deprecated data structure.
Def-use and use-def chains are now preferred.
<p><a name="index-REG_005fNOTES-2258"></a><br><dt><code>REG_NOTES (</code><var>i</var><code>)</code><dd>A list (chain of <code>expr_list</code> and <code>insn_list</code> expressions)
giving miscellaneous information about the insn. It is often
information pertaining to the registers used in this insn.
</dl>
<p>The <code>LOG_LINKS</code> field of an insn is a chain of <code>insn_list</code>
expressions. Each of these has two operands: the first is an insn,
and the second is another <code>insn_list</code> expression (the next one in
the chain). The last <code>insn_list</code> in the chain has a null pointer
as second operand. The significant thing about the chain is which
insns appear in it (as first operands of <code>insn_list</code>
expressions). Their order is not significant.
<p>This list is originally set up by the flow analysis pass; it is a null
pointer until then. Flow only adds links for those data dependencies
which can be used for instruction combination. For each insn, the flow
analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn.
<p>The <code>REG_NOTES</code> field of an insn is a chain similar to the
<code>LOG_LINKS</code> field but it includes <code>expr_list</code> expressions in
addition to <code>insn_list</code> expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a
register note is really understood as being an <code>enum reg_note</code>.
The first operand <var>op</var> of the note is data whose meaning depends on
the kind of note.
<p><a name="index-REG_005fNOTE_005fKIND-2259"></a><a name="index-PUT_005fREG_005fNOTE_005fKIND-2260"></a>The macro <code>REG_NOTE_KIND (</code><var>x</var><code>)</code> returns the kind of
register note. Its counterpart, the macro <code>PUT_REG_NOTE_KIND
(</code><var>x</var><code>, </code><var>newkind</var><code>)</code> sets the register note type of <var>x</var> to be
<var>newkind</var>.
<p>Register notes are of three classes: They may say something about an
input to an insn, they may say something about an output of an insn, or
they may create a linkage between two insns. There are also a set
of values that are only used in <code>LOG_LINKS</code>.
<p>These register notes annotate inputs to an insn:
<a name="index-REG_005fDEAD-2261"></a>
<dl><dt><code>REG_DEAD</code><dd>The value in <var>op</var> dies in this insn; that is to say, altering the
value immediately after this insn would not affect the future behavior
of the program.
<p>It does not follow that the register <var>op</var> has no useful value after
this insn since <var>op</var> is not necessarily modified by this insn.
Rather, no subsequent instruction uses the contents of <var>op</var>.
<p><a name="index-REG_005fUNUSED-2262"></a><br><dt><code>REG_UNUSED</code><dd>The register <var>op</var> being set by this insn will not be used in a
subsequent insn. This differs from a <code>REG_DEAD</code> note, which
indicates that the value in an input will not be used subsequently.
These two notes are independent; both may be present for the same
register.
<p><a name="index-REG_005fINC-2263"></a><br><dt><code>REG_INC</code><dd>The register <var>op</var> is incremented (or decremented; at this level
there is no distinction) by an embedded side effect inside this insn.
This means it appears in a <code>post_inc</code>, <code>pre_inc</code>,
<code>post_dec</code> or <code>pre_dec</code> expression.
<p><a name="index-REG_005fNONNEG-2264"></a><br><dt><code>REG_NONNEG</code><dd>The register <var>op</var> is known to have a nonnegative value when this
insn is reached. This is used so that decrement and branch until zero
instructions, such as the m68k dbra, can be matched.
<p>The <code>REG_NONNEG</code> note is added to insns only if the machine
description has a ‘<samp><span class="samp">decrement_and_branch_until_zero</span></samp>’ pattern.
<p><a name="index-REG_005fLABEL_005fOPERAND-2265"></a><br><dt><code>REG_LABEL_OPERAND</code><dd>This insn uses <var>op</var>, a <code>code_label</code> or a <code>note</code> of type
<code>NOTE_INSN_DELETED_LABEL</code>, but is not a <code>jump_insn</code>, or it
is a <code>jump_insn</code> that refers to the operand as an ordinary
operand. The label may still eventually be a jump target, but if so
in an indirect jump in a subsequent insn. The presence of this note
allows jump optimization to be aware that <var>op</var> is, in fact, being
used, and flow optimization to build an accurate flow graph.
<p><a name="index-REG_005fLABEL_005fTARGET-2266"></a><br><dt><code>REG_LABEL_TARGET</code><dd>This insn is a <code>jump_insn</code> but not an <code>addr_vec</code> or
<code>addr_diff_vec</code>. It uses <var>op</var>, a <code>code_label</code> as a
direct or indirect jump target. Its purpose is similar to that of
<code>REG_LABEL_OPERAND</code>. This note is only present if the insn has
multiple targets; the last label in the insn (in the highest numbered
insn-field) goes into the <code>JUMP_LABEL</code> field and does not have a
<code>REG_LABEL_TARGET</code> note. See <a href="#Insns">JUMP_LABEL</a>.
<p><a name="index-REG_005fCROSSING_005fJUMP-2267"></a><br><dt><code>REG_CROSSING_JUMP</code><dd>This insn is a branching instruction (either an unconditional jump or
an indirect jump) which crosses between hot and cold sections, which
could potentially be very far apart in the executable. The presence
of this note indicates to other optimizations that this branching
instruction should not be “collapsed” into a simpler branching
construct. It is used when the optimization to partition basic blocks
into hot and cold sections is turned on.
<p><a name="index-REG_005fSETJMP-2268"></a><br><dt><code>REG_SETJMP</code><dd>Appears attached to each <code>CALL_INSN</code> to <code>setjmp</code> or a
related function.
</dl>
<p>The following notes describe attributes of outputs of an insn:
<a name="index-REG_005fEQUIV-2269"></a>
<a name="index-REG_005fEQUAL-2270"></a>
<dl><dt><code>REG_EQUIV</code><dt><code>REG_EQUAL</code><dd>This note is only valid on an insn that sets only one register and
indicates that that register will be equal to <var>op</var> at run time; the
scope of this equivalence differs between the two types of notes. The
value which the insn explicitly copies into the register may look
different from <var>op</var>, but they will be equal at run time. If the
output of the single <code>set</code> is a <code>strict_low_part</code> expression,
the note refers to the register that is contained in <code>SUBREG_REG</code>
of the <code>subreg</code> expression.
<p>For <code>REG_EQUIV</code>, the register is equivalent to <var>op</var> throughout
the entire function, and could validly be replaced in all its
occurrences by <var>op</var>. (“Validly” here refers to the data flow of
the program; simple replacement may make some insns invalid.) For
example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.
<p>When a parameter is copied into a pseudo-register at entry to a function,
a note of this kind records that the register is equivalent to the stack
slot where the parameter was passed. Although in this case the register
may be set by other insns, it is still valid to replace the register
by the stack slot throughout the function.
<p>A <code>REG_EQUIV</code> note is also used on an instruction which copies a
register parameter into a pseudo-register at entry to a function, if
there is a stack slot where that parameter could be stored. Although
other insns may set the pseudo-register, it is valid for the compiler to
replace the pseudo-register by stack slot throughout the function,
provided the compiler ensures that the stack slot is properly
initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention
allocates stack space for register parameters. See
<code>REG_PARM_STACK_SPACE</code> in <a href="#Stack-Arguments">Stack Arguments</a>.
<p>In the case of <code>REG_EQUAL</code>, the register that is set by this insn
will be equal to <var>op</var> at run time at the end of this insn but not
necessarily elsewhere in the function. In this case, <var>op</var>
is typically an arithmetic expression. For example, when a sequence of
insns such as a library call is used to perform an arithmetic operation,
this kind of note is attached to the insn that produces or copies the
final value.
<p>These two notes are used in different ways by the compiler passes.
<code>REG_EQUAL</code> is used by passes prior to register allocation (such as
common subexpression elimination and loop optimization) to tell them how
to think of that value. <code>REG_EQUIV</code> notes are used by register
allocation to indicate that there is an available substitute expression
(either a constant or a <code>mem</code> expression for the location of a
parameter on the stack) that may be used in place of a register if
insufficient registers are available.
<p>Except for stack homes for parameters, which are indicated by a
<code>REG_EQUIV</code> note and are not useful to the early optimization
passes and pseudo registers that are equivalent to a memory location
throughout their entire life, which is not detected until later in
the compilation, all equivalences are initially indicated by an attached
<code>REG_EQUAL</code> note. In the early stages of register allocation, a
<code>REG_EQUAL</code> note is changed into a <code>REG_EQUIV</code> note if
<var>op</var> is a constant and the insn represents the only set of its
destination register.
<p>Thus, compiler passes prior to register allocation need only check for
<code>REG_EQUAL</code> notes and passes subsequent to register allocation
need only check for <code>REG_EQUIV</code> notes.
</dl>
<p>These notes describe linkages between insns. They occur in pairs: one
insn has one of a pair of notes that points to a second insn, which has
the inverse note pointing back to the first insn.
<a name="index-REG_005fCC_005fSETTER-2271"></a>
<a name="index-REG_005fCC_005fUSER-2272"></a>
<dl><dt><code>REG_CC_SETTER</code><dt><code>REG_CC_USER</code><dd>On machines that use <code>cc0</code>, the insns which set and use <code>cc0</code>
set and use <code>cc0</code> are adjacent. However, when branch delay slot
filling is done, this may no longer be true. In this case a
<code>REG_CC_USER</code> note will be placed on the insn setting <code>cc0</code> to
point to the insn using <code>cc0</code> and a <code>REG_CC_SETTER</code> note will
be placed on the insn using <code>cc0</code> to point to the insn setting
<code>cc0</code>.
</dl>
<p>These values are only used in the <code>LOG_LINKS</code> field, and indicate
the type of dependency that each link represents. Links which indicate
a data dependence (a read after write dependence) do not use any code,
they simply have mode <code>VOIDmode</code>, and are printed without any
descriptive text.
<a name="index-REG_005fDEP_005fTRUE-2273"></a>
<dl><dt><code>REG_DEP_TRUE</code><dd>This indicates a true dependence (a read after write dependence).
<p><a name="index-REG_005fDEP_005fOUTPUT-2274"></a><br><dt><code>REG_DEP_OUTPUT</code><dd>This indicates an output dependence (a write after write dependence).
<p><a name="index-REG_005fDEP_005fANTI-2275"></a><br><dt><code>REG_DEP_ANTI</code><dd>This indicates an anti dependence (a write after read dependence).
</dl>
<p>These notes describe information gathered from gcov profile data. They
are stored in the <code>REG_NOTES</code> field of an insn as an
<code>expr_list</code>.
<a name="index-REG_005fBR_005fPROB-2276"></a>
<dl><dt><code>REG_BR_PROB</code><dd>This is used to specify the ratio of branches to non-branches of a
branch insn according to the profile data. The value is stored as a
value between 0 and REG_BR_PROB_BASE; larger values indicate a higher
probability that the branch will be taken.
<p><a name="index-REG_005fBR_005fPRED-2277"></a><br><dt><code>REG_BR_PRED</code><dd>These notes are found in JUMP insns after delayed branch scheduling
has taken place. They indicate both the direction and the likelihood
of the JUMP. The format is a bitmask of ATTR_FLAG_* values.
<p><a name="index-REG_005fFRAME_005fRELATED_005fEXPR-2278"></a><br><dt><code>REG_FRAME_RELATED_EXPR</code><dd>This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression
is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.
</dl>
<p>For convenience, the machine mode in an <code>insn_list</code> or
<code>expr_list</code> is printed using these symbolic codes in debugging dumps.
<p><a name="index-insn_005flist-2279"></a><a name="index-expr_005flist-2280"></a>The only difference between the expression codes <code>insn_list</code> and
<code>expr_list</code> is that the first operand of an <code>insn_list</code> is
assumed to be an insn and is printed in debugging dumps as the insn's
unique id; the first operand of an <code>expr_list</code> is printed in the
ordinary way as an expression.
<div class="node">
<a name="Calls"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Sharing">Sharing</a>,
Previous: <a rel="previous" accesskey="p" href="#Insns">Insns</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.20 RTL Representation of Function-Call Insns</h3>
<p><a name="index-calling-functions-in-RTL-2281"></a><a name="index-RTL-function_002dcall-insns-2282"></a><a name="index-function_002dcall-insns-2283"></a>
Insns that call subroutines have the RTL expression code <code>call_insn</code>.
These insns must satisfy special rules, and their bodies must use a special
RTL expression code, <code>call</code>.
<p><a name="index-g_t_0040code_007bcall_007d-usage-2284"></a>A <code>call</code> expression has two operands, as follows:
<pre class="smallexample"> (call (mem:<var>fm</var> <var>addr</var>) <var>nbytes</var>)
</pre>
<p class="noindent">Here <var>nbytes</var> is an operand that represents the number of bytes of
argument data being passed to the subroutine, <var>fm</var> is a machine mode
(which must equal as the definition of the <code>FUNCTION_MODE</code> macro in
the machine description) and <var>addr</var> represents the address of the
subroutine.
<p>For a subroutine that returns no value, the <code>call</code> expression as
shown above is the entire body of the insn, except that the insn might
also contain <code>use</code> or <code>clobber</code> expressions.
<p><a name="index-g_t_0040code_007bBLKmode_007d_002c-and-function-return-values-2285"></a>For a subroutine that returns a value whose mode is not <code>BLKmode</code>,
the value is returned in a hard register. If this register's number is
<var>r</var>, then the body of the call insn looks like this:
<pre class="smallexample"> (set (reg:<var>m</var> <var>r</var>)
(call (mem:<var>fm</var> <var>addr</var>) <var>nbytes</var>))
</pre>
<p class="noindent">This RTL expression makes it clear (to the optimizer passes) that the
appropriate register receives a useful value in this insn.
<p>When a subroutine returns a <code>BLKmode</code> value, it is handled by
passing to the subroutine the address of a place to store the value.
So the call insn itself does not “return” any value, and it has the
same RTL form as a call that returns nothing.
<p>On some machines, the call instruction itself clobbers some register,
for example to contain the return address. <code>call_insn</code> insns
on these machines should have a body which is a <code>parallel</code>
that contains both the <code>call</code> expression and <code>clobber</code>
expressions that indicate which registers are destroyed. Similarly,
if the call instruction requires some register other than the stack
pointer that is not explicitly mentioned in its RTL, a <code>use</code>
subexpression should mention that register.
<p>Functions that are called are assumed to modify all registers listed in
the configuration macro <code>CALL_USED_REGISTERS</code> (see <a href="#Register-Basics">Register Basics</a>) and, with the exception of <code>const</code> functions and library
calls, to modify all of memory.
<p>Insns containing just <code>use</code> expressions directly precede the
<code>call_insn</code> insn to indicate which registers contain inputs to the
function. Similarly, if registers other than those in
<code>CALL_USED_REGISTERS</code> are clobbered by the called function, insns
containing a single <code>clobber</code> follow immediately after the call to
indicate which registers.
<div class="node">
<a name="Sharing"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Reading-RTL">Reading RTL</a>,
Previous: <a rel="previous" accesskey="p" href="#Calls">Calls</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.21 Structure Sharing Assumptions</h3>
<p><a name="index-sharing-of-RTL-components-2286"></a><a name="index-RTL-structure-sharing-assumptions-2287"></a>
The compiler assumes that certain kinds of RTL expressions are unique;
there do not exist two distinct objects representing the same value.
In other cases, it makes an opposite assumption: that no RTL expression
object of a certain kind appears in more than one place in the
containing structure.
<p>These assumptions refer to a single function; except for the RTL
objects that describe global variables and external functions,
and a few standard objects such as small integer constants,
no RTL objects are common to two functions.
<a name="index-g_t_0040code_007breg_007d_002c-RTL-sharing-2288"></a>
<ul><li>Each pseudo-register has only a single <code>reg</code> object to represent it,
and therefore only a single machine mode.
<p><a name="index-symbolic-label-2289"></a><a name="index-g_t_0040code_007bsymbol_005fref_007d_002c-RTL-sharing-2290"></a><li>For any symbolic label, there is only one <code>symbol_ref</code> object
referring to it.
<p><a name="index-g_t_0040code_007bconst_005fint_007d_002c-RTL-sharing-2291"></a><li>All <code>const_int</code> expressions with equal values are shared.
<p><a name="index-g_t_0040code_007bpc_007d_002c-RTL-sharing-2292"></a><li>There is only one <code>pc</code> expression.
<p><a name="index-g_t_0040code_007bcc0_007d_002c-RTL-sharing-2293"></a><li>There is only one <code>cc0</code> expression.
<p><a name="index-g_t_0040code_007bconst_005fdouble_007d_002c-RTL-sharing-2294"></a><li>There is only one <code>const_double</code> expression with value 0 for
each floating point mode. Likewise for values 1 and 2.
<p><a name="index-g_t_0040code_007bconst_005fvector_007d_002c-RTL-sharing-2295"></a><li>There is only one <code>const_vector</code> expression with value 0 for
each vector mode, be it an integer or a double constant vector.
<p><a name="index-g_t_0040code_007blabel_005fref_007d_002c-RTL-sharing-2296"></a><a name="index-g_t_0040code_007bscratch_007d_002c-RTL-sharing-2297"></a><li>No <code>label_ref</code> or <code>scratch</code> appears in more than one place in
the RTL structure; in other words, it is safe to do a tree-walk of all
the insns in the function and assume that each time a <code>label_ref</code>
or <code>scratch</code> is seen it is distinct from all others that are seen.
<p><a name="index-g_t_0040code_007bmem_007d_002c-RTL-sharing-2298"></a><li>Only one <code>mem</code> object is normally created for each static
variable or stack slot, so these objects are frequently shared in all
the places they appear. However, separate but equal objects for these
variables are occasionally made.
<p><a name="index-g_t_0040code_007basm_005foperands_007d_002c-RTL-sharing-2299"></a><li>When a single <code>asm</code> statement has multiple output operands, a
distinct <code>asm_operands</code> expression is made for each output operand.
However, these all share the vector which contains the sequence of input
operands. This sharing is used later on to test whether two
<code>asm_operands</code> expressions come from the same statement, so all
optimizations must carefully preserve the sharing if they copy the
vector at all.
<li>No RTL object appears in more than one place in the RTL structure
except as described above. Many passes of the compiler rely on this
by assuming that they can modify RTL objects in place without unwanted
side-effects on other insns.
<p><a name="index-unshare_005fall_005frtl-2300"></a><li>During initial RTL generation, shared structure is freely introduced.
After all the RTL for a function has been generated, all shared
structure is copied by <code>unshare_all_rtl</code> in <samp><span class="file">emit-rtl.c</span></samp>,
after which the above rules are guaranteed to be followed.
<p><a name="index-copy_005frtx_005fif_005fshared-2301"></a><li>During the combiner pass, shared structure within an insn can exist
temporarily. However, the shared structure is copied before the
combiner is finished with the insn. This is done by calling
<code>copy_rtx_if_shared</code>, which is a subroutine of
<code>unshare_all_rtl</code>.
</ul>
<div class="node">
<a name="Reading-RTL"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Sharing">Sharing</a>,
Up: <a rel="up" accesskey="u" href="#RTL">RTL</a>
</div>
<h3 class="section">10.22 Reading RTL</h3>
<p>To read an RTL object from a file, call <code>read_rtx</code>. It takes one
argument, a stdio stream, and returns a single RTL object. This routine
is defined in <samp><span class="file">read-rtl.c</span></samp>. It is not available in the compiler
itself, only the various programs that generate the compiler back end
from the machine description.
<p>People frequently have the idea of using RTL stored as text in a file as
an interface between a language front end and the bulk of GCC. This
idea is not feasible.
<p>GCC was designed to use RTL internally only. Correct RTL for a given
program is very dependent on the particular target machine. And the RTL
does not contain all the information about the program.
<p>The proper way to interface GCC to a new language front end is with
the “tree” data structure, described in the files <samp><span class="file">tree.h</span></samp> and
<samp><span class="file">tree.def</span></samp>. The documentation for this structure (see <a href="#GENERIC">GENERIC</a>)
is incomplete.
<!-- Copyright (c) 2004, 2005, 2007, 2008, 2010 Free Software Foundation, Inc. -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- GENERIC -->
<!-- -->
<div class="node">
<a name="GENERIC"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GIMPLE">GIMPLE</a>,
Previous: <a rel="previous" accesskey="p" href="#Passes">Passes</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">11 GENERIC</h2>
<p><a name="index-GENERIC-2302"></a>
The purpose of GENERIC is simply to provide a
language-independent way of representing an entire function in
trees. To this end, it was necessary to add a few new tree codes
to the back end, but most everything was already there. If you
can express it with the codes in <code>gcc/tree.def</code>, it's
GENERIC.
<p>Early on, there was a great deal of debate about how to think
about statements in a tree IL. In GENERIC, a statement is
defined as any expression whose value, if any, is ignored. A
statement will always have <code>TREE_SIDE_EFFECTS</code> set (or it
will be discarded), but a non-statement expression may also have
side effects. A <code>CALL_EXPR</code>, for instance.
<p>It would be possible for some local optimizations to work on the
GENERIC form of a function; indeed, the adapted tree inliner
works fine on GENERIC, but the current compiler performs inlining
after lowering to GIMPLE (a restricted form described in the next
section). Indeed, currently the frontends perform this lowering
before handing off to <code>tree_rest_of_compilation</code>, but this
seems inelegant.
<ul class="menu">
<li><a accesskey="1" href="#Deficiencies">Deficiencies</a>: Topics net yet covered in this document.
<li><a accesskey="2" href="#Tree-overview">Tree overview</a>: All about <code>tree</code>s.
<li><a accesskey="3" href="#Types">Types</a>: Fundamental and aggregate types.
<li><a accesskey="4" href="#Declarations">Declarations</a>: Type declarations and variables.
<li><a accesskey="5" href="#Attributes">Attributes</a>: Declaration and type attributes.
<li><a accesskey="6" href="#Expression-trees">Expressions</a>: Operating on data.
<li><a accesskey="7" href="#Statements">Statements</a>: Control flow and related trees.
<li><a accesskey="8" href="#Functions">Functions</a>: Function bodies, linkage, and other aspects.
<li><a accesskey="9" href="#Language_002ddependent-trees">Language-dependent trees</a>: Topics and trees specific to language front ends.
<li><a href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>: Trees specific to C and C++.
<li><a href="#Java-Trees">Java Trees</a>: Trees specific to Java.
</ul>
<!-- -->
<!-- Deficiencies -->
<!-- -->
<div class="node">
<a name="Deficiencies"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tree-overview">Tree overview</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.1 Deficiencies</h3>
<p>There are many places in which this document is incomplet and incorrekt.
It is, as of yet, only <em>preliminary</em> documentation.
<!-- -->
<!-- Overview -->
<!-- -->
<div class="node">
<a name="Tree-overview"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Types">Types</a>,
Previous: <a rel="previous" accesskey="p" href="#Deficiencies">Deficiencies</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.2 Overview</h3>
<p><a name="index-tree-2303"></a><a name="index-TREE_005fCODE-2304"></a>
The central data structure used by the internal representation is the
<code>tree</code>. These nodes, while all of the C type <code>tree</code>, are of
many varieties. A <code>tree</code> is a pointer type, but the object to
which it points may be of a variety of types. From this point forward,
we will refer to trees in ordinary type, rather than in <code>this
font</code>, except when talking about the actual C type <code>tree</code>.
<p>You can tell what kind of node a particular tree is by using the
<code>TREE_CODE</code> macro. Many, many macros take trees as input and
return trees as output. However, most macros require a certain kind of
tree node as input. In other words, there is a type-system for trees,
but it is not reflected in the C type-system.
<p>For safety, it is useful to configure GCC with <samp><span class="option">--enable-checking</span></samp>.
Although this results in a significant performance penalty (since all
tree types are checked at run-time), and is therefore inappropriate in a
release version, it is extremely helpful during the development process.
<p>Many macros behave as predicates. Many, although not all, of these
predicates end in ‘<samp><span class="samp">_P</span></samp>’. Do not rely on the result type of these
macros being of any particular type. You may, however, rely on the fact
that the type can be compared to <code>0</code>, so that statements like
<pre class="smallexample"> if (TEST_P (t) && !TEST_P (y))
x = 1;
</pre>
<p class="noindent">and
<pre class="smallexample"> int i = (TEST_P (t) != 0);
</pre>
<p class="noindent">are legal. Macros that return <code>int</code> values now may be changed to
return <code>tree</code> values, or other pointers in the future. Even those
that continue to return <code>int</code> may return multiple nonzero codes
where previously they returned only zero and one. Therefore, you should
not write code like
<pre class="smallexample"> if (TEST_P (t) == 1)
</pre>
<p class="noindent">as this code is not guaranteed to work correctly in the future.
<p>You should not take the address of values returned by the macros or
functions described here. In particular, no guarantee is given that the
values are lvalues.
<p>In general, the names of macros are all in uppercase, while the names of
functions are entirely in lowercase. There are rare exceptions to this
rule. You should assume that any macro or function whose name is made
up entirely of uppercase letters may evaluate its arguments more than
once. You may assume that a macro or function whose name is made up
entirely of lowercase letters will evaluate its arguments only once.
<p>The <code>error_mark_node</code> is a special tree. Its tree code is
<code>ERROR_MARK</code>, but since there is only ever one node with that code,
the usual practice is to compare the tree against
<code>error_mark_node</code>. (This test is just a test for pointer
equality.) If an error has occurred during front-end processing the
flag <code>errorcount</code> will be set. If the front end has encountered
code it cannot handle, it will issue a message to the user and set
<code>sorrycount</code>. When these flags are set, any macro or function
which normally returns a tree of a particular kind may instead return
the <code>error_mark_node</code>. Thus, if you intend to do any processing of
erroneous code, you must be prepared to deal with the
<code>error_mark_node</code>.
<p>Occasionally, a particular tree slot (like an operand to an expression,
or a particular field in a declaration) will be referred to as
“reserved for the back end”. These slots are used to store RTL when
the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked
up to an intelligent editor), then those slots may be used by the
back end presently in use.
<p>If you encounter situations that do not match this documentation, such
as tree nodes of types not mentioned here, or macros documented to
return entities of a particular kind that instead return entities of
some different kind, you have found a bug, either in the front end or in
the documentation. Please report these bugs as you would any other
bug.
<ul class="menu">
<li><a accesskey="1" href="#Macros-and-Functions">Macros and Functions</a>: Macros and functions that can be used with all trees.
<li><a accesskey="2" href="#Identifiers">Identifiers</a>: The names of things.
<li><a accesskey="3" href="#Containers">Containers</a>: Lists and vectors.
</ul>
<!-- -->
<!-- Trees -->
<!-- -->
<div class="node">
<a name="Macros-and-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Identifiers">Identifiers</a>,
Up: <a rel="up" accesskey="u" href="#Tree-overview">Tree overview</a>
</div>
<h4 class="subsection">11.2.1 Trees</h4>
<p><a name="index-tree-2305"></a><a name="index-TREE_005fCHAIN-2306"></a><a name="index-TREE_005fTYPE-2307"></a>
All GENERIC trees have two fields in common. First, <code>TREE_CHAIN</code>
is a pointer that can be used as a singly-linked list to other trees.
The other is <code>TREE_TYPE</code>. Many trees store the type of an
expression or declaration in this field.
<p>These are some other functions for handling trees:
<dl>
<dt><code>tree_size</code><a name="index-tree_005fsize-2308"></a><dd>Return the number of bytes a tree takes.
<br><dt><code>build0</code><a name="index-build0-2309"></a><dt><code>build1</code><a name="index-build1-2310"></a><dt><code>build2</code><a name="index-build2-2311"></a><dt><code>build3</code><a name="index-build3-2312"></a><dt><code>build4</code><a name="index-build4-2313"></a><dt><code>build5</code><a name="index-build5-2314"></a><dt><code>build6</code><a name="index-build6-2315"></a><dd>
These functions build a tree and supply values to put in each
parameter. The basic signature is ‘<samp><span class="samp">code, type, [operands]<!-- /@w --></span></samp>’.
<code>code</code> is the <code>TREE_CODE</code>, and <code>type</code> is a tree
representing the <code>TREE_TYPE</code>. These are followed by the
operands, each of which is also a tree.
</dl>
<!-- -->
<!-- Identifiers -->
<!-- -->
<div class="node">
<a name="Identifiers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Containers">Containers</a>,
Previous: <a rel="previous" accesskey="p" href="#Macros-and-Functions">Macros and Functions</a>,
Up: <a rel="up" accesskey="u" href="#Tree-overview">Tree overview</a>
</div>
<h4 class="subsection">11.2.2 Identifiers</h4>
<p><a name="index-identifier-2316"></a><a name="index-name-2317"></a><a name="index-IDENTIFIER_005fNODE-2318"></a>
An <code>IDENTIFIER_NODE</code> represents a slightly more general concept
that the standard C or C++ concept of identifier. In particular, an
<code>IDENTIFIER_NODE</code> may contain a ‘<samp><span class="samp">$</span></samp>’, or other extraordinary
characters.
<p>There are never two distinct <code>IDENTIFIER_NODE</code>s representing the
same identifier. Therefore, you may use pointer equality to compare
<code>IDENTIFIER_NODE</code>s, rather than using a routine like
<code>strcmp</code>. Use <code>get_identifier</code> to obtain the unique
<code>IDENTIFIER_NODE</code> for a supplied string.
<p>You can use the following macros to access identifiers:
<dl>
<dt><code>IDENTIFIER_POINTER</code><a name="index-IDENTIFIER_005fPOINTER-2319"></a><dd>The string represented by the identifier, represented as a
<code>char*</code>. This string is always <code>NUL</code>-terminated, and contains
no embedded <code>NUL</code> characters.
<br><dt><code>IDENTIFIER_LENGTH</code><a name="index-IDENTIFIER_005fLENGTH-2320"></a><dd>The length of the string returned by <code>IDENTIFIER_POINTER</code>, not
including the trailing <code>NUL</code>. This value of
<code>IDENTIFIER_LENGTH (x)</code> is always the same as <code>strlen
(IDENTIFIER_POINTER (x))</code>.
<br><dt><code>IDENTIFIER_OPNAME_P</code><a name="index-IDENTIFIER_005fOPNAME_005fP-2321"></a><dd>This predicate holds if the identifier represents the name of an
overloaded operator. In this case, you should not depend on the
contents of either the <code>IDENTIFIER_POINTER</code> or the
<code>IDENTIFIER_LENGTH</code>.
<br><dt><code>IDENTIFIER_TYPENAME_P</code><a name="index-IDENTIFIER_005fTYPENAME_005fP-2322"></a><dd>This predicate holds if the identifier represents the name of a
user-defined conversion operator. In this case, the <code>TREE_TYPE</code> of
the <code>IDENTIFIER_NODE</code> holds the type to which the conversion
operator converts.
</dl>
<!-- -->
<!-- Containers -->
<!-- -->
<div class="node">
<a name="Containers"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Identifiers">Identifiers</a>,
Up: <a rel="up" accesskey="u" href="#Tree-overview">Tree overview</a>
</div>
<h4 class="subsection">11.2.3 Containers</h4>
<p><a name="index-container-2323"></a><a name="index-list-2324"></a><a name="index-vector-2325"></a><a name="index-TREE_005fLIST-2326"></a><a name="index-TREE_005fVEC-2327"></a><a name="index-TREE_005fPURPOSE-2328"></a><a name="index-TREE_005fVALUE-2329"></a><a name="index-TREE_005fVEC_005fLENGTH-2330"></a><a name="index-TREE_005fVEC_005fELT-2331"></a>
Two common container data structures can be represented directly with
tree nodes. A <code>TREE_LIST</code> is a singly linked list containing two
trees per node. These are the <code>TREE_PURPOSE</code> and <code>TREE_VALUE</code>
of each node. (Often, the <code>TREE_PURPOSE</code> contains some kind of
tag, or additional information, while the <code>TREE_VALUE</code> contains the
majority of the payload. In other cases, the <code>TREE_PURPOSE</code> is
simply <code>NULL_TREE</code>, while in still others both the
<code>TREE_PURPOSE</code> and <code>TREE_VALUE</code> are of equal stature.) Given
one <code>TREE_LIST</code> node, the next node is found by following the
<code>TREE_CHAIN</code>. If the <code>TREE_CHAIN</code> is <code>NULL_TREE</code>, then
you have reached the end of the list.
<p>A <code>TREE_VEC</code> is a simple vector. The <code>TREE_VEC_LENGTH</code> is an
integer (not a tree) giving the number of nodes in the vector. The
nodes themselves are accessed using the <code>TREE_VEC_ELT</code> macro, which
takes two arguments. The first is the <code>TREE_VEC</code> in question; the
second is an integer indicating which element in the vector is desired.
The elements are indexed from zero.
<!-- -->
<!-- Types -->
<!-- -->
<div class="node">
<a name="Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Declarations">Declarations</a>,
Previous: <a rel="previous" accesskey="p" href="#Tree-overview">Tree overview</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.3 Types</h3>
<p><a name="index-type-2332"></a><a name="index-pointer-2333"></a><a name="index-reference-2334"></a><a name="index-fundamental-type-2335"></a><a name="index-array-2336"></a><a name="index-VOID_005fTYPE-2337"></a><a name="index-INTEGER_005fTYPE-2338"></a><a name="index-TYPE_005fMIN_005fVALUE-2339"></a><a name="index-TYPE_005fMAX_005fVALUE-2340"></a><a name="index-REAL_005fTYPE-2341"></a><a name="index-FIXED_005fPOINT_005fTYPE-2342"></a><a name="index-COMPLEX_005fTYPE-2343"></a><a name="index-ENUMERAL_005fTYPE-2344"></a><a name="index-BOOLEAN_005fTYPE-2345"></a><a name="index-POINTER_005fTYPE-2346"></a><a name="index-REFERENCE_005fTYPE-2347"></a><a name="index-FUNCTION_005fTYPE-2348"></a><a name="index-METHOD_005fTYPE-2349"></a><a name="index-ARRAY_005fTYPE-2350"></a><a name="index-RECORD_005fTYPE-2351"></a><a name="index-UNION_005fTYPE-2352"></a><a name="index-UNKNOWN_005fTYPE-2353"></a><a name="index-OFFSET_005fTYPE-2354"></a><a name="index-TYPE_005fUNQUALIFIED-2355"></a><a name="index-TYPE_005fQUAL_005fCONST-2356"></a><a name="index-TYPE_005fQUAL_005fVOLATILE-2357"></a><a name="index-TYPE_005fQUAL_005fRESTRICT-2358"></a><a name="index-TYPE_005fMAIN_005fVARIANT-2359"></a><a name="index-qualified-type-2360"></a><a name="index-TYPE_005fSIZE-2361"></a><a name="index-TYPE_005fALIGN-2362"></a><a name="index-TYPE_005fPRECISION-2363"></a><a name="index-TYPE_005fARG_005fTYPES-2364"></a><a name="index-TYPE_005fMETHOD_005fBASETYPE-2365"></a><a name="index-TYPE_005fOFFSET_005fBASETYPE-2366"></a><a name="index-TREE_005fTYPE-2367"></a><a name="index-TYPE_005fCONTEXT-2368"></a><a name="index-TYPE_005fNAME-2369"></a><a name="index-TYPENAME_005fTYPE_005fFULLNAME-2370"></a><a name="index-TYPE_005fFIELDS-2371"></a><a name="index-TYPE_005fCANONICAL-2372"></a><a name="index-TYPE_005fSTRUCTURAL_005fEQUALITY_005fP-2373"></a><a name="index-SET_005fTYPE_005fSTRUCTURAL_005fEQUALITY-2374"></a>
All types have corresponding tree nodes. However, you should not assume
that there is exactly one tree node corresponding to each type. There
are often multiple nodes corresponding to the same type.
<p>For the most part, different kinds of types have different tree codes.
(For example, pointer types use a <code>POINTER_TYPE</code> code while arrays
use an <code>ARRAY_TYPE</code> code.) However, pointers to member functions
use the <code>RECORD_TYPE</code> code. Therefore, when writing a
<code>switch</code> statement that depends on the code associated with a
particular type, you should take care to handle pointers to member
functions under the <code>RECORD_TYPE</code> case label.
<p>The following functions and macros deal with cv-qualification of types:
<dl>
<dt><code>TYPE_MAIN_VARIANT</code><a name="index-TYPE_005fMAIN_005fVARIANT-2375"></a><dd>This macro returns the unqualified version of a type. It may be applied
to an unqualified type, but it is not always the identity function in
that case.
</dl>
<p>A few other macros and functions are usable with all types:
<dl>
<dt><code>TYPE_SIZE</code><a name="index-TYPE_005fSIZE-2376"></a><dd>The number of bits required to represent the type, represented as an
<code>INTEGER_CST</code>. For an incomplete type, <code>TYPE_SIZE</code> will be
<code>NULL_TREE</code>.
<br><dt><code>TYPE_ALIGN</code><a name="index-TYPE_005fALIGN-2377"></a><dd>The alignment of the type, in bits, represented as an <code>int</code>.
<br><dt><code>TYPE_NAME</code><a name="index-TYPE_005fNAME-2378"></a><dd>This macro returns a declaration (in the form of a <code>TYPE_DECL</code>) for
the type. (Note this macro does <em>not</em> return an
<code>IDENTIFIER_NODE</code>, as you might expect, given its name!) You can
look at the <code>DECL_NAME</code> of the <code>TYPE_DECL</code> to obtain the
actual name of the type. The <code>TYPE_NAME</code> will be <code>NULL_TREE</code>
for a type that is not a built-in type, the result of a typedef, or a
named class type.
<br><dt><code>TYPE_CANONICAL</code><a name="index-TYPE_005fCANONICAL-2379"></a><dd>This macro returns the “canonical” type for the given type
node. Canonical types are used to improve performance in the C++ and
Objective-C++ front ends by allowing efficient comparison between two
type nodes in <code>same_type_p</code>: if the <code>TYPE_CANONICAL</code> values
of the types are equal, the types are equivalent; otherwise, the types
are not equivalent. The notion of equivalence for canonical types is
the same as the notion of type equivalence in the language itself. For
instance,
<p>When <code>TYPE_CANONICAL</code> is <code>NULL_TREE</code>, there is no canonical
type for the given type node. In this case, comparison between this
type and any other type requires the compiler to perform a deep,
“structural” comparison to see if the two type nodes have the same
form and properties.
<p>The canonical type for a node is always the most fundamental type in
the equivalence class of types. For instance, <code>int</code> is its own
canonical type. A typedef <code>I</code> of <code>int</code> will have <code>int</code>
as its canonical type. Similarly, <code>I*</code> and a typedef <code>IP</code> (defined to <code>I*</code>) will has <code>int*</code> as their canonical
type. When building a new type node, be sure to set
<code>TYPE_CANONICAL</code> to the appropriate canonical type. If the new
type is a compound type (built from other types), and any of those
other types require structural equality, use
<code>SET_TYPE_STRUCTURAL_EQUALITY</code> to ensure that the new type also
requires structural equality. Finally, if for some reason you cannot
guarantee that <code>TYPE_CANONICAL</code> will point to the canonical type,
use <code>SET_TYPE_STRUCTURAL_EQUALITY</code> to make sure that the new
type–and any type constructed based on it–requires structural
equality. If you suspect that the canonical type system is
miscomparing types, pass <code>--param verify-canonical-types=1</code> to
the compiler or configure with <code>--enable-checking</code> to force the
compiler to verify its canonical-type comparisons against the
structural comparisons; the compiler will then print any warnings if
the canonical types miscompare.
<br><dt><code>TYPE_STRUCTURAL_EQUALITY_P</code><a name="index-TYPE_005fSTRUCTURAL_005fEQUALITY_005fP-2380"></a><dd>This predicate holds when the node requires structural equality
checks, e.g., when <code>TYPE_CANONICAL</code> is <code>NULL_TREE</code>.
<br><dt><code>SET_TYPE_STRUCTURAL_EQUALITY</code><a name="index-SET_005fTYPE_005fSTRUCTURAL_005fEQUALITY-2381"></a><dd>This macro states that the type node it is given requires structural
equality checks, e.g., it sets <code>TYPE_CANONICAL</code> to
<code>NULL_TREE</code>.
<br><dt><code>same_type_p</code><a name="index-same_005ftype_005fp-2382"></a><dd>This predicate takes two types as input, and holds if they are the same
type. For example, if one type is a <code>typedef</code> for the other, or
both are <code>typedef</code>s for the same type. This predicate also holds if
the two trees given as input are simply copies of one another; i.e.,
there is no difference between them at the source level, but, for
whatever reason, a duplicate has been made in the representation. You
should never use <code>==</code> (pointer equality) to compare types; always
use <code>same_type_p</code> instead.
</dl>
<p>Detailed below are the various kinds of types, and the macros that can
be used to access them. Although other kinds of types are used
elsewhere in G++, the types described here are the only ones that you
will encounter while examining the intermediate representation.
<dl>
<dt><code>VOID_TYPE</code><dd>Used to represent the <code>void</code> type.
<br><dt><code>INTEGER_TYPE</code><dd>Used to represent the various integral types, including <code>char</code>,
<code>short</code>, <code>int</code>, <code>long</code>, and <code>long long</code>. This code
is not used for enumeration types, nor for the <code>bool</code> type.
The <code>TYPE_PRECISION</code> is the number of bits used in
the representation, represented as an <code>unsigned int</code>. (Note that
in the general case this is not the same value as <code>TYPE_SIZE</code>;
suppose that there were a 24-bit integer type, but that alignment
requirements for the ABI required 32-bit alignment. Then,
<code>TYPE_SIZE</code> would be an <code>INTEGER_CST</code> for 32, while
<code>TYPE_PRECISION</code> would be 24.) The integer type is unsigned if
<code>TYPE_UNSIGNED</code> holds; otherwise, it is signed.
<p>The <code>TYPE_MIN_VALUE</code> is an <code>INTEGER_CST</code> for the smallest
integer that may be represented by this type. Similarly, the
<code>TYPE_MAX_VALUE</code> is an <code>INTEGER_CST</code> for the largest integer
that may be represented by this type.
<br><dt><code>REAL_TYPE</code><dd>Used to represent the <code>float</code>, <code>double</code>, and <code>long
double</code> types. The number of bits in the floating-point representation
is given by <code>TYPE_PRECISION</code>, as in the <code>INTEGER_TYPE</code> case.
<br><dt><code>FIXED_POINT_TYPE</code><dd>Used to represent the <code>short _Fract</code>, <code>_Fract</code>, <code>long
_Fract</code>, <code>long long _Fract</code>, <code>short _Accum</code>, <code>_Accum</code>,
<code>long _Accum</code>, and <code>long long _Accum</code> types. The number of bits
in the fixed-point representation is given by <code>TYPE_PRECISION</code>,
as in the <code>INTEGER_TYPE</code> case. There may be padding bits, fractional
bits and integral bits. The number of fractional bits is given by
<code>TYPE_FBIT</code>, and the number of integral bits is given by <code>TYPE_IBIT</code>.
The fixed-point type is unsigned if <code>TYPE_UNSIGNED</code> holds; otherwise,
it is signed.
The fixed-point type is saturating if <code>TYPE_SATURATING</code> holds; otherwise,
it is not saturating.
<br><dt><code>COMPLEX_TYPE</code><dd>Used to represent GCC built-in <code>__complex__</code> data types. The
<code>TREE_TYPE</code> is the type of the real and imaginary parts.
<br><dt><code>ENUMERAL_TYPE</code><dd>Used to represent an enumeration type. The <code>TYPE_PRECISION</code> gives
(as an <code>int</code>), the number of bits used to represent the type. If
there are no negative enumeration constants, <code>TYPE_UNSIGNED</code> will
hold. The minimum and maximum enumeration constants may be obtained
with <code>TYPE_MIN_VALUE</code> and <code>TYPE_MAX_VALUE</code>, respectively; each
of these macros returns an <code>INTEGER_CST</code>.
<p>The actual enumeration constants themselves may be obtained by looking
at the <code>TYPE_VALUES</code>. This macro will return a <code>TREE_LIST</code>,
containing the constants. The <code>TREE_PURPOSE</code> of each node will be
an <code>IDENTIFIER_NODE</code> giving the name of the constant; the
<code>TREE_VALUE</code> will be an <code>INTEGER_CST</code> giving the value
assigned to that constant. These constants will appear in the order in
which they were declared. The <code>TREE_TYPE</code> of each of these
constants will be the type of enumeration type itself.
<br><dt><code>BOOLEAN_TYPE</code><dd>Used to represent the <code>bool</code> type.
<br><dt><code>POINTER_TYPE</code><dd>Used to represent pointer types, and pointer to data member types. The
<code>TREE_TYPE</code> gives the type to which this type points.
<br><dt><code>REFERENCE_TYPE</code><dd>Used to represent reference types. The <code>TREE_TYPE</code> gives the type
to which this type refers.
<br><dt><code>FUNCTION_TYPE</code><dd>Used to represent the type of non-member functions and of static member
functions. The <code>TREE_TYPE</code> gives the return type of the function.
The <code>TYPE_ARG_TYPES</code> are a <code>TREE_LIST</code> of the argument types.
The <code>TREE_VALUE</code> of each node in this list is the type of the
corresponding argument; the <code>TREE_PURPOSE</code> is an expression for the
default argument value, if any. If the last node in the list is
<code>void_list_node</code> (a <code>TREE_LIST</code> node whose <code>TREE_VALUE</code>
is the <code>void_type_node</code>), then functions of this type do not take
variable arguments. Otherwise, they do take a variable number of
arguments.
<p>Note that in C (but not in C++) a function declared like <code>void f()</code>
is an unprototyped function taking a variable number of arguments; the
<code>TYPE_ARG_TYPES</code> of such a function will be <code>NULL</code>.
<br><dt><code>METHOD_TYPE</code><dd>Used to represent the type of a non-static member function. Like a
<code>FUNCTION_TYPE</code>, the return type is given by the <code>TREE_TYPE</code>.
The type of <code>*this</code>, i.e., the class of which functions of this
type are a member, is given by the <code>TYPE_METHOD_BASETYPE</code>. The
<code>TYPE_ARG_TYPES</code> is the parameter list, as for a
<code>FUNCTION_TYPE</code>, and includes the <code>this</code> argument.
<br><dt><code>ARRAY_TYPE</code><dd>Used to represent array types. The <code>TREE_TYPE</code> gives the type of
the elements in the array. If the array-bound is present in the type,
the <code>TYPE_DOMAIN</code> is an <code>INTEGER_TYPE</code> whose
<code>TYPE_MIN_VALUE</code> and <code>TYPE_MAX_VALUE</code> will be the lower and
upper bounds of the array, respectively. The <code>TYPE_MIN_VALUE</code> will
always be an <code>INTEGER_CST</code> for zero, while the
<code>TYPE_MAX_VALUE</code> will be one less than the number of elements in
the array, i.e., the highest value which may be used to index an element
in the array.
<br><dt><code>RECORD_TYPE</code><dd>Used to represent <code>struct</code> and <code>class</code> types, as well as
pointers to member functions and similar constructs in other languages.
<code>TYPE_FIELDS</code> contains the items contained in this type, each of
which can be a <code>FIELD_DECL</code>, <code>VAR_DECL</code>, <code>CONST_DECL</code>, or
<code>TYPE_DECL</code>. You may not make any assumptions about the ordering
of the fields in the type or whether one or more of them overlap.
<br><dt><code>UNION_TYPE</code><dd>Used to represent <code>union</code> types. Similar to <code>RECORD_TYPE</code>
except that all <code>FIELD_DECL</code> nodes in <code>TYPE_FIELD</code> start at
bit position zero.
<br><dt><code>QUAL_UNION_TYPE</code><dd>Used to represent part of a variant record in Ada. Similar to
<code>UNION_TYPE</code> except that each <code>FIELD_DECL</code> has a
<code>DECL_QUALIFIER</code> field, which contains a boolean expression that
indicates whether the field is present in the object. The type will only
have one field, so each field's <code>DECL_QUALIFIER</code> is only evaluated
if none of the expressions in the previous fields in <code>TYPE_FIELDS</code>
are nonzero. Normally these expressions will reference a field in the
outer object using a <code>PLACEHOLDER_EXPR</code>.
<br><dt><code>LANG_TYPE</code><dd>This node is used to represent a language-specific type. The front
end must handle it.
<br><dt><code>OFFSET_TYPE</code><dd>This node is used to represent a pointer-to-data member. For a data
member <code>X::m</code> the <code>TYPE_OFFSET_BASETYPE</code> is <code>X</code> and the
<code>TREE_TYPE</code> is the type of <code>m</code>.
</dl>
<p>There are variables whose values represent some of the basic types.
These include:
<dl>
<dt><code>void_type_node</code><dd>A node for <code>void</code>.
<br><dt><code>integer_type_node</code><dd>A node for <code>int</code>.
<br><dt><code>unsigned_type_node.</code><dd>A node for <code>unsigned int</code>.
<br><dt><code>char_type_node.</code><dd>A node for <code>char</code>.
</dl>
It may sometimes be useful to compare one of these variables with a type
in hand, using <code>same_type_p</code>.
<!-- -->
<!-- Declarations -->
<!-- -->
<div class="node">
<a name="Declarations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attributes">Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Types">Types</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.4 Declarations</h3>
<p><a name="index-declaration-2383"></a><a name="index-variable-2384"></a><a name="index-type-declaration-2385"></a><a name="index-LABEL_005fDECL-2386"></a><a name="index-CONST_005fDECL-2387"></a><a name="index-TYPE_005fDECL-2388"></a><a name="index-VAR_005fDECL-2389"></a><a name="index-PARM_005fDECL-2390"></a><a name="index-DEBUG_005fEXPR_005fDECL-2391"></a><a name="index-FIELD_005fDECL-2392"></a><a name="index-NAMESPACE_005fDECL-2393"></a><a name="index-RESULT_005fDECL-2394"></a><a name="index-TEMPLATE_005fDECL-2395"></a><a name="index-THUNK_005fDECL-2396"></a><a name="index-THUNK_005fDELTA-2397"></a><a name="index-DECL_005fINITIAL-2398"></a><a name="index-DECL_005fSIZE-2399"></a><a name="index-DECL_005fALIGN-2400"></a><a name="index-DECL_005fEXTERNAL-2401"></a>
This section covers the various kinds of declarations that appear in the
internal representation, except for declarations of functions
(represented by <code>FUNCTION_DECL</code> nodes), which are described in
<a href="#Functions">Functions</a>.
<ul class="menu">
<li><a accesskey="1" href="#Working-with-declarations">Working with declarations</a>: Macros and functions that work on
declarations.
<li><a accesskey="2" href="#Internal-structure">Internal structure</a>: How declaration nodes are represented.
</ul>
<div class="node">
<a name="Working-with-declarations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Internal-structure">Internal structure</a>,
Up: <a rel="up" accesskey="u" href="#Declarations">Declarations</a>
</div>
<h4 class="subsection">11.4.1 Working with declarations</h4>
<p>Some macros can be used with any kind of declaration. These include:
<dl>
<dt><code>DECL_NAME</code><a name="index-DECL_005fNAME-2402"></a><dd>This macro returns an <code>IDENTIFIER_NODE</code> giving the name of the
entity.
<br><dt><code>TREE_TYPE</code><a name="index-TREE_005fTYPE-2403"></a><dd>This macro returns the type of the entity declared.
<br><dt><code>EXPR_FILENAME</code><a name="index-EXPR_005fFILENAME-2404"></a><dd>This macro returns the name of the file in which the entity was
declared, as a <code>char*</code>. For an entity declared implicitly by the
compiler (like <code>__builtin_memcpy</code>), this will be the string
<code>"<internal>"</code>.
<br><dt><code>EXPR_LINENO</code><a name="index-EXPR_005fLINENO-2405"></a><dd>This macro returns the line number at which the entity was declared, as
an <code>int</code>.
<br><dt><code>DECL_ARTIFICIAL</code><a name="index-DECL_005fARTIFICIAL-2406"></a><dd>This predicate holds if the declaration was implicitly generated by the
compiler. For example, this predicate will hold of an implicitly
declared member function, or of the <code>TYPE_DECL</code> implicitly
generated for a class type. Recall that in C++ code like:
<pre class="smallexample"> struct S {};
</pre>
<p class="noindent">is roughly equivalent to C code like:
<pre class="smallexample"> struct S {};
typedef struct S S;
</pre>
<p>The implicitly generated <code>typedef</code> declaration is represented by a
<code>TYPE_DECL</code> for which <code>DECL_ARTIFICIAL</code> holds.
</dl>
<p>The various kinds of declarations include:
<dl>
<dt><code>LABEL_DECL</code><dd>These nodes are used to represent labels in function bodies. For more
information, see <a href="#Functions">Functions</a>. These nodes only appear in block
scopes.
<br><dt><code>CONST_DECL</code><dd>These nodes are used to represent enumeration constants. The value of
the constant is given by <code>DECL_INITIAL</code> which will be an
<code>INTEGER_CST</code> with the same type as the <code>TREE_TYPE</code> of the
<code>CONST_DECL</code>, i.e., an <code>ENUMERAL_TYPE</code>.
<br><dt><code>RESULT_DECL</code><dd>These nodes represent the value returned by a function. When a value is
assigned to a <code>RESULT_DECL</code>, that indicates that the value should
be returned, via bitwise copy, by the function. You can use
<code>DECL_SIZE</code> and <code>DECL_ALIGN</code> on a <code>RESULT_DECL</code>, just as
with a <code>VAR_DECL</code>.
<br><dt><code>TYPE_DECL</code><dd>These nodes represent <code>typedef</code> declarations. The <code>TREE_TYPE</code>
is the type declared to have the name given by <code>DECL_NAME</code>. In
some cases, there is no associated name.
<br><dt><code>VAR_DECL</code><dd>These nodes represent variables with namespace or block scope, as well
as static data members. The <code>DECL_SIZE</code> and <code>DECL_ALIGN</code> are
analogous to <code>TYPE_SIZE</code> and <code>TYPE_ALIGN</code>. For a declaration,
you should always use the <code>DECL_SIZE</code> and <code>DECL_ALIGN</code> rather
than the <code>TYPE_SIZE</code> and <code>TYPE_ALIGN</code> given by the
<code>TREE_TYPE</code>, since special attributes may have been applied to the
variable to give it a particular size and alignment. You may use the
predicates <code>DECL_THIS_STATIC</code> or <code>DECL_THIS_EXTERN</code> to test
whether the storage class specifiers <code>static</code> or <code>extern</code> were
used to declare a variable.
<p>If this variable is initialized (but does not require a constructor),
the <code>DECL_INITIAL</code> will be an expression for the initializer. The
initializer should be evaluated, and a bitwise copy into the variable
performed. If the <code>DECL_INITIAL</code> is the <code>error_mark_node</code>,
there is an initializer, but it is given by an explicit statement later
in the code; no bitwise copy is required.
<p>GCC provides an extension that allows either automatic variables, or
global variables, to be placed in particular registers. This extension
is being used for a particular <code>VAR_DECL</code> if <code>DECL_REGISTER</code>
holds for the <code>VAR_DECL</code>, and if <code>DECL_ASSEMBLER_NAME</code> is not
equal to <code>DECL_NAME</code>. In that case, <code>DECL_ASSEMBLER_NAME</code> is
the name of the register into which the variable will be placed.
<br><dt><code>PARM_DECL</code><dd>Used to represent a parameter to a function. Treat these nodes
similarly to <code>VAR_DECL</code> nodes. These nodes only appear in the
<code>DECL_ARGUMENTS</code> for a <code>FUNCTION_DECL</code>.
<p>The <code>DECL_ARG_TYPE</code> for a <code>PARM_DECL</code> is the type that will
actually be used when a value is passed to this function. It may be a
wider type than the <code>TREE_TYPE</code> of the parameter; for example, the
ordinary type might be <code>short</code> while the <code>DECL_ARG_TYPE</code> is
<code>int</code>.
<br><dt><code>DEBUG_EXPR_DECL</code><dd>Used to represent an anonymous debug-information temporary created to
hold an expression as it is optimized away, so that its value can be
referenced in debug bind statements.
<br><dt><code>FIELD_DECL</code><dd>These nodes represent non-static data members. The <code>DECL_SIZE</code> and
<code>DECL_ALIGN</code> behave as for <code>VAR_DECL</code> nodes.
The position of the field within the parent record is specified by a
combination of three attributes. <code>DECL_FIELD_OFFSET</code> is the position,
counting in bytes, of the <code>DECL_OFFSET_ALIGN</code>-bit sized word containing
the bit of the field closest to the beginning of the structure.
<code>DECL_FIELD_BIT_OFFSET</code> is the bit offset of the first bit of the field
within this word; this may be nonzero even for fields that are not bit-fields,
since <code>DECL_OFFSET_ALIGN</code> may be greater than the natural alignment
of the field's type.
<p>If <code>DECL_C_BIT_FIELD</code> holds, this field is a bit-field. In a bit-field,
<code>DECL_BIT_FIELD_TYPE</code> also contains the type that was originally
specified for it, while DECL_TYPE may be a modified type with lesser precision,
according to the size of the bit field.
<br><dt><code>NAMESPACE_DECL</code><dd>Namespaces provide a name hierarchy for other declarations. They
appear in the <code>DECL_CONTEXT</code> of other <code>_DECL</code> nodes.
</dl>
<div class="node">
<a name="Internal-structure"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Working-with-declarations">Working with declarations</a>,
Up: <a rel="up" accesskey="u" href="#Declarations">Declarations</a>
</div>
<h4 class="subsection">11.4.2 Internal structure</h4>
<p><code>DECL</code> nodes are represented internally as a hierarchy of
structures.
<ul class="menu">
<li><a accesskey="1" href="#Current-structure-hierarchy">Current structure hierarchy</a>: The current DECL node structure
hierarchy.
<li><a accesskey="2" href="#Adding-new-DECL-node-types">Adding new DECL node types</a>: How to add a new DECL node to a
frontend.
</ul>
<div class="node">
<a name="Current-structure-hierarchy"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Adding-new-DECL-node-types">Adding new DECL node types</a>,
Up: <a rel="up" accesskey="u" href="#Internal-structure">Internal structure</a>
</div>
<h5 class="subsubsection">11.4.2.1 Current structure hierarchy</h5>
<dl>
<dt><code>struct tree_decl_minimal</code><dd>This is the minimal structure to inherit from in order for common
<code>DECL</code> macros to work. The fields it contains are a unique ID,
source location, context, and name.
<br><dt><code>struct tree_decl_common</code><dd>This structure inherits from <code>struct tree_decl_minimal</code>. It
contains fields that most <code>DECL</code> nodes need, such as a field to
store alignment, machine mode, size, and attributes.
<br><dt><code>struct tree_field_decl</code><dd>This structure inherits from <code>struct tree_decl_common</code>. It is
used to represent <code>FIELD_DECL</code>.
<br><dt><code>struct tree_label_decl</code><dd>This structure inherits from <code>struct tree_decl_common</code>. It is
used to represent <code>LABEL_DECL</code>.
<br><dt><code>struct tree_translation_unit_decl</code><dd>This structure inherits from <code>struct tree_decl_common</code>. It is
used to represent <code>TRANSLATION_UNIT_DECL</code>.
<br><dt><code>struct tree_decl_with_rtl</code><dd>This structure inherits from <code>struct tree_decl_common</code>. It
contains a field to store the low-level RTL associated with a
<code>DECL</code> node.
<br><dt><code>struct tree_result_decl</code><dd>This structure inherits from <code>struct tree_decl_with_rtl</code>. It is
used to represent <code>RESULT_DECL</code>.
<br><dt><code>struct tree_const_decl</code><dd>This structure inherits from <code>struct tree_decl_with_rtl</code>. It is
used to represent <code>CONST_DECL</code>.
<br><dt><code>struct tree_parm_decl</code><dd>This structure inherits from <code>struct tree_decl_with_rtl</code>. It is
used to represent <code>PARM_DECL</code>.
<br><dt><code>struct tree_decl_with_vis</code><dd>This structure inherits from <code>struct tree_decl_with_rtl</code>. It
contains fields necessary to store visibility information, as well as
a section name and assembler name.
<br><dt><code>struct tree_var_decl</code><dd>This structure inherits from <code>struct tree_decl_with_vis</code>. It is
used to represent <code>VAR_DECL</code>.
<br><dt><code>struct tree_function_decl</code><dd>This structure inherits from <code>struct tree_decl_with_vis</code>. It is
used to represent <code>FUNCTION_DECL</code>.
</dl>
<div class="node">
<a name="Adding-new-DECL-node-types"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Current-structure-hierarchy">Current structure hierarchy</a>,
Up: <a rel="up" accesskey="u" href="#Internal-structure">Internal structure</a>
</div>
<h5 class="subsubsection">11.4.2.2 Adding new DECL node types</h5>
<p>Adding a new <code>DECL</code> tree consists of the following steps
<dl>
<dt>Add a new tree code for the <code>DECL</code> node<dd>For language specific <code>DECL</code> nodes, there is a <samp><span class="file">.def</span></samp> file
in each frontend directory where the tree code should be added.
For <code>DECL</code> nodes that are part of the middle-end, the code should
be added to <samp><span class="file">tree.def</span></samp>.
<br><dt>Create a new structure type for the <code>DECL</code> node<dd>These structures should inherit from one of the existing structures in
the language hierarchy by using that structure as the first member.
<pre class="smallexample"> struct tree_foo_decl
{
struct tree_decl_with_vis common;
}
</pre>
<p>Would create a structure name <code>tree_foo_decl</code> that inherits from
<code>struct tree_decl_with_vis</code>.
<p>For language specific <code>DECL</code> nodes, this new structure type
should go in the appropriate <samp><span class="file">.h</span></samp> file.
For <code>DECL</code> nodes that are part of the middle-end, the structure
type should go in <samp><span class="file">tree.h</span></samp>.
<br><dt>Add a member to the tree structure enumerator for the node<dd>For garbage collection and dynamic checking purposes, each <code>DECL</code>
node structure type is required to have a unique enumerator value
specified with it.
For language specific <code>DECL</code> nodes, this new enumerator value
should go in the appropriate <samp><span class="file">.def</span></samp> file.
For <code>DECL</code> nodes that are part of the middle-end, the enumerator
values are specified in <samp><span class="file">treestruct.def</span></samp>.
<br><dt>Update <code>union tree_node</code><dd>In order to make your new structure type usable, it must be added to
<code>union tree_node</code>.
For language specific <code>DECL</code> nodes, a new entry should be added
to the appropriate <samp><span class="file">.h</span></samp> file of the form
<pre class="smallexample"> struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;
</pre>
<p>For <code>DECL</code> nodes that are part of the middle-end, the additional
member goes directly into <code>union tree_node</code> in <samp><span class="file">tree.h</span></samp>.
<br><dt>Update dynamic checking info<dd>In order to be able to check whether accessing a named portion of
<code>union tree_node</code> is legal, and whether a certain <code>DECL</code> node
contains one of the enumerated <code>DECL</code> node structures in the
hierarchy, a simple lookup table is used.
This lookup table needs to be kept up to date with the tree structure
hierarchy, or else checking and containment macros will fail
inappropriately.
<p>For language specific <code>DECL</code> nodes, their is an <code>init_ts</code>
function in an appropriate <samp><span class="file">.c</span></samp> file, which initializes the lookup
table.
Code setting up the table for new <code>DECL</code> nodes should be added
there.
For each <code>DECL</code> tree code and enumerator value representing a
member of the inheritance hierarchy, the table should contain 1 if
that tree code inherits (directly or indirectly) from that member.
Thus, a <code>FOO_DECL</code> node derived from <code>struct decl_with_rtl</code>,
and enumerator value <code>TS_FOO_DECL</code>, would be set up as follows
<pre class="smallexample"> tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;
tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;
</pre>
<p>For <code>DECL</code> nodes that are part of the middle-end, the setup code
goes into <samp><span class="file">tree.c</span></samp>.
<br><dt>Add macros to access any new fields and flags<dd>
Each added field or flag should have a macro that is used to access
it, that performs appropriate checking to ensure only the right type of
<code>DECL</code> nodes access the field.
<p>These macros generally take the following form
<pre class="smallexample"> #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname
</pre>
<p>However, if the structure is simply a base class for further
structures, something like the following should be used
<pre class="smallexample"> #define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
#define BASE_STRUCT_FIELDNAME(NODE) \
(BASE_STRUCT_CHECK(NODE)->base_struct.fieldname
</pre>
</dl>
<!-- -->
<!-- Attributes -->
<!-- -->
<div class="node">
<a name="Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Expression-trees">Expression trees</a>,
Previous: <a rel="previous" accesskey="p" href="#Declarations">Declarations</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.5 Attributes in trees</h3>
<p><a name="index-attributes-2407"></a>
Attributes, as specified using the <code>__attribute__</code> keyword, are
represented internally as a <code>TREE_LIST</code>. The <code>TREE_PURPOSE</code>
is the name of the attribute, as an <code>IDENTIFIER_NODE</code>. The
<code>TREE_VALUE</code> is a <code>TREE_LIST</code> of the arguments of the
attribute, if any, or <code>NULL_TREE</code> if there are no arguments; the
arguments are stored as the <code>TREE_VALUE</code> of successive entries in
the list, and may be identifiers or expressions. The <code>TREE_CHAIN</code>
of the attribute is the next attribute in a list of attributes applying
to the same declaration or type, or <code>NULL_TREE</code> if there are no
further attributes in the list.
<p>Attributes may be attached to declarations and to types; these
attributes may be accessed with the following macros. All attributes
are stored in this way, and many also cause other changes to the
declaration or type or to other internal compiler data structures.
<div class="defun">
— Tree Macro: tree <b>DECL_ATTRIBUTES</b> (<var>tree decl</var>)<var><a name="index-DECL_005fATTRIBUTES-2408"></a></var><br>
<blockquote><p>This macro returns the attributes on the declaration <var>decl</var>.
</p></blockquote></div>
<div class="defun">
— Tree Macro: tree <b>TYPE_ATTRIBUTES</b> (<var>tree type</var>)<var><a name="index-TYPE_005fATTRIBUTES-2409"></a></var><br>
<blockquote><p>This macro returns the attributes on the type <var>type</var>.
</p></blockquote></div>
<!-- -->
<!-- Expressions -->
<!-- -->
<div class="node">
<a name="Expression-trees"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Statements">Statements</a>,
Previous: <a rel="previous" accesskey="p" href="#Attributes">Attributes</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.6 Expressions</h3>
<p><a name="index-expression-2410"></a><a name="index-TREE_005fTYPE-2411"></a><a name="index-TREE_005fOPERAND-2412"></a>
The internal representation for expressions is for the most part quite
straightforward. However, there are a few facts that one must bear in
mind. In particular, the expression “tree” is actually a directed
acyclic graph. (For example there may be many references to the integer
constant zero throughout the source program; many of these will be
represented by the same expression node.) You should not rely on
certain kinds of node being shared, nor should you rely on certain kinds of
nodes being unshared.
<p>The following macros can be used with all expression nodes:
<dl>
<dt><code>TREE_TYPE</code><a name="index-TREE_005fTYPE-2413"></a><dd>Returns the type of the expression. This value may not be precisely the
same type that would be given the expression in the original program.
</dl>
<p>In what follows, some nodes that one might expect to always have type
<code>bool</code> are documented to have either integral or boolean type. At
some point in the future, the C front end may also make use of this same
intermediate representation, and at this point these nodes will
certainly have integral type. The previous sentence is not meant to
imply that the C++ front end does not or will not give these nodes
integral type.
<p>Below, we list the various kinds of expression nodes. Except where
noted otherwise, the operands to an expression are accessed using the
<code>TREE_OPERAND</code> macro. For example, to access the first operand to
a binary plus expression <code>expr</code>, use:
<pre class="smallexample"> TREE_OPERAND (expr, 0)
</pre>
<p class="noindent">As this example indicates, the operands are zero-indexed.
<ul class="menu">
<li><a accesskey="1" href="#Constant-expressions">Constants</a>
<li><a accesskey="2" href="#Storage-References">Storage References</a>
<li><a accesskey="3" href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a>
<li><a accesskey="4" href="#Vectors">Vectors</a>
</ul>
<div class="node">
<a name="Constant-expressions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Storage-References">Storage References</a>,
Up: <a rel="up" accesskey="u" href="#Expression-trees">Expression trees</a>
</div>
<h4 class="subsection">11.6.1 Constant expressions</h4>
<p><a name="index-INTEGER_005fCST-2414"></a><a name="index-TREE_005fINT_005fCST_005fHIGH-2415"></a><a name="index-TREE_005fINT_005fCST_005fLOW-2416"></a><a name="index-tree_005fint_005fcst_005flt-2417"></a><a name="index-tree_005fint_005fcst_005fequal-2418"></a><a name="index-REAL_005fCST-2419"></a><a name="index-FIXED_005fCST-2420"></a><a name="index-COMPLEX_005fCST-2421"></a><a name="index-VECTOR_005fCST-2422"></a><a name="index-STRING_005fCST-2423"></a><a name="index-TREE_005fSTRING_005fLENGTH-2424"></a><a name="index-TREE_005fSTRING_005fPOINTER-2425"></a>
The table below begins with constants, moves on to unary expressions,
then proceeds to binary expressions, and concludes with various other
kinds of expressions:
<dl>
<dt><code>INTEGER_CST</code><dd>These nodes represent integer constants. Note that the type of these
constants is obtained with <code>TREE_TYPE</code>; they are not always of type
<code>int</code>. In particular, <code>char</code> constants are represented with
<code>INTEGER_CST</code> nodes. The value of the integer constant <code>e</code> is
given by
<pre class="smallexample"> ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
+ TREE_INST_CST_LOW (e))
</pre>
<p class="noindent">HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. Both
<code>TREE_INT_CST_HIGH</code> and <code>TREE_INT_CST_LOW</code> return a
<code>HOST_WIDE_INT</code>. The value of an <code>INTEGER_CST</code> is interpreted
as a signed or unsigned quantity depending on the type of the constant.
In general, the expression given above will overflow, so it should not
be used to calculate the value of the constant.
<p>The variable <code>integer_zero_node</code> is an integer constant with value
zero. Similarly, <code>integer_one_node</code> is an integer constant with
value one. The <code>size_zero_node</code> and <code>size_one_node</code> variables
are analogous, but have type <code>size_t</code> rather than <code>int</code>.
<p>The function <code>tree_int_cst_lt</code> is a predicate which holds if its
first argument is less than its second. Both constants are assumed to
have the same signedness (i.e., either both should be signed or both
should be unsigned.) The full width of the constant is used when doing
the comparison; the usual rules about promotions and conversions are
ignored. Similarly, <code>tree_int_cst_equal</code> holds if the two
constants are equal. The <code>tree_int_cst_sgn</code> function returns the
sign of a constant. The value is <code>1</code>, <code>0</code>, or <code>-1</code>
according on whether the constant is greater than, equal to, or less
than zero. Again, the signedness of the constant's type is taken into
account; an unsigned constant is never less than zero, no matter what
its bit-pattern.
<br><dt><code>REAL_CST</code><dd>
FIXME: Talk about how to obtain representations of this constant, do
comparisons, and so forth.
<br><dt><code>FIXED_CST</code><dd>
These nodes represent fixed-point constants. The type of these constants
is obtained with <code>TREE_TYPE</code>. <code>TREE_FIXED_CST_PTR</code> points to
a <code>struct fixed_value</code>; <code>TREE_FIXED_CST</code> returns the structure
itself. <code>struct fixed_value</code> contains <code>data</code> with the size of two
<code>HOST_BITS_PER_WIDE_INT</code> and <code>mode</code> as the associated fixed-point
machine mode for <code>data</code>.
<br><dt><code>COMPLEX_CST</code><dd>These nodes are used to represent complex number constants, that is a
<code>__complex__</code> whose parts are constant nodes. The
<code>TREE_REALPART</code> and <code>TREE_IMAGPART</code> return the real and the
imaginary parts respectively.
<br><dt><code>VECTOR_CST</code><dd>These nodes are used to represent vector constants, whose parts are
constant nodes. Each individual constant node is either an integer or a
double constant node. The first operand is a <code>TREE_LIST</code> of the
constant nodes and is accessed through <code>TREE_VECTOR_CST_ELTS</code>.
<br><dt><code>STRING_CST</code><dd>These nodes represent string-constants. The <code>TREE_STRING_LENGTH</code>
returns the length of the string, as an <code>int</code>. The
<code>TREE_STRING_POINTER</code> is a <code>char*</code> containing the string
itself. The string may not be <code>NUL</code>-terminated, and it may contain
embedded <code>NUL</code> characters. Therefore, the
<code>TREE_STRING_LENGTH</code> includes the trailing <code>NUL</code> if it is
present.
<p>For wide string constants, the <code>TREE_STRING_LENGTH</code> is the number
of bytes in the string, and the <code>TREE_STRING_POINTER</code>
points to an array of the bytes of the string, as represented on the
target system (that is, as integers in the target endianness). Wide and
non-wide string constants are distinguished only by the <code>TREE_TYPE</code>
of the <code>STRING_CST</code>.
<p>FIXME: The formats of string constants are not well-defined when the
target system bytes are not the same width as host system bytes.
</dl>
<div class="node">
<a name="Storage-References"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a>,
Previous: <a rel="previous" accesskey="p" href="#Constant-expressions">Constant expressions</a>,
Up: <a rel="up" accesskey="u" href="#Expression-trees">Expression trees</a>
</div>
<h4 class="subsection">11.6.2 References to storage</h4>
<p><a name="index-ADDR_005fEXPR-2426"></a><a name="index-INDIRECT_005fREF-2427"></a><a name="index-MEM_005fREF-2428"></a><a name="index-ARRAY_005fREF-2429"></a><a name="index-ARRAY_005fRANGE_005fREF-2430"></a><a name="index-TARGET_005fMEM_005fREF-2431"></a><a name="index-COMPONENT_005fREF-2432"></a>
<dl>
<dt><code>ARRAY_REF</code><dd>These nodes represent array accesses. The first operand is the array;
the second is the index. To calculate the address of the memory
accessed, you must scale the index by the size of the type of the array
elements. The type of these expressions must be the type of a component of
the array. The third and fourth operands are used after gimplification
to represent the lower bound and component size but should not be used
directly; call <code>array_ref_low_bound</code> and <code>array_ref_element_size</code>
instead.
<br><dt><code>ARRAY_RANGE_REF</code><dd>These nodes represent access to a range (or “slice”) of an array. The
operands are the same as that for <code>ARRAY_REF</code> and have the same
meanings. The type of these expressions must be an array whose component
type is the same as that of the first operand. The range of that array
type determines the amount of data these expressions access.
<br><dt><code>TARGET_MEM_REF</code><dd>These nodes represent memory accesses whose address directly map to
an addressing mode of the target architecture. The first argument
is <code>TMR_SYMBOL</code> and must be a <code>VAR_DECL</code> of an object with
a fixed address. The second argument is <code>TMR_BASE</code> and the
third one is <code>TMR_INDEX</code>. The fourth argument is
<code>TMR_STEP</code> and must be an <code>INTEGER_CST</code>. The fifth
argument is <code>TMR_OFFSET</code> and must be an <code>INTEGER_CST</code>.
Any of the arguments may be NULL if the appropriate component
does not appear in the address. Address of the <code>TARGET_MEM_REF</code>
is determined in the following way.
<pre class="smallexample"> &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET
</pre>
<p>The sixth argument is the reference to the original memory access, which
is preserved for the purposes of the RTL alias analysis. The seventh
argument is a tag representing the results of tree level alias analysis.
<br><dt><code>ADDR_EXPR</code><dd>These nodes are used to represent the address of an object. (These
expressions will always have pointer or reference type.) The operand may
be another expression, or it may be a declaration.
<p>As an extension, GCC allows users to take the address of a label. In
this case, the operand of the <code>ADDR_EXPR</code> will be a
<code>LABEL_DECL</code>. The type of such an expression is <code>void*</code>.
<p>If the object addressed is not an lvalue, a temporary is created, and
the address of the temporary is used.
<br><dt><code>INDIRECT_REF</code><dd>These nodes are used to represent the object pointed to by a pointer.
The operand is the pointer being dereferenced; it will always have
pointer or reference type.
<br><dt><code>MEM_REF</code><dd>These nodes are used to represent the object pointed to by a pointer
offset by a constant.
The first operand is the pointer being dereferenced; it will always have
pointer or reference type. The second operand is a pointer constant.
Its type is specifying the type to be used for type-based alias analysis.
<br><dt><code>COMPONENT_REF</code><dd>These nodes represent non-static data member accesses. The first
operand is the object (rather than a pointer to it); the second operand
is the <code>FIELD_DECL</code> for the data member. The third operand represents
the byte offset of the field, but should not be used directly; call
<code>component_ref_field_offset</code> instead.
</dl>
<div class="node">
<a name="Unary-and-Binary-Expressions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Vectors">Vectors</a>,
Previous: <a rel="previous" accesskey="p" href="#Storage-References">Storage References</a>,
Up: <a rel="up" accesskey="u" href="#Expression-trees">Expression trees</a>
</div>
<h4 class="subsection">11.6.3 Unary and Binary Expressions</h4>
<p><a name="index-NEGATE_005fEXPR-2433"></a><a name="index-ABS_005fEXPR-2434"></a><a name="index-BIT_005fNOT_005fEXPR-2435"></a><a name="index-TRUTH_005fNOT_005fEXPR-2436"></a><a name="index-PREDECREMENT_005fEXPR-2437"></a><a name="index-PREINCREMENT_005fEXPR-2438"></a><a name="index-POSTDECREMENT_005fEXPR-2439"></a><a name="index-POSTINCREMENT_005fEXPR-2440"></a><a name="index-FIX_005fTRUNC_005fEXPR-2441"></a><a name="index-FLOAT_005fEXPR-2442"></a><a name="index-COMPLEX_005fEXPR-2443"></a><a name="index-CONJ_005fEXPR-2444"></a><a name="index-REALPART_005fEXPR-2445"></a><a name="index-IMAGPART_005fEXPR-2446"></a><a name="index-NON_005fLVALUE_005fEXPR-2447"></a><a name="index-NOP_005fEXPR-2448"></a><a name="index-CONVERT_005fEXPR-2449"></a><a name="index-FIXED_005fCONVERT_005fEXPR-2450"></a><a name="index-THROW_005fEXPR-2451"></a><a name="index-LSHIFT_005fEXPR-2452"></a><a name="index-RSHIFT_005fEXPR-2453"></a><a name="index-BIT_005fIOR_005fEXPR-2454"></a><a name="index-BIT_005fXOR_005fEXPR-2455"></a><a name="index-BIT_005fAND_005fEXPR-2456"></a><a name="index-TRUTH_005fANDIF_005fEXPR-2457"></a><a name="index-TRUTH_005fORIF_005fEXPR-2458"></a><a name="index-TRUTH_005fAND_005fEXPR-2459"></a><a name="index-TRUTH_005fOR_005fEXPR-2460"></a><a name="index-TRUTH_005fXOR_005fEXPR-2461"></a><a name="index-POINTER_005fPLUS_005fEXPR-2462"></a><a name="index-PLUS_005fEXPR-2463"></a><a name="index-MINUS_005fEXPR-2464"></a><a name="index-MULT_005fEXPR-2465"></a><a name="index-RDIV_005fEXPR-2466"></a><a name="index-TRUNC_005fDIV_005fEXPR-2467"></a><a name="index-FLOOR_005fDIV_005fEXPR-2468"></a><a name="index-CEIL_005fDIV_005fEXPR-2469"></a><a name="index-ROUND_005fDIV_005fEXPR-2470"></a><a name="index-TRUNC_005fMOD_005fEXPR-2471"></a><a name="index-FLOOR_005fMOD_005fEXPR-2472"></a><a name="index-CEIL_005fMOD_005fEXPR-2473"></a><a name="index-ROUND_005fMOD_005fEXPR-2474"></a><a name="index-EXACT_005fDIV_005fEXPR-2475"></a><a name="index-LT_005fEXPR-2476"></a><a name="index-LE_005fEXPR-2477"></a><a name="index-GT_005fEXPR-2478"></a><a name="index-GE_005fEXPR-2479"></a><a name="index-EQ_005fEXPR-2480"></a><a name="index-NE_005fEXPR-2481"></a><a name="index-ORDERED_005fEXPR-2482"></a><a name="index-UNORDERED_005fEXPR-2483"></a><a name="index-UNLT_005fEXPR-2484"></a><a name="index-UNLE_005fEXPR-2485"></a><a name="index-UNGT_005fEXPR-2486"></a><a name="index-UNGE_005fEXPR-2487"></a><a name="index-UNEQ_005fEXPR-2488"></a><a name="index-LTGT_005fEXPR-2489"></a><a name="index-MODIFY_005fEXPR-2490"></a><a name="index-INIT_005fEXPR-2491"></a><a name="index-COMPOUND_005fEXPR-2492"></a><a name="index-COND_005fEXPR-2493"></a><a name="index-CALL_005fEXPR-2494"></a><a name="index-STMT_005fEXPR-2495"></a><a name="index-BIND_005fEXPR-2496"></a><a name="index-LOOP_005fEXPR-2497"></a><a name="index-EXIT_005fEXPR-2498"></a><a name="index-CLEANUP_005fPOINT_005fEXPR-2499"></a><a name="index-CONSTRUCTOR-2500"></a><a name="index-COMPOUND_005fLITERAL_005fEXPR-2501"></a><a name="index-SAVE_005fEXPR-2502"></a><a name="index-TARGET_005fEXPR-2503"></a><a name="index-VA_005fARG_005fEXPR-2504"></a>
<dl>
<dt><code>NEGATE_EXPR</code><dd>These nodes represent unary negation of the single operand, for both
integer and floating-point types. The type of negation can be
determined by looking at the type of the expression.
<p>The behavior of this operation on signed arithmetic overflow is
controlled by the <code>flag_wrapv</code> and <code>flag_trapv</code> variables.
<br><dt><code>ABS_EXPR</code><dd>These nodes represent the absolute value of the single operand, for
both integer and floating-point types. This is typically used to
implement the <code>abs</code>, <code>labs</code> and <code>llabs</code> builtins for
integer types, and the <code>fabs</code>, <code>fabsf</code> and <code>fabsl</code>
builtins for floating point types. The type of abs operation can
be determined by looking at the type of the expression.
<p>This node is not used for complex types. To represent the modulus
or complex abs of a complex value, use the <code>BUILT_IN_CABS</code>,
<code>BUILT_IN_CABSF</code> or <code>BUILT_IN_CABSL</code> builtins, as used
to implement the C99 <code>cabs</code>, <code>cabsf</code> and <code>cabsl</code>
built-in functions.
<br><dt><code>BIT_NOT_EXPR</code><dd>These nodes represent bitwise complement, and will always have integral
type. The only operand is the value to be complemented.
<br><dt><code>TRUTH_NOT_EXPR</code><dd>These nodes represent logical negation, and will always have integral
(or boolean) type. The operand is the value being negated. The type
of the operand and that of the result are always of <code>BOOLEAN_TYPE</code>
or <code>INTEGER_TYPE</code>.
<br><dt><code>PREDECREMENT_EXPR</code><dt><code>PREINCREMENT_EXPR</code><dt><code>POSTDECREMENT_EXPR</code><dt><code>POSTINCREMENT_EXPR</code><dd>These nodes represent increment and decrement expressions. The value of
the single operand is computed, and the operand incremented or
decremented. In the case of <code>PREDECREMENT_EXPR</code> and
<code>PREINCREMENT_EXPR</code>, the value of the expression is the value
resulting after the increment or decrement; in the case of
<code>POSTDECREMENT_EXPR</code> and <code>POSTINCREMENT_EXPR</code> is the value
before the increment or decrement occurs. The type of the operand, like
that of the result, will be either integral, boolean, or floating-point.
<br><dt><code>FIX_TRUNC_EXPR</code><dd>These nodes represent conversion of a floating-point value to an
integer. The single operand will have a floating-point type, while
the complete expression will have an integral (or boolean) type. The
operand is rounded towards zero.
<br><dt><code>FLOAT_EXPR</code><dd>These nodes represent conversion of an integral (or boolean) value to a
floating-point value. The single operand will have integral type, while
the complete expression will have a floating-point type.
<p>FIXME: How is the operand supposed to be rounded? Is this dependent on
<samp><span class="option">-mieee</span></samp>?
<br><dt><code>COMPLEX_EXPR</code><dd>These nodes are used to represent complex numbers constructed from two
expressions of the same (integer or real) type. The first operand is the
real part and the second operand is the imaginary part.
<br><dt><code>CONJ_EXPR</code><dd>These nodes represent the conjugate of their operand.
<br><dt><code>REALPART_EXPR</code><dt><code>IMAGPART_EXPR</code><dd>These nodes represent respectively the real and the imaginary parts
of complex numbers (their sole argument).
<br><dt><code>NON_LVALUE_EXPR</code><dd>These nodes indicate that their one and only operand is not an lvalue.
A back end can treat these identically to the single operand.
<br><dt><code>NOP_EXPR</code><dd>These nodes are used to represent conversions that do not require any
code-generation. For example, conversion of a <code>char*</code> to an
<code>int*</code> does not require any code be generated; such a conversion is
represented by a <code>NOP_EXPR</code>. The single operand is the expression
to be converted. The conversion from a pointer to a reference is also
represented with a <code>NOP_EXPR</code>.
<br><dt><code>CONVERT_EXPR</code><dd>These nodes are similar to <code>NOP_EXPR</code>s, but are used in those
situations where code may need to be generated. For example, if an
<code>int*</code> is converted to an <code>int</code> code may need to be generated
on some platforms. These nodes are never used for C++-specific
conversions, like conversions between pointers to different classes in
an inheritance hierarchy. Any adjustments that need to be made in such
cases are always indicated explicitly. Similarly, a user-defined
conversion is never represented by a <code>CONVERT_EXPR</code>; instead, the
function calls are made explicit.
<br><dt><code>FIXED_CONVERT_EXPR</code><dd>These nodes are used to represent conversions that involve fixed-point
values. For example, from a fixed-point value to another fixed-point value,
from an integer to a fixed-point value, from a fixed-point value to an
integer, from a floating-point value to a fixed-point value, or from
a fixed-point value to a floating-point value.
<br><dt><code>LSHIFT_EXPR</code><dt><code>RSHIFT_EXPR</code><dd>These nodes represent left and right shifts, respectively. The first
operand is the value to shift; it will always be of integral type. The
second operand is an expression for the number of bits by which to
shift. Right shift should be treated as arithmetic, i.e., the
high-order bits should be zero-filled when the expression has unsigned
type and filled with the sign bit when the expression has signed type.
Note that the result is undefined if the second operand is larger
than or equal to the first operand's type size.
<br><dt><code>BIT_IOR_EXPR</code><dt><code>BIT_XOR_EXPR</code><dt><code>BIT_AND_EXPR</code><dd>These nodes represent bitwise inclusive or, bitwise exclusive or, and
bitwise and, respectively. Both operands will always have integral
type.
<br><dt><code>TRUTH_ANDIF_EXPR</code><dt><code>TRUTH_ORIF_EXPR</code><dd>These nodes represent logical “and” and logical “or”, respectively.
These operators are not strict; i.e., the second operand is evaluated
only if the value of the expression is not determined by evaluation of
the first operand. The type of the operands and that of the result are
always of <code>BOOLEAN_TYPE</code> or <code>INTEGER_TYPE</code>.
<br><dt><code>TRUTH_AND_EXPR</code><dt><code>TRUTH_OR_EXPR</code><dt><code>TRUTH_XOR_EXPR</code><dd>These nodes represent logical and, logical or, and logical exclusive or.
They are strict; both arguments are always evaluated. There are no
corresponding operators in C or C++, but the front end will sometimes
generate these expressions anyhow, if it can tell that strictness does
not matter. The type of the operands and that of the result are
always of <code>BOOLEAN_TYPE</code> or <code>INTEGER_TYPE</code>.
<dt><code>POINTER_PLUS_EXPR</code><dd>This node represents pointer arithmetic. The first operand is always
a pointer/reference type. The second operand is always an unsigned
integer type compatible with sizetype. This is the only binary
arithmetic operand that can operate on pointer types.
<dt><code>PLUS_EXPR</code><dt><code>MINUS_EXPR</code><dt><code>MULT_EXPR</code><dd>These nodes represent various binary arithmetic operations.
Respectively, these operations are addition, subtraction (of the second
operand from the first) and multiplication. Their operands may have
either integral or floating type, but there will never be case in which
one operand is of floating type and the other is of integral type.
<p>The behavior of these operations on signed arithmetic overflow is
controlled by the <code>flag_wrapv</code> and <code>flag_trapv</code> variables.
<br><dt><code>RDIV_EXPR</code><dd>This node represents a floating point division operation.
<br><dt><code>TRUNC_DIV_EXPR</code><dt><code>FLOOR_DIV_EXPR</code><dt><code>CEIL_DIV_EXPR</code><dt><code>ROUND_DIV_EXPR</code><dd>These nodes represent integer division operations that return an integer
result. <code>TRUNC_DIV_EXPR</code> rounds towards zero, <code>FLOOR_DIV_EXPR</code>
rounds towards negative infinity, <code>CEIL_DIV_EXPR</code> rounds towards
positive infinity and <code>ROUND_DIV_EXPR</code> rounds to the closest integer.
Integer division in C and C++ is truncating, i.e. <code>TRUNC_DIV_EXPR</code>.
<p>The behavior of these operations on signed arithmetic overflow, when
dividing the minimum signed integer by minus one, is controlled by the
<code>flag_wrapv</code> and <code>flag_trapv</code> variables.
<br><dt><code>TRUNC_MOD_EXPR</code><dt><code>FLOOR_MOD_EXPR</code><dt><code>CEIL_MOD_EXPR</code><dt><code>ROUND_MOD_EXPR</code><dd>These nodes represent the integer remainder or modulus operation.
The integer modulus of two operands <code>a</code> and <code>b</code> is
defined as <code>a - (a/b)*b</code> where the division calculated using
the corresponding division operator. Hence for <code>TRUNC_MOD_EXPR</code>
this definition assumes division using truncation towards zero, i.e.
<code>TRUNC_DIV_EXPR</code>. Integer remainder in C and C++ uses truncating
division, i.e. <code>TRUNC_MOD_EXPR</code>.
<br><dt><code>EXACT_DIV_EXPR</code><dd>The <code>EXACT_DIV_EXPR</code> code is used to represent integer divisions where
the numerator is known to be an exact multiple of the denominator. This
allows the backend to choose between the faster of <code>TRUNC_DIV_EXPR</code>,
<code>CEIL_DIV_EXPR</code> and <code>FLOOR_DIV_EXPR</code> for the current target.
<br><dt><code>LT_EXPR</code><dt><code>LE_EXPR</code><dt><code>GT_EXPR</code><dt><code>GE_EXPR</code><dt><code>EQ_EXPR</code><dt><code>NE_EXPR</code><dd>These nodes represent the less than, less than or equal to, greater
than, greater than or equal to, equal, and not equal comparison
operators. The first and second operand with either be both of integral
type or both of floating type. The result type of these expressions
will always be of integral or boolean type. These operations return
the result type's zero value for false, and the result type's one value
for true.
<p>For floating point comparisons, if we honor IEEE NaNs and either operand
is NaN, then <code>NE_EXPR</code> always returns true and the remaining operators
always return false. On some targets, comparisons against an IEEE NaN,
other than equality and inequality, may generate a floating point exception.
<br><dt><code>ORDERED_EXPR</code><dt><code>UNORDERED_EXPR</code><dd>These nodes represent non-trapping ordered and unordered comparison
operators. These operations take two floating point operands and
determine whether they are ordered or unordered relative to each other.
If either operand is an IEEE NaN, their comparison is defined to be
unordered, otherwise the comparison is defined to be ordered. The
result type of these expressions will always be of integral or boolean
type. These operations return the result type's zero value for false,
and the result type's one value for true.
<br><dt><code>UNLT_EXPR</code><dt><code>UNLE_EXPR</code><dt><code>UNGT_EXPR</code><dt><code>UNGE_EXPR</code><dt><code>UNEQ_EXPR</code><dt><code>LTGT_EXPR</code><dd>These nodes represent the unordered comparison operators.
These operations take two floating point operands and determine whether
the operands are unordered or are less than, less than or equal to,
greater than, greater than or equal to, or equal respectively. For
example, <code>UNLT_EXPR</code> returns true if either operand is an IEEE
NaN or the first operand is less than the second. With the possible
exception of <code>LTGT_EXPR</code>, all of these operations are guaranteed
not to generate a floating point exception. The result
type of these expressions will always be of integral or boolean type.
These operations return the result type's zero value for false,
and the result type's one value for true.
<br><dt><code>MODIFY_EXPR</code><dd>These nodes represent assignment. The left-hand side is the first
operand; the right-hand side is the second operand. The left-hand side
will be a <code>VAR_DECL</code>, <code>INDIRECT_REF</code>, <code>COMPONENT_REF</code>, or
other lvalue.
<p>These nodes are used to represent not only assignment with ‘<samp><span class="samp">=</span></samp>’ but
also compound assignments (like ‘<samp><span class="samp">+=</span></samp>’), by reduction to ‘<samp><span class="samp">=</span></samp>’
assignment. In other words, the representation for ‘<samp><span class="samp">i += 3</span></samp>’ looks
just like that for ‘<samp><span class="samp">i = i + 3</span></samp>’.
<br><dt><code>INIT_EXPR</code><dd>These nodes are just like <code>MODIFY_EXPR</code>, but are used only when a
variable is initialized, rather than assigned to subsequently. This
means that we can assume that the target of the initialization is not
used in computing its own value; any reference to the lhs in computing
the rhs is undefined.
<br><dt><code>COMPOUND_EXPR</code><dd>These nodes represent comma-expressions. The first operand is an
expression whose value is computed and thrown away prior to the
evaluation of the second operand. The value of the entire expression is
the value of the second operand.
<br><dt><code>COND_EXPR</code><dd>These nodes represent <code>?:</code> expressions. The first operand
is of boolean or integral type. If it evaluates to a nonzero value,
the second operand should be evaluated, and returned as the value of the
expression. Otherwise, the third operand is evaluated, and returned as
the value of the expression.
<p>The second operand must have the same type as the entire expression,
unless it unconditionally throws an exception or calls a noreturn
function, in which case it should have void type. The same constraints
apply to the third operand. This allows array bounds checks to be
represented conveniently as <code>(i >= 0 && i < 10) ? i : abort()</code>.
<p>As a GNU extension, the C language front-ends allow the second
operand of the <code>?:</code> operator may be omitted in the source.
For example, <code>x ? : 3</code> is equivalent to <code>x ? x : 3</code>,
assuming that <code>x</code> is an expression without side-effects.
In the tree representation, however, the second operand is always
present, possibly protected by <code>SAVE_EXPR</code> if the first
argument does cause side-effects.
<br><dt><code>CALL_EXPR</code><dd>These nodes are used to represent calls to functions, including
non-static member functions. <code>CALL_EXPR</code>s are implemented as
expression nodes with a variable number of operands. Rather than using
<code>TREE_OPERAND</code> to extract them, it is preferable to use the
specialized accessor macros and functions that operate specifically on
<code>CALL_EXPR</code> nodes.
<p><code>CALL_EXPR_FN</code> returns a pointer to the
function to call; it is always an expression whose type is a
<code>POINTER_TYPE</code>.
<p>The number of arguments to the call is returned by <code>call_expr_nargs</code>,
while the arguments themselves can be accessed with the <code>CALL_EXPR_ARG</code>
macro. The arguments are zero-indexed and numbered left-to-right.
You can iterate over the arguments using <code>FOR_EACH_CALL_EXPR_ARG</code>, as in:
<pre class="smallexample"> tree call, arg;
call_expr_arg_iterator iter;
FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
/* arg is bound to successive arguments of call. */
...;
</pre>
<p>For non-static
member functions, there will be an operand corresponding to the
<code>this</code> pointer. There will always be expressions corresponding to
all of the arguments, even if the function is declared with default
arguments and some arguments are not explicitly provided at the call
sites.
<p><code>CALL_EXPR</code>s also have a <code>CALL_EXPR_STATIC_CHAIN</code> operand that
is used to implement nested functions. This operand is otherwise null.
<br><dt><code>CLEANUP_POINT_EXPR</code><dd>These nodes represent full-expressions. The single operand is an
expression to evaluate. Any destructor calls engendered by the creation
of temporaries during the evaluation of that expression should be
performed immediately after the expression is evaluated.
<br><dt><code>CONSTRUCTOR</code><dd>These nodes represent the brace-enclosed initializers for a structure or
array. The first operand is reserved for use by the back end. The
second operand is a <code>TREE_LIST</code>. If the <code>TREE_TYPE</code> of the
<code>CONSTRUCTOR</code> is a <code>RECORD_TYPE</code> or <code>UNION_TYPE</code>, then
the <code>TREE_PURPOSE</code> of each node in the <code>TREE_LIST</code> will be a
<code>FIELD_DECL</code> and the <code>TREE_VALUE</code> of each node will be the
expression used to initialize that field.
<p>If the <code>TREE_TYPE</code> of the <code>CONSTRUCTOR</code> is an
<code>ARRAY_TYPE</code>, then the <code>TREE_PURPOSE</code> of each element in the
<code>TREE_LIST</code> will be an <code>INTEGER_CST</code> or a <code>RANGE_EXPR</code> of
two <code>INTEGER_CST</code>s. A single <code>INTEGER_CST</code> indicates which
element of the array (indexed from zero) is being assigned to. A
<code>RANGE_EXPR</code> indicates an inclusive range of elements to
initialize. In both cases the <code>TREE_VALUE</code> is the corresponding
initializer. It is re-evaluated for each element of a
<code>RANGE_EXPR</code>. If the <code>TREE_PURPOSE</code> is <code>NULL_TREE</code>, then
the initializer is for the next available array element.
<p>In the front end, you should not depend on the fields appearing in any
particular order. However, in the middle end, fields must appear in
declaration order. You should not assume that all fields will be
represented. Unrepresented fields will be set to zero.
<br><dt><code>COMPOUND_LITERAL_EXPR</code><dd><a name="index-COMPOUND_005fLITERAL_005fEXPR_005fDECL_005fEXPR-2505"></a><a name="index-COMPOUND_005fLITERAL_005fEXPR_005fDECL-2506"></a>These nodes represent ISO C99 compound literals. The
<code>COMPOUND_LITERAL_EXPR_DECL_EXPR</code> is a <code>DECL_EXPR</code>
containing an anonymous <code>VAR_DECL</code> for
the unnamed object represented by the compound literal; the
<code>DECL_INITIAL</code> of that <code>VAR_DECL</code> is a <code>CONSTRUCTOR</code>
representing the brace-enclosed list of initializers in the compound
literal. That anonymous <code>VAR_DECL</code> can also be accessed directly
by the <code>COMPOUND_LITERAL_EXPR_DECL</code> macro.
<br><dt><code>SAVE_EXPR</code><dd>
A <code>SAVE_EXPR</code> represents an expression (possibly involving
side-effects) that is used more than once. The side-effects should
occur only the first time the expression is evaluated. Subsequent uses
should just reuse the computed value. The first operand to the
<code>SAVE_EXPR</code> is the expression to evaluate. The side-effects should
be executed where the <code>SAVE_EXPR</code> is first encountered in a
depth-first preorder traversal of the expression tree.
<br><dt><code>TARGET_EXPR</code><dd>A <code>TARGET_EXPR</code> represents a temporary object. The first operand
is a <code>VAR_DECL</code> for the temporary variable. The second operand is
the initializer for the temporary. The initializer is evaluated and,
if non-void, copied (bitwise) into the temporary. If the initializer
is void, that means that it will perform the initialization itself.
<p>Often, a <code>TARGET_EXPR</code> occurs on the right-hand side of an
assignment, or as the second operand to a comma-expression which is
itself the right-hand side of an assignment, etc. In this case, we say
that the <code>TARGET_EXPR</code> is “normal”; otherwise, we say it is
“orphaned”. For a normal <code>TARGET_EXPR</code> the temporary variable
should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.
<p>The third operand to the <code>TARGET_EXPR</code>, if present, is a
cleanup-expression (i.e., destructor call) for the temporary. If this
expression is orphaned, then this expression must be executed when the
statement containing this expression is complete. These cleanups must
always be executed in the order opposite to that in which they were
encountered. Note that if a temporary is created on one branch of a
conditional operator (i.e., in the second or third operand to a
<code>COND_EXPR</code>), the cleanup must be run only if that branch is
actually executed.
<br><dt><code>VA_ARG_EXPR</code><dd>This node is used to implement support for the C/C++ variable argument-list
mechanism. It represents expressions like <code>va_arg (ap, type)</code>.
Its <code>TREE_TYPE</code> yields the tree representation for <code>type</code> and
its sole argument yields the representation for <code>ap</code>.
</dl>
<div class="node">
<a name="Vectors"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a>,
Up: <a rel="up" accesskey="u" href="#Expression-trees">Expression trees</a>
</div>
<h4 class="subsection">11.6.4 Vectors</h4>
<p><a name="index-VEC_005fLSHIFT_005fEXPR-2507"></a><a name="index-VEC_005fRSHIFT_005fEXPR-2508"></a><a name="index-VEC_005fWIDEN_005fMULT_005fHI_005fEXPR-2509"></a><a name="index-VEC_005fWIDEN_005fMULT_005fLO_005fEXPR-2510"></a><a name="index-VEC_005fUNPACK_005fHI_005fEXPR-2511"></a><a name="index-VEC_005fUNPACK_005fLO_005fEXPR-2512"></a><a name="index-VEC_005fUNPACK_005fFLOAT_005fHI_005fEXPR-2513"></a><a name="index-VEC_005fUNPACK_005fFLOAT_005fLO_005fEXPR-2514"></a><a name="index-VEC_005fPACK_005fTRUNC_005fEXPR-2515"></a><a name="index-VEC_005fPACK_005fSAT_005fEXPR-2516"></a><a name="index-VEC_005fPACK_005fFIX_005fTRUNC_005fEXPR-2517"></a><a name="index-VEC_005fEXTRACT_005fEVEN_005fEXPR-2518"></a><a name="index-VEC_005fEXTRACT_005fODD_005fEXPR-2519"></a><a name="index-VEC_005fINTERLEAVE_005fHIGH_005fEXPR-2520"></a><a name="index-VEC_005fINTERLEAVE_005fLOW_005fEXPR-2521"></a>
<dl>
<dt><code>VEC_LSHIFT_EXPR</code><dt><code>VEC_RSHIFT_EXPR</code><dd>These nodes represent whole vector left and right shifts, respectively.
The first operand is the vector to shift; it will always be of vector type.
The second operand is an expression for the number of bits by which to
shift. Note that the result is undefined if the second operand is larger
than or equal to the first operand's type size.
<br><dt><code>VEC_WIDEN_MULT_HI_EXPR</code><dt><code>VEC_WIDEN_MULT_LO_EXPR</code><dd>These nodes represent widening vector multiplication of the high and low
parts of the two input vectors, respectively. Their operands are vectors
that contain the same number of elements (<code>N</code>) of the same integral type.
The result is a vector that contains half as many elements, of an integral type
whose size is twice as wide. In the case of <code>VEC_WIDEN_MULT_HI_EXPR</code> the
high <code>N/2</code> elements of the two vector are multiplied to produce the
vector of <code>N/2</code> products. In the case of <code>VEC_WIDEN_MULT_LO_EXPR</code> the
low <code>N/2</code> elements of the two vector are multiplied to produce the
vector of <code>N/2</code> products.
<br><dt><code>VEC_UNPACK_HI_EXPR</code><dt><code>VEC_UNPACK_LO_EXPR</code><dd>These nodes represent unpacking of the high and low parts of the input vector,
respectively. The single operand is a vector that contains <code>N</code> elements
of the same integral or floating point type. The result is a vector
that contains half as many elements, of an integral or floating point type
whose size is twice as wide. In the case of <code>VEC_UNPACK_HI_EXPR</code> the
high <code>N/2</code> elements of the vector are extracted and widened (promoted).
In the case of <code>VEC_UNPACK_LO_EXPR</code> the low <code>N/2</code> elements of the
vector are extracted and widened (promoted).
<br><dt><code>VEC_UNPACK_FLOAT_HI_EXPR</code><dt><code>VEC_UNPACK_FLOAT_LO_EXPR</code><dd>These nodes represent unpacking of the high and low parts of the input vector,
where the values are converted from fixed point to floating point. The
single operand is a vector that contains <code>N</code> elements of the same
integral type. The result is a vector that contains half as many elements
of a floating point type whose size is twice as wide. In the case of
<code>VEC_UNPACK_HI_EXPR</code> the high <code>N/2</code> elements of the vector are
extracted, converted and widened. In the case of <code>VEC_UNPACK_LO_EXPR</code>
the low <code>N/2</code> elements of the vector are extracted, converted and widened.
<br><dt><code>VEC_PACK_TRUNC_EXPR</code><dd>This node represents packing of truncated elements of the two input vectors
into the output vector. Input operands are vectors that contain the same
number of elements of the same integral or floating point type. The result
is a vector that contains twice as many elements of an integral or floating
point type whose size is half as wide. The elements of the two vectors are
demoted and merged (concatenated) to form the output vector.
<br><dt><code>VEC_PACK_SAT_EXPR</code><dd>This node represents packing of elements of the two input vectors into the
output vector using saturation. Input operands are vectors that contain
the same number of elements of the same integral type. The result is a
vector that contains twice as many elements of an integral type whose size
is half as wide. The elements of the two vectors are demoted and merged
(concatenated) to form the output vector.
<br><dt><code>VEC_PACK_FIX_TRUNC_EXPR</code><dd>This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from floating point
to fixed point. Input operands are vectors that contain the same number
of elements of a floating point type. The result is a vector that contains
twice as many elements of an integral type whose size is half as wide. The
elements of the two vectors are merged (concatenated) to form the output
vector.
<br><dt><code>VEC_EXTRACT_EVEN_EXPR</code><dt><code>VEC_EXTRACT_ODD_EXPR</code><dd>These nodes represent extracting of the even/odd elements of the two input
vectors, respectively. Their operands and result are vectors that contain the
same number of elements of the same type.
<br><dt><code>VEC_INTERLEAVE_HIGH_EXPR</code><dt><code>VEC_INTERLEAVE_LOW_EXPR</code><dd>These nodes represent merging and interleaving of the high/low elements of the
two input vectors, respectively. The operands and the result are vectors that
contain the same number of elements (<code>N</code>) of the same type.
In the case of <code>VEC_INTERLEAVE_HIGH_EXPR</code>, the high <code>N/2</code> elements of
the first input vector are interleaved with the high <code>N/2</code> elements of the
second input vector. In the case of <code>VEC_INTERLEAVE_LOW_EXPR</code>, the low
<code>N/2</code> elements of the first input vector are interleaved with the low
<code>N/2</code> elements of the second input vector.
</dl>
<!-- -->
<!-- Statements -->
<!-- -->
<div class="node">
<a name="Statements"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Functions">Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Expression-trees">Expression trees</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.7 Statements</h3>
<p><a name="index-Statements-2522"></a>
Most statements in GIMPLE are assignment statements, represented by
<code>GIMPLE_ASSIGN</code>. No other C expressions can appear at statement level;
a reference to a volatile object is converted into a
<code>GIMPLE_ASSIGN</code>.
<p>There are also several varieties of complex statements.
<ul class="menu">
<li><a accesskey="1" href="#Basic-Statements">Basic Statements</a>
<li><a accesskey="2" href="#Blocks">Blocks</a>
<li><a accesskey="3" href="#Statement-Sequences">Statement Sequences</a>
<li><a accesskey="4" href="#Empty-Statements">Empty Statements</a>
<li><a accesskey="5" href="#Jumps">Jumps</a>
<li><a accesskey="6" href="#Cleanups">Cleanups</a>
<li><a accesskey="7" href="#OpenMP">OpenMP</a>
</ul>
<div class="node">
<a name="Basic-Statements"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Blocks">Blocks</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.1 Basic Statements</h4>
<p><a name="index-Basic-Statements-2523"></a>
<dl>
<dt><code>ASM_EXPR</code><dd>
Used to represent an inline assembly statement. For an inline assembly
statement like:
<pre class="smallexample"> asm ("mov x, y");
</pre>
<p>The <code>ASM_STRING</code> macro will return a <code>STRING_CST</code> node for
<code>"mov x, y"</code>. If the original statement made use of the
extended-assembly syntax, then <code>ASM_OUTPUTS</code>,
<code>ASM_INPUTS</code>, and <code>ASM_CLOBBERS</code> will be the outputs, inputs,
and clobbers for the statement, represented as <code>STRING_CST</code> nodes.
The extended-assembly syntax looks like:
<pre class="smallexample"> asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
</pre>
<p>The first string is the <code>ASM_STRING</code>, containing the instruction
template. The next two strings are the output and inputs, respectively;
this statement has no clobbers. As this example indicates, “plain”
assembly statements are merely a special case of extended assembly
statements; they have no cv-qualifiers, outputs, inputs, or clobbers.
All of the strings will be <code>NUL</code>-terminated, and will contain no
embedded <code>NUL</code>-characters.
<p>If the assembly statement is declared <code>volatile</code>, or if the
statement was not an extended assembly statement, and is therefore
implicitly volatile, then the predicate <code>ASM_VOLATILE_P</code> will hold
of the <code>ASM_EXPR</code>.
<br><dt><code>DECL_EXPR</code><dd>
Used to represent a local declaration. The <code>DECL_EXPR_DECL</code> macro
can be used to obtain the entity declared. This declaration may be a
<code>LABEL_DECL</code>, indicating that the label declared is a local label.
(As an extension, GCC allows the declaration of labels with scope.) In
C, this declaration may be a <code>FUNCTION_DECL</code>, indicating the
use of the GCC nested function extension. For more information,
see <a href="#Functions">Functions</a>.
<br><dt><code>LABEL_EXPR</code><dd>
Used to represent a label. The <code>LABEL_DECL</code> declared by this
statement can be obtained with the <code>LABEL_EXPR_LABEL</code> macro. The
<code>IDENTIFIER_NODE</code> giving the name of the label can be obtained from
the <code>LABEL_DECL</code> with <code>DECL_NAME</code>.
<br><dt><code>GOTO_EXPR</code><dd>
Used to represent a <code>goto</code> statement. The <code>GOTO_DESTINATION</code> will
usually be a <code>LABEL_DECL</code>. However, if the “computed goto” extension
has been used, the <code>GOTO_DESTINATION</code> will be an arbitrary expression
indicating the destination. This expression will always have pointer type.
<br><dt><code>RETURN_EXPR</code><dd>
Used to represent a <code>return</code> statement. Operand 0 represents the
value to return. It should either be the <code>RESULT_DECL</code> for the
containing function, or a <code>MODIFY_EXPR</code> or <code>INIT_EXPR</code>
setting the function's <code>RESULT_DECL</code>. It will be
<code>NULL_TREE</code> if the statement was just
<pre class="smallexample"> return;
</pre>
<br><dt><code>LOOP_EXPR</code><dd>These nodes represent “infinite” loops. The <code>LOOP_EXPR_BODY</code>
represents the body of the loop. It should be executed forever, unless
an <code>EXIT_EXPR</code> is encountered.
<br><dt><code>EXIT_EXPR</code><dd>These nodes represent conditional exits from the nearest enclosing
<code>LOOP_EXPR</code>. The single operand is the condition; if it is
nonzero, then the loop should be exited. An <code>EXIT_EXPR</code> will only
appear within a <code>LOOP_EXPR</code>.
<br><dt><code>SWITCH_STMT</code><dd>
Used to represent a <code>switch</code> statement. The <code>SWITCH_STMT_COND</code>
is the expression on which the switch is occurring. See the documentation
for an <code>IF_STMT</code> for more information on the representation used
for the condition. The <code>SWITCH_STMT_BODY</code> is the body of the switch
statement. The <code>SWITCH_STMT_TYPE</code> is the original type of switch
expression as given in the source, before any compiler conversions.
<br><dt><code>CASE_LABEL_EXPR</code><dd>
Use to represent a <code>case</code> label, range of <code>case</code> labels, or a
<code>default</code> label. If <code>CASE_LOW</code> is <code>NULL_TREE</code>, then this is a
<code>default</code> label. Otherwise, if <code>CASE_HIGH</code> is <code>NULL_TREE</code>, then
this is an ordinary <code>case</code> label. In this case, <code>CASE_LOW</code> is
an expression giving the value of the label. Both <code>CASE_LOW</code> and
<code>CASE_HIGH</code> are <code>INTEGER_CST</code> nodes. These values will have
the same type as the condition expression in the switch statement.
<p>Otherwise, if both <code>CASE_LOW</code> and <code>CASE_HIGH</code> are defined, the
statement is a range of case labels. Such statements originate with the
extension that allows users to write things of the form:
<pre class="smallexample"> case 2 ... 5:
</pre>
<p>The first value will be <code>CASE_LOW</code>, while the second will be
<code>CASE_HIGH</code>.
</dl>
<div class="node">
<a name="Blocks"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Statement-Sequences">Statement Sequences</a>,
Previous: <a rel="previous" accesskey="p" href="#Basic-Statements">Basic Statements</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.2 Blocks</h4>
<p><a name="index-Blocks-2524"></a>
Block scopes and the variables they declare in GENERIC are
expressed using the <code>BIND_EXPR</code> code, which in previous
versions of GCC was primarily used for the C statement-expression
extension.
<p>Variables in a block are collected into <code>BIND_EXPR_VARS</code> in
declaration order through their <code>TREE_CHAIN</code> field. Any runtime
initialization is moved out of <code>DECL_INITIAL</code> and into a
statement in the controlled block. When gimplifying from C or C++,
this initialization replaces the <code>DECL_STMT</code>. These variables
will never require cleanups. The scope of these variables is just the
body
<p>Variable-length arrays (VLAs) complicate this process, as their
size often refers to variables initialized earlier in the block.
To handle this, we currently split the block at that point, and
move the VLA into a new, inner <code>BIND_EXPR</code>. This strategy
may change in the future.
<p>A C++ program will usually contain more <code>BIND_EXPR</code>s than
there are syntactic blocks in the source code, since several C++
constructs have implicit scopes associated with them. On the
other hand, although the C++ front end uses pseudo-scopes to
handle cleanups for objects with destructors, these don't
translate into the GIMPLE form; multiple declarations at the same
level use the same <code>BIND_EXPR</code>.
<div class="node">
<a name="Statement-Sequences"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Empty-Statements">Empty Statements</a>,
Previous: <a rel="previous" accesskey="p" href="#Blocks">Blocks</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.3 Statement Sequences</h4>
<p><a name="index-Statement-Sequences-2525"></a>
Multiple statements at the same nesting level are collected into
a <code>STATEMENT_LIST</code>. Statement lists are modified and
traversed using the interface in ‘<samp><span class="samp">tree-iterator.h</span></samp>’.
<div class="node">
<a name="Empty-Statements"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Jumps">Jumps</a>,
Previous: <a rel="previous" accesskey="p" href="#Statement-Sequences">Statement Sequences</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.4 Empty Statements</h4>
<p><a name="index-Empty-Statements-2526"></a>
Whenever possible, statements with no effect are discarded. But
if they are nested within another construct which cannot be
discarded for some reason, they are instead replaced with an
empty statement, generated by <code>build_empty_stmt</code>.
Initially, all empty statements were shared, after the pattern of
the Java front end, but this caused a lot of trouble in practice.
<p>An empty statement is represented as <code>(void)0</code>.
<div class="node">
<a name="Jumps"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Cleanups">Cleanups</a>,
Previous: <a rel="previous" accesskey="p" href="#Empty-Statements">Empty Statements</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.5 Jumps</h4>
<p><a name="index-Jumps-2527"></a>
Other jumps are expressed by either <code>GOTO_EXPR</code> or
<code>RETURN_EXPR</code>.
<p>The operand of a <code>GOTO_EXPR</code> must be either a label or a
variable containing the address to jump to.
<p>The operand of a <code>RETURN_EXPR</code> is either <code>NULL_TREE</code>,
<code>RESULT_DECL</code>, or a <code>MODIFY_EXPR</code> which sets the return
value. It would be nice to move the <code>MODIFY_EXPR</code> into a
separate statement, but the special return semantics in
<code>expand_return</code> make that difficult. It may still happen in
the future, perhaps by moving most of that logic into
<code>expand_assignment</code>.
<div class="node">
<a name="Cleanups"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#OpenMP">OpenMP</a>,
Previous: <a rel="previous" accesskey="p" href="#Jumps">Jumps</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.6 Cleanups</h4>
<p><a name="index-Cleanups-2528"></a>
Destructors for local C++ objects and similar dynamic cleanups are
represented in GIMPLE by a <code>TRY_FINALLY_EXPR</code>.
<code>TRY_FINALLY_EXPR</code> has two operands, both of which are a sequence
of statements to execute. The first sequence is executed. When it
completes the second sequence is executed.
<p>The first sequence may complete in the following ways:
<ol type=1 start=1>
<li>Execute the last statement in the sequence and fall off the
end.
<li>Execute a goto statement (<code>GOTO_EXPR</code>) to an ordinary
label outside the sequence.
<li>Execute a return statement (<code>RETURN_EXPR</code>).
<li>Throw an exception. This is currently not explicitly represented in
GIMPLE.
</ol>
<p>The second sequence is not executed if the first sequence completes by
calling <code>setjmp</code> or <code>exit</code> or any other function that does
not return. The second sequence is also not executed if the first
sequence completes via a non-local goto or a computed goto (in general
the compiler does not know whether such a goto statement exits the
first sequence or not, so we assume that it doesn't).
<p>After the second sequence is executed, if it completes normally by
falling off the end, execution continues wherever the first sequence
would have continued, by falling off the end, or doing a goto, etc.
<p><code>TRY_FINALLY_EXPR</code> complicates the flow graph, since the cleanup
needs to appear on every edge out of the controlled block; this
reduces the freedom to move code across these edges. Therefore, the
EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each
edge. Rethrowing the exception is represented using <code>RESX_EXPR</code>.
<div class="node">
<a name="OpenMP"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Cleanups">Cleanups</a>,
Up: <a rel="up" accesskey="u" href="#Statements">Statements</a>
</div>
<h4 class="subsection">11.7.7 OpenMP</h4>
<p><a name="index-OMP_005fPARALLEL-2529"></a><a name="index-OMP_005fFOR-2530"></a><a name="index-OMP_005fSECTIONS-2531"></a><a name="index-OMP_005fSINGLE-2532"></a><a name="index-OMP_005fSECTION-2533"></a><a name="index-OMP_005fMASTER-2534"></a><a name="index-OMP_005fORDERED-2535"></a><a name="index-OMP_005fCRITICAL-2536"></a><a name="index-OMP_005fRETURN-2537"></a><a name="index-OMP_005fCONTINUE-2538"></a><a name="index-OMP_005fATOMIC-2539"></a><a name="index-OMP_005fCLAUSE-2540"></a>
All the statements starting with <code>OMP_</code> represent directives and
clauses used by the OpenMP API <a href="http://www.openmp.org/">http://www.openmp.org/</a><!-- /@w -->.
<dl>
<dt><code>OMP_PARALLEL</code><dd>
Represents <code>#pragma omp parallel [clause1 ... clauseN]</code>. It
has four operands:
<p>Operand <code>OMP_PARALLEL_BODY</code> is valid while in GENERIC and
High GIMPLE forms. It contains the body of code to be executed
by all the threads. During GIMPLE lowering, this operand becomes
<code>NULL</code> and the body is emitted linearly after
<code>OMP_PARALLEL</code>.
<p>Operand <code>OMP_PARALLEL_CLAUSES</code> is the list of clauses
associated with the directive.
<p>Operand <code>OMP_PARALLEL_FN</code> is created by
<code>pass_lower_omp</code>, it contains the <code>FUNCTION_DECL</code>
for the function that will contain the body of the parallel
region.
<p>Operand <code>OMP_PARALLEL_DATA_ARG</code> is also created by
<code>pass_lower_omp</code>. If there are shared variables to be
communicated to the children threads, this operand will contain
the <code>VAR_DECL</code> that contains all the shared values and
variables.
<br><dt><code>OMP_FOR</code><dd>
Represents <code>#pragma omp for [clause1 ... clauseN]</code>. It
has 5 operands:
<p>Operand <code>OMP_FOR_BODY</code> contains the loop body.
<p>Operand <code>OMP_FOR_CLAUSES</code> is the list of clauses
associated with the directive.
<p>Operand <code>OMP_FOR_INIT</code> is the loop initialization code of
the form <code>VAR = N1</code>.
<p>Operand <code>OMP_FOR_COND</code> is the loop conditional expression
of the form <code>VAR {<,>,<=,>=} N2</code>.
<p>Operand <code>OMP_FOR_INCR</code> is the loop index increment of the
form <code>VAR {+=,-=} INCR</code>.
<p>Operand <code>OMP_FOR_PRE_BODY</code> contains side-effect code from
operands <code>OMP_FOR_INIT</code>, <code>OMP_FOR_COND</code> and
<code>OMP_FOR_INC</code>. These side-effects are part of the
<code>OMP_FOR</code> block but must be evaluated before the start of
loop body.
<p>The loop index variable <code>VAR</code> must be a signed integer variable,
which is implicitly private to each thread. Bounds
<code>N1</code> and <code>N2</code> and the increment expression
<code>INCR</code> are required to be loop invariant integer
expressions that are evaluated without any synchronization. The
evaluation order, frequency of evaluation and side-effects are
unspecified by the standard.
<br><dt><code>OMP_SECTIONS</code><dd>
Represents <code>#pragma omp sections [clause1 ... clauseN]</code>.
<p>Operand <code>OMP_SECTIONS_BODY</code> contains the sections body,
which in turn contains a set of <code>OMP_SECTION</code> nodes for
each of the concurrent sections delimited by <code>#pragma omp
section</code>.
<p>Operand <code>OMP_SECTIONS_CLAUSES</code> is the list of clauses
associated with the directive.
<br><dt><code>OMP_SECTION</code><dd>
Section delimiter for <code>OMP_SECTIONS</code>.
<br><dt><code>OMP_SINGLE</code><dd>
Represents <code>#pragma omp single</code>.
<p>Operand <code>OMP_SINGLE_BODY</code> contains the body of code to be
executed by a single thread.
<p>Operand <code>OMP_SINGLE_CLAUSES</code> is the list of clauses
associated with the directive.
<br><dt><code>OMP_MASTER</code><dd>
Represents <code>#pragma omp master</code>.
<p>Operand <code>OMP_MASTER_BODY</code> contains the body of code to be
executed by the master thread.
<br><dt><code>OMP_ORDERED</code><dd>
Represents <code>#pragma omp ordered</code>.
<p>Operand <code>OMP_ORDERED_BODY</code> contains the body of code to be
executed in the sequential order dictated by the loop index
variable.
<br><dt><code>OMP_CRITICAL</code><dd>
Represents <code>#pragma omp critical [name]</code>.
<p>Operand <code>OMP_CRITICAL_BODY</code> is the critical section.
<p>Operand <code>OMP_CRITICAL_NAME</code> is an optional identifier to
label the critical section.
<br><dt><code>OMP_RETURN</code><dd>
This does not represent any OpenMP directive, it is an artificial
marker to indicate the end of the body of an OpenMP. It is used
by the flow graph (<code>tree-cfg.c</code>) and OpenMP region
building code (<code>omp-low.c</code>).
<br><dt><code>OMP_CONTINUE</code><dd>
Similarly, this instruction does not represent an OpenMP
directive, it is used by <code>OMP_FOR</code> and
<code>OMP_SECTIONS</code> to mark the place where the code needs to
loop to the next iteration (in the case of <code>OMP_FOR</code>) or
the next section (in the case of <code>OMP_SECTIONS</code>).
<p>In some cases, <code>OMP_CONTINUE</code> is placed right before
<code>OMP_RETURN</code>. But if there are cleanups that need to
occur right after the looping body, it will be emitted between
<code>OMP_CONTINUE</code> and <code>OMP_RETURN</code>.
<br><dt><code>OMP_ATOMIC</code><dd>
Represents <code>#pragma omp atomic</code>.
<p>Operand 0 is the address at which the atomic operation is to be
performed.
<p>Operand 1 is the expression to evaluate. The gimplifier tries
three alternative code generation strategies. Whenever possible,
an atomic update built-in is used. If that fails, a
compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.
<br><dt><code>OMP_CLAUSE</code><dd>
Represents clauses associated with one of the <code>OMP_</code> directives.
Clauses are represented by separate sub-codes defined in
<samp><span class="file">tree.h</span></samp>. Clauses codes can be one of:
<code>OMP_CLAUSE_PRIVATE</code>, <code>OMP_CLAUSE_SHARED</code>,
<code>OMP_CLAUSE_FIRSTPRIVATE</code>,
<code>OMP_CLAUSE_LASTPRIVATE</code>, <code>OMP_CLAUSE_COPYIN</code>,
<code>OMP_CLAUSE_COPYPRIVATE</code>, <code>OMP_CLAUSE_IF</code>,
<code>OMP_CLAUSE_NUM_THREADS</code>, <code>OMP_CLAUSE_SCHEDULE</code>,
<code>OMP_CLAUSE_NOWAIT</code>, <code>OMP_CLAUSE_ORDERED</code>,
<code>OMP_CLAUSE_DEFAULT</code>, and <code>OMP_CLAUSE_REDUCTION</code>. Each code
represents the corresponding OpenMP clause.
<p>Clauses associated with the same directive are chained together
via <code>OMP_CLAUSE_CHAIN</code>. Those clauses that accept a list
of variables are restricted to exactly one, accessed with
<code>OMP_CLAUSE_VAR</code>. Therefore, multiple variables under the
same clause <code>C</code> need to be represented as multiple <code>C</code> clauses
chained together. This facilitates adding new clauses during
compilation.
</dl>
<!-- -->
<!-- Functions -->
<!-- -->
<div class="node">
<a name="Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Language_002ddependent-trees">Language-dependent trees</a>,
Previous: <a rel="previous" accesskey="p" href="#Statements">Statements</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.8 Functions</h3>
<p><a name="index-function-2541"></a><a name="index-FUNCTION_005fDECL-2542"></a>
A function is represented by a <code>FUNCTION_DECL</code> node. It stores
the basic pieces of the function such as body, parameters, and return
type as well as information on the surrounding context, visibility,
and linkage.
<ul class="menu">
<li><a accesskey="1" href="#Function-Basics">Function Basics</a>: Function names, body, and parameters.
<li><a accesskey="2" href="#Function-Properties">Function Properties</a>: Context, linkage, etc.
</ul>
<!-- -->
<!-- Function Basics -->
<!-- -->
<div class="node">
<a name="Function-Basics"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Properties">Function Properties</a>,
Up: <a rel="up" accesskey="u" href="#Functions">Functions</a>
</div>
<h4 class="subsection">11.8.1 Function Basics</h4>
<p><a name="index-DECL_005fNAME-2543"></a><a name="index-DECL_005fASSEMBLER_005fNAME-2544"></a><a name="index-TREE_005fPUBLIC-2545"></a><a name="index-DECL_005fARTIFICIAL-2546"></a><a name="index-DECL_005fFUNCTION_005fSPECIFIC_005fTARGET-2547"></a><a name="index-DECL_005fFUNCTION_005fSPECIFIC_005fOPTIMIZATION-2548"></a>
A function has four core parts: the name, the parameters, the result,
and the body. The following macros and functions access these parts
of a <code>FUNCTION_DECL</code> as well as other basic features:
<dl>
<dt><code>DECL_NAME</code><a name="index-DECL_005fNAME-2549"></a><dd>This macro returns the unqualified name of the function, as an
<code>IDENTIFIER_NODE</code>. For an instantiation of a function template,
the <code>DECL_NAME</code> is the unqualified name of the template, not
something like <code>f<int></code>. The value of <code>DECL_NAME</code> is
undefined when used on a constructor, destructor, overloaded operator,
or type-conversion operator, or any function that is implicitly
generated by the compiler. See below for macros that can be used to
distinguish these cases.
<br><dt><code>DECL_ASSEMBLER_NAME</code><a name="index-DECL_005fASSEMBLER_005fNAME-2550"></a><dd>This macro returns the mangled name of the function, also an
<code>IDENTIFIER_NODE</code>. This name does not contain leading underscores
on systems that prefix all identifiers with underscores. The mangled
name is computed in the same way on all platforms; if special processing
is required to deal with the object file format used on a particular
platform, it is the responsibility of the back end to perform those
modifications. (Of course, the back end should not modify
<code>DECL_ASSEMBLER_NAME</code> itself.)
<p>Using <code>DECL_ASSEMBLER_NAME</code> will cause additional memory to be
allocated (for the mangled name of the entity) so it should be used
only when emitting assembly code. It should not be used within the
optimizers to determine whether or not two declarations are the same,
even though some of the existing optimizers do use it in that way.
These uses will be removed over time.
<br><dt><code>DECL_ARGUMENTS</code><a name="index-DECL_005fARGUMENTS-2551"></a><dd>This macro returns the <code>PARM_DECL</code> for the first argument to the
function. Subsequent <code>PARM_DECL</code> nodes can be obtained by
following the <code>TREE_CHAIN</code> links.
<br><dt><code>DECL_RESULT</code><a name="index-DECL_005fRESULT-2552"></a><dd>This macro returns the <code>RESULT_DECL</code> for the function.
<br><dt><code>DECL_SAVED_TREE</code><a name="index-DECL_005fSAVED_005fTREE-2553"></a><dd>This macro returns the complete body of the function.
<br><dt><code>TREE_TYPE</code><a name="index-TREE_005fTYPE-2554"></a><dd>This macro returns the <code>FUNCTION_TYPE</code> or <code>METHOD_TYPE</code> for
the function.
<br><dt><code>DECL_INITIAL</code><a name="index-DECL_005fINITIAL-2555"></a><dd>A function that has a definition in the current translation unit will
have a non-<code>NULL</code> <code>DECL_INITIAL</code>. However, back ends should not make
use of the particular value given by <code>DECL_INITIAL</code>.
<p>It should contain a tree of <code>BLOCK</code> nodes that mirrors the scopes
that variables are bound in the function. Each block contains a list
of decls declared in a basic block, a pointer to a chain of blocks at
the next lower scope level, then a pointer to the next block at the
same level and a backpointer to the parent <code>BLOCK</code> or
<code>FUNCTION_DECL</code>. So given a function as follows:
<pre class="smallexample"> void foo()
{
int a;
{
int b;
}
int c;
}
</pre>
<p>you would get the following:
<pre class="smallexample"> tree foo = FUNCTION_DECL;
tree decl_a = VAR_DECL;
tree decl_b = VAR_DECL;
tree decl_c = VAR_DECL;
tree block_a = BLOCK;
tree block_b = BLOCK;
tree block_c = BLOCK;
BLOCK_VARS(block_a) = decl_a;
BLOCK_SUBBLOCKS(block_a) = block_b;
BLOCK_CHAIN(block_a) = block_c;
BLOCK_SUPERCONTEXT(block_a) = foo;
BLOCK_VARS(block_b) = decl_b;
BLOCK_SUPERCONTEXT(block_b) = block_a;
BLOCK_VARS(block_c) = decl_c;
BLOCK_SUPERCONTEXT(block_c) = foo;
DECL_INITIAL(foo) = block_a;
</pre>
</dl>
<!-- -->
<!-- Function Properties -->
<!-- -->
<div class="node">
<a name="Function-Properties"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Function-Basics">Function Basics</a>,
Up: <a rel="up" accesskey="u" href="#Functions">Functions</a>
</div>
<h4 class="subsection">11.8.2 Function Properties</h4>
<p><a name="index-function-properties-2556"></a><a name="index-statements-2557"></a>
To determine the scope of a function, you can use the
<code>DECL_CONTEXT</code> macro. This macro will return the class
(either a <code>RECORD_TYPE</code> or a <code>UNION_TYPE</code>) or namespace (a
<code>NAMESPACE_DECL</code>) of which the function is a member. For a virtual
function, this macro returns the class in which the function was
actually defined, not the base class in which the virtual declaration
occurred.
<p>In C, the <code>DECL_CONTEXT</code> for a function maybe another function.
This representation indicates that the GNU nested function extension
is in use. For details on the semantics of nested functions, see the
GCC Manual. The nested function can refer to local variables in its
containing function. Such references are not explicitly marked in the
tree structure; back ends must look at the <code>DECL_CONTEXT</code> for the
referenced <code>VAR_DECL</code>. If the <code>DECL_CONTEXT</code> for the
referenced <code>VAR_DECL</code> is not the same as the function currently
being processed, and neither <code>DECL_EXTERNAL</code> nor
<code>TREE_STATIC</code> hold, then the reference is to a local variable in
a containing function, and the back end must take appropriate action.
<dl>
<dt><code>DECL_EXTERNAL</code><a name="index-DECL_005fEXTERNAL-2558"></a><dd>This predicate holds if the function is undefined.
<br><dt><code>TREE_PUBLIC</code><a name="index-TREE_005fPUBLIC-2559"></a><dd>This predicate holds if the function has external linkage.
<br><dt><code>TREE_STATIC</code><a name="index-TREE_005fSTATIC-2560"></a><dd>This predicate holds if the function has been defined.
<br><dt><code>TREE_THIS_VOLATILE</code><a name="index-TREE_005fTHIS_005fVOLATILE-2561"></a><dd>This predicate holds if the function does not return normally.
<br><dt><code>TREE_READONLY</code><a name="index-TREE_005fREADONLY-2562"></a><dd>This predicate holds if the function can only read its arguments.
<br><dt><code>DECL_PURE_P</code><a name="index-DECL_005fPURE_005fP-2563"></a><dd>This predicate holds if the function can only read its arguments, but
may also read global memory.
<br><dt><code>DECL_VIRTUAL_P</code><a name="index-DECL_005fVIRTUAL_005fP-2564"></a><dd>This predicate holds if the function is virtual.
<br><dt><code>DECL_ARTIFICIAL</code><a name="index-DECL_005fARTIFICIAL-2565"></a><dd>This macro holds if the function was implicitly generated by the
compiler, rather than explicitly declared. In addition to implicitly
generated class member functions, this macro holds for the special
functions created to implement static initialization and destruction, to
compute run-time type information, and so forth.
<br><dt><code>DECL_FUNCTION_SPECIFIC_TARGET</code><a name="index-DECL_005fFUNCTION_005fSPECIFIC_005fTARGET-2566"></a><dd>This macro returns a tree node that holds the target options that are
to be used to compile this particular function or <code>NULL_TREE</code> if
the function is to be compiled with the target options specified on
the command line.
<br><dt><code>DECL_FUNCTION_SPECIFIC_OPTIMIZATION</code><a name="index-DECL_005fFUNCTION_005fSPECIFIC_005fOPTIMIZATION-2567"></a><dd>This macro returns a tree node that holds the optimization options
that are to be used to compile this particular function or
<code>NULL_TREE</code> if the function is to be compiled with the
optimization options specified on the command line.
</dl>
<!-- -->
<!-- Language-dependent trees -->
<!-- -->
<div class="node">
<a name="Language-dependent-trees"></a>
<a name="Language_002ddependent-trees"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>,
Previous: <a rel="previous" accesskey="p" href="#Functions">Functions</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.9 Language-dependent trees</h3>
<p><a name="index-language_002ddependent-trees-2568"></a>
Front ends may wish to keep some state associated with various GENERIC
trees while parsing. To support this, trees provide a set of flags
that may be used by the front end. They are accessed using
<code>TREE_LANG_FLAG_n</code> where ‘<samp><span class="samp">n</span></samp>’ is currently 0 through 6.
<p>If necessary, a front end can use some language-dependent tree
codes in its GENERIC representation, so long as it provides a
hook for converting them to GIMPLE and doesn't expect them to
work with any (hypothetical) optimizers that run before the
conversion to GIMPLE. The intermediate representation used while
parsing C and C++ looks very little like GENERIC, but the C and
C++ gimplifier hooks are perfectly happy to take it as input and
spit out GIMPLE.
<div class="node">
<a name="C-and-C++-Trees"></a>
<a name="C-and-C_002b_002b-Trees"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Java-Trees">Java Trees</a>,
Previous: <a rel="previous" accesskey="p" href="#Language_002ddependent-trees">Language-dependent trees</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.10 C and C++ Trees</h3>
<p>This section documents the internal representation used by GCC to
represent C and C++ source programs. When presented with a C or C++
source program, GCC parses the program, performs semantic analysis
(including the generation of error messages), and then produces the
internal representation described here. This representation contains a
complete representation for the entire translation unit provided as
input to the front end. This representation is then typically processed
by a code-generator in order to produce machine code, but could also be
used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing
the ability to process C or C++ code.
<p>This section explains the internal representation. In particular, it
documents the internal representation for C and C++ source
constructs, and the macros, functions, and variables that can be used to
access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one
construct used in C that does not appear in the C++ front end and that
is the GNU “nested function” extension. Many of the macros documented
here do not apply in C because the corresponding language constructs do
not appear in C.
<p>The C and C++ front ends generate a mix of GENERIC trees and ones
specific to C and C++. These language-specific trees are higher-level
constructs than the ones in GENERIC to make the parser's job easier.
This section describes those trees that aren't part of GENERIC as well
as aspects of GENERIC trees that are treated in a language-specific
manner.
<p>If you are developing a “back end”, be it is a code-generator or some
other tool, that uses this representation, you may occasionally find
that you need to ask questions not easily answered by the functions and
macros available here. If that situation occurs, it is quite likely
that GCC already supports the functionality you desire, but that the
interface is simply not documented here. In that case, you should ask
the GCC maintainers (via mail to <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>) about
documenting the functionality you require. Similarly, if you find
yourself writing functions that do not deal directly with your back end,
but instead might be useful to other people using the GCC front end, you
should submit your patches for inclusion in GCC.
<ul class="menu">
<li><a accesskey="1" href="#Types-for-C_002b_002b">Types for C++</a>: Fundamental and aggregate types.
<li><a accesskey="2" href="#Namespaces">Namespaces</a>: Namespaces.
<li><a accesskey="3" href="#Classes">Classes</a>: Classes.
<li><a accesskey="4" href="#Functions-for-C_002b_002b">Functions for C++</a>: Overloading and accessors for C++.
<li><a accesskey="5" href="#Statements-for-C_002b_002b">Statements for C++</a>: Statements specific to C and C++.
<li><a accesskey="6" href="#C_002b_002b-Expressions">C++ Expressions</a>: From <code>typeid</code> to <code>throw</code>.
</ul>
<div class="node">
<a name="Types-for-C++"></a>
<a name="Types-for-C_002b_002b"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Namespaces">Namespaces</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.1 Types for C++</h4>
<p><a name="index-UNKNOWN_005fTYPE-2569"></a><a name="index-TYPENAME_005fTYPE-2570"></a><a name="index-TYPEOF_005fTYPE-2571"></a><a name="index-CP_005fTYPE_005fQUALS-2572"></a><a name="index-TYPE_005fUNQUALIFIED-2573"></a><a name="index-TYPE_005fQUAL_005fCONST-2574"></a><a name="index-TYPE_005fQUAL_005fVOLATILE-2575"></a><a name="index-TYPE_005fQUAL_005fRESTRICT-2576"></a><a name="index-TYPE_005fMAIN_005fVARIANT-2577"></a><a name="index-qualified-type-2578"></a><a name="index-TYPE_005fSIZE-2579"></a><a name="index-TYPE_005fALIGN-2580"></a><a name="index-TYPE_005fPRECISION-2581"></a><a name="index-TYPE_005fARG_005fTYPES-2582"></a><a name="index-TYPE_005fMETHOD_005fBASETYPE-2583"></a><a name="index-TYPE_005fPTRMEM_005fP-2584"></a><a name="index-TYPE_005fOFFSET_005fBASETYPE-2585"></a><a name="index-TREE_005fTYPE-2586"></a><a name="index-TYPE_005fCONTEXT-2587"></a><a name="index-TYPE_005fNAME-2588"></a><a name="index-TYPENAME_005fTYPE_005fFULLNAME-2589"></a><a name="index-TYPE_005fFIELDS-2590"></a><a name="index-TYPE_005fPTROBV_005fP-2591"></a>
In C++, an array type is not qualified; rather the type of the array
elements is qualified. This situation is reflected in the intermediate
representation. The macros described here will always examine the
qualification of the underlying element type when applied to an array
type. (If the element type is itself an array, then the recursion
continues until a non-array type is found, and the qualification of this
type is examined.) So, for example, <code>CP_TYPE_CONST_P</code> will hold of
the type <code>const int ()[7]</code>, denoting an array of seven <code>int</code>s.
<p>The following functions and macros deal with cv-qualification of types:
<dl>
<dt><code>CP_TYPE_QUALS</code><a name="index-CP_005fTYPE_005fQUALS-2592"></a><dd>This macro returns the set of type qualifiers applied to this type.
This value is <code>TYPE_UNQUALIFIED</code> if no qualifiers have been
applied. The <code>TYPE_QUAL_CONST</code> bit is set if the type is
<code>const</code>-qualified. The <code>TYPE_QUAL_VOLATILE</code> bit is set if the
type is <code>volatile</code>-qualified. The <code>TYPE_QUAL_RESTRICT</code> bit is
set if the type is <code>restrict</code>-qualified.
<br><dt><code>CP_TYPE_CONST_P</code><a name="index-CP_005fTYPE_005fCONST_005fP-2593"></a><dd>This macro holds if the type is <code>const</code>-qualified.
<br><dt><code>CP_TYPE_VOLATILE_P</code><a name="index-CP_005fTYPE_005fVOLATILE_005fP-2594"></a><dd>This macro holds if the type is <code>volatile</code>-qualified.
<br><dt><code>CP_TYPE_RESTRICT_P</code><a name="index-CP_005fTYPE_005fRESTRICT_005fP-2595"></a><dd>This macro holds if the type is <code>restrict</code>-qualified.
<br><dt><code>CP_TYPE_CONST_NON_VOLATILE_P</code><a name="index-CP_005fTYPE_005fCONST_005fNON_005fVOLATILE_005fP-2596"></a><dd>This predicate holds for a type that is <code>const</code>-qualified, but
<em>not</em> <code>volatile</code>-qualified; other cv-qualifiers are ignored as
well: only the <code>const</code>-ness is tested.
</dl>
<p>A few other macros and functions are usable with all types:
<dl>
<dt><code>TYPE_SIZE</code><a name="index-TYPE_005fSIZE-2597"></a><dd>The number of bits required to represent the type, represented as an
<code>INTEGER_CST</code>. For an incomplete type, <code>TYPE_SIZE</code> will be
<code>NULL_TREE</code>.
<br><dt><code>TYPE_ALIGN</code><a name="index-TYPE_005fALIGN-2598"></a><dd>The alignment of the type, in bits, represented as an <code>int</code>.
<br><dt><code>TYPE_NAME</code><a name="index-TYPE_005fNAME-2599"></a><dd>This macro returns a declaration (in the form of a <code>TYPE_DECL</code>) for
the type. (Note this macro does <em>not</em> return an
<code>IDENTIFIER_NODE</code>, as you might expect, given its name!) You can
look at the <code>DECL_NAME</code> of the <code>TYPE_DECL</code> to obtain the
actual name of the type. The <code>TYPE_NAME</code> will be <code>NULL_TREE</code>
for a type that is not a built-in type, the result of a typedef, or a
named class type.
<br><dt><code>CP_INTEGRAL_TYPE</code><a name="index-CP_005fINTEGRAL_005fTYPE-2600"></a><dd>This predicate holds if the type is an integral type. Notice that in
C++, enumerations are <em>not</em> integral types.
<br><dt><code>ARITHMETIC_TYPE_P</code><a name="index-ARITHMETIC_005fTYPE_005fP-2601"></a><dd>This predicate holds if the type is an integral type (in the C++ sense)
or a floating point type.
<br><dt><code>CLASS_TYPE_P</code><a name="index-CLASS_005fTYPE_005fP-2602"></a><dd>This predicate holds for a class-type.
<br><dt><code>TYPE_BUILT_IN</code><a name="index-TYPE_005fBUILT_005fIN-2603"></a><dd>This predicate holds for a built-in type.
<br><dt><code>TYPE_PTRMEM_P</code><a name="index-TYPE_005fPTRMEM_005fP-2604"></a><dd>This predicate holds if the type is a pointer to data member.
<br><dt><code>TYPE_PTR_P</code><a name="index-TYPE_005fPTR_005fP-2605"></a><dd>This predicate holds if the type is a pointer type, and the pointee is
not a data member.
<br><dt><code>TYPE_PTRFN_P</code><a name="index-TYPE_005fPTRFN_005fP-2606"></a><dd>This predicate holds for a pointer to function type.
<br><dt><code>TYPE_PTROB_P</code><a name="index-TYPE_005fPTROB_005fP-2607"></a><dd>This predicate holds for a pointer to object type. Note however that it
does not hold for the generic pointer to object type <code>void *</code>. You
may use <code>TYPE_PTROBV_P</code> to test for a pointer to object type as
well as <code>void *</code>.
</dl>
<p>The table below describes types specific to C and C++ as well as
language-dependent info about GENERIC types.
<dl>
<dt><code>POINTER_TYPE</code><dd>Used to represent pointer types, and pointer to data member types. If
<code>TREE_TYPE</code>
is a pointer to data member type, then <code>TYPE_PTRMEM_P</code> will hold.
For a pointer to data member type of the form ‘<samp><span class="samp">T X::*</span></samp>’,
<code>TYPE_PTRMEM_CLASS_TYPE</code> will be the type <code>X</code>, while
<code>TYPE_PTRMEM_POINTED_TO_TYPE</code> will be the type <code>T</code>.
<br><dt><code>RECORD_TYPE</code><dd>Used to represent <code>struct</code> and <code>class</code> types in C and C++. If
<code>TYPE_PTRMEMFUNC_P</code> holds, then this type is a pointer-to-member
type. In that case, the <code>TYPE_PTRMEMFUNC_FN_TYPE</code> is a
<code>POINTER_TYPE</code> pointing to a <code>METHOD_TYPE</code>. The
<code>METHOD_TYPE</code> is the type of a function pointed to by the
pointer-to-member function. If <code>TYPE_PTRMEMFUNC_P</code> does not hold,
this type is a class type. For more information, see <a href="#Classes">Classes</a>.
<br><dt><code>UNKNOWN_TYPE</code><dd>This node is used to represent a type the knowledge of which is
insufficient for a sound processing.
<br><dt><code>TYPENAME_TYPE</code><dd>Used to represent a construct of the form <code>typename T::A</code>. The
<code>TYPE_CONTEXT</code> is <code>T</code>; the <code>TYPE_NAME</code> is an
<code>IDENTIFIER_NODE</code> for <code>A</code>. If the type is specified via a
template-id, then <code>TYPENAME_TYPE_FULLNAME</code> yields a
<code>TEMPLATE_ID_EXPR</code>. The <code>TREE_TYPE</code> is non-<code>NULL</code> if the
node is implicitly generated in support for the implicit typename
extension; in which case the <code>TREE_TYPE</code> is a type node for the
base-class.
<br><dt><code>TYPEOF_TYPE</code><dd>Used to represent the <code>__typeof__</code> extension. The
<code>TYPE_FIELDS</code> is the expression the type of which is being
represented.
</dl>
<!-- -->
<!-- Namespaces -->
<!-- -->
<div class="node">
<a name="Namespaces"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Classes">Classes</a>,
Previous: <a rel="previous" accesskey="p" href="#Types-for-C_002b_002b">Types for C++</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.2 Namespaces</h4>
<p><a name="index-namespace_002c-scope-2608"></a><a name="index-NAMESPACE_005fDECL-2609"></a>
The root of the entire intermediate representation is the variable
<code>global_namespace</code>. This is the namespace specified with <code>::</code>
in C++ source code. All other namespaces, types, variables, functions,
and so forth can be found starting with this namespace.
<p>However, except for the fact that it is distinguished as the root of the
representation, the global namespace is no different from any other
namespace. Thus, in what follows, we describe namespaces generally,
rather than the global namespace in particular.
<p>A namespace is represented by a <code>NAMESPACE_DECL</code> node.
<p>The following macros and functions can be used on a <code>NAMESPACE_DECL</code>:
<dl>
<dt><code>DECL_NAME</code><a name="index-DECL_005fNAME-2610"></a><dd>This macro is used to obtain the <code>IDENTIFIER_NODE</code> corresponding to
the unqualified name of the name of the namespace (see <a href="#Identifiers">Identifiers</a>).
The name of the global namespace is ‘<samp><span class="samp">::</span></samp>’, even though in C++ the
global namespace is unnamed. However, you should use comparison with
<code>global_namespace</code>, rather than <code>DECL_NAME</code> to determine
whether or not a namespace is the global one. An unnamed namespace
will have a <code>DECL_NAME</code> equal to <code>anonymous_namespace_name</code>.
Within a single translation unit, all unnamed namespaces will have the
same name.
<br><dt><code>DECL_CONTEXT</code><a name="index-DECL_005fCONTEXT-2611"></a><dd>This macro returns the enclosing namespace. The <code>DECL_CONTEXT</code> for
the <code>global_namespace</code> is <code>NULL_TREE</code>.
<br><dt><code>DECL_NAMESPACE_ALIAS</code><a name="index-DECL_005fNAMESPACE_005fALIAS-2612"></a><dd>If this declaration is for a namespace alias, then
<code>DECL_NAMESPACE_ALIAS</code> is the namespace for which this one is an
alias.
<p>Do not attempt to use <code>cp_namespace_decls</code> for a namespace which is
an alias. Instead, follow <code>DECL_NAMESPACE_ALIAS</code> links until you
reach an ordinary, non-alias, namespace, and call
<code>cp_namespace_decls</code> there.
<br><dt><code>DECL_NAMESPACE_STD_P</code><a name="index-DECL_005fNAMESPACE_005fSTD_005fP-2613"></a><dd>This predicate holds if the namespace is the special <code>::std</code>
namespace.
<br><dt><code>cp_namespace_decls</code><a name="index-cp_005fnamespace_005fdecls-2614"></a><dd>This function will return the declarations contained in the namespace,
including types, overloaded functions, other namespaces, and so forth.
If there are no declarations, this function will return
<code>NULL_TREE</code>. The declarations are connected through their
<code>TREE_CHAIN</code> fields.
<p>Although most entries on this list will be declarations,
<code>TREE_LIST</code> nodes may also appear. In this case, the
<code>TREE_VALUE</code> will be an <code>OVERLOAD</code>. The value of the
<code>TREE_PURPOSE</code> is unspecified; back ends should ignore this value.
As with the other kinds of declarations returned by
<code>cp_namespace_decls</code>, the <code>TREE_CHAIN</code> will point to the next
declaration in this list.
<p>For more information on the kinds of declarations that can occur on this
list, See <a href="#Declarations">Declarations</a>. Some declarations will not appear on this
list. In particular, no <code>FIELD_DECL</code>, <code>LABEL_DECL</code>, or
<code>PARM_DECL</code> nodes will appear here.
<p>This function cannot be used with namespaces that have
<code>DECL_NAMESPACE_ALIAS</code> set.
</dl>
<!-- -->
<!-- Classes -->
<!-- -->
<div class="node">
<a name="Classes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Functions-for-C_002b_002b">Functions for C++</a>,
Previous: <a rel="previous" accesskey="p" href="#Namespaces">Namespaces</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.3 Classes</h4>
<p><a name="index-class_002c-scope-2615"></a><a name="index-RECORD_005fTYPE-2616"></a><a name="index-UNION_005fTYPE-2617"></a><a name="index-CLASSTYPE_005fDECLARED_005fCLASS-2618"></a><a name="index-TYPE_005fBINFO-2619"></a><a name="index-BINFO_005fTYPE-2620"></a><a name="index-TYPE_005fFIELDS-2621"></a><a name="index-TYPE_005fVFIELD-2622"></a><a name="index-TYPE_005fMETHODS-2623"></a>
Besides namespaces, the other high-level scoping construct in C++ is the
class. (Throughout this manual the term <dfn>class</dfn> is used to mean the
types referred to in the ANSI/ISO C++ Standard as classes; these include
types defined with the <code>class</code>, <code>struct</code>, and <code>union</code>
keywords.)
<p>A class type is represented by either a <code>RECORD_TYPE</code> or a
<code>UNION_TYPE</code>. A class declared with the <code>union</code> tag is
represented by a <code>UNION_TYPE</code>, while classes declared with either
the <code>struct</code> or the <code>class</code> tag are represented by
<code>RECORD_TYPE</code>s. You can use the <code>CLASSTYPE_DECLARED_CLASS</code>
macro to discern whether or not a particular type is a <code>class</code> as
opposed to a <code>struct</code>. This macro will be true only for classes
declared with the <code>class</code> tag.
<p>Almost all non-function members are available on the <code>TYPE_FIELDS</code>
list. Given one member, the next can be found by following the
<code>TREE_CHAIN</code>. You should not depend in any way on the order in
which fields appear on this list. All nodes on this list will be
‘<samp><span class="samp">DECL</span></samp>’ nodes. A <code>FIELD_DECL</code> is used to represent a non-static
data member, a <code>VAR_DECL</code> is used to represent a static data
member, and a <code>TYPE_DECL</code> is used to represent a type. Note that
the <code>CONST_DECL</code> for an enumeration constant will appear on this
list, if the enumeration type was declared in the class. (Of course,
the <code>TYPE_DECL</code> for the enumeration type will appear here as well.)
There are no entries for base classes on this list. In particular,
there is no <code>FIELD_DECL</code> for the “base-class portion” of an
object.
<p>The <code>TYPE_VFIELD</code> is a compiler-generated field used to point to
virtual function tables. It may or may not appear on the
<code>TYPE_FIELDS</code> list. However, back ends should handle the
<code>TYPE_VFIELD</code> just like all the entries on the <code>TYPE_FIELDS</code>
list.
<p>The function members are available on the <code>TYPE_METHODS</code> list.
Again, subsequent members are found by following the <code>TREE_CHAIN</code>
field. If a function is overloaded, each of the overloaded functions
appears; no <code>OVERLOAD</code> nodes appear on the <code>TYPE_METHODS</code>
list. Implicitly declared functions (including default constructors,
copy constructors, assignment operators, and destructors) will appear on
this list as well.
<p>Every class has an associated <dfn>binfo</dfn>, which can be obtained with
<code>TYPE_BINFO</code>. Binfos are used to represent base-classes. The
binfo given by <code>TYPE_BINFO</code> is the degenerate case, whereby every
class is considered to be its own base-class. The base binfos for a
particular binfo are held in a vector, whose length is obtained with
<code>BINFO_N_BASE_BINFOS</code>. The base binfos themselves are obtained
with <code>BINFO_BASE_BINFO</code> and <code>BINFO_BASE_ITERATE</code>. To add a
new binfo, use <code>BINFO_BASE_APPEND</code>. The vector of base binfos can
be obtained with <code>BINFO_BASE_BINFOS</code>, but normally you do not need
to use that. The class type associated with a binfo is given by
<code>BINFO_TYPE</code>. It is not always the case that <code>BINFO_TYPE
(TYPE_BINFO (x))</code>, because of typedefs and qualified types. Neither is
it the case that <code>TYPE_BINFO (BINFO_TYPE (y))</code> is the same binfo as
<code>y</code>. The reason is that if <code>y</code> is a binfo representing a
base-class <code>B</code> of a derived class <code>D</code>, then <code>BINFO_TYPE
(y)</code> will be <code>B</code>, and <code>TYPE_BINFO (BINFO_TYPE (y))</code> will be
<code>B</code> as its own base-class, rather than as a base-class of <code>D</code>.
<p>The access to a base type can be found with <code>BINFO_BASE_ACCESS</code>.
This will produce <code>access_public_node</code>, <code>access_private_node</code>
or <code>access_protected_node</code>. If bases are always public,
<code>BINFO_BASE_ACCESSES</code> may be <code>NULL</code>.
<p><code>BINFO_VIRTUAL_P</code> is used to specify whether the binfo is inherited
virtually or not. The other flags, <code>BINFO_MARKED_P</code> and
<code>BINFO_FLAG_1</code> to <code>BINFO_FLAG_6</code> can be used for language
specific use.
<p>The following macros can be used on a tree node representing a class-type.
<dl>
<dt><code>LOCAL_CLASS_P</code><a name="index-LOCAL_005fCLASS_005fP-2624"></a><dd>This predicate holds if the class is local class <em>i.e.</em> declared
inside a function body.
<br><dt><code>TYPE_POLYMORPHIC_P</code><a name="index-TYPE_005fPOLYMORPHIC_005fP-2625"></a><dd>This predicate holds if the class has at least one virtual function
(declared or inherited).
<br><dt><code>TYPE_HAS_DEFAULT_CONSTRUCTOR</code><a name="index-TYPE_005fHAS_005fDEFAULT_005fCONSTRUCTOR-2626"></a><dd>This predicate holds whenever its argument represents a class-type with
default constructor.
<br><dt><code>CLASSTYPE_HAS_MUTABLE</code><a name="index-CLASSTYPE_005fHAS_005fMUTABLE-2627"></a><dt><code>TYPE_HAS_MUTABLE_P</code><a name="index-TYPE_005fHAS_005fMUTABLE_005fP-2628"></a><dd>These predicates hold for a class-type having a mutable data member.
<br><dt><code>CLASSTYPE_NON_POD_P</code><a name="index-CLASSTYPE_005fNON_005fPOD_005fP-2629"></a><dd>This predicate holds only for class-types that are not PODs.
<br><dt><code>TYPE_HAS_NEW_OPERATOR</code><a name="index-TYPE_005fHAS_005fNEW_005fOPERATOR-2630"></a><dd>This predicate holds for a class-type that defines
<code>operator new</code>.
<br><dt><code>TYPE_HAS_ARRAY_NEW_OPERATOR</code><a name="index-TYPE_005fHAS_005fARRAY_005fNEW_005fOPERATOR-2631"></a><dd>This predicate holds for a class-type for which
<code>operator new[]</code> is defined.
<br><dt><code>TYPE_OVERLOADS_CALL_EXPR</code><a name="index-TYPE_005fOVERLOADS_005fCALL_005fEXPR-2632"></a><dd>This predicate holds for class-type for which the function call
<code>operator()</code> is overloaded.
<br><dt><code>TYPE_OVERLOADS_ARRAY_REF</code><a name="index-TYPE_005fOVERLOADS_005fARRAY_005fREF-2633"></a><dd>This predicate holds for a class-type that overloads
<code>operator[]</code>
<br><dt><code>TYPE_OVERLOADS_ARROW</code><a name="index-TYPE_005fOVERLOADS_005fARROW-2634"></a><dd>This predicate holds for a class-type for which <code>operator-></code> is
overloaded.
</dl>
<div class="node">
<a name="Functions-for-C++"></a>
<a name="Functions-for-C_002b_002b"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Statements-for-C_002b_002b">Statements for C++</a>,
Previous: <a rel="previous" accesskey="p" href="#Classes">Classes</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.4 Functions for C++</h4>
<p><a name="index-function-2635"></a><a name="index-FUNCTION_005fDECL-2636"></a><a name="index-OVERLOAD-2637"></a><a name="index-OVL_005fCURRENT-2638"></a><a name="index-OVL_005fNEXT-2639"></a>
A function is represented by a <code>FUNCTION_DECL</code> node. A set of
overloaded functions is sometimes represented by an <code>OVERLOAD</code> node.
<p>An <code>OVERLOAD</code> node is not a declaration, so none of the
‘<samp><span class="samp">DECL_</span></samp>’ macros should be used on an <code>OVERLOAD</code>. An
<code>OVERLOAD</code> node is similar to a <code>TREE_LIST</code>. Use
<code>OVL_CURRENT</code> to get the function associated with an
<code>OVERLOAD</code> node; use <code>OVL_NEXT</code> to get the next
<code>OVERLOAD</code> node in the list of overloaded functions. The macros
<code>OVL_CURRENT</code> and <code>OVL_NEXT</code> are actually polymorphic; you can
use them to work with <code>FUNCTION_DECL</code> nodes as well as with
overloads. In the case of a <code>FUNCTION_DECL</code>, <code>OVL_CURRENT</code>
will always return the function itself, and <code>OVL_NEXT</code> will always
be <code>NULL_TREE</code>.
<p>To determine the scope of a function, you can use the
<code>DECL_CONTEXT</code> macro. This macro will return the class
(either a <code>RECORD_TYPE</code> or a <code>UNION_TYPE</code>) or namespace (a
<code>NAMESPACE_DECL</code>) of which the function is a member. For a virtual
function, this macro returns the class in which the function was
actually defined, not the base class in which the virtual declaration
occurred.
<p>If a friend function is defined in a class scope, the
<code>DECL_FRIEND_CONTEXT</code> macro can be used to determine the class in
which it was defined. For example, in
<pre class="smallexample"> class C { friend void f() {} };
</pre>
<p class="noindent">the <code>DECL_CONTEXT</code> for <code>f</code> will be the
<code>global_namespace</code>, but the <code>DECL_FRIEND_CONTEXT</code> will be the
<code>RECORD_TYPE</code> for <code>C</code>.
<p>The following macros and functions can be used on a <code>FUNCTION_DECL</code>:
<dl>
<dt><code>DECL_MAIN_P</code><a name="index-DECL_005fMAIN_005fP-2640"></a><dd>This predicate holds for a function that is the program entry point
<code>::code</code>.
<br><dt><code>DECL_LOCAL_FUNCTION_P</code><a name="index-DECL_005fLOCAL_005fFUNCTION_005fP-2641"></a><dd>This predicate holds if the function was declared at block scope, even
though it has a global scope.
<br><dt><code>DECL_ANTICIPATED</code><a name="index-DECL_005fANTICIPATED-2642"></a><dd>This predicate holds if the function is a built-in function but its
prototype is not yet explicitly declared.
<br><dt><code>DECL_EXTERN_C_FUNCTION_P</code><a name="index-DECL_005fEXTERN_005fC_005fFUNCTION_005fP-2643"></a><dd>This predicate holds if the function is declared as an
`<code>extern "C"</code>' function.
<br><dt><code>DECL_LINKONCE_P</code><a name="index-DECL_005fLINKONCE_005fP-2644"></a><dd>This macro holds if multiple copies of this function may be emitted in
various translation units. It is the responsibility of the linker to
merge the various copies. Template instantiations are the most common
example of functions for which <code>DECL_LINKONCE_P</code> holds; G++
instantiates needed templates in all translation units which require them,
and then relies on the linker to remove duplicate instantiations.
<p>FIXME: This macro is not yet implemented.
<br><dt><code>DECL_FUNCTION_MEMBER_P</code><a name="index-DECL_005fFUNCTION_005fMEMBER_005fP-2645"></a><dd>This macro holds if the function is a member of a class, rather than a
member of a namespace.
<br><dt><code>DECL_STATIC_FUNCTION_P</code><a name="index-DECL_005fSTATIC_005fFUNCTION_005fP-2646"></a><dd>This predicate holds if the function a static member function.
<br><dt><code>DECL_NONSTATIC_MEMBER_FUNCTION_P</code><a name="index-DECL_005fNONSTATIC_005fMEMBER_005fFUNCTION_005fP-2647"></a><dd>This macro holds for a non-static member function.
<br><dt><code>DECL_CONST_MEMFUNC_P</code><a name="index-DECL_005fCONST_005fMEMFUNC_005fP-2648"></a><dd>This predicate holds for a <code>const</code>-member function.
<br><dt><code>DECL_VOLATILE_MEMFUNC_P</code><a name="index-DECL_005fVOLATILE_005fMEMFUNC_005fP-2649"></a><dd>This predicate holds for a <code>volatile</code>-member function.
<br><dt><code>DECL_CONSTRUCTOR_P</code><a name="index-DECL_005fCONSTRUCTOR_005fP-2650"></a><dd>This macro holds if the function is a constructor.
<br><dt><code>DECL_NONCONVERTING_P</code><a name="index-DECL_005fNONCONVERTING_005fP-2651"></a><dd>This predicate holds if the constructor is a non-converting constructor.
<br><dt><code>DECL_COMPLETE_CONSTRUCTOR_P</code><a name="index-DECL_005fCOMPLETE_005fCONSTRUCTOR_005fP-2652"></a><dd>This predicate holds for a function which is a constructor for an object
of a complete type.
<br><dt><code>DECL_BASE_CONSTRUCTOR_P</code><a name="index-DECL_005fBASE_005fCONSTRUCTOR_005fP-2653"></a><dd>This predicate holds for a function which is a constructor for a base
class sub-object.
<br><dt><code>DECL_COPY_CONSTRUCTOR_P</code><a name="index-DECL_005fCOPY_005fCONSTRUCTOR_005fP-2654"></a><dd>This predicate holds for a function which is a copy-constructor.
<br><dt><code>DECL_DESTRUCTOR_P</code><a name="index-DECL_005fDESTRUCTOR_005fP-2655"></a><dd>This macro holds if the function is a destructor.
<br><dt><code>DECL_COMPLETE_DESTRUCTOR_P</code><a name="index-DECL_005fCOMPLETE_005fDESTRUCTOR_005fP-2656"></a><dd>This predicate holds if the function is the destructor for an object a
complete type.
<br><dt><code>DECL_OVERLOADED_OPERATOR_P</code><a name="index-DECL_005fOVERLOADED_005fOPERATOR_005fP-2657"></a><dd>This macro holds if the function is an overloaded operator.
<br><dt><code>DECL_CONV_FN_P</code><a name="index-DECL_005fCONV_005fFN_005fP-2658"></a><dd>This macro holds if the function is a type-conversion operator.
<br><dt><code>DECL_GLOBAL_CTOR_P</code><a name="index-DECL_005fGLOBAL_005fCTOR_005fP-2659"></a><dd>This predicate holds if the function is a file-scope initialization
function.
<br><dt><code>DECL_GLOBAL_DTOR_P</code><a name="index-DECL_005fGLOBAL_005fDTOR_005fP-2660"></a><dd>This predicate holds if the function is a file-scope finalization
function.
<br><dt><code>DECL_THUNK_P</code><a name="index-DECL_005fTHUNK_005fP-2661"></a><dd>This predicate holds if the function is a thunk.
<p>These functions represent stub code that adjusts the <code>this</code> pointer
and then jumps to another function. When the jumped-to function
returns, control is transferred directly to the caller, without
returning to the thunk. The first parameter to the thunk is always the
<code>this</code> pointer; the thunk should add <code>THUNK_DELTA</code> to this
value. (The <code>THUNK_DELTA</code> is an <code>int</code>, not an
<code>INTEGER_CST</code>.)
<p>Then, if <code>THUNK_VCALL_OFFSET</code> (an <code>INTEGER_CST</code>) is nonzero
the adjusted <code>this</code> pointer must be adjusted again. The complete
calculation is given by the following pseudo-code:
<pre class="smallexample"> this += THUNK_DELTA
if (THUNK_VCALL_OFFSET)
this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]
</pre>
<p>Finally, the thunk should jump to the location given
by <code>DECL_INITIAL</code>; this will always be an expression for the
address of a function.
<br><dt><code>DECL_NON_THUNK_FUNCTION_P</code><a name="index-DECL_005fNON_005fTHUNK_005fFUNCTION_005fP-2662"></a><dd>This predicate holds if the function is <em>not</em> a thunk function.
<br><dt><code>GLOBAL_INIT_PRIORITY</code><a name="index-GLOBAL_005fINIT_005fPRIORITY-2663"></a><dd>If either <code>DECL_GLOBAL_CTOR_P</code> or <code>DECL_GLOBAL_DTOR_P</code> holds,
then this gives the initialization priority for the function. The
linker will arrange that all functions for which
<code>DECL_GLOBAL_CTOR_P</code> holds are run in increasing order of priority
before <code>main</code> is called. When the program exits, all functions for
which <code>DECL_GLOBAL_DTOR_P</code> holds are run in the reverse order.
<br><dt><code>TYPE_RAISES_EXCEPTIONS</code><a name="index-TYPE_005fRAISES_005fEXCEPTIONS-2664"></a><dd>This macro returns the list of exceptions that a (member-)function can
raise. The returned list, if non <code>NULL</code>, is comprised of nodes
whose <code>TREE_VALUE</code> represents a type.
<br><dt><code>TYPE_NOTHROW_P</code><a name="index-TYPE_005fNOTHROW_005fP-2665"></a><dd>This predicate holds when the exception-specification of its arguments
is of the form `<code>()</code>'.
<br><dt><code>DECL_ARRAY_DELETE_OPERATOR_P</code><a name="index-DECL_005fARRAY_005fDELETE_005fOPERATOR_005fP-2666"></a><dd>This predicate holds if the function an overloaded
<code>operator delete[]</code>.
</dl>
<!-- -->
<!-- Function Bodies -->
<!-- -->
<div class="node">
<a name="Statements-for-C++"></a>
<a name="Statements-for-C_002b_002b"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-Expressions">C++ Expressions</a>,
Previous: <a rel="previous" accesskey="p" href="#Functions-for-C_002b_002b">Functions for C++</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.5 Statements for C++</h4>
<p><a name="index-statements-2667"></a><a name="index-BREAK_005fSTMT-2668"></a><a name="index-CLEANUP_005fSTMT-2669"></a><a name="index-CLEANUP_005fDECL-2670"></a><a name="index-CLEANUP_005fEXPR-2671"></a><a name="index-CONTINUE_005fSTMT-2672"></a><a name="index-DECL_005fSTMT-2673"></a><a name="index-DECL_005fSTMT_005fDECL-2674"></a><a name="index-DO_005fSTMT-2675"></a><a name="index-DO_005fBODY-2676"></a><a name="index-DO_005fCOND-2677"></a><a name="index-EMPTY_005fCLASS_005fEXPR-2678"></a><a name="index-EXPR_005fSTMT-2679"></a><a name="index-EXPR_005fSTMT_005fEXPR-2680"></a><a name="index-FOR_005fSTMT-2681"></a><a name="index-FOR_005fINIT_005fSTMT-2682"></a><a name="index-FOR_005fCOND-2683"></a><a name="index-FOR_005fEXPR-2684"></a><a name="index-FOR_005fBODY-2685"></a><a name="index-HANDLER-2686"></a><a name="index-IF_005fSTMT-2687"></a><a name="index-IF_005fCOND-2688"></a><a name="index-THEN_005fCLAUSE-2689"></a><a name="index-ELSE_005fCLAUSE-2690"></a><a name="index-RETURN_005fSTMT-2691"></a><a name="index-RETURN_005fEXPR-2692"></a><a name="index-SUBOBJECT-2693"></a><a name="index-SUBOBJECT_005fCLEANUP-2694"></a><a name="index-SWITCH_005fSTMT-2695"></a><a name="index-SWITCH_005fCOND-2696"></a><a name="index-SWITCH_005fBODY-2697"></a><a name="index-TRY_005fBLOCK-2698"></a><a name="index-TRY_005fSTMTS-2699"></a><a name="index-TRY_005fHANDLERS-2700"></a><a name="index-HANDLER_005fPARMS-2701"></a><a name="index-HANDLER_005fBODY-2702"></a><a name="index-USING_005fSTMT-2703"></a><a name="index-WHILE_005fSTMT-2704"></a><a name="index-WHILE_005fBODY-2705"></a><a name="index-WHILE_005fCOND-2706"></a>
A function that has a definition in the current translation unit will
have a non-<code>NULL</code> <code>DECL_INITIAL</code>. However, back ends should not make
use of the particular value given by <code>DECL_INITIAL</code>.
<p>The <code>DECL_SAVED_TREE</code> macro will give the complete body of the
function.
<h5 class="subsubsection">11.10.5.1 Statements</h5>
<p>There are tree nodes corresponding to all of the source-level
statement constructs, used within the C and C++ frontends. These are
enumerated here, together with a list of the various macros that can
be used to obtain information about them. There are a few macros that
can be used with all statements:
<dl>
<dt><code>STMT_IS_FULL_EXPR_P</code><a name="index-STMT_005fIS_005fFULL_005fEXPR_005fP-2707"></a><dd>In C++, statements normally constitute “full expressions”; temporaries
created during a statement are destroyed when the statement is complete.
However, G++ sometimes represents expressions by statements; these
statements will not have <code>STMT_IS_FULL_EXPR_P</code> set. Temporaries
created during such statements should be destroyed when the innermost
enclosing statement with <code>STMT_IS_FULL_EXPR_P</code> set is exited.
</dl>
<p>Here is the list of the various statement nodes, and the macros used to
access them. This documentation describes the use of these nodes in
non-template functions (including instantiations of template functions).
In template functions, the same nodes are used, but sometimes in
slightly different ways.
<p>Many of the statements have substatements. For example, a <code>while</code>
loop will have a body, which is itself a statement. If the substatement
is <code>NULL_TREE</code>, it is considered equivalent to a statement
consisting of a single <code>;</code>, i.e., an expression statement in which
the expression has been omitted. A substatement may in fact be a list
of statements, connected via their <code>TREE_CHAIN</code>s. So, you should
always process the statement tree by looping over substatements, like
this:
<pre class="smallexample"> void process_stmt (stmt)
tree stmt;
{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* <span class="roman">More processing here.</span> */
break;
...
}
stmt = TREE_CHAIN (stmt);
}
}
</pre>
<p>In other words, while the <code>then</code> clause of an <code>if</code> statement
in C++ can be only one statement (although that one statement may be a
compound statement), the intermediate representation will sometimes use
several statements chained together.
<dl>
<dt><code>BREAK_STMT</code><dd>
Used to represent a <code>break</code> statement. There are no additional
fields.
<br><dt><code>CLEANUP_STMT</code><dd>
Used to represent an action that should take place upon exit from the
enclosing scope. Typically, these actions are calls to destructors for
local objects, but back ends cannot rely on this fact. If these nodes
are in fact representing such destructors, <code>CLEANUP_DECL</code> will be
the <code>VAR_DECL</code> destroyed. Otherwise, <code>CLEANUP_DECL</code> will be
<code>NULL_TREE</code>. In any case, the <code>CLEANUP_EXPR</code> is the
expression to execute. The cleanups executed on exit from a scope
should be run in the reverse order of the order in which the associated
<code>CLEANUP_STMT</code>s were encountered.
<br><dt><code>CONTINUE_STMT</code><dd>
Used to represent a <code>continue</code> statement. There are no additional
fields.
<br><dt><code>CTOR_STMT</code><dd>
Used to mark the beginning (if <code>CTOR_BEGIN_P</code> holds) or end (if
<code>CTOR_END_P</code> holds of the main body of a constructor. See also
<code>SUBOBJECT</code> for more information on how to use these nodes.
<br><dt><code>DO_STMT</code><dd>
Used to represent a <code>do</code> loop. The body of the loop is given by
<code>DO_BODY</code> while the termination condition for the loop is given by
<code>DO_COND</code>. The condition for a <code>do</code>-statement is always an
expression.
<br><dt><code>EMPTY_CLASS_EXPR</code><dd>
Used to represent a temporary object of a class with no data whose
address is never taken. (All such objects are interchangeable.) The
<code>TREE_TYPE</code> represents the type of the object.
<br><dt><code>EXPR_STMT</code><dd>
Used to represent an expression statement. Use <code>EXPR_STMT_EXPR</code> to
obtain the expression.
<br><dt><code>FOR_STMT</code><dd>
Used to represent a <code>for</code> statement. The <code>FOR_INIT_STMT</code> is
the initialization statement for the loop. The <code>FOR_COND</code> is the
termination condition. The <code>FOR_EXPR</code> is the expression executed
right before the <code>FOR_COND</code> on each loop iteration; often, this
expression increments a counter. The body of the loop is given by
<code>FOR_BODY</code>. Note that <code>FOR_INIT_STMT</code> and <code>FOR_BODY</code>
return statements, while <code>FOR_COND</code> and <code>FOR_EXPR</code> return
expressions.
<br><dt><code>HANDLER</code><dd>
Used to represent a C++ <code>catch</code> block. The <code>HANDLER_TYPE</code>
is the type of exception that will be caught by this handler; it is
equal (by pointer equality) to <code>NULL</code> if this handler is for all
types. <code>HANDLER_PARMS</code> is the <code>DECL_STMT</code> for the catch
parameter, and <code>HANDLER_BODY</code> is the code for the block itself.
<br><dt><code>IF_STMT</code><dd>
Used to represent an <code>if</code> statement. The <code>IF_COND</code> is the
expression.
<p>If the condition is a <code>TREE_LIST</code>, then the <code>TREE_PURPOSE</code> is
a statement (usually a <code>DECL_STMT</code>). Each time the condition is
evaluated, the statement should be executed. Then, the
<code>TREE_VALUE</code> should be used as the conditional expression itself.
This representation is used to handle C++ code like this:
<p>C++ distinguishes between this and <code>COND_EXPR</code> for handling templates.
<pre class="smallexample"> if (int i = 7) ...
</pre>
<p>where there is a new local variable (or variables) declared within the
condition.
<p>The <code>THEN_CLAUSE</code> represents the statement given by the <code>then</code>
condition, while the <code>ELSE_CLAUSE</code> represents the statement given
by the <code>else</code> condition.
<br><dt><code>SUBOBJECT</code><dd>
In a constructor, these nodes are used to mark the point at which a
subobject of <code>this</code> is fully constructed. If, after this point, an
exception is thrown before a <code>CTOR_STMT</code> with <code>CTOR_END_P</code> set
is encountered, the <code>SUBOBJECT_CLEANUP</code> must be executed. The
cleanups must be executed in the reverse order in which they appear.
<br><dt><code>SWITCH_STMT</code><dd>
Used to represent a <code>switch</code> statement. The <code>SWITCH_STMT_COND</code>
is the expression on which the switch is occurring. See the documentation
for an <code>IF_STMT</code> for more information on the representation used
for the condition. The <code>SWITCH_STMT_BODY</code> is the body of the switch
statement. The <code>SWITCH_STMT_TYPE</code> is the original type of switch
expression as given in the source, before any compiler conversions.
<br><dt><code>TRY_BLOCK</code><dd>Used to represent a <code>try</code> block. The body of the try block is
given by <code>TRY_STMTS</code>. Each of the catch blocks is a <code>HANDLER</code>
node. The first handler is given by <code>TRY_HANDLERS</code>. Subsequent
handlers are obtained by following the <code>TREE_CHAIN</code> link from one
handler to the next. The body of the handler is given by
<code>HANDLER_BODY</code>.
<p>If <code>CLEANUP_P</code> holds of the <code>TRY_BLOCK</code>, then the
<code>TRY_HANDLERS</code> will not be a <code>HANDLER</code> node. Instead, it will
be an expression that should be executed if an exception is thrown in
the try block. It must rethrow the exception after executing that code.
And, if an exception is thrown while the expression is executing,
<code>terminate</code> must be called.
<br><dt><code>USING_STMT</code><dd>Used to represent a <code>using</code> directive. The namespace is given by
<code>USING_STMT_NAMESPACE</code>, which will be a NAMESPACE_DECL. This node
is needed inside template functions, to implement using directives
during instantiation.
<br><dt><code>WHILE_STMT</code><dd>
Used to represent a <code>while</code> loop. The <code>WHILE_COND</code> is the
termination condition for the loop. See the documentation for an
<code>IF_STMT</code> for more information on the representation used for the
condition.
<p>The <code>WHILE_BODY</code> is the body of the loop.
</dl>
<div class="node">
<a name="C++-Expressions"></a>
<a name="C_002b_002b-Expressions"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Statements-for-C_002b_002b">Statements for C++</a>,
Up: <a rel="up" accesskey="u" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>
</div>
<h4 class="subsection">11.10.6 C++ Expressions</h4>
<p>This section describes expressions specific to the C and C++ front
ends.
<dl>
<dt><code>TYPEID_EXPR</code><dd>
Used to represent a <code>typeid</code> expression.
<br><dt><code>NEW_EXPR</code><dt><code>VEC_NEW_EXPR</code><dd>
Used to represent a call to <code>new</code> and <code>new[]</code> respectively.
<br><dt><code>DELETE_EXPR</code><dt><code>VEC_DELETE_EXPR</code><dd>
Used to represent a call to <code>delete</code> and <code>delete[]</code> respectively.
<br><dt><code>MEMBER_REF</code><dd>
Represents a reference to a member of a class.
<br><dt><code>THROW_EXPR</code><dd>
Represents an instance of <code>throw</code> in the program. Operand 0,
which is the expression to throw, may be <code>NULL_TREE</code>.
<br><dt><code>AGGR_INIT_EXPR</code><dd>An <code>AGGR_INIT_EXPR</code> represents the initialization as the return
value of a function call, or as the result of a constructor. An
<code>AGGR_INIT_EXPR</code> will only appear as a full-expression, or as the
second operand of a <code>TARGET_EXPR</code>. <code>AGGR_INIT_EXPR</code>s have
a representation similar to that of <code>CALL_EXPR</code>s. You can use
the <code>AGGR_INIT_EXPR_FN</code> and <code>AGGR_INIT_EXPR_ARG</code> macros to access
the function to call and the arguments to pass.
<p>If <code>AGGR_INIT_VIA_CTOR_P</code> holds of the <code>AGGR_INIT_EXPR</code>, then
the initialization is via a constructor call. The address of the
<code>AGGR_INIT_EXPR_SLOT</code> operand, which is always a <code>VAR_DECL</code>,
is taken, and this value replaces the first argument in the argument
list.
<p>In either case, the expression is void.
</dl>
<div class="node">
<a name="Java-Trees"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#C-and-C_002b_002b-Trees">C and C++ Trees</a>,
Up: <a rel="up" accesskey="u" href="#GENERIC">GENERIC</a>
</div>
<h3 class="section">11.11 Java Trees</h3>
<!-- Copyright (c) 2008, 2009, 2010 Free Software Foundation, Inc. -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="GIMPLE"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tree-SSA">Tree SSA</a>,
Previous: <a rel="previous" accesskey="p" href="#GENERIC">GENERIC</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">12 GIMPLE</h2>
<p><a name="index-GIMPLE-2708"></a>
GIMPLE is a three-address representation derived from GENERIC by
breaking down GENERIC expressions into tuples of no more than 3
operands (with some exceptions like function calls). GIMPLE was
heavily influenced by the SIMPLE IL used by the McCAT compiler
project at McGill University, though we have made some different
choices. For one thing, SIMPLE doesn't support <code>goto</code>.
<p>Temporaries are introduced to hold intermediate values needed to
compute complex expressions. Additionally, all the control
structures used in GENERIC are lowered into conditional jumps,
lexical scopes are removed and exception regions are converted
into an on the side exception region tree.
<p>The compiler pass which converts GENERIC into GIMPLE is referred to as
the ‘<samp><span class="samp">gimplifier</span></samp>’. The gimplifier works recursively, generating
GIMPLE tuples out of the original GENERIC expressions.
<p>One of the early implementation strategies used for the GIMPLE
representation was to use the same internal data structures used
by front ends to represent parse trees. This simplified
implementation because we could leverage existing functionality
and interfaces. However, GIMPLE is a much more restrictive
representation than abstract syntax trees (AST), therefore it
does not require the full structural complexity provided by the
main tree data structure.
<p>The GENERIC representation of a function is stored in the
<code>DECL_SAVED_TREE</code> field of the associated <code>FUNCTION_DECL</code>
tree node. It is converted to GIMPLE by a call to
<code>gimplify_function_tree</code>.
<p>If a front end wants to include language-specific tree codes in the tree
representation which it provides to the back end, it must provide a
definition of <code>LANG_HOOKS_GIMPLIFY_EXPR</code> which knows how to
convert the front end trees to GIMPLE. Usually such a hook will involve
much of the same code for expanding front end trees to RTL. This function
can return fully lowered GIMPLE, or it can return GENERIC trees and let the
main gimplifier lower them the rest of the way; this is often simpler.
GIMPLE that is not fully lowered is known as “High GIMPLE” and
consists of the IL before the pass <code>pass_lower_cf</code>. High GIMPLE
contains some container statements like lexical scopes
(represented by <code>GIMPLE_BIND</code>) and nested expressions (e.g.,
<code>GIMPLE_TRY</code>), while “Low GIMPLE” exposes all of the
implicit jumps for control and exception expressions directly in
the IL and EH region trees.
<p>The C and C++ front ends currently convert directly from front end
trees to GIMPLE, and hand that off to the back end rather than first
converting to GENERIC. Their gimplifier hooks know about all the
<code>_STMT</code> nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run first, but
the existence of <code>STMT_EXPR</code> meant that in order to convert all
of the C statements into GENERIC equivalents would involve walking the
entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass
which would work better with higher-level trees, but currently the
optimizers all expect GIMPLE.
<p>You can request to dump a C-like representation of the GIMPLE form
with the flag <samp><span class="option">-fdump-tree-gimple</span></samp>.
<ul class="menu">
<li><a accesskey="1" href="#Tuple-representation">Tuple representation</a>
<li><a accesskey="2" href="#GIMPLE-instruction-set">GIMPLE instruction set</a>
<li><a accesskey="3" href="#GIMPLE-Exception-Handling">GIMPLE Exception Handling</a>
<li><a accesskey="4" href="#Temporaries">Temporaries</a>
<li><a accesskey="5" href="#Operands">Operands</a>
<li><a accesskey="6" href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a>
<li><a accesskey="7" href="#Tuple-specific-accessors">Tuple specific accessors</a>
<li><a accesskey="8" href="#GIMPLE-sequences">GIMPLE sequences</a>
<li><a accesskey="9" href="#Sequence-iterators">Sequence iterators</a>
<li><a href="#Adding-a-new-GIMPLE-statement-code">Adding a new GIMPLE statement code</a>
<li><a href="#Statement-and-operand-traversals">Statement and operand traversals</a>
</ul>
<div class="node">
<a name="Tuple-representation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GIMPLE-instruction-set">GIMPLE instruction set</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.1 Tuple representation</h3>
<p><a name="index-tuples-2709"></a>
GIMPLE instructions are tuples of variable size divided in two
groups: a header describing the instruction and its locations,
and a variable length body with all the operands. Tuples are
organized into a hierarchy with 3 main classes of tuples.
<h4 class="subsection">12.1.1 <code>gimple_statement_base</code> (gsbase)</h4>
<p><a name="index-gimple_005fstatement_005fbase-2710"></a>
This is the root of the hierarchy, it holds basic information
needed by most GIMPLE statements. There are some fields that
may not be relevant to every GIMPLE statement, but those were
moved into the base structure to take advantage of holes left by
other fields (thus making the structure more compact). The
structure takes 4 words (32 bytes) on 64 bit hosts:
<p><table summary=""><tr align="left"><td valign="top">Field </td><td valign="top">Size (bits)
<br></td></tr><tr align="left"><td valign="top"><code>code</code> </td><td valign="top">8
<br></td></tr><tr align="left"><td valign="top"><code>subcode</code> </td><td valign="top">16
<br></td></tr><tr align="left"><td valign="top"><code>no_warning</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>visited</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>nontemporal_move</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>plf</code> </td><td valign="top">2
<br></td></tr><tr align="left"><td valign="top"><code>modified</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>has_volatile_ops</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>references_memory_p</code> </td><td valign="top">1
<br></td></tr><tr align="left"><td valign="top"><code>uid</code> </td><td valign="top">32
<br></td></tr><tr align="left"><td valign="top"><code>location</code> </td><td valign="top">32
<br></td></tr><tr align="left"><td valign="top"><code>num_ops</code> </td><td valign="top">32
<br></td></tr><tr align="left"><td valign="top"><code>bb</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>block</code> </td><td valign="top">63
<br></td></tr><tr align="left"><td valign="top">Total size </td><td valign="top">32 bytes
<br></td></tr></table>
<ul>
<li><code>code</code>
Main identifier for a GIMPLE instruction.
<li><code>subcode</code>
Used to distinguish different variants of the same basic
instruction or provide flags applicable to a given code. The
<code>subcode</code> flags field has different uses depending on the code of
the instruction, but mostly it distinguishes instructions of the
same family. The most prominent use of this field is in
assignments, where subcode indicates the operation done on the
RHS of the assignment. For example, a = b + c is encoded as
<code>GIMPLE_ASSIGN <PLUS_EXPR, a, b, c></code>.
<li><code>no_warning</code>
Bitflag to indicate whether a warning has already been issued on
this statement.
<li><code>visited</code>
General purpose “visited” marker. Set and cleared by each pass
when needed.
<li><code>nontemporal_move</code>
Bitflag used in assignments that represent non-temporal moves.
Although this bitflag is only used in assignments, it was moved
into the base to take advantage of the bit holes left by the
previous fields.
<li><code>plf</code>
Pass Local Flags. This 2-bit mask can be used as general purpose
markers by any pass. Passes are responsible for clearing and
setting these two flags accordingly.
<li><code>modified</code>
Bitflag to indicate whether the statement has been modified.
Used mainly by the operand scanner to determine when to re-scan a
statement for operands.
<li><code>has_volatile_ops</code>
Bitflag to indicate whether this statement contains operands that
have been marked volatile.
<li><code>references_memory_p</code>
Bitflag to indicate whether this statement contains memory
references (i.e., its operands are either global variables, or
pointer dereferences or anything that must reside in memory).
<li><code>uid</code>
This is an unsigned integer used by passes that want to assign
IDs to every statement. These IDs must be assigned and used by
each pass.
<li><code>location</code>
This is a <code>location_t</code> identifier to specify source code
location for this statement. It is inherited from the front
end.
<li><code>num_ops</code>
Number of operands that this statement has. This specifies the
size of the operand vector embedded in the tuple. Only used in
some tuples, but it is declared in the base tuple to take
advantage of the 32-bit hole left by the previous fields.
<li><code>bb</code>
Basic block holding the instruction.
<li><code>block</code>
Lexical block holding this statement. Also used for debug
information generation.
</ul>
<h4 class="subsection">12.1.2 <code>gimple_statement_with_ops</code></h4>
<p><a name="index-gimple_005fstatement_005fwith_005fops-2711"></a>
This tuple is actually split in two:
<code>gimple_statement_with_ops_base</code> and
<code>gimple_statement_with_ops</code>. This is needed to accommodate the
way the operand vector is allocated. The operand vector is
defined to be an array of 1 element. So, to allocate a dynamic
number of operands, the memory allocator (<code>gimple_alloc</code>) simply
allocates enough memory to hold the structure itself plus <code>N
- 1</code> operands which run “off the end” of the structure. For
example, to allocate space for a tuple with 3 operands,
<code>gimple_alloc</code> reserves <code>sizeof (struct
gimple_statement_with_ops) + 2 * sizeof (tree)</code> bytes.
<p>On the other hand, several fields in this tuple need to be shared
with the <code>gimple_statement_with_memory_ops</code> tuple. So, these
common fields are placed in <code>gimple_statement_with_ops_base</code> which
is then inherited from the other two tuples.
<p><table summary=""><tr align="left"><td valign="top"><code>gsbase</code> </td><td valign="top">256
<br></td></tr><tr align="left"><td valign="top"><code>def_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>use_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>op</code> </td><td valign="top"><code>num_ops</code> * 64
<br></td></tr><tr align="left"><td valign="top">Total size </td><td valign="top">48 + 8 * <code>num_ops</code> bytes
<br></td></tr></table>
<ul>
<li><code>gsbase</code>
Inherited from <code>struct gimple_statement_base</code>.
<li><code>def_ops</code>
Array of pointers into the operand array indicating all the slots that
contain a variable written-to by the statement. This array is
also used for immediate use chaining. Note that it would be
possible to not rely on this array, but the changes required to
implement this are pretty invasive.
<li><code>use_ops</code>
Similar to <code>def_ops</code> but for variables read by the statement.
<li><code>op</code>
Array of trees with <code>num_ops</code> slots.
</ul>
<h4 class="subsection">12.1.3 <code>gimple_statement_with_memory_ops</code></h4>
<p>This tuple is essentially identical to <code>gimple_statement_with_ops</code>,
except that it contains 4 additional fields to hold vectors
related memory stores and loads. Similar to the previous case,
the structure is split in two to accommodate for the operand
vector (<code>gimple_statement_with_memory_ops_base</code> and
<code>gimple_statement_with_memory_ops</code>).
<p><table summary=""><tr align="left"><td valign="top">Field </td><td valign="top">Size (bits)
<br></td></tr><tr align="left"><td valign="top"><code>gsbase</code> </td><td valign="top">256
<br></td></tr><tr align="left"><td valign="top"><code>def_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>use_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>vdef_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>vuse_ops</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>stores</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>loads</code> </td><td valign="top">64
<br></td></tr><tr align="left"><td valign="top"><code>op</code> </td><td valign="top"><code>num_ops</code> * 64
<br></td></tr><tr align="left"><td valign="top">Total size </td><td valign="top">80 + 8 * <code>num_ops</code> bytes
<br></td></tr></table>
<ul>
<li><code>vdef_ops</code>
Similar to <code>def_ops</code> but for <code>VDEF</code> operators. There is
one entry per memory symbol written by this statement. This is
used to maintain the memory SSA use-def and def-def chains.
<li><code>vuse_ops</code>
Similar to <code>use_ops</code> but for <code>VUSE</code> operators. There is
one entry per memory symbol loaded by this statement. This is
used to maintain the memory SSA use-def chains.
<li><code>stores</code>
Bitset with all the UIDs for the symbols written-to by the
statement. This is different than <code>vdef_ops</code> in that all the
affected symbols are mentioned in this set. If memory
partitioning is enabled, the <code>vdef_ops</code> vector will refer to memory
partitions. Furthermore, no SSA information is stored in this
set.
<li><code>loads</code>
Similar to <code>stores</code>, but for memory loads. (Note that there
is some amount of redundancy here, it should be possible to
reduce memory utilization further by removing these sets).
</ul>
<p>All the other tuples are defined in terms of these three basic
ones. Each tuple will add some fields. The main gimple type
is defined to be the union of all these structures (<code>GTY</code> markers
elided for clarity):
<pre class="smallexample"> union gimple_statement_d
{
struct gimple_statement_base gsbase;
struct gimple_statement_with_ops gsops;
struct gimple_statement_with_memory_ops gsmem;
struct gimple_statement_omp omp;
struct gimple_statement_bind gimple_bind;
struct gimple_statement_catch gimple_catch;
struct gimple_statement_eh_filter gimple_eh_filter;
struct gimple_statement_phi gimple_phi;
struct gimple_statement_resx gimple_resx;
struct gimple_statement_try gimple_try;
struct gimple_statement_wce gimple_wce;
struct gimple_statement_asm gimple_asm;
struct gimple_statement_omp_critical gimple_omp_critical;
struct gimple_statement_omp_for gimple_omp_for;
struct gimple_statement_omp_parallel gimple_omp_parallel;
struct gimple_statement_omp_task gimple_omp_task;
struct gimple_statement_omp_sections gimple_omp_sections;
struct gimple_statement_omp_single gimple_omp_single;
struct gimple_statement_omp_continue gimple_omp_continue;
struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
};
</pre>
<div class="node">
<a name="GIMPLE-instruction-set"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GIMPLE-Exception-Handling">GIMPLE Exception Handling</a>,
Previous: <a rel="previous" accesskey="p" href="#Tuple-representation">Tuple representation</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.2 GIMPLE instruction set</h3>
<p><a name="index-GIMPLE-instruction-set-2712"></a>
The following table briefly describes the GIMPLE instruction set.
<p><table summary=""><tr align="left"><td valign="top">Instruction </td><td valign="top">High GIMPLE </td><td valign="top">Low GIMPLE
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_ASM</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_ASSIGN</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_BIND</code> </td><td valign="top">x </td><td valign="top">
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_CALL</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_CATCH</code> </td><td valign="top">x </td><td valign="top">
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_COND</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_DEBUG</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_EH_FILTER</code> </td><td valign="top">x </td><td valign="top">
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_GOTO</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_LABEL</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_NOP</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_ATOMIC_LOAD</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_ATOMIC_STORE</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_CONTINUE</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_CRITICAL</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_FOR</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_MASTER</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_ORDERED</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_PARALLEL</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_RETURN</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_SECTION</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_SECTIONS</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_SECTIONS_SWITCH</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_OMP_SINGLE</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_PHI</code> </td><td valign="top"></td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_RESX</code> </td><td valign="top"></td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_RETURN</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_SWITCH</code> </td><td valign="top">x </td><td valign="top">x
<br></td></tr><tr align="left"><td valign="top"><code>GIMPLE_TRY</code> </td><td valign="top">x </td><td valign="top">
<br></td></tr></table>
<div class="node">
<a name="GIMPLE-Exception-Handling"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Temporaries">Temporaries</a>,
Previous: <a rel="previous" accesskey="p" href="#GIMPLE-instruction-set">GIMPLE instruction set</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.3 Exception Handling</h3>
<p><a name="index-GIMPLE-Exception-Handling-2713"></a>
Other exception handling constructs are represented using
<code>GIMPLE_TRY_CATCH</code>. <code>GIMPLE_TRY_CATCH</code> has two operands. The
first operand is a sequence of statements to execute. If executing
these statements does not throw an exception, then the second operand
is ignored. Otherwise, if an exception is thrown, then the second
operand of the <code>GIMPLE_TRY_CATCH</code> is checked. The second
operand may have the following forms:
<ol type=1 start=1>
<li>A sequence of statements to execute. When an exception occurs,
these statements are executed, and then the exception is rethrown.
<li>A sequence of <code>GIMPLE_CATCH</code> statements. Each
<code>GIMPLE_CATCH</code> has a list of applicable exception types and
handler code. If the thrown exception matches one of the caught
types, the associated handler code is executed. If the handler
code falls off the bottom, execution continues after the original
<code>GIMPLE_TRY_CATCH</code>.
<li>A <code>GIMPLE_EH_FILTER</code> statement. This has a list of
permitted exception types, and code to handle a match failure. If the
thrown exception does not match one of the allowed types, the
associated match failure code is executed. If the thrown exception
does match, it continues unwinding the stack looking for the next
handler.
</ol>
<p>Currently throwing an exception is not directly represented in
GIMPLE, since it is implemented by calling a function. At some
point in the future we will want to add some way to express that
the call will throw an exception of a known type.
<p>Just before running the optimizers, the compiler lowers the
high-level EH constructs above into a set of ‘<samp><span class="samp">goto</span></samp>’s, magic
labels, and EH regions. Continuing to unwind at the end of a
cleanup is represented with a <code>GIMPLE_RESX</code>.
<div class="node">
<a name="Temporaries"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Operands">Operands</a>,
Previous: <a rel="previous" accesskey="p" href="#GIMPLE-Exception-Handling">GIMPLE Exception Handling</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.4 Temporaries</h3>
<p><a name="index-Temporaries-2714"></a>
When gimplification encounters a subexpression that is too
complex, it creates a new temporary variable to hold the value of
the subexpression, and adds a new statement to initialize it
before the current statement. These special temporaries are known
as ‘<samp><span class="samp">expression temporaries</span></samp>’, and are allocated using
<code>get_formal_tmp_var</code>. The compiler tries to always evaluate
identical expressions into the same temporary, to simplify
elimination of redundant calculations.
<p>We can only use expression temporaries when we know that it will
not be reevaluated before its value is used, and that it will not
be otherwise modified<a rel="footnote" href="#fn-3" name="fnd-3"><sup>3</sup></a>. Other temporaries can be allocated
using <code>get_initialized_tmp_var</code> or <code>create_tmp_var</code>.
<p>Currently, an expression like <code>a = b + 5</code> is not reduced any
further. We tried converting it to something like
<pre class="smallexample"> T1 = b + 5;
a = T1;
</pre>
<p>but this bloated the representation for minimal benefit. However, a
variable which must live in memory cannot appear in an expression; its
value is explicitly loaded into a temporary first. Similarly, storing
the value of an expression to a memory variable goes through a
temporary.
<div class="node">
<a name="Operands"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a>,
Previous: <a rel="previous" accesskey="p" href="#Temporaries">Temporaries</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.5 Operands</h3>
<p><a name="index-Operands-2715"></a>
In general, expressions in GIMPLE consist of an operation and the
appropriate number of simple operands; these operands must either be a
GIMPLE rvalue (<code>is_gimple_val</code>), i.e. a constant or a register
variable. More complex operands are factored out into temporaries, so
that
<pre class="smallexample"> a = b + c + d
</pre>
<p>becomes
<pre class="smallexample"> T1 = b + c;
a = T1 + d;
</pre>
<p>The same rule holds for arguments to a <code>GIMPLE_CALL</code>.
<p>The target of an assignment is usually a variable, but can also be a
<code>MEM_REF</code> or a compound lvalue as described below.
<ul class="menu">
<li><a accesskey="1" href="#Compound-Expressions">Compound Expressions</a>
<li><a accesskey="2" href="#Compound-Lvalues">Compound Lvalues</a>
<li><a accesskey="3" href="#Conditional-Expressions">Conditional Expressions</a>
<li><a accesskey="4" href="#Logical-Operators">Logical Operators</a>
</ul>
<div class="node">
<a name="Compound-Expressions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Compound-Lvalues">Compound Lvalues</a>,
Up: <a rel="up" accesskey="u" href="#Operands">Operands</a>
</div>
<h4 class="subsection">12.5.1 Compound Expressions</h4>
<p><a name="index-Compound-Expressions-2716"></a>
The left-hand side of a C comma expression is simply moved into a separate
statement.
<div class="node">
<a name="Compound-Lvalues"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Conditional-Expressions">Conditional Expressions</a>,
Previous: <a rel="previous" accesskey="p" href="#Compound-Expressions">Compound Expressions</a>,
Up: <a rel="up" accesskey="u" href="#Operands">Operands</a>
</div>
<h4 class="subsection">12.5.2 Compound Lvalues</h4>
<p><a name="index-Compound-Lvalues-2717"></a>
Currently compound lvalues involving array and structure field references
are not broken down; an expression like <code>a.b[2] = 42</code> is not reduced
any further (though complex array subscripts are). This restriction is a
workaround for limitations in later optimizers; if we were to convert this
to
<pre class="smallexample"> T1 = &a.b;
T1[2] = 42;
</pre>
<p>alias analysis would not remember that the reference to <code>T1[2]</code> came
by way of <code>a.b</code>, so it would think that the assignment could alias
another member of <code>a</code>; this broke <code>struct-alias-1.c</code>. Future
optimizer improvements may make this limitation unnecessary.
<div class="node">
<a name="Conditional-Expressions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Logical-Operators">Logical Operators</a>,
Previous: <a rel="previous" accesskey="p" href="#Compound-Lvalues">Compound Lvalues</a>,
Up: <a rel="up" accesskey="u" href="#Operands">Operands</a>
</div>
<h4 class="subsection">12.5.3 Conditional Expressions</h4>
<p><a name="index-Conditional-Expressions-2718"></a>
A C <code>?:</code> expression is converted into an <code>if</code> statement with
each branch assigning to the same temporary. So,
<pre class="smallexample"> a = b ? c : d;
</pre>
<p>becomes
<pre class="smallexample"> if (b == 1)
T1 = c;
else
T1 = d;
a = T1;
</pre>
<p>The GIMPLE level if-conversion pass re-introduces <code>?:</code>
expression, if appropriate. It is used to vectorize loops with
conditions using vector conditional operations.
<p>Note that in GIMPLE, <code>if</code> statements are represented using
<code>GIMPLE_COND</code>, as described below.
<div class="node">
<a name="Logical-Operators"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Conditional-Expressions">Conditional Expressions</a>,
Up: <a rel="up" accesskey="u" href="#Operands">Operands</a>
</div>
<h4 class="subsection">12.5.4 Logical Operators</h4>
<p><a name="index-Logical-Operators-2719"></a>
Except when they appear in the condition operand of a
<code>GIMPLE_COND</code>, logical `and' and `or' operators are simplified
as follows: <code>a = b && c</code> becomes
<pre class="smallexample"> T1 = (bool)b;
if (T1 == true)
T1 = (bool)c;
a = T1;
</pre>
<p>Note that <code>T1</code> in this example cannot be an expression temporary,
because it has two different assignments.
<h4 class="subsection">12.5.5 Manipulating operands</h4>
<p>All gimple operands are of type <code>tree</code>. But only certain
types of trees are allowed to be used as operand tuples. Basic
validation is controlled by the function
<code>get_gimple_rhs_class</code>, which given a tree code, returns an
<code>enum</code> with the following values of type <code>enum
gimple_rhs_class</code>
<ul>
<li><code>GIMPLE_INVALID_RHS</code>
The tree cannot be used as a GIMPLE operand.
<li><code>GIMPLE_TERNARY_RHS</code>
The tree is a valid GIMPLE ternary operation.
<li><code>GIMPLE_BINARY_RHS</code>
The tree is a valid GIMPLE binary operation.
<li><code>GIMPLE_UNARY_RHS</code>
The tree is a valid GIMPLE unary operation.
<li><code>GIMPLE_SINGLE_RHS</code>
The tree is a single object, that cannot be split into simpler
operands (for instance, <code>SSA_NAME</code>, <code>VAR_DECL</code>, <code>COMPONENT_REF</code>, etc).
<p>This operand class also acts as an escape hatch for tree nodes
that may be flattened out into the operand vector, but would need
more than two slots on the RHS. For instance, a <code>COND_EXPR</code>
expression of the form <code>(a op b) ? x : y</code> could be flattened
out on the operand vector using 4 slots, but it would also
require additional processing to distinguish <code>c = a op b</code>
from <code>c = a op b ? x : y</code>. Something similar occurs with
<code>ASSERT_EXPR</code>. In time, these special case tree
expressions should be flattened into the operand vector.
</ul>
<p>For tree nodes in the categories <code>GIMPLE_TERNARY_RHS</code>,
<code>GIMPLE_BINARY_RHS</code> and <code>GIMPLE_UNARY_RHS</code>, they cannot be
stored inside tuples directly. They first need to be flattened and
separated into individual components. For instance, given the GENERIC
expression
<pre class="smallexample"> a = b + c
</pre>
<p>its tree representation is:
<pre class="smallexample"> MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
</pre>
<p>In this case, the GIMPLE form for this statement is logically
identical to its GENERIC form but in GIMPLE, the <code>PLUS_EXPR</code>
on the RHS of the assignment is not represented as a tree,
instead the two operands are taken out of the <code>PLUS_EXPR</code> sub-tree
and flattened into the GIMPLE tuple as follows:
<pre class="smallexample"> GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
</pre>
<h4 class="subsection">12.5.6 Operand vector allocation</h4>
<p>The operand vector is stored at the bottom of the three tuple
structures that accept operands. This means, that depending on
the code of a given statement, its operand vector will be at
different offsets from the base of the structure. To access
tuple operands use the following accessors
<div class="defun">
— GIMPLE function: unsigned <b>gimple_num_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fnum_005fops-2720"></a></var><br>
<blockquote><p>Returns the number of operands in statement G.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_op</b> (<var>gimple g, unsigned i</var>)<var><a name="index-gimple_005fop-2721"></a></var><br>
<blockquote><p>Returns operand <code>I</code> from statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fops-2722"></a></var><br>
<blockquote><p>Returns a pointer into the operand vector for statement <code>G</code>. This
is computed using an internal table called <code>gimple_ops_offset_</code>[].
This table is indexed by the gimple code of <code>G</code>.
<p>When the compiler is built, this table is filled-in using the
sizes of the structures used by each statement code defined in
gimple.def. Since the operand vector is at the bottom of the
structure, for a gimple code <code>C</code> the offset is computed as sizeof
(struct-of <code>C</code>) - sizeof (tree).
<p>This mechanism adds one memory indirection to every access when
using <code>gimple_op</code>(), if this becomes a bottleneck, a pass can
choose to memoize the result from <code>gimple_ops</code>() and use that to
access the operands.
</p></blockquote></div>
<h4 class="subsection">12.5.7 Operand validation</h4>
<p>When adding a new operand to a gimple statement, the operand will
be validated according to what each tuple accepts in its operand
vector. These predicates are called by the
<code>gimple_</code><var>name</var><code>_set_...()</code>. Each tuple will use one of the
following predicates (Note, this list is not exhaustive):
<div class="defun">
— GIMPLE function: bool <b>is_gimple_val</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fval-2723"></a></var><br>
<blockquote><p>Returns true if t is a "GIMPLE value", which are all the
non-addressable stack variables (variables for which
<code>is_gimple_reg</code> returns true) and constants (expressions for which
<code>is_gimple_min_invariant</code> returns true).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_addressable</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005faddressable-2724"></a></var><br>
<blockquote><p>Returns true if t is a symbol or memory reference whose address
can be taken.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_asm_val</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fasm_005fval-2725"></a></var><br>
<blockquote><p>Similar to <code>is_gimple_val</code> but it also accepts hard registers.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_call_addr</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fcall_005faddr-2726"></a></var><br>
<blockquote><p>Return true if t is a valid expression to use as the function
called by a <code>GIMPLE_CALL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_mem_ref_addr</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fmem_005fref_005faddr-2727"></a></var><br>
<blockquote><p>Return true if t is a valid expression to use as first operand
of a <code>MEM_REF</code> expression.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_constant</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fconstant-2728"></a></var><br>
<blockquote><p>Return true if t is a valid gimple constant.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_min_invariant</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fmin_005finvariant-2729"></a></var><br>
<blockquote><p>Return true if t is a valid minimal invariant. This is different
from constants, in that the specific value of t may not be known
at compile time, but it is known that it doesn't change (e.g.,
the address of a function local variable).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_ip_invariant</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fip_005finvariant-2730"></a></var><br>
<blockquote><p>Return true if t is an interprocedural invariant. This means that t
is a valid invariant in all functions (e.g. it can be an address of a
global variable but not of a local one).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_ip_invariant_address</b> (<var>tree t</var>)<var><a name="index-is_005fgimple_005fip_005finvariant_005faddress-2731"></a></var><br>
<blockquote><p>Return true if t is an <code>ADDR_EXPR</code> that does not change once the
program is running (and which is valid in all functions).
</p></blockquote></div>
<h4 class="subsection">12.5.8 Statement validation</h4>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_assign</b> (<var>gimple g</var>)<var><a name="index-is_005fgimple_005fassign-2732"></a></var><br>
<blockquote><p>Return true if the code of g is <code>GIMPLE_ASSIGN</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_call</b> (<var>gimple g</var>)<var><a name="index-is_005fgimple_005fcall-2733"></a></var><br>
<blockquote><p>Return true if the code of g is <code>GIMPLE_CALL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_debug</b> (<var>gimple g</var>)<var><a name="index-is_005fgimple_005fdebug-2734"></a></var><br>
<blockquote><p>Return true if the code of g is <code>GIMPLE_DEBUG</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_assign_cast_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005fcast_005fp-2735"></a></var><br>
<blockquote><p>Return true if g is a <code>GIMPLE_ASSIGN</code> that performs a type cast
operation.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_debug_bind_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fdebug_005fbind_005fp-2736"></a></var><br>
<blockquote><p>Return true if g is a <code>GIMPLE_DEBUG</code> that binds the value of an
expression to a variable.
</p></blockquote></div>
<div class="node">
<a name="Manipulating-GIMPLE-statements"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tuple-specific-accessors">Tuple specific accessors</a>,
Previous: <a rel="previous" accesskey="p" href="#Operands">Operands</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.6 Manipulating GIMPLE statements</h3>
<p><a name="index-Manipulating-GIMPLE-statements-2737"></a>
This section documents all the functions available to handle each
of the GIMPLE instructions.
<h4 class="subsection">12.6.1 Common accessors</h4>
<p>The following are common accessors for gimple statements.
<div class="defun">
— GIMPLE function: enum gimple_code <b>gimple_code</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcode-2738"></a></var><br>
<blockquote><p>Return the code for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: basic_block <b>gimple_bb</b> (<var>gimple g</var>)<var><a name="index-gimple_005fbb-2739"></a></var><br>
<blockquote><p>Return the basic block to which statement <code>G</code> belongs to.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_block</b> (<var>gimple g</var>)<var><a name="index-gimple_005fblock-2740"></a></var><br>
<blockquote><p>Return the lexical scope block holding statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_expr_type</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fexpr_005ftype-2741"></a></var><br>
<blockquote><p>Return the type of the main expression computed by <code>STMT</code>. Return
<code>void_type_node</code> if <code>STMT</code> computes nothing. This will only return
something meaningful for <code>GIMPLE_ASSIGN</code>, <code>GIMPLE_COND</code> and
<code>GIMPLE_CALL</code>. For all other tuple codes, it will return
<code>void_type_node</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum tree_code <b>gimple_expr_code</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fexpr_005fcode-2742"></a></var><br>
<blockquote><p>Return the tree code for the expression computed by <code>STMT</code>. This
is only meaningful for <code>GIMPLE_CALL</code>, <code>GIMPLE_ASSIGN</code> and
<code>GIMPLE_COND</code>. If <code>STMT</code> is <code>GIMPLE_CALL</code>, it will return <code>CALL_EXPR</code>.
For <code>GIMPLE_COND</code>, it returns the code of the comparison predicate.
For <code>GIMPLE_ASSIGN</code> it returns the code of the operation performed
by the <code>RHS</code> of the assignment.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_block</b> (<var>gimple g, tree block</var>)<var><a name="index-gimple_005fset_005fblock-2743"></a></var><br>
<blockquote><p>Set the lexical scope block of <code>G</code> to <code>BLOCK</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: location_t <b>gimple_locus</b> (<var>gimple g</var>)<var><a name="index-gimple_005flocus-2744"></a></var><br>
<blockquote><p>Return locus information for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_locus</b> (<var>gimple g, location_t locus</var>)<var><a name="index-gimple_005fset_005flocus-2745"></a></var><br>
<blockquote><p>Set locus information for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_locus_empty_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005flocus_005fempty_005fp-2746"></a></var><br>
<blockquote><p>Return true if <code>G</code> does not have locus information.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_no_warning_p</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fno_005fwarning_005fp-2747"></a></var><br>
<blockquote><p>Return true if no warnings should be emitted for statement <code>STMT</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_visited</b> (<var>gimple stmt, bool visited_p</var>)<var><a name="index-gimple_005fset_005fvisited-2748"></a></var><br>
<blockquote><p>Set the visited status on statement <code>STMT</code> to <code>VISITED_P</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_visited_p</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fvisited_005fp-2749"></a></var><br>
<blockquote><p>Return the visited status on statement <code>STMT</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_plf</b> (<var>gimple stmt, enum plf_mask plf, bool val_p</var>)<var><a name="index-gimple_005fset_005fplf-2750"></a></var><br>
<blockquote><p>Set pass local flag <code>PLF</code> on statement <code>STMT</code> to <code>VAL_P</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned int <b>gimple_plf</b> (<var>gimple stmt, enum plf_mask plf</var>)<var><a name="index-gimple_005fplf-2751"></a></var><br>
<blockquote><p>Return the value of pass local flag <code>PLF</code> on statement <code>STMT</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_has_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fhas_005fops-2752"></a></var><br>
<blockquote><p>Return true if statement <code>G</code> has register or memory operands.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_has_mem_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fhas_005fmem_005fops-2753"></a></var><br>
<blockquote><p>Return true if statement <code>G</code> has memory operands.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_num_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fnum_005fops-2754"></a></var><br>
<blockquote><p>Return the number of operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fops-2755"></a></var><br>
<blockquote><p>Return the array of operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_op</b> (<var>gimple g, unsigned i</var>)<var><a name="index-gimple_005fop-2756"></a></var><br>
<blockquote><p>Return operand <code>I</code> for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_op_ptr</b> (<var>gimple g, unsigned i</var>)<var><a name="index-gimple_005fop_005fptr-2757"></a></var><br>
<blockquote><p>Return a pointer to operand <code>I</code> for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_op</b> (<var>gimple g, unsigned i, tree op</var>)<var><a name="index-gimple_005fset_005fop-2758"></a></var><br>
<blockquote><p>Set operand <code>I</code> of statement <code>G</code> to <code>OP</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bitmap <b>gimple_addresses_taken</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005faddresses_005ftaken-2759"></a></var><br>
<blockquote><p>Return the set of symbols that have had their address taken by
<code>STMT</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: struct def_optype_d * <b>gimple_def_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fdef_005fops-2760"></a></var><br>
<blockquote><p>Return the set of <code>DEF</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_def_ops</b> (<var>gimple g, struct def_optype_d *def</var>)<var><a name="index-gimple_005fset_005fdef_005fops-2761"></a></var><br>
<blockquote><p>Set <code>DEF</code> to be the set of <code>DEF</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: struct use_optype_d * <b>gimple_use_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fuse_005fops-2762"></a></var><br>
<blockquote><p>Return the set of <code>USE</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_use_ops</b> (<var>gimple g, struct use_optype_d *use</var>)<var><a name="index-gimple_005fset_005fuse_005fops-2763"></a></var><br>
<blockquote><p>Set <code>USE</code> to be the set of <code>USE</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: struct voptype_d * <b>gimple_vuse_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fvuse_005fops-2764"></a></var><br>
<blockquote><p>Return the set of <code>VUSE</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_vuse_ops</b> (<var>gimple g, struct voptype_d *ops</var>)<var><a name="index-gimple_005fset_005fvuse_005fops-2765"></a></var><br>
<blockquote><p>Set <code>OPS</code> to be the set of <code>VUSE</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: struct voptype_d * <b>gimple_vdef_ops</b> (<var>gimple g</var>)<var><a name="index-gimple_005fvdef_005fops-2766"></a></var><br>
<blockquote><p>Return the set of <code>VDEF</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_vdef_ops</b> (<var>gimple g, struct voptype_d *ops</var>)<var><a name="index-gimple_005fset_005fvdef_005fops-2767"></a></var><br>
<blockquote><p>Set <code>OPS</code> to be the set of <code>VDEF</code> operands for statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bitmap <b>gimple_loaded_syms</b> (<var>gimple g</var>)<var><a name="index-gimple_005floaded_005fsyms-2768"></a></var><br>
<blockquote><p>Return the set of symbols loaded by statement <code>G</code>. Each element of
the set is the <code>DECL_UID</code> of the corresponding symbol.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bitmap <b>gimple_stored_syms</b> (<var>gimple g</var>)<var><a name="index-gimple_005fstored_005fsyms-2769"></a></var><br>
<blockquote><p>Return the set of symbols stored by statement <code>G</code>. Each element of
the set is the <code>DECL_UID</code> of the corresponding symbol.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_modified_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fmodified_005fp-2770"></a></var><br>
<blockquote><p>Return true if statement <code>G</code> has operands and the modified field
has been set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_has_volatile_ops</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fhas_005fvolatile_005fops-2771"></a></var><br>
<blockquote><p>Return true if statement <code>STMT</code> contains volatile operands.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_set_has_volatile_ops</b> (<var>gimple stmt, bool volatilep</var>)<var><a name="index-gimple_005fset_005fhas_005fvolatile_005fops-2772"></a></var><br>
<blockquote><p>Return true if statement <code>STMT</code> contains volatile operands.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>update_stmt</b> (<var>gimple s</var>)<var><a name="index-update_005fstmt-2773"></a></var><br>
<blockquote><p>Mark statement <code>S</code> as modified, and update it.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>update_stmt_if_modified</b> (<var>gimple s</var>)<var><a name="index-update_005fstmt_005fif_005fmodified-2774"></a></var><br>
<blockquote><p>Update statement <code>S</code> if it has been marked modified.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_copy</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fcopy-2775"></a></var><br>
<blockquote><p>Return a deep copy of statement <code>STMT</code>.
</p></blockquote></div>
<div class="node">
<a name="Tuple-specific-accessors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GIMPLE-sequences">GIMPLE sequences</a>,
Previous: <a rel="previous" accesskey="p" href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.7 Tuple specific accessors</h3>
<p><a name="index-Tuple-specific-accessors-2776"></a>
<ul class="menu">
<li><a accesskey="1" href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a>
<li><a accesskey="2" href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a>
<li><a accesskey="3" href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a>
<li><a accesskey="4" href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a>
<li><a accesskey="5" href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a>
<li><a accesskey="6" href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a>
<li><a accesskey="7" href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a>
<li><a accesskey="8" href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a>
<li><a accesskey="9" href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"><code>GIMPLE_OMP_MASTER</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"><code>GIMPLE_OMP_ORDERED</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a>
<li><a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a>
</ul>
<div class="node">
<a name="%3ccode%3eGIMPLE_ASM%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.1 <code>GIMPLE_ASM</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fASM_007d-2777"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_asm</b> (<var>const char *string, ninputs, noutputs, nclobbers, ...</var>)<var><a name="index-gimple_005fbuild_005fasm-2778"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_ASM</code> statement. This statement is used for
building in-line assembly constructs. <code>STRING</code> is the assembly
code. <code>NINPUT</code> is the number of register inputs. <code>NOUTPUT</code> is the
number of register outputs. <code>NCLOBBERS</code> is the number of clobbered
registers. The rest of the arguments trees for each input,
output, and clobbered registers.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_asm_vec</b> (<var>const char *, VEC</var>(<var>tree,gc</var>)<var> *, VEC</var>(<var>tree,gc</var>)<var> *, VEC</var>(<var>tree,gc</var>)<var> *</var>)<var><a name="index-gimple_005fbuild_005fasm_005fvec-2779"></a></var><br>
<blockquote><p>Identical to gimple_build_asm, but the arguments are passed in
VECs.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_asm_ninputs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fninputs-2780"></a></var><br>
<blockquote><p>Return the number of input operands for <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_asm_noutputs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fnoutputs-2781"></a></var><br>
<blockquote><p>Return the number of output operands for <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_asm_nclobbers</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fnclobbers-2782"></a></var><br>
<blockquote><p>Return the number of clobber operands for <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_asm_input_op</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fasm_005finput_005fop-2783"></a></var><br>
<blockquote><p>Return input operand <code>INDEX</code> of <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_asm_set_input_op</b> (<var>gimple g, unsigned index, tree in_op</var>)<var><a name="index-gimple_005fasm_005fset_005finput_005fop-2784"></a></var><br>
<blockquote><p>Set <code>IN_OP</code> to be input operand <code>INDEX</code> in <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_asm_output_op</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fasm_005foutput_005fop-2785"></a></var><br>
<blockquote><p>Return output operand <code>INDEX</code> of <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_asm_set_output_op</b> (<var>gimple g, unsigned index, tree out_op</var>)<var><a name="index-gimple_005fasm_005fset_005foutput_005fop-2786"></a></var><br>
<blockquote><p>Set <code>OUT_OP</code> to be output operand <code>INDEX</code> in <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_asm_clobber_op</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fasm_005fclobber_005fop-2787"></a></var><br>
<blockquote><p>Return clobber operand <code>INDEX</code> of <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_asm_set_clobber_op</b> (<var>gimple g, unsigned index, tree clobber_op</var>)<var><a name="index-gimple_005fasm_005fset_005fclobber_005fop-2788"></a></var><br>
<blockquote><p>Set <code>CLOBBER_OP</code> to be clobber operand <code>INDEX</code> in <code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: const char * <b>gimple_asm_string</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fstring-2789"></a></var><br>
<blockquote><p>Return the string representing the assembly instruction in
<code>GIMPLE_ASM</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_asm_volatile_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fvolatile_005fp-2790"></a></var><br>
<blockquote><p>Return true if <code>G</code> is an asm statement marked volatile.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_asm_set_volatile</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fset_005fvolatile-2791"></a></var><br>
<blockquote><p>Mark asm statement <code>G</code> as volatile.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_asm_clear_volatile</b> (<var>gimple g</var>)<var><a name="index-gimple_005fasm_005fclear_005fvolatile-2792"></a></var><br>
<blockquote><p>Remove volatile marker from asm statement <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_ASSIGN%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.2 <code>GIMPLE_ASSIGN</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fASSIGN_007d-2793"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_assign</b> (<var>tree lhs, tree rhs</var>)<var><a name="index-gimple_005fbuild_005fassign-2794"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_ASSIGN</code> statement. The left-hand side is an lvalue
passed in lhs. The right-hand side can be either a unary or
binary tree expression. The expression tree rhs will be
flattened and its operands assigned to the corresponding operand
slots in the new statement. This function is useful when you
already have a tree expression that you want to convert into a
tuple. However, try to avoid building expression trees for the
sole purpose of calling this function. If you already have the
operands in separate trees, it is better to use
<code>gimple_build_assign_with_ops</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimplify_assign</b> (<var>tree dst, tree src, gimple_seq *seq_p</var>)<var><a name="index-gimplify_005fassign-2795"></a></var><br>
<blockquote><p>Build a new <code>GIMPLE_ASSIGN</code> tuple and append it to the end of
<code>*SEQ_P</code>.
</p></blockquote></div>
<p><code>DST</code>/<code>SRC</code> are the destination and source respectively. You can
pass ungimplified trees in <code>DST</code> or <code>SRC</code>, in which
case they will be converted to a gimple operand if necessary.
<p>This function returns the newly created <code>GIMPLE_ASSIGN</code> tuple.
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_assign_with_ops</b> (<var>enum tree_code subcode, tree lhs, tree op1, tree op2</var>)<var><a name="index-gimple_005fbuild_005fassign_005fwith_005fops-2796"></a></var><br>
<blockquote><p>This function is similar to <code>gimple_build_assign</code>, but is used to
build a <code>GIMPLE_ASSIGN</code> statement when the operands of the
right-hand side of the assignment are already split into
different operands.
<p>The left-hand side is an lvalue passed in lhs. Subcode is the
<code>tree_code</code> for the right-hand side of the assignment. Op1 and op2
are the operands. If op2 is null, subcode must be a <code>tree_code</code>
for a unary expression.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum tree_code <b>gimple_assign_rhs_code</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs_005fcode-2797"></a></var><br>
<blockquote><p>Return the code of the expression computed on the <code>RHS</code> of
assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum gimple_rhs_class <b>gimple_assign_rhs_class</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs_005fclass-2798"></a></var><br>
<blockquote><p>Return the gimple rhs class of the code for the expression
computed on the rhs of assignment statement <code>G</code>. This will never
return <code>GIMPLE_INVALID_RHS</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_assign_lhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005flhs-2799"></a></var><br>
<blockquote><p>Return the <code>LHS</code> of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_assign_lhs_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005flhs_005fptr-2800"></a></var><br>
<blockquote><p>Return a pointer to the <code>LHS</code> of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_assign_rhs1</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs1-2801"></a></var><br>
<blockquote><p>Return the first operand on the <code>RHS</code> of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_assign_rhs1_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs1_005fptr-2802"></a></var><br>
<blockquote><p>Return the address of the first operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_assign_rhs2</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs2-2803"></a></var><br>
<blockquote><p>Return the second operand on the <code>RHS</code> of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_assign_rhs2_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs2_005fptr-2804"></a></var><br>
<blockquote><p>Return the address of the second operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_assign_rhs3</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs3-2805"></a></var><br>
<blockquote><p>Return the third operand on the <code>RHS</code> of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_assign_rhs3_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fassign_005frhs3_005fptr-2806"></a></var><br>
<blockquote><p>Return the address of the third operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_assign_set_lhs</b> (<var>gimple g, tree lhs</var>)<var><a name="index-gimple_005fassign_005fset_005flhs-2807"></a></var><br>
<blockquote><p>Set <code>LHS</code> to be the <code>LHS</code> operand of assignment statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_assign_set_rhs1</b> (<var>gimple g, tree rhs</var>)<var><a name="index-gimple_005fassign_005fset_005frhs1-2808"></a></var><br>
<blockquote><p>Set <code>RHS</code> to be the first operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_assign_set_rhs2</b> (<var>gimple g, tree rhs</var>)<var><a name="index-gimple_005fassign_005fset_005frhs2-2809"></a></var><br>
<blockquote><p>Set <code>RHS</code> to be the second operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_assign_set_rhs3</b> (<var>gimple g, tree rhs</var>)<var><a name="index-gimple_005fassign_005fset_005frhs3-2810"></a></var><br>
<blockquote><p>Set <code>RHS</code> to be the third operand on the <code>RHS</code> of assignment
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_assign_cast_p</b> (<var>gimple s</var>)<var><a name="index-gimple_005fassign_005fcast_005fp-2811"></a></var><br>
<blockquote><p>Return true if <code>S</code> is a type-cast assignment.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_BIND%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.3 <code>GIMPLE_BIND</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fBIND_007d-2812"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_bind</b> (<var>tree vars, gimple_seq body</var>)<var><a name="index-gimple_005fbuild_005fbind-2813"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_BIND</code> statement with a list of variables in <code>VARS</code>
and a body of statements in sequence <code>BODY</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_bind_vars</b> (<var>gimple g</var>)<var><a name="index-gimple_005fbind_005fvars-2814"></a></var><br>
<blockquote><p>Return the variables declared in the <code>GIMPLE_BIND</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_set_vars</b> (<var>gimple g, tree vars</var>)<var><a name="index-gimple_005fbind_005fset_005fvars-2815"></a></var><br>
<blockquote><p>Set <code>VARS</code> to be the set of variables declared in the <code>GIMPLE_BIND</code>
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_append_vars</b> (<var>gimple g, tree vars</var>)<var><a name="index-gimple_005fbind_005fappend_005fvars-2816"></a></var><br>
<blockquote><p>Append <code>VARS</code> to the set of variables declared in the <code>GIMPLE_BIND</code>
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_bind_body</b> (<var>gimple g</var>)<var><a name="index-gimple_005fbind_005fbody-2817"></a></var><br>
<blockquote><p>Return the GIMPLE sequence contained in the <code>GIMPLE_BIND</code> statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_set_body</b> (<var>gimple g, gimple_seq seq</var>)<var><a name="index-gimple_005fbind_005fset_005fbody-2818"></a></var><br>
<blockquote><p>Set <code>SEQ</code> to be sequence contained in the <code>GIMPLE_BIND</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_add_stmt</b> (<var>gimple gs, gimple stmt</var>)<var><a name="index-gimple_005fbind_005fadd_005fstmt-2819"></a></var><br>
<blockquote><p>Append a statement to the end of a <code>GIMPLE_BIND</code>'s body.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_add_seq</b> (<var>gimple gs, gimple_seq seq</var>)<var><a name="index-gimple_005fbind_005fadd_005fseq-2820"></a></var><br>
<blockquote><p>Append a sequence of statements to the end of a <code>GIMPLE_BIND</code>'s
body.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_bind_block</b> (<var>gimple g</var>)<var><a name="index-gimple_005fbind_005fblock-2821"></a></var><br>
<blockquote><p>Return the <code>TREE_BLOCK</code> node associated with <code>GIMPLE_BIND</code> statement
<code>G</code>. This is analogous to the <code>BIND_EXPR_BLOCK</code> field in trees.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_bind_set_block</b> (<var>gimple g, tree block</var>)<var><a name="index-gimple_005fbind_005fset_005fblock-2822"></a></var><br>
<blockquote><p>Set <code>BLOCK</code> to be the <code>TREE_BLOCK</code> node associated with <code>GIMPLE_BIND</code>
statement <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_CALL%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.4 <code>GIMPLE_CALL</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fCALL_007d-2823"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_call</b> (<var>tree fn, unsigned nargs, ...</var>)<var><a name="index-gimple_005fbuild_005fcall-2824"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_CALL</code> statement to function <code>FN</code>. The argument <code>FN</code>
must be either a <code>FUNCTION_DECL</code> or a gimple call address as
determined by <code>is_gimple_call_addr</code>. <code>NARGS</code> are the number of
arguments. The rest of the arguments follow the argument <code>NARGS</code>,
and must be trees that are valid as rvalues in gimple (i.e., each
operand is validated with <code>is_gimple_operand</code>).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_call_from_tree</b> (<var>tree call_expr</var>)<var><a name="index-gimple_005fbuild_005fcall_005ffrom_005ftree-2825"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_CALL</code> from a <code>CALL_EXPR</code> node. The arguments and the
function are taken from the expression directly. This routine
assumes that <code>call_expr</code> is already in GIMPLE form. That is, its
operands are GIMPLE values and the function call needs no further
simplification. All the call flags in <code>call_expr</code> are copied over
to the new <code>GIMPLE_CALL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_call_vec</b> (<var>tree fn, </var><code>VEC</code>(<var>tree, heap</var>)<var> *args</var>)<var><a name="index-gimple_005fbuild_005fcall_005fvec-2826"></a></var><br>
<blockquote><p>Identical to <code>gimple_build_call</code> but the arguments are stored in a
<code>VEC</code>().
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_lhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005flhs-2827"></a></var><br>
<blockquote><p>Return the <code>LHS</code> of call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_call_lhs_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005flhs_005fptr-2828"></a></var><br>
<blockquote><p>Return a pointer to the <code>LHS</code> of call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_set_lhs</b> (<var>gimple g, tree lhs</var>)<var><a name="index-gimple_005fcall_005fset_005flhs-2829"></a></var><br>
<blockquote><p>Set <code>LHS</code> to be the <code>LHS</code> operand of call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_fn</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005ffn-2830"></a></var><br>
<blockquote><p>Return the tree node representing the function called by call
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_set_fn</b> (<var>gimple g, tree fn</var>)<var><a name="index-gimple_005fcall_005fset_005ffn-2831"></a></var><br>
<blockquote><p>Set <code>FN</code> to be the function called by call statement <code>G</code>. This has
to be a gimple value specifying the address of the called
function.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_fndecl</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005ffndecl-2832"></a></var><br>
<blockquote><p>If a given <code>GIMPLE_CALL</code>'s callee is a <code>FUNCTION_DECL</code>, return it.
Otherwise return <code>NULL</code>. This function is analogous to
<code>get_callee_fndecl</code> in <code>GENERIC</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_set_fndecl</b> (<var>gimple g, tree fndecl</var>)<var><a name="index-gimple_005fcall_005fset_005ffndecl-2833"></a></var><br>
<blockquote><p>Set the called function to <code>FNDECL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_return_type</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005freturn_005ftype-2834"></a></var><br>
<blockquote><p>Return the type returned by call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_chain</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005fchain-2835"></a></var><br>
<blockquote><p>Return the static chain for call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_set_chain</b> (<var>gimple g, tree chain</var>)<var><a name="index-gimple_005fcall_005fset_005fchain-2836"></a></var><br>
<blockquote><p>Set <code>CHAIN</code> to be the static chain for call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_call_num_args</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcall_005fnum_005fargs-2837"></a></var><br>
<blockquote><p>Return the number of arguments used by call statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_call_arg</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fcall_005farg-2838"></a></var><br>
<blockquote><p>Return the argument at position <code>INDEX</code> for call statement <code>G</code>. The
first argument is 0.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_call_arg_ptr</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fcall_005farg_005fptr-2839"></a></var><br>
<blockquote><p>Return a pointer to the argument at position <code>INDEX</code> for call
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_set_arg</b> (<var>gimple g, unsigned index, tree arg</var>)<var><a name="index-gimple_005fcall_005fset_005farg-2840"></a></var><br>
<blockquote><p>Set <code>ARG</code> to be the argument at position <code>INDEX</code> for call statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_set_tail</b> (<var>gimple s</var>)<var><a name="index-gimple_005fcall_005fset_005ftail-2841"></a></var><br>
<blockquote><p>Mark call statement <code>S</code> as being a tail call (i.e., a call just
before the exit of a function). These calls are candidate for
tail call optimization.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_call_tail_p</b> (<var>gimple s</var>)<var><a name="index-gimple_005fcall_005ftail_005fp-2842"></a></var><br>
<blockquote><p>Return true if <code>GIMPLE_CALL</code> <code>S</code> is marked as a tail call.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_call_mark_uninlinable</b> (<var>gimple s</var>)<var><a name="index-gimple_005fcall_005fmark_005funinlinable-2843"></a></var><br>
<blockquote><p>Mark <code>GIMPLE_CALL</code> <code>S</code> as being uninlinable.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_call_cannot_inline_p</b> (<var>gimple s</var>)<var><a name="index-gimple_005fcall_005fcannot_005finline_005fp-2844"></a></var><br>
<blockquote><p>Return true if <code>GIMPLE_CALL</code> <code>S</code> cannot be inlined.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_call_noreturn_p</b> (<var>gimple s</var>)<var><a name="index-gimple_005fcall_005fnoreturn_005fp-2845"></a></var><br>
<blockquote><p>Return true if <code>S</code> is a noreturn call.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_call_copy_skip_args</b> (<var>gimple stmt, bitmap args_to_skip</var>)<var><a name="index-gimple_005fcall_005fcopy_005fskip_005fargs-2846"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_CALL</code> identical to <code>STMT</code> but skipping the arguments
in the positions marked by the set <code>ARGS_TO_SKIP</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_CATCH%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.5 <code>GIMPLE_CATCH</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fCATCH_007d-2847"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_catch</b> (<var>tree types, gimple_seq handler</var>)<var><a name="index-gimple_005fbuild_005fcatch-2848"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_CATCH</code> statement. <code>TYPES</code> are the tree types this
catch handles. <code>HANDLER</code> is a sequence of statements with the code
for the handler.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_catch_types</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcatch_005ftypes-2849"></a></var><br>
<blockquote><p>Return the types handled by <code>GIMPLE_CATCH</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_catch_types_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcatch_005ftypes_005fptr-2850"></a></var><br>
<blockquote><p>Return a pointer to the types handled by <code>GIMPLE_CATCH</code> statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_catch_handler</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcatch_005fhandler-2851"></a></var><br>
<blockquote><p>Return the GIMPLE sequence representing the body of the handler
of <code>GIMPLE_CATCH</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_catch_set_types</b> (<var>gimple g, tree t</var>)<var><a name="index-gimple_005fcatch_005fset_005ftypes-2852"></a></var><br>
<blockquote><p>Set <code>T</code> to be the set of types handled by <code>GIMPLE_CATCH</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_catch_set_handler</b> (<var>gimple g, gimple_seq handler</var>)<var><a name="index-gimple_005fcatch_005fset_005fhandler-2853"></a></var><br>
<blockquote><p>Set <code>HANDLER</code> to be the body of <code>GIMPLE_CATCH</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_COND%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.6 <code>GIMPLE_COND</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fCOND_007d-2854"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_cond</b> (<var>enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label</var>)<var><a name="index-gimple_005fbuild_005fcond-2855"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_COND</code> statement. <code>A</code> <code>GIMPLE_COND</code> statement compares
<code>LHS</code> and <code>RHS</code> and if the condition in <code>PRED_CODE</code> is true, jump to
the label in <code>t_label</code>, otherwise jump to the label in <code>f_label</code>.
<code>PRED_CODE</code> are relational operator tree codes like <code>EQ_EXPR</code>,
<code>LT_EXPR</code>, <code>LE_EXPR</code>, <code>NE_EXPR</code>, etc.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_cond_from_tree</b> (<var>tree cond, tree t_label, tree f_label</var>)<var><a name="index-gimple_005fbuild_005fcond_005ffrom_005ftree-2856"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_COND</code> statement from the conditional expression
tree <code>COND</code>. <code>T_LABEL</code> and <code>F_LABEL</code> are as in <code>gimple_build_cond</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum tree_code <b>gimple_cond_code</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005fcode-2857"></a></var><br>
<blockquote><p>Return the code of the predicate computed by conditional
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_set_code</b> (<var>gimple g, enum tree_code code</var>)<var><a name="index-gimple_005fcond_005fset_005fcode-2858"></a></var><br>
<blockquote><p>Set <code>CODE</code> to be the predicate code for the conditional statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_cond_lhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005flhs-2859"></a></var><br>
<blockquote><p>Return the <code>LHS</code> of the predicate computed by conditional statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_set_lhs</b> (<var>gimple g, tree lhs</var>)<var><a name="index-gimple_005fcond_005fset_005flhs-2860"></a></var><br>
<blockquote><p>Set <code>LHS</code> to be the <code>LHS</code> operand of the predicate computed by
conditional statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_cond_rhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005frhs-2861"></a></var><br>
<blockquote><p>Return the <code>RHS</code> operand of the predicate computed by conditional
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_set_rhs</b> (<var>gimple g, tree rhs</var>)<var><a name="index-gimple_005fcond_005fset_005frhs-2862"></a></var><br>
<blockquote><p>Set <code>RHS</code> to be the <code>RHS</code> operand of the predicate computed by
conditional statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_cond_true_label</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005ftrue_005flabel-2863"></a></var><br>
<blockquote><p>Return the label used by conditional statement <code>G</code> when its
predicate evaluates to true.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_set_true_label</b> (<var>gimple g, tree label</var>)<var><a name="index-gimple_005fcond_005fset_005ftrue_005flabel-2864"></a></var><br>
<blockquote><p>Set <code>LABEL</code> to be the label used by conditional statement <code>G</code> when
its predicate evaluates to true.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_set_false_label</b> (<var>gimple g, tree label</var>)<var><a name="index-gimple_005fcond_005fset_005ffalse_005flabel-2865"></a></var><br>
<blockquote><p>Set <code>LABEL</code> to be the label used by conditional statement <code>G</code> when
its predicate evaluates to false.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_cond_false_label</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005ffalse_005flabel-2866"></a></var><br>
<blockquote><p>Return the label used by conditional statement <code>G</code> when its
predicate evaluates to false.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_make_false</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005fmake_005ffalse-2867"></a></var><br>
<blockquote><p>Set the conditional <code>COND_STMT</code> to be of the form 'if (1 == 0)'.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_cond_make_true</b> (<var>gimple g</var>)<var><a name="index-gimple_005fcond_005fmake_005ftrue-2868"></a></var><br>
<blockquote><p>Set the conditional <code>COND_STMT</code> to be of the form 'if (1 == 1)'.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_DEBUG%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.7 <code>GIMPLE_DEBUG</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fDEBUG_007d-2869"></a><a name="index-g_t_0040code_007bGIMPLE_005fDEBUG_005fBIND_007d-2870"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_debug_bind</b> (<var>tree var, tree value, gimple stmt</var>)<var><a name="index-gimple_005fbuild_005fdebug_005fbind-2871"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_DEBUG</code> statement with <code>GIMPLE_DEBUG_BIND</code> of
<code>subcode</code>. The effect of this statement is to tell debug
information generation machinery that the value of user variable
<code>var</code> is given by <code>value</code> at that point, and to remain with
that value until <code>var</code> runs out of scope, a
dynamically-subsequent debug bind statement overrides the binding, or
conflicting values reach a control flow merge point. Even if
components of the <code>value</code> expression change afterwards, the
variable is supposed to retain the same value, though not necessarily
the same location.
<p>It is expected that <code>var</code> be most often a tree for automatic user
variables (<code>VAR_DECL</code> or <code>PARM_DECL</code>) that satisfy the
requirements for gimple registers, but it may also be a tree for a
scalarized component of a user variable (<code>ARRAY_REF</code>,
<code>COMPONENT_REF</code>), or a debug temporary (<code>DEBUG_EXPR_DECL</code>).
<p>As for <code>value</code>, it can be an arbitrary tree expression, but it is
recommended that it be in a suitable form for a gimple assignment
<code>RHS</code>. It is not expected that user variables that could appear
as <code>var</code> ever appear in <code>value</code>, because in the latter we'd
have their <code>SSA_NAME</code>s instead, but even if they were not in SSA
form, user variables appearing in <code>value</code> are to be regarded as
part of the executable code space, whereas those in <code>var</code> are to
be regarded as part of the source code space. There is no way to
refer to the value bound to a user variable within a <code>value</code>
expression.
<p>If <code>value</code> is <code>GIMPLE_DEBUG_BIND_NOVALUE</code>, debug information
generation machinery is informed that the variable <code>var</code> is
unbound, i.e., that its value is indeterminate, which sometimes means
it is really unavailable, and other times that the compiler could not
keep track of it.
<p>Block and location information for the newly-created stmt are
taken from <code>stmt</code>, if given.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_debug_bind_get_var</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fdebug_005fbind_005fget_005fvar-2872"></a></var><br>
<blockquote><p>Return the user variable <var>var</var> that is bound at <code>stmt</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_debug_bind_get_value</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fdebug_005fbind_005fget_005fvalue-2873"></a></var><br>
<blockquote><p>Return the value expression that is bound to a user variable at
<code>stmt</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_debug_bind_get_value_ptr</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fdebug_005fbind_005fget_005fvalue_005fptr-2874"></a></var><br>
<blockquote><p>Return a pointer to the value expression that is bound to a user
variable at <code>stmt</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_debug_bind_set_var</b> (<var>gimple stmt, tree var</var>)<var><a name="index-gimple_005fdebug_005fbind_005fset_005fvar-2875"></a></var><br>
<blockquote><p>Modify the user variable bound at <code>stmt</code> to <var>var</var>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_debug_bind_set_value</b> (<var>gimple stmt, tree var</var>)<var><a name="index-gimple_005fdebug_005fbind_005fset_005fvalue-2876"></a></var><br>
<blockquote><p>Modify the value bound to the user variable bound at <code>stmt</code> to
<var>value</var>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_debug_bind_reset_value</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fdebug_005fbind_005freset_005fvalue-2877"></a></var><br>
<blockquote><p>Modify the value bound to the user variable bound at <code>stmt</code> so
that the variable becomes unbound.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_debug_bind_has_value_p</b> (<var>gimple stmt</var>)<var><a name="index-gimple_005fdebug_005fbind_005fhas_005fvalue_005fp-2878"></a></var><br>
<blockquote><p>Return <code>TRUE</code> if <code>stmt</code> binds a user variable to a value,
and <code>FALSE</code> if it unbinds the variable.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_EH_FILTER%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.8 <code>GIMPLE_EH_FILTER</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fEH_005fFILTER_007d-2879"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_eh_filter</b> (<var>tree types, gimple_seq failure</var>)<var><a name="index-gimple_005fbuild_005feh_005ffilter-2880"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_EH_FILTER</code> statement. <code>TYPES</code> are the filter's
types. <code>FAILURE</code> is a sequence with the filter's failure action.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_eh_filter_types</b> (<var>gimple g</var>)<var><a name="index-gimple_005feh_005ffilter_005ftypes-2881"></a></var><br>
<blockquote><p>Return the types handled by <code>GIMPLE_EH_FILTER</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_eh_filter_types_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005feh_005ffilter_005ftypes_005fptr-2882"></a></var><br>
<blockquote><p>Return a pointer to the types handled by <code>GIMPLE_EH_FILTER</code>
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_eh_filter_failure</b> (<var>gimple g</var>)<var><a name="index-gimple_005feh_005ffilter_005ffailure-2883"></a></var><br>
<blockquote><p>Return the sequence of statement to execute when <code>GIMPLE_EH_FILTER</code>
statement fails.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_eh_filter_set_types</b> (<var>gimple g, tree types</var>)<var><a name="index-gimple_005feh_005ffilter_005fset_005ftypes-2884"></a></var><br>
<blockquote><p>Set <code>TYPES</code> to be the set of types handled by <code>GIMPLE_EH_FILTER</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_eh_filter_set_failure</b> (<var>gimple g, gimple_seq failure</var>)<var><a name="index-gimple_005feh_005ffilter_005fset_005ffailure-2885"></a></var><br>
<blockquote><p>Set <code>FAILURE</code> to be the sequence of statements to execute on
failure for <code>GIMPLE_EH_FILTER</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_eh_filter_must_not_throw</b> (<var>gimple g</var>)<var><a name="index-gimple_005feh_005ffilter_005fmust_005fnot_005fthrow-2886"></a></var><br>
<blockquote><p>Return the <code>EH_FILTER_MUST_NOT_THROW</code> flag.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_eh_filter_set_must_not_throw</b> (<var>gimple g, bool mntp</var>)<var><a name="index-gimple_005feh_005ffilter_005fset_005fmust_005fnot_005fthrow-2887"></a></var><br>
<blockquote><p>Set the <code>EH_FILTER_MUST_NOT_THROW</code> flag.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_LABEL%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.9 <code>GIMPLE_LABEL</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fLABEL_007d-2888"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_label</b> (<var>tree label</var>)<var><a name="index-gimple_005fbuild_005flabel-2889"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_LABEL</code> statement with corresponding to the tree
label, <code>LABEL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_label_label</b> (<var>gimple g</var>)<var><a name="index-gimple_005flabel_005flabel-2890"></a></var><br>
<blockquote><p>Return the <code>LABEL_DECL</code> node used by <code>GIMPLE_LABEL</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_label_set_label</b> (<var>gimple g, tree label</var>)<var><a name="index-gimple_005flabel_005fset_005flabel-2891"></a></var><br>
<blockquote><p>Set <code>LABEL</code> to be the <code>LABEL_DECL</code> node used by <code>GIMPLE_LABEL</code>
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_goto</b> (<var>tree dest</var>)<var><a name="index-gimple_005fbuild_005fgoto-2892"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_GOTO</code> statement to label <code>DEST</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_goto_dest</b> (<var>gimple g</var>)<var><a name="index-gimple_005fgoto_005fdest-2893"></a></var><br>
<blockquote><p>Return the destination of the unconditional jump <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_goto_set_dest</b> (<var>gimple g, tree dest</var>)<var><a name="index-gimple_005fgoto_005fset_005fdest-2894"></a></var><br>
<blockquote><p>Set <code>DEST</code> to be the destination of the unconditional jump <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_NOP%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.10 <code>GIMPLE_NOP</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fNOP_007d-2895"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_nop</b> (<var>void</var>)<var><a name="index-gimple_005fbuild_005fnop-2896"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_NOP</code> statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_nop_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fnop_005fp-2897"></a></var><br>
<blockquote><p>Returns <code>TRUE</code> if statement <code>G</code> is a <code>GIMPLE_NOP</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_ATOMIC_LOAD%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.11 <code>GIMPLE_OMP_ATOMIC_LOAD</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fATOMIC_005fLOAD_007d-2898"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_atomic_load</b> (<var>tree lhs, tree rhs</var>)<var><a name="index-gimple_005fbuild_005fomp_005fatomic_005fload-2899"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_ATOMIC_LOAD</code> statement. <code>LHS</code> is the left-hand
side of the assignment. <code>RHS</code> is the right-hand side of the
assignment.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_atomic_load_set_lhs</b> (<var>gimple g, tree lhs</var>)<var><a name="index-gimple_005fomp_005fatomic_005fload_005fset_005flhs-2900"></a></var><br>
<blockquote><p>Set the <code>LHS</code> of an atomic load.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_atomic_load_lhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fatomic_005fload_005flhs-2901"></a></var><br>
<blockquote><p>Get the <code>LHS</code> of an atomic load.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_atomic_load_set_rhs</b> (<var>gimple g, tree rhs</var>)<var><a name="index-gimple_005fomp_005fatomic_005fload_005fset_005frhs-2902"></a></var><br>
<blockquote><p>Set the <code>RHS</code> of an atomic set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_atomic_load_rhs</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fatomic_005fload_005frhs-2903"></a></var><br>
<blockquote><p>Get the <code>RHS</code> of an atomic set.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_ATOMIC_STORE%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.12 <code>GIMPLE_OMP_ATOMIC_STORE</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fATOMIC_005fSTORE_007d-2904"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_atomic_store</b> (<var>tree val</var>)<var><a name="index-gimple_005fbuild_005fomp_005fatomic_005fstore-2905"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_ATOMIC_STORE</code> statement. <code>VAL</code> is the value to be
stored.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_atomic_store_set_val</b> (<var>gimple g, tree val</var>)<var><a name="index-gimple_005fomp_005fatomic_005fstore_005fset_005fval-2906"></a></var><br>
<blockquote><p>Set the value being stored in an atomic store.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_atomic_store_val</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fatomic_005fstore_005fval-2907"></a></var><br>
<blockquote><p>Return the value being stored in an atomic store.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_CONTINUE%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.13 <code>GIMPLE_OMP_CONTINUE</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fCONTINUE_007d-2908"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_continue</b> (<var>tree control_def, tree control_use</var>)<var><a name="index-gimple_005fbuild_005fomp_005fcontinue-2909"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_CONTINUE</code> statement. <code>CONTROL_DEF</code> is the
definition of the control variable. <code>CONTROL_USE</code> is the use of
the control variable.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_control_def</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fcontrol_005fdef-2910"></a></var><br>
<blockquote><p>Return the definition of the control variable on a
<code>GIMPLE_OMP_CONTINUE</code> in <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_control_def_ptr</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fcontrol_005fdef_005fptr-2911"></a></var><br>
<blockquote><p>Same as above, but return the pointer.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_set_control_def</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fset_005fcontrol_005fdef-2912"></a></var><br>
<blockquote><p>Set the control variable definition for a <code>GIMPLE_OMP_CONTINUE</code>
statement in <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_control_use</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fcontrol_005fuse-2913"></a></var><br>
<blockquote><p>Return the use of the control variable on a <code>GIMPLE_OMP_CONTINUE</code>
in <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_control_use_ptr</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fcontrol_005fuse_005fptr-2914"></a></var><br>
<blockquote><p>Same as above, but return the pointer.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_continue_set_control_use</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005fcontinue_005fset_005fcontrol_005fuse-2915"></a></var><br>
<blockquote><p>Set the control variable use for a <code>GIMPLE_OMP_CONTINUE</code> statement
in <code>S</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_CRITICAL%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.14 <code>GIMPLE_OMP_CRITICAL</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fCRITICAL_007d-2916"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_critical</b> (<var>gimple_seq body, tree name</var>)<var><a name="index-gimple_005fbuild_005fomp_005fcritical-2917"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_CRITICAL</code> statement. <code>BODY</code> is the sequence of
statements for which only one thread can execute. <code>NAME</code> is an
optional identifier for this critical block.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_critical_name</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fcritical_005fname-2918"></a></var><br>
<blockquote><p>Return the name associated with <code>OMP_CRITICAL</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_critical_name_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fcritical_005fname_005fptr-2919"></a></var><br>
<blockquote><p>Return a pointer to the name associated with <code>OMP</code> critical
statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_critical_set_name</b> (<var>gimple g, tree name</var>)<var><a name="index-gimple_005fomp_005fcritical_005fset_005fname-2920"></a></var><br>
<blockquote><p>Set <code>NAME</code> to be the name associated with <code>OMP</code> critical statement <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_FOR%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"><code>GIMPLE_OMP_MASTER</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.15 <code>GIMPLE_OMP_FOR</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fFOR_007d-2921"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_for</b> (<var>gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond</var>)<var><a name="index-gimple_005fbuild_005fomp_005ffor-2922"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_FOR</code> statement. <code>BODY</code> is sequence of statements
inside the for loop. <code>CLAUSES</code>, are any of the <code>OMP</code> loop
construct's clauses: private, firstprivate, lastprivate,
reductions, ordered, schedule, and nowait. <code>PRE_BODY</code> is the
sequence of statements that are loop invariant. <code>INDEX</code> is the
index variable. <code>INITIAL</code> is the initial value of <code>INDEX</code>. <code>FINAL</code> is
final value of <code>INDEX</code>. OMP_FOR_COND is the predicate used to
compare <code>INDEX</code> and <code>FINAL</code>. <code>INCR</code> is the increment expression.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_for_clauses</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fclauses-2923"></a></var><br>
<blockquote><p>Return the clauses associated with <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_for_clauses_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fclauses_005fptr-2924"></a></var><br>
<blockquote><p>Return a pointer to the <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_clauses</b> (<var>gimple g, tree clauses</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005fclauses-2925"></a></var><br>
<blockquote><p>Set <code>CLAUSES</code> to be the list of clauses associated with <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_for_index</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005findex-2926"></a></var><br>
<blockquote><p>Return the index variable for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_for_index_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005findex_005fptr-2927"></a></var><br>
<blockquote><p>Return a pointer to the index variable for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_index</b> (<var>gimple g, tree index</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005findex-2928"></a></var><br>
<blockquote><p>Set <code>INDEX</code> to be the index variable for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_for_initial</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005finitial-2929"></a></var><br>
<blockquote><p>Return the initial value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_for_initial_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005finitial_005fptr-2930"></a></var><br>
<blockquote><p>Return a pointer to the initial value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_initial</b> (<var>gimple g, tree initial</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005finitial-2931"></a></var><br>
<blockquote><p>Set <code>INITIAL</code> to be the initial value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_for_final</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005ffinal-2932"></a></var><br>
<blockquote><p>Return the final value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_for_final_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005ffinal_005fptr-2933"></a></var><br>
<blockquote><p>turn a pointer to the final value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_final</b> (<var>gimple g, tree final</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005ffinal-2934"></a></var><br>
<blockquote><p>Set <code>FINAL</code> to be the final value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_for_incr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fincr-2935"></a></var><br>
<blockquote><p>Return the increment value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_for_incr_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fincr_005fptr-2936"></a></var><br>
<blockquote><p>Return a pointer to the increment value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_incr</b> (<var>gimple g, tree incr</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005fincr-2937"></a></var><br>
<blockquote><p>Set <code>INCR</code> to be the increment value for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_omp_for_pre_body</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fpre_005fbody-2938"></a></var><br>
<blockquote><p>Return the sequence of statements to execute before the <code>OMP_FOR</code>
statement <code>G</code> starts.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_pre_body</b> (<var>gimple g, gimple_seq pre_body</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005fpre_005fbody-2939"></a></var><br>
<blockquote><p>Set <code>PRE_BODY</code> to be the sequence of statements to execute before
the <code>OMP_FOR</code> statement <code>G</code> starts.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_for_set_cond</b> (<var>gimple g, enum tree_code cond</var>)<var><a name="index-gimple_005fomp_005ffor_005fset_005fcond-2940"></a></var><br>
<blockquote><p>Set <code>COND</code> to be the condition code for <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum tree_code <b>gimple_omp_for_cond</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005ffor_005fcond-2941"></a></var><br>
<blockquote><p>Return the condition code associated with <code>OMP_FOR</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_MASTER%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"><code>GIMPLE_OMP_ORDERED</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.16 <code>GIMPLE_OMP_MASTER</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fMASTER_007d-2942"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_master</b> (<var>gimple_seq body</var>)<var><a name="index-gimple_005fbuild_005fomp_005fmaster-2943"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_MASTER</code> statement. <code>BODY</code> is the sequence of
statements to be executed by just the master.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_ORDERED%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"><code>GIMPLE_OMP_MASTER</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.17 <code>GIMPLE_OMP_ORDERED</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fORDERED_007d-2944"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_ordered</b> (<var>gimple_seq body</var>)<var><a name="index-gimple_005fbuild_005fomp_005fordered-2945"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_ORDERED</code> statement.
</p></blockquote></div>
<p><code>BODY</code> is the sequence of statements inside a loop that will
executed in sequence.
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_PARALLEL%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"><code>GIMPLE_OMP_ORDERED</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.18 <code>GIMPLE_OMP_PARALLEL</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fPARALLEL_007d-2946"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_parallel</b> (<var>gimple_seq body, tree clauses, tree child_fn, tree data_arg</var>)<var><a name="index-gimple_005fbuild_005fomp_005fparallel-2947"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_PARALLEL</code> statement.
</p></blockquote></div>
<p><code>BODY</code> is sequence of statements which are executed in parallel.
<code>CLAUSES</code>, are the <code>OMP</code> parallel construct's clauses. <code>CHILD_FN</code> is
the function created for the parallel threads to execute.
<code>DATA_ARG</code> are the shared data argument(s).
<div class="defun">
— GIMPLE function: bool <b>gimple_omp_parallel_combined_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fcombined_005fp-2948"></a></var><br>
<blockquote><p>Return true if <code>OMP</code> parallel statement <code>G</code> has the
<code>GF_OMP_PARALLEL_COMBINED</code> flag set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_parallel_set_combined_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fset_005fcombined_005fp-2949"></a></var><br>
<blockquote><p>Set the <code>GF_OMP_PARALLEL_COMBINED</code> field in <code>OMP</code> parallel statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_omp_body</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fbody-2950"></a></var><br>
<blockquote><p>Return the body for the <code>OMP</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_set_body</b> (<var>gimple g, gimple_seq body</var>)<var><a name="index-gimple_005fomp_005fset_005fbody-2951"></a></var><br>
<blockquote><p>Set <code>BODY</code> to be the body for the <code>OMP</code> statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_parallel_clauses</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fclauses-2952"></a></var><br>
<blockquote><p>Return the clauses associated with <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_parallel_clauses_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fclauses_005fptr-2953"></a></var><br>
<blockquote><p>Return a pointer to the clauses associated with <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_parallel_set_clauses</b> (<var>gimple g, tree clauses</var>)<var><a name="index-gimple_005fomp_005fparallel_005fset_005fclauses-2954"></a></var><br>
<blockquote><p>Set <code>CLAUSES</code> to be the list of clauses associated with
<code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_parallel_child_fn</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fchild_005ffn-2955"></a></var><br>
<blockquote><p>Return the child function used to hold the body of <code>OMP_PARALLEL</code>
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_parallel_child_fn_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fchild_005ffn_005fptr-2956"></a></var><br>
<blockquote><p>Return a pointer to the child function used to hold the body of
<code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_parallel_set_child_fn</b> (<var>gimple g, tree child_fn</var>)<var><a name="index-gimple_005fomp_005fparallel_005fset_005fchild_005ffn-2957"></a></var><br>
<blockquote><p>Set <code>CHILD_FN</code> to be the child function for <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_parallel_data_arg</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fdata_005farg-2958"></a></var><br>
<blockquote><p>Return the artificial argument used to send variables and values
from the parent to the children threads in <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_parallel_data_arg_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fparallel_005fdata_005farg_005fptr-2959"></a></var><br>
<blockquote><p>Return a pointer to the data argument for <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_parallel_set_data_arg</b> (<var>gimple g, tree data_arg</var>)<var><a name="index-gimple_005fomp_005fparallel_005fset_005fdata_005farg-2960"></a></var><br>
<blockquote><p>Set <code>DATA_ARG</code> to be the data argument for <code>OMP_PARALLEL</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>is_gimple_omp</b> (<var>gimple stmt</var>)<var><a name="index-is_005fgimple_005fomp-2961"></a></var><br>
<blockquote><p>Returns true when the gimple statement <code>STMT</code> is any of the OpenMP
types.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_RETURN%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.19 <code>GIMPLE_OMP_RETURN</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fRETURN_007d-2962"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_return</b> (<var>bool wait_p</var>)<var><a name="index-gimple_005fbuild_005fomp_005freturn-2963"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_RETURN</code> statement. <code>WAIT_P</code> is true if this is a
non-waiting return.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_return_set_nowait</b> (<var>gimple s</var>)<var><a name="index-gimple_005fomp_005freturn_005fset_005fnowait-2964"></a></var><br>
<blockquote><p>Set the nowait flag on <code>GIMPLE_OMP_RETURN</code> statement <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_omp_return_nowait_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005freturn_005fnowait_005fp-2965"></a></var><br>
<blockquote><p>Return true if <code>OMP</code> return statement <code>G</code> has the
<code>GF_OMP_RETURN_NOWAIT</code> flag set.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_SECTION%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.20 <code>GIMPLE_OMP_SECTION</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fSECTION_007d-2966"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_section</b> (<var>gimple_seq body</var>)<var><a name="index-gimple_005fbuild_005fomp_005fsection-2967"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_SECTION</code> statement for a sections statement.
</p></blockquote></div>
<p><code>BODY</code> is the sequence of statements in the section.
<div class="defun">
— GIMPLE function: bool <b>gimple_omp_section_last_p</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsection_005flast_005fp-2968"></a></var><br>
<blockquote><p>Return true if <code>OMP</code> section statement <code>G</code> has the
<code>GF_OMP_SECTION_LAST</code> flag set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_section_set_last</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsection_005fset_005flast-2969"></a></var><br>
<blockquote><p>Set the <code>GF_OMP_SECTION_LAST</code> flag on <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_SECTIONS%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.21 <code>GIMPLE_OMP_SECTIONS</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fSECTIONS_007d-2970"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_sections</b> (<var>gimple_seq body, tree clauses</var>)<var><a name="index-gimple_005fbuild_005fomp_005fsections-2971"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_SECTIONS</code> statement. <code>BODY</code> is a sequence of
section statements. <code>CLAUSES</code> are any of the <code>OMP</code> sections
construct's clauses: private, firstprivate, lastprivate,
reduction, and nowait.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_sections_switch</b> (<var>void</var>)<var><a name="index-gimple_005fbuild_005fomp_005fsections_005fswitch-2972"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_SECTIONS_SWITCH</code> statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_sections_control</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsections_005fcontrol-2973"></a></var><br>
<blockquote><p>Return the control variable associated with the
<code>GIMPLE_OMP_SECTIONS</code> in <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_sections_control_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsections_005fcontrol_005fptr-2974"></a></var><br>
<blockquote><p>Return a pointer to the clauses associated with the
<code>GIMPLE_OMP_SECTIONS</code> in <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_sections_set_control</b> (<var>gimple g, tree control</var>)<var><a name="index-gimple_005fomp_005fsections_005fset_005fcontrol-2975"></a></var><br>
<blockquote><p>Set <code>CONTROL</code> to be the set of clauses associated with the
<code>GIMPLE_OMP_SECTIONS</code> in <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_sections_clauses</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsections_005fclauses-2976"></a></var><br>
<blockquote><p>Return the clauses associated with <code>OMP_SECTIONS</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_sections_clauses_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsections_005fclauses_005fptr-2977"></a></var><br>
<blockquote><p>Return a pointer to the clauses associated with <code>OMP_SECTIONS</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_sections_set_clauses</b> (<var>gimple g, tree clauses</var>)<var><a name="index-gimple_005fomp_005fsections_005fset_005fclauses-2978"></a></var><br>
<blockquote><p>Set <code>CLAUSES</code> to be the set of clauses associated with <code>OMP_SECTIONS</code>
<code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_OMP_SINGLE%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.22 <code>GIMPLE_OMP_SINGLE</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fOMP_005fSINGLE_007d-2979"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_omp_single</b> (<var>gimple_seq body, tree clauses</var>)<var><a name="index-gimple_005fbuild_005fomp_005fsingle-2980"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_OMP_SINGLE</code> statement. <code>BODY</code> is the sequence of
statements that will be executed once. <code>CLAUSES</code> are any of the
<code>OMP</code> single construct's clauses: private, firstprivate,
copyprivate, nowait.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_omp_single_clauses</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsingle_005fclauses-2981"></a></var><br>
<blockquote><p>Return the clauses associated with <code>OMP_SINGLE</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_omp_single_clauses_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fomp_005fsingle_005fclauses_005fptr-2982"></a></var><br>
<blockquote><p>Return a pointer to the clauses associated with <code>OMP_SINGLE</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_omp_single_set_clauses</b> (<var>gimple g, tree clauses</var>)<var><a name="index-gimple_005fomp_005fsingle_005fset_005fclauses-2983"></a></var><br>
<blockquote><p>Set <code>CLAUSES</code> to be the clauses associated with <code>OMP_SINGLE</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_PHI%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.23 <code>GIMPLE_PHI</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fPHI_007d-2984"></a>
<div class="defun">
— GIMPLE function: gimple <b>make_phi_node</b> (<var>tree var, int len</var>)<var><a name="index-make_005fphi_005fnode-2985"></a></var><br>
<blockquote><p>Build a <code>PHI</code> node with len argument slots for variable var.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_phi_capacity</b> (<var>gimple g</var>)<var><a name="index-gimple_005fphi_005fcapacity-2986"></a></var><br>
<blockquote><p>Return the maximum number of arguments supported by <code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_phi_num_args</b> (<var>gimple g</var>)<var><a name="index-gimple_005fphi_005fnum_005fargs-2987"></a></var><br>
<blockquote><p>Return the number of arguments in <code>GIMPLE_PHI</code> <code>G</code>. This must always
be exactly the number of incoming edges for the basic block
holding <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_phi_result</b> (<var>gimple g</var>)<var><a name="index-gimple_005fphi_005fresult-2988"></a></var><br>
<blockquote><p>Return the <code>SSA</code> name created by <code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree * <b>gimple_phi_result_ptr</b> (<var>gimple g</var>)<var><a name="index-gimple_005fphi_005fresult_005fptr-2989"></a></var><br>
<blockquote><p>Return a pointer to the <code>SSA</code> name created by <code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_phi_set_result</b> (<var>gimple g, tree result</var>)<var><a name="index-gimple_005fphi_005fset_005fresult-2990"></a></var><br>
<blockquote><p>Set <code>RESULT</code> to be the <code>SSA</code> name created by <code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: struct phi_arg_d * <b>gimple_phi_arg</b> (<var>gimple g, index</var>)<var><a name="index-gimple_005fphi_005farg-2991"></a></var><br>
<blockquote><p>Return the <code>PHI</code> argument corresponding to incoming edge <code>INDEX</code> for
<code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_phi_set_arg</b> (<var>gimple g, index, struct phi_arg_d * phiarg</var>)<var><a name="index-gimple_005fphi_005fset_005farg-2992"></a></var><br>
<blockquote><p>Set <code>PHIARG</code> to be the argument corresponding to incoming edge
<code>INDEX</code> for <code>GIMPLE_PHI</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_RESX%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.24 <code>GIMPLE_RESX</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fRESX_007d-2993"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_resx</b> (<var>int region</var>)<var><a name="index-gimple_005fbuild_005fresx-2994"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_RESX</code> statement which is a statement. This
statement is a placeholder for _Unwind_Resume before we know if a
function call or a branch is needed. <code>REGION</code> is the exception
region from which control is flowing.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: int <b>gimple_resx_region</b> (<var>gimple g</var>)<var><a name="index-gimple_005fresx_005fregion-2995"></a></var><br>
<blockquote><p>Return the region number for <code>GIMPLE_RESX</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_resx_set_region</b> (<var>gimple g, int region</var>)<var><a name="index-gimple_005fresx_005fset_005fregion-2996"></a></var><br>
<blockquote><p>Set <code>REGION</code> to be the region number for <code>GIMPLE_RESX</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_RETURN%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.25 <code>GIMPLE_RETURN</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fRETURN_007d-2997"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_return</b> (<var>tree retval</var>)<var><a name="index-gimple_005fbuild_005freturn-2998"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_RETURN</code> statement whose return value is retval.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_return_retval</b> (<var>gimple g</var>)<var><a name="index-gimple_005freturn_005fretval-2999"></a></var><br>
<blockquote><p>Return the return value for <code>GIMPLE_RETURN</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_return_set_retval</b> (<var>gimple g, tree retval</var>)<var><a name="index-gimple_005freturn_005fset_005fretval-3000"></a></var><br>
<blockquote><p>Set <code>RETVAL</code> to be the return value for <code>GIMPLE_RETURN</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_SWITCH%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.26 <code>GIMPLE_SWITCH</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fSWITCH_007d-3001"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_switch</b> (<var>unsigned nlabels, tree index, tree default_label, ...</var>)<var><a name="index-gimple_005fbuild_005fswitch-3002"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_SWITCH</code> statement. <code>NLABELS</code> are the number of
labels excluding the default label. The default label is passed
in <code>DEFAULT_LABEL</code>. The rest of the arguments are trees
representing the labels. Each label is a tree of code
<code>CASE_LABEL_EXPR</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_switch_vec</b> (<var>tree index, tree default_label, </var><code>VEC</code>(<var>tree,heap</var>)<var> *args</var>)<var><a name="index-gimple_005fbuild_005fswitch_005fvec-3003"></a></var><br>
<blockquote><p>This function is an alternate way of building <code>GIMPLE_SWITCH</code>
statements. <code>INDEX</code> and <code>DEFAULT_LABEL</code> are as in
gimple_build_switch. <code>ARGS</code> is a vector of <code>CASE_LABEL_EXPR</code> trees
that contain the labels.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: unsigned <b>gimple_switch_num_labels</b> (<var>gimple g</var>)<var><a name="index-gimple_005fswitch_005fnum_005flabels-3004"></a></var><br>
<blockquote><p>Return the number of labels associated with the switch statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_switch_set_num_labels</b> (<var>gimple g, unsigned nlabels</var>)<var><a name="index-gimple_005fswitch_005fset_005fnum_005flabels-3005"></a></var><br>
<blockquote><p>Set <code>NLABELS</code> to be the number of labels for the switch statement
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_switch_index</b> (<var>gimple g</var>)<var><a name="index-gimple_005fswitch_005findex-3006"></a></var><br>
<blockquote><p>Return the index variable used by the switch statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_switch_set_index</b> (<var>gimple g, tree index</var>)<var><a name="index-gimple_005fswitch_005fset_005findex-3007"></a></var><br>
<blockquote><p>Set <code>INDEX</code> to be the index variable for switch statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_switch_label</b> (<var>gimple g, unsigned index</var>)<var><a name="index-gimple_005fswitch_005flabel-3008"></a></var><br>
<blockquote><p>Return the label numbered <code>INDEX</code>. The default label is 0, followed
by any labels in a switch statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_switch_set_label</b> (<var>gimple g, unsigned index, tree label</var>)<var><a name="index-gimple_005fswitch_005fset_005flabel-3009"></a></var><br>
<blockquote><p>Set the label number <code>INDEX</code> to <code>LABEL</code>. 0 is always the default
label.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>gimple_switch_default_label</b> (<var>gimple g</var>)<var><a name="index-gimple_005fswitch_005fdefault_005flabel-3010"></a></var><br>
<blockquote><p>Return the default label for a switch statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_switch_set_default_label</b> (<var>gimple g, tree label</var>)<var><a name="index-gimple_005fswitch_005fset_005fdefault_005flabel-3011"></a></var><br>
<blockquote><p>Set the default label for a switch statement.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_TRY%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a>,
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.27 <code>GIMPLE_TRY</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fTRY_007d-3012"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_try</b> (<var>gimple_seq eval, gimple_seq cleanup, unsigned int kind</var>)<var><a name="index-gimple_005fbuild_005ftry-3013"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_TRY</code> statement. <code>EVAL</code> is a sequence with the
expression to evaluate. <code>CLEANUP</code> is a sequence of statements to
run at clean-up time. <code>KIND</code> is the enumeration value
<code>GIMPLE_TRY_CATCH</code> if this statement denotes a try/catch construct
or <code>GIMPLE_TRY_FINALLY</code> if this statement denotes a try/finally
construct.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: enum gimple_try_flags <b>gimple_try_kind</b> (<var>gimple g</var>)<var><a name="index-gimple_005ftry_005fkind-3014"></a></var><br>
<blockquote><p>Return the kind of try block represented by <code>GIMPLE_TRY</code> <code>G</code>. This is
either <code>GIMPLE_TRY_CATCH</code> or <code>GIMPLE_TRY_FINALLY</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_try_catch_is_cleanup</b> (<var>gimple g</var>)<var><a name="index-gimple_005ftry_005fcatch_005fis_005fcleanup-3015"></a></var><br>
<blockquote><p>Return the <code>GIMPLE_TRY_CATCH_IS_CLEANUP</code> flag.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_try_eval</b> (<var>gimple g</var>)<var><a name="index-gimple_005ftry_005feval-3016"></a></var><br>
<blockquote><p>Return the sequence of statements used as the body for <code>GIMPLE_TRY</code>
<code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_try_cleanup</b> (<var>gimple g</var>)<var><a name="index-gimple_005ftry_005fcleanup-3017"></a></var><br>
<blockquote><p>Return the sequence of statements used as the cleanup body for
<code>GIMPLE_TRY</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_try_set_catch_is_cleanup</b> (<var>gimple g, bool catch_is_cleanup</var>)<var><a name="index-gimple_005ftry_005fset_005fcatch_005fis_005fcleanup-3018"></a></var><br>
<blockquote><p>Set the <code>GIMPLE_TRY_CATCH_IS_CLEANUP</code> flag.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_try_set_eval</b> (<var>gimple g, gimple_seq eval</var>)<var><a name="index-gimple_005ftry_005fset_005feval-3019"></a></var><br>
<blockquote><p>Set <code>EVAL</code> to be the sequence of statements to use as the body for
<code>GIMPLE_TRY</code> <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_try_set_cleanup</b> (<var>gimple g, gimple_seq cleanup</var>)<var><a name="index-gimple_005ftry_005fset_005fcleanup-3020"></a></var><br>
<blockquote><p>Set <code>CLEANUP</code> to be the sequence of statements to use as the
cleanup body for <code>GIMPLE_TRY</code> <code>G</code>.
</p></blockquote></div>
<div class="node">
<a name="%3ccode%3eGIMPLE_WITH_CLEANUP_EXPR%3c%2fcode%3e"></a>
<a name="g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a>,
Up: <a rel="up" accesskey="u" href="#Tuple-specific-accessors">Tuple specific accessors</a>
</div>
<h4 class="subsection">12.7.28 <code>GIMPLE_WITH_CLEANUP_EXPR</code></h4>
<p><a name="index-g_t_0040code_007bGIMPLE_005fWITH_005fCLEANUP_005fEXPR_007d-3021"></a>
<div class="defun">
— GIMPLE function: gimple <b>gimple_build_wce</b> (<var>gimple_seq cleanup</var>)<var><a name="index-gimple_005fbuild_005fwce-3022"></a></var><br>
<blockquote><p>Build a <code>GIMPLE_WITH_CLEANUP_EXPR</code> statement. <code>CLEANUP</code> is the
clean-up expression.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_wce_cleanup</b> (<var>gimple g</var>)<var><a name="index-gimple_005fwce_005fcleanup-3023"></a></var><br>
<blockquote><p>Return the cleanup sequence for cleanup statement <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_wce_set_cleanup</b> (<var>gimple g, gimple_seq cleanup</var>)<var><a name="index-gimple_005fwce_005fset_005fcleanup-3024"></a></var><br>
<blockquote><p>Set <code>CLEANUP</code> to be the cleanup sequence for <code>G</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_wce_cleanup_eh_only</b> (<var>gimple g</var>)<var><a name="index-gimple_005fwce_005fcleanup_005feh_005fonly-3025"></a></var><br>
<blockquote><p>Return the <code>CLEANUP_EH_ONLY</code> flag for a <code>WCE</code> tuple.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_wce_set_cleanup_eh_only</b> (<var>gimple g, bool eh_only_p</var>)<var><a name="index-gimple_005fwce_005fset_005fcleanup_005feh_005fonly-3026"></a></var><br>
<blockquote><p>Set the <code>CLEANUP_EH_ONLY</code> flag for a <code>WCE</code> tuple.
</p></blockquote></div>
<div class="node">
<a name="GIMPLE-sequences"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Sequence-iterators">Sequence iterators</a>,
Previous: <a rel="previous" accesskey="p" href="#Tuple-specific-accessors">Tuple specific accessors</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.8 GIMPLE sequences</h3>
<p><a name="index-GIMPLE-sequences-3027"></a>
GIMPLE sequences are the tuple equivalent of <code>STATEMENT_LIST</code>'s
used in <code>GENERIC</code>. They are used to chain statements together, and
when used in conjunction with sequence iterators, provide a
framework for iterating through statements.
<p>GIMPLE sequences are of type struct <code>gimple_sequence</code>, but are more
commonly passed by reference to functions dealing with sequences.
The type for a sequence pointer is <code>gimple_seq</code> which is the same
as struct <code>gimple_sequence</code> *. When declaring a local sequence,
you can define a local variable of type struct <code>gimple_sequence</code>.
When declaring a sequence allocated on the garbage collected
heap, use the function <code>gimple_seq_alloc</code> documented below.
<p>There are convenience functions for iterating through sequences
in the section entitled Sequence Iterators.
<p>Below is a list of functions to manipulate and query sequences.
<div class="defun">
— GIMPLE function: void <b>gimple_seq_add_stmt</b> (<var>gimple_seq *seq, gimple g</var>)<var><a name="index-gimple_005fseq_005fadd_005fstmt-3028"></a></var><br>
<blockquote><p>Link a gimple statement to the end of the sequence *<code>SEQ</code> if <code>G</code> is
not <code>NULL</code>. If *<code>SEQ</code> is <code>NULL</code>, allocate a sequence before linking.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_seq_add_seq</b> (<var>gimple_seq *dest, gimple_seq src</var>)<var><a name="index-gimple_005fseq_005fadd_005fseq-3029"></a></var><br>
<blockquote><p>Append sequence <code>SRC</code> to the end of sequence *<code>DEST</code> if <code>SRC</code> is not
<code>NULL</code>. If *<code>DEST</code> is <code>NULL</code>, allocate a new sequence before
appending.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_seq_deep_copy</b> (<var>gimple_seq src</var>)<var><a name="index-gimple_005fseq_005fdeep_005fcopy-3030"></a></var><br>
<blockquote><p>Perform a deep copy of sequence <code>SRC</code> and return the result.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_seq_reverse</b> (<var>gimple_seq seq</var>)<var><a name="index-gimple_005fseq_005freverse-3031"></a></var><br>
<blockquote><p>Reverse the order of the statements in the sequence <code>SEQ</code>. Return
<code>SEQ</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_seq_first</b> (<var>gimple_seq s</var>)<var><a name="index-gimple_005fseq_005ffirst-3032"></a></var><br>
<blockquote><p>Return the first statement in sequence <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gimple_seq_last</b> (<var>gimple_seq s</var>)<var><a name="index-gimple_005fseq_005flast-3033"></a></var><br>
<blockquote><p>Return the last statement in sequence <code>S</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_seq_set_last</b> (<var>gimple_seq s, gimple last</var>)<var><a name="index-gimple_005fseq_005fset_005flast-3034"></a></var><br>
<blockquote><p>Set the last statement in sequence <code>S</code> to the statement in <code>LAST</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_seq_set_first</b> (<var>gimple_seq s, gimple first</var>)<var><a name="index-gimple_005fseq_005fset_005ffirst-3035"></a></var><br>
<blockquote><p>Set the first statement in sequence <code>S</code> to the statement in <code>FIRST</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_seq_init</b> (<var>gimple_seq s</var>)<var><a name="index-gimple_005fseq_005finit-3036"></a></var><br>
<blockquote><p>Initialize sequence <code>S</code> to an empty sequence.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gimple_seq_alloc</b> (<var>void</var>)<var><a name="index-gimple_005fseq_005falloc-3037"></a></var><br>
<blockquote><p>Allocate a new sequence in the garbage collected store and return
it.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gimple_seq_copy</b> (<var>gimple_seq dest, gimple_seq src</var>)<var><a name="index-gimple_005fseq_005fcopy-3038"></a></var><br>
<blockquote><p>Copy the sequence <code>SRC</code> into the sequence <code>DEST</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_seq_empty_p</b> (<var>gimple_seq s</var>)<var><a name="index-gimple_005fseq_005fempty_005fp-3039"></a></var><br>
<blockquote><p>Return true if the sequence <code>S</code> is empty.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>bb_seq</b> (<var>basic_block bb</var>)<var><a name="index-bb_005fseq-3040"></a></var><br>
<blockquote><p>Returns the sequence of statements in <code>BB</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>set_bb_seq</b> (<var>basic_block bb, gimple_seq seq</var>)<var><a name="index-set_005fbb_005fseq-3041"></a></var><br>
<blockquote><p>Sets the sequence of statements in <code>BB</code> to <code>SEQ</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gimple_seq_singleton_p</b> (<var>gimple_seq seq</var>)<var><a name="index-gimple_005fseq_005fsingleton_005fp-3042"></a></var><br>
<blockquote><p>Determine whether <code>SEQ</code> contains exactly one statement.
</p></blockquote></div>
<div class="node">
<a name="Sequence-iterators"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Adding-a-new-GIMPLE-statement-code">Adding a new GIMPLE statement code</a>,
Previous: <a rel="previous" accesskey="p" href="#GIMPLE-sequences">GIMPLE sequences</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.9 Sequence iterators</h3>
<p><a name="index-Sequence-iterators-3043"></a>
Sequence iterators are convenience constructs for iterating
through statements in a sequence. Given a sequence <code>SEQ</code>, here is
a typical use of gimple sequence iterators:
<pre class="smallexample"> gimple_stmt_iterator gsi;
for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple g = gsi_stmt (gsi);
/* Do something with gimple statement <code>G</code>. */
}
</pre>
<p>Backward iterations are possible:
<pre class="smallexample"> for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
</pre>
<p>Forward and backward iterations on basic blocks are possible with
<code>gsi_start_bb</code> and <code>gsi_last_bb</code>.
<p>In the documentation below we sometimes refer to enum
<code>gsi_iterator_update</code>. The valid options for this enumeration are:
<ul>
<li><code>GSI_NEW_STMT</code>
Only valid when a single statement is added. Move the iterator to it.
<li><code>GSI_SAME_STMT</code>
Leave the iterator at the same statement.
<li><code>GSI_CONTINUE_LINKING</code>
Move iterator to whatever position is suitable for linking other
statements in the same direction.
</ul>
<p>Below is a list of the functions used to manipulate and use
statement iterators.
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_start</b> (<var>gimple_seq seq</var>)<var><a name="index-gsi_005fstart-3044"></a></var><br>
<blockquote><p>Return a new iterator pointing to the sequence <code>SEQ</code>'s first
statement. If <code>SEQ</code> is empty, the iterator's basic block is <code>NULL</code>.
Use <code>gsi_start_bb</code> instead when the iterator needs to always have
the correct basic block set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_start_bb</b> (<var>basic_block bb</var>)<var><a name="index-gsi_005fstart_005fbb-3045"></a></var><br>
<blockquote><p>Return a new iterator pointing to the first statement in basic
block <code>BB</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_last</b> (<var>gimple_seq seq</var>)<var><a name="index-gsi_005flast-3046"></a></var><br>
<blockquote><p>Return a new iterator initially pointing to the last statement of
sequence <code>SEQ</code>. If <code>SEQ</code> is empty, the iterator's basic block is
<code>NULL</code>. Use <code>gsi_last_bb</code> instead when the iterator needs to always
have the correct basic block set.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_last_bb</b> (<var>basic_block bb</var>)<var><a name="index-gsi_005flast_005fbb-3047"></a></var><br>
<blockquote><p>Return a new iterator pointing to the last statement in basic
block <code>BB</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gsi_end_p</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fend_005fp-3048"></a></var><br>
<blockquote><p>Return <code>TRUE</code> if at the end of <code>I</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: bool <b>gsi_one_before_end_p</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fone_005fbefore_005fend_005fp-3049"></a></var><br>
<blockquote><p>Return <code>TRUE</code> if we're one statement before the end of <code>I</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_next</b> (<var>gimple_stmt_iterator *i</var>)<var><a name="index-gsi_005fnext-3050"></a></var><br>
<blockquote><p>Advance the iterator to the next gimple statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_prev</b> (<var>gimple_stmt_iterator *i</var>)<var><a name="index-gsi_005fprev-3051"></a></var><br>
<blockquote><p>Advance the iterator to the previous gimple statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple <b>gsi_stmt</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fstmt-3052"></a></var><br>
<blockquote><p>Return the current stmt.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_after_labels</b> (<var>basic_block bb</var>)<var><a name="index-gsi_005fafter_005flabels-3053"></a></var><br>
<blockquote><p>Return a block statement iterator that points to the first
non-label statement in block <code>BB</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple * <b>gsi_stmt_ptr</b> (<var>gimple_stmt_iterator *i</var>)<var><a name="index-gsi_005fstmt_005fptr-3054"></a></var><br>
<blockquote><p>Return a pointer to the current stmt.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: basic_block <b>gsi_bb</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fbb-3055"></a></var><br>
<blockquote><p>Return the basic block associated with this iterator.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gsi_seq</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fseq-3056"></a></var><br>
<blockquote><p>Return the sequence associated with this iterator.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_remove</b> (<var>gimple_stmt_iterator *i, bool remove_eh_info</var>)<var><a name="index-gsi_005fremove-3057"></a></var><br>
<blockquote><p>Remove the current stmt from the sequence. The iterator is
updated to point to the next statement. When <code>REMOVE_EH_INFO</code> is
true we remove the statement pointed to by iterator <code>I</code> from the <code>EH</code>
tables. Otherwise we do not modify the <code>EH</code> tables. Generally,
<code>REMOVE_EH_INFO</code> should be true when the statement is going to be
removed from the <code>IL</code> and not reinserted elsewhere.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_link_seq_before</b> (<var>gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005flink_005fseq_005fbefore-3058"></a></var><br>
<blockquote><p>Links the sequence of statements <code>SEQ</code> before the statement pointed
by iterator <code>I</code>. <code>MODE</code> indicates what to do with the iterator
after insertion (see <code>enum gsi_iterator_update</code> above).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_link_before</b> (<var>gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005flink_005fbefore-3059"></a></var><br>
<blockquote><p>Links statement <code>G</code> before the statement pointed-to by iterator <code>I</code>.
Updates iterator <code>I</code> according to <code>MODE</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_link_seq_after</b> (<var>gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005flink_005fseq_005fafter-3060"></a></var><br>
<blockquote><p>Links sequence <code>SEQ</code> after the statement pointed-to by iterator <code>I</code>.
<code>MODE</code> is as in <code>gsi_insert_after</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_link_after</b> (<var>gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005flink_005fafter-3061"></a></var><br>
<blockquote><p>Links statement <code>G</code> after the statement pointed-to by iterator <code>I</code>.
<code>MODE</code> is as in <code>gsi_insert_after</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gsi_split_seq_after</b> (<var>gimple_stmt_iterator i</var>)<var><a name="index-gsi_005fsplit_005fseq_005fafter-3062"></a></var><br>
<blockquote><p>Move all statements in the sequence after <code>I</code> to a new sequence.
Return this new sequence.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_seq <b>gsi_split_seq_before</b> (<var>gimple_stmt_iterator *i</var>)<var><a name="index-gsi_005fsplit_005fseq_005fbefore-3063"></a></var><br>
<blockquote><p>Move all statements in the sequence before <code>I</code> to a new sequence.
Return this new sequence.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_replace</b> (<var>gimple_stmt_iterator *i, gimple stmt, bool update_eh_info</var>)<var><a name="index-gsi_005freplace-3064"></a></var><br>
<blockquote><p>Replace the statement pointed-to by <code>I</code> to <code>STMT</code>. If <code>UPDATE_EH_INFO</code>
is true, the exception handling information of the original
statement is moved to the new statement.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_before</b> (<var>gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005finsert_005fbefore-3065"></a></var><br>
<blockquote><p>Insert statement <code>STMT</code> before the statement pointed-to by iterator
<code>I</code>, update <code>STMT</code>'s basic block and scan it for new operands. <code>MODE</code>
specifies how to update iterator <code>I</code> after insertion (see enum
<code>gsi_iterator_update</code>).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_seq_before</b> (<var>gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005finsert_005fseq_005fbefore-3066"></a></var><br>
<blockquote><p>Like <code>gsi_insert_before</code>, but for all the statements in <code>SEQ</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_after</b> (<var>gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005finsert_005fafter-3067"></a></var><br>
<blockquote><p>Insert statement <code>STMT</code> after the statement pointed-to by iterator
<code>I</code>, update <code>STMT</code>'s basic block and scan it for new operands. <code>MODE</code>
specifies how to update iterator <code>I</code> after insertion (see enum
<code>gsi_iterator_update</code>).
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_seq_after</b> (<var>gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode</var>)<var><a name="index-gsi_005finsert_005fseq_005fafter-3068"></a></var><br>
<blockquote><p>Like <code>gsi_insert_after</code>, but for all the statements in <code>SEQ</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: gimple_stmt_iterator <b>gsi_for_stmt</b> (<var>gimple stmt</var>)<var><a name="index-gsi_005ffor_005fstmt-3069"></a></var><br>
<blockquote><p>Finds iterator for <code>STMT</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_move_after</b> (<var>gimple_stmt_iterator *from, gimple_stmt_iterator *to</var>)<var><a name="index-gsi_005fmove_005fafter-3070"></a></var><br>
<blockquote><p>Move the statement at <code>FROM</code> so it comes right after the statement
at <code>TO</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_move_before</b> (<var>gimple_stmt_iterator *from, gimple_stmt_iterator *to</var>)<var><a name="index-gsi_005fmove_005fbefore-3071"></a></var><br>
<blockquote><p>Move the statement at <code>FROM</code> so it comes right before the statement
at <code>TO</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_move_to_bb_end</b> (<var>gimple_stmt_iterator *from, basic_block bb</var>)<var><a name="index-gsi_005fmove_005fto_005fbb_005fend-3072"></a></var><br>
<blockquote><p>Move the statement at <code>FROM</code> to the end of basic block <code>BB</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_on_edge</b> (<var>edge e, gimple stmt</var>)<var><a name="index-gsi_005finsert_005fon_005fedge-3073"></a></var><br>
<blockquote><p>Add <code>STMT</code> to the pending list of edge <code>E</code>. No actual insertion is
made until a call to <code>gsi_commit_edge_inserts</code>() is made.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_insert_seq_on_edge</b> (<var>edge e, gimple_seq seq</var>)<var><a name="index-gsi_005finsert_005fseq_005fon_005fedge-3074"></a></var><br>
<blockquote><p>Add the sequence of statements in <code>SEQ</code> to the pending list of edge
<code>E</code>. No actual insertion is made until a call to
<code>gsi_commit_edge_inserts</code>() is made.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: basic_block <b>gsi_insert_on_edge_immediate</b> (<var>edge e, gimple stmt</var>)<var><a name="index-gsi_005finsert_005fon_005fedge_005fimmediate-3075"></a></var><br>
<blockquote><p>Similar to <code>gsi_insert_on_edge</code>+<code>gsi_commit_edge_inserts</code>. If a new
block has to be created, it is returned.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_commit_one_edge_insert</b> (<var>edge e, basic_block *new_bb</var>)<var><a name="index-gsi_005fcommit_005fone_005fedge_005finsert-3076"></a></var><br>
<blockquote><p>Commit insertions pending at edge <code>E</code>. If a new block is created,
set <code>NEW_BB</code> to this block, otherwise set it to <code>NULL</code>.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: void <b>gsi_commit_edge_inserts</b> (<var>void</var>)<var><a name="index-gsi_005fcommit_005fedge_005finserts-3077"></a></var><br>
<blockquote><p>This routine will commit all pending edge insertions, creating
any new basic blocks which are necessary.
</p></blockquote></div>
<div class="node">
<a name="Adding-a-new-GIMPLE-statement-code"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Statement-and-operand-traversals">Statement and operand traversals</a>,
Previous: <a rel="previous" accesskey="p" href="#Sequence-iterators">Sequence iterators</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.10 Adding a new GIMPLE statement code</h3>
<p><a name="index-Adding-a-new-GIMPLE-statement-code-3078"></a>
The first step in adding a new GIMPLE statement code, is
modifying the file <code>gimple.def</code>, which contains all the GIMPLE
codes. Then you must add a corresponding structure, and an entry
in <code>union gimple_statement_d</code>, both of which are located in
<code>gimple.h</code>. This in turn, will require you to add a corresponding
<code>GTY</code> tag in <code>gsstruct.def</code>, and code to handle this tag in
<code>gss_for_code</code> which is located in <code>gimple.c</code>.
<p>In order for the garbage collector to know the size of the
structure you created in <code>gimple.h</code>, you need to add a case to
handle your new GIMPLE statement in <code>gimple_size</code> which is located
in <code>gimple.c</code>.
<p>You will probably want to create a function to build the new
gimple statement in <code>gimple.c</code>. The function should be called
<code>gimple_build_</code><var>new-tuple-name</var>, and should return the new tuple
of type gimple.
<p>If your new statement requires accessors for any members or
operands it may have, put simple inline accessors in
<code>gimple.h</code> and any non-trivial accessors in <code>gimple.c</code> with a
corresponding prototype in <code>gimple.h</code>.
<div class="node">
<a name="Statement-and-operand-traversals"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Adding-a-new-GIMPLE-statement-code">Adding a new GIMPLE statement code</a>,
Up: <a rel="up" accesskey="u" href="#GIMPLE">GIMPLE</a>
</div>
<h3 class="section">12.11 Statement and operand traversals</h3>
<p><a name="index-Statement-and-operand-traversals-3079"></a>
There are two functions available for walking statements and
sequences: <code>walk_gimple_stmt</code> and <code>walk_gimple_seq</code>,
accordingly, and a third function for walking the operands in a
statement: <code>walk_gimple_op</code>.
<div class="defun">
— GIMPLE function: tree <b>walk_gimple_stmt</b> (<var>gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi</var>)<var><a name="index-walk_005fgimple_005fstmt-3080"></a></var><br>
<blockquote><p>This function is used to walk the current statement in <code>GSI</code>,
optionally using traversal state stored in <code>WI</code>. If <code>WI</code> is <code>NULL</code>, no
state is kept during the traversal.
<p>The callback <code>CALLBACK_STMT</code> is called. If <code>CALLBACK_STMT</code> returns
true, it means that the callback function has handled all the
operands of the statement and it is not necessary to walk its
operands.
<p>If <code>CALLBACK_STMT</code> is <code>NULL</code> or it returns false, <code>CALLBACK_OP</code> is
called on each operand of the statement via <code>walk_gimple_op</code>. If
<code>walk_gimple_op</code> returns non-<code>NULL</code> for any operand, the remaining
operands are not scanned.
<p>The return value is that returned by the last call to
<code>walk_gimple_op</code>, or <code>NULL_TREE</code> if no <code>CALLBACK_OP</code> is specified.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>walk_gimple_op</b> (<var>gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi</var>)<var><a name="index-walk_005fgimple_005fop-3081"></a></var><br>
<blockquote><p>Use this function to walk the operands of statement <code>STMT</code>. Every
operand is walked via <code>walk_tree</code> with optional state information
in <code>WI</code>.
<p><code>CALLBACK_OP</code> is called on each operand of <code>STMT</code> via <code>walk_tree</code>.
Additional parameters to <code>walk_tree</code> must be stored in <code>WI</code>. For
each operand <code>OP</code>, <code>walk_tree</code> is called as:
<pre class="smallexample"> walk_tree (&<code>OP</code>, <code>CALLBACK_OP</code>, <code>WI</code>, <code>PSET</code>)
</pre>
<p>If <code>CALLBACK_OP</code> returns non-<code>NULL</code> for an operand, the remaining
operands are not scanned. The return value is that returned by
the last call to <code>walk_tree</code>, or <code>NULL_TREE</code> if no <code>CALLBACK_OP</code> is
specified.
</p></blockquote></div>
<div class="defun">
— GIMPLE function: tree <b>walk_gimple_seq</b> (<var>gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi</var>)<var><a name="index-walk_005fgimple_005fseq-3082"></a></var><br>
<blockquote><p>This function walks all the statements in the sequence <code>SEQ</code>
calling <code>walk_gimple_stmt</code> on each one. <code>WI</code> is as in
<code>walk_gimple_stmt</code>. If <code>walk_gimple_stmt</code> returns non-<code>NULL</code>, the walk
is stopped and the value returned. Otherwise, all the statements
are walked and <code>NULL_TREE</code> returned.
</p></blockquote></div>
<!-- Copyright (c) 2004, 2005, 2007, 2008, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- Tree SSA -->
<!-- -->
<div class="node">
<a name="Tree-SSA"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RTL">RTL</a>,
Previous: <a rel="previous" accesskey="p" href="#GIMPLE">GIMPLE</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">13 Analysis and Optimization of GIMPLE tuples</h2>
<p><a name="index-Tree-SSA-3083"></a><a name="index-Optimization-infrastructure-for-GIMPLE-3084"></a>
GCC uses three main intermediate languages to represent the program
during compilation: GENERIC, GIMPLE and RTL. GENERIC is a
language-independent representation generated by each front end. It
is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs
written in all the languages supported by GCC.
<p>GIMPLE and RTL are used to optimize the program. GIMPLE is used for
target and language independent optimizations (e.g., inlining,
constant propagation, tail call elimination, redundancy elimination,
etc). Much like GENERIC, GIMPLE is a language independent, tree based
representation. However, it differs from GENERIC in that the GIMPLE
grammar is more restrictive: expressions contain no more than 3
operands (except function calls), it has no control flow structures
and expressions with side-effects are only allowed on the right hand
side of assignments. See the chapter describing GENERIC and GIMPLE
for more details.
<p>This chapter describes the data structures and functions used in the
GIMPLE optimizers (also known as “tree optimizers” or “middle
end”). In particular, it focuses on all the macros, data structures,
functions and programming constructs needed to implement optimization
passes for GIMPLE.
<ul class="menu">
<li><a accesskey="1" href="#Annotations">Annotations</a>: Attributes for variables.
<li><a accesskey="2" href="#SSA-Operands">SSA Operands</a>: SSA names referenced by GIMPLE statements.
<li><a accesskey="3" href="#SSA">SSA</a>: Static Single Assignment representation.
<li><a accesskey="4" href="#Alias-analysis">Alias analysis</a>: Representing aliased loads and stores.
<li><a accesskey="5" href="#Memory-model">Memory model</a>: Memory model used by the middle-end.
</ul>
<div class="node">
<a name="Annotations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SSA-Operands">SSA Operands</a>,
Up: <a rel="up" accesskey="u" href="#Tree-SSA">Tree SSA</a>
</div>
<h3 class="section">13.1 Annotations</h3>
<p><a name="index-annotations-3085"></a>
The optimizers need to associate attributes with variables during the
optimization process. For instance, we need to know whether a
variable has aliases. All these attributes are stored in data
structures called annotations which are then linked to the field
<code>ann</code> in <code>struct tree_common</code>.
<p>Presently, we define annotations for variables (<code>var_ann_t</code>).
Annotations are defined and documented in <samp><span class="file">tree-flow.h</span></samp>.
<div class="node">
<a name="SSA-Operands"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SSA">SSA</a>,
Previous: <a rel="previous" accesskey="p" href="#Annotations">Annotations</a>,
Up: <a rel="up" accesskey="u" href="#Tree-SSA">Tree SSA</a>
</div>
<h3 class="section">13.2 SSA Operands</h3>
<p><a name="index-operands-3086"></a><a name="index-virtual-operands-3087"></a><a name="index-real-operands-3088"></a><a name="index-update_005fstmt-3089"></a>
Almost every GIMPLE statement will contain a reference to a variable
or memory location. Since statements come in different shapes and
sizes, their operands are going to be located at various spots inside
the statement's tree. To facilitate access to the statement's
operands, they are organized into lists associated inside each
statement's annotation. Each element in an operand list is a pointer
to a <code>VAR_DECL</code>, <code>PARM_DECL</code> or <code>SSA_NAME</code> tree node.
This provides a very convenient way of examining and replacing
operands.
<p>Data flow analysis and optimization is done on all tree nodes
representing variables. Any node for which <code>SSA_VAR_P</code> returns
nonzero is considered when scanning statement operands. However, not
all <code>SSA_VAR_P</code> variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to
local scalar variables and references to globals, statics, structures,
arrays, aliased variables, etc. The reason is simple, the compiler
can gather complete data flow information for a local scalar. On the
other hand, a global variable may be modified by a function call, it
may not be possible to keep track of all the elements of an array or
the fields of a structure, etc.
<p>The operand scanner gathers two kinds of operands: <dfn>real</dfn> and
<dfn>virtual</dfn>. An operand for which <code>is_gimple_reg</code> returns true
is considered real, otherwise it is a virtual operand. We also
distinguish between uses and definitions. An operand is used if its
value is loaded by the statement (e.g., the operand at the RHS of an
assignment). If the statement assigns a new value to the operand, the
operand is considered a definition (e.g., the operand at the LHS of
an assignment).
<p>Virtual and real operands also have very different data flow
properties. Real operands are unambiguous references to the
full object that they represent. For instance, given
<pre class="smallexample"> {
int a, b;
a = b
}
</pre>
<p>Since <code>a</code> and <code>b</code> are non-aliased locals, the statement
<code>a = b</code> will have one real definition and one real use because
variable <code>a</code> is completely modified with the contents of
variable <code>b</code>. Real definition are also known as <dfn>killing
definitions</dfn>. Similarly, the use of <code>b</code> reads all its bits.
<p>In contrast, virtual operands are used with variables that can have
a partial or ambiguous reference. This includes structures, arrays,
globals, and aliased variables. In these cases, we have two types of
definitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing definition.
If the variable does, then the statement is marked as having a
<dfn>must definition</dfn> of that variable. However, if a statement is only
defining a part of the variable (i.e. a field in a structure), or if we
know that a statement might define the variable but we cannot say for sure,
then we mark that statement as having a <dfn>may definition</dfn>. For
instance, given
<pre class="smallexample"> {
int a, b, *p;
if (...)
p = &a;
else
p = &b;
*p = 5;
return *p;
}
</pre>
<p>The assignment <code>*p = 5</code> may be a definition of <code>a</code> or
<code>b</code>. If we cannot determine statically where <code>p</code> is
pointing to at the time of the store operation, we create virtual
definitions to mark that statement as a potential definition site for
<code>a</code> and <code>b</code>. Memory loads are similarly marked with virtual
use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual
operands, use the <samp><span class="option">-vops</span></samp> option to <samp><span class="option">-fdump-tree</span></samp>:
<pre class="smallexample"> {
int a, b, *p;
if (...)
p = &a;
else
p = &b;
# a = VDEF <a>
# b = VDEF <b>
*p = 5;
# VUSE <a>
# VUSE <b>
return *p;
}
</pre>
<p>Notice that <code>VDEF</code> operands have two copies of the referenced
variable. This indicates that this is not a killing definition of
that variable. In this case we refer to it as a <dfn>may definition</dfn>
or <dfn>aliased store</dfn>. The presence of the second copy of the
variable in the <code>VDEF</code> operand will become important when the
function is converted into SSA form. This will be used to link all
the non-killing definitions to prevent optimizations from making
incorrect assumptions about them.
<p>Operands are updated as soon as the statement is finished via a call
to <code>update_stmt</code>. If statement elements are changed via
<code>SET_USE</code> or <code>SET_DEF</code>, then no further action is required
(i.e., those macros take care of updating the statement). If changes
are made by manipulating the statement's tree directly, then a call
must be made to <code>update_stmt</code> when complete. Calling one of the
<code>bsi_insert</code> routines or <code>bsi_replace</code> performs an implicit
call to <code>update_stmt</code>.
<h4 class="subsection">13.2.1 Operand Iterators And Access Routines</h4>
<p><a name="index-Operand-Iterators-3090"></a><a name="index-Operand-Access-Routines-3091"></a>
Operands are collected by <samp><span class="file">tree-ssa-operands.c</span></samp>. They are stored
inside each statement's annotation and can be accessed through either the
operand iterators or an access routine.
<p>The following access routines are available for examining operands:
<ol type=1 start=1>
<li><code>SINGLE_SSA_{USE,DEF,TREE}_OPERAND</code>: These accessors will return
NULL unless there is exactly one operand matching the specified flags. If
there is exactly one operand, the operand is returned as either a <code>tree</code>,
<code>def_operand_p</code>, or <code>use_operand_p</code>.
<pre class="smallexample"> tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);
</pre>
<li><code>ZERO_SSA_OPERANDS</code>: This macro returns true if there are no
operands matching the specified flags.
<pre class="smallexample"> if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return;
</pre>
<li><code>NUM_SSA_OPERANDS</code>: This macro Returns the number of operands
matching 'flags'. This actually executes a loop to perform the count, so
only use this if it is really needed.
<pre class="smallexample"> int count = NUM_SSA_OPERANDS (stmt, flags)
</pre>
</ol>
<p>If you wish to iterate over some or all operands, use the
<code>FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND</code> iterator. For example, to print
all the operands for a statement:
<pre class="smallexample"> void
print_ops (tree stmt)
{
ssa_op_iter;
tree var;
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
print_generic_expr (stderr, var, TDF_SLIM);
}
</pre>
<p>How to choose the appropriate iterator:
<ol type=1 start=1>
<li>Determine whether you are need to see the operand pointers, or just the
trees, and choose the appropriate macro:
<pre class="smallexample"> Need Macro:
---- -------
use_operand_p FOR_EACH_SSA_USE_OPERAND
def_operand_p FOR_EACH_SSA_DEF_OPERAND
tree FOR_EACH_SSA_TREE_OPERAND
</pre>
<li>You need to declare a variable of the type you are interested
in, and an ssa_op_iter structure which serves as the loop controlling
variable.
<li>Determine which operands you wish to use, and specify the flags of
those you are interested in. They are documented in
<samp><span class="file">tree-ssa-operands.h</span></samp>:
<pre class="smallexample"> #define SSA_OP_USE 0x01 /* <span class="roman">Real USE operands.</span> */
#define SSA_OP_DEF 0x02 /* <span class="roman">Real DEF operands.</span> */
#define SSA_OP_VUSE 0x04 /* <span class="roman">VUSE operands.</span> */
#define SSA_OP_VMAYUSE 0x08 /* <span class="roman">USE portion of VDEFS.</span> */
#define SSA_OP_VDEF 0x10 /* <span class="roman">DEF portion of VDEFS.</span> */
/* <span class="roman">These are commonly grouped operand flags.</span> */
#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE | SSA_OP_VMAYUSE)
#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)
#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
</pre>
</ol>
<p>So if you want to look at the use pointers for all the <code>USE</code> and
<code>VUSE</code> operands, you would do something like:
<pre class="smallexample"> use_operand_p use_p;
ssa_op_iter iter;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
{
process_use_ptr (use_p);
}
</pre>
<p>The <code>TREE</code> macro is basically the same as the <code>USE</code> and
<code>DEF</code> macros, only with the use or def dereferenced via
<code>USE_FROM_PTR (use_p)</code> and <code>DEF_FROM_PTR (def_p)</code>. Since we
aren't using operand pointers, use and defs flags can be mixed.
<pre class="smallexample"> tree var;
ssa_op_iter iter;
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
{
print_generic_expr (stderr, var, TDF_SLIM);
}
</pre>
<p><code>VDEF</code>s are broken into two flags, one for the
<code>DEF</code> portion (<code>SSA_OP_VDEF</code>) and one for the USE portion
(<code>SSA_OP_VMAYUSE</code>). If all you want to look at are the
<code>VDEF</code>s together, there is a fourth iterator macro for this,
which returns both a def_operand_p and a use_operand_p for each
<code>VDEF</code> in the statement. Note that you don't need any flags for
this one.
<pre class="smallexample"> use_operand_p use_p;
def_operand_p def_p;
ssa_op_iter iter;
FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
{
my_code;
}
</pre>
<p>There are many examples in the code as well, as well as the
documentation in <samp><span class="file">tree-ssa-operands.h</span></samp>.
<p>There are also a couple of variants on the stmt iterators regarding PHI
nodes.
<p><code>FOR_EACH_PHI_ARG</code> Works exactly like
<code>FOR_EACH_SSA_USE_OPERAND</code>, except it works over <code>PHI</code> arguments
instead of statement operands.
<pre class="smallexample"> /* Look at every virtual PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
{
my_code;
}
/* Look at every real PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
my_code;
/* Look at every PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
my_code;
</pre>
<p><code>FOR_EACH_PHI_OR_STMT_{USE,DEF}</code> works exactly like
<code>FOR_EACH_SSA_{USE,DEF}_OPERAND</code>, except it will function on
either a statement or a <code>PHI</code> node. These should be used when it is
appropriate but they are not quite as efficient as the individual
<code>FOR_EACH_PHI</code> and <code>FOR_EACH_SSA</code> routines.
<pre class="smallexample"> FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
{
my_code;
}
FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
{
my_code;
}
</pre>
<h4 class="subsection">13.2.2 Immediate Uses</h4>
<p><a name="index-Immediate-Uses-3092"></a>
Immediate use information is now always available. Using the immediate use
iterators, you may examine every use of any <code>SSA_NAME</code>. For instance,
to change each use of <code>ssa_var</code> to <code>ssa_var2</code> and call fold_stmt on
each stmt after that is done:
<pre class="smallexample"> use_operand_p imm_use_p;
imm_use_iterator iterator;
tree ssa_var, stmt;
FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);
fold_stmt (stmt);
}
</pre>
<p>There are 2 iterators which can be used. <code>FOR_EACH_IMM_USE_FAST</code> is
used when the immediate uses are not changed, i.e., you are looking at the
uses, but not setting them.
<p>If they do get changed, then care must be taken that things are not changed
under the iterators, so use the <code>FOR_EACH_IMM_USE_STMT</code> and
<code>FOR_EACH_IMM_USE_ON_STMT</code> iterators. They attempt to preserve the
sanity of the use list by moving all the uses for a statement into
a controlled position, and then iterating over those uses. Then the
optimization can manipulate the stmt when all the uses have been
processed. This is a little slower than the FAST version since it adds a
placeholder element and must sort through the list a bit for each statement.
This placeholder element must be also be removed if the loop is
terminated early. The macro <code>BREAK_FROM_IMM_USE_SAFE</code> is provided
to do this :
<pre class="smallexample"> FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
if (stmt == last_stmt)
BREAK_FROM_SAFE_IMM_USE (iter);
FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);
fold_stmt (stmt);
}
</pre>
<p>There are checks in <code>verify_ssa</code> which verify that the immediate use list
is up to date, as well as checking that an optimization didn't break from the
loop without using this macro. It is safe to simply 'break'; from a
<code>FOR_EACH_IMM_USE_FAST</code> traverse.
<p>Some useful functions and macros:
<ol type=1 start=1>
<li><code>has_zero_uses (ssa_var)</code> : Returns true if there are no uses of
<code>ssa_var</code>.
<li><code>has_single_use (ssa_var)</code> : Returns true if there is only a
single use of <code>ssa_var</code>.
<li><code>single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)</code> :
Returns true if there is only a single use of <code>ssa_var</code>, and also returns
the use pointer and statement it occurs in, in the second and third parameters.
<li><code>num_imm_uses (ssa_var)</code> : Returns the number of immediate uses of
<code>ssa_var</code>. It is better not to use this if possible since it simply
utilizes a loop to count the uses.
<li><code>PHI_ARG_INDEX_FROM_USE (use_p)</code> : Given a use within a <code>PHI</code>
node, return the index number for the use. An assert is triggered if the use
isn't located in a <code>PHI</code> node.
<li><code>USE_STMT (use_p)</code> : Return the statement a use occurs in.
</ol>
<p>Note that uses are not put into an immediate use list until their statement is
actually inserted into the instruction stream via a <code>bsi_*</code> routine.
<p>It is also still possible to utilize lazy updating of statements, but this
should be used only when absolutely required. Both alias analysis and the
dominator optimizations currently do this.
<p>When lazy updating is being used, the immediate use information is out of date
and cannot be used reliably. Lazy updating is achieved by simply marking
statements modified via calls to <code>mark_stmt_modified</code> instead of
<code>update_stmt</code>. When lazy updating is no longer required, all the
modified statements must have <code>update_stmt</code> called in order to bring them
up to date. This must be done before the optimization is finished, or
<code>verify_ssa</code> will trigger an abort.
<p>This is done with a simple loop over the instruction stream:
<pre class="smallexample"> block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
update_stmt_if_modified (bsi_stmt (bsi));
}
</pre>
<div class="node">
<a name="SSA"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Alias-analysis">Alias analysis</a>,
Previous: <a rel="previous" accesskey="p" href="#SSA-Operands">SSA Operands</a>,
Up: <a rel="up" accesskey="u" href="#Tree-SSA">Tree SSA</a>
</div>
<h3 class="section">13.3 Static Single Assignment</h3>
<p><a name="index-SSA-3093"></a><a name="index-static-single-assignment-3094"></a>
Most of the tree optimizers rely on the data flow information provided
by the Static Single Assignment (SSA) form. We implement the SSA form
as described in <cite>R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991</cite>.
<p>The SSA form is based on the premise that program variables are
assigned in exactly one location in the program. Multiple assignments
to the same variable create new versions of that variable. Naturally,
actual programs are seldom in SSA form initially because variables
tend to be assigned multiple times. The compiler modifies the program
representation so that every time a variable is assigned in the code,
a new version of the variable is created. Different versions of the
same variable are distinguished by subscripting the variable name with
its version number. Variables used in the right-hand side of
expressions are renamed so that their version number matches that of
the most recent assignment.
<p>We represent variable versions using <code>SSA_NAME</code> nodes. The
renaming process in <samp><span class="file">tree-ssa.c</span></samp> wraps every real and
virtual operand with an <code>SSA_NAME</code> node which contains
the version number and the statement that created the
<code>SSA_NAME</code>. Only definitions and virtual definitions may
create new <code>SSA_NAME</code> nodes.
<p><a name="index-PHI-nodes-3095"></a>Sometimes, flow of control makes it impossible to determine the
most recent version of a variable. In these cases, the compiler
inserts an artificial definition for that variable called
<dfn>PHI function</dfn> or <dfn>PHI node</dfn>. This new definition merges
all the incoming versions of the variable to create a new name
for it. For instance,
<pre class="smallexample"> if (...)
a_1 = 5;
else if (...)
a_2 = 2;
else
a_3 = 13;
# a_4 = PHI <a_1, a_2, a_3>
return a_4;
</pre>
<p>Since it is not possible to determine which of the three branches
will be taken at runtime, we don't know which of <code>a_1</code>,
<code>a_2</code> or <code>a_3</code> to use at the return statement. So, the
SSA renamer creates a new version <code>a_4</code> which is assigned
the result of “merging” <code>a_1</code>, <code>a_2</code> and <code>a_3</code>.
Hence, PHI nodes mean “one of these operands. I don't know
which”.
<p>The following macros can be used to examine PHI nodes
<div class="defun">
— Macro: <b>PHI_RESULT</b> (<var>phi</var>)<var><a name="index-PHI_005fRESULT-3096"></a></var><br>
<blockquote><p>Returns the <code>SSA_NAME</code> created by PHI node <var>phi</var> (i.e.,
<var>phi</var>'s LHS).
</p></blockquote></div>
<div class="defun">
— Macro: <b>PHI_NUM_ARGS</b> (<var>phi</var>)<var><a name="index-PHI_005fNUM_005fARGS-3097"></a></var><br>
<blockquote><p>Returns the number of arguments in <var>phi</var>. This number is exactly
the number of incoming edges to the basic block holding <var>phi</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PHI_ARG_ELT</b> (<var>phi, i</var>)<var><a name="index-PHI_005fARG_005fELT-3098"></a></var><br>
<blockquote><p>Returns a tuple representing the <var>i</var>th argument of <var>phi</var>.
Each element of this tuple contains an <code>SSA_NAME</code> <var>var</var> and
the incoming edge through which <var>var</var> flows.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PHI_ARG_EDGE</b> (<var>phi, i</var>)<var><a name="index-PHI_005fARG_005fEDGE-3099"></a></var><br>
<blockquote><p>Returns the incoming edge for the <var>i</var>th argument of <var>phi</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PHI_ARG_DEF</b> (<var>phi, i</var>)<var><a name="index-PHI_005fARG_005fDEF-3100"></a></var><br>
<blockquote><p>Returns the <code>SSA_NAME</code> for the <var>i</var>th argument of <var>phi</var>.
</p></blockquote></div>
<h4 class="subsection">13.3.1 Preserving the SSA form</h4>
<p><a name="index-update_005fssa-3101"></a><a name="index-preserving-SSA-form-3102"></a>Some optimization passes make changes to the function that
invalidate the SSA property. This can happen when a pass has
added new symbols or changed the program so that variables that
were previously aliased aren't anymore. Whenever something like this
happens, the affected symbols must be renamed into SSA form again.
Transformations that emit new code or replicate existing statements
will also need to update the SSA form.
<p>Since GCC implements two different SSA forms for register and virtual
variables, keeping the SSA form up to date depends on whether you are
updating register or virtual names. In both cases, the general idea
behind incremental SSA updates is similar: when new SSA names are
created, they typically are meant to replace other existing names in
the program.
<p>For instance, given the following code:
<pre class="smallexample"> 1 L0:
2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)
4 if (x_1 > 7)
5 y_2 = 0
6 else
7 y_3 = x_1 + x_7
8 endif
9 x_5 = x_1 + 1
10 goto L0;
11 endif
</pre>
<p>Suppose that we insert new names <code>x_10</code> and <code>x_11</code> (lines
<code>4</code> and <code>8</code>).
<pre class="smallexample"> 1 L0:
2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)
4 x_10 = ...
5 if (x_1 > 7)
6 y_2 = 0
7 else
8 x_11 = ...
9 y_3 = x_1 + x_7
10 endif
11 x_5 = x_1 + 1
12 goto L0;
13 endif
</pre>
<p>We want to replace all the uses of <code>x_1</code> with the new definitions
of <code>x_10</code> and <code>x_11</code>. Note that the only uses that should
be replaced are those at lines <code>5</code>, <code>9</code> and <code>11</code>.
Also, the use of <code>x_7</code> at line <code>9</code> should <em>not</em> be
replaced (this is why we cannot just mark symbol <code>x</code> for
renaming).
<p>Additionally, we may need to insert a PHI node at line <code>11</code>
because that is a merge point for <code>x_10</code> and <code>x_11</code>. So the
use of <code>x_1</code> at line <code>11</code> will be replaced with the new PHI
node. The insertion of PHI nodes is optional. They are not strictly
necessary to preserve the SSA form, and depending on what the caller
inserted, they may not even be useful for the optimizers.
<p>Updating the SSA form is a two step process. First, the pass has to
identify which names need to be updated and/or which symbols need to
be renamed into SSA form for the first time. When new names are
introduced to replace existing names in the program, the mapping
between the old and the new names are registered by calling
<code>register_new_name_mapping</code> (note that if your pass creates new
code by duplicating basic blocks, the call to <code>tree_duplicate_bb</code>
will set up the necessary mappings automatically). On the other hand,
if your pass exposes a new symbol that should be put in SSA form for
the first time, the new symbol should be registered with
<code>mark_sym_for_renaming</code>.
<p>After the replacement mappings have been registered and new symbols
marked for renaming, a call to <code>update_ssa</code> makes the registered
changes. This can be done with an explicit call or by creating
<code>TODO</code> flags in the <code>tree_opt_pass</code> structure for your pass.
There are several <code>TODO</code> flags that control the behavior of
<code>update_ssa</code>:
<ul>
<li><code>TODO_update_ssa</code>. Update the SSA form inserting PHI nodes
for newly exposed symbols and virtual names marked for updating.
When updating real names, only insert PHI nodes for a real name
<code>O_j</code> in blocks reached by all the new and old definitions for
<code>O_j</code>. If the iterated dominance frontier for <code>O_j</code>
is not pruned, we may end up inserting PHI nodes in blocks that
have one or more edges with no incoming definition for
<code>O_j</code>. This would lead to uninitialized warnings for
<code>O_j</code>'s symbol.
<li><code>TODO_update_ssa_no_phi</code>. Update the SSA form without
inserting any new PHI nodes at all. This is used by passes that
have either inserted all the PHI nodes themselves or passes that
need only to patch use-def and def-def chains for virtuals
(e.g., DCE).
<li><code>TODO_update_ssa_full_phi</code>. Insert PHI nodes everywhere
they are needed. No pruning of the IDF is done. This is used
by passes that need the PHI nodes for <code>O_j</code> even if it
means that some arguments will come from the default definition
of <code>O_j</code>'s symbol (e.g., <code>pass_linear_transform</code>).
<p>WARNING: If you need to use this flag, chances are that your
pass may be doing something wrong. Inserting PHI nodes for an
old name where not all edges carry a new replacement may lead to
silent codegen errors or spurious uninitialized warnings.
<li><code>TODO_update_ssa_only_virtuals</code>. Passes that update the
SSA form on their own may want to delegate the updating of
virtual names to the generic updater. Since FUD chains are
easier to maintain, this simplifies the work they need to do.
NOTE: If this flag is used, any OLD->NEW mappings for real names
are explicitly destroyed and only the symbols marked for
renaming are processed.
</ul>
<h4 class="subsection">13.3.2 Preserving the virtual SSA form</h4>
<p><a name="index-preserving-virtual-SSA-form-3103"></a>
The virtual SSA form is harder to preserve than the non-virtual SSA form
mainly because the set of virtual operands for a statement may change at
what some would consider unexpected times. In general, statement
modifications should be bracketed between calls to
<code>push_stmt_changes</code> and <code>pop_stmt_changes</code>. For example,
<pre class="smallexample"> munge_stmt (tree stmt)
{
push_stmt_changes (&stmt);
... rewrite STMT ...
pop_stmt_changes (&stmt);
}
</pre>
<p>The call to <code>push_stmt_changes</code> saves the current state of the
statement operands and the call to <code>pop_stmt_changes</code> compares
the saved state with the current one and does the appropriate symbol
marking for the SSA renamer.
<p>It is possible to modify several statements at a time, provided that
<code>push_stmt_changes</code> and <code>pop_stmt_changes</code> are called in
LIFO order, as when processing a stack of statements.
<p>Additionally, if the pass discovers that it did not need to make
changes to the statement after calling <code>push_stmt_changes</code>, it
can simply discard the topmost change buffer by calling
<code>discard_stmt_changes</code>. This will avoid the expensive operand
re-scan operation and the buffer comparison that determines if symbols
need to be marked for renaming.
<h4 class="subsection">13.3.3 Examining <code>SSA_NAME</code> nodes</h4>
<p><a name="index-examining-SSA_005fNAMEs-3104"></a>
The following macros can be used to examine <code>SSA_NAME</code> nodes
<div class="defun">
— Macro: <b>SSA_NAME_DEF_STMT</b> (<var>var</var>)<var><a name="index-SSA_005fNAME_005fDEF_005fSTMT-3105"></a></var><br>
<blockquote><p>Returns the statement <var>s</var> that creates the <code>SSA_NAME</code>
<var>var</var>. If <var>s</var> is an empty statement (i.e., <code>IS_EMPTY_STMT
(</code><var>s</var><code>)</code> returns <code>true</code>), it means that the first reference to
this variable is a USE or a VUSE.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SSA_NAME_VERSION</b> (<var>var</var>)<var><a name="index-SSA_005fNAME_005fVERSION-3106"></a></var><br>
<blockquote><p>Returns the version number of the <code>SSA_NAME</code> object <var>var</var>.
</p></blockquote></div>
<h4 class="subsection">13.3.4 Walking use-def chains</h4>
<div class="defun">
— Tree SSA function: void <b>walk_use_def_chains</b> (<var>var, fn, data</var>)<var><a name="index-walk_005fuse_005fdef_005fchains-3107"></a></var><br>
<blockquote>
<p>Walks use-def chains starting at the <code>SSA_NAME</code> node <var>var</var>.
Calls function <var>fn</var> at each reaching definition found. Function
<var>FN</var> takes three arguments: <var>var</var>, its defining statement
(<var>def_stmt</var>) and a generic pointer to whatever state information
that <var>fn</var> may want to maintain (<var>data</var>). Function <var>fn</var> is
able to stop the walk by returning <code>true</code>, otherwise in order to
continue the walk, <var>fn</var> should return <code>false</code>.
<p>Note, that if <var>def_stmt</var> is a <code>PHI</code> node, the semantics are
slightly different. For each argument <var>arg</var> of the PHI node, this
function will:
<ol type=1 start=1>
<li>Walk the use-def chains for <var>arg</var>.
<li>Call <code>FN (</code><var>arg</var><code>, </code><var>phi</var><code>, </code><var>data</var><code>)</code>.
</ol>
<p>Note how the first argument to <var>fn</var> is no longer the original
variable <var>var</var>, but the PHI argument currently being examined.
If <var>fn</var> wants to get at <var>var</var>, it should call
<code>PHI_RESULT</code> (<var>phi</var>).
</p></blockquote></div>
<h4 class="subsection">13.3.5 Walking the dominator tree</h4>
<div class="defun">
— Tree SSA function: void <b>walk_dominator_tree</b> (<var>walk_data, bb</var>)<var><a name="index-walk_005fdominator_005ftree-3108"></a></var><br>
<blockquote>
<p>This function walks the dominator tree for the current CFG calling a
set of callback functions defined in <var>struct dom_walk_data</var> in
<samp><span class="file">domwalk.h</span></samp>. The call back functions you need to define give you
hooks to execute custom code at various points during traversal:
<ol type=1 start=1>
<li>Once to initialize any local data needed while processing
<var>bb</var> and its children. This local data is pushed into an
internal stack which is automatically pushed and popped as the
walker traverses the dominator tree.
<li>Once before traversing all the statements in the <var>bb</var>.
<li>Once for every statement inside <var>bb</var>.
<li>Once after traversing all the statements and before recursing
into <var>bb</var>'s dominator children.
<li>It then recurses into all the dominator children of <var>bb</var>.
<li>After recursing into all the dominator children of <var>bb</var> it
can, optionally, traverse every statement in <var>bb</var> again
(i.e., repeating steps 2 and 3).
<li>Once after walking the statements in <var>bb</var> and <var>bb</var>'s
dominator children. At this stage, the block local data stack
is popped.
</ol>
</p></blockquote></div>
<div class="node">
<a name="Alias-analysis"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Memory-model">Memory model</a>,
Previous: <a rel="previous" accesskey="p" href="#SSA">SSA</a>,
Up: <a rel="up" accesskey="u" href="#Tree-SSA">Tree SSA</a>
</div>
<h3 class="section">13.4 Alias analysis</h3>
<p><a name="index-alias-3109"></a><a name="index-flow_002dsensitive-alias-analysis-3110"></a><a name="index-flow_002dinsensitive-alias-analysis-3111"></a>
Alias analysis in GIMPLE SSA form consists of two pieces. First
the virtual SSA web ties conflicting memory accesses and provides
a SSA use-def chain and SSA immediate-use chains for walking
possibly dependent memory accesses. Second an alias-oracle can
be queried to disambiguate explicit and implicit memory references.
<ol type=1 start=1>
<li>Memory SSA form.
<p>All statements that may use memory have exactly one accompanied use of
a virtual SSA name that represents the state of memory at the
given point in the IL.
<p>All statements that may define memory have exactly one accompanied
definition of a virtual SSA name using the previous state of memory
and defining the new state of memory after the given point in the IL.
<pre class="smallexample"> int i;
int foo (void)
{
# .MEM_3 = VDEF <.MEM_2(D)>
i = 1;
# VUSE <.MEM_3>
return i;
}
</pre>
<p>The virtual SSA names in this case are <code>.MEM_2(D)</code> and
<code>.MEM_3</code>. The store to the global variable <code>i</code>
defines <code>.MEM_3</code> invalidating <code>.MEM_2(D)</code>. The
load from <code>i</code> uses that new state <code>.MEM_3</code>.
<p>The virtual SSA web serves as constraints to SSA optimizers
preventing illegitimate code-motion and optimization. It
also provides a way to walk related memory statements.
<li>Points-to and escape analysis.
<p>Points-to analysis builds a set of constraints from the GIMPLE
SSA IL representing all pointer operations and facts we do
or do not know about pointers. Solving this set of constraints
yields a conservatively correct solution for each pointer
variable in the program (though we are only interested in
SSA name pointers) as to what it may possibly point to.
<p>This points-to solution for a given SSA name pointer is stored
in the <code>pt_solution</code> sub-structure of the
<code>SSA_NAME_PTR_INFO</code> record. The following accessor
functions are available:
<ul>
<li><code>pt_solution_includes</code>
<li><code>pt_solutions_intersect</code>
</ul>
<p>Points-to analysis also computes the solution for two special
set of pointers, <code>ESCAPED</code> and <code>CALLUSED</code>. Those
represent all memory that has escaped the scope of analysis
or that is used by pure or nested const calls.
<li>Type-based alias analysis
<p>Type-based alias analysis is frontend dependent though generic
support is provided by the middle-end in <code>alias.c</code>. TBAA
code is used by both tree optimizers and RTL optimizers.
<p>Every language that wishes to perform language-specific alias analysis
should define a function that computes, given a <code>tree</code>
node, an alias set for the node. Nodes in different alias sets are not
allowed to alias. For an example, see the C front-end function
<code>c_get_alias_set</code>.
<li>Tree alias-oracle
<p>The tree alias-oracle provides means to disambiguate two memory
references and memory references against statements. The following
queries are available:
<ul>
<li><code>refs_may_alias_p</code>
<li><code>ref_maybe_used_by_stmt_p</code>
<li><code>stmt_may_clobber_ref_p</code>
</ul>
<p>In addition to those two kind of statement walkers are available
walking statements related to a reference ref.
<code>walk_non_aliased_vuses</code> walks over dominating memory defining
statements and calls back if the statement does not clobber ref
providing the non-aliased VUSE. The walk stops at
the first clobbering statement or if asked to.
<code>walk_aliased_vdefs</code> walks over dominating memory defining
statements and calls back on each statement clobbering ref
providing its aliasing VDEF. The walk stops if asked to.
</ol>
<div class="node">
<a name="Memory-model"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Alias-analysis">Alias analysis</a>,
Up: <a rel="up" accesskey="u" href="#Tree-SSA">Tree SSA</a>
</div>
<h3 class="section">13.5 Memory model</h3>
<p><a name="index-memory-model-3112"></a>
The memory model used by the middle-end models that of the C/C++
languages. The middle-end has the notion of an effective type
of a memory region which is used for type-based alias analysis.
<p>The following is a refinement of ISO C99 6.5/6, clarifying the block copy case
to follow common sense and extending the concept of a dynamic effective
type to objects with a declared type as required for C++.
<pre class="smallexample"> The effective type of an object for an access to its stored value is
the declared type of the object or the effective type determined by
a previous store to it. If a value is stored into an object through
an lvalue having a type that is not a character type, then the
type of the lvalue becomes the effective type of the object for that
access and for subsequent accesses that do not modify the stored value.
If a value is copied into an object using <code>memcpy</code> or <code>memmove</code>,
or is copied as an array of character type, then the effective type
of the modified object for that access and for subsequent accesses that
do not modify the value is undetermined. For all other accesses to an
object, the effective type of the object is simply the type of the
lvalue used for the access.
</pre>
<!-- Copyright (c) 2006, 2007, 2008 Free Software Foundation, Inc. -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- Loop Representation -->
<!-- -->
<div class="node">
<a name="Loop-Analysis-and-Representation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Machine-Desc">Machine Desc</a>,
Previous: <a rel="previous" accesskey="p" href="#Control-Flow">Control Flow</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">14 Analysis and Representation of Loops</h2>
<p>GCC provides extensive infrastructure for work with natural loops, i.e.,
strongly connected components of CFG with only one entry block. This
chapter describes representation of loops in GCC, both on GIMPLE and in
RTL, as well as the interfaces to loop-related analyses (induction
variable analysis and number of iterations analysis).
<ul class="menu">
<li><a accesskey="1" href="#Loop-representation">Loop representation</a>: Representation and analysis of loops.
<li><a accesskey="2" href="#Loop-querying">Loop querying</a>: Getting information about loops.
<li><a accesskey="3" href="#Loop-manipulation">Loop manipulation</a>: Loop manipulation functions.
<li><a accesskey="4" href="#LCSSA">LCSSA</a>: Loop-closed SSA form.
<li><a accesskey="5" href="#Scalar-evolutions">Scalar evolutions</a>: Induction variables on GIMPLE.
<li><a accesskey="6" href="#loop_002div">loop-iv</a>: Induction variables on RTL.
<li><a accesskey="7" href="#Number-of-iterations">Number of iterations</a>: Number of iterations analysis.
<li><a accesskey="8" href="#Dependency-analysis">Dependency analysis</a>: Data dependency analysis.
<li><a accesskey="9" href="#Lambda">Lambda</a>: Linear loop transformations framework.
<li><a href="#Omega">Omega</a>: A solver for linear programming problems.
</ul>
<div class="node">
<a name="Loop-representation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Loop-querying">Loop querying</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.1 Loop representation</h3>
<p><a name="index-Loop-representation-3113"></a><a name="index-Loop-analysis-3114"></a>
This chapter describes the representation of loops in GCC, and functions
that can be used to build, modify and analyze this representation. Most
of the interfaces and data structures are declared in <samp><span class="file">cfgloop.h</span></samp>.
At the moment, loop structures are analyzed and this information is
updated only by the optimization passes that deal with loops, but some
efforts are being made to make it available throughout most of the
optimization passes.
<p>In general, a natural loop has one entry block (header) and possibly
several back edges (latches) leading to the header from the inside of
the loop. Loops with several latches may appear if several loops share
a single header, or if there is a branching in the middle of the loop.
The representation of loops in GCC however allows only loops with a
single latch. During loop analysis, headers of such loops are split and
forwarder blocks are created in order to disambiguate their structures.
Heuristic based on profile information and structure of the induction
variables in the loops is used to determine whether the latches
correspond to sub-loops or to control flow in a single loop. This means
that the analysis sometimes changes the CFG, and if you run it in the
middle of an optimization pass, you must be able to deal with the new
blocks. You may avoid CFG changes by passing
<code>LOOPS_MAY_HAVE_MULTIPLE_LATCHES</code> flag to the loop discovery,
note however that most other loop manipulation functions will not work
correctly for loops with multiple latch edges (the functions that only
query membership of blocks to loops and subloop relationships, or
enumerate and test loop exits, can be expected to work).
<p>Body of the loop is the set of blocks that are dominated by its header,
and reachable from its latch against the direction of edges in CFG. The
loops are organized in a containment hierarchy (tree) such that all the
loops immediately contained inside loop L are the children of L in the
tree. This tree is represented by the <code>struct loops</code> structure.
The root of this tree is a fake loop that contains all blocks in the
function. Each of the loops is represented in a <code>struct loop</code>
structure. Each loop is assigned an index (<code>num</code> field of the
<code>struct loop</code> structure), and the pointer to the loop is stored in
the corresponding field of the <code>larray</code> vector in the loops
structure. The indices do not have to be continuous, there may be
empty (<code>NULL</code>) entries in the <code>larray</code> created by deleting
loops. Also, there is no guarantee on the relative order of a loop
and its subloops in the numbering. The index of a loop never changes.
<p>The entries of the <code>larray</code> field should not be accessed directly.
The function <code>get_loop</code> returns the loop description for a loop with
the given index. <code>number_of_loops</code> function returns number of
loops in the function. To traverse all loops, use <code>FOR_EACH_LOOP</code>
macro. The <code>flags</code> argument of the macro is used to determine
the direction of traversal and the set of loops visited. Each loop is
guaranteed to be visited exactly once, regardless of the changes to the
loop tree, and the loops may be removed during the traversal. The newly
created loops are never traversed, if they need to be visited, this
must be done separately after their creation. The <code>FOR_EACH_LOOP</code>
macro allocates temporary variables. If the <code>FOR_EACH_LOOP</code> loop
were ended using break or goto, they would not be released;
<code>FOR_EACH_LOOP_BREAK</code> macro must be used instead.
<p>Each basic block contains the reference to the innermost loop it belongs
to (<code>loop_father</code>). For this reason, it is only possible to have
one <code>struct loops</code> structure initialized at the same time for each
CFG. The global variable <code>current_loops</code> contains the
<code>struct loops</code> structure. Many of the loop manipulation functions
assume that dominance information is up-to-date.
<p>The loops are analyzed through <code>loop_optimizer_init</code> function. The
argument of this function is a set of flags represented in an integer
bitmask. These flags specify what other properties of the loop
structures should be calculated/enforced and preserved later:
<ul>
<li><code>LOOPS_MAY_HAVE_MULTIPLE_LATCHES</code>: If this flag is set, no
changes to CFG will be performed in the loop analysis, in particular,
loops with multiple latch edges will not be disambiguated. If a loop
has multiple latches, its latch block is set to NULL. Most of
the loop manipulation functions will not work for loops in this shape.
No other flags that require CFG changes can be passed to
loop_optimizer_init.
<li><code>LOOPS_HAVE_PREHEADERS</code>: Forwarder blocks are created in such
a way that each loop has only one entry edge, and additionally, the
source block of this entry edge has only one successor. This creates a
natural place where the code can be moved out of the loop, and ensures
that the entry edge of the loop leads from its immediate super-loop.
<li><code>LOOPS_HAVE_SIMPLE_LATCHES</code>: Forwarder blocks are created to
force the latch block of each loop to have only one successor. This
ensures that the latch of the loop does not belong to any of its
sub-loops, and makes manipulation with the loops significantly easier.
Most of the loop manipulation functions assume that the loops are in
this shape. Note that with this flag, the “normal” loop without any
control flow inside and with one exit consists of two basic blocks.
<li><code>LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS</code>: Basic blocks and
edges in the strongly connected components that are not natural loops
(have more than one entry block) are marked with
<code>BB_IRREDUCIBLE_LOOP</code> and <code>EDGE_IRREDUCIBLE_LOOP</code> flags. The
flag is not set for blocks and edges that belong to natural loops that
are in such an irreducible region (but it is set for the entry and exit
edges of such a loop, if they lead to/from this region).
<li><code>LOOPS_HAVE_RECORDED_EXITS</code>: The lists of exits are recorded
and updated for each loop. This makes some functions (e.g.,
<code>get_loop_exit_edges</code>) more efficient. Some functions (e.g.,
<code>single_exit</code>) can be used only if the lists of exits are
recorded.
</ul>
<p>These properties may also be computed/enforced later, using functions
<code>create_preheaders</code>, <code>force_single_succ_latches</code>,
<code>mark_irreducible_loops</code> and <code>record_loop_exits</code>.
<p>The memory occupied by the loops structures should be freed with
<code>loop_optimizer_finalize</code> function.
<p>The CFG manipulation functions in general do not update loop structures.
Specialized versions that additionally do so are provided for the most
common tasks. On GIMPLE, <code>cleanup_tree_cfg_loop</code> function can be
used to cleanup CFG while updating the loops structures if
<code>current_loops</code> is set.
<div class="node">
<a name="Loop-querying"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Loop-manipulation">Loop manipulation</a>,
Previous: <a rel="previous" accesskey="p" href="#Loop-representation">Loop representation</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.2 Loop querying</h3>
<p><a name="index-Loop-querying-3115"></a>
The functions to query the information about loops are declared in
<samp><span class="file">cfgloop.h</span></samp>. Some of the information can be taken directly from
the structures. <code>loop_father</code> field of each basic block contains
the innermost loop to that the block belongs. The most useful fields of
loop structure (that are kept up-to-date at all times) are:
<ul>
<li><code>header</code>, <code>latch</code>: Header and latch basic blocks of the
loop.
<li><code>num_nodes</code>: Number of basic blocks in the loop (including
the basic blocks of the sub-loops).
<li><code>depth</code>: The depth of the loop in the loops tree, i.e., the
number of super-loops of the loop.
<li><code>outer</code>, <code>inner</code>, <code>next</code>: The super-loop, the first
sub-loop, and the sibling of the loop in the loops tree.
</ul>
<p>There are other fields in the loop structures, many of them used only by
some of the passes, or not updated during CFG changes; in general, they
should not be accessed directly.
<p>The most important functions to query loop structures are:
<ul>
<li><code>flow_loops_dump</code>: Dumps the information about loops to a
file.
<li><code>verify_loop_structure</code>: Checks consistency of the loop
structures.
<li><code>loop_latch_edge</code>: Returns the latch edge of a loop.
<li><code>loop_preheader_edge</code>: If loops have preheaders, returns
the preheader edge of a loop.
<li><code>flow_loop_nested_p</code>: Tests whether loop is a sub-loop of
another loop.
<li><code>flow_bb_inside_loop_p</code>: Tests whether a basic block belongs
to a loop (including its sub-loops).
<li><code>find_common_loop</code>: Finds the common super-loop of two loops.
<li><code>superloop_at_depth</code>: Returns the super-loop of a loop with
the given depth.
<li><code>tree_num_loop_insns</code>, <code>num_loop_insns</code>: Estimates the
number of insns in the loop, on GIMPLE and on RTL.
<li><code>loop_exit_edge_p</code>: Tests whether edge is an exit from a
loop.
<li><code>mark_loop_exit_edges</code>: Marks all exit edges of all loops
with <code>EDGE_LOOP_EXIT</code> flag.
<li><code>get_loop_body</code>, <code>get_loop_body_in_dom_order</code>,
<code>get_loop_body_in_bfs_order</code>: Enumerates the basic blocks in the
loop in depth-first search order in reversed CFG, ordered by dominance
relation, and breath-first search order, respectively.
<li><code>single_exit</code>: Returns the single exit edge of the loop, or
<code>NULL</code> if the loop has more than one exit. You can only use this
function if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used.
<li><code>get_loop_exit_edges</code>: Enumerates the exit edges of a loop.
<li><code>just_once_each_iteration_p</code>: Returns true if the basic block
is executed exactly once during each iteration of a loop (that is, it
does not belong to a sub-loop, and it dominates the latch of the loop).
</ul>
<div class="node">
<a name="Loop-manipulation"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#LCSSA">LCSSA</a>,
Previous: <a rel="previous" accesskey="p" href="#Loop-querying">Loop querying</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.3 Loop manipulation</h3>
<p><a name="index-Loop-manipulation-3116"></a>
The loops tree can be manipulated using the following functions:
<ul>
<li><code>flow_loop_tree_node_add</code>: Adds a node to the tree.
<li><code>flow_loop_tree_node_remove</code>: Removes a node from the tree.
<li><code>add_bb_to_loop</code>: Adds a basic block to a loop.
<li><code>remove_bb_from_loops</code>: Removes a basic block from loops.
</ul>
<p>Most low-level CFG functions update loops automatically. The following
functions handle some more complicated cases of CFG manipulations:
<ul>
<li><code>remove_path</code>: Removes an edge and all blocks it dominates.
<li><code>split_loop_exit_edge</code>: Splits exit edge of the loop,
ensuring that PHI node arguments remain in the loop (this ensures that
loop-closed SSA form is preserved). Only useful on GIMPLE.
</ul>
<p>Finally, there are some higher-level loop transformations implemented.
While some of them are written so that they should work on non-innermost
loops, they are mostly untested in that case, and at the moment, they
are only reliable for the innermost loops:
<ul>
<li><code>create_iv</code>: Creates a new induction variable. Only works on
GIMPLE. <code>standard_iv_increment_position</code> can be used to find a
suitable place for the iv increment.
<li><code>duplicate_loop_to_header_edge</code>,
<code>tree_duplicate_loop_to_header_edge</code>: These functions (on RTL and
on GIMPLE) duplicate the body of the loop prescribed number of times on
one of the edges entering loop header, thus performing either loop
unrolling or loop peeling. <code>can_duplicate_loop_p</code>
(<code>can_unroll_loop_p</code> on GIMPLE) must be true for the duplicated
loop.
<li><code>loop_version</code>, <code>tree_ssa_loop_version</code>: These function
create a copy of a loop, and a branch before them that selects one of
them depending on the prescribed condition. This is useful for
optimizations that need to verify some assumptions in runtime (one of
the copies of the loop is usually left unchanged, while the other one is
transformed in some way).
<li><code>tree_unroll_loop</code>: Unrolls the loop, including peeling the
extra iterations to make the number of iterations divisible by unroll
factor, updating the exit condition, and removing the exits that now
cannot be taken. Works only on GIMPLE.
</ul>
<div class="node">
<a name="LCSSA"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Scalar-evolutions">Scalar evolutions</a>,
Previous: <a rel="previous" accesskey="p" href="#Loop-manipulation">Loop manipulation</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.4 Loop-closed SSA form</h3>
<p><a name="index-LCSSA-3117"></a><a name="index-Loop_002dclosed-SSA-form-3118"></a>
Throughout the loop optimizations on tree level, one extra condition is
enforced on the SSA form: No SSA name is used outside of the loop in
that it is defined. The SSA form satisfying this condition is called
“loop-closed SSA form” – LCSSA. To enforce LCSSA, PHI nodes must be
created at the exits of the loops for the SSA names that are used
outside of them. Only the real operands (not virtual SSA names) are
held in LCSSA, in order to save memory.
<p>There are various benefits of LCSSA:
<ul>
<li>Many optimizations (value range analysis, final value
replacement) are interested in the values that are defined in the loop
and used outside of it, i.e., exactly those for that we create new PHI
nodes.
<li>In induction variable analysis, it is not necessary to specify the
loop in that the analysis should be performed – the scalar evolution
analysis always returns the results with respect to the loop in that the
SSA name is defined.
<li>It makes updating of SSA form during loop transformations simpler.
Without LCSSA, operations like loop unrolling may force creation of PHI
nodes arbitrarily far from the loop, while in LCSSA, the SSA form can be
updated locally. However, since we only keep real operands in LCSSA, we
cannot use this advantage (we could have local updating of real
operands, but it is not much more efficient than to use generic SSA form
updating for it as well; the amount of changes to SSA is the same).
</ul>
<p>However, it also means LCSSA must be updated. This is usually
straightforward, unless you create a new value in loop and use it
outside, or unless you manipulate loop exit edges (functions are
provided to make these manipulations simple).
<code>rewrite_into_loop_closed_ssa</code> is used to rewrite SSA form to
LCSSA, and <code>verify_loop_closed_ssa</code> to check that the invariant of
LCSSA is preserved.
<div class="node">
<a name="Scalar-evolutions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#loop_002div">loop-iv</a>,
Previous: <a rel="previous" accesskey="p" href="#LCSSA">LCSSA</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.5 Scalar evolutions</h3>
<p><a name="index-Scalar-evolutions-3119"></a><a name="index-IV-analysis-on-GIMPLE-3120"></a>
Scalar evolutions (SCEV) are used to represent results of induction
variable analysis on GIMPLE. They enable us to represent variables with
complicated behavior in a simple and consistent way (we only use it to
express values of polynomial induction variables, but it is possible to
extend it). The interfaces to SCEV analysis are declared in
<samp><span class="file">tree-scalar-evolution.h</span></samp>. To use scalar evolutions analysis,
<code>scev_initialize</code> must be used. To stop using SCEV,
<code>scev_finalize</code> should be used. SCEV analysis caches results in
order to save time and memory. This cache however is made invalid by
most of the loop transformations, including removal of code. If such a
transformation is performed, <code>scev_reset</code> must be called to clean
the caches.
<p>Given an SSA name, its behavior in loops can be analyzed using the
<code>analyze_scalar_evolution</code> function. The returned SCEV however
does not have to be fully analyzed and it may contain references to
other SSA names defined in the loop. To resolve these (potentially
recursive) references, <code>instantiate_parameters</code> or
<code>resolve_mixers</code> functions must be used.
<code>instantiate_parameters</code> is useful when you use the results of SCEV
only for some analysis, and when you work with whole nest of loops at
once. It will try replacing all SSA names by their SCEV in all loops,
including the super-loops of the current loop, thus providing a complete
information about the behavior of the variable in the loop nest.
<code>resolve_mixers</code> is useful if you work with only one loop at a
time, and if you possibly need to create code based on the value of the
induction variable. It will only resolve the SSA names defined in the
current loop, leaving the SSA names defined outside unchanged, even if
their evolution in the outer loops is known.
<p>The SCEV is a normal tree expression, except for the fact that it may
contain several special tree nodes. One of them is
<code>SCEV_NOT_KNOWN</code>, used for SSA names whose value cannot be
expressed. The other one is <code>POLYNOMIAL_CHREC</code>. Polynomial chrec
has three arguments – base, step and loop (both base and step may
contain further polynomial chrecs). Type of the expression and of base
and step must be the same. A variable has evolution
<code>POLYNOMIAL_CHREC(base, step, loop)</code> if it is (in the specified
loop) equivalent to <code>x_1</code> in the following example
<pre class="smallexample"> while (...)
{
x_1 = phi (base, x_2);
x_2 = x_1 + step;
}
</pre>
<p>Note that this includes the language restrictions on the operations.
For example, if we compile C code and <code>x</code> has signed type, then the
overflow in addition would cause undefined behavior, and we may assume
that this does not happen. Hence, the value with this SCEV cannot
overflow (which restricts the number of iterations of such a loop).
<p>In many cases, one wants to restrict the attention just to affine
induction variables. In this case, the extra expressive power of SCEV
is not useful, and may complicate the optimizations. In this case,
<code>simple_iv</code> function may be used to analyze a value – the result
is a loop-invariant base and step.
<div class="node">
<a name="loop-iv"></a>
<a name="loop_002div"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Number-of-iterations">Number of iterations</a>,
Previous: <a rel="previous" accesskey="p" href="#Scalar-evolutions">Scalar evolutions</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.6 IV analysis on RTL</h3>
<p><a name="index-IV-analysis-on-RTL-3121"></a>
The induction variable on RTL is simple and only allows analysis of
affine induction variables, and only in one loop at once. The interface
is declared in <samp><span class="file">cfgloop.h</span></samp>. Before analyzing induction variables
in a loop L, <code>iv_analysis_loop_init</code> function must be called on L.
After the analysis (possibly calling <code>iv_analysis_loop_init</code> for
several loops) is finished, <code>iv_analysis_done</code> should be called.
The following functions can be used to access the results of the
analysis:
<ul>
<li><code>iv_analyze</code>: Analyzes a single register used in the given
insn. If no use of the register in this insn is found, the following
insns are scanned, so that this function can be called on the insn
returned by get_condition.
<li><code>iv_analyze_result</code>: Analyzes result of the assignment in the
given insn.
<li><code>iv_analyze_expr</code>: Analyzes a more complicated expression.
All its operands are analyzed by <code>iv_analyze</code>, and hence they must
be used in the specified insn or one of the following insns.
</ul>
<p>The description of the induction variable is provided in <code>struct
rtx_iv</code>. In order to handle subregs, the representation is a bit
complicated; if the value of the <code>extend</code> field is not
<code>UNKNOWN</code>, the value of the induction variable in the i-th
iteration is
<pre class="smallexample"> delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),
</pre>
<p>with the following exception: if <code>first_special</code> is true, then the
value in the first iteration (when <code>i</code> is zero) is <code>delta +
mult * base</code>. However, if <code>extend</code> is equal to <code>UNKNOWN</code>,
then <code>first_special</code> must be false, <code>delta</code> 0, <code>mult</code> 1
and the value in the i-th iteration is
<pre class="smallexample"> subreg_{mode} (base + i * step)
</pre>
<p>The function <code>get_iv_value</code> can be used to perform these
calculations.
<div class="node">
<a name="Number-of-iterations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dependency-analysis">Dependency analysis</a>,
Previous: <a rel="previous" accesskey="p" href="#loop_002div">loop-iv</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.7 Number of iterations analysis</h3>
<p><a name="index-Number-of-iterations-analysis-3122"></a>
Both on GIMPLE and on RTL, there are functions available to determine
the number of iterations of a loop, with a similar interface. The
number of iterations of a loop in GCC is defined as the number of
executions of the loop latch. In many cases, it is not possible to
determine the number of iterations unconditionally – the determined
number is correct only if some assumptions are satisfied. The analysis
tries to verify these conditions using the information contained in the
program; if it fails, the conditions are returned together with the
result. The following information and conditions are provided by the
analysis:
<ul>
<li><code>assumptions</code>: If this condition is false, the rest of
the information is invalid.
<li><code>noloop_assumptions</code> on RTL, <code>may_be_zero</code> on GIMPLE: If
this condition is true, the loop exits in the first iteration.
<li><code>infinite</code>: If this condition is true, the loop is infinite.
This condition is only available on RTL. On GIMPLE, conditions for
finiteness of the loop are included in <code>assumptions</code>.
<li><code>niter_expr</code> on RTL, <code>niter</code> on GIMPLE: The expression
that gives number of iterations. The number of iterations is defined as
the number of executions of the loop latch.
</ul>
<p>Both on GIMPLE and on RTL, it necessary for the induction variable
analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL).
On GIMPLE, the results are stored to <code>struct tree_niter_desc</code>
structure. Number of iterations before the loop is exited through a
given exit can be determined using <code>number_of_iterations_exit</code>
function. On RTL, the results are returned in <code>struct niter_desc</code>
structure. The corresponding function is named
<code>check_simple_exit</code>. There are also functions that pass through
all the exits of a loop and try to find one with easy to determine
number of iterations – <code>find_loop_niter</code> on GIMPLE and
<code>find_simple_exit</code> on RTL. Finally, there are functions that
provide the same information, but additionally cache it, so that
repeated calls to number of iterations are not so costly –
<code>number_of_latch_executions</code> on GIMPLE and <code>get_simple_loop_desc</code>
on RTL.
<p>Note that some of these functions may behave slightly differently than
others – some of them return only the expression for the number of
iterations, and fail if there are some assumptions. The function
<code>number_of_latch_executions</code> works only for single-exit loops.
The function <code>number_of_cond_exit_executions</code> can be used to
determine number of executions of the exit condition of a single-exit
loop (i.e., the <code>number_of_latch_executions</code> increased by one).
<div class="node">
<a name="Dependency-analysis"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Lambda">Lambda</a>,
Previous: <a rel="previous" accesskey="p" href="#Number-of-iterations">Number of iterations</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.8 Data Dependency Analysis</h3>
<p><a name="index-Data-Dependency-Analysis-3123"></a>
The code for the data dependence analysis can be found in
<samp><span class="file">tree-data-ref.c</span></samp> and its interface and data structures are
described in <samp><span class="file">tree-data-ref.h</span></samp>. The function that computes the
data dependences for all the array and pointer references for a given
loop is <code>compute_data_dependences_for_loop</code>. This function is
currently used by the linear loop transform and the vectorization
passes. Before calling this function, one has to allocate two vectors:
a first vector will contain the set of data references that are
contained in the analyzed loop body, and the second vector will contain
the dependence relations between the data references. Thus if the
vector of data references is of size <code>n</code>, the vector containing the
dependence relations will contain <code>n*n</code> elements. However if the
analyzed loop contains side effects, such as calls that potentially can
interfere with the data references in the current analyzed loop, the
analysis stops while scanning the loop body for data references, and
inserts a single <code>chrec_dont_know</code> in the dependence relation
array.
<p>The data references are discovered in a particular order during the
scanning of the loop body: the loop body is analyzed in execution order,
and the data references of each statement are pushed at the end of the
data reference array. Two data references syntactically occur in the
program in the same order as in the array of data references. This
syntactic order is important in some classical data dependence tests,
and mapping this order to the elements of this array avoids costly
queries to the loop body representation.
<p>Three types of data references are currently handled: ARRAY_REF,
INDIRECT_REF and COMPONENT_REF. The data structure for the data reference
is <code>data_reference</code>, where <code>data_reference_p</code> is a name of a
pointer to the data reference structure. The structure contains the
following elements:
<ul>
<li><code>base_object_info</code>: Provides information about the base object
of the data reference and its access functions. These access functions
represent the evolution of the data reference in the loop relative to
its base, in keeping with the classical meaning of the data reference
access function for the support of arrays. For example, for a reference
<code>a.b[i][j]</code>, the base object is <code>a.b</code> and the access functions,
one for each array subscript, are:
<code>{i_init, + i_step}_1, {j_init, +, j_step}_2</code>.
<li><code>first_location_in_loop</code>: Provides information about the first
location accessed by the data reference in the loop and about the access
function used to represent evolution relative to this location. This data
is used to support pointers, and is not used for arrays (for which we
have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the first location accessed in the loop. For
example:
<pre class="smallexample"> for1 i
for2 j
*((int *)p + i + j) = a[i][j];
</pre>
<p>The access function of the pointer access is <code>{0, + 4B}_for2</code>
relative to <code>p + i</code>. The access functions of the array are
<code>{i_init, + i_step}_for1</code> and <code>{j_init, +, j_step}_for2</code>
relative to <code>a</code>.
<p>Usually, the object the pointer refers to is either unknown, or we can't
prove that the access is confined to the boundaries of a certain object.
<p>Two data references can be compared only if at least one of these two
representations has all its fields filled for both data references.
<p>The current strategy for data dependence tests is as follows:
If both <code>a</code> and <code>b</code> are represented as arrays, compare
<code>a.base_object</code> and <code>b.base_object</code>;
if they are equal, apply dependence tests (use access functions based on
base_objects).
Else if both <code>a</code> and <code>b</code> are represented as pointers, compare
<code>a.first_location</code> and <code>b.first_location</code>;
if they are equal, apply dependence tests (use access functions based on
first location).
However, if <code>a</code> and <code>b</code> are represented differently, only try
to prove that the bases are definitely different.
<li>Aliasing information.
<li>Alignment information.
</ul>
<p>The structure describing the relation between two data references is
<code>data_dependence_relation</code> and the shorter name for a pointer to
such a structure is <code>ddr_p</code>. This structure contains:
<ul>
<li>a pointer to each data reference,
<li>a tree node <code>are_dependent</code> that is set to <code>chrec_known</code>
if the analysis has proved that there is no dependence between these two
data references, <code>chrec_dont_know</code> if the analysis was not able to
determine any useful result and potentially there could exist a
dependence between these data references, and <code>are_dependent</code> is
set to <code>NULL_TREE</code> if there exist a dependence relation between the
data references, and the description of this dependence relation is
given in the <code>subscripts</code>, <code>dir_vects</code>, and <code>dist_vects</code>
arrays,
<li>a boolean that determines whether the dependence relation can be
represented by a classical distance vector,
<li>an array <code>subscripts</code> that contains a description of each
subscript of the data references. Given two array accesses a
subscript is the tuple composed of the access functions for a given
dimension. For example, given <code>A[f1][f2][f3]</code> and
<code>B[g1][g2][g3]</code>, there are three subscripts: <code>(f1, g1), (f2,
g2), (f3, g3)</code>.
<li>two arrays <code>dir_vects</code> and <code>dist_vects</code> that contain
classical representations of the data dependences under the form of
direction and distance dependence vectors,
<li>an array of loops <code>loop_nest</code> that contains the loops to
which the distance and direction vectors refer to.
</ul>
<p>Several functions for pretty printing the information extracted by the
data dependence analysis are available: <code>dump_ddrs</code> prints with a
maximum verbosity the details of a data dependence relations array,
<code>dump_dist_dir_vectors</code> prints only the classical distance and
direction vectors for a data dependence relations array, and
<code>dump_data_references</code> prints the details of the data references
contained in a data reference array.
<div class="node">
<a name="Lambda"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Omega">Omega</a>,
Previous: <a rel="previous" accesskey="p" href="#Dependency-analysis">Dependency analysis</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.9 Linear loop transformations framework</h3>
<p><a name="index-Linear-loop-transformations-framework-3124"></a>
Lambda is a framework that allows transformations of loops using
non-singular matrix based transformations of the iteration space and
loop bounds. This allows compositions of skewing, scaling, interchange,
and reversal transformations. These transformations are often used to
improve cache behavior or remove inner loop dependencies to allow
parallelization and vectorization to take place.
<p>To perform these transformations, Lambda requires that the loopnest be
converted into an internal form that can be matrix transformed easily.
To do this conversion, the function
<code>gcc_loopnest_to_lambda_loopnest</code> is provided. If the loop cannot
be transformed using lambda, this function will return NULL.
<p>Once a <code>lambda_loopnest</code> is obtained from the conversion function,
it can be transformed by using <code>lambda_loopnest_transform</code>, which
takes a transformation matrix to apply. Note that it is up to the
caller to verify that the transformation matrix is legal to apply to the
loop (dependence respecting, etc). Lambda simply applies whatever
matrix it is told to provide. It can be extended to make legal matrices
out of any non-singular matrix, but this is not currently implemented.
Legality of a matrix for a given loopnest can be verified using
<code>lambda_transform_legal_p</code>.
<p>Given a transformed loopnest, conversion back into gcc IR is done by
<code>lambda_loopnest_to_gcc_loopnest</code>. This function will modify the
loops so that they match the transformed loopnest.
<div class="node">
<a name="Omega"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Lambda">Lambda</a>,
Up: <a rel="up" accesskey="u" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>
</div>
<h3 class="section">14.10 Omega a solver for linear programming problems</h3>
<p><a name="index-Omega-a-solver-for-linear-programming-problems-3125"></a>
The data dependence analysis contains several solvers triggered
sequentially from the less complex ones to the more sophisticated.
For ensuring the consistency of the results of these solvers, a data
dependence check pass has been implemented based on two different
solvers. The second method that has been integrated to GCC is based
on the Omega dependence solver, written in the 1990's by William Pugh
and David Wonnacott. Data dependence tests can be formulated using a
subset of the Presburger arithmetics that can be translated to linear
constraint systems. These linear constraint systems can then be
solved using the Omega solver.
<p>The Omega solver is using Fourier-Motzkin's algorithm for variable
elimination: a linear constraint system containing <code>n</code> variables
is reduced to a linear constraint system with <code>n-1</code> variables.
The Omega solver can also be used for solving other problems that can
be expressed under the form of a system of linear equalities and
inequalities. The Omega solver is known to have an exponential worst
case, also known under the name of “omega nightmare” in the
literature, but in practice, the omega test is known to be efficient
for the common data dependence tests.
<p>The interface used by the Omega solver for describing the linear
programming problems is described in <samp><span class="file">omega.h</span></samp>, and the solver is
<code>omega_solve_problem</code>.
<!-- *-texinfo-*- -->
<!-- Copyright (C) 2001, 2003, 2004, 2005, 2006, 2007, 2008 Free Software -->
<!-- Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- -->
<!-- Control Flow Graph -->
<!-- -->
<div class="node">
<a name="Control-Flow"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>,
Previous: <a rel="previous" accesskey="p" href="#RTL">RTL</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">15 Control Flow Graph</h2>
<p><a name="index-CFG_002c-Control-Flow-Graph-3126"></a><a name="index-basic_002dblock_002eh-3127"></a>
A control flow graph (CFG) is a data structure built on top of the
intermediate code representation (the RTL or <code>tree</code> instruction
stream) abstracting the control flow behavior of a function that is
being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of
control flow from one basic block to another. The data structures
used to represent the control flow graph are defined in
<samp><span class="file">basic-block.h</span></samp>.
<ul class="menu">
<li><a accesskey="1" href="#Basic-Blocks">Basic Blocks</a>: The definition and representation of basic blocks.
<li><a accesskey="2" href="#Edges">Edges</a>: Types of edges and their representation.
<li><a accesskey="3" href="#Profile-information">Profile information</a>: Representation of frequencies and probabilities.
<li><a accesskey="4" href="#Maintaining-the-CFG">Maintaining the CFG</a>: Keeping the control flow graph and up to date.
<li><a accesskey="5" href="#Liveness-information">Liveness information</a>: Using and maintaining liveness information.
</ul>
<div class="node">
<a name="Basic-Blocks"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Edges">Edges</a>,
Up: <a rel="up" accesskey="u" href="#Control-Flow">Control Flow</a>
</div>
<h3 class="section">15.1 Basic Blocks</h3>
<p><a name="index-basic-block-3128"></a><a name="index-basic_005fblock-3129"></a>A basic block is a straight-line sequence of code with only one entry
point and only one exit. In GCC, basic blocks are represented using
the <code>basic_block</code> data type.
<p><a name="index-next_005fbb_002c-prev_005fbb_002c-FOR_005fEACH_005fBB-3130"></a>Two pointer members of the <code>basic_block</code> structure are the
pointers <code>next_bb</code> and <code>prev_bb</code>. These are used to keep
doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated
transparently by the provided API for manipulating the CFG. The macro
<code>FOR_EACH_BB</code> can be used to visit all the basic blocks in
lexicographical order. Dominator traversals are also possible using
<code>walk_dominator_tree</code>. Given two basic blocks A and B, block A
dominates block B if A is <em>always</em> executed before B.
<p><a name="index-BASIC_005fBLOCK-3131"></a>The <code>BASIC_BLOCK</code> array contains all basic blocks in an
unspecified order. Each <code>basic_block</code> structure has a field
that holds a unique integer identifier <code>index</code> that is the
index of the block in the <code>BASIC_BLOCK</code> array.
The total number of basic blocks in the function is
<code>n_basic_blocks</code>. Both the basic block indices and
the total number of basic blocks may vary during the compilation
process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than
<code>last_basic_block</code>.
<p><a name="index-ENTRY_005fBLOCK_005fPTR_002c-EXIT_005fBLOCK_005fPTR-3132"></a>Special basic blocks represent possible entry and exit points of a
function. These blocks are called <code>ENTRY_BLOCK_PTR</code> and
<code>EXIT_BLOCK_PTR</code>. These blocks do not contain any code, and are
not elements of the <code>BASIC_BLOCK</code> array. Therefore they have
been assigned unique, negative index numbers.
<p>Each <code>basic_block</code> also contains pointers to the first
instruction (the <dfn>head</dfn>) and the last instruction (the <dfn>tail</dfn>)
or <dfn>end</dfn> of the instruction stream contained in a basic block. In
fact, since the <code>basic_block</code> data type is used to represent
blocks in both major intermediate representations of GCC (<code>tree</code>
and RTL), there are pointers to the head and end of a basic block for
both representations.
<p><a name="index-NOTE_005fINSN_005fBASIC_005fBLOCK_002c-CODE_005fLABEL_002c-notes-3133"></a>For RTL, these pointers are <code>rtx head, end</code>. In the RTL function
representation, the head pointer always points either to a
<code>NOTE_INSN_BASIC_BLOCK</code> or to a <code>CODE_LABEL</code>, if present.
In the RTL representation of a function, the instruction stream
contains not only the “real” instructions, but also <dfn>notes</dfn>.
Any function that moves or duplicates the basic blocks needs
to take care of updating of these notes. Many of these notes expect
that the instruction stream consists of linear regions, making such
updates difficult. The <code>NOTE_INSN_BASIC_BLOCK</code> note is the only
kind of note that may appear in the instruction stream contained in a
basic block. The instruction stream of a basic block always follows a
<code>NOTE_INSN_BASIC_BLOCK</code>, but zero or more <code>CODE_LABEL</code>
nodes can precede the block note. A basic block ends by control flow
instruction or last instruction before following <code>CODE_LABEL</code> or
<code>NOTE_INSN_BASIC_BLOCK</code>. A <code>CODE_LABEL</code> cannot appear in
the instruction stream of a basic block.
<p><a name="index-can_005ffallthru-3134"></a><a name="index-table-jump-3135"></a>In addition to notes, the jump table vectors are also represented as
“pseudo-instructions” inside the insn stream. These vectors never
appear in the basic block and should always be placed just after the
table jump instructions referencing them. After removing the
table-jump it is often difficult to eliminate the code computing the
address and referencing the vector, so cleaning up these vectors is
postponed until after liveness analysis. Thus the jump table vectors
may appear in the insn stream unreferenced and without any purpose.
Before any edge is made <dfn>fall-thru</dfn>, the existence of such
construct in the way needs to be checked by calling
<code>can_fallthru</code> function.
<p><a name="index-block-statement-iterators-3136"></a>For the <code>tree</code> representation, the head and end of the basic block
are being pointed to by the <code>stmt_list</code> field, but this special
<code>tree</code> should never be referenced directly. Instead, at the tree
level abstract containers and iterators are used to access statements
and expressions in basic blocks. These iterators are called
<dfn>block statement iterators</dfn> (BSIs). Grep for <code>^bsi</code>
in the various <samp><span class="file">tree-*</span></samp> files.
The following snippet will pretty-print all the statements of the
program in the GIMPLE representation.
<pre class="smallexample"> FOR_EACH_BB (bb)
{
block_stmt_iterator si;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
print_generic_stmt (stderr, stmt, 0);
}
}
</pre>
<div class="node">
<a name="Edges"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Profile-information">Profile information</a>,
Previous: <a rel="previous" accesskey="p" href="#Basic-Blocks">Basic Blocks</a>,
Up: <a rel="up" accesskey="u" href="#Control-Flow">Control Flow</a>
</div>
<h3 class="section">15.2 Edges</h3>
<p><a name="index-edge-in-the-flow-graph-3137"></a><a name="index-edge-3138"></a>Edges represent possible control flow transfers from the end of some
basic block A to the head of another basic block B. We say that A is
a predecessor of B, and B is a successor of A. Edges are represented
in GCC with the <code>edge</code> data type. Each <code>edge</code> acts as a
link between two basic blocks: the <code>src</code> member of an edge
points to the predecessor basic block of the <code>dest</code> basic block.
The members <code>preds</code> and <code>succs</code> of the <code>basic_block</code> data
type point to type-safe vectors of edges to the predecessors and
successors of the block.
<p><a name="index-edge-iterators-3139"></a>When walking the edges in an edge vector, <dfn>edge iterators</dfn> should
be used. Edge iterators are constructed using the
<code>edge_iterator</code> data structure and several methods are available
to operate on them:
<dl>
<dt><code>ei_start</code><a name="index-ei_005fstart-3140"></a><dd>This function initializes an <code>edge_iterator</code> that points to the
first edge in a vector of edges.
<br><dt><code>ei_last</code><a name="index-ei_005flast-3141"></a><dd>This function initializes an <code>edge_iterator</code> that points to the
last edge in a vector of edges.
<br><dt><code>ei_end_p</code><a name="index-ei_005fend_005fp-3142"></a><dd>This predicate is <code>true</code> if an <code>edge_iterator</code> represents
the last edge in an edge vector.
<br><dt><code>ei_one_before_end_p</code><a name="index-ei_005fone_005fbefore_005fend_005fp-3143"></a><dd>This predicate is <code>true</code> if an <code>edge_iterator</code> represents
the second last edge in an edge vector.
<br><dt><code>ei_next</code><a name="index-ei_005fnext-3144"></a><dd>This function takes a pointer to an <code>edge_iterator</code> and makes it
point to the next edge in the sequence.
<br><dt><code>ei_prev</code><a name="index-ei_005fprev-3145"></a><dd>This function takes a pointer to an <code>edge_iterator</code> and makes it
point to the previous edge in the sequence.
<br><dt><code>ei_edge</code><a name="index-ei_005fedge-3146"></a><dd>This function returns the <code>edge</code> currently pointed to by an
<code>edge_iterator</code>.
<br><dt><code>ei_safe_safe</code><a name="index-ei_005fsafe_005fsafe-3147"></a><dd>This function returns the <code>edge</code> currently pointed to by an
<code>edge_iterator</code>, but returns <code>NULL</code> if the iterator is
pointing at the end of the sequence. This function has been provided
for existing code makes the assumption that a <code>NULL</code> edge
indicates the end of the sequence.
</dl>
<p>The convenience macro <code>FOR_EACH_EDGE</code> can be used to visit all of
the edges in a sequence of predecessor or successor edges. It must
not be used when an element might be removed during the traversal,
otherwise elements will be missed. Here is an example of how to use
the macro:
<pre class="smallexample"> edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->flags & EDGE_FALLTHRU)
break;
}
</pre>
<p><a name="index-fall_002dthru-3148"></a>There are various reasons why control flow may transfer from one block
to another. One possibility is that some instruction, for example a
<code>CODE_LABEL</code>, in a linearized instruction stream just always
starts a new basic block. In this case a <dfn>fall-thru</dfn> edge links
the basic block to the first following basic block. But there are
several other reasons why edges may be created. The <code>flags</code>
field of the <code>edge</code> data type is used to store information
about the type of edge we are dealing with. Each edge is of one of
the following types:
<dl>
<dt><em>jump</em><dd>No type flags are set for edges corresponding to jump instructions.
These edges are used for unconditional or conditional jumps and in
RTL also for table jumps. They are the easiest to manipulate as they
may be freely redirected when the flow graph is not in SSA form.
<br><dt><em>fall-thru</em><dd><a name="index-EDGE_005fFALLTHRU_002c-force_005fnonfallthru-3149"></a>Fall-thru edges are present in case where the basic block may continue
execution to the following one without branching. These edges have
the <code>EDGE_FALLTHRU</code> flag set. Unlike other types of edges, these
edges must come into the basic block immediately following in the
instruction stream. The function <code>force_nonfallthru</code> is
available to insert an unconditional jump in the case that redirection
is needed. Note that this may require creation of a new basic block.
<br><dt><em>exception handling</em><dd><a name="index-exception-handling-3150"></a><a name="index-EDGE_005fABNORMAL_002c-EDGE_005fEH-3151"></a>Exception handling edges represent possible control transfers from a
trapping instruction to an exception handler. The definition of
“trapping” varies. In C++, only function calls can throw, but for
Java, exceptions like division by zero or segmentation fault are
defined and thus each instruction possibly throwing this kind of
exception needs to be handled as control flow instruction. Exception
edges have the <code>EDGE_ABNORMAL</code> and <code>EDGE_EH</code> flags set.
<p><a name="index-purge_005fdead_005fedges-3152"></a>When updating the instruction stream it is easy to change possibly
trapping instruction to non-trapping, by simply removing the exception
edge. The opposite conversion is difficult, but should not happen
anyway. The edges can be eliminated via <code>purge_dead_edges</code> call.
<p><a name="index-REG_005fEH_005fREGION_002c-EDGE_005fABNORMAL_005fCALL-3153"></a>In the RTL representation, the destination of an exception edge is
specified by <code>REG_EH_REGION</code> note attached to the insn.
In case of a trapping call the <code>EDGE_ABNORMAL_CALL</code> flag is set
too. In the <code>tree</code> representation, this extra flag is not set.
<p><a name="index-may_005ftrap_005fp_002c-tree_005fcould_005ftrap_005fp-3154"></a>In the RTL representation, the predicate <code>may_trap_p</code> may be used
to check whether instruction still may trap or not. For the tree
representation, the <code>tree_could_trap_p</code> predicate is available,
but this predicate only checks for possible memory traps, as in
dereferencing an invalid pointer location.
<br><dt><em>sibling calls</em><dd><a name="index-sibling-call-3155"></a><a name="index-EDGE_005fABNORMAL_002c-EDGE_005fSIBCALL-3156"></a>Sibling calls or tail calls terminate the function in a non-standard
way and thus an edge to the exit must be present.
<code>EDGE_SIBCALL</code> and <code>EDGE_ABNORMAL</code> are set in such case.
These edges only exist in the RTL representation.
<br><dt><em>computed jumps</em><dd><a name="index-computed-jump-3157"></a><a name="index-EDGE_005fABNORMAL-3158"></a>Computed jumps contain edges to all labels in the function referenced
from the code. All those edges have <code>EDGE_ABNORMAL</code> flag set.
The edges used to represent computed jumps often cause compile time
performance problems, since functions consisting of many taken labels
and many computed jumps may have <em>very</em> dense flow graphs, so
these edges need to be handled with special care. During the earlier
stages of the compilation process, GCC tries to avoid such dense flow
graphs by factoring computed jumps. For example, given the following
series of jumps,
<pre class="smallexample"> goto *x;
[ ... ]
goto *x;
[ ... ]
goto *x;
[ ... ]
</pre>
<p class="noindent">factoring the computed jumps results in the following code sequence
which has a much simpler flow graph:
<pre class="smallexample"> goto y;
[ ... ]
goto y;
[ ... ]
goto y;
[ ... ]
y:
goto *x;
</pre>
<p>However, the classic problem with this transformation is that it has a
runtime cost in there resulting code: An extra jump. Therefore, the
computed jumps are un-factored in the later passes of the compiler.
Be aware of that when you work on passes in that area. There have
been numerous examples already where the compile time for code with
unfactored computed jumps caused some serious headaches.
<br><dt><em>nonlocal goto handlers</em><dd><a name="index-nonlocal-goto-handler-3159"></a><a name="index-EDGE_005fABNORMAL_002c-EDGE_005fABNORMAL_005fCALL-3160"></a>GCC allows nested functions to return into caller using a <code>goto</code>
to a label passed to as an argument to the callee. The labels passed
to nested functions contain special code to cleanup after function
call. Such sections of code are referred to as “nonlocal goto
receivers”. If a function contains such nonlocal goto receivers, an
edge from the call to the label is created with the
<code>EDGE_ABNORMAL</code> and <code>EDGE_ABNORMAL_CALL</code> flags set.
<br><dt><em>function entry points</em><dd><a name="index-function-entry-point_002c-alternate-function-entry-point-3161"></a><a name="index-LABEL_005fALTERNATE_005fNAME-3162"></a>By definition, execution of function starts at basic block 0, so there
is always an edge from the <code>ENTRY_BLOCK_PTR</code> to basic block 0.
There is no <code>tree</code> representation for alternate entry points at
this moment. In RTL, alternate entry points are specified by
<code>CODE_LABEL</code> with <code>LABEL_ALTERNATE_NAME</code> defined. This
feature is currently used for multiple entry point prologues and is
limited to post-reload passes only. This can be used by back-ends to
emit alternate prologues for functions called from different contexts.
In future full support for multiple entry functions defined by Fortran
90 needs to be implemented.
<br><dt><em>function exits</em><dd>In the pre-reload representation a function terminates after the last
instruction in the insn chain and no explicit return instructions are
used. This corresponds to the fall-thru edge into exit block. After
reload, optimal RTL epilogues are used that use explicit (conditional)
return instructions that are represented by edges with no flags set.
</dl>
<div class="node">
<a name="Profile-information"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Maintaining-the-CFG">Maintaining the CFG</a>,
Previous: <a rel="previous" accesskey="p" href="#Edges">Edges</a>,
Up: <a rel="up" accesskey="u" href="#Control-Flow">Control Flow</a>
</div>
<h3 class="section">15.3 Profile information</h3>
<p><a name="index-profile-representation-3163"></a>In many cases a compiler must make a choice whether to trade speed in
one part of code for speed in another, or to trade code size for code
speed. In such cases it is useful to know information about how often
some given block will be executed. That is the purpose for
maintaining profile within the flow graph.
GCC can handle profile information obtained through <dfn>profile
feedback</dfn>, but it can also estimate branch probabilities based on
statics and heuristics.
<p><a name="index-profile-feedback-3164"></a>The feedback based profile is produced by compiling the program with
instrumentation, executing it on a train run and reading the numbers
of executions of basic blocks and edges back to the compiler while
re-compiling the program to produce the final executable. This method
provides very accurate information about where a program spends most
of its time on the train run. Whether it matches the average run of
course depends on the choice of train data set, but several studies
have shown that the behavior of a program usually changes just
marginally over different data sets.
<p><a name="index-Static-profile-estimation-3165"></a><a name="index-branch-prediction-3166"></a><a name="index-predict_002edef-3167"></a>When profile feedback is not available, the compiler may be asked to
attempt to predict the behavior of each branch in the program using a
set of heuristics (see <samp><span class="file">predict.def</span></samp> for details) and compute
estimated frequencies of each basic block by propagating the
probabilities over the graph.
<p><a name="index-frequency_002c-count_002c-BB_005fFREQ_005fBASE-3168"></a>Each <code>basic_block</code> contains two integer fields to represent
profile information: <code>frequency</code> and <code>count</code>. The
<code>frequency</code> is an estimation how often is basic block executed
within a function. It is represented as an integer scaled in the
range from 0 to <code>BB_FREQ_BASE</code>. The most frequently executed
basic block in function is initially set to <code>BB_FREQ_BASE</code> and
the rest of frequencies are scaled accordingly. During optimization,
the frequency of the most frequent basic block can both decrease (for
instance by loop unrolling) or grow (for instance by cross-jumping
optimization), so scaling sometimes has to be performed multiple
times.
<p><a name="index-gcov_005ftype-3169"></a>The <code>count</code> contains hard-counted numbers of execution measured
during training runs and is nonzero only when profile feedback is
available. This value is represented as the host's widest integer
(typically a 64 bit integer) of the special type <code>gcov_type</code>.
<p>Most optimization passes can use only the frequency information of a
basic block, but a few passes may want to know hard execution counts.
The frequencies should always match the counts after scaling, however
during updating of the profile information numerical error may
accumulate into quite large errors.
<p><a name="index-REG_005fBR_005fPROB_005fBASE_002c-EDGE_005fFREQUENCY-3170"></a>Each edge also contains a branch probability field: an integer in the
range from 0 to <code>REG_BR_PROB_BASE</code>. It represents probability of
passing control from the end of the <code>src</code> basic block to the
<code>dest</code> basic block, i.e. the probability that control will flow
along this edge. The <code>EDGE_FREQUENCY</code> macro is available to
compute how frequently a given edge is taken. There is a <code>count</code>
field for each edge as well, representing same information as for a
basic block.
<p>The basic block frequencies are not represented in the instruction
stream, but in the RTL representation the edge frequencies are
represented for conditional jumps (via the <code>REG_BR_PROB</code>
macro) since they are used when instructions are output to the
assembly file and the flow graph is no longer maintained.
<p><a name="index-reverse-probability-3171"></a>The probability that control flow arrives via a given edge to its
destination basic block is called <dfn>reverse probability</dfn> and is not
directly represented, but it may be easily computed from frequencies
of basic blocks.
<p><a name="index-redirect_005fedge_005fand_005fbranch-3172"></a>Updating profile information is a delicate task that can unfortunately
not be easily integrated with the CFG manipulation API. Many of the
functions and hooks to modify the CFG, such as
<code>redirect_edge_and_branch</code>, do not have enough information to
easily update the profile, so updating it is in the majority of cases
left up to the caller. It is difficult to uncover bugs in the profile
updating code, because they manifest themselves only by producing
worse code, and checking profile consistency is not possible because
of numeric error accumulation. Hence special attention needs to be
given to this issue in each pass that modifies the CFG.
<p><a name="index-REG_005fBR_005fPROB_005fBASE_002c-BB_005fFREQ_005fBASE_002c-count-3173"></a>It is important to point out that <code>REG_BR_PROB_BASE</code> and
<code>BB_FREQ_BASE</code> are both set low enough to be possible to compute
second power of any frequency or probability in the flow graph, it is
not possible to even square the <code>count</code> field, as modern CPUs are
fast enough to execute $2^32$ operations quickly.
<div class="node">
<a name="Maintaining-the-CFG"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Liveness-information">Liveness information</a>,
Previous: <a rel="previous" accesskey="p" href="#Profile-information">Profile information</a>,
Up: <a rel="up" accesskey="u" href="#Control-Flow">Control Flow</a>
</div>
<h3 class="section">15.4 Maintaining the CFG</h3>
<p><a name="index-cfghooks_002eh-3174"></a>
An important task of each compiler pass is to keep both the control
flow graph and all profile information up-to-date. Reconstruction of
the control flow graph after each pass is not an option, since it may be
very expensive and lost profile information cannot be reconstructed at
all.
<p>GCC has two major intermediate representations, and both use the
<code>basic_block</code> and <code>edge</code> data types to represent control
flow. Both representations share as much of the CFG maintenance code
as possible. For each representation, a set of <dfn>hooks</dfn> is defined
so that each representation can provide its own implementation of CFG
manipulation routines when necessary. These hooks are defined in
<samp><span class="file">cfghooks.h</span></samp>. There are hooks for almost all common CFG
manipulations, including block splitting and merging, edge redirection
and creating and deleting basic blocks. These hooks should provide
everything you need to maintain and manipulate the CFG in both the RTL
and <code>tree</code> representation.
<p>At the moment, the basic block boundaries are maintained transparently
when modifying instructions, so there rarely is a need to move them
manually (such as in case someone wants to output instruction outside
basic block explicitly).
Often the CFG may be better viewed as integral part of instruction
chain, than structure built on the top of it. However, in principle
the control flow graph for the <code>tree</code> representation is
<em>not</em> an integral part of the representation, in that a function
tree may be expanded without first building a flow graph for the
<code>tree</code> representation at all. This happens when compiling
without any <code>tree</code> optimization enabled. When the <code>tree</code>
optimizations are enabled and the instruction stream is rewritten in
SSA form, the CFG is very tightly coupled with the instruction stream.
In particular, statement insertion and removal has to be done with
care. In fact, the whole <code>tree</code> representation can not be easily
used or maintained without proper maintenance of the CFG
simultaneously.
<p><a name="index-BLOCK_005fFOR_005fINSN_002c-bb_005ffor_005fstmt-3175"></a>In the RTL representation, each instruction has a
<code>BLOCK_FOR_INSN</code> value that represents pointer to the basic block
that contains the instruction. In the <code>tree</code> representation, the
function <code>bb_for_stmt</code> returns a pointer to the basic block
containing the queried statement.
<p><a name="index-block-statement-iterators-3176"></a>When changes need to be applied to a function in its <code>tree</code>
representation, <dfn>block statement iterators</dfn> should be used. These
iterators provide an integrated abstraction of the flow graph and the
instruction stream. Block statement iterators are constructed using
the <code>block_stmt_iterator</code> data structure and several modifier are
available, including the following:
<dl>
<dt><code>bsi_start</code><a name="index-bsi_005fstart-3177"></a><dd>This function initializes a <code>block_stmt_iterator</code> that points to
the first non-empty statement in a basic block.
<br><dt><code>bsi_last</code><a name="index-bsi_005flast-3178"></a><dd>This function initializes a <code>block_stmt_iterator</code> that points to
the last statement in a basic block.
<br><dt><code>bsi_end_p</code><a name="index-bsi_005fend_005fp-3179"></a><dd>This predicate is <code>true</code> if a <code>block_stmt_iterator</code>
represents the end of a basic block.
<br><dt><code>bsi_next</code><a name="index-bsi_005fnext-3180"></a><dd>This function takes a <code>block_stmt_iterator</code> and makes it point to
its successor.
<br><dt><code>bsi_prev</code><a name="index-bsi_005fprev-3181"></a><dd>This function takes a <code>block_stmt_iterator</code> and makes it point to
its predecessor.
<br><dt><code>bsi_insert_after</code><a name="index-bsi_005finsert_005fafter-3182"></a><dd>This function inserts a statement after the <code>block_stmt_iterator</code>
passed in. The final parameter determines whether the statement
iterator is updated to point to the newly inserted statement, or left
pointing to the original statement.
<br><dt><code>bsi_insert_before</code><a name="index-bsi_005finsert_005fbefore-3183"></a><dd>This function inserts a statement before the <code>block_stmt_iterator</code>
passed in. The final parameter determines whether the statement
iterator is updated to point to the newly inserted statement, or left
pointing to the original statement.
<br><dt><code>bsi_remove</code><a name="index-bsi_005fremove-3184"></a><dd>This function removes the <code>block_stmt_iterator</code> passed in and
rechains the remaining statements in a basic block, if any.
</dl>
<p><a name="index-BB_005fHEAD_002c-BB_005fEND-3185"></a>In the RTL representation, the macros <code>BB_HEAD</code> and <code>BB_END</code>
may be used to get the head and end <code>rtx</code> of a basic block. No
abstract iterators are defined for traversing the insn chain, but you
can just use <code>NEXT_INSN</code> and <code>PREV_INSN</code> instead. See <a href="#Insns">Insns</a>.
<p><a name="index-purge_005fdead_005fedges-3186"></a>Usually a code manipulating pass simplifies the instruction stream and
the flow of control, possibly eliminating some edges. This may for
example happen when a conditional jump is replaced with an
unconditional jump, but also when simplifying possibly trapping
instruction to non-trapping while compiling Java. Updating of edges
is not transparent and each optimization pass is required to do so
manually. However only few cases occur in practice. The pass may
call <code>purge_dead_edges</code> on a given basic block to remove
superfluous edges, if any.
<p><a name="index-redirect_005fedge_005fand_005fbranch_002c-redirect_005fjump-3187"></a>Another common scenario is redirection of branch instructions, but
this is best modeled as redirection of edges in the control flow graph
and thus use of <code>redirect_edge_and_branch</code> is preferred over more
low level functions, such as <code>redirect_jump</code> that operate on RTL
chain only. The CFG hooks defined in <samp><span class="file">cfghooks.h</span></samp> should provide
the complete API required for manipulating and maintaining the CFG.
<p><a name="index-split_005fblock-3188"></a>It is also possible that a pass has to insert control flow instruction
into the middle of a basic block, thus creating an entry point in the
middle of the basic block, which is impossible by definition: The
block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook <code>split_block</code> may be used
when an instruction in the middle of a basic block has to become the
target of a jump or branch instruction.
<p><a name="index-insert_005finsn_005fon_005fedge-3189"></a><a name="index-commit_005fedge_005finsertions-3190"></a><a name="index-bsi_005finsert_005fon_005fedge-3191"></a><a name="index-bsi_005fcommit_005fedge_005finserts-3192"></a><a name="index-edge-splitting-3193"></a>For a global optimizer, a common operation is to split edges in the
flow graph and insert instructions on them. In the RTL
representation, this can be easily done using the
<code>insert_insn_on_edge</code> function that emits an instruction
“on the edge”, caching it for a later <code>commit_edge_insertions</code>
call that will take care of moving the inserted instructions off the
edge into the instruction stream contained in a basic block. This
includes the creation of new basic blocks where needed. In the
<code>tree</code> representation, the equivalent functions are
<code>bsi_insert_on_edge</code> which inserts a block statement
iterator on an edge, and <code>bsi_commit_edge_inserts</code> which flushes
the instruction to actual instruction stream.
<p>While debugging the optimization pass, a <code>verify_flow_info</code>
function may be useful to find bugs in the control flow graph updating
code.
<p>Note that at present, the representation of control flow in the
<code>tree</code> representation is discarded before expanding to RTL.
Long term the CFG should be maintained and “expanded” to the
RTL representation along with the function <code>tree</code> itself.
<div class="node">
<a name="Liveness-information"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Maintaining-the-CFG">Maintaining the CFG</a>,
Up: <a rel="up" accesskey="u" href="#Control-Flow">Control Flow</a>
</div>
<h3 class="section">15.5 Liveness information</h3>
<p><a name="index-Liveness-representation-3194"></a>Liveness information is useful to determine whether some register is
“live” at given point of program, i.e. that it contains a value that
may be used at a later point in the program. This information is
used, for instance, during register allocation, as the pseudo
registers only need to be assigned to a unique hard register or to a
stack slot if they are live. The hard registers and stack slots may
be freely reused for other values when a register is dead.
<p>Liveness information is available in the back end starting with
<code>pass_df_initialize</code> and ending with <code>pass_df_finish</code>. Three
flavors of live analysis are available: With <code>LR</code>, it is possible
to determine at any point <code>P</code> in the function if the register may be
used on some path from <code>P</code> to the end of the function. With
<code>UR</code>, it is possible to determine if there is a path from the
beginning of the function to <code>P</code> that defines the variable.
<code>LIVE</code> is the intersection of the <code>LR</code> and <code>UR</code> and a
variable is live at <code>P</code> if there is both an assignment that reaches
it from the beginning of the function and a use that can be reached on
some path from <code>P</code> to the end of the function.
<p>In general <code>LIVE</code> is the most useful of the three. The macros
<code>DF_[LR,UR,LIVE]_[IN,OUT]</code> can be used to access this information.
The macros take a basic block number and return a bitmap that is indexed
by the register number. This information is only guaranteed to be up to
date after calls are made to <code>df_analyze</code>. See the file
<code>df-core.c</code> for details on using the dataflow.
<p><a name="index-REG_005fDEAD_002c-REG_005fUNUSED-3195"></a>The liveness information is stored partly in the RTL instruction stream
and partly in the flow graph. Local information is stored in the
instruction stream: Each instruction may contain <code>REG_DEAD</code> notes
representing that the value of a given register is no longer needed, or
<code>REG_UNUSED</code> notes representing that the value computed by the
instruction is never used. The second is useful for instructions
computing multiple values at once.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Machine-Desc"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Target-Macros">Target Macros</a>,
Previous: <a rel="previous" accesskey="p" href="#Loop-Analysis-and-Representation">Loop Analysis and Representation</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">16 Machine Descriptions</h2>
<p><a name="index-machine-descriptions-3196"></a>
A machine description has two parts: a file of instruction patterns
(<samp><span class="file">.md</span></samp> file) and a C header file of macro definitions.
<p>The <samp><span class="file">.md</span></samp> file for a target machine contains a pattern for each
instruction that the target machine supports (or at least each instruction
that is worth telling the compiler about). It may also contain comments.
A semicolon causes the rest of the line to be a comment, unless the semicolon
is inside a quoted string.
<p>See the next chapter for information on the C header file.
<ul class="menu">
<li><a accesskey="1" href="#Overview">Overview</a>: How the machine description is used.
<li><a accesskey="2" href="#Patterns">Patterns</a>: How to write instruction patterns.
<li><a accesskey="3" href="#Example">Example</a>: An explained example of a <code>define_insn</code> pattern.
<li><a accesskey="4" href="#RTL-Template">RTL Template</a>: The RTL template defines what insns match a pattern.
<li><a accesskey="5" href="#Output-Template">Output Template</a>: The output template says how to make assembler code
from such an insn.
<li><a accesskey="6" href="#Output-Statement">Output Statement</a>: For more generality, write C code to output
the assembler code.
<li><a accesskey="7" href="#Predicates">Predicates</a>: Controlling what kinds of operands can be used
for an insn.
<li><a accesskey="8" href="#Constraints">Constraints</a>: Fine-tuning operand selection.
<li><a accesskey="9" href="#Standard-Names">Standard Names</a>: Names mark patterns to use for code generation.
<li><a href="#Pattern-Ordering">Pattern Ordering</a>: When the order of patterns makes a difference.
<li><a href="#Dependent-Patterns">Dependent Patterns</a>: Having one pattern may make you need another.
<li><a href="#Jump-Patterns">Jump Patterns</a>: Special considerations for patterns for jump insns.
<li><a href="#Looping-Patterns">Looping Patterns</a>: How to define patterns for special looping insns.
<li><a href="#Insn-Canonicalizations">Insn Canonicalizations</a>: Canonicalization of Instructions
<li><a href="#Expander-Definitions">Expander Definitions</a>: Generating a sequence of several RTL insns
for a standard operation.
<li><a href="#Insn-Splitting">Insn Splitting</a>: Splitting Instructions into Multiple Instructions.
<li><a href="#Including-Patterns">Including Patterns</a>: Including Patterns in Machine Descriptions.
<li><a href="#Peephole-Definitions">Peephole Definitions</a>: Defining machine-specific peephole optimizations.
<li><a href="#Insn-Attributes">Insn Attributes</a>: Specifying the value of attributes for generated insns.
<li><a href="#Conditional-Execution">Conditional Execution</a>: Generating <code>define_insn</code> patterns for
predication.
<li><a href="#Constant-Definitions">Constant Definitions</a>: Defining symbolic constants that can be used in the
md file.
<li><a href="#Iterators">Iterators</a>: Using iterators to generate patterns from a template.
</ul>
<div class="node">
<a name="Overview"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Patterns">Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.1 Overview of How the Machine Description is Used</h3>
<p>There are three main conversions that happen in the compiler:
<ol type=1 start=1>
<li>The front end reads the source code and builds a parse tree.
<li>The parse tree is used to generate an RTL insn list based on named
instruction patterns.
<li>The insn list is matched against the RTL templates to produce assembler
code.
</ol>
<p>For the generate pass, only the names of the insns matter, from either a
named <code>define_insn</code> or a <code>define_expand</code>. The compiler will
choose the pattern with the right name and apply the operands according
to the documentation later in this chapter, without regard for the RTL
template or operand constraints. Note that the names the compiler looks
for are hard-coded in the compiler—it will ignore unnamed patterns and
patterns with names it doesn't know about, but if you don't provide a
named pattern it needs, it will abort.
<p>If a <code>define_insn</code> is used, the template given is inserted into the
insn list. If a <code>define_expand</code> is used, one of three things
happens, based on the condition logic. The condition logic may manually
create new insns for the insn list, say via <code>emit_insn()</code>, and
invoke <code>DONE</code>. For certain named patterns, it may invoke <code>FAIL</code> to tell the
compiler to use an alternate way of performing that task. If it invokes
neither <code>DONE</code> nor <code>FAIL</code>, the template given in the pattern
is inserted, as if the <code>define_expand</code> were a <code>define_insn</code>.
<p>Once the insn list is generated, various optimization passes convert,
replace, and rearrange the insns in the insn list. This is where the
<code>define_split</code> and <code>define_peephole</code> patterns get used, for
example.
<p>Finally, the insn list's RTL is matched up with the RTL templates in the
<code>define_insn</code> patterns, and those patterns are used to emit the
final assembly code. For this purpose, each named <code>define_insn</code>
acts like it's unnamed, since the names are ignored.
<div class="node">
<a name="Patterns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Example">Example</a>,
Previous: <a rel="previous" accesskey="p" href="#Overview">Overview</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.2 Everything about Instruction Patterns</h3>
<p><a name="index-patterns-3197"></a><a name="index-instruction-patterns-3198"></a>
<a name="index-define_005finsn-3199"></a>Each instruction pattern contains an incomplete RTL expression, with pieces
to be filled in later, operand constraints that restrict how the pieces can
be filled in, and an output pattern or C code to generate the assembler
output, all wrapped up in a <code>define_insn</code> expression.
<p>A <code>define_insn</code> is an RTL expression containing four or five operands:
<ol type=1 start=1>
<li>An optional name. The presence of a name indicate that this instruction
pattern can perform a certain standard job for the RTL-generation
pass of the compiler. This pass knows certain names and will use
the instruction patterns with those names, if the names are defined
in the machine description.
<p>The absence of a name is indicated by writing an empty string
where the name should go. Nameless instruction patterns are never
used for generating RTL code, but they may permit several simpler insns
to be combined later on.
<p>Names that are not thus known and used in RTL-generation have no
effect; they are equivalent to no name at all.
<p>For the purpose of debugging the compiler, you may also specify a
name beginning with the ‘<samp><span class="samp">*</span></samp>’ character. Such a name is used only
for identifying the instruction in RTL dumps; it is entirely equivalent
to having a nameless pattern for all other purposes.
<li>The <dfn>RTL template</dfn> (see <a href="#RTL-Template">RTL Template</a>) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is
incomplete because it may contain <code>match_operand</code>,
<code>match_operator</code>, and <code>match_dup</code> expressions that stand for
operands of the instruction.
<p>If the vector has only one element, that element is the template for the
instruction pattern. If the vector has multiple elements, then the
instruction pattern is a <code>parallel</code> expression containing the
elements described.
<li><a name="index-pattern-conditions-3200"></a><a name="index-conditions_002c-in-patterns-3201"></a>A condition. This is a string which contains a C expression that is
the final test to decide whether an insn body matches this pattern.
<p><a name="index-named-patterns-and-conditions-3202"></a>For a named pattern, the condition (if present) may not depend on
the data in the insn being matched, but only the target-machine-type
flags. The compiler needs to test these conditions during
initialization in order to learn exactly which named instructions are
available in a particular run.
<p><a name="index-operands-3203"></a>For nameless patterns, the condition is applied only when matching an
individual insn, and only after the insn has matched the pattern's
recognition template. The insn's operands may be found in the vector
<code>operands</code>. For an insn where the condition has once matched, it
can't be used to control register allocation, for example by excluding
certain hard registers or hard register combinations.
<li>The <dfn>output template</dfn>: a string that says how to output matching
insns as assembler code. ‘<samp><span class="samp">%</span></samp>’ in this string specifies where
to substitute the value of an operand. See <a href="#Output-Template">Output Template</a>.
<p>When simple substitution isn't general enough, you can specify a piece
of C code to compute the output. See <a href="#Output-Statement">Output Statement</a>.
<li>Optionally, a vector containing the values of attributes for insns matching
this pattern. See <a href="#Insn-Attributes">Insn Attributes</a>.
</ol>
<div class="node">
<a name="Example"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#RTL-Template">RTL Template</a>,
Previous: <a rel="previous" accesskey="p" href="#Patterns">Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.3 Example of <code>define_insn</code></h3>
<p><a name="index-g_t_0040code_007bdefine_005finsn_007d-example-3204"></a>
Here is an actual example of an instruction pattern, for the 68000/68020.
<pre class="smallexample"> (define_insn "tstsi"
[(set (cc0)
(match_operand:SI 0 "general_operand" "rm"))]
""
"*
{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";
return \"cmpl #0,%0\";
}")
</pre>
<p class="noindent">This can also be written using braced strings:
<pre class="smallexample"> (define_insn "tstsi"
[(set (cc0)
(match_operand:SI 0 "general_operand" "rm"))]
""
{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";
return "cmpl #0,%0";
})
</pre>
<p>This is an instruction that sets the condition codes based on the value of
a general operand. It has no condition, so any insn whose RTL description
has the form shown may be handled according to this pattern. The name
‘<samp><span class="samp">tstsi</span></samp>’ means “test a <code>SImode</code> value” and tells the RTL generation
pass that, when it is necessary to test such a value, an insn to do so
can be constructed using this pattern.
<p>The output control string is a piece of C code which chooses which
output template to return based on the kind of operand and the specific
type of CPU for which code is being generated.
<p>‘<samp><span class="samp">"rm"</span></samp>’ is an operand constraint. Its meaning is explained below.
<div class="node">
<a name="RTL-Template"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Output-Template">Output Template</a>,
Previous: <a rel="previous" accesskey="p" href="#Example">Example</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.4 RTL Template</h3>
<p><a name="index-RTL-insn-template-3205"></a><a name="index-generating-insns-3206"></a><a name="index-insns_002c-generating-3207"></a><a name="index-recognizing-insns-3208"></a><a name="index-insns_002c-recognizing-3209"></a>
The RTL template is used to define which insns match the particular pattern
and how to find their operands. For named patterns, the RTL template also
says how to construct an insn from specified operands.
<p>Construction involves substituting specified operands into a copy of the
template. Matching involves determining the values that serve as the
operands in the insn being matched. Both of these activities are
controlled by special expression types that direct matching and
substitution of the operands.
<a name="index-match_005foperand-3210"></a>
<dl><dt><code>(match_operand:</code><var>m</var> <var>n</var> <var>predicate</var> <var>constraint</var><code>)</code><dd>This expression is a placeholder for operand number <var>n</var> of
the insn. When constructing an insn, operand number <var>n</var>
will be substituted at this point. When matching an insn, whatever
appears at this position in the insn will be taken as operand
number <var>n</var>; but it must satisfy <var>predicate</var> or this instruction
pattern will not match at all.
<p>Operand numbers must be chosen consecutively counting from zero in
each instruction pattern. There may be only one <code>match_operand</code>
expression in the pattern for each operand number. Usually operands
are numbered in the order of appearance in <code>match_operand</code>
expressions. In the case of a <code>define_expand</code>, any operand numbers
used only in <code>match_dup</code> expressions have higher values than all
other operand numbers.
<p><var>predicate</var> is a string that is the name of a function that
accepts two arguments, an expression and a machine mode.
See <a href="#Predicates">Predicates</a>. During matching, the function will be called with
the putative operand as the expression and <var>m</var> as the mode
argument (if <var>m</var> is not specified, <code>VOIDmode</code> will be used,
which normally causes <var>predicate</var> to accept any mode). If it
returns zero, this instruction pattern fails to match.
<var>predicate</var> may be an empty string; then it means no test is to be
done on the operand, so anything which occurs in this position is
valid.
<p>Most of the time, <var>predicate</var> will reject modes other than <var>m</var>—but
not always. For example, the predicate <code>address_operand</code> uses
<var>m</var> as the mode of memory ref that the address should be valid for.
Many predicates accept <code>const_int</code> nodes even though their mode is
<code>VOIDmode</code>.
<p><var>constraint</var> controls reloading and the choice of the best register
class to use for a value, as explained later (see <a href="#Constraints">Constraints</a>).
If the constraint would be an empty string, it can be omitted.
<p>People are often unclear on the difference between the constraint and the
predicate. The predicate helps decide whether a given insn matches the
pattern. The constraint plays no role in this decision; instead, it
controls various decisions in the case of an insn which does match.
<p><a name="index-match_005fscratch-3211"></a><br><dt><code>(match_scratch:</code><var>m</var> <var>n</var> <var>constraint</var><code>)</code><dd>This expression is also a placeholder for operand number <var>n</var>
and indicates that operand must be a <code>scratch</code> or <code>reg</code>
expression.
<p>When matching patterns, this is equivalent to
<pre class="smallexample"> (match_operand:<var>m</var> <var>n</var> "scratch_operand" <var>pred</var>)
</pre>
<p>but, when generating RTL, it produces a (<code>scratch</code>:<var>m</var>)
expression.
<p>If the last few expressions in a <code>parallel</code> are <code>clobber</code>
expressions whose operands are either a hard register or
<code>match_scratch</code>, the combiner can add or delete them when
necessary. See <a href="#Side-Effects">Side Effects</a>.
<p><a name="index-match_005fdup-3212"></a><br><dt><code>(match_dup </code><var>n</var><code>)</code><dd>This expression is also a placeholder for operand number <var>n</var>.
It is used when the operand needs to appear more than once in the
insn.
<p>In construction, <code>match_dup</code> acts just like <code>match_operand</code>:
the operand is substituted into the insn being constructed. But in
matching, <code>match_dup</code> behaves differently. It assumes that operand
number <var>n</var> has already been determined by a <code>match_operand</code>
appearing earlier in the recognition template, and it matches only an
identical-looking expression.
<p>Note that <code>match_dup</code> should not be used to tell the compiler that
a particular register is being used for two operands (example:
<code>add</code> that adds one register to another; the second register is
both an input operand and the output operand). Use a matching
constraint (see <a href="#Simple-Constraints">Simple Constraints</a>) for those. <code>match_dup</code> is for the cases where one
operand is used in two places in the template, such as an instruction
that computes both a quotient and a remainder, where the opcode takes
two input operands but the RTL template has to refer to each of those
twice; once for the quotient pattern and once for the remainder pattern.
<p><a name="index-match_005foperator-3213"></a><br><dt><code>(match_operator:</code><var>m</var> <var>n</var> <var>predicate</var><code> [</code><var>operands</var><code>...])</code><dd>This pattern is a kind of placeholder for a variable RTL expression
code.
<p>When constructing an insn, it stands for an RTL expression whose
expression code is taken from that of operand <var>n</var>, and whose
operands are constructed from the patterns <var>operands</var>.
<p>When matching an expression, it matches an expression if the function
<var>predicate</var> returns nonzero on that expression <em>and</em> the
patterns <var>operands</var> match the operands of the expression.
<p>Suppose that the function <code>commutative_operator</code> is defined as
follows, to match any expression whose operator is one of the
commutative arithmetic operators of RTL and whose mode is <var>mode</var>:
<pre class="smallexample"> int
commutative_integer_operator (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)
return 0;
return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|| code == EQ || code == NE);
}
</pre>
<p>Then the following pattern will match any RTL expression consisting
of a commutative operator applied to two general operands:
<pre class="smallexample"> (match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])
</pre>
<p>Here the vector <code>[</code><var>operands</var><code>...]</code> contains two patterns
because the expressions to be matched all contain two operands.
<p>When this pattern does match, the two operands of the commutative
operator are recorded as operands 1 and 2 of the insn. (This is done
by the two instances of <code>match_operand</code>.) Operand 3 of the insn
will be the entire commutative expression: use <code>GET_CODE
(operands[3])</code> to see which commutative operator was used.
<p>The machine mode <var>m</var> of <code>match_operator</code> works like that of
<code>match_operand</code>: it is passed as the second argument to the
predicate function, and that function is solely responsible for
deciding whether the expression to be matched “has” that mode.
<p>When constructing an insn, argument 3 of the gen-function will specify
the operation (i.e. the expression code) for the expression to be
made. It should be an RTL expression, whose expression code is copied
into a new expression whose operands are arguments 1 and 2 of the
gen-function. The subexpressions of argument 3 are not used;
only its expression code matters.
<p>When <code>match_operator</code> is used in a pattern for matching an insn,
it usually best if the operand number of the <code>match_operator</code>
is higher than that of the actual operands of the insn. This improves
register allocation because the register allocator often looks at
operands 1 and 2 of insns to see if it can do register tying.
<p>There is no way to specify constraints in <code>match_operator</code>. The
operand of the insn which corresponds to the <code>match_operator</code>
never has any constraints because it is never reloaded as a whole.
However, if parts of its <var>operands</var> are matched by
<code>match_operand</code> patterns, those parts may have constraints of
their own.
<p><a name="index-match_005fop_005fdup-3214"></a><br><dt><code>(match_op_dup:</code><var>m</var> <var>n</var><code>[</code><var>operands</var><code>...])</code><dd>Like <code>match_dup</code>, except that it applies to operators instead of
operands. When constructing an insn, operand number <var>n</var> will be
substituted at this point. But in matching, <code>match_op_dup</code> behaves
differently. It assumes that operand number <var>n</var> has already been
determined by a <code>match_operator</code> appearing earlier in the
recognition template, and it matches only an identical-looking
expression.
<p><a name="index-match_005fparallel-3215"></a><br><dt><code>(match_parallel </code><var>n</var> <var>predicate</var><code> [</code><var>subpat</var><code>...])</code><dd>This pattern is a placeholder for an insn that consists of a
<code>parallel</code> expression with a variable number of elements. This
expression should only appear at the top level of an insn pattern.
<p>When constructing an insn, operand number <var>n</var> will be substituted at
this point. When matching an insn, it matches if the body of the insn
is a <code>parallel</code> expression with at least as many elements as the
vector of <var>subpat</var> expressions in the <code>match_parallel</code>, if each
<var>subpat</var> matches the corresponding element of the <code>parallel</code>,
<em>and</em> the function <var>predicate</var> returns nonzero on the
<code>parallel</code> that is the body of the insn. It is the responsibility
of the predicate to validate elements of the <code>parallel</code> beyond
those listed in the <code>match_parallel</code>.
<p>A typical use of <code>match_parallel</code> is to match load and store
multiple expressions, which can contain a variable number of elements
in a <code>parallel</code>. For example,
<pre class="smallexample"> (define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
""
"loadm 0,0,%1,%2")
</pre>
<p>This example comes from <samp><span class="file">a29k.md</span></samp>. The function
<code>load_multiple_operation</code> is defined in <samp><span class="file">a29k.c</span></samp> and checks
that subsequent elements in the <code>parallel</code> are the same as the
<code>set</code> in the pattern, except that they are referencing subsequent
registers and memory locations.
<p>An insn that matches this pattern might look like:
<pre class="smallexample"> (parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)
(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))
(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)
(const_int 8))))])
</pre>
<p><a name="index-match_005fpar_005fdup-3216"></a><br><dt><code>(match_par_dup </code><var>n</var><code> [</code><var>subpat</var><code>...])</code><dd>Like <code>match_op_dup</code>, but for <code>match_parallel</code> instead of
<code>match_operator</code>.
</dl>
<div class="node">
<a name="Output-Template"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Output-Statement">Output Statement</a>,
Previous: <a rel="previous" accesskey="p" href="#RTL-Template">RTL Template</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.5 Output Templates and Operand Substitution</h3>
<p><a name="index-output-templates-3217"></a><a name="index-operand-substitution-3218"></a>
<a name="index-g_t_0040samp_007b_0025_007d-in-template-3219"></a><a name="index-percent-sign-3220"></a>The <dfn>output template</dfn> is a string which specifies how to output the
assembler code for an instruction pattern. Most of the template is a
fixed string which is output literally. The character ‘<samp><span class="samp">%</span></samp>’ is used
to specify where to substitute an operand; it can also be used to
identify places where different variants of the assembler require
different syntax.
<p>In the simplest case, a ‘<samp><span class="samp">%</span></samp>’ followed by a digit <var>n</var> says to output
operand <var>n</var> at that point in the string.
<p>‘<samp><span class="samp">%</span></samp>’ followed by a letter and a digit says to output an operand in an
alternate fashion. Four letters have standard, built-in meanings described
below. The machine description macro <code>PRINT_OPERAND</code> can define
additional letters with nonstandard meanings.
<p>‘<samp><span class="samp">%c</span><var>digit</var></samp>’ can be used to substitute an operand that is a
constant value without the syntax that normally indicates an immediate
operand.
<p>‘<samp><span class="samp">%n</span><var>digit</var></samp>’ is like ‘<samp><span class="samp">%c</span><var>digit</var></samp>’ except that the value of
the constant is negated before printing.
<p>‘<samp><span class="samp">%a</span><var>digit</var></samp>’ can be used to substitute an operand as if it were a
memory reference, with the actual operand treated as the address. This may
be useful when outputting a “load address” instruction, because often the
assembler syntax for such an instruction requires you to write the operand
as if it were a memory reference.
<p>‘<samp><span class="samp">%l</span><var>digit</var></samp>’ is used to substitute a <code>label_ref</code> into a jump
instruction.
<p>‘<samp><span class="samp">%=</span></samp>’ outputs a number which is unique to each instruction in the
entire compilation. This is useful for making local labels to be
referred to more than once in a single template that generates multiple
assembler instructions.
<p>‘<samp><span class="samp">%</span></samp>’ followed by a punctuation character specifies a substitution that
does not use an operand. Only one case is standard: ‘<samp><span class="samp">%%</span></samp>’ outputs a
‘<samp><span class="samp">%</span></samp>’ into the assembler code. Other nonstandard cases can be
defined in the <code>PRINT_OPERAND</code> macro. You must also define
which punctuation characters are valid with the
<code>PRINT_OPERAND_PUNCT_VALID_P</code> macro.
<p><a name="index-g_t_005c-3221"></a><a name="index-backslash-3222"></a>The template may generate multiple assembler instructions. Write the text
for the instructions, with ‘<samp><span class="samp">\;</span></samp>’ between them.
<p><a name="index-matching-operands-3223"></a>When the RTL contains two operands which are required by constraint to match
each other, the output template must refer only to the lower-numbered operand.
Matching operands are not always identical, and the rest of the compiler
arranges to put the proper RTL expression for printing into the lower-numbered
operand.
<p>One use of nonstandard letters or punctuation following ‘<samp><span class="samp">%</span></samp>’ is to
distinguish between different assembler languages for the same machine; for
example, Motorola syntax versus MIT syntax for the 68000. Motorola syntax
requires periods in most opcode names, while MIT syntax does not. For
example, the opcode ‘<samp><span class="samp">movel</span></samp>’ in MIT syntax is ‘<samp><span class="samp">move.l</span></samp>’ in Motorola
syntax. The same file of patterns is used for both kinds of output syntax,
but the character sequence ‘<samp><span class="samp">%.</span></samp>’ is used in each place where Motorola
syntax wants a period. The <code>PRINT_OPERAND</code> macro for Motorola syntax
defines the sequence to output a period; the macro for MIT syntax defines
it to do nothing.
<p><a name="index-g_t_0040code_007b_0023_007d-in-template-3224"></a>As a special case, a template consisting of the single character <code>#</code>
instructs the compiler to first split the insn, and then output the
resulting instructions separately. This helps eliminate redundancy in the
output templates. If you have a <code>define_insn</code> that needs to emit
multiple assembler instructions, and there is a matching <code>define_split</code>
already defined, then you can simply use <code>#</code> as the output template
instead of writing an output template that emits the multiple assembler
instructions.
<p>If the macro <code>ASSEMBLER_DIALECT</code> is defined, you can use construct
of the form ‘<samp><span class="samp">{option0|option1|option2}</span></samp>’ in the templates. These
describe multiple variants of assembler language syntax.
See <a href="#Instruction-Output">Instruction Output</a>.
<div class="node">
<a name="Output-Statement"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Predicates">Predicates</a>,
Previous: <a rel="previous" accesskey="p" href="#Output-Template">Output Template</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.6 C Statements for Assembler Output</h3>
<p><a name="index-output-statements-3225"></a><a name="index-C-statements-for-assembler-output-3226"></a><a name="index-generating-assembler-output-3227"></a>
Often a single fixed template string cannot produce correct and efficient
assembler code for all the cases that are recognized by a single
instruction pattern. For example, the opcodes may depend on the kinds of
operands; or some unfortunate combinations of operands may require extra
machine instructions.
<p>If the output control string starts with a ‘<samp><span class="samp">@</span></samp>’, then it is actually
a series of templates, each on a separate line. (Blank lines and
leading spaces and tabs are ignored.) The templates correspond to the
pattern's constraint alternatives (see <a href="#Multi_002dAlternative">Multi-Alternative</a>). For example,
if a target machine has a two-address add instruction ‘<samp><span class="samp">addr</span></samp>’ to add
into a register and another ‘<samp><span class="samp">addm</span></samp>’ to add a register to memory, you
might write this pattern:
<pre class="smallexample"> (define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")
(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]
""
"@
addr %2,%0
addm %2,%0")
</pre>
<p><a name="index-g_t_0040code_007b_002a_007d-in-template-3228"></a><a name="index-asterisk-in-template-3229"></a>If the output control string starts with a ‘<samp><span class="samp">*</span></samp>’, then it is not an
output template but rather a piece of C program that should compute a
template. It should execute a <code>return</code> statement to return the
template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these
doublequote characters in the string, prefix each one with ‘<samp><span class="samp">\</span></samp>’.
<p>If the output control string is written as a brace block instead of a
double-quoted string, it is automatically assumed to be C code. In that
case, it is not necessary to put in a leading asterisk, or to escape the
doublequotes surrounding C string literals.
<p>The operands may be found in the array <code>operands</code>, whose C data type
is <code>rtx []</code>.
<p>It is very common to select different ways of generating assembler code
based on whether an immediate operand is within a certain range. Be
careful when doing this, because the result of <code>INTVAL</code> is an
integer on the host machine. If the host machine has more bits in an
<code>int</code> than the target machine has in the mode in which the constant
will be used, then some of the bits you get from <code>INTVAL</code> will be
superfluous. For proper results, you must carefully disregard the
values of those bits.
<p><a name="index-output_005fasm_005finsn-3230"></a>It is possible to output an assembler instruction and then go on to output
or compute more of them, using the subroutine <code>output_asm_insn</code>. This
receives two arguments: a template-string and a vector of operands. The
vector may be <code>operands</code>, or it may be another array of <code>rtx</code>
that you declare locally and initialize yourself.
<p><a name="index-which_005falternative-3231"></a>When an insn pattern has multiple alternatives in its constraints, often
the appearance of the assembler code is determined mostly by which alternative
was matched. When this is so, the C code can test the variable
<code>which_alternative</code>, which is the ordinal number of the alternative
that was actually satisfied (0 for the first, 1 for the second alternative,
etc.).
<p>For example, suppose there are two opcodes for storing zero, ‘<samp><span class="samp">clrreg</span></samp>’
for registers and ‘<samp><span class="samp">clrmem</span></samp>’ for memory locations. Here is how
a pattern could use <code>which_alternative</code> to choose between them:
<pre class="smallexample"> (define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")
(const_int 0))]
""
{
return (which_alternative == 0
? "clrreg %0" : "clrmem %0");
})
</pre>
<p>The example above, where the assembler code to generate was
<em>solely</em> determined by the alternative, could also have been specified
as follows, having the output control string start with a ‘<samp><span class="samp">@</span></samp>’:
<pre class="smallexample"> (define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")
(const_int 0))]
""
"@
clrreg %0
clrmem %0")
</pre>
<div class="node">
<a name="Predicates"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constraints">Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Output-Statement">Output Statement</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.7 Predicates</h3>
<p><a name="index-predicates-3232"></a><a name="index-operand-predicates-3233"></a><a name="index-operator-predicates-3234"></a>
A predicate determines whether a <code>match_operand</code> or
<code>match_operator</code> expression matches, and therefore whether the
surrounding instruction pattern will be used for that combination of
operands. GCC has a number of machine-independent predicates, and you
can define machine-specific predicates as needed. By convention,
predicates used with <code>match_operand</code> have names that end in
‘<samp><span class="samp">_operand</span></samp>’, and those used with <code>match_operator</code> have names
that end in ‘<samp><span class="samp">_operator</span></samp>’.
<p>All predicates are Boolean functions (in the mathematical sense) of
two arguments: the RTL expression that is being considered at that
position in the instruction pattern, and the machine mode that the
<code>match_operand</code> or <code>match_operator</code> specifies. In this
section, the first argument is called <var>op</var> and the second argument
<var>mode</var>. Predicates can be called from C as ordinary two-argument
functions; this can be useful in output templates or other
machine-specific code.
<p>Operand predicates can allow operands that are not actually acceptable
to the hardware, as long as the constraints give reload the ability to
fix them up (see <a href="#Constraints">Constraints</a>). However, GCC will usually generate
better code if the predicates specify the requirements of the machine
instructions as closely as possible. Reload cannot fix up operands
that must be constants (“immediate operands”); you must use a
predicate that allows only constants, or else enforce the requirement
in the extra condition.
<p><a name="index-predicates-and-machine-modes-3235"></a><a name="index-normal-predicates-3236"></a><a name="index-special-predicates-3237"></a>Most predicates handle their <var>mode</var> argument in a uniform manner.
If <var>mode</var> is <code>VOIDmode</code> (unspecified), then <var>op</var> can have
any mode. If <var>mode</var> is anything else, then <var>op</var> must have the
same mode, unless <var>op</var> is a <code>CONST_INT</code> or integer
<code>CONST_DOUBLE</code>. These RTL expressions always have
<code>VOIDmode</code>, so it would be counterproductive to check that their
mode matches. Instead, predicates that accept <code>CONST_INT</code> and/or
integer <code>CONST_DOUBLE</code> check that the value stored in the
constant will fit in the requested mode.
<p>Predicates with this behavior are called <dfn>normal</dfn>.
<samp><span class="command">genrecog</span></samp> can optimize the instruction recognizer based on
knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for
instance, it is almost always an error to use a normal predicate
without specifying a mode.
<p>Predicates that do something different with their <var>mode</var> argument
are called <dfn>special</dfn>. The generic predicates
<code>address_operand</code> and <code>pmode_register_operand</code> are special
predicates. <samp><span class="command">genrecog</span></samp> does not do any optimizations or
diagnosis when special predicates are used.
<ul class="menu">
<li><a accesskey="1" href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a>: Predicates available to all back ends.
<li><a accesskey="2" href="#Defining-Predicates">Defining Predicates</a>: How to write machine-specific predicate
functions.
</ul>
<div class="node">
<a name="Machine-Independent-Predicates"></a>
<a name="Machine_002dIndependent-Predicates"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Defining-Predicates">Defining Predicates</a>,
Up: <a rel="up" accesskey="u" href="#Predicates">Predicates</a>
</div>
<h4 class="subsection">16.7.1 Machine-Independent Predicates</h4>
<p><a name="index-machine_002dindependent-predicates-3238"></a><a name="index-generic-predicates-3239"></a>
These are the generic predicates available to all back ends. They are
defined in <samp><span class="file">recog.c</span></samp>. The first category of predicates allow
only constant, or <dfn>immediate</dfn>, operands.
<div class="defun">
— Function: <b>immediate_operand</b><var><a name="index-immediate_005foperand-3240"></a></var><br>
<blockquote><p>This predicate allows any sort of constant that fits in <var>mode</var>.
It is an appropriate choice for instructions that take operands that
must be constant.
</p></blockquote></div>
<div class="defun">
— Function: <b>const_int_operand</b><var><a name="index-const_005fint_005foperand-3241"></a></var><br>
<blockquote><p>This predicate allows any <code>CONST_INT</code> expression that fits in
<var>mode</var>. It is an appropriate choice for an immediate operand that
does not allow a symbol or label.
</p></blockquote></div>
<div class="defun">
— Function: <b>const_double_operand</b><var><a name="index-const_005fdouble_005foperand-3242"></a></var><br>
<blockquote><p>This predicate accepts any <code>CONST_DOUBLE</code> expression that has
exactly <var>mode</var>. If <var>mode</var> is <code>VOIDmode</code>, it will also
accept <code>CONST_INT</code>. It is intended for immediate floating point
constants.
</p></blockquote></div>
<p class="noindent">The second category of predicates allow only some kind of machine
register.
<div class="defun">
— Function: <b>register_operand</b><var><a name="index-register_005foperand-3243"></a></var><br>
<blockquote><p>This predicate allows any <code>REG</code> or <code>SUBREG</code> expression that
is valid for <var>mode</var>. It is often suitable for arithmetic
instruction operands on a RISC machine.
</p></blockquote></div>
<div class="defun">
— Function: <b>pmode_register_operand</b><var><a name="index-pmode_005fregister_005foperand-3244"></a></var><br>
<blockquote><p>This is a slight variant on <code>register_operand</code> which works around
a limitation in the machine-description reader.
<pre class="smallexample"> (match_operand <var>n</var> "pmode_register_operand" <var>constraint</var>)
</pre>
<p class="noindent">means exactly what
<pre class="smallexample"> (match_operand:P <var>n</var> "register_operand" <var>constraint</var>)
</pre>
<p class="noindent">would mean, if the machine-description reader accepted ‘<samp><span class="samp">:P</span></samp>’
mode suffixes. Unfortunately, it cannot, because <code>Pmode</code> is an
alias for some other mode, and might vary with machine-specific
options. See <a href="#Misc">Misc</a>.
</p></blockquote></div>
<div class="defun">
— Function: <b>scratch_operand</b><var><a name="index-scratch_005foperand-3245"></a></var><br>
<blockquote><p>This predicate allows hard registers and <code>SCRATCH</code> expressions,
but not pseudo-registers. It is used internally by <code>match_scratch</code>;
it should not be used directly.
</p></blockquote></div>
<p class="noindent">The third category of predicates allow only some kind of memory reference.
<div class="defun">
— Function: <b>memory_operand</b><var><a name="index-memory_005foperand-3246"></a></var><br>
<blockquote><p>This predicate allows any valid reference to a quantity of mode
<var>mode</var> in memory, as determined by the weak form of
<code>GO_IF_LEGITIMATE_ADDRESS</code> (see <a href="#Addressing-Modes">Addressing Modes</a>).
</p></blockquote></div>
<div class="defun">
— Function: <b>address_operand</b><var><a name="index-address_005foperand-3247"></a></var><br>
<blockquote><p>This predicate is a little unusual; it allows any operand that is a
valid expression for the <em>address</em> of a quantity of mode
<var>mode</var>, again determined by the weak form of
<code>GO_IF_LEGITIMATE_ADDRESS</code>. To first order, if
‘<samp><span class="samp">(mem:</span><var>mode</var><span class="samp"> (</span><var>exp</var><span class="samp">))<!-- /@w --></span></samp>’ is acceptable to
<code>memory_operand</code>, then <var>exp</var> is acceptable to
<code>address_operand</code>. Note that <var>exp</var> does not necessarily have
the mode <var>mode</var>.
</p></blockquote></div>
<div class="defun">
— Function: <b>indirect_operand</b><var><a name="index-indirect_005foperand-3248"></a></var><br>
<blockquote><p>This is a stricter form of <code>memory_operand</code> which allows only
memory references with a <code>general_operand</code> as the address
expression. New uses of this predicate are discouraged, because
<code>general_operand</code> is very permissive, so it's hard to tell what
an <code>indirect_operand</code> does or does not allow. If a target has
different requirements for memory operands for different instructions,
it is better to define target-specific predicates which enforce the
hardware's requirements explicitly.
</p></blockquote></div>
<div class="defun">
— Function: <b>push_operand</b><var><a name="index-push_005foperand-3249"></a></var><br>
<blockquote><p>This predicate allows a memory reference suitable for pushing a value
onto the stack. This will be a <code>MEM</code> which refers to
<code>stack_pointer_rtx</code>, with a side-effect in its address expression
(see <a href="#Incdec">Incdec</a>); which one is determined by the
<code>STACK_PUSH_CODE</code> macro (see <a href="#Frame-Layout">Frame Layout</a>).
</p></blockquote></div>
<div class="defun">
— Function: <b>pop_operand</b><var><a name="index-pop_005foperand-3250"></a></var><br>
<blockquote><p>This predicate allows a memory reference suitable for popping a value
off the stack. Again, this will be a <code>MEM</code> referring to
<code>stack_pointer_rtx</code>, with a side-effect in its address
expression. However, this time <code>STACK_POP_CODE</code> is expected.
</p></blockquote></div>
<p class="noindent">The fourth category of predicates allow some combination of the above
operands.
<div class="defun">
— Function: <b>nonmemory_operand</b><var><a name="index-nonmemory_005foperand-3251"></a></var><br>
<blockquote><p>This predicate allows any immediate or register operand valid for <var>mode</var>.
</p></blockquote></div>
<div class="defun">
— Function: <b>nonimmediate_operand</b><var><a name="index-nonimmediate_005foperand-3252"></a></var><br>
<blockquote><p>This predicate allows any register or memory operand valid for <var>mode</var>.
</p></blockquote></div>
<div class="defun">
— Function: <b>general_operand</b><var><a name="index-general_005foperand-3253"></a></var><br>
<blockquote><p>This predicate allows any immediate, register, or memory operand
valid for <var>mode</var>.
</p></blockquote></div>
<p class="noindent">Finally, there are two generic operator predicates.
<div class="defun">
— Function: <b>comparison_operator</b><var><a name="index-comparison_005foperator-3254"></a></var><br>
<blockquote><p>This predicate matches any expression which performs an arithmetic
comparison in <var>mode</var>; that is, <code>COMPARISON_P</code> is true for the
expression code.
</p></blockquote></div>
<div class="defun">
— Function: <b>ordered_comparison_operator</b><var><a name="index-ordered_005fcomparison_005foperator-3255"></a></var><br>
<blockquote><p>This predicate matches any expression which performs an arithmetic
comparison in <var>mode</var> and whose expression code is valid for integer
modes; that is, the expression code will be one of <code>eq</code>, <code>ne</code>,
<code>lt</code>, <code>ltu</code>, <code>le</code>, <code>leu</code>, <code>gt</code>, <code>gtu</code>,
<code>ge</code>, <code>geu</code>.
</p></blockquote></div>
<div class="node">
<a name="Defining-Predicates"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a>,
Up: <a rel="up" accesskey="u" href="#Predicates">Predicates</a>
</div>
<h4 class="subsection">16.7.2 Defining Machine-Specific Predicates</h4>
<p><a name="index-defining-predicates-3256"></a><a name="index-define_005fpredicate-3257"></a><a name="index-define_005fspecial_005fpredicate-3258"></a>
Many machines have requirements for their operands that cannot be
expressed precisely using the generic predicates. You can define
additional predicates using <code>define_predicate</code> and
<code>define_special_predicate</code> expressions. These expressions have
three operands:
<ul>
<li>The name of the predicate, as it will be referred to in
<code>match_operand</code> or <code>match_operator</code> expressions.
<li>An RTL expression which evaluates to true if the predicate allows the
operand <var>op</var>, false if it does not. This expression can only use
the following RTL codes:
<dl>
<dt><code>MATCH_OPERAND</code><dd>When written inside a predicate expression, a <code>MATCH_OPERAND</code>
expression evaluates to true if the predicate it names would allow
<var>op</var>. The operand number and constraint are ignored. Due to
limitations in <samp><span class="command">genrecog</span></samp>, you can only refer to generic
predicates and predicates that have already been defined.
<br><dt><code>MATCH_CODE</code><dd>This expression evaluates to true if <var>op</var> or a specified
subexpression of <var>op</var> has one of a given list of RTX codes.
<p>The first operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the <code>MATCH_CODE</code> will be true.
<p>The second operand is a string constant which indicates what
subexpression of <var>op</var> to examine. If it is absent or the empty
string, <var>op</var> itself is examined. Otherwise, the string constant
must be a sequence of digits and/or lowercase letters. Each character
indicates a subexpression to extract from the current expression; for
the first character this is <var>op</var>, for the second and subsequent
characters it is the result of the previous character. A digit
<var>n</var> extracts ‘<samp><span class="samp">XEXP (</span><var>e</var><span class="samp">, </span><var>n</var><span class="samp">)<!-- /@w --></span></samp>’; a letter <var>l</var>
extracts ‘<samp><span class="samp">XVECEXP (</span><var>e</var><span class="samp">, 0, </span><var>n</var><span class="samp">)<!-- /@w --></span></samp>’ where <var>n</var> is the
alphabetic ordinal of <var>l</var> (0 for `a', 1 for 'b', and so on). The
<code>MATCH_CODE</code> then examines the RTX code of the subexpression
extracted by the complete string. It is not possible to extract
components of an <code>rtvec</code> that is not at position 0 within its RTX
object.
<br><dt><code>MATCH_TEST</code><dd>This expression has one operand, a string constant containing a C
expression. The predicate's arguments, <var>op</var> and <var>mode</var>, are
available with those names in the C expression. The <code>MATCH_TEST</code>
evaluates to true if the C expression evaluates to a nonzero value.
<code>MATCH_TEST</code> expressions must not have side effects.
<br><dt><code>AND</code><dt><code>IOR</code><dt><code>NOT</code><dt><code>IF_THEN_ELSE</code><dd>The basic ‘<samp><span class="samp">MATCH_</span></samp>’ expressions can be combined using these
logical operators, which have the semantics of the C operators
‘<samp><span class="samp">&&</span></samp>’, ‘<samp><span class="samp">||</span></samp>’, ‘<samp><span class="samp">!</span></samp>’, and ‘<samp><span class="samp">? :<!-- /@w --></span></samp>’ respectively. As
in Common Lisp, you may give an <code>AND</code> or <code>IOR</code> expression an
arbitrary number of arguments; this has exactly the same effect as
writing a chain of two-argument <code>AND</code> or <code>IOR</code> expressions.
</dl>
<li>An optional block of C code, which should execute
‘<samp><span class="samp">return true<!-- /@w --></span></samp>’ if the predicate is found to match and
‘<samp><span class="samp">return false<!-- /@w --></span></samp>’ if it does not. It must not have any side
effects. The predicate arguments, <var>op</var> and <var>mode</var>, are
available with those names.
<p>If a code block is present in a predicate definition, then the RTL
expression must evaluate to true <em>and</em> the code block must
execute ‘<samp><span class="samp">return true<!-- /@w --></span></samp>’ for the predicate to allow the operand.
The RTL expression is evaluated first; do not re-check anything in the
code block that was checked in the RTL expression.
</ul>
<p>The program <samp><span class="command">genrecog</span></samp> scans <code>define_predicate</code> and
<code>define_special_predicate</code> expressions to determine which RTX
codes are possibly allowed. You should always make this explicit in
the RTL predicate expression, using <code>MATCH_OPERAND</code> and
<code>MATCH_CODE</code>.
<p>Here is an example of a simple predicate definition, from the IA64
machine description:
<pre class="smallexample"> ;; <span class="roman">True if </span><var>op</var><span class="roman"> is a </span><code>SYMBOL_REF</code><span class="roman"> which refers to the sdata section.</span>
(define_predicate "small_addr_symbolic_operand"
(and (match_code "symbol_ref")
(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
</pre>
<p class="noindent">And here is another, showing the use of the C block.
<pre class="smallexample"> ;; <span class="roman">True if </span><var>op</var><span class="roman"> is a register operand that is (or could be) a GR reg.</span>
(define_predicate "gr_register_operand"
(match_operand 0 "register_operand")
{
unsigned int regno;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
regno = REGNO (op);
return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
})
</pre>
<p>Predicates written with <code>define_predicate</code> automatically include
a test that <var>mode</var> is <code>VOIDmode</code>, or <var>op</var> has the same
mode as <var>mode</var>, or <var>op</var> is a <code>CONST_INT</code> or
<code>CONST_DOUBLE</code>. They do <em>not</em> check specifically for
integer <code>CONST_DOUBLE</code>, nor do they test that the value of either
kind of constant fits in the requested mode. This is because
target-specific predicates that take constants usually have to do more
stringent value checks anyway. If you need the exact same treatment
of <code>CONST_INT</code> or <code>CONST_DOUBLE</code> that the generic predicates
provide, use a <code>MATCH_OPERAND</code> subexpression to call
<code>const_int_operand</code>, <code>const_double_operand</code>, or
<code>immediate_operand</code>.
<p>Predicates written with <code>define_special_predicate</code> do not get any
automatic mode checks, and are treated as having special mode handling
by <samp><span class="command">genrecog</span></samp>.
<p>The program <samp><span class="command">genpreds</span></samp> is responsible for generating code to
test predicates. It also writes a header file containing function
declarations for all machine-specific predicates. It is not necessary
to declare these predicates in <samp><var>cpu</var><span class="file">-protos.h</span></samp>.
<!-- Most of this node appears by itself (in a different place) even -->
<!-- when the INTERNALS flag is clear. Passages that require the internals -->
<!-- manual's context are conditionalized to appear only in the internals manual. -->
<div class="node">
<a name="Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Standard-Names">Standard Names</a>,
Previous: <a rel="previous" accesskey="p" href="#Predicates">Predicates</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.8 Operand Constraints</h3>
<p><a name="index-operand-constraints-3259"></a><a name="index-constraints-3260"></a>
Each <code>match_operand</code> in an instruction pattern can specify
constraints for the operands allowed. The constraints allow you to
fine-tune matching within the set of operands allowed by the
predicate.
<p>Constraints can say whether
an operand may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may
have. Constraints can also require two operands to match.
Side-effects aren't allowed in operands of inline <code>asm</code>, unless
‘<samp><span class="samp"><</span></samp>’ or ‘<samp><span class="samp">></span></samp>’ constraints are used, because there is no guarantee
that the side-effects will happen exactly once in an instruction that can update
the addressing register.
<ul class="menu">
<li><a accesskey="1" href="#Simple-Constraints">Simple Constraints</a>: Basic use of constraints.
<li><a accesskey="2" href="#Multi_002dAlternative">Multi-Alternative</a>: When an insn has two alternative constraint-patterns.
<li><a accesskey="3" href="#Class-Preferences">Class Preferences</a>: Constraints guide which hard register to put things in.
<li><a accesskey="4" href="#Modifiers">Modifiers</a>: More precise control over effects of constraints.
<li><a accesskey="5" href="#Disable-Insn-Alternatives">Disable Insn Alternatives</a>: Disable insn alternatives using the <code>enabled</code> attribute.
<li><a accesskey="6" href="#Machine-Constraints">Machine Constraints</a>: Existing constraints for some particular machines.
<li><a accesskey="7" href="#Define-Constraints">Define Constraints</a>: How to define machine-specific constraints.
<li><a accesskey="8" href="#C-Constraint-Interface">C Constraint Interface</a>: How to test constraints from C code.
</ul>
<div class="node">
<a name="Simple-Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.1 Simple Constraints</h4>
<p><a name="index-simple-constraints-3261"></a>
The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted. Here are
the letters that are allowed:
<dl>
<dt>whitespace<dd>Whitespace characters are ignored and can be inserted at any position
except the first. This enables each alternative for different operands to
be visually aligned in the machine description even if they have different
number of constraints and modifiers.
<p><a name="index-g_t_0040samp_007bm_007d-in-constraint-3262"></a><a name="index-memory-references-in-constraints-3263"></a><br><dt>‘<samp><span class="samp">m</span></samp>’<dd>A memory operand is allowed, with any kind of address that the machine
supports in general.
Note that the letter used for the general memory constraint can be
re-defined by a back end using the <code>TARGET_MEM_CONSTRAINT</code> macro.
<p><a name="index-offsettable-address-3264"></a><a name="index-g_t_0040samp_007bo_007d-in-constraint-3265"></a><br><dt>‘<samp><span class="samp">o</span></samp>’<dd>A memory operand is allowed, but only if the address is
<dfn>offsettable</dfn>. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine mode)
may be added to the address and the result is also a valid memory
address.
<p><a name="index-autoincrement_002fdecrement-addressing-3266"></a>For example, an address which is constant is offsettable; so is an
address that is the sum of a register and a constant (as long as a
slightly larger constant is also within the range of address-offsets
supported by the machine); but an autoincrement or autodecrement
address is not offsettable. More complicated indirect/indexed
addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.
<p>Note that in an output operand which can be matched by another
operand, the constraint letter ‘<samp><span class="samp">o</span></samp>’ is valid only when accompanied
by both ‘<samp><span class="samp"><</span></samp>’ (if the target machine has predecrement addressing)
and ‘<samp><span class="samp">></span></samp>’ (if the target machine has preincrement addressing).
<p><a name="index-g_t_0040samp_007bV_007d-in-constraint-3267"></a><br><dt>‘<samp><span class="samp">V</span></samp>’<dd>A memory operand that is not offsettable. In other words, anything that
would fit the ‘<samp><span class="samp">m</span></samp>’ constraint but not the ‘<samp><span class="samp">o</span></samp>’ constraint.
<p><a name="index-g_t_0040samp_007b_003c_007d-in-constraint-3268"></a><br><dt>‘<samp><span class="samp"><</span></samp>’<dd>A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed. In inline <code>asm</code> this constraint is only
allowed if the operand is used exactly once in an instruction that can
handle the side-effects. Not using an operand with ‘<samp><span class="samp"><</span></samp>’ in constraint
string in the inline <code>asm</code> pattern at all or using it in multiple
instructions isn't valid, because the side-effects wouldn't be performed
or would be performed more than once. Furthermore, on some targets
the operand with ‘<samp><span class="samp"><</span></samp>’ in constraint string must be accompanied by
special instruction suffixes like <code>%U0</code> instruction suffix on PowerPC
or <code>%P0</code> on IA-64.
<p><a name="index-g_t_0040samp_007b_003e_007d-in-constraint-3269"></a><br><dt>‘<samp><span class="samp">></span></samp>’<dd>A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed. In inline <code>asm</code> the same restrictions
as for ‘<samp><span class="samp"><</span></samp>’ apply.
<p><a name="index-g_t_0040samp_007br_007d-in-constraint-3270"></a><a name="index-registers-in-constraints-3271"></a><br><dt>‘<samp><span class="samp">r</span></samp>’<dd>A register operand is allowed provided that it is in a general
register.
<p><a name="index-constants-in-constraints-3272"></a><a name="index-g_t_0040samp_007bi_007d-in-constraint-3273"></a><br><dt>‘<samp><span class="samp">i</span></samp>’<dd>An immediate integer operand (one with constant value) is allowed.
This includes symbolic constants whose values will be known only at
assembly time or later.
<p><a name="index-g_t_0040samp_007bn_007d-in-constraint-3274"></a><br><dt>‘<samp><span class="samp">n</span></samp>’<dd>An immediate integer operand with a known numeric value is allowed.
Many systems cannot support assembly-time constants for operands less
than a word wide. Constraints for these operands should use ‘<samp><span class="samp">n</span></samp>’
rather than ‘<samp><span class="samp">i</span></samp>’.
<p><a name="index-g_t_0040samp_007bI_007d-in-constraint-3275"></a><br><dt>‘<samp><span class="samp">I</span></samp>’, ‘<samp><span class="samp">J</span></samp>’, ‘<samp><span class="samp">K</span></samp>’, <small class="dots">...</small> ‘<samp><span class="samp">P</span></samp>’<dd>Other letters in the range ‘<samp><span class="samp">I</span></samp>’ through ‘<samp><span class="samp">P</span></samp>’ may be defined in
a machine-dependent fashion to permit immediate integer operands with
explicit integer values in specified ranges. For example, on the
68000, ‘<samp><span class="samp">I</span></samp>’ is defined to stand for the range of values 1 to 8.
This is the range permitted as a shift count in the shift
instructions.
<p><a name="index-g_t_0040samp_007bE_007d-in-constraint-3276"></a><br><dt>‘<samp><span class="samp">E</span></samp>’<dd>An immediate floating operand (expression code <code>const_double</code>) is
allowed, but only if the target floating point format is the same as
that of the host machine (on which the compiler is running).
<p><a name="index-g_t_0040samp_007bF_007d-in-constraint-3277"></a><br><dt>‘<samp><span class="samp">F</span></samp>’<dd>An immediate floating operand (expression code <code>const_double</code> or
<code>const_vector</code>) is allowed.
<p><a name="index-g_t_0040samp_007bG_007d-in-constraint-3278"></a><a name="index-g_t_0040samp_007bH_007d-in-constraint-3279"></a><br><dt>‘<samp><span class="samp">G</span></samp>’, ‘<samp><span class="samp">H</span></samp>’<dd>‘<samp><span class="samp">G</span></samp>’ and ‘<samp><span class="samp">H</span></samp>’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of values.
<p><a name="index-g_t_0040samp_007bs_007d-in-constraint-3280"></a><br><dt>‘<samp><span class="samp">s</span></samp>’<dd>An immediate integer operand whose value is not an explicit integer is
allowed.
<p>This might appear strange; if an insn allows a constant operand with a
value not known at compile time, it certainly must allow any known
value. So why use ‘<samp><span class="samp">s</span></samp>’ instead of ‘<samp><span class="samp">i</span></samp>’? Sometimes it allows
better code to be generated.
<p>For example, on the 68000 in a fullword instruction it is possible to
use an immediate operand; but if the immediate value is between −128
and 127, better code results from loading the value into a register and
using the register. This is because the load into the register can be
done with a ‘<samp><span class="samp">moveq</span></samp>’ instruction. We arrange for this to happen
by defining the letter ‘<samp><span class="samp">K</span></samp>’ to mean “any integer outside the
range −128 to 127”, and then specifying ‘<samp><span class="samp">Ks</span></samp>’ in the operand
constraints.
<p><a name="index-g_t_0040samp_007bg_007d-in-constraint-3281"></a><br><dt>‘<samp><span class="samp">g</span></samp>’<dd>Any register, memory or immediate integer operand is allowed, except for
registers that are not general registers.
<p><a name="index-g_t_0040samp_007bX_007d-in-constraint-3282"></a><br><dt>‘<samp><span class="samp">X</span></samp>’<dd>Any operand whatsoever is allowed, even if it does not satisfy
<code>general_operand</code>. This is normally used in the constraint of
a <code>match_scratch</code> when certain alternatives will not actually
require a scratch register.
<p><a name="index-g_t_0040samp_007b0_007d-in-constraint-3283"></a><a name="index-digits-in-constraint-3284"></a><br><dt>‘<samp><span class="samp">0</span></samp>’, ‘<samp><span class="samp">1</span></samp>’, ‘<samp><span class="samp">2</span></samp>’, <small class="dots">...</small> ‘<samp><span class="samp">9</span></samp>’<dd>An operand that matches the specified operand number is allowed. If a
digit is used together with letters within the same alternative, the
digit should come last.
<p>This number is allowed to be more than a single digit. If multiple
digits are encountered consecutively, they are interpreted as a single
decimal integer. There is scant chance for ambiguity, since to-date
it has never been desirable that ‘<samp><span class="samp">10</span></samp>’ be interpreted as matching
either operand 1 <em>or</em> operand 0. Should this be desired, one
can use multiple alternatives instead.
<p><a name="index-matching-constraint-3285"></a><a name="index-constraint_002c-matching-3286"></a>This is called a <dfn>matching constraint</dfn> and what it really means is
that the assembler has only a single operand that fills two roles
considered separate in the RTL insn. For example, an add insn has two
input operands and one output operand in the RTL, but on most CISC
machines an add instruction really has only two operands, one of them an
input-output operand:
<pre class="smallexample"> addl #35,r12
</pre>
<p>Matching constraints are used in these circumstances.
More precisely, the two operands that match must include one input-only
operand and one output-only operand. Moreover, the digit must be a
smaller number than the number of the operand that uses it in the
constraint.
<p>For operands to match in a particular case usually means that they
are identical-looking RTL expressions. But in a few special cases
specific kinds of dissimilarity are allowed. For example, <code>*x</code>
as an input operand will match <code>*x++</code> as an output operand.
For proper results in such cases, the output template should always
use the output-operand's number when printing the operand.
<p><a name="index-load-address-instruction-3287"></a><a name="index-push-address-instruction-3288"></a><a name="index-address-constraints-3289"></a><a name="index-g_t_0040samp_007bp_007d-in-constraint-3290"></a><br><dt>‘<samp><span class="samp">p</span></samp>’<dd>An operand that is a valid memory address is allowed. This is
for “load address” and “push address” instructions.
<p><a name="index-address_005foperand-3291"></a>‘<samp><span class="samp">p</span></samp>’ in the constraint must be accompanied by <code>address_operand</code>
as the predicate in the <code>match_operand</code>. This predicate interprets
the mode specified in the <code>match_operand</code> as the mode of the memory
reference for which the address would be valid.
<p><a name="index-other-register-constraints-3292"></a><a name="index-extensible-constraints-3293"></a><br><dt><var>other-letters</var><dd>Other letters can be defined in machine-dependent fashion to stand for
particular classes of registers or other arbitrary operand types.
‘<samp><span class="samp">d</span></samp>’, ‘<samp><span class="samp">a</span></samp>’ and ‘<samp><span class="samp">f</span></samp>’ are defined on the 68000/68020 to stand
for data, address and floating point registers.
</dl>
<p>In order to have valid assembler code, each operand must satisfy
its constraint. But a failure to do so does not prevent the pattern
from applying to an insn. Instead, it directs the compiler to modify
the code so that the constraint will be satisfied. Usually this is
done by copying an operand into a register.
<p>Contrast, therefore, the two instruction patterns that follow:
<pre class="smallexample"> (define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")
(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]
""
"...")
</pre>
<p class="noindent">which has two operands, one of which must appear in two places, and
<pre class="smallexample"> (define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")
(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]
""
"...")
</pre>
<p class="noindent">which has three operands, two of which are required by a constraint to be
identical. If we are considering an insn of the form
<pre class="smallexample"> (insn <var>n</var> <var>prev</var> <var>next</var>
(set (reg:SI 3)
(plus:SI (reg:SI 6) (reg:SI 109)))
...)
</pre>
<p class="noindent">the first pattern would not apply at all, because this insn does not
contain two identical subexpressions in the right place. The pattern would
say, “That does not look like an add instruction; try other patterns”.
The second pattern would say, “Yes, that's an add instruction, but there
is something wrong with it”. It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The
results might look like this:
<pre class="smallexample"> (insn <var>n2</var> <var>prev</var> <var>n</var>
(set (reg:SI 3) (reg:SI 6))
...)
(insn <var>n</var> <var>n2</var> <var>next</var>
(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))
...)
</pre>
<p>It is up to you to make sure that each operand, in each pattern, has
constraints that can handle any RTL expression that could be present for
that operand. (When multiple alternatives are in use, each pattern must,
for each possible combination of operand expressions, have at least one
alternative which can handle that combination of operands.) The
constraints don't need to <em>allow</em> any possible operand—when this is
the case, they do not constrain—but they must at least point the way to
reloading any possible operand so that it will fit.
<ul>
<li>If the constraint accepts whatever operands the predicate permits,
there is no problem: reloading is never necessary for this operand.
<p>For example, an operand whose constraints permit everything except
registers is safe provided its predicate rejects registers.
<p>An operand whose predicate accepts only constant values is safe
provided its constraints include the letter ‘<samp><span class="samp">i</span></samp>’. If any possible
constant value is accepted, then nothing less than ‘<samp><span class="samp">i</span></samp>’ will do;
if the predicate is more selective, then the constraints may also be
more selective.
<li>Any operand expression can be reloaded by copying it into a register.
So if an operand's constraints allow some kind of register, it is
certain to be safe. It need not permit all classes of registers; the
compiler knows how to copy a register into another register of the
proper class in order to make an instruction valid.
<p><a name="index-nonoffsettable-memory-reference-3294"></a><a name="index-memory-reference_002c-nonoffsettable-3295"></a><li>A nonoffsettable memory reference can be reloaded by copying the
address into a register. So if the constraint uses the letter
‘<samp><span class="samp">o</span></samp>’, all memory references are taken care of.
<li>A constant operand can be reloaded by allocating space in memory to
hold it as preinitialized data. Then the memory reference can be used
in place of the constant. So if the constraint uses the letters
‘<samp><span class="samp">o</span></samp>’ or ‘<samp><span class="samp">m</span></samp>’, constant operands are not a problem.
<li>If the constraint permits a constant and a pseudo register used in an insn
was not allocated to a hard register and is equivalent to a constant,
the register will be replaced with the constant. If the predicate does
not permit a constant and the insn is re-recognized for some reason, the
compiler will crash. Thus the predicate must always recognize any
objects allowed by the constraint.
</ul>
<p>If the operand's predicate can recognize registers, but the constraint does
not permit them, it can make the compiler crash. When this operand happens
to be a register, the reload pass will be stymied, because it does not know
how to copy a register temporarily into memory.
<p>If the predicate accepts a unary operator, the constraint applies to the
operand. For example, the MIPS processor at ISA level 3 supports an
instruction which adds two registers in <code>SImode</code> to produce a
<code>DImode</code> result, but only if the registers are correctly sign
extended. This predicate for the input operands accepts a
<code>sign_extend</code> of an <code>SImode</code> register. Write the constraint
to indicate the type of register that is required for the operand of the
<code>sign_extend</code>.
<div class="node">
<a name="Multi-Alternative"></a>
<a name="Multi_002dAlternative"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Class-Preferences">Class Preferences</a>,
Previous: <a rel="previous" accesskey="p" href="#Simple-Constraints">Simple Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.2 Multiple Alternative Constraints</h4>
<p><a name="index-multiple-alternative-constraints-3296"></a>
Sometimes a single instruction has multiple alternative sets of possible
operands. For example, on the 68000, a logical-or instruction can combine
register or an immediate value into memory, or it can combine any kind of
operand into a register; but it cannot combine one memory location into
another.
<p>These constraints are represented as multiple alternatives. An alternative
can be described by a series of letters for each operand. The overall
constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from
the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:
<pre class="smallexample"> (define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
...)
</pre>
<p>The first alternative has ‘<samp><span class="samp">m</span></samp>’ (memory) for operand 0, ‘<samp><span class="samp">0</span></samp>’ for
operand 1 (meaning it must match operand 0), and ‘<samp><span class="samp">dKs</span></samp>’ for operand
2. The second alternative has ‘<samp><span class="samp">d</span></samp>’ (data register) for operand 0,
‘<samp><span class="samp">0</span></samp>’ for operand 1, and ‘<samp><span class="samp">dmKs</span></samp>’ for operand 2. The ‘<samp><span class="samp">=</span></samp>’ and
‘<samp><span class="samp">%</span></samp>’ in the constraints apply to all the alternatives; their
meaning is explained in the next section (see <a href="#Class-Preferences">Class Preferences</a>).
<!-- FIXME Is this ? and ! stuff of use in asm()? If not, hide unless INTERNAL -->
<p>If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many instructions
must be added to copy the operands so that that alternative applies.
The alternative requiring the least copying is chosen. If two alternatives
need the same amount of copying, the one that comes first is chosen.
These choices can be altered with the ‘<samp><span class="samp">?</span></samp>’ and ‘<samp><span class="samp">!</span></samp>’ characters:
<a name="index-g_t_0040samp_007b_003f_007d-in-constraint-3297"></a>
<a name="index-question-mark-3298"></a>
<dl><dt><code>?</code><dd>Disparage slightly the alternative that the ‘<samp><span class="samp">?</span></samp>’ appears in,
as a choice when no alternative applies exactly. The compiler regards
this alternative as one unit more costly for each ‘<samp><span class="samp">?</span></samp>’ that appears
in it.
<p><a name="index-g_t_0040samp_007b_0021_007d-in-constraint-3299"></a><a name="index-exclamation-point-3300"></a><br><dt><code>!</code><dd>Disparage severely the alternative that the ‘<samp><span class="samp">!</span></samp>’ appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be used.
</dl>
<p>When an insn pattern has multiple alternatives in its constraints, often
the appearance of the assembler code is determined mostly by which
alternative was matched. When this is so, the C code for writing the
assembler code can use the variable <code>which_alternative</code>, which is
the ordinal number of the alternative that was actually satisfied (0 for
the first, 1 for the second alternative, etc.). See <a href="#Output-Statement">Output Statement</a>.
<div class="node">
<a name="Class-Preferences"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Modifiers">Modifiers</a>,
Previous: <a rel="previous" accesskey="p" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.3 Register Class Preferences</h4>
<p><a name="index-class-preference-constraints-3301"></a><a name="index-register-class-preference-constraints-3302"></a>
<a name="index-voting-between-constraint-alternatives-3303"></a>The operand constraints have another function: they enable the compiler
to decide which kind of hardware register a pseudo register is best
allocated to. The compiler examines the constraints that apply to the
insns that use the pseudo register, looking for the machine-dependent
letters such as ‘<samp><span class="samp">d</span></samp>’ and ‘<samp><span class="samp">a</span></samp>’ that specify classes of registers.
The pseudo register is put in whichever class gets the most “votes”.
The constraint letters ‘<samp><span class="samp">g</span></samp>’ and ‘<samp><span class="samp">r</span></samp>’ also vote: they vote in
favor of a general register. The machine description says which registers
are considered general.
<p>Of course, on some machines all registers are equivalent, and no register
classes are defined. Then none of this complexity is relevant.
<div class="node">
<a name="Modifiers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Disable-Insn-Alternatives">Disable Insn Alternatives</a>,
Previous: <a rel="previous" accesskey="p" href="#Class-Preferences">Class Preferences</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.4 Constraint Modifier Characters</h4>
<p><a name="index-modifiers-in-constraints-3304"></a><a name="index-constraint-modifier-characters-3305"></a>
<!-- prevent bad page break with this line -->
Here are constraint modifier characters.
<a name="index-g_t_0040samp_007b_003d_007d-in-constraint-3306"></a>
<dl><dt>‘<samp><span class="samp">=</span></samp>’<dd>Means that this operand is write-only for this instruction: the previous
value is discarded and replaced by output data.
<p><a name="index-g_t_0040samp_007b_002b_007d-in-constraint-3307"></a><br><dt>‘<samp><span class="samp">+</span></samp>’<dd>Means that this operand is both read and written by the instruction.
<p>When the compiler fixes up the operands to satisfy the constraints,
it needs to know which operands are inputs to the instruction and
which are outputs from it. ‘<samp><span class="samp">=</span></samp>’ identifies an output; ‘<samp><span class="samp">+</span></samp>’
identifies an operand that is both input and output; all other operands
are assumed to be input only.
<p>If you specify ‘<samp><span class="samp">=</span></samp>’ or ‘<samp><span class="samp">+</span></samp>’ in a constraint, you put it in the
first character of the constraint string.
<p><a name="index-g_t_0040samp_007b_0026_007d-in-constraint-3308"></a><a name="index-earlyclobber-operand-3309"></a><br><dt>‘<samp><span class="samp">&</span></samp>’<dd>Means (in a particular alternative) that this operand is an
<dfn>earlyclobber</dfn> operand, which is modified before the instruction is
finished using the input operands. Therefore, this operand may not lie
in a register that is used as an input operand or as part of any memory
address.
<p>‘<samp><span class="samp">&</span></samp>’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alternative
requires ‘<samp><span class="samp">&</span></samp>’ while others do not. See, for example, the
‘<samp><span class="samp">movdf</span></samp>’ insn of the 68000.
<p>An input operand can be tied to an earlyclobber operand if its only
use as an input occurs before the early result is written. Adding
alternatives of this form often allows GCC to produce better code
when only some of the inputs can be affected by the earlyclobber.
See, for example, the ‘<samp><span class="samp">mulsi3</span></samp>’ insn of the ARM.
<p>‘<samp><span class="samp">&</span></samp>’ does not obviate the need to write ‘<samp><span class="samp">=</span></samp>’.
<p><a name="index-g_t_0040samp_007b_0025_007d-in-constraint-3310"></a><br><dt>‘<samp><span class="samp">%</span></samp>’<dd>Declares the instruction to be commutative for this operand and the
following operand. This means that the compiler may interchange the
two operands if that is the cheapest way to make all operands fit the
constraints.
This is often used in patterns for addition instructions
that really have only two operands: the result must go in one of the
arguments. Here for example, is how the 68000 halfword-add
instruction is defined:
<pre class="smallexample"> (define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]
...)
</pre>
<p>GCC can only handle one commutative pair in an asm; if you use more,
the compiler may fail. Note that you need not use the modifier if
the two alternatives are strictly identical; this would only waste
time in the reload pass. The modifier is not operational after
register allocation, so the result of <code>define_peephole2</code>
and <code>define_split</code>s performed after reload cannot rely on
‘<samp><span class="samp">%</span></samp>’ to make the intended insn match.
<p><a name="index-g_t_0040samp_007b_0023_007d-in-constraint-3311"></a><br><dt>‘<samp><span class="samp">#</span></samp>’<dd>Says that all following characters, up to the next comma, are to be
ignored as a constraint. They are significant only for choosing
register preferences.
<p><a name="index-g_t_0040samp_007b_002a_007d-in-constraint-3312"></a><br><dt>‘<samp><span class="samp">*</span></samp>’<dd>Says that the following character should be ignored when choosing
register preferences. ‘<samp><span class="samp">*</span></samp>’ has no effect on the meaning of the
constraint as a constraint, and no effect on reloading.
<p>Here is an example: the 68000 has an instruction to sign-extend a
halfword in a data register, and can also sign-extend a value by
copying it into an address register. While either kind of register is
acceptable, the constraints on an address-register destination are
less strict, so it is best if register allocation makes an address
register its goal. Therefore, ‘<samp><span class="samp">*</span></samp>’ is used so that the ‘<samp><span class="samp">d</span></samp>’
constraint letter (for data register) is ignored when computing
register preferences.
<pre class="smallexample"> (define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]
...)
</pre>
</dl>
<div class="node">
<a name="Machine-Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Define-Constraints">Define Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Disable-Insn-Alternatives">Disable Insn Alternatives</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.5 Constraints for Particular Machines</h4>
<p><a name="index-machine-specific-constraints-3313"></a><a name="index-constraints_002c-machine-specific-3314"></a>
Whenever possible, you should use the general-purpose constraint letters
in <code>asm</code> arguments, since they will convey meaning more readily to
people reading your code. Failing that, use the constraint letters
that usually have very similar meanings across architectures. The most
commonly used constraints are ‘<samp><span class="samp">m</span></samp>’ and ‘<samp><span class="samp">r</span></samp>’ (for memory and
general-purpose registers respectively; see <a href="#Simple-Constraints">Simple Constraints</a>), and
‘<samp><span class="samp">I</span></samp>’, usually the letter indicating the most common
immediate-constant format.
<p>Each architecture defines additional constraints. These constraints
are used by the compiler itself for instruction generation, as well as
for <code>asm</code> statements; therefore, some of the constraints are not
particularly useful for <code>asm</code>. Here is a summary of some of the
machine-dependent constraints available on some particular machines;
it includes both constraints that are useful for <code>asm</code> and
constraints that aren't. The compiler source file mentioned in the
table heading for each architecture is the definitive reference for
the meanings of that architecture's constraints.
<dl>
<dt><em>ARM family—</em><samp><span class="file">config/arm/arm.h</span></samp><dd>
<dl>
<dt><code>f</code><dd>Floating-point register
<br><dt><code>w</code><dd>VFP floating-point register
<br><dt><code>F</code><dd>One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
or 10.0
<br><dt><code>G</code><dd>Floating-point constant that would satisfy the constraint ‘<samp><span class="samp">F</span></samp>’ if it
were negated
<br><dt><code>I</code><dd>Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2
<br><dt><code>J</code><dd>Integer in the range −4095 to 4095
<br><dt><code>K</code><dd>Integer that satisfies constraint ‘<samp><span class="samp">I</span></samp>’ when inverted (ones complement)
<br><dt><code>L</code><dd>Integer that satisfies constraint ‘<samp><span class="samp">I</span></samp>’ when negated (twos complement)
<br><dt><code>M</code><dd>Integer in the range 0 to 32
<br><dt><code>Q</code><dd>A memory reference where the exact address is in a single register
(`‘<samp><span class="samp">m</span></samp>’' is preferable for <code>asm</code> statements)
<br><dt><code>R</code><dd>An item in the constant pool
<br><dt><code>S</code><dd>A symbol in the text segment of the current file
<br><dt><code>Uv</code><dd>A memory reference suitable for VFP load/store insns (reg+constant offset)
<br><dt><code>Uy</code><dd>A memory reference suitable for iWMMXt load/store instructions.
<br><dt><code>Uq</code><dd>A memory reference suitable for the ARMv4 ldrsb instruction.
</dl>
<br><dt><em>AVR family—</em><samp><span class="file">config/avr/constraints.md</span></samp><dd>
<dl>
<dt><code>l</code><dd>Registers from r0 to r15
<br><dt><code>a</code><dd>Registers from r16 to r23
<br><dt><code>d</code><dd>Registers from r16 to r31
<br><dt><code>w</code><dd>Registers from r24 to r31. These registers can be used in ‘<samp><span class="samp">adiw</span></samp>’ command
<br><dt><code>e</code><dd>Pointer register (r26–r31)
<br><dt><code>b</code><dd>Base pointer register (r28–r31)
<br><dt><code>q</code><dd>Stack pointer register (SPH:SPL)
<br><dt><code>t</code><dd>Temporary register r0
<br><dt><code>x</code><dd>Register pair X (r27:r26)
<br><dt><code>y</code><dd>Register pair Y (r29:r28)
<br><dt><code>z</code><dd>Register pair Z (r31:r30)
<br><dt><code>I</code><dd>Constant greater than −1, less than 64
<br><dt><code>J</code><dd>Constant greater than −64, less than 1
<br><dt><code>K</code><dd>Constant integer 2
<br><dt><code>L</code><dd>Constant integer 0
<br><dt><code>M</code><dd>Constant that fits in 8 bits
<br><dt><code>N</code><dd>Constant integer −1
<br><dt><code>O</code><dd>Constant integer 8, 16, or 24
<br><dt><code>P</code><dd>Constant integer 1
<br><dt><code>G</code><dd>A floating point constant 0.0
<br><dt><code>R</code><dd>Integer constant in the range −6 <small class="dots">...</small> 5.
<br><dt><code>Q</code><dd>A memory address based on Y or Z pointer with displacement.
</dl>
<br><dt><em>CRX Architecture—</em><samp><span class="file">config/crx/crx.h</span></samp><dd>
<dl>
<dt><code>b</code><dd>Registers from r0 to r14 (registers without stack pointer)
<br><dt><code>l</code><dd>Register r16 (64-bit accumulator lo register)
<br><dt><code>h</code><dd>Register r17 (64-bit accumulator hi register)
<br><dt><code>k</code><dd>Register pair r16-r17. (64-bit accumulator lo-hi pair)
<br><dt><code>I</code><dd>Constant that fits in 3 bits
<br><dt><code>J</code><dd>Constant that fits in 4 bits
<br><dt><code>K</code><dd>Constant that fits in 5 bits
<br><dt><code>L</code><dd>Constant that is one of −1, 4, −4, 7, 8, 12, 16, 20, 32, 48
<br><dt><code>G</code><dd>Floating point constant that is legal for store immediate
</dl>
<br><dt><em>Hewlett-Packard PA-RISC—</em><samp><span class="file">config/pa/pa.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>General register 1
<br><dt><code>f</code><dd>Floating point register
<br><dt><code>q</code><dd>Shift amount register
<br><dt><code>x</code><dd>Floating point register (deprecated)
<br><dt><code>y</code><dd>Upper floating point register (32-bit), floating point register (64-bit)
<br><dt><code>Z</code><dd>Any register
<br><dt><code>I</code><dd>Signed 11-bit integer constant
<br><dt><code>J</code><dd>Signed 14-bit integer constant
<br><dt><code>K</code><dd>Integer constant that can be deposited with a <code>zdepi</code> instruction
<br><dt><code>L</code><dd>Signed 5-bit integer constant
<br><dt><code>M</code><dd>Integer constant 0
<br><dt><code>N</code><dd>Integer constant that can be loaded with a <code>ldil</code> instruction
<br><dt><code>O</code><dd>Integer constant whose value plus one is a power of 2
<br><dt><code>P</code><dd>Integer constant that can be used for <code>and</code> operations in <code>depi</code>
and <code>extru</code> instructions
<br><dt><code>S</code><dd>Integer constant 31
<br><dt><code>U</code><dd>Integer constant 63
<br><dt><code>G</code><dd>Floating-point constant 0.0
<br><dt><code>A</code><dd>A <code>lo_sum</code> data-linkage-table memory operand
<br><dt><code>Q</code><dd>A memory operand that can be used as the destination operand of an
integer store instruction
<br><dt><code>R</code><dd>A scaled or unscaled indexed memory operand
<br><dt><code>T</code><dd>A memory operand for floating-point loads and stores
<br><dt><code>W</code><dd>A register indirect memory operand
</dl>
<br><dt><em>picoChip family—</em><samp><span class="file">picochip.h</span></samp><dd>
<dl>
<dt><code>k</code><dd>Stack register.
<br><dt><code>f</code><dd>Pointer register. A register which can be used to access memory without
supplying an offset. Any other register can be used to access memory,
but will need a constant offset. In the case of the offset being zero,
it is more efficient to use a pointer register, since this reduces code
size.
<br><dt><code>t</code><dd>A twin register. A register which may be paired with an adjacent
register to create a 32-bit register.
<br><dt><code>a</code><dd>Any absolute memory address (e.g., symbolic constant, symbolic
constant + offset).
<br><dt><code>I</code><dd>4-bit signed integer.
<br><dt><code>J</code><dd>4-bit unsigned integer.
<br><dt><code>K</code><dd>8-bit signed integer.
<br><dt><code>M</code><dd>Any constant whose absolute value is no greater than 4-bits.
<br><dt><code>N</code><dd>10-bit signed integer
<br><dt><code>O</code><dd>16-bit signed integer.
</dl>
<br><dt><em>PowerPC and IBM RS6000—</em><samp><span class="file">config/rs6000/rs6000.h</span></samp><dd>
<dl>
<dt><code>b</code><dd>Address base register
<br><dt><code>d</code><dd>Floating point register (containing 64-bit value)
<br><dt><code>f</code><dd>Floating point register (containing 32-bit value)
<br><dt><code>v</code><dd>Altivec vector register
<br><dt><code>wd</code><dd>VSX vector register to hold vector double data
<br><dt><code>wf</code><dd>VSX vector register to hold vector float data
<br><dt><code>ws</code><dd>VSX vector register to hold scalar float data
<br><dt><code>wa</code><dd>Any VSX register
<br><dt><code>h</code><dd>‘<samp><span class="samp">MQ</span></samp>’, ‘<samp><span class="samp">CTR</span></samp>’, or ‘<samp><span class="samp">LINK</span></samp>’ register
<br><dt><code>q</code><dd>‘<samp><span class="samp">MQ</span></samp>’ register
<br><dt><code>c</code><dd>‘<samp><span class="samp">CTR</span></samp>’ register
<br><dt><code>l</code><dd>‘<samp><span class="samp">LINK</span></samp>’ register
<br><dt><code>x</code><dd>‘<samp><span class="samp">CR</span></samp>’ register (condition register) number 0
<br><dt><code>y</code><dd>‘<samp><span class="samp">CR</span></samp>’ register (condition register)
<br><dt><code>z</code><dd>‘<samp><span class="samp">XER[CA]</span></samp>’ carry bit (part of the XER register)
<br><dt><code>I</code><dd>Signed 16-bit constant
<br><dt><code>J</code><dd>Unsigned 16-bit constant shifted left 16 bits (use ‘<samp><span class="samp">L</span></samp>’ instead for
<code>SImode</code> constants)
<br><dt><code>K</code><dd>Unsigned 16-bit constant
<br><dt><code>L</code><dd>Signed 16-bit constant shifted left 16 bits
<br><dt><code>M</code><dd>Constant larger than 31
<br><dt><code>N</code><dd>Exact power of 2
<br><dt><code>O</code><dd>Zero
<br><dt><code>P</code><dd>Constant whose negation is a signed 16-bit constant
<br><dt><code>G</code><dd>Floating point constant that can be loaded into a register with one
instruction per word
<br><dt><code>H</code><dd>Integer/Floating point constant that can be loaded into a register using
three instructions
<br><dt><code>m</code><dd>Memory operand.
Normally, <code>m</code> does not allow addresses that update the base register.
If ‘<samp><span class="samp"><</span></samp>’ or ‘<samp><span class="samp">></span></samp>’ constraint is also used, they are allowed and
therefore on PowerPC targets in that case it is only safe
to use ‘<samp><span class="samp">m<></span></samp>’ in an <code>asm</code> statement if that <code>asm</code> statement
accesses the operand exactly once. The <code>asm</code> statement must also
use ‘<samp><span class="samp">%U</span><var><opno></var></samp>’ as a placeholder for the “update” flag in the
corresponding load or store instruction. For example:
<pre class="smallexample"> asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
</pre>
<p>is correct but:
<pre class="smallexample"> asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
</pre>
<p>is not.
<br><dt><code>es</code><dd>A “stable” memory operand; that is, one which does not include any
automodification of the base register. This used to be useful when
‘<samp><span class="samp">m</span></samp>’ allowed automodification of the base register, but as those are now only
allowed when ‘<samp><span class="samp"><</span></samp>’ or ‘<samp><span class="samp">></span></samp>’ is used, ‘<samp><span class="samp">es</span></samp>’ is basically the same
as ‘<samp><span class="samp">m</span></samp>’ without ‘<samp><span class="samp"><</span></samp>’ and ‘<samp><span class="samp">></span></samp>’.
<br><dt><code>Q</code><dd>Memory operand that is an offset from a register (it is usually better
to use ‘<samp><span class="samp">m</span></samp>’ or ‘<samp><span class="samp">es</span></samp>’ in <code>asm</code> statements)
<br><dt><code>Z</code><dd>Memory operand that is an indexed or indirect from a register (it is
usually better to use ‘<samp><span class="samp">m</span></samp>’ or ‘<samp><span class="samp">es</span></samp>’ in <code>asm</code> statements)
<br><dt><code>R</code><dd>AIX TOC entry
<br><dt><code>a</code><dd>Address operand that is an indexed or indirect from a register (‘<samp><span class="samp">p</span></samp>’ is
preferable for <code>asm</code> statements)
<br><dt><code>S</code><dd>Constant suitable as a 64-bit mask operand
<br><dt><code>T</code><dd>Constant suitable as a 32-bit mask operand
<br><dt><code>U</code><dd>System V Release 4 small data area reference
<br><dt><code>t</code><dd>AND masks that can be performed by two rldic{l, r} instructions
<br><dt><code>W</code><dd>Vector constant that does not require memory
<br><dt><code>j</code><dd>Vector constant that is all zeros.
</dl>
<br><dt><em>Intel 386—</em><samp><span class="file">config/i386/constraints.md</span></samp><dd>
<dl>
<dt><code>R</code><dd>Legacy register—the eight integer registers available on all
i386 processors (<code>a</code>, <code>b</code>, <code>c</code>, <code>d</code>,
<code>si</code>, <code>di</code>, <code>bp</code>, <code>sp</code>).
<br><dt><code>q</code><dd>Any register accessible as <var>r</var><code>l</code>. In 32-bit mode, <code>a</code>,
<code>b</code>, <code>c</code>, and <code>d</code>; in 64-bit mode, any integer register.
<br><dt><code>Q</code><dd>Any register accessible as <var>r</var><code>h</code>: <code>a</code>, <code>b</code>,
<code>c</code>, and <code>d</code>.
<br><dt><code>l</code><dd>Any register that can be used as the index in a base+index memory
access: that is, any general register except the stack pointer.
<br><dt><code>a</code><dd>The <code>a</code> register.
<br><dt><code>b</code><dd>The <code>b</code> register.
<br><dt><code>c</code><dd>The <code>c</code> register.
<br><dt><code>d</code><dd>The <code>d</code> register.
<br><dt><code>S</code><dd>The <code>si</code> register.
<br><dt><code>D</code><dd>The <code>di</code> register.
<br><dt><code>A</code><dd>The <code>a</code> and <code>d</code> registers. This class is used for instructions
that return double word results in the <code>ax:dx</code> register pair. Single
word values will be allocated either in <code>ax</code> or <code>dx</code>.
For example on i386 the following implements <code>rdtsc</code>:
<pre class="smallexample"> unsigned long long rdtsc (void)
{
unsigned long long tick;
__asm__ __volatile__("rdtsc":"=A"(tick));
return tick;
}
</pre>
<p>This is not correct on x86_64 as it would allocate tick in either <code>ax</code>
or <code>dx</code>. You have to use the following variant instead:
<pre class="smallexample"> unsigned long long rdtsc (void)
{
unsigned int tickl, tickh;
__asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
return ((unsigned long long)tickh << 32)|tickl;
}
</pre>
<br><dt><code>f</code><dd>Any 80387 floating-point (stack) register.
<br><dt><code>t</code><dd>Top of 80387 floating-point stack (<code>%st(0)</code>).
<br><dt><code>u</code><dd>Second from top of 80387 floating-point stack (<code>%st(1)</code>).
<br><dt><code>y</code><dd>Any MMX register.
<br><dt><code>x</code><dd>Any SSE register.
<br><dt><code>Yz</code><dd>First SSE register (<code>%xmm0</code>).
<br><dt><code>Y2</code><dd>Any SSE register, when SSE2 is enabled.
<br><dt><code>Yi</code><dd>Any SSE register, when SSE2 and inter-unit moves are enabled.
<br><dt><code>Ym</code><dd>Any MMX register, when inter-unit moves are enabled.
<br><dt><code>I</code><dd>Integer constant in the range 0 <small class="dots">...</small> 31, for 32-bit shifts.
<br><dt><code>J</code><dd>Integer constant in the range 0 <small class="dots">...</small> 63, for 64-bit shifts.
<br><dt><code>K</code><dd>Signed 8-bit integer constant.
<br><dt><code>L</code><dd><code>0xFF</code> or <code>0xFFFF</code>, for andsi as a zero-extending move.
<br><dt><code>M</code><dd>0, 1, 2, or 3 (shifts for the <code>lea</code> instruction).
<br><dt><code>N</code><dd>Unsigned 8-bit integer constant (for <code>in</code> and <code>out</code>
instructions).
<br><dt><code>O</code><dd>Integer constant in the range 0 <small class="dots">...</small> 127, for 128-bit shifts.
<br><dt><code>G</code><dd>Standard 80387 floating point constant.
<br><dt><code>C</code><dd>Standard SSE floating point constant.
<br><dt><code>e</code><dd>32-bit signed integer constant, or a symbolic reference known
to fit that range (for immediate operands in sign-extending x86-64
instructions).
<br><dt><code>Z</code><dd>32-bit unsigned integer constant, or a symbolic reference known
to fit that range (for immediate operands in zero-extending x86-64
instructions).
</dl>
<br><dt><em>Intel IA-64—</em><samp><span class="file">config/ia64/ia64.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>General register <code>r0</code> to <code>r3</code> for <code>addl</code> instruction
<br><dt><code>b</code><dd>Branch register
<br><dt><code>c</code><dd>Predicate register (‘<samp><span class="samp">c</span></samp>’ as in “conditional”)
<br><dt><code>d</code><dd>Application register residing in M-unit
<br><dt><code>e</code><dd>Application register residing in I-unit
<br><dt><code>f</code><dd>Floating-point register
<br><dt><code>m</code><dd>Memory operand. If used together with ‘<samp><span class="samp"><</span></samp>’ or ‘<samp><span class="samp">></span></samp>’,
the operand can have postincrement and postdecrement which
require printing with ‘<samp><span class="samp">%Pn</span></samp>’ on IA-64.
<br><dt><code>G</code><dd>Floating-point constant 0.0 or 1.0
<br><dt><code>I</code><dd>14-bit signed integer constant
<br><dt><code>J</code><dd>22-bit signed integer constant
<br><dt><code>K</code><dd>8-bit signed integer constant for logical instructions
<br><dt><code>L</code><dd>8-bit adjusted signed integer constant for compare pseudo-ops
<br><dt><code>M</code><dd>6-bit unsigned integer constant for shift counts
<br><dt><code>N</code><dd>9-bit signed integer constant for load and store postincrements
<br><dt><code>O</code><dd>The constant zero
<br><dt><code>P</code><dd>0 or −1 for <code>dep</code> instruction
<br><dt><code>Q</code><dd>Non-volatile memory for floating-point loads and stores
<br><dt><code>R</code><dd>Integer constant in the range 1 to 4 for <code>shladd</code> instruction
<br><dt><code>S</code><dd>Memory operand except postincrement and postdecrement. This is
now roughly the same as ‘<samp><span class="samp">m</span></samp>’ when not used together with ‘<samp><span class="samp"><</span></samp>’
or ‘<samp><span class="samp">></span></samp>’.
</dl>
<br><dt><em>FRV—</em><samp><span class="file">config/frv/frv.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register in the class <code>ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>b</code><dd>Register in the class <code>EVEN_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>c</code><dd>Register in the class <code>CC_REGS</code> (<code>fcc0</code> to <code>fcc3</code> and
<code>icc0</code> to <code>icc3</code>).
<br><dt><code>d</code><dd>Register in the class <code>GPR_REGS</code> (<code>gr0</code> to <code>gr63</code>).
<br><dt><code>e</code><dd>Register in the class <code>EVEN_REGS</code> (<code>gr0</code> to <code>gr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
<br><dt><code>f</code><dd>Register in the class <code>FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
<br><dt><code>h</code><dd>Register in the class <code>FEVEN_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.
<br><dt><code>l</code><dd>Register in the class <code>LR_REG</code> (the <code>lr</code> register).
<br><dt><code>q</code><dd>Register in the class <code>QUAD_REGS</code> (<code>gr2</code> to <code>gr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
<br><dt><code>t</code><dd>Register in the class <code>ICC_REGS</code> (<code>icc0</code> to <code>icc3</code>).
<br><dt><code>u</code><dd>Register in the class <code>FCC_REGS</code> (<code>fcc0</code> to <code>fcc3</code>).
<br><dt><code>v</code><dd>Register in the class <code>ICR_REGS</code> (<code>cc4</code> to <code>cc7</code>).
<br><dt><code>w</code><dd>Register in the class <code>FCR_REGS</code> (<code>cc0</code> to <code>cc3</code>).
<br><dt><code>x</code><dd>Register in the class <code>QUAD_FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.
<br><dt><code>z</code><dd>Register in the class <code>SPR_REGS</code> (<code>lcr</code> and <code>lr</code>).
<br><dt><code>A</code><dd>Register in the class <code>QUAD_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).
<br><dt><code>B</code><dd>Register in the class <code>ACCG_REGS</code> (<code>accg0</code> to <code>accg7</code>).
<br><dt><code>C</code><dd>Register in the class <code>CR_REGS</code> (<code>cc0</code> to <code>cc7</code>).
<br><dt><code>G</code><dd>Floating point constant zero
<br><dt><code>I</code><dd>6-bit signed integer constant
<br><dt><code>J</code><dd>10-bit signed integer constant
<br><dt><code>L</code><dd>16-bit signed integer constant
<br><dt><code>M</code><dd>16-bit unsigned integer constant
<br><dt><code>N</code><dd>12-bit signed integer constant that is negative—i.e. in the
range of −2048 to −1
<br><dt><code>O</code><dd>Constant zero
<br><dt><code>P</code><dd>12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.
</dl>
<br><dt><em>Blackfin family—</em><samp><span class="file">config/bfin/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>P register
<br><dt><code>d</code><dd>D register
<br><dt><code>z</code><dd>A call clobbered P register.
<br><dt><code>q</code><var>n</var><dd>A single register. If <var>n</var> is in the range 0 to 7, the corresponding D
register. If it is <code>A</code>, then the register P0.
<br><dt><code>D</code><dd>Even-numbered D register
<br><dt><code>W</code><dd>Odd-numbered D register
<br><dt><code>e</code><dd>Accumulator register.
<br><dt><code>A</code><dd>Even-numbered accumulator register.
<br><dt><code>B</code><dd>Odd-numbered accumulator register.
<br><dt><code>b</code><dd>I register
<br><dt><code>v</code><dd>B register
<br><dt><code>f</code><dd>M register
<br><dt><code>c</code><dd>Registers used for circular buffering, i.e. I, B, or L registers.
<br><dt><code>C</code><dd>The CC register.
<br><dt><code>t</code><dd>LT0 or LT1.
<br><dt><code>k</code><dd>LC0 or LC1.
<br><dt><code>u</code><dd>LB0 or LB1.
<br><dt><code>x</code><dd>Any D, P, B, M, I or L register.
<br><dt><code>y</code><dd>Additional registers typically used only in prologues and epilogues: RETS,
RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
<br><dt><code>w</code><dd>Any register except accumulators or CC.
<br><dt><code>Ksh</code><dd>Signed 16 bit integer (in the range −32768 to 32767)
<br><dt><code>Kuh</code><dd>Unsigned 16 bit integer (in the range 0 to 65535)
<br><dt><code>Ks7</code><dd>Signed 7 bit integer (in the range −64 to 63)
<br><dt><code>Ku7</code><dd>Unsigned 7 bit integer (in the range 0 to 127)
<br><dt><code>Ku5</code><dd>Unsigned 5 bit integer (in the range 0 to 31)
<br><dt><code>Ks4</code><dd>Signed 4 bit integer (in the range −8 to 7)
<br><dt><code>Ks3</code><dd>Signed 3 bit integer (in the range −3 to 4)
<br><dt><code>Ku3</code><dd>Unsigned 3 bit integer (in the range 0 to 7)
<br><dt><code>P</code><var>n</var><dd>Constant <var>n</var>, where <var>n</var> is a single-digit constant in the range 0 to 4.
<br><dt><code>PA</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use with either accumulator.
<br><dt><code>PB</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use only with accumulator A1.
<br><dt><code>M1</code><dd>Constant 255.
<br><dt><code>M2</code><dd>Constant 65535.
<br><dt><code>J</code><dd>An integer constant with exactly a single bit set.
<br><dt><code>L</code><dd>An integer constant with all bits set except exactly one.
<br><dt><code>H</code>
<br><dt><code>Q</code><dd>Any SYMBOL_REF.
</dl>
<br><dt><em>M32C—</em><samp><span class="file">config/m32c/m32c.c</span></samp><dd>
<dl>
<dt><code>Rsp</code><dt><code>Rfb</code><dt><code>Rsb</code><dd>‘<samp><span class="samp">$sp</span></samp>’, ‘<samp><span class="samp">$fb</span></samp>’, ‘<samp><span class="samp">$sb</span></samp>’.
<br><dt><code>Rcr</code><dd>Any control register, when they're 16 bits wide (nothing if control
registers are 24 bits wide)
<br><dt><code>Rcl</code><dd>Any control register, when they're 24 bits wide.
<br><dt><code>R0w</code><dt><code>R1w</code><dt><code>R2w</code><dt><code>R3w</code><dd>$r0, $r1, $r2, $r3.
<br><dt><code>R02</code><dd>$r0 or $r2, or $r2r0 for 32 bit values.
<br><dt><code>R13</code><dd>$r1 or $r3, or $r3r1 for 32 bit values.
<br><dt><code>Rdi</code><dd>A register that can hold a 64 bit value.
<br><dt><code>Rhl</code><dd>$r0 or $r1 (registers with addressable high/low bytes)
<br><dt><code>R23</code><dd>$r2 or $r3
<br><dt><code>Raa</code><dd>Address registers
<br><dt><code>Raw</code><dd>Address registers when they're 16 bits wide.
<br><dt><code>Ral</code><dd>Address registers when they're 24 bits wide.
<br><dt><code>Rqi</code><dd>Registers that can hold QI values.
<br><dt><code>Rad</code><dd>Registers that can be used with displacements ($a0, $a1, $sb).
<br><dt><code>Rsi</code><dd>Registers that can hold 32 bit values.
<br><dt><code>Rhi</code><dd>Registers that can hold 16 bit values.
<br><dt><code>Rhc</code><dd>Registers chat can hold 16 bit values, including all control
registers.
<br><dt><code>Rra</code><dd>$r0 through R1, plus $a0 and $a1.
<br><dt><code>Rfl</code><dd>The flags register.
<br><dt><code>Rmm</code><dd>The memory-based pseudo-registers $mem0 through $mem15.
<br><dt><code>Rpi</code><dd>Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).
<br><dt><code>Rpa</code><dd>Matches multiple registers in a PARALLEL to form a larger register.
Used to match function return values.
<br><dt><code>Is3</code><dd>−8 <small class="dots">...</small> 7
<br><dt><code>IS1</code><dd>−128 <small class="dots">...</small> 127
<br><dt><code>IS2</code><dd>−32768 <small class="dots">...</small> 32767
<br><dt><code>IU2</code><dd>0 <small class="dots">...</small> 65535
<br><dt><code>In4</code><dd>−8 <small class="dots">...</small> −1 or 1 <small class="dots">...</small> 8
<br><dt><code>In5</code><dd>−16 <small class="dots">...</small> −1 or 1 <small class="dots">...</small> 16
<br><dt><code>In6</code><dd>−32 <small class="dots">...</small> −1 or 1 <small class="dots">...</small> 32
<br><dt><code>IM2</code><dd>−65536 <small class="dots">...</small> −1
<br><dt><code>Ilb</code><dd>An 8 bit value with exactly one bit set.
<br><dt><code>Ilw</code><dd>A 16 bit value with exactly one bit set.
<br><dt><code>Sd</code><dd>The common src/dest memory addressing modes.
<br><dt><code>Sa</code><dd>Memory addressed using $a0 or $a1.
<br><dt><code>Si</code><dd>Memory addressed with immediate addresses.
<br><dt><code>Ss</code><dd>Memory addressed using the stack pointer ($sp).
<br><dt><code>Sf</code><dd>Memory addressed using the frame base register ($fb).
<br><dt><code>Ss</code><dd>Memory addressed using the small base register ($sb).
<br><dt><code>S1</code><dd>$r1h
</dl>
<br><dt><em>MeP—</em><samp><span class="file">config/mep/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>The $sp register.
<br><dt><code>b</code><dd>The $tp register.
<br><dt><code>c</code><dd>Any control register.
<br><dt><code>d</code><dd>Either the $hi or the $lo register.
<br><dt><code>em</code><dd>Coprocessor registers that can be directly loaded ($c0-$c15).
<br><dt><code>ex</code><dd>Coprocessor registers that can be moved to each other.
<br><dt><code>er</code><dd>Coprocessor registers that can be moved to core registers.
<br><dt><code>h</code><dd>The $hi register.
<br><dt><code>j</code><dd>The $rpc register.
<br><dt><code>l</code><dd>The $lo register.
<br><dt><code>t</code><dd>Registers which can be used in $tp-relative addressing.
<br><dt><code>v</code><dd>The $gp register.
<br><dt><code>x</code><dd>The coprocessor registers.
<br><dt><code>y</code><dd>The coprocessor control registers.
<br><dt><code>z</code><dd>The $0 register.
<br><dt><code>A</code><dd>User-defined register set A.
<br><dt><code>B</code><dd>User-defined register set B.
<br><dt><code>C</code><dd>User-defined register set C.
<br><dt><code>D</code><dd>User-defined register set D.
<br><dt><code>I</code><dd>Offsets for $gp-rel addressing.
<br><dt><code>J</code><dd>Constants that can be used directly with boolean insns.
<br><dt><code>K</code><dd>Constants that can be moved directly to registers.
<br><dt><code>L</code><dd>Small constants that can be added to registers.
<br><dt><code>M</code><dd>Long shift counts.
<br><dt><code>N</code><dd>Small constants that can be compared to registers.
<br><dt><code>O</code><dd>Constants that can be loaded into the top half of registers.
<br><dt><code>S</code><dd>Signed 8-bit immediates.
<br><dt><code>T</code><dd>Symbols encoded for $tp-rel or $gp-rel addressing.
<br><dt><code>U</code><dd>Non-constant addresses for loading/saving coprocessor registers.
<br><dt><code>W</code><dd>The top half of a symbol's value.
<br><dt><code>Y</code><dd>A register indirect address without offset.
<br><dt><code>Z</code><dd>Symbolic references to the control bus.
</dl>
<br><dt><em>MicroBlaze—</em><samp><span class="file">config/microblaze/constraints.md</span></samp><dd>
<dl>
<dt><code>d</code><dd>A general register (<code>r0</code> to <code>r31</code>).
<br><dt><code>z</code><dd>A status register (<code>rmsr</code>, <code>$fcc1</code> to <code>$fcc7</code>).
</dl>
<br><dt><em>MIPS—</em><samp><span class="file">config/mips/constraints.md</span></samp><dd>
<dl>
<dt><code>d</code><dd>An address register. This is equivalent to <code>r</code> unless
generating MIPS16 code.
<br><dt><code>f</code><dd>A floating-point register (if available).
<br><dt><code>h</code><dd>Formerly the <code>hi</code> register. This constraint is no longer supported.
<br><dt><code>l</code><dd>The <code>lo</code> register. Use this register to store values that are
no bigger than a word.
<br><dt><code>x</code><dd>The concatenated <code>hi</code> and <code>lo</code> registers. Use this register
to store doubleword values.
<br><dt><code>c</code><dd>A register suitable for use in an indirect jump. This will always be
<code>$25</code> for <samp><span class="option">-mabicalls</span></samp>.
<br><dt><code>v</code><dd>Register <code>$3</code>. Do not use this constraint in new code;
it is retained only for compatibility with glibc.
<br><dt><code>y</code><dd>Equivalent to <code>r</code>; retained for backwards compatibility.
<br><dt><code>z</code><dd>A floating-point condition code register.
<br><dt><code>I</code><dd>A signed 16-bit constant (for arithmetic instructions).
<br><dt><code>J</code><dd>Integer zero.
<br><dt><code>K</code><dd>An unsigned 16-bit constant (for logic instructions).
<br><dt><code>L</code><dd>A signed 32-bit constant in which the lower 16 bits are zero.
Such constants can be loaded using <code>lui</code>.
<br><dt><code>M</code><dd>A constant that cannot be loaded using <code>lui</code>, <code>addiu</code>
or <code>ori</code>.
<br><dt><code>N</code><dd>A constant in the range −65535 to −1 (inclusive).
<br><dt><code>O</code><dd>A signed 15-bit constant.
<br><dt><code>P</code><dd>A constant in the range 1 to 65535 (inclusive).
<br><dt><code>G</code><dd>Floating-point zero.
<br><dt><code>R</code><dd>An address that can be used in a non-macro load or store.
</dl>
<br><dt><em>Motorola 680x0—</em><samp><span class="file">config/m68k/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>Address register
<br><dt><code>d</code><dd>Data register
<br><dt><code>f</code><dd>68881 floating-point register, if available
<br><dt><code>I</code><dd>Integer in the range 1 to 8
<br><dt><code>J</code><dd>16-bit signed number
<br><dt><code>K</code><dd>Signed number whose magnitude is greater than 0x80
<br><dt><code>L</code><dd>Integer in the range −8 to −1
<br><dt><code>M</code><dd>Signed number whose magnitude is greater than 0x100
<br><dt><code>N</code><dd>Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
<br><dt><code>O</code><dd>16 (for rotate using swap)
<br><dt><code>P</code><dd>Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
<br><dt><code>R</code><dd>Numbers that mov3q can handle
<br><dt><code>G</code><dd>Floating point constant that is not a 68881 constant
<br><dt><code>S</code><dd>Operands that satisfy 'm' when -mpcrel is in effect
<br><dt><code>T</code><dd>Operands that satisfy 's' when -mpcrel is not in effect
<br><dt><code>Q</code><dd>Address register indirect addressing mode
<br><dt><code>U</code><dd>Register offset addressing
<br><dt><code>W</code><dd>const_call_operand
<br><dt><code>Cs</code><dd>symbol_ref or const
<br><dt><code>Ci</code><dd>const_int
<br><dt><code>C0</code><dd>const_int 0
<br><dt><code>Cj</code><dd>Range of signed numbers that don't fit in 16 bits
<br><dt><code>Cmvq</code><dd>Integers valid for mvq
<br><dt><code>Capsw</code><dd>Integers valid for a moveq followed by a swap
<br><dt><code>Cmvz</code><dd>Integers valid for mvz
<br><dt><code>Cmvs</code><dd>Integers valid for mvs
<br><dt><code>Ap</code><dd>push_operand
<br><dt><code>Ac</code><dd>Non-register operands allowed in clr
</dl>
<br><dt><em>Motorola 68HC11 & 68HC12 families—</em><samp><span class="file">config/m68hc11/m68hc11.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register `a'
<br><dt><code>b</code><dd>Register `b'
<br><dt><code>d</code><dd>Register `d'
<br><dt><code>q</code><dd>An 8-bit register
<br><dt><code>t</code><dd>Temporary soft register _.tmp
<br><dt><code>u</code><dd>A soft register _.d1 to _.d31
<br><dt><code>w</code><dd>Stack pointer register
<br><dt><code>x</code><dd>Register `x'
<br><dt><code>y</code><dd>Register `y'
<br><dt><code>z</code><dd>Pseudo register `z' (replaced by `x' or `y' at the end)
<br><dt><code>A</code><dd>An address register: x, y or z
<br><dt><code>B</code><dd>An address register: x or y
<br><dt><code>D</code><dd>Register pair (x:d) to form a 32-bit value
<br><dt><code>L</code><dd>Constants in the range −65536 to 65535
<br><dt><code>M</code><dd>Constants whose 16-bit low part is zero
<br><dt><code>N</code><dd>Constant integer 1 or −1
<br><dt><code>O</code><dd>Constant integer 16
<br><dt><code>P</code><dd>Constants in the range −8 to 2
</dl>
<br><dt><em>Moxie—</em><samp><span class="file">config/moxie/constraints.md</span></samp><dd>
<dl>
<dt><code>A</code><dd>An absolute address
<br><dt><code>B</code><dd>An offset address
<br><dt><code>W</code><dd>A register indirect memory operand
<br><dt><code>I</code><dd>A constant in the range of 0 to 255.
<br><dt><code>N</code><dd>A constant in the range of 0 to −255.
</dl>
<br><dt><em>PDP-11—</em><samp><span class="file">config/pdp11/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>Floating point registers AC0 through AC3. These can be loaded from/to
memory with a single instruction.
<br><dt><code>d</code><dd>Odd numbered general registers (R1, R3, R5). These are used for
16-bit multiply operations.
<br><dt><code>f</code><dd>Any of the floating point registers (AC0 through AC5).
<br><dt><code>G</code><dd>Floating point constant 0.
<br><dt><code>I</code><dd>An integer constant that fits in 16 bits.
<br><dt><code>J</code><dd>An integer constant whose low order 16 bits are zero.
<br><dt><code>K</code><dd>An integer constant that does not meet the constraints for codes
‘<samp><span class="samp">I</span></samp>’ or ‘<samp><span class="samp">J</span></samp>’.
<br><dt><code>L</code><dd>The integer constant 1.
<br><dt><code>M</code><dd>The integer constant −1.
<br><dt><code>N</code><dd>The integer constant 0.
<br><dt><code>O</code><dd>Integer constants −4 through −1 and 1 through 4; shifts by these
amounts are handled as multiple single-bit shifts rather than a single
variable-length shift.
<br><dt><code>Q</code><dd>A memory reference which requires an additional word (address or
offset) after the opcode.
<br><dt><code>R</code><dd>A memory reference that is encoded within the opcode.
</dl>
<br><dt><em>RX—</em><samp><span class="file">config/rx/constraints.md</span></samp><dd>
<dl>
<dt><code>Q</code><dd>An address which does not involve register indirect addressing or
pre/post increment/decrement addressing.
<br><dt><code>Symbol</code><dd>A symbol reference.
<br><dt><code>Int08</code><dd>A constant in the range −256 to 255, inclusive.
<br><dt><code>Sint08</code><dd>A constant in the range −128 to 127, inclusive.
<br><dt><code>Sint16</code><dd>A constant in the range −32768 to 32767, inclusive.
<br><dt><code>Sint24</code><dd>A constant in the range −8388608 to 8388607, inclusive.
<br><dt><code>Uint04</code><dd>A constant in the range 0 to 15, inclusive.
</dl>
<br><dt><em>SPARC—</em><samp><span class="file">config/sparc/sparc.h</span></samp><dd>
<dl>
<dt><code>f</code><dd>Floating-point register on the SPARC-V8 architecture and
lower floating-point register on the SPARC-V9 architecture.
<br><dt><code>e</code><dd>Floating-point register. It is equivalent to ‘<samp><span class="samp">f</span></samp>’ on the
SPARC-V8 architecture and contains both lower and upper
floating-point registers on the SPARC-V9 architecture.
<br><dt><code>c</code><dd>Floating-point condition code register.
<br><dt><code>d</code><dd>Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.
<br><dt><code>b</code><dd>Floating-point register. It is only valid on the SPARC-V9 architecture
when the Visual Instruction Set is available.
<br><dt><code>h</code><dd>64-bit global or out register for the SPARC-V8+ architecture.
<br><dt><code>D</code><dd>A vector constant
<br><dt><code>I</code><dd>Signed 13-bit constant
<br><dt><code>J</code><dd>Zero
<br><dt><code>K</code><dd>32-bit constant with the low 12 bits clear (a constant that can be
loaded with the <code>sethi</code> instruction)
<br><dt><code>L</code><dd>A constant in the range supported by <code>movcc</code> instructions
<br><dt><code>M</code><dd>A constant in the range supported by <code>movrcc</code> instructions
<br><dt><code>N</code><dd>Same as ‘<samp><span class="samp">K</span></samp>’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘<samp><span class="samp">K</span></samp>’ for
modes wider than <code>SImode</code>
<br><dt><code>O</code><dd>The constant 4096
<br><dt><code>G</code><dd>Floating-point zero
<br><dt><code>H</code><dd>Signed 13-bit constant, sign-extended to 32 or 64 bits
<br><dt><code>Q</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single sethi
instruction
<br><dt><code>R</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single mov
instruction
<br><dt><code>S</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a high/lo_sum
instruction sequence
<br><dt><code>T</code><dd>Memory address aligned to an 8-byte boundary
<br><dt><code>U</code><dd>Even register
<br><dt><code>W</code><dd>Memory address for ‘<samp><span class="samp">e</span></samp>’ constraint registers
<br><dt><code>Y</code><dd>Vector zero
</dl>
<br><dt><em>SPU—</em><samp><span class="file">config/spu/spu.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value.
<br><dt><code>c</code><dd>An immediate for and/xor/or instructions. const_int is treated as a 64 bit value.
<br><dt><code>d</code><dd>An immediate for the <code>iohl</code> instruction. const_int is treated as a 64 bit value.
<br><dt><code>f</code><dd>An immediate which can be loaded with <code>fsmbi</code>.
<br><dt><code>A</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value.
<br><dt><code>B</code><dd>An immediate for most arithmetic instructions. const_int is treated as a 32 bit value.
<br><dt><code>C</code><dd>An immediate for and/xor/or instructions. const_int is treated as a 32 bit value.
<br><dt><code>D</code><dd>An immediate for the <code>iohl</code> instruction. const_int is treated as a 32 bit value.
<br><dt><code>I</code><dd>A constant in the range [−64, 63] for shift/rotate instructions.
<br><dt><code>J</code><dd>An unsigned 7-bit constant for conversion/nop/channel instructions.
<br><dt><code>K</code><dd>A signed 10-bit constant for most arithmetic instructions.
<br><dt><code>M</code><dd>A signed 16 bit immediate for <code>stop</code>.
<br><dt><code>N</code><dd>An unsigned 16-bit constant for <code>iohl</code> and <code>fsmbi</code>.
<br><dt><code>O</code><dd>An unsigned 7-bit constant whose 3 least significant bits are 0.
<br><dt><code>P</code><dd>An unsigned 3-bit constant for 16-byte rotates and shifts
<br><dt><code>R</code><dd>Call operand, reg, for indirect calls
<br><dt><code>S</code><dd>Call operand, symbol, for relative calls.
<br><dt><code>T</code><dd>Call operand, const_int, for absolute calls.
<br><dt><code>U</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit.
<br><dt><code>W</code><dd>An immediate for shift and rotate instructions. const_int is treated as a 32 bit value.
<br><dt><code>Y</code><dd>An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit.
<br><dt><code>Z</code><dd>An immediate for the <code>iohl</code> instruction. const_int is sign extended to 128 bit.
</dl>
<br><dt><em>S/390 and zSeries—</em><samp><span class="file">config/s390/s390.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Address register (general purpose register except r0)
<br><dt><code>c</code><dd>Condition code register
<br><dt><code>d</code><dd>Data register (arbitrary general purpose register)
<br><dt><code>f</code><dd>Floating-point register
<br><dt><code>I</code><dd>Unsigned 8-bit constant (0–255)
<br><dt><code>J</code><dd>Unsigned 12-bit constant (0–4095)
<br><dt><code>K</code><dd>Signed 16-bit constant (−32768–32767)
<br><dt><code>L</code><dd>Value appropriate as displacement.
<dl>
<dt><code>(0..4095)</code><dd>for short displacement
<br><dt><code>(−524288..524287)</code><dd>for long displacement
</dl>
<br><dt><code>M</code><dd>Constant integer with a value of 0x7fffffff.
<br><dt><code>N</code><dd>Multiple letter constraint followed by 4 parameter letters.
<dl>
<dt><code>0..9:</code><dd>number of the part counting from most to least significant
<br><dt><code>H,Q:</code><dd>mode of the part
<br><dt><code>D,S,H:</code><dd>mode of the containing operand
<br><dt><code>0,F:</code><dd>value of the other parts (F—all bits set)
</dl>
The constraint matches if the specified part of a constant
has a value different from its other parts.
<br><dt><code>Q</code><dd>Memory reference without index register and with short displacement.
<br><dt><code>R</code><dd>Memory reference with index register and short displacement.
<br><dt><code>S</code><dd>Memory reference without index register but with long displacement.
<br><dt><code>T</code><dd>Memory reference with index register and long displacement.
<br><dt><code>U</code><dd>Pointer with short displacement.
<br><dt><code>W</code><dd>Pointer with long displacement.
<br><dt><code>Y</code><dd>Shift count operand.
</dl>
<br><dt><em>Score family—</em><samp><span class="file">config/score/score.h</span></samp><dd>
<dl>
<dt><code>d</code><dd>Registers from r0 to r32.
<br><dt><code>e</code><dd>Registers from r0 to r16.
<br><dt><code>t</code><dd>r8—r11 or r22—r27 registers.
<br><dt><code>h</code><dd>hi register.
<br><dt><code>l</code><dd>lo register.
<br><dt><code>x</code><dd>hi + lo register.
<br><dt><code>q</code><dd>cnt register.
<br><dt><code>y</code><dd>lcb register.
<br><dt><code>z</code><dd>scb register.
<br><dt><code>a</code><dd>cnt + lcb + scb register.
<br><dt><code>c</code><dd>cr0—cr15 register.
<br><dt><code>b</code><dd>cp1 registers.
<br><dt><code>f</code><dd>cp2 registers.
<br><dt><code>i</code><dd>cp3 registers.
<br><dt><code>j</code><dd>cp1 + cp2 + cp3 registers.
<br><dt><code>I</code><dd>High 16-bit constant (32-bit constant with 16 LSBs zero).
<br><dt><code>J</code><dd>Unsigned 5 bit integer (in the range 0 to 31).
<br><dt><code>K</code><dd>Unsigned 16 bit integer (in the range 0 to 65535).
<br><dt><code>L</code><dd>Signed 16 bit integer (in the range −32768 to 32767).
<br><dt><code>M</code><dd>Unsigned 14 bit integer (in the range 0 to 16383).
<br><dt><code>N</code><dd>Signed 14 bit integer (in the range −8192 to 8191).
<br><dt><code>Z</code><dd>Any SYMBOL_REF.
</dl>
<br><dt><em>Xstormy16—</em><samp><span class="file">config/stormy16/stormy16.h</span></samp><dd>
<dl>
<dt><code>a</code><dd>Register r0.
<br><dt><code>b</code><dd>Register r1.
<br><dt><code>c</code><dd>Register r2.
<br><dt><code>d</code><dd>Register r8.
<br><dt><code>e</code><dd>Registers r0 through r7.
<br><dt><code>t</code><dd>Registers r0 and r1.
<br><dt><code>y</code><dd>The carry register.
<br><dt><code>z</code><dd>Registers r8 and r9.
<br><dt><code>I</code><dd>A constant between 0 and 3 inclusive.
<br><dt><code>J</code><dd>A constant that has exactly one bit set.
<br><dt><code>K</code><dd>A constant that has exactly one bit clear.
<br><dt><code>L</code><dd>A constant between 0 and 255 inclusive.
<br><dt><code>M</code><dd>A constant between −255 and 0 inclusive.
<br><dt><code>N</code><dd>A constant between −3 and 0 inclusive.
<br><dt><code>O</code><dd>A constant between 1 and 4 inclusive.
<br><dt><code>P</code><dd>A constant between −4 and −1 inclusive.
<br><dt><code>Q</code><dd>A memory reference that is a stack push.
<br><dt><code>R</code><dd>A memory reference that is a stack pop.
<br><dt><code>S</code><dd>A memory reference that refers to a constant address of known value.
<br><dt><code>T</code><dd>The register indicated by Rx (not implemented yet).
<br><dt><code>U</code><dd>A constant that is not between 2 and 15 inclusive.
<br><dt><code>Z</code><dd>The constant 0.
</dl>
<br><dt><em>Xtensa—</em><samp><span class="file">config/xtensa/constraints.md</span></samp><dd>
<dl>
<dt><code>a</code><dd>General-purpose 32-bit register
<br><dt><code>b</code><dd>One-bit boolean register
<br><dt><code>A</code><dd>MAC16 40-bit accumulator register
<br><dt><code>I</code><dd>Signed 12-bit integer constant, for use in MOVI instructions
<br><dt><code>J</code><dd>Signed 8-bit integer constant, for use in ADDI instructions
<br><dt><code>K</code><dd>Integer constant valid for BccI instructions
<br><dt><code>L</code><dd>Unsigned constant valid for BccUI instructions
</dl>
</dl>
<div class="node">
<a name="Disable-Insn-Alternatives"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Machine-Constraints">Machine Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Modifiers">Modifiers</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.6 Disable insn alternatives using the <code>enabled</code> attribute</h4>
<p><a name="index-enabled-3315"></a>
The <code>enabled</code> insn attribute may be used to disable certain insn
alternatives for machine-specific reasons. This is useful when adding
new instructions to an existing pattern which are only available for
certain cpu architecture levels as specified with the <code>-march=</code>
option.
<p>If an insn alternative is disabled, then it will never be used. The
compiler treats the constraints for the disabled alternative as
unsatisfiable.
<p>In order to make use of the <code>enabled</code> attribute a back end has to add
in the machine description files:
<ol type=1 start=1>
<li>A definition of the <code>enabled</code> insn attribute. The attribute is
defined as usual using the <code>define_attr</code> command. This
definition should be based on other insn attributes and/or target flags.
The <code>enabled</code> attribute is a numeric attribute and should evaluate to
<code>(const_int 1)</code> for an enabled alternative and to
<code>(const_int 0)</code> otherwise.
<li>A definition of another insn attribute used to describe for what
reason an insn alternative might be available or
not. E.g. <code>cpu_facility</code> as in the example below.
<li>An assignment for the second attribute to each insn definition
combining instructions which are not all available under the same
circumstances. (Note: It obviously only makes sense for definitions
with more than one alternative. Otherwise the insn pattern should be
disabled or enabled using the insn condition.)
</ol>
<p>E.g. the following two patterns could easily be merged using the <code>enabled</code>
attribute:
<pre class="smallexample">
(define_insn "*movdi_old"
[(set (match_operand:DI 0 "register_operand" "=d")
(match_operand:DI 1 "register_operand" " d"))]
"!TARGET_NEW"
"lgr %0,%1")
(define_insn "*movdi_new"
[(set (match_operand:DI 0 "register_operand" "=d,f,d")
(match_operand:DI 1 "register_operand" " d,d,f"))]
"TARGET_NEW"
"@
lgr %0,%1
ldgr %0,%1
lgdr %0,%1")
</pre>
<p>to:
<pre class="smallexample">
(define_insn "*movdi_combined"
[(set (match_operand:DI 0 "register_operand" "=d,f,d")
(match_operand:DI 1 "register_operand" " d,d,f"))]
""
"@
lgr %0,%1
ldgr %0,%1
lgdr %0,%1"
[(set_attr "cpu_facility" "*,new,new")])
</pre>
<p>with the <code>enabled</code> attribute defined like this:
<pre class="smallexample">
(define_attr "cpu_facility" "standard,new" (const_string "standard"))
(define_attr "enabled" ""
(cond [(eq_attr "cpu_facility" "standard") (const_int 1)
(and (eq_attr "cpu_facility" "new")
(ne (symbol_ref "TARGET_NEW") (const_int 0)))
(const_int 1)]
(const_int 0)))
</pre>
<div class="node">
<a name="Define-Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C-Constraint-Interface">C Constraint Interface</a>,
Previous: <a rel="previous" accesskey="p" href="#Machine-Constraints">Machine Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.7 Defining Machine-Specific Constraints</h4>
<p><a name="index-defining-constraints-3316"></a><a name="index-constraints_002c-defining-3317"></a>
Machine-specific constraints fall into two categories: register and
non-register constraints. Within the latter category, constraints
which allow subsets of all possible memory or address operands should
be specially marked, to give <code>reload</code> more information.
<p>Machine-specific constraints can be given names of arbitrary length,
but they must be entirely composed of letters, digits, underscores
(‘<samp><span class="samp">_</span></samp>’), and angle brackets (‘<samp><span class="samp">< ></span></samp>’). Like C identifiers, they
must begin with a letter or underscore.
<p>In order to avoid ambiguity in operand constraint strings, no
constraint can have a name that begins with any other constraint's
name. For example, if <code>x</code> is defined as a constraint name,
<code>xy</code> may not be, and vice versa. As a consequence of this rule,
no constraint may begin with one of the generic constraint letters:
‘<samp><span class="samp">E F V X g i m n o p r s</span></samp>’.
<p>Register constraints correspond directly to register classes.
See <a href="#Register-Classes">Register Classes</a>. There is thus not much flexibility in their
definitions.
<div class="defun">
— MD Expression: <b>define_register_constraint</b><var> name regclass docstring<a name="index-define_005fregister_005fconstraint-3318"></a></var><br>
<blockquote><p>All three arguments are string constants.
<var>name</var> is the name of the constraint, as it will appear in
<code>match_operand</code> expressions. If <var>name</var> is a multi-letter
constraint its length shall be the same for all constraints starting
with the same letter. <var>regclass</var> can be either the
name of the corresponding register class (see <a href="#Register-Classes">Register Classes</a>),
or a C expression which evaluates to the appropriate register class.
If it is an expression, it must have no side effects, and it cannot
look at the operand. The usual use of expressions is to map some
register constraints to <code>NO_REGS</code> when the register class
is not available on a given subarchitecture.
<p><var>docstring</var> is a sentence documenting the meaning of the
constraint. Docstrings are explained further below.
</p></blockquote></div>
<p>Non-register constraints are more like predicates: the constraint
definition gives a Boolean expression which indicates whether the
constraint matches.
<div class="defun">
— MD Expression: <b>define_constraint</b><var> name docstring exp<a name="index-define_005fconstraint-3319"></a></var><br>
<blockquote><p>The <var>name</var> and <var>docstring</var> arguments are the same as for
<code>define_register_constraint</code>, but note that the docstring comes
immediately after the name for these expressions. <var>exp</var> is an RTL
expression, obeying the same rules as the RTL expressions in predicate
definitions. See <a href="#Defining-Predicates">Defining Predicates</a>, for details. If it
evaluates true, the constraint matches; if it evaluates false, it
doesn't. Constraint expressions should indicate which RTL codes they
might match, just like predicate expressions.
<p><code>match_test</code> C expressions have access to the
following variables:
<dl>
<dt><var>op</var><dd>The RTL object defining the operand.
<br><dt><var>mode</var><dd>The machine mode of <var>op</var>.
<br><dt><var>ival</var><dd>‘<samp><span class="samp">INTVAL (</span><var>op</var><span class="samp">)</span></samp>’, if <var>op</var> is a <code>const_int</code>.
<br><dt><var>hval</var><dd>‘<samp><span class="samp">CONST_DOUBLE_HIGH (</span><var>op</var><span class="samp">)</span></samp>’, if <var>op</var> is an integer
<code>const_double</code>.
<br><dt><var>lval</var><dd>‘<samp><span class="samp">CONST_DOUBLE_LOW (</span><var>op</var><span class="samp">)</span></samp>’, if <var>op</var> is an integer
<code>const_double</code>.
<br><dt><var>rval</var><dd>‘<samp><span class="samp">CONST_DOUBLE_REAL_VALUE (</span><var>op</var><span class="samp">)</span></samp>’, if <var>op</var> is a floating-point
<code>const_double</code>.
</dl>
<p>The <var>*val</var> variables should only be used once another piece of the
expression has verified that <var>op</var> is the appropriate kind of RTL
object.
</p></blockquote></div>
<p>Most non-register constraints should be defined with
<code>define_constraint</code>. The remaining two definition expressions
are only appropriate for constraints that should be handled specially
by <code>reload</code> if they fail to match.
<div class="defun">
— MD Expression: <b>define_memory_constraint</b><var> name docstring exp<a name="index-define_005fmemory_005fconstraint-3320"></a></var><br>
<blockquote><p>Use this expression for constraints that match a subset of all memory
operands: that is, <code>reload</code> can make them match by converting the
operand to the form ‘<samp><span class="samp">(mem (reg </span><var>X</var><span class="samp">))<!-- /@w --></span></samp>’, where <var>X</var> is a
base register (from the register class specified by
<code>BASE_REG_CLASS</code>, see <a href="#Register-Classes">Register Classes</a>).
<p>For example, on the S/390, some instructions do not accept arbitrary
memory references, but only those that do not make use of an index
register. The constraint letter ‘<samp><span class="samp">Q</span></samp>’ is defined to represent a
memory address of this type. If ‘<samp><span class="samp">Q</span></samp>’ is defined with
<code>define_memory_constraint</code>, a ‘<samp><span class="samp">Q</span></samp>’ constraint can handle any
memory operand, because <code>reload</code> knows it can simply copy the
memory address into a base register if required. This is analogous to
the way an ‘<samp><span class="samp">o</span></samp>’ constraint can handle any memory operand.
<p>The syntax and semantics are otherwise identical to
<code>define_constraint</code>.
</p></blockquote></div>
<div class="defun">
— MD Expression: <b>define_address_constraint</b><var> name docstring exp<a name="index-define_005faddress_005fconstraint-3321"></a></var><br>
<blockquote><p>Use this expression for constraints that match a subset of all address
operands: that is, <code>reload</code> can make the constraint match by
converting the operand to the form ‘<samp><span class="samp">(reg </span><var>X</var><span class="samp">)<!-- /@w --></span></samp>’, again
with <var>X</var> a base register.
<p>Constraints defined with <code>define_address_constraint</code> can only be
used with the <code>address_operand</code> predicate, or machine-specific
predicates that work the same way. They are treated analogously to
the generic ‘<samp><span class="samp">p</span></samp>’ constraint.
<p>The syntax and semantics are otherwise identical to
<code>define_constraint</code>.
</p></blockquote></div>
<p>For historical reasons, names beginning with the letters ‘<samp><span class="samp">G H</span></samp>’
are reserved for constraints that match only <code>const_double</code>s, and
names beginning with the letters ‘<samp><span class="samp">I J K L M N O P</span></samp>’ are reserved
for constraints that match only <code>const_int</code>s. This may change in
the future. For the time being, constraints with these names must be
written in a stylized form, so that <code>genpreds</code> can tell you did
it correctly:
<pre class="smallexample"> (define_constraint "[<var>GHIJKLMNOP</var>]..."
"<var>doc</var>..."
(and (match_code "const_int") ; <code>const_double</code><span class="roman"> for G/H</span>
<var>condition</var>...)) ; <span class="roman">usually a </span><code>match_test</code>
</pre>
<!-- the semicolons line up in the formatted manual -->
<p>It is fine to use names beginning with other letters for constraints
that match <code>const_double</code>s or <code>const_int</code>s.
<p>Each docstring in a constraint definition should be one or more complete
sentences, marked up in Texinfo format. <em>They are currently unused.</em>
In the future they will be copied into the GCC manual, in <a href="#Machine-Constraints">Machine Constraints</a>, replacing the hand-maintained tables currently found in
that section. Also, in the future the compiler may use this to give
more helpful diagnostics when poor choice of <code>asm</code> constraints
causes a reload failure.
<p>If you put the pseudo-Texinfo directive ‘<samp><span class="samp">@internal</span></samp>’ at the
beginning of a docstring, then (in the future) it will appear only in
the internals manual's version of the machine-specific constraint tables.
Use this for constraints that should not appear in <code>asm</code> statements.
<div class="node">
<a name="C-Constraint-Interface"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Define-Constraints">Define Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Constraints">Constraints</a>
</div>
<h4 class="subsection">16.8.8 Testing constraints from C</h4>
<p><a name="index-testing-constraints-3322"></a><a name="index-constraints_002c-testing-3323"></a>
It is occasionally useful to test a constraint from C code rather than
implicitly via the constraint string in a <code>match_operand</code>. The
generated file <samp><span class="file">tm_p.h</span></samp> declares a few interfaces for working
with machine-specific constraints. None of these interfaces work with
the generic constraints described in <a href="#Simple-Constraints">Simple Constraints</a>. This
may change in the future.
<p><strong>Warning:</strong> <samp><span class="file">tm_p.h</span></samp> may declare other functions that
operate on constraints, besides the ones documented here. Do not use
those functions from machine-dependent code. They exist to implement
the old constraint interface that machine-independent components of
the compiler still expect. They will change or disappear in the
future.
<p>Some valid constraint names are not valid C identifiers, so there is a
mangling scheme for referring to them from C. Constraint names that
do not contain angle brackets or underscores are left unchanged.
Underscores are doubled, each ‘<samp><span class="samp"><</span></samp>’ is replaced with ‘<samp><span class="samp">_l</span></samp>’, and
each ‘<samp><span class="samp">></span></samp>’ with ‘<samp><span class="samp">_g</span></samp>’. Here are some examples:
<!-- the @c's prevent double blank lines in the printed manual. -->
<pre class="example">
<p><table summary=""><tr align="left"><td valign="top"><strong>Original</strong> </td><td valign="top"><strong>Mangled</strong> <br></td></tr><tr align="left"><td valign="top"><code>x</code> </td><td valign="top"><code>x</code> <br></td></tr><tr align="left"><td valign="top"><code>P42x</code> </td><td valign="top"><code>P42x</code> <br></td></tr><tr align="left"><td valign="top"><code>P4_x</code> </td><td valign="top"><code>P4__x</code> <br></td></tr><tr align="left"><td valign="top"><code>P4>x</code> </td><td valign="top"><code>P4_gx</code> <br></td></tr><tr align="left"><td valign="top"><code>P4>></code> </td><td valign="top"><code>P4_g_g</code> <br></td></tr><tr align="left"><td valign="top"><code>P4_g></code> </td><td valign="top"><code>P4__g_g</code>
<br></td></tr></table>
</pre>
<p>Throughout this section, the variable <var>c</var> is either a constraint
in the abstract sense, or a constant from <code>enum constraint_num</code>;
the variable <var>m</var> is a mangled constraint name (usually as part of
a larger identifier).
<div class="defun">
— Enum: <b>constraint_num</b><var><a name="index-constraint_005fnum-3324"></a></var><br>
<blockquote><p>For each machine-specific constraint, there is a corresponding
enumeration constant: ‘<samp><span class="samp">CONSTRAINT_</span></samp>’ plus the mangled name of the
constraint. Functions that take an <code>enum constraint_num</code> as an
argument expect one of these constants.
<p>Machine-independent constraints do not have associated constants.
This may change in the future.
</p></blockquote></div>
<div class="defun">
— Function: inline bool <b>satisfies_constraint_</b><var>m </var>(<var>rtx exp</var>)<var><a name="index-satisfies_005fconstraint_005f-3325"></a></var><br>
<blockquote><p>For each machine-specific, non-register constraint <var>m</var>, there is
one of these functions; it returns <code>true</code> if <var>exp</var> satisfies the
constraint. These functions are only visible if <samp><span class="file">rtl.h</span></samp> was included
before <samp><span class="file">tm_p.h</span></samp>.
</p></blockquote></div>
<div class="defun">
— Function: bool <b>constraint_satisfied_p</b> (<var>rtx exp, enum constraint_num c</var>)<var><a name="index-constraint_005fsatisfied_005fp-3326"></a></var><br>
<blockquote><p>Like the <code>satisfies_constraint_</code><var>m</var> functions, but the
constraint to test is given as an argument, <var>c</var>. If <var>c</var>
specifies a register constraint, this function will always return
<code>false</code>.
</p></blockquote></div>
<div class="defun">
— Function: enum reg_class <b>regclass_for_constraint</b> (<var>enum constraint_num c</var>)<var><a name="index-regclass_005ffor_005fconstraint-3327"></a></var><br>
<blockquote><p>Returns the register class associated with <var>c</var>. If <var>c</var> is not
a register constraint, or those registers are not available for the
currently selected subtarget, returns <code>NO_REGS</code>.
</p></blockquote></div>
<p>Here is an example use of <code>satisfies_constraint_</code><var>m</var>. In
peephole optimizations (see <a href="#Peephole-Definitions">Peephole Definitions</a>), operand
constraint strings are ignored, so if there are relevant constraints,
they must be tested in the C condition. In the example, the
optimization is applied if operand 2 does <em>not</em> satisfy the
‘<samp><span class="samp">K</span></samp>’ constraint. (This is a simplified version of a peephole
definition from the i386 machine description.)
<pre class="smallexample"> (define_peephole2
[(match_scratch:SI 3 "r")
(set (match_operand:SI 0 "register_operand" "")
(mult:SI (match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "immediate_operand" "")))]
"!satisfies_constraint_K (operands[2])"
[(set (match_dup 3) (match_dup 1))
(set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
"")
</pre>
<div class="node">
<a name="Standard-Names"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Pattern-Ordering">Pattern Ordering</a>,
Previous: <a rel="previous" accesskey="p" href="#Constraints">Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.9 Standard Pattern Names For Generation</h3>
<p><a name="index-standard-pattern-names-3328"></a><a name="index-pattern-names-3329"></a><a name="index-names_002c-pattern-3330"></a>
Here is a table of the instruction names that are meaningful in the RTL
generation pass of the compiler. Giving one of these names to an
instruction pattern tells the RTL generation pass that it can use the
pattern to accomplish a certain task.
<a name="index-g_t_0040code_007bmov_0040var_007bm_007d_007d-instruction-pattern-3331"></a>
<dl><dt>‘<samp><span class="samp">mov</span><var>m</var></samp>’<dd>Here <var>m</var> stands for a two-letter machine mode name, in lowercase.
This instruction pattern moves data with that machine mode from operand
1 to operand 0. For example, ‘<samp><span class="samp">movsi</span></samp>’ moves full-word data.
<p>If operand 0 is a <code>subreg</code> with mode <var>m</var> of a register whose
own mode is wider than <var>m</var>, the effect of this instruction is
to store the specified value in the part of the register that corresponds
to mode <var>m</var>. Bits outside of <var>m</var>, but which are within the
same target word as the <code>subreg</code> are undefined. Bits which are
outside the target word are left unchanged.
<p>This class of patterns is special in several ways. First of all, each
of these names up to and including full word size <em>must</em> be defined,
because there is no other way to copy a datum from one place to another.
If there are patterns accepting operands in larger modes,
‘<samp><span class="samp">mov</span><var>m</var></samp>’ must be defined for integer modes of those sizes.
<p>Second, these patterns are not used solely in the RTL generation pass.
Even the reload pass can generate move insns to copy values from stack
slots into temporary registers. When it does so, one of the operands is
a hard register and the other is an operand that can need to be reloaded
into a register.
<p><a name="index-force_005freg-3332"></a>Therefore, when given such a pair of operands, the pattern must generate
RTL which needs no reloading and needs no temporary registers—no
registers other than the operands. For example, if you support the
pattern with a <code>define_expand</code>, then in such a case the
<code>define_expand</code> mustn't call <code>force_reg</code> or any other such
function which might generate new pseudo registers.
<p>This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and
some temporary registers.
<p><a name="index-change_005faddress-3333"></a>During reload a memory reference with an invalid address may be passed
as an operand. Such an address will be replaced with a valid address
later in the reload pass. In this case, nothing may be done with the
address except to use it as it stands. If it is copied, it will not be
replaced with a valid address. No attempt should be made to make such
an address into a valid address and no routine (such as
<code>change_address</code>) that will do so may be called. Note that
<code>general_operand</code> will fail when applied to such an address.
<p><a name="index-reload_005fin_005fprogress-3334"></a>The global variable <code>reload_in_progress</code> (which must be explicitly
declared if required) can be used to determine whether such special
handling is required.
<p>The variety of operands that have reloads depends on the rest of the
machine description, but typically on a RISC machine these can only be
pseudo registers that did not get hard registers, while on other
machines explicit memory references will get optional reloads.
<p>If a scratch register is required to move an object to or from memory,
it can be allocated using <code>gen_reg_rtx</code> prior to life analysis.
<p>If there are cases which need scratch registers during or after reload,
you must provide an appropriate secondary_reload target hook.
<p><a name="index-can_005fcreate_005fpseudo_005fp-3335"></a>The macro <code>can_create_pseudo_p</code> can be used to determine if it
is unsafe to create new pseudo registers. If this variable is nonzero, then
it is unsafe to call <code>gen_reg_rtx</code> to allocate a new pseudo.
<p>The constraints on a ‘<samp><span class="samp">mov</span><var>m</var></samp>’ must permit moving any hard
register to any other hard register provided that
<code>HARD_REGNO_MODE_OK</code> permits mode <var>m</var> in both registers and
<code>TARGET_REGISTER_MOVE_COST</code> applied to their classes returns a value
of 2.
<p>It is obligatory to support floating point ‘<samp><span class="samp">mov</span><var>m</var></samp>’
instructions into and out of any registers that can hold fixed point
values, because unions and structures (which have modes <code>SImode</code> or
<code>DImode</code>) can be in those registers and they may have floating
point members.
<p>There may also be a need to support fixed point ‘<samp><span class="samp">mov</span><var>m</var></samp>’
instructions in and out of floating point registers. Unfortunately, I
have forgotten why this was so, and I don't know whether it is still
true. If <code>HARD_REGNO_MODE_OK</code> rejects fixed point values in
floating point registers, then the constraints of the fixed point
‘<samp><span class="samp">mov</span><var>m</var></samp>’ instructions must be designed to avoid ever trying to
reload into a floating point register.
<p><a name="index-g_t_0040code_007breload_005fin_007d-instruction-pattern-3336"></a><a name="index-g_t_0040code_007breload_005fout_007d-instruction-pattern-3337"></a><br><dt>‘<samp><span class="samp">reload_in</span><var>m</var></samp>’<dt>‘<samp><span class="samp">reload_out</span><var>m</var></samp>’<dd>These named patterns have been obsoleted by the target hook
<code>secondary_reload</code>.
<p>Like ‘<samp><span class="samp">mov</span><var>m</var></samp>’, but used when a scratch register is required to
move between operand 0 and operand 1. Operand 2 describes the scratch
register. See the discussion of the <code>SECONDARY_RELOAD_CLASS</code>
macro in see <a href="#Register-Classes">Register Classes</a>.
<p>There are special restrictions on the form of the <code>match_operand</code>s
used in these patterns. First, only the predicate for the reload
operand is examined, i.e., <code>reload_in</code> examines operand 1, but not
the predicates for operand 0 or 2. Second, there may be only one
alternative in the constraints. Third, only a single register class
letter may be used for the constraint; subsequent constraint letters
are ignored. As a special exception, an empty constraint string
matches the <code>ALL_REGS</code> register class. This may relieve ports
of the burden of defining an <code>ALL_REGS</code> constraint letter just
for these patterns.
<p><a name="index-g_t_0040code_007bmovstrict_0040var_007bm_007d_007d-instruction-pattern-3338"></a><br><dt>‘<samp><span class="samp">movstrict</span><var>m</var></samp>’<dd>Like ‘<samp><span class="samp">mov</span><var>m</var></samp>’ except that if operand 0 is a <code>subreg</code>
with mode <var>m</var> of a register whose natural mode is wider,
the ‘<samp><span class="samp">movstrict</span><var>m</var></samp>’ instruction is guaranteed not to alter
any of the register except the part which belongs to mode <var>m</var>.
<p><a name="index-g_t_0040code_007bmovmisalign_0040var_007bm_007d_007d-instruction-pattern-3339"></a><br><dt>‘<samp><span class="samp">movmisalign</span><var>m</var></samp>’<dd>This variant of a move pattern is designed to load or store a value
from a memory address that is not naturally aligned for its mode.
For a store, the memory will be in operand 0; for a load, the memory
will be in operand 1. The other operand is guaranteed not to be a
memory, so that it's easy to tell whether this is a load or store.
<p>This pattern is used by the autovectorizer, and when expanding a
<code>MISALIGNED_INDIRECT_REF</code> expression.
<p><a name="index-g_t_0040code_007bload_005fmultiple_007d-instruction-pattern-3340"></a><br><dt>‘<samp><span class="samp">load_multiple</span></samp>’<dd>Load several consecutive memory locations into consecutive registers.
Operand 0 is the first of the consecutive registers, operand 1
is the first memory location, and operand 2 is a constant: the
number of consecutive registers.
<p>Define this only if the target machine really has such an instruction;
do not define this if the most efficient way of loading consecutive
registers from memory is to do them one at a time.
<p>On some machines, there are restrictions as to which consecutive
registers can be stored into memory, such as particular starting or
ending register numbers or only a range of valid counts. For those
machines, use a <code>define_expand</code> (see <a href="#Expander-Definitions">Expander Definitions</a>)
and make the pattern fail if the restrictions are not met.
<p>Write the generated insn as a <code>parallel</code> with elements being a
<code>set</code> of one register from the appropriate memory location (you may
also need <code>use</code> or <code>clobber</code> elements). Use a
<code>match_parallel</code> (see <a href="#RTL-Template">RTL Template</a>) to recognize the insn. See
<samp><span class="file">rs6000.md</span></samp> for examples of the use of this insn pattern.
<p><a name="index-g_t_0040samp_007bstore_005fmultiple_007d-instruction-pattern-3341"></a><br><dt>‘<samp><span class="samp">store_multiple</span></samp>’<dd>Similar to ‘<samp><span class="samp">load_multiple</span></samp>’, but store several consecutive registers
into consecutive memory locations. Operand 0 is the first of the
consecutive memory locations, operand 1 is the first register, and
operand 2 is a constant: the number of consecutive registers.
<p><a name="index-g_t_0040code_007bvec_005fload_005flanes_0040var_007bm_007d_0040var_007bn_007d_007d-instruction-pattern-3342"></a><br><dt>‘<samp><span class="samp">vec_load_lanes</span><var>m</var><var>n</var></samp>’<dd>Perform an interleaved load of several vectors from memory operand 1
into register operand 0. Both operands have mode <var>m</var>. The register
operand is viewed as holding consecutive vectors of mode <var>n</var>,
while the memory operand is a flat array that contains the same number
of elements. The operation is equivalent to:
<pre class="smallexample"> int c = GET_MODE_SIZE (<var>m</var>) / GET_MODE_SIZE (<var>n</var>);
for (j = 0; j < GET_MODE_NUNITS (<var>n</var>); j++)
for (i = 0; i < c; i++)
operand0[i][j] = operand1[j * c + i];
</pre>
<p>For example, ‘<samp><span class="samp">vec_load_lanestiv4hi</span></samp>’ loads 8 16-bit values
from memory into a register of mode ‘<samp><span class="samp">TI</span></samp>’. The register
contains two consecutive vectors of mode ‘<samp><span class="samp">V4HI</span></samp>’.
<p>This pattern can only be used if:
<pre class="smallexample"> TARGET_ARRAY_MODE_SUPPORTED_P (<var>n</var>, <var>c</var>)
</pre>
<p>is true. GCC assumes that, if a target supports this kind of
instruction for some mode <var>n</var>, it also supports unaligned
loads for vectors of mode <var>n</var>.
<p><a name="index-g_t_0040code_007bvec_005fstore_005flanes_0040var_007bm_007d_0040var_007bn_007d_007d-instruction-pattern-3343"></a><br><dt>‘<samp><span class="samp">vec_store_lanes</span><var>m</var><var>n</var></samp>’<dd>Equivalent to ‘<samp><span class="samp">vec_load_lanes</span><var>m</var><var>n</var></samp>’, with the memory
and register operands reversed. That is, the instruction is
equivalent to:
<pre class="smallexample"> int c = GET_MODE_SIZE (<var>m</var>) / GET_MODE_SIZE (<var>n</var>);
for (j = 0; j < GET_MODE_NUNITS (<var>n</var>); j++)
for (i = 0; i < c; i++)
operand0[j * c + i] = operand1[i][j];
</pre>
<p>for a memory operand 0 and register operand 1.
<p><a name="index-g_t_0040code_007bvec_005fset_0040var_007bm_007d_007d-instruction-pattern-3344"></a><br><dt>‘<samp><span class="samp">vec_set</span><var>m</var></samp>’<dd>Set given field in the vector value. Operand 0 is the vector to modify,
operand 1 is new value of field and operand 2 specify the field index.
<p><a name="index-g_t_0040code_007bvec_005fextract_0040var_007bm_007d_007d-instruction-pattern-3345"></a><br><dt>‘<samp><span class="samp">vec_extract</span><var>m</var></samp>’<dd>Extract given field from the vector value. Operand 1 is the vector, operand 2
specify field index and operand 0 place to store value into.
<p><a name="index-g_t_0040code_007bvec_005fextract_005feven_0040var_007bm_007d_007d-instruction-pattern-3346"></a><br><dt>‘<samp><span class="samp">vec_extract_even</span><var>m</var></samp>’<dd>Extract even elements from the input vectors (operand 1 and operand 2).
The even elements of operand 2 are concatenated to the even elements of operand
1 in their original order. The result is stored in operand 0.
The output and input vectors should have the same modes.
<p><a name="index-g_t_0040code_007bvec_005fextract_005fodd_0040var_007bm_007d_007d-instruction-pattern-3347"></a><br><dt>‘<samp><span class="samp">vec_extract_odd</span><var>m</var></samp>’<dd>Extract odd elements from the input vectors (operand 1 and operand 2).
The odd elements of operand 2 are concatenated to the odd elements of operand
1 in their original order. The result is stored in operand 0.
The output and input vectors should have the same modes.
<p><a name="index-g_t_0040code_007bvec_005finterleave_005fhigh_0040var_007bm_007d_007d-instruction-pattern-3348"></a><br><dt>‘<samp><span class="samp">vec_interleave_high</span><var>m</var></samp>’<dd>Merge high elements of the two input vectors into the output vector. The output
and input vectors should have the same modes (<code>N</code> elements). The high
<code>N/2</code> elements of the first input vector are interleaved with the high
<code>N/2</code> elements of the second input vector.
<p><a name="index-g_t_0040code_007bvec_005finterleave_005flow_0040var_007bm_007d_007d-instruction-pattern-3349"></a><br><dt>‘<samp><span class="samp">vec_interleave_low</span><var>m</var></samp>’<dd>Merge low elements of the two input vectors into the output vector. The output
and input vectors should have the same modes (<code>N</code> elements). The low
<code>N/2</code> elements of the first input vector are interleaved with the low
<code>N/2</code> elements of the second input vector.
<p><a name="index-g_t_0040code_007bvec_005finit_0040var_007bm_007d_007d-instruction-pattern-3350"></a><br><dt>‘<samp><span class="samp">vec_init</span><var>m</var></samp>’<dd>Initialize the vector to given values. Operand 0 is the vector to initialize
and operand 1 is parallel containing values for individual fields.
<p><a name="index-g_t_0040code_007bpush_0040var_007bm_007d1_007d-instruction-pattern-3351"></a><br><dt>‘<samp><span class="samp">push</span><var>m</var><span class="samp">1</span></samp>’<dd>Output a push instruction. Operand 0 is value to push. Used only when
<code>PUSH_ROUNDING</code> is defined. For historical reason, this pattern may be
missing and in such case an <code>mov</code> expander is used instead, with a
<code>MEM</code> expression forming the push operation. The <code>mov</code> expander
method is deprecated.
<p><a name="index-g_t_0040code_007badd_0040var_007bm_007d3_007d-instruction-pattern-3352"></a><br><dt>‘<samp><span class="samp">add</span><var>m</var><span class="samp">3</span></samp>’<dd>Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode <var>m</var>. This can be used even on two-address machines, by
means of constraints requiring operands 1 and 0 to be the same location.
<p><a name="index-g_t_0040code_007bssadd_0040var_007bm_007d3_007d-instruction-pattern-3353"></a><a name="index-g_t_0040code_007busadd_0040var_007bm_007d3_007d-instruction-pattern-3354"></a><a name="index-g_t_0040code_007bsub_0040var_007bm_007d3_007d-instruction-pattern-3355"></a><a name="index-g_t_0040code_007bsssub_0040var_007bm_007d3_007d-instruction-pattern-3356"></a><a name="index-g_t_0040code_007bussub_0040var_007bm_007d3_007d-instruction-pattern-3357"></a><a name="index-g_t_0040code_007bmul_0040var_007bm_007d3_007d-instruction-pattern-3358"></a><a name="index-g_t_0040code_007bssmul_0040var_007bm_007d3_007d-instruction-pattern-3359"></a><a name="index-g_t_0040code_007busmul_0040var_007bm_007d3_007d-instruction-pattern-3360"></a><a name="index-g_t_0040code_007bdiv_0040var_007bm_007d3_007d-instruction-pattern-3361"></a><a name="index-g_t_0040code_007bssdiv_0040var_007bm_007d3_007d-instruction-pattern-3362"></a><a name="index-g_t_0040code_007budiv_0040var_007bm_007d3_007d-instruction-pattern-3363"></a><a name="index-g_t_0040code_007busdiv_0040var_007bm_007d3_007d-instruction-pattern-3364"></a><a name="index-g_t_0040code_007bmod_0040var_007bm_007d3_007d-instruction-pattern-3365"></a><a name="index-g_t_0040code_007bumod_0040var_007bm_007d3_007d-instruction-pattern-3366"></a><a name="index-g_t_0040code_007bumin_0040var_007bm_007d3_007d-instruction-pattern-3367"></a><a name="index-g_t_0040code_007bumax_0040var_007bm_007d3_007d-instruction-pattern-3368"></a><a name="index-g_t_0040code_007band_0040var_007bm_007d3_007d-instruction-pattern-3369"></a><a name="index-g_t_0040code_007bior_0040var_007bm_007d3_007d-instruction-pattern-3370"></a><a name="index-g_t_0040code_007bxor_0040var_007bm_007d3_007d-instruction-pattern-3371"></a><br><dt>‘<samp><span class="samp">ssadd</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">usadd</span><var>m</var><span class="samp">3</span></samp>’<br><dt>‘<samp><span class="samp">sub</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">sssub</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">ussub</span><var>m</var><span class="samp">3</span></samp>’<br><dt>‘<samp><span class="samp">mul</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">ssmul</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">usmul</span><var>m</var><span class="samp">3</span></samp>’<dt>‘<samp><span class="samp">div</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">ssdiv</span><var>m</var><span class="samp">3</span></samp>’<dt>‘<samp><span class="samp">udiv</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">usdiv</span><var>m</var><span class="samp">3</span></samp>’<dt>‘<samp><span class="samp">mod</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">umod</span><var>m</var><span class="samp">3</span></samp>’<dt>‘<samp><span class="samp">umin</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">umax</span><var>m</var><span class="samp">3</span></samp>’<dt>‘<samp><span class="samp">and</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">ior</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">xor</span><var>m</var><span class="samp">3</span></samp>’<dd>Similar, for other arithmetic operations.
<p><a name="index-g_t_0040code_007bfma_0040var_007bm_007d4_007d-instruction-pattern-3372"></a><br><dt>‘<samp><span class="samp">fma</span><var>m</var><span class="samp">4</span></samp>’<dd>Multiply operand 2 and operand 1, then add operand 3, storing the
result in operand 0. All operands must have mode <var>m</var>. This
pattern is used to implement the <code>fma</code>, <code>fmaf</code>, and
<code>fmal</code> builtin functions from the ISO C99 standard. The
<code>fma</code> operation may produce different results than doing the
multiply followed by the add if the machine does not perform a
rounding step between the operations.
<p><a name="index-g_t_0040code_007bfms_0040var_007bm_007d4_007d-instruction-pattern-3373"></a><br><dt>‘<samp><span class="samp">fms</span><var>m</var><span class="samp">4</span></samp>’<dd>Like <code>fma</code><var>m</var><code>4</code>, except operand 3 subtracted from the
product instead of added to the product. This is represented
in the rtl as
<pre class="smallexample"> (fma:<var>m</var> <var>op1</var> <var>op2</var> (neg:<var>m</var> <var>op3</var>))
</pre>
<p><a name="index-g_t_0040code_007bfnma_0040var_007bm_007d4_007d-instruction-pattern-3374"></a><br><dt>‘<samp><span class="samp">fnma</span><var>m</var><span class="samp">4</span></samp>’<dd>Like <code>fma</code><var>m</var><code>4</code> except that the intermediate product
is negated before being added to operand 3. This is represented
in the rtl as
<pre class="smallexample"> (fma:<var>m</var> (neg:<var>m</var> <var>op1</var>) <var>op2</var> <var>op3</var>)
</pre>
<p><a name="index-g_t_0040code_007bfnms_0040var_007bm_007d4_007d-instruction-pattern-3375"></a><br><dt>‘<samp><span class="samp">fnms</span><var>m</var><span class="samp">4</span></samp>’<dd>Like <code>fms</code><var>m</var><code>4</code> except that the intermediate product
is negated before subtracting operand 3. This is represented
in the rtl as
<pre class="smallexample"> (fma:<var>m</var> (neg:<var>m</var> <var>op1</var>) <var>op2</var> (neg:<var>m</var> <var>op3</var>))
</pre>
<p><a name="index-g_t_0040code_007bmin_0040var_007bm_007d3_007d-instruction-pattern-3376"></a><a name="index-g_t_0040code_007bmax_0040var_007bm_007d3_007d-instruction-pattern-3377"></a><br><dt>‘<samp><span class="samp">smin</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">smax</span><var>m</var><span class="samp">3</span></samp>’<dd>Signed minimum and maximum operations. When used with floating point,
if both operands are zeros, or if either operand is <code>NaN</code>, then
it is unspecified which of the two operands is returned as the result.
<p><a name="index-g_t_0040code_007breduc_005fsmin_005f_0040var_007bm_007d_007d-instruction-pattern-3378"></a><a name="index-g_t_0040code_007breduc_005fsmax_005f_0040var_007bm_007d_007d-instruction-pattern-3379"></a><br><dt>‘<samp><span class="samp">reduc_smin_</span><var>m</var></samp>’, ‘<samp><span class="samp">reduc_smax_</span><var>m</var></samp>’<dd>Find the signed minimum/maximum of the elements of a vector. The vector is
operand 1, and the scalar result is stored in the least significant bits of
operand 0 (also a vector). The output and input vector should have the same
modes.
<p><a name="index-g_t_0040code_007breduc_005fumin_005f_0040var_007bm_007d_007d-instruction-pattern-3380"></a><a name="index-g_t_0040code_007breduc_005fumax_005f_0040var_007bm_007d_007d-instruction-pattern-3381"></a><br><dt>‘<samp><span class="samp">reduc_umin_</span><var>m</var></samp>’, ‘<samp><span class="samp">reduc_umax_</span><var>m</var></samp>’<dd>Find the unsigned minimum/maximum of the elements of a vector. The vector is
operand 1, and the scalar result is stored in the least significant bits of
operand 0 (also a vector). The output and input vector should have the same
modes.
<p><a name="index-g_t_0040code_007breduc_005fsplus_005f_0040var_007bm_007d_007d-instruction-pattern-3382"></a><br><dt>‘<samp><span class="samp">reduc_splus_</span><var>m</var></samp>’<dd>Compute the sum of the signed elements of a vector. The vector is operand 1,
and the scalar result is stored in the least significant bits of operand 0
(also a vector). The output and input vector should have the same modes.
<p><a name="index-g_t_0040code_007breduc_005fuplus_005f_0040var_007bm_007d_007d-instruction-pattern-3383"></a><br><dt>‘<samp><span class="samp">reduc_uplus_</span><var>m</var></samp>’<dd>Compute the sum of the unsigned elements of a vector. The vector is operand 1,
and the scalar result is stored in the least significant bits of operand 0
(also a vector). The output and input vector should have the same modes.
<p><a name="index-g_t_0040code_007bsdot_005fprod_0040var_007bm_007d_007d-instruction-pattern-3384"></a><br><dt>‘<samp><span class="samp">sdot_prod</span><var>m</var></samp>’<dd><a name="index-g_t_0040code_007budot_005fprod_0040var_007bm_007d_007d-instruction-pattern-3385"></a><br><dt>‘<samp><span class="samp">udot_prod</span><var>m</var></samp>’<dd>Compute the sum of the products of two signed/unsigned elements.
Operand 1 and operand 2 are of the same mode. Their product, which is of a
wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or
wider than the mode of the product. The result is placed in operand 0, which
is of the same mode as operand 3.
<p><a name="index-g_t_0040code_007bssum_005fwiden_0040var_007bm3_007d_007d-instruction-pattern-3386"></a><br><dt>‘<samp><span class="samp">ssum_widen</span><var>m3</var></samp>’<dd><a name="index-g_t_0040code_007busum_005fwiden_0040var_007bm3_007d_007d-instruction-pattern-3387"></a><br><dt>‘<samp><span class="samp">usum_widen</span><var>m3</var></samp>’<dd>Operands 0 and 2 are of the same mode, which is wider than the mode of
operand 1. Add operand 1 to operand 2 and place the widened result in
operand 0. (This is used express accumulation of elements into an accumulator
of a wider mode.)
<p><a name="index-g_t_0040code_007bvec_005fshl_005f_0040var_007bm_007d_007d-instruction-pattern-3388"></a><a name="index-g_t_0040code_007bvec_005fshr_005f_0040var_007bm_007d_007d-instruction-pattern-3389"></a><br><dt>‘<samp><span class="samp">vec_shl_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_shr_</span><var>m</var></samp>’<dd>Whole vector left/right shift in bits.
Operand 1 is a vector to be shifted.
Operand 2 is an integer shift amount in bits.
Operand 0 is where the resulting shifted vector is stored.
The output and input vectors should have the same modes.
<p><a name="index-g_t_0040code_007bvec_005fpack_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3390"></a><br><dt>‘<samp><span class="samp">vec_pack_trunc_</span><var>m</var></samp>’<dd>Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
are vectors of the same mode having N integral or floating point elements
of size S. Operand 0 is the resulting vector in which 2*N elements of
size N/2 are concatenated after narrowing them down using truncation.
<p><a name="index-g_t_0040code_007bvec_005fpack_005fssat_005f_0040var_007bm_007d_007d-instruction-pattern-3391"></a><a name="index-g_t_0040code_007bvec_005fpack_005fusat_005f_0040var_007bm_007d_007d-instruction-pattern-3392"></a><br><dt>‘<samp><span class="samp">vec_pack_ssat_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_pack_usat_</span><var>m</var></samp>’<dd>Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
are vectors of the same mode having N integral elements of size S.
Operand 0 is the resulting vector in which the elements of the two input
vectors are concatenated after narrowing them down using signed/unsigned
saturating arithmetic.
<p><a name="index-g_t_0040code_007bvec_005fpack_005fsfix_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3393"></a><a name="index-g_t_0040code_007bvec_005fpack_005fufix_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3394"></a><br><dt>‘<samp><span class="samp">vec_pack_sfix_trunc_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_pack_ufix_trunc_</span><var>m</var></samp>’<dd>Narrow, convert to signed/unsigned integral type and merge the elements
of two vectors. Operands 1 and 2 are vectors of the same mode having N
floating point elements of size S. Operand 0 is the resulting vector
in which 2*N elements of size N/2 are concatenated.
<p><a name="index-g_t_0040code_007bvec_005funpacks_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3395"></a><a name="index-g_t_0040code_007bvec_005funpacks_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3396"></a><br><dt>‘<samp><span class="samp">vec_unpacks_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_unpacks_lo_</span><var>m</var></samp>’<dd>Extract and widen (promote) the high/low part of a vector of signed
integral or floating point elements. The input vector (operand 1) has N
elements of size S. Widen (promote) the high/low elements of the vector
using signed or floating point extension and place the resulting N/2
values of size 2*S in the output vector (operand 0).
<p><a name="index-g_t_0040code_007bvec_005funpacku_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3397"></a><a name="index-g_t_0040code_007bvec_005funpacku_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3398"></a><br><dt>‘<samp><span class="samp">vec_unpacku_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_unpacku_lo_</span><var>m</var></samp>’<dd>Extract and widen (promote) the high/low part of a vector of unsigned
integral elements. The input vector (operand 1) has N elements of size S.
Widen (promote) the high/low elements of the vector using zero extension and
place the resulting N/2 values of size 2*S in the output vector (operand 0).
<p><a name="index-g_t_0040code_007bvec_005funpacks_005ffloat_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3399"></a><a name="index-g_t_0040code_007bvec_005funpacks_005ffloat_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3400"></a><a name="index-g_t_0040code_007bvec_005funpacku_005ffloat_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3401"></a><a name="index-g_t_0040code_007bvec_005funpacku_005ffloat_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3402"></a><br><dt>‘<samp><span class="samp">vec_unpacks_float_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_unpacks_float_lo_</span><var>m</var></samp>’<dt>‘<samp><span class="samp">vec_unpacku_float_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_unpacku_float_lo_</span><var>m</var></samp>’<dd>Extract, convert to floating point type and widen the high/low part of a
vector of signed/unsigned integral elements. The input vector (operand 1)
has N elements of size S. Convert the high/low elements of the vector using
floating point conversion and place the resulting N/2 values of size 2*S in
the output vector (operand 0).
<p><a name="index-g_t_0040code_007bvec_005fwiden_005fumult_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3403"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fumult_005flo_005f_005f_0040var_007bm_007d_007d-instruction-pattern-3404"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fsmult_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3405"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fsmult_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3406"></a><br><dt>‘<samp><span class="samp">vec_widen_umult_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_widen_umult_lo_</span><var>m</var></samp>’<dt>‘<samp><span class="samp">vec_widen_smult_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_widen_smult_lo_</span><var>m</var></samp>’<dd>Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2)
are vectors with N signed/unsigned elements of size S. Multiply the high/low
elements of the two vectors, and put the N/2 products of size 2*S in the
output vector (operand 0).
<p><a name="index-g_t_0040code_007bvec_005fwiden_005fushiftl_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3407"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fushiftl_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3408"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fsshiftl_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3409"></a><a name="index-g_t_0040code_007bvec_005fwiden_005fsshiftl_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3410"></a><br><dt>‘<samp><span class="samp">vec_widen_ushiftl_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_widen_ushiftl_lo_</span><var>m</var></samp>’<dt>‘<samp><span class="samp">vec_widen_sshiftl_hi_</span><var>m</var></samp>’, ‘<samp><span class="samp">vec_widen_sshiftl_lo_</span><var>m</var></samp>’<dd>Signed/Unsigned widening shift left. The first input (operand 1) is a vector
with N signed/unsigned elements of size S. Operand 2 is a constant. Shift
the high/low elements of operand 1, and put the N/2 results of size 2*S in the
output vector (operand 0).
<p><a name="index-g_t_0040code_007bmulhisi3_007d-instruction-pattern-3411"></a><br><dt>‘<samp><span class="samp">mulhisi3</span></samp>’<dd>Multiply operands 1 and 2, which have mode <code>HImode</code>, and store
a <code>SImode</code> product in operand 0.
<p><a name="index-g_t_0040code_007bmulqihi3_007d-instruction-pattern-3412"></a><a name="index-g_t_0040code_007bmulsidi3_007d-instruction-pattern-3413"></a><br><dt>‘<samp><span class="samp">mulqihi3</span></samp>’, ‘<samp><span class="samp">mulsidi3</span></samp>’<dd>Similar widening-multiplication instructions of other widths.
<p><a name="index-g_t_0040code_007bumulqihi3_007d-instruction-pattern-3414"></a><a name="index-g_t_0040code_007bumulhisi3_007d-instruction-pattern-3415"></a><a name="index-g_t_0040code_007bumulsidi3_007d-instruction-pattern-3416"></a><br><dt>‘<samp><span class="samp">umulqihi3</span></samp>’, ‘<samp><span class="samp">umulhisi3</span></samp>’, ‘<samp><span class="samp">umulsidi3</span></samp>’<dd>Similar widening-multiplication instructions that do unsigned
multiplication.
<p><a name="index-g_t_0040code_007busmulqihi3_007d-instruction-pattern-3417"></a><a name="index-g_t_0040code_007busmulhisi3_007d-instruction-pattern-3418"></a><a name="index-g_t_0040code_007busmulsidi3_007d-instruction-pattern-3419"></a><br><dt>‘<samp><span class="samp">usmulqihi3</span></samp>’, ‘<samp><span class="samp">usmulhisi3</span></samp>’, ‘<samp><span class="samp">usmulsidi3</span></samp>’<dd>Similar widening-multiplication instructions that interpret the first
operand as unsigned and the second operand as signed, then do a signed
multiplication.
<p><a name="index-g_t_0040code_007bsmul_0040var_007bm_007d3_005fhighpart_007d-instruction-pattern-3420"></a><br><dt>‘<samp><span class="samp">smul</span><var>m</var><span class="samp">3_highpart</span></samp>’<dd>Perform a signed multiplication of operands 1 and 2, which have mode
<var>m</var>, and store the most significant half of the product in operand 0.
The least significant half of the product is discarded.
<p><a name="index-g_t_0040code_007bumul_0040var_007bm_007d3_005fhighpart_007d-instruction-pattern-3421"></a><br><dt>‘<samp><span class="samp">umul</span><var>m</var><span class="samp">3_highpart</span></samp>’<dd>Similar, but the multiplication is unsigned.
<p><a name="index-g_t_0040code_007bmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3422"></a><br><dt>‘<samp><span class="samp">madd</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Multiply operands 1 and 2, sign-extend them to mode <var>n</var>, add
operand 3, and store the result in operand 0. Operands 1 and 2
have mode <var>m</var> and operands 0 and 3 have mode <var>n</var>.
Both modes must be integer or fixed-point modes and <var>n</var> must be twice
the size of <var>m</var>.
<p>In other words, <code>madd</code><var>m</var><var>n</var><code>4</code> is like
<code>mul</code><var>m</var><var>n</var><code>3</code> except that it also adds operand 3.
<p>These instructions are not allowed to <code>FAIL</code>.
<p><a name="index-g_t_0040code_007bumadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3423"></a><br><dt>‘<samp><span class="samp">umadd</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>madd</code><var>m</var><var>n</var><code>4</code>, but zero-extend the multiplication
operands instead of sign-extending them.
<p><a name="index-g_t_0040code_007bssmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3424"></a><br><dt>‘<samp><span class="samp">ssmadd</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>madd</code><var>m</var><var>n</var><code>4</code>, but all involved operations must be
signed-saturating.
<p><a name="index-g_t_0040code_007busmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3425"></a><br><dt>‘<samp><span class="samp">usmadd</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>umadd</code><var>m</var><var>n</var><code>4</code>, but all involved operations must be
unsigned-saturating.
<p><a name="index-g_t_0040code_007bmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3426"></a><br><dt>‘<samp><span class="samp">msub</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Multiply operands 1 and 2, sign-extend them to mode <var>n</var>, subtract the
result from operand 3, and store the result in operand 0. Operands 1 and 2
have mode <var>m</var> and operands 0 and 3 have mode <var>n</var>.
Both modes must be integer or fixed-point modes and <var>n</var> must be twice
the size of <var>m</var>.
<p>In other words, <code>msub</code><var>m</var><var>n</var><code>4</code> is like
<code>mul</code><var>m</var><var>n</var><code>3</code> except that it also subtracts the result
from operand 3.
<p>These instructions are not allowed to <code>FAIL</code>.
<p><a name="index-g_t_0040code_007bumsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3427"></a><br><dt>‘<samp><span class="samp">umsub</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>msub</code><var>m</var><var>n</var><code>4</code>, but zero-extend the multiplication
operands instead of sign-extending them.
<p><a name="index-g_t_0040code_007bssmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3428"></a><br><dt>‘<samp><span class="samp">ssmsub</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>msub</code><var>m</var><var>n</var><code>4</code>, but all involved operations must be
signed-saturating.
<p><a name="index-g_t_0040code_007busmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3429"></a><br><dt>‘<samp><span class="samp">usmsub</span><var>m</var><var>n</var><span class="samp">4</span></samp>’<dd>Like <code>umsub</code><var>m</var><var>n</var><code>4</code>, but all involved operations must be
unsigned-saturating.
<p><a name="index-g_t_0040code_007bdivmod_0040var_007bm_007d4_007d-instruction-pattern-3430"></a><br><dt>‘<samp><span class="samp">divmod</span><var>m</var><span class="samp">4</span></samp>’<dd>Signed division that produces both a quotient and a remainder.
Operand 1 is divided by operand 2 to produce a quotient stored
in operand 0 and a remainder stored in operand 3.
<p>For machines with an instruction that produces both a quotient and a
remainder, provide a pattern for ‘<samp><span class="samp">divmod</span><var>m</var><span class="samp">4</span></samp>’ but do not
provide patterns for ‘<samp><span class="samp">div</span><var>m</var><span class="samp">3</span></samp>’ and ‘<samp><span class="samp">mod</span><var>m</var><span class="samp">3</span></samp>’. This
allows optimization in the relatively common case when both the quotient
and remainder are computed.
<p>If an instruction that just produces a quotient or just a remainder
exists and is more efficient than the instruction that produces both,
write the output routine of ‘<samp><span class="samp">divmod</span><var>m</var><span class="samp">4</span></samp>’ to call
<code>find_reg_note</code> and look for a <code>REG_UNUSED</code> note on the
quotient or remainder and generate the appropriate instruction.
<p><a name="index-g_t_0040code_007budivmod_0040var_007bm_007d4_007d-instruction-pattern-3431"></a><br><dt>‘<samp><span class="samp">udivmod</span><var>m</var><span class="samp">4</span></samp>’<dd>Similar, but does unsigned division.
<p><a name="shift-patterns"></a><a name="index-g_t_0040code_007bashl_0040var_007bm_007d3_007d-instruction-pattern-3432"></a><a name="index-g_t_0040code_007bssashl_0040var_007bm_007d3_007d-instruction-pattern-3433"></a><a name="index-g_t_0040code_007busashl_0040var_007bm_007d3_007d-instruction-pattern-3434"></a><br><dt>‘<samp><span class="samp">ashl</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">ssashl</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">usashl</span><var>m</var><span class="samp">3</span></samp>’<dd>Arithmetic-shift operand 1 left by a number of bits specified by operand
2, and store the result in operand 0. Here <var>m</var> is the mode of
operand 0 and operand 1; operand 2's mode is specified by the
instruction pattern, and the compiler will convert the operand to that
mode before generating the instruction. The meaning of out-of-range shift
counts can optionally be specified by <code>TARGET_SHIFT_TRUNCATION_MASK</code>.
See <a href="#TARGET_005fSHIFT_005fTRUNCATION_005fMASK">TARGET_SHIFT_TRUNCATION_MASK</a>. Operand 2 is always a scalar type.
<p><a name="index-g_t_0040code_007bashr_0040var_007bm_007d3_007d-instruction-pattern-3435"></a><a name="index-g_t_0040code_007blshr_0040var_007bm_007d3_007d-instruction-pattern-3436"></a><a name="index-g_t_0040code_007brotl_0040var_007bm_007d3_007d-instruction-pattern-3437"></a><a name="index-g_t_0040code_007brotr_0040var_007bm_007d3_007d-instruction-pattern-3438"></a><br><dt>‘<samp><span class="samp">ashr</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">lshr</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">rotl</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">rotr</span><var>m</var><span class="samp">3</span></samp>’<dd>Other shift and rotate instructions, analogous to the
<code>ashl</code><var>m</var><code>3</code> instructions. Operand 2 is always a scalar type.
<p><a name="index-g_t_0040code_007bvashl_0040var_007bm_007d3_007d-instruction-pattern-3439"></a><a name="index-g_t_0040code_007bvashr_0040var_007bm_007d3_007d-instruction-pattern-3440"></a><a name="index-g_t_0040code_007bvlshr_0040var_007bm_007d3_007d-instruction-pattern-3441"></a><a name="index-g_t_0040code_007bvrotl_0040var_007bm_007d3_007d-instruction-pattern-3442"></a><a name="index-g_t_0040code_007bvrotr_0040var_007bm_007d3_007d-instruction-pattern-3443"></a><br><dt>‘<samp><span class="samp">vashl</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">vashr</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">vlshr</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">vrotl</span><var>m</var><span class="samp">3</span></samp>’, ‘<samp><span class="samp">vrotr</span><var>m</var><span class="samp">3</span></samp>’<dd>Vector shift and rotate instructions that take vectors as operand 2
instead of a scalar type.
<p><a name="index-g_t_0040code_007bneg_0040var_007bm_007d2_007d-instruction-pattern-3444"></a><a name="index-g_t_0040code_007bssneg_0040var_007bm_007d2_007d-instruction-pattern-3445"></a><a name="index-g_t_0040code_007busneg_0040var_007bm_007d2_007d-instruction-pattern-3446"></a><br><dt>‘<samp><span class="samp">neg</span><var>m</var><span class="samp">2</span></samp>’, ‘<samp><span class="samp">ssneg</span><var>m</var><span class="samp">2</span></samp>’, ‘<samp><span class="samp">usneg</span><var>m</var><span class="samp">2</span></samp>’<dd>Negate operand 1 and store the result in operand 0.
<p><a name="index-g_t_0040code_007babs_0040var_007bm_007d2_007d-instruction-pattern-3447"></a><br><dt>‘<samp><span class="samp">abs</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the absolute value of operand 1 into operand 0.
<p><a name="index-g_t_0040code_007bsqrt_0040var_007bm_007d2_007d-instruction-pattern-3448"></a><br><dt>‘<samp><span class="samp">sqrt</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the square root of operand 1 into operand 0.
<p>The <code>sqrt</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>sqrtf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bfmod_0040var_007bm_007d3_007d-instruction-pattern-3449"></a><br><dt>‘<samp><span class="samp">fmod</span><var>m</var><span class="samp">3</span></samp>’<dd>Store the remainder of dividing operand 1 by operand 2 into
operand 0, rounded towards zero to an integer.
<p>The <code>fmod</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>fmodf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bremainder_0040var_007bm_007d3_007d-instruction-pattern-3450"></a><br><dt>‘<samp><span class="samp">remainder</span><var>m</var><span class="samp">3</span></samp>’<dd>Store the remainder of dividing operand 1 by operand 2 into
operand 0, rounded to the nearest integer.
<p>The <code>remainder</code> built-in function of C always uses the mode
which corresponds to the C data type <code>double</code> and the
<code>remainderf</code> built-in function uses the mode which corresponds
to the C data type <code>float</code>.
<p><a name="index-g_t_0040code_007bcos_0040var_007bm_007d2_007d-instruction-pattern-3451"></a><br><dt>‘<samp><span class="samp">cos</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the cosine of operand 1 into operand 0.
<p>The <code>cos</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>cosf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bsin_0040var_007bm_007d2_007d-instruction-pattern-3452"></a><br><dt>‘<samp><span class="samp">sin</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the sine of operand 1 into operand 0.
<p>The <code>sin</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>sinf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bexp_0040var_007bm_007d2_007d-instruction-pattern-3453"></a><br><dt>‘<samp><span class="samp">exp</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the exponential of operand 1 into operand 0.
<p>The <code>exp</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>expf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007blog_0040var_007bm_007d2_007d-instruction-pattern-3454"></a><br><dt>‘<samp><span class="samp">log</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the natural logarithm of operand 1 into operand 0.
<p>The <code>log</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>logf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bpow_0040var_007bm_007d3_007d-instruction-pattern-3455"></a><br><dt>‘<samp><span class="samp">pow</span><var>m</var><span class="samp">3</span></samp>’<dd>Store the value of operand 1 raised to the exponent operand 2
into operand 0.
<p>The <code>pow</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>powf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007batan2_0040var_007bm_007d3_007d-instruction-pattern-3456"></a><br><dt>‘<samp><span class="samp">atan2</span><var>m</var><span class="samp">3</span></samp>’<dd>Store the arc tangent (inverse tangent) of operand 1 divided by
operand 2 into operand 0, using the signs of both arguments to
determine the quadrant of the result.
<p>The <code>atan2</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>atan2f</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bfloor_0040var_007bm_007d2_007d-instruction-pattern-3457"></a><br><dt>‘<samp><span class="samp">floor</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the largest integral value not greater than argument.
<p>The <code>floor</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>floorf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bbtrunc_0040var_007bm_007d2_007d-instruction-pattern-3458"></a><br><dt>‘<samp><span class="samp">btrunc</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the argument rounded to integer towards zero.
<p>The <code>trunc</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>truncf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bround_0040var_007bm_007d2_007d-instruction-pattern-3459"></a><br><dt>‘<samp><span class="samp">round</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the argument rounded to integer away from zero.
<p>The <code>round</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>roundf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bceil_0040var_007bm_007d2_007d-instruction-pattern-3460"></a><br><dt>‘<samp><span class="samp">ceil</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the argument rounded to integer away from zero.
<p>The <code>ceil</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>ceilf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bnearbyint_0040var_007bm_007d2_007d-instruction-pattern-3461"></a><br><dt>‘<samp><span class="samp">nearbyint</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the argument rounded according to the default rounding mode
<p>The <code>nearbyint</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>nearbyintf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007brint_0040var_007bm_007d2_007d-instruction-pattern-3462"></a><br><dt>‘<samp><span class="samp">rint</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the argument rounded according to the default rounding mode and
raise the inexact exception when the result differs in value from
the argument
<p>The <code>rint</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>rintf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007blrint_0040var_007bm_007d_0040var_007bn_007d2_007d-3463"></a><br><dt>‘<samp><span class="samp">lrint</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as a signed number according to the current
rounding mode and store in operand 0 (which has mode <var>n</var>).
<p><a name="index-g_t_0040code_007blround_0040var_007bm_007d_0040var_007bn_007d2_007d-3464"></a><br><dt>‘<samp><span class="samp">lround</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as a signed number rounding to nearest and away
from zero and store in operand 0 (which has mode <var>n</var>).
<p><a name="index-g_t_0040code_007blfloor_0040var_007bm_007d_0040var_007bn_007d2_007d-3465"></a><br><dt>‘<samp><span class="samp">lfloor</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as a signed number rounding down and store in
operand 0 (which has mode <var>n</var>).
<p><a name="index-g_t_0040code_007blceil_0040var_007bm_007d_0040var_007bn_007d2_007d-3466"></a><br><dt>‘<samp><span class="samp">lceil</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as a signed number rounding up and store in
operand 0 (which has mode <var>n</var>).
<p><a name="index-g_t_0040code_007bcopysign_0040var_007bm_007d3_007d-instruction-pattern-3467"></a><br><dt>‘<samp><span class="samp">copysign</span><var>m</var><span class="samp">3</span></samp>’<dd>Store a value with the magnitude of operand 1 and the sign of operand
2 into operand 0.
<p>The <code>copysign</code> built-in function of C always uses the mode which
corresponds to the C data type <code>double</code> and the <code>copysignf</code>
built-in function uses the mode which corresponds to the C data
type <code>float</code>.
<p><a name="index-g_t_0040code_007bffs_0040var_007bm_007d2_007d-instruction-pattern-3468"></a><br><dt>‘<samp><span class="samp">ffs</span><var>m</var><span class="samp">2</span></samp>’<dd>Store into operand 0 one plus the index of the least significant 1-bit
of operand 1. If operand 1 is zero, store zero. <var>m</var> is the mode
of operand 0; operand 1's mode is specified by the instruction
pattern, and the compiler will convert the operand to that mode before
generating the instruction.
<p>The <code>ffs</code> built-in function of C always uses the mode which
corresponds to the C data type <code>int</code>.
<p><a name="index-g_t_0040code_007bclz_0040var_007bm_007d2_007d-instruction-pattern-3469"></a><br><dt>‘<samp><span class="samp">clz</span><var>m</var><span class="samp">2</span></samp>’<dd>Store into operand 0 the number of leading 0-bits in <var>x</var>, starting
at the most significant bit position. If <var>x</var> is 0, the
<code>CLZ_DEFINED_VALUE_AT_ZERO</code> (see <a href="#Misc">Misc</a>) macro defines if
the result is undefined or has a useful value.
<var>m</var> is the mode of operand 0; operand 1's mode is
specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.
<p><a name="index-g_t_0040code_007bctz_0040var_007bm_007d2_007d-instruction-pattern-3470"></a><br><dt>‘<samp><span class="samp">ctz</span><var>m</var><span class="samp">2</span></samp>’<dd>Store into operand 0 the number of trailing 0-bits in <var>x</var>, starting
at the least significant bit position. If <var>x</var> is 0, the
<code>CTZ_DEFINED_VALUE_AT_ZERO</code> (see <a href="#Misc">Misc</a>) macro defines if
the result is undefined or has a useful value.
<var>m</var> is the mode of operand 0; operand 1's mode is
specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.
<p><a name="index-g_t_0040code_007bpopcount_0040var_007bm_007d2_007d-instruction-pattern-3471"></a><br><dt>‘<samp><span class="samp">popcount</span><var>m</var><span class="samp">2</span></samp>’<dd>Store into operand 0 the number of 1-bits in <var>x</var>. <var>m</var> is the
mode of operand 0; operand 1's mode is specified by the instruction
pattern, and the compiler will convert the operand to that mode before
generating the instruction.
<p><a name="index-g_t_0040code_007bparity_0040var_007bm_007d2_007d-instruction-pattern-3472"></a><br><dt>‘<samp><span class="samp">parity</span><var>m</var><span class="samp">2</span></samp>’<dd>Store into operand 0 the parity of <var>x</var>, i.e. the number of 1-bits
in <var>x</var> modulo 2. <var>m</var> is the mode of operand 0; operand 1's mode
is specified by the instruction pattern, and the compiler will convert
the operand to that mode before generating the instruction.
<p><a name="index-g_t_0040code_007bone_005fcmpl_0040var_007bm_007d2_007d-instruction-pattern-3473"></a><br><dt>‘<samp><span class="samp">one_cmpl</span><var>m</var><span class="samp">2</span></samp>’<dd>Store the bitwise-complement of operand 1 into operand 0.
<p><a name="index-g_t_0040code_007bmovmem_0040var_007bm_007d_007d-instruction-pattern-3474"></a><br><dt>‘<samp><span class="samp">movmem</span><var>m</var></samp>’<dd>Block move instruction. The destination and source blocks of memory
are the first two operands, and both are <code>mem:BLK</code>s with an
address in mode <code>Pmode</code>.
<p>The number of bytes to move is the third operand, in mode <var>m</var>.
Usually, you specify <code>word_mode</code> for <var>m</var>. However, if you can
generate better code knowing the range of valid lengths is smaller than
those representable in a full word, you should provide a pattern with a
mode corresponding to the range of values you can handle efficiently
(e.g., <code>QImode</code> for values in the range 0–127; note we avoid numbers
that appear negative) and also a pattern with <code>word_mode</code>.
<p>The fourth operand is the known shared alignment of the source and
destination, in the form of a <code>const_int</code> rtx. Thus, if the
compiler knows that both source and destination are word-aligned,
it may provide the value 4 for this operand.
<p>Optional operands 5 and 6 specify expected alignment and size of block
respectively. The expected alignment differs from alignment in operand 4
in a way that the blocks are not required to be aligned according to it in
all cases. This expected alignment is also in bytes, just like operand 4.
Expected size, when unknown, is set to <code>(const_int -1)</code>.
<p>Descriptions of multiple <code>movmem</code><var>m</var> patterns can only be
beneficial if the patterns for smaller modes have fewer restrictions
on their first, second and fourth operands. Note that the mode <var>m</var>
in <code>movmem</code><var>m</var> does not impose any restriction on the mode of
individually moved data units in the block.
<p>These patterns need not give special consideration to the possibility
that the source and destination strings might overlap.
<p><a name="index-g_t_0040code_007bmovstr_007d-instruction-pattern-3475"></a><br><dt>‘<samp><span class="samp">movstr</span></samp>’<dd>String copy instruction, with <code>stpcpy</code> semantics. Operand 0 is
an output operand in mode <code>Pmode</code>. The addresses of the
destination and source strings are operands 1 and 2, and both are
<code>mem:BLK</code>s with addresses in mode <code>Pmode</code>. The execution of
the expansion of this pattern should store in operand 0 the address in
which the <code>NUL</code> terminator was stored in the destination string.
<p><a name="index-g_t_0040code_007bsetmem_0040var_007bm_007d_007d-instruction-pattern-3476"></a><br><dt>‘<samp><span class="samp">setmem</span><var>m</var></samp>’<dd>Block set instruction. The destination string is the first operand,
given as a <code>mem:BLK</code> whose address is in mode <code>Pmode</code>. The
number of bytes to set is the second operand, in mode <var>m</var>. The value to
initialize the memory with is the third operand. Targets that only support the
clearing of memory should reject any value that is not the constant 0. See
‘<samp><span class="samp">movmem</span><var>m</var></samp>’ for a discussion of the choice of mode.
<p>The fourth operand is the known alignment of the destination, in the form
of a <code>const_int</code> rtx. Thus, if the compiler knows that the
destination is word-aligned, it may provide the value 4 for this
operand.
<p>Optional operands 5 and 6 specify expected alignment and size of block
respectively. The expected alignment differs from alignment in operand 4
in a way that the blocks are not required to be aligned according to it in
all cases. This expected alignment is also in bytes, just like operand 4.
Expected size, when unknown, is set to <code>(const_int -1)</code>.
<p>The use for multiple <code>setmem</code><var>m</var> is as for <code>movmem</code><var>m</var>.
<p><a name="index-g_t_0040code_007bcmpstrn_0040var_007bm_007d_007d-instruction-pattern-3477"></a><br><dt>‘<samp><span class="samp">cmpstrn</span><var>m</var></samp>’<dd>String compare instruction, with five operands. Operand 0 is the output;
it has mode <var>m</var>. The remaining four operands are like the operands
of ‘<samp><span class="samp">movmem</span><var>m</var></samp>’. The two memory blocks specified are compared
byte by byte in lexicographic order starting at the beginning of each
string. The instruction is not allowed to prefetch more than one byte
at a time since either string may end in the first byte and reading past
that may access an invalid page or segment and cause a fault. The
comparison terminates early if the fetched bytes are different or if
they are equal to zero. The effect of the instruction is to store a
value in operand 0 whose sign indicates the result of the comparison.
<p><a name="index-g_t_0040code_007bcmpstr_0040var_007bm_007d_007d-instruction-pattern-3478"></a><br><dt>‘<samp><span class="samp">cmpstr</span><var>m</var></samp>’<dd>String compare instruction, without known maximum length. Operand 0 is the
output; it has mode <var>m</var>. The second and third operand are the blocks of
memory to be compared; both are <code>mem:BLK</code> with an address in mode
<code>Pmode</code>.
<p>The fourth operand is the known shared alignment of the source and
destination, in the form of a <code>const_int</code> rtx. Thus, if the
compiler knows that both source and destination are word-aligned,
it may provide the value 4 for this operand.
<p>The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed
to prefetch more than one byte at a time since either string may end in the
first byte and reading past that may access an invalid page or segment and
cause a fault. The comparison will terminate when the fetched bytes
are different or if they are equal to zero. The effect of the
instruction is to store a value in operand 0 whose sign indicates the
result of the comparison.
<p><a name="index-g_t_0040code_007bcmpmem_0040var_007bm_007d_007d-instruction-pattern-3479"></a><br><dt>‘<samp><span class="samp">cmpmem</span><var>m</var></samp>’<dd>Block compare instruction, with five operands like the operands
of ‘<samp><span class="samp">cmpstr</span><var>m</var></samp>’. The two memory blocks specified are compared
byte by byte in lexicographic order starting at the beginning of each
block. Unlike ‘<samp><span class="samp">cmpstr</span><var>m</var></samp>’ the instruction can prefetch
any bytes in the two memory blocks. Also unlike ‘<samp><span class="samp">cmpstr</span><var>m</var></samp>’
the comparison will not stop if both bytes are zero. The effect of
the instruction is to store a value in operand 0 whose sign indicates
the result of the comparison.
<p><a name="index-g_t_0040code_007bstrlen_0040var_007bm_007d_007d-instruction-pattern-3480"></a><br><dt>‘<samp><span class="samp">strlen</span><var>m</var></samp>’<dd>Compute the length of a string, with three operands.
Operand 0 is the result (of mode <var>m</var>), operand 1 is
a <code>mem</code> referring to the first character of the string,
operand 2 is the character to search for (normally zero),
and operand 3 is a constant describing the known alignment
of the beginning of the string.
<p><a name="index-g_t_0040code_007bfloat_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3481"></a><br><dt>‘<samp><span class="samp">float</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert signed integer operand 1 (valid for fixed point mode <var>m</var>) to
floating point mode <var>n</var> and store in operand 0 (which has mode
<var>n</var>).
<p><a name="index-g_t_0040code_007bfloatuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3482"></a><br><dt>‘<samp><span class="samp">floatuns</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert unsigned integer operand 1 (valid for fixed point mode <var>m</var>)
to floating point mode <var>n</var> and store in operand 0 (which has mode
<var>n</var>).
<p><a name="index-g_t_0040code_007bfix_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3483"></a><br><dt>‘<samp><span class="samp">fix</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as a signed number and store in operand 0 (which
has mode <var>n</var>). This instruction's result is defined only when
the value of operand 1 is an integer.
<p>If the machine description defines this pattern, it also needs to
define the <code>ftrunc</code> pattern.
<p><a name="index-g_t_0040code_007bfixuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3484"></a><br><dt>‘<samp><span class="samp">fixuns</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to fixed
point mode <var>n</var> as an unsigned number and store in operand 0 (which
has mode <var>n</var>). This instruction's result is defined only when the
value of operand 1 is an integer.
<p><a name="index-g_t_0040code_007bftrunc_0040var_007bm_007d2_007d-instruction-pattern-3485"></a><br><dt>‘<samp><span class="samp">ftrunc</span><var>m</var><span class="samp">2</span></samp>’<dd>Convert operand 1 (valid for floating point mode <var>m</var>) to an
integer value, still represented in floating point mode <var>m</var>, and
store it in operand 0 (valid for floating point mode <var>m</var>).
<p><a name="index-g_t_0040code_007bfix_005ftrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3486"></a><br><dt>‘<samp><span class="samp">fix_trunc</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Like ‘<samp><span class="samp">fix</span><var>m</var><var>n</var><span class="samp">2</span></samp>’ but works for any floating point value
of mode <var>m</var> by converting the value to an integer.
<p><a name="index-g_t_0040code_007bfixuns_005ftrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3487"></a><br><dt>‘<samp><span class="samp">fixuns_trunc</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Like ‘<samp><span class="samp">fixuns</span><var>m</var><var>n</var><span class="samp">2</span></samp>’ but works for any floating point
value of mode <var>m</var> by converting the value to an integer.
<p><a name="index-g_t_0040code_007btrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3488"></a><br><dt>‘<samp><span class="samp">trunc</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Truncate operand 1 (valid for mode <var>m</var>) to mode <var>n</var> and
store in operand 0 (which has mode <var>n</var>). Both modes must be fixed
point or both floating point.
<p><a name="index-g_t_0040code_007bextend_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3489"></a><br><dt>‘<samp><span class="samp">extend</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Sign-extend operand 1 (valid for mode <var>m</var>) to mode <var>n</var> and
store in operand 0 (which has mode <var>n</var>). Both modes must be fixed
point or both floating point.
<p><a name="index-g_t_0040code_007bzero_005fextend_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3490"></a><br><dt>‘<samp><span class="samp">zero_extend</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Zero-extend operand 1 (valid for mode <var>m</var>) to mode <var>n</var> and
store in operand 0 (which has mode <var>n</var>). Both modes must be fixed
point.
<p><a name="index-g_t_0040code_007bfract_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3491"></a><br><dt>‘<samp><span class="samp">fract</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 of mode <var>m</var> to mode <var>n</var> and store in
operand 0 (which has mode <var>n</var>). Mode <var>m</var> and mode <var>n</var>
could be fixed-point to fixed-point, signed integer to fixed-point,
fixed-point to signed integer, floating-point to fixed-point,
or fixed-point to floating-point.
When overflows or underflows happen, the results are undefined.
<p><a name="index-g_t_0040code_007bsatfract_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3492"></a><br><dt>‘<samp><span class="samp">satfract</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 of mode <var>m</var> to mode <var>n</var> and store in
operand 0 (which has mode <var>n</var>). Mode <var>m</var> and mode <var>n</var>
could be fixed-point to fixed-point, signed integer to fixed-point,
or floating-point to fixed-point.
When overflows or underflows happen, the instruction saturates the
results to the maximum or the minimum.
<p><a name="index-g_t_0040code_007bfractuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3493"></a><br><dt>‘<samp><span class="samp">fractuns</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert operand 1 of mode <var>m</var> to mode <var>n</var> and store in
operand 0 (which has mode <var>n</var>). Mode <var>m</var> and mode <var>n</var>
could be unsigned integer to fixed-point, or
fixed-point to unsigned integer.
When overflows or underflows happen, the results are undefined.
<p><a name="index-g_t_0040code_007bsatfractuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3494"></a><br><dt>‘<samp><span class="samp">satfractuns</span><var>m</var><var>n</var><span class="samp">2</span></samp>’<dd>Convert unsigned integer operand 1 of mode <var>m</var> to fixed-point mode
<var>n</var> and store in operand 0 (which has mode <var>n</var>).
When overflows or underflows happen, the instruction saturates the
results to the maximum or the minimum.
<p><a name="index-g_t_0040code_007bextv_007d-instruction-pattern-3495"></a><br><dt>‘<samp><span class="samp">extv</span></samp>’<dd>Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit,
and store it in operand 0. Operand 0 must have mode <code>word_mode</code>.
Operand 1 may have mode <code>byte_mode</code> or <code>word_mode</code>; often
<code>word_mode</code> is allowed only for registers. Operands 2 and 3 must
be valid for <code>word_mode</code>.
<p>The RTL generation pass generates this instruction only with constants
for operands 2 and 3 and the constant is never zero for operand 2.
<p>The bit-field value is sign-extended to a full word integer
before it is stored in operand 0.
<p><a name="index-g_t_0040code_007bextzv_007d-instruction-pattern-3496"></a><br><dt>‘<samp><span class="samp">extzv</span></samp>’<dd>Like ‘<samp><span class="samp">extv</span></samp>’ except that the bit-field value is zero-extended.
<p><a name="index-g_t_0040code_007binsv_007d-instruction-pattern-3497"></a><br><dt>‘<samp><span class="samp">insv</span></samp>’<dd>Store operand 3 (which must be valid for <code>word_mode</code>) into a
bit-field in operand 0, where operand 1 specifies the width in bits and
operand 2 the starting bit. Operand 0 may have mode <code>byte_mode</code> or
<code>word_mode</code>; often <code>word_mode</code> is allowed only for registers.
Operands 1 and 2 must be valid for <code>word_mode</code>.
<p>The RTL generation pass generates this instruction only with constants
for operands 1 and 2 and the constant is never zero for operand 1.
<p><a name="index-g_t_0040code_007bmov_0040var_007bmode_007dcc_007d-instruction-pattern-3498"></a><br><dt>‘<samp><span class="samp">mov</span><var>mode</var><span class="samp">cc</span></samp>’<dd>Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved
into operand 0, otherwise operand 3 is moved.
<p>The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition
codes and vice versa.
<p>If the machine does not have conditional move instructions, do not
define these patterns.
<p><a name="index-g_t_0040code_007badd_0040var_007bmode_007dcc_007d-instruction-pattern-3499"></a><br><dt>‘<samp><span class="samp">add</span><var>mode</var><span class="samp">cc</span></samp>’<dd>Similar to ‘<samp><span class="samp">mov</span><var>mode</var><span class="samp">cc</span></samp>’ but for conditional addition. Conditionally
move operand 2 or (operands 2 + operand 3) into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise (operand 2 + operand 3) is moved.
<p><a name="index-g_t_0040code_007bcstore_0040var_007bmode_007d4_007d-instruction-pattern-3500"></a><br><dt>‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’<dd>Store zero or nonzero in operand 0 according to whether a comparison
is true. Operand 1 is a comparison operator. Operand 2 and operand 3
are the first and second operand of the comparison, respectively.
You specify the mode that operand 0 must have when you write the
<code>match_operand</code> expression. The compiler automatically sees which
mode you have used and supplies an operand of that mode.
<p>The value stored for a true condition must have 1 as its low bit, or
else must be negative. Otherwise the instruction is not suitable and
you should omit it from the machine description. You describe to the
compiler exactly which value is stored by defining the macro
<code>STORE_FLAG_VALUE</code> (see <a href="#Misc">Misc</a>). If a description cannot be
found that can be used for all the possible comparison operators, you
should pick one and use a <code>define_expand</code> to map all results
onto the one you chose.
<p>These operations may <code>FAIL</code>, but should do so only in relatively
uncommon cases; if they would <code>FAIL</code> for common cases involving
integer comparisons, it is best to restrict the predicates to not
allow these operands. Likewise if a given comparison operator will
always fail, independent of the operands (for floating-point modes, the
<code>ordered_comparison_operator</code> predicate is often useful in this case).
<p>If this pattern is omitted, the compiler will generate a conditional
branch—for example, it may copy a constant one to the target and branching
around an assignment of zero to the target—or a libcall. If the predicate
for operand 1 only rejects some operators, it will also try reordering the
operands and/or inverting the result value (e.g. by an exclusive OR).
These possibilities could be cheaper or equivalent to the instructions
used for the ‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’ pattern followed by those required
to convert a positive result from <code>STORE_FLAG_VALUE</code> to 1; in this
case, you can and should make operand 1's predicate reject some operators
in the ‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’ pattern, or remove the pattern altogether
from the machine description.
<p><a name="index-g_t_0040code_007bcbranch_0040var_007bmode_007d4_007d-instruction-pattern-3501"></a><br><dt>‘<samp><span class="samp">cbranch</span><var>mode</var><span class="samp">4</span></samp>’<dd>Conditional branch instruction combined with a compare instruction.
Operand 0 is a comparison operator. Operand 1 and operand 2 are the
first and second operands of the comparison, respectively. Operand 3
is a <code>label_ref</code> that refers to the label to jump to.
<p><a name="index-g_t_0040code_007bjump_007d-instruction-pattern-3502"></a><br><dt>‘<samp><span class="samp">jump</span></samp>’<dd>A jump inside a function; an unconditional branch. Operand 0 is the
<code>label_ref</code> of the label to jump to. This pattern name is mandatory
on all machines.
<p><a name="index-g_t_0040code_007bcall_007d-instruction-pattern-3503"></a><br><dt>‘<samp><span class="samp">call</span></samp>’<dd>Subroutine call instruction returning no value. Operand 0 is the
function to call; operand 1 is the number of bytes of arguments pushed
as a <code>const_int</code>; operand 2 is the number of registers used as
operands.
<p>On most machines, operand 2 is not actually stored into the RTL
pattern. It is supplied for the sake of some RISC machines which need
to put this information into the assembler code; they can put it in
the RTL instead of operand 1.
<p>Operand 0 should be a <code>mem</code> RTX whose address is the address of the
function. Note, however, that this address can be a <code>symbol_ref</code>
expression even if it would not be a legitimate memory address on the
target machine. If it is also not a valid argument for a call
instruction, the pattern for this operation should be a
<code>define_expand</code> (see <a href="#Expander-Definitions">Expander Definitions</a>) that places the
address into a register and uses that register in the call instruction.
<p><a name="index-g_t_0040code_007bcall_005fvalue_007d-instruction-pattern-3504"></a><br><dt>‘<samp><span class="samp">call_value</span></samp>’<dd>Subroutine call instruction returning a value. Operand 0 is the hard
register in which the value is returned. There are three more
operands, the same as the three operands of the ‘<samp><span class="samp">call</span></samp>’
instruction (but with numbers increased by one).
<p>Subroutines that return <code>BLKmode</code> objects use the ‘<samp><span class="samp">call</span></samp>’
insn.
<p><a name="index-g_t_0040code_007bcall_005fpop_007d-instruction-pattern-3505"></a><a name="index-g_t_0040code_007bcall_005fvalue_005fpop_007d-instruction-pattern-3506"></a><br><dt>‘<samp><span class="samp">call_pop</span></samp>’, ‘<samp><span class="samp">call_value_pop</span></samp>’<dd>Similar to ‘<samp><span class="samp">call</span></samp>’ and ‘<samp><span class="samp">call_value</span></samp>’, except used if defined and
if <code>RETURN_POPS_ARGS</code> is nonzero. They should emit a <code>parallel</code>
that contains both the function call and a <code>set</code> to indicate the
adjustment made to the frame pointer.
<p>For machines where <code>RETURN_POPS_ARGS</code> can be nonzero, the use of these
patterns increases the number of functions for which the frame pointer
can be eliminated, if desired.
<p><a name="index-g_t_0040code_007buntyped_005fcall_007d-instruction-pattern-3507"></a><br><dt>‘<samp><span class="samp">untyped_call</span></samp>’<dd>Subroutine call instruction returning a value of any type. Operand 0 is
the function to call; operand 1 is a memory location where the result of
calling the function is to be stored; operand 2 is a <code>parallel</code>
expression where each element is a <code>set</code> expression that indicates
the saving of a function return value into the result block.
<p>This instruction pattern should be defined to support
<code>__builtin_apply</code> on machines where special instructions are needed
to call a subroutine with arbitrary arguments or to save the value
returned. This instruction pattern is required on machines that have
multiple registers that can hold a return value
(i.e. <code>FUNCTION_VALUE_REGNO_P</code> is true for more than one register).
<p><a name="index-g_t_0040code_007breturn_007d-instruction-pattern-3508"></a><br><dt>‘<samp><span class="samp">return</span></samp>’<dd>Subroutine return instruction. This instruction pattern name should be
defined only if a single instruction can do all the work of returning
from a function.
<p>Like the ‘<samp><span class="samp">mov</span><var>m</var></samp>’ patterns, this pattern is also used after the
RTL generation phase. In this case it is to support machines where
multiple instructions are usually needed to return from a function, but
some class of functions only requires one instruction to implement a
return. Normally, the applicable functions are those which do not need
to save any registers or allocate stack space.
<p><a name="index-reload_005fcompleted-3509"></a><a name="index-leaf_005ffunction_005fp-3510"></a>For such machines, the condition specified in this pattern should only
be true when <code>reload_completed</code> is nonzero and the function's
epilogue would only be a single instruction. For machines with register
windows, the routine <code>leaf_function_p</code> may be used to determine if
a register window push is required.
<p>Machines that have conditional return instructions should define patterns
such as
<pre class="smallexample"> (define_insn ""
[(set (pc)
(if_then_else (match_operator
0 "comparison_operator"
[(cc0) (const_int 0)])
(return)
(pc)))]
"<var>condition</var>"
"...")
</pre>
<p>where <var>condition</var> would normally be the same condition specified on the
named ‘<samp><span class="samp">return</span></samp>’ pattern.
<p><a name="index-g_t_0040code_007buntyped_005freturn_007d-instruction-pattern-3511"></a><br><dt>‘<samp><span class="samp">untyped_return</span></samp>’<dd>Untyped subroutine return instruction. This instruction pattern should
be defined to support <code>__builtin_return</code> on machines where special
instructions are needed to return a value of any type.
<p>Operand 0 is a memory location where the result of calling a function
with <code>__builtin_apply</code> is stored; operand 1 is a <code>parallel</code>
expression where each element is a <code>set</code> expression that indicates
the restoring of a function return value from the result block.
<p><a name="index-g_t_0040code_007bnop_007d-instruction-pattern-3512"></a><br><dt>‘<samp><span class="samp">nop</span></samp>’<dd>No-op instruction. This instruction pattern name should always be defined
to output a no-op in assembler code. <code>(const_int 0)</code> will do as an
RTL pattern.
<p><a name="index-g_t_0040code_007bindirect_005fjump_007d-instruction-pattern-3513"></a><br><dt>‘<samp><span class="samp">indirect_jump</span></samp>’<dd>An instruction to jump to an address which is operand zero.
This pattern name is mandatory on all machines.
<p><a name="index-g_t_0040code_007bcasesi_007d-instruction-pattern-3514"></a><br><dt>‘<samp><span class="samp">casesi</span></samp>’<dd>Instruction to jump through a dispatch table, including bounds checking.
This instruction takes five operands:
<ol type=1 start=1>
<li>The index to dispatch on, which has mode <code>SImode</code>.
<li>The lower bound for indices in the table, an integer constant.
<li>The total range of indices in the table—the largest index
minus the smallest one (both inclusive).
<li>A label that precedes the table itself.
<li>A label to jump to if the index has a value outside the bounds.
</ol>
<p>The table is an <code>addr_vec</code> or <code>addr_diff_vec</code> inside of a
<code>jump_insn</code>. The number of elements in the table is one plus the
difference between the upper bound and the lower bound.
<p><a name="index-g_t_0040code_007btablejump_007d-instruction-pattern-3515"></a><br><dt>‘<samp><span class="samp">tablejump</span></samp>’<dd>Instruction to jump to a variable address. This is a low-level
capability which can be used to implement a dispatch table when there
is no ‘<samp><span class="samp">casesi</span></samp>’ pattern.
<p>This pattern requires two operands: the address or offset, and a label
which should immediately precede the jump table. If the macro
<code>CASE_VECTOR_PC_RELATIVE</code> evaluates to a nonzero value then the first
operand is an offset which counts from the address of the table; otherwise,
it is an absolute address to jump to. In either case, the first operand has
mode <code>Pmode</code>.
<p>The ‘<samp><span class="samp">tablejump</span></samp>’ insn is always the last insn before the jump
table it uses. Its assembler code normally has no need to use the
second operand, but you should incorporate it in the RTL pattern so
that the jump optimizer will not delete the table as unreachable code.
<p><a name="index-g_t_0040code_007bdecrement_005fand_005fbranch_005funtil_005fzero_007d-instruction-pattern-3516"></a><br><dt>‘<samp><span class="samp">decrement_and_branch_until_zero</span></samp>’<dd>Conditional branch instruction that decrements a register and
jumps if the register is nonzero. Operand 0 is the register to
decrement and test; operand 1 is the label to jump to if the
register is nonzero. See <a href="#Looping-Patterns">Looping Patterns</a>.
<p>This optional instruction pattern is only used by the combiner,
typically for loops reversed by the loop optimizer when strength
reduction is enabled.
<p><a name="index-g_t_0040code_007bdoloop_005fend_007d-instruction-pattern-3517"></a><br><dt>‘<samp><span class="samp">doloop_end</span></samp>’<dd>Conditional branch instruction that decrements a register and jumps if
the register is nonzero. This instruction takes five operands: Operand
0 is the register to decrement and test; operand 1 is the number of loop
iterations as a <code>const_int</code> or <code>const0_rtx</code> if this cannot be
determined until run-time; operand 2 is the actual or estimated maximum
number of iterations as a <code>const_int</code>; operand 3 is the number of
enclosed loops as a <code>const_int</code> (an innermost loop has a value of
1); operand 4 is the label to jump to if the register is nonzero.
See <a href="#Looping-Patterns">Looping Patterns</a>.
<p>This optional instruction pattern should be defined for machines with
low-overhead looping instructions as the loop optimizer will try to
modify suitable loops to utilize it. If nested low-overhead looping is
not supported, use a <code>define_expand</code> (see <a href="#Expander-Definitions">Expander Definitions</a>)
and make the pattern fail if operand 3 is not <code>const1_rtx</code>.
Similarly, if the actual or estimated maximum number of iterations is
too large for this instruction, make it fail.
<p><a name="index-g_t_0040code_007bdoloop_005fbegin_007d-instruction-pattern-3518"></a><br><dt>‘<samp><span class="samp">doloop_begin</span></samp>’<dd>Companion instruction to <code>doloop_end</code> required for machines that
need to perform some initialization, such as loading special registers
used by a low-overhead looping instruction. If initialization insns do
not always need to be emitted, use a <code>define_expand</code>
(see <a href="#Expander-Definitions">Expander Definitions</a>) and make it fail.
<p><a name="index-g_t_0040code_007bcanonicalize_005ffuncptr_005ffor_005fcompare_007d-instruction-pattern-3519"></a><br><dt>‘<samp><span class="samp">canonicalize_funcptr_for_compare</span></samp>’<dd>Canonicalize the function pointer in operand 1 and store the result
into operand 0.
<p>Operand 0 is always a <code>reg</code> and has mode <code>Pmode</code>; operand 1
may be a <code>reg</code>, <code>mem</code>, <code>symbol_ref</code>, <code>const_int</code>, etc
and also has mode <code>Pmode</code>.
<p>Canonicalization of a function pointer usually involves computing
the address of the function which would be called if the function
pointer were used in an indirect call.
<p>Only define this pattern if function pointers on the target machine
can have different values but still call the same function when
used in an indirect call.
<p><a name="index-g_t_0040code_007bsave_005fstack_005fblock_007d-instruction-pattern-3520"></a><a name="index-g_t_0040code_007bsave_005fstack_005ffunction_007d-instruction-pattern-3521"></a><a name="index-g_t_0040code_007bsave_005fstack_005fnonlocal_007d-instruction-pattern-3522"></a><a name="index-g_t_0040code_007brestore_005fstack_005fblock_007d-instruction-pattern-3523"></a><a name="index-g_t_0040code_007brestore_005fstack_005ffunction_007d-instruction-pattern-3524"></a><a name="index-g_t_0040code_007brestore_005fstack_005fnonlocal_007d-instruction-pattern-3525"></a><br><dt>‘<samp><span class="samp">save_stack_block</span></samp>’<dt>‘<samp><span class="samp">save_stack_function</span></samp>’<dt>‘<samp><span class="samp">save_stack_nonlocal</span></samp>’<dt>‘<samp><span class="samp">restore_stack_block</span></samp>’<dt>‘<samp><span class="samp">restore_stack_function</span></samp>’<dt>‘<samp><span class="samp">restore_stack_nonlocal</span></samp>’<dd>Most machines save and restore the stack pointer by copying it to or
from an object of mode <code>Pmode</code>. Do not define these patterns on
such machines.
<p>Some machines require special handling for stack pointer saves and
restores. On those machines, define the patterns corresponding to the
non-standard cases by using a <code>define_expand</code> (see <a href="#Expander-Definitions">Expander Definitions</a>) that produces the required insns. The three types of
saves and restores are:
<ol type=1 start=1>
<li>‘<samp><span class="samp">save_stack_block</span></samp>’ saves the stack pointer at the start of a block
that allocates a variable-sized object, and ‘<samp><span class="samp">restore_stack_block</span></samp>’
restores the stack pointer when the block is exited.
<li>‘<samp><span class="samp">save_stack_function</span></samp>’ and ‘<samp><span class="samp">restore_stack_function</span></samp>’ do a
similar job for the outermost block of a function and are used when the
function allocates variable-sized objects or calls <code>alloca</code>. Only
the epilogue uses the restored stack pointer, allowing a simpler save or
restore sequence on some machines.
<li>‘<samp><span class="samp">save_stack_nonlocal</span></samp>’ is used in functions that contain labels
branched to by nested functions. It saves the stack pointer in such a
way that the inner function can use ‘<samp><span class="samp">restore_stack_nonlocal</span></samp>’ to
restore the stack pointer. The compiler generates code to restore the
frame and argument pointer registers, but some machines require saving
and restoring additional data such as register window information or
stack backchains. Place insns in these patterns to save and restore any
such required data.
</ol>
<p>When saving the stack pointer, operand 0 is the save area and operand 1
is the stack pointer. The mode used to allocate the save area defaults
to <code>Pmode</code> but you can override that choice by defining the
<code>STACK_SAVEAREA_MODE</code> macro (see <a href="#Storage-Layout">Storage Layout</a>). You must
specify an integral mode, or <code>VOIDmode</code> if no save area is needed
for a particular type of save (either because no save is needed or
because a machine-specific save area can be used). Operand 0 is the
stack pointer and operand 1 is the save area for restore operations. If
‘<samp><span class="samp">save_stack_block</span></samp>’ is defined, operand 0 must not be
<code>VOIDmode</code> since these saves can be arbitrarily nested.
<p>A save area is a <code>mem</code> that is at a constant offset from
<code>virtual_stack_vars_rtx</code> when the stack pointer is saved for use by
nonlocal gotos and a <code>reg</code> in the other two cases.
<p><a name="index-g_t_0040code_007ballocate_005fstack_007d-instruction-pattern-3526"></a><br><dt>‘<samp><span class="samp">allocate_stack</span></samp>’<dd>Subtract (or add if <code>STACK_GROWS_DOWNWARD</code> is undefined) operand 1 from
the stack pointer to create space for dynamically allocated data.
<p>Store the resultant pointer to this space into operand 0. If you
are allocating space from the main stack, do this by emitting a
move insn to copy <code>virtual_stack_dynamic_rtx</code> to operand 0.
If you are allocating the space elsewhere, generate code to copy the
location of the space to operand 0. In the latter case, you must
ensure this space gets freed when the corresponding space on the main
stack is free.
<p>Do not define this pattern if all that must be done is the subtraction.
Some machines require other operations such as stack probes or
maintaining the back chain. Define this pattern to emit those
operations in addition to updating the stack pointer.
<p><a name="index-g_t_0040code_007bcheck_005fstack_007d-instruction-pattern-3527"></a><br><dt>‘<samp><span class="samp">check_stack</span></samp>’<dd>If stack checking (see <a href="#Stack-Checking">Stack Checking</a>) cannot be done on your system by
probing the stack, define this pattern to perform the needed check and signal
an error if the stack has overflowed. The single operand is the address in
the stack farthest from the current stack pointer that you need to validate.
Normally, on platforms where this pattern is needed, you would obtain the
stack limit from a global or thread-specific variable or register.
<p><a name="index-g_t_0040code_007bprobe_005fstack_007d-instruction-pattern-3528"></a><br><dt>‘<samp><span class="samp">probe_stack</span></samp>’<dd>If stack checking (see <a href="#Stack-Checking">Stack Checking</a>) can be done on your system by
probing the stack but doing it with a “store zero” instruction is not valid
or optimal, define this pattern to do the probing differently and signal an
error if the stack has overflowed. The single operand is the memory reference
in the stack that needs to be probed.
<p><a name="index-g_t_0040code_007bnonlocal_005fgoto_007d-instruction-pattern-3529"></a><br><dt>‘<samp><span class="samp">nonlocal_goto</span></samp>’<dd>Emit code to generate a non-local goto, e.g., a jump from one function
to a label in an outer function. This pattern has four arguments,
each representing a value to be used in the jump. The first
argument is to be loaded into the frame pointer, the second is
the address to branch to (code to dispatch to the actual label),
the third is the address of a location where the stack is saved,
and the last is the address of the label, to be placed in the
location for the incoming static chain.
<p>On most machines you need not define this pattern, since GCC will
already generate the correct code, which is to load the frame pointer
and static chain, restore the stack (using the
‘<samp><span class="samp">restore_stack_nonlocal</span></samp>’ pattern, if defined), and jump indirectly
to the dispatcher. You need only define this pattern if this code will
not work on your machine.
<p><a name="index-g_t_0040code_007bnonlocal_005fgoto_005freceiver_007d-instruction-pattern-3530"></a><br><dt>‘<samp><span class="samp">nonlocal_goto_receiver</span></samp>’<dd>This pattern, if defined, contains code needed at the target of a
nonlocal goto after the code already generated by GCC. You will not
normally need to define this pattern. A typical reason why you might
need this pattern is if some value, such as a pointer to a global table,
must be restored when the frame pointer is restored. Note that a nonlocal
goto only occurs within a unit-of-translation, so a global table pointer
that is shared by all functions of a given module need not be restored.
There are no arguments.
<p><a name="index-g_t_0040code_007bexception_005freceiver_007d-instruction-pattern-3531"></a><br><dt>‘<samp><span class="samp">exception_receiver</span></samp>’<dd>This pattern, if defined, contains code needed at the site of an
exception handler that isn't needed at the site of a nonlocal goto. You
will not normally need to define this pattern. A typical reason why you
might need this pattern is if some value, such as a pointer to a global
table, must be restored after control flow is branched to the handler of
an exception. There are no arguments.
<p><a name="index-g_t_0040code_007bbuiltin_005fsetjmp_005fsetup_007d-instruction-pattern-3532"></a><br><dt>‘<samp><span class="samp">builtin_setjmp_setup</span></samp>’<dd>This pattern, if defined, contains additional code needed to initialize
the <code>jmp_buf</code>. You will not normally need to define this pattern.
A typical reason why you might need this pattern is if some value, such
as a pointer to a global table, must be restored. Though it is
preferred that the pointer value be recalculated if possible (given the
address of a label for instance). The single argument is a pointer to
the <code>jmp_buf</code>. Note that the buffer is five words long and that
the first three are normally used by the generic mechanism.
<p><a name="index-g_t_0040code_007bbuiltin_005fsetjmp_005freceiver_007d-instruction-pattern-3533"></a><br><dt>‘<samp><span class="samp">builtin_setjmp_receiver</span></samp>’<dd>This pattern, if defined, contains code needed at the site of a
built-in setjmp that isn't needed at the site of a nonlocal goto. You
will not normally need to define this pattern. A typical reason why you
might need this pattern is if some value, such as a pointer to a global
table, must be restored. It takes one argument, which is the label
to which builtin_longjmp transfered control; this pattern may be emitted
at a small offset from that label.
<p><a name="index-g_t_0040code_007bbuiltin_005flongjmp_007d-instruction-pattern-3534"></a><br><dt>‘<samp><span class="samp">builtin_longjmp</span></samp>’<dd>This pattern, if defined, performs the entire action of the longjmp.
You will not normally need to define this pattern unless you also define
<code>builtin_setjmp_setup</code>. The single argument is a pointer to the
<code>jmp_buf</code>.
<p><a name="index-g_t_0040code_007beh_005freturn_007d-instruction-pattern-3535"></a><br><dt>‘<samp><span class="samp">eh_return</span></samp>’<dd>This pattern, if defined, affects the way <code>__builtin_eh_return</code>,
and thence the call frame exception handling library routines, are
built. It is intended to handle non-trivial actions needed along
the abnormal return path.
<p>The address of the exception handler to which the function should return
is passed as operand to this pattern. It will normally need to copied by
the pattern to some special register or memory location.
If the pattern needs to determine the location of the target call
frame in order to do so, it may use <code>EH_RETURN_STACKADJ_RTX</code>,
if defined; it will have already been assigned.
<p>If this pattern is not defined, the default action will be to simply
copy the return address to <code>EH_RETURN_HANDLER_RTX</code>. Either
that macro or this pattern needs to be defined if call frame exception
handling is to be used.
<p><a name="index-g_t_0040code_007bprologue_007d-instruction-pattern-3536"></a><a name="prologue-instruction-pattern"></a><br><dt>‘<samp><span class="samp">prologue</span></samp>’<dd>This pattern, if defined, emits RTL for entry to a function. The function
entry is responsible for setting up the stack frame, initializing the frame
pointer register, saving callee saved registers, etc.
<p>Using a prologue pattern is generally preferred over defining
<code>TARGET_ASM_FUNCTION_PROLOGUE</code> to emit assembly code for the prologue.
<p>The <code>prologue</code> pattern is particularly useful for targets which perform
instruction scheduling.
<p><a name="index-g_t_0040code_007bepilogue_007d-instruction-pattern-3537"></a><a name="epilogue-instruction-pattern"></a><br><dt>‘<samp><span class="samp">epilogue</span></samp>’<dd>This pattern emits RTL for exit from a function. The function
exit is responsible for deallocating the stack frame, restoring callee saved
registers and emitting the return instruction.
<p>Using an epilogue pattern is generally preferred over defining
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> to emit assembly code for the epilogue.
<p>The <code>epilogue</code> pattern is particularly useful for targets which perform
instruction scheduling or which have delay slots for their return instruction.
<p><a name="index-g_t_0040code_007bsibcall_005fepilogue_007d-instruction-pattern-3538"></a><br><dt>‘<samp><span class="samp">sibcall_epilogue</span></samp>’<dd>This pattern, if defined, emits RTL for exit from a function without the final
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.
<p>The <code>sibcall_epilogue</code> pattern must not clobber any arguments used for
parameter passing or any stack slots for arguments passed to the current
function.
<p><a name="index-g_t_0040code_007btrap_007d-instruction-pattern-3539"></a><br><dt>‘<samp><span class="samp">trap</span></samp>’<dd>This pattern, if defined, signals an error, typically by causing some
kind of signal to be raised. Among other places, it is used by the Java
front end to signal `invalid array index' exceptions.
<p><a name="index-g_t_0040code_007bctrap_0040var_007bMM_007d4_007d-instruction-pattern-3540"></a><br><dt>‘<samp><span class="samp">ctrap</span><var>MM</var><span class="samp">4</span></samp>’<dd>Conditional trap instruction. Operand 0 is a piece of RTL which
performs a comparison, and operands 1 and 2 are the arms of the
comparison. Operand 3 is the trap code, an integer.
<p>A typical <code>ctrap</code> pattern looks like
<pre class="smallexample"> (define_insn "ctrapsi4"
[(trap_if (match_operator 0 "trap_operator"
[(match_operand 1 "register_operand")
(match_operand 2 "immediate_operand")])
(match_operand 3 "const_int_operand" "i"))]
""
"...")
</pre>
<p><a name="index-g_t_0040code_007bprefetch_007d-instruction-pattern-3541"></a><br><dt>‘<samp><span class="samp">prefetch</span></samp>’<dd>
This pattern, if defined, emits code for a non-faulting data prefetch
instruction. Operand 0 is the address of the memory to prefetch. Operand 1
is a constant 1 if the prefetch is preparing for a write to the memory
address, or a constant 0 otherwise. Operand 2 is the expected degree of
temporal locality of the data and is a value between 0 and 3, inclusive; 0
means that the data has no temporal locality, so it need not be left in the
cache after the access; 3 means that the data has a high degree of temporal
locality and should be left in all levels of cache possible; 1 and 2 mean,
respectively, a low or moderate degree of temporal locality.
<p>Targets that do not support write prefetches or locality hints can ignore
the values of operands 1 and 2.
<p><a name="index-g_t_0040code_007bblockage_007d-instruction-pattern-3542"></a><br><dt>‘<samp><span class="samp">blockage</span></samp>’<dd>
This pattern defines a pseudo insn that prevents the instruction
scheduler from moving instructions across the boundary defined by the
blockage insn. Normally an UNSPEC_VOLATILE pattern.
<p><a name="index-g_t_0040code_007bmemory_005fbarrier_007d-instruction-pattern-3543"></a><br><dt>‘<samp><span class="samp">memory_barrier</span></samp>’<dd>
If the target memory model is not fully synchronous, then this pattern
should be defined to an instruction that orders both loads and stores
before the instruction with respect to loads and stores after the instruction.
This pattern has no operands.
<p><a name="index-g_t_0040code_007bsync_005fcompare_005fand_005fswap_0040var_007bmode_007d_007d-instruction-pattern-3544"></a><br><dt>‘<samp><span class="samp">sync_compare_and_swap</span><var>mode</var></samp>’<dd>
This pattern, if defined, emits code for an atomic compare-and-swap
operation. Operand 1 is the memory on which the atomic operation is
performed. Operand 2 is the “old” value to be compared against the
current contents of the memory location. Operand 3 is the “new” value
to store in the memory if the compare succeeds. Operand 0 is the result
of the operation; it should contain the contents of the memory
before the operation. If the compare succeeds, this should obviously be
a copy of operand 2.
<p>This pattern must show that both operand 0 and operand 1 are modified.
<p>This pattern must issue any memory barrier instructions such that all
memory operations before the atomic operation occur before the atomic
operation and all memory operations after the atomic operation occur
after the atomic operation.
<p>For targets where the success or failure of the compare-and-swap
operation is available via the status flags, it is possible to
avoid a separate compare operation and issue the subsequent
branch or store-flag operation immediately after the compare-and-swap.
To this end, GCC will look for a <code>MODE_CC</code> set in the
output of <code>sync_compare_and_swap</code><var>mode</var>; if the machine
description includes such a set, the target should also define special
<code>cbranchcc4</code> and/or <code>cstorecc4</code> instructions. GCC will then
be able to take the destination of the <code>MODE_CC</code> set and pass it
to the <code>cbranchcc4</code> or <code>cstorecc4</code> pattern as the first
operand of the comparison (the second will be <code>(const_int 0)</code>).
<p><a name="index-g_t_0040code_007bsync_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3545"></a><a name="index-g_t_0040code_007bsync_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3546"></a><a name="index-g_t_0040code_007bsync_005fior_0040var_007bmode_007d_007d-instruction-pattern-3547"></a><a name="index-g_t_0040code_007bsync_005fand_0040var_007bmode_007d_007d-instruction-pattern-3548"></a><a name="index-g_t_0040code_007bsync_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3549"></a><a name="index-g_t_0040code_007bsync_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3550"></a><br><dt>‘<samp><span class="samp">sync_add</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_sub</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_ior</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_and</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_xor</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_nand</span><var>mode</var></samp>’<dd>
These patterns emit code for an atomic operation on memory.
Operand 0 is the memory on which the atomic operation is performed.
Operand 1 is the second operand to the binary operator.
<p>This pattern must issue any memory barrier instructions such that all
memory operations before the atomic operation occur before the atomic
operation and all memory operations after the atomic operation occur
after the atomic operation.
<p>If these patterns are not defined, the operation will be constructed
from a compare-and-swap operation, if defined.
<p><a name="index-g_t_0040code_007bsync_005fold_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3551"></a><a name="index-g_t_0040code_007bsync_005fold_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3552"></a><a name="index-g_t_0040code_007bsync_005fold_005fior_0040var_007bmode_007d_007d-instruction-pattern-3553"></a><a name="index-g_t_0040code_007bsync_005fold_005fand_0040var_007bmode_007d_007d-instruction-pattern-3554"></a><a name="index-g_t_0040code_007bsync_005fold_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3555"></a><a name="index-g_t_0040code_007bsync_005fold_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3556"></a><br><dt>‘<samp><span class="samp">sync_old_add</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_old_sub</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_old_ior</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_old_and</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_old_xor</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_old_nand</span><var>mode</var></samp>’<dd>
These patterns are emit code for an atomic operation on memory,
and return the value that the memory contained before the operation.
Operand 0 is the result value, operand 1 is the memory on which the
atomic operation is performed, and operand 2 is the second operand
to the binary operator.
<p>This pattern must issue any memory barrier instructions such that all
memory operations before the atomic operation occur before the atomic
operation and all memory operations after the atomic operation occur
after the atomic operation.
<p>If these patterns are not defined, the operation will be constructed
from a compare-and-swap operation, if defined.
<p><a name="index-g_t_0040code_007bsync_005fnew_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3557"></a><a name="index-g_t_0040code_007bsync_005fnew_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3558"></a><a name="index-g_t_0040code_007bsync_005fnew_005fior_0040var_007bmode_007d_007d-instruction-pattern-3559"></a><a name="index-g_t_0040code_007bsync_005fnew_005fand_0040var_007bmode_007d_007d-instruction-pattern-3560"></a><a name="index-g_t_0040code_007bsync_005fnew_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3561"></a><a name="index-g_t_0040code_007bsync_005fnew_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3562"></a><br><dt>‘<samp><span class="samp">sync_new_add</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_new_sub</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_new_ior</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_new_and</span><var>mode</var></samp>’<dt>‘<samp><span class="samp">sync_new_xor</span><var>mode</var></samp>’, ‘<samp><span class="samp">sync_new_nand</span><var>mode</var></samp>’<dd>
These patterns are like their <code>sync_old_</code><var>op</var> counterparts,
except that they return the value that exists in the memory location
after the operation, rather than before the operation.
<p><a name="index-g_t_0040code_007bsync_005flock_005ftest_005fand_005fset_0040var_007bmode_007d_007d-instruction-pattern-3563"></a><br><dt>‘<samp><span class="samp">sync_lock_test_and_set</span><var>mode</var></samp>’<dd>
This pattern takes two forms, based on the capabilities of the target.
In either case, operand 0 is the result of the operand, operand 1 is
the memory on which the atomic operation is performed, and operand 2
is the value to set in the lock.
<p>In the ideal case, this operation is an atomic exchange operation, in
which the previous value in memory operand is copied into the result
operand, and the value operand is stored in the memory operand.
<p>For less capable targets, any value operand that is not the constant 1
should be rejected with <code>FAIL</code>. In this case the target may use
an atomic test-and-set bit operation. The result operand should contain
1 if the bit was previously set and 0 if the bit was previously clear.
The true contents of the memory operand are implementation defined.
<p>This pattern must issue any memory barrier instructions such that the
pattern as a whole acts as an acquire barrier, that is all memory
operations after the pattern do not occur until the lock is acquired.
<p>If this pattern is not defined, the operation will be constructed from
a compare-and-swap operation, if defined.
<p><a name="index-g_t_0040code_007bsync_005flock_005frelease_0040var_007bmode_007d_007d-instruction-pattern-3564"></a><br><dt>‘<samp><span class="samp">sync_lock_release</span><var>mode</var></samp>’<dd>
This pattern, if defined, releases a lock set by
<code>sync_lock_test_and_set</code><var>mode</var>. Operand 0 is the memory
that contains the lock; operand 1 is the value to store in the lock.
<p>If the target doesn't implement full semantics for
<code>sync_lock_test_and_set</code><var>mode</var>, any value operand which is not
the constant 0 should be rejected with <code>FAIL</code>, and the true contents
of the memory operand are implementation defined.
<p>This pattern must issue any memory barrier instructions such that the
pattern as a whole acts as a release barrier, that is the lock is
released only after all previous memory operations have completed.
<p>If this pattern is not defined, then a <code>memory_barrier</code> pattern
will be emitted, followed by a store of the value to the memory operand.
<p><a name="index-g_t_0040code_007bstack_005fprotect_005fset_007d-instruction-pattern-3565"></a><br><dt>‘<samp><span class="samp">stack_protect_set</span></samp>’<dd>
This pattern, if defined, moves a <code>ptr_mode</code> value from the memory
in operand 1 to the memory in operand 0 without leaving the value in
a register afterward. This is to avoid leaking the value some place
that an attacker might use to rewrite the stack guard slot after
having clobbered it.
<p>If this pattern is not defined, then a plain move pattern is generated.
<p><a name="index-g_t_0040code_007bstack_005fprotect_005ftest_007d-instruction-pattern-3566"></a><br><dt>‘<samp><span class="samp">stack_protect_test</span></samp>’<dd>
This pattern, if defined, compares a <code>ptr_mode</code> value from the
memory in operand 1 with the memory in operand 0 without leaving the
value in a register afterward and branches to operand 2 if the values
weren't equal.
<p>If this pattern is not defined, then a plain compare pattern and
conditional branch pattern is used.
<p><a name="index-g_t_0040code_007bclear_005fcache_007d-instruction-pattern-3567"></a><br><dt>‘<samp><span class="samp">clear_cache</span></samp>’<dd>
This pattern, if defined, flushes the instruction cache for a region of
memory. The region is bounded to by the Pmode pointers in operand 0
inclusive and operand 1 exclusive.
<p>If this pattern is not defined, a call to the library function
<code>__clear_cache</code> is used.
</dl>
<!-- Each of the following nodes are wrapped in separate -->
<!-- "@ifset INTERNALS" to work around memory limits for the default -->
<!-- configuration in older tetex distributions. Known to not work: -->
<!-- tetex-1.0.7, known to work: tetex-2.0.2. -->
<div class="node">
<a name="Pattern-Ordering"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dependent-Patterns">Dependent Patterns</a>,
Previous: <a rel="previous" accesskey="p" href="#Standard-Names">Standard Names</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.10 When the Order of Patterns Matters</h3>
<p><a name="index-Pattern-Ordering-3568"></a><a name="index-Ordering-of-Patterns-3569"></a>
Sometimes an insn can match more than one instruction pattern. Then the
pattern that appears first in the machine description is the one used.
Therefore, more specific patterns (patterns that will match fewer things)
and faster instructions (those that will produce better code when they
do match) should usually go first in the description.
<p>In some cases the effect of ordering the patterns can be used to hide
a pattern when it is not valid. For example, the 68000 has an
instruction for converting a fullword to floating point and another
for converting a byte to floating point. An instruction converting
an integer to floating point could match either one. We put the
pattern to convert the fullword first to make sure that one will
be used rather than the other. (Otherwise a large integer might
be generated as a single-byte immediate quantity, which would not work.)
Instead of using this pattern ordering it would be possible to make the
pattern for convert-a-byte smart enough to deal properly with any
constant value.
<div class="node">
<a name="Dependent-Patterns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Jump-Patterns">Jump Patterns</a>,
Previous: <a rel="previous" accesskey="p" href="#Pattern-Ordering">Pattern Ordering</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.11 Interdependence of Patterns</h3>
<p><a name="index-Dependent-Patterns-3570"></a><a name="index-Interdependence-of-Patterns-3571"></a>
In some cases machines support instructions identical except for the
machine mode of one or more operands. For example, there may be
“sign-extend halfword” and “sign-extend byte” instructions whose
patterns are
<pre class="smallexample"> (set (match_operand:SI 0 ...)
(extend:SI (match_operand:HI 1 ...)))
(set (match_operand:SI 0 ...)
(extend:SI (match_operand:QI 1 ...)))
</pre>
<p class="noindent">Constant integers do not specify a machine mode, so an instruction to
extend a constant value could match either pattern. The pattern it
actually will match is the one that appears first in the file. For correct
results, this must be the one for the widest possible mode (<code>HImode</code>,
here). If the pattern matches the <code>QImode</code> instruction, the results
will be incorrect if the constant value does not actually fit that mode.
<p>Such instructions to extend constants are rarely generated because they are
optimized away, but they do occasionally happen in nonoptimized
compilations.
<p>If a constraint in a pattern allows a constant, the reload pass may
replace a register with a constant permitted by the constraint in some
cases. Similarly for memory references. Because of this substitution,
you should not provide separate patterns for increment and decrement
instructions. Instead, they should be generated from the same pattern
that supports register-register add insns by examining the operands and
generating the appropriate machine instruction.
<div class="node">
<a name="Jump-Patterns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Looping-Patterns">Looping Patterns</a>,
Previous: <a rel="previous" accesskey="p" href="#Dependent-Patterns">Dependent Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.12 Defining Jump Instruction Patterns</h3>
<p><a name="index-jump-instruction-patterns-3572"></a><a name="index-defining-jump-instruction-patterns-3573"></a>
GCC does not assume anything about how the machine realizes jumps.
The machine description should define a single pattern, usually
a <code>define_expand</code>, which expands to all the required insns.
<p>Usually, this would be a comparison insn to set the condition code
and a separate branch insn testing the condition code and branching
or not according to its value. For many machines, however,
separating compares and branches is limiting, which is why the
more flexible approach with one <code>define_expand</code> is used in GCC.
The machine description becomes clearer for architectures that
have compare-and-branch instructions but no condition code. It also
works better when different sets of comparison operators are supported
by different kinds of conditional branches (e.g. integer vs. floating-point),
or by conditional branches with respect to conditional stores.
<p>Two separate insns are always used if the machine description represents
a condition code register using the legacy RTL expression <code>(cc0)</code>,
and on most machines that use a separate condition code register
(see <a href="#Condition-Code">Condition Code</a>). For machines that use <code>(cc0)</code>, in
fact, the set and use of the condition code must be separate and
adjacent<a rel="footnote" href="#fn-4" name="fnd-4"><sup>4</sup></a>, thus
allowing flags in <code>cc_status</code> to be used (see <a href="#Condition-Code">Condition Code</a>) and
so that the comparison and branch insns could be located from each other
by using the functions <code>prev_cc0_setter</code> and <code>next_cc0_user</code>.
<p>Even in this case having a single entry point for conditional branches
is advantageous, because it handles equally well the case where a single
comparison instruction records the results of both signed and unsigned
comparison of the given operands (with the branch insns coming in distinct
signed and unsigned flavors) as in the x86 or SPARC, and the case where
there are distinct signed and unsigned compare instructions and only
one set of conditional branch instructions as in the PowerPC.
<div class="node">
<a name="Looping-Patterns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Insn-Canonicalizations">Insn Canonicalizations</a>,
Previous: <a rel="previous" accesskey="p" href="#Jump-Patterns">Jump Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.13 Defining Looping Instruction Patterns</h3>
<p><a name="index-looping-instruction-patterns-3574"></a><a name="index-defining-looping-instruction-patterns-3575"></a>
Some machines have special jump instructions that can be utilized to
make loops more efficient. A common example is the 68000 ‘<samp><span class="samp">dbra</span></samp>’
instruction which performs a decrement of a register and a branch if the
result was greater than zero. Other machines, in particular digital
signal processors (DSPs), have special block repeat instructions to
provide low-overhead loop support. For example, the TI TMS320C3x/C4x
DSPs have a block repeat instruction that loads special registers to
mark the top and end of a loop and to count the number of loop
iterations. This avoids the need for fetching and executing a
‘<samp><span class="samp">dbra</span></samp>’-like instruction and avoids pipeline stalls associated with
the jump.
<p>GCC has three special named patterns to support low overhead looping.
They are ‘<samp><span class="samp">decrement_and_branch_until_zero</span></samp>’, ‘<samp><span class="samp">doloop_begin</span></samp>’,
and ‘<samp><span class="samp">doloop_end</span></samp>’. The first pattern,
‘<samp><span class="samp">decrement_and_branch_until_zero</span></samp>’, is not emitted during RTL
generation but may be emitted during the instruction combination phase.
This requires the assistance of the loop optimizer, using information
collected during strength reduction, to reverse a loop to count down to
zero. Some targets also require the loop optimizer to add a
<code>REG_NONNEG</code> note to indicate that the iteration count is always
positive. This is needed if the target performs a signed loop
termination test. For example, the 68000 uses a pattern similar to the
following for its <code>dbra</code> instruction:
<pre class="smallexample"> (define_insn "decrement_and_branch_until_zero"
[(set (pc)
(if_then_else
(ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")
</pre>
<p>Note that since the insn is both a jump insn and has an output, it must
deal with its own reloads, hence the `m' constraints. Also note that
since this insn is generated by the instruction combination phase
combining two sequential insns together into an implicit parallel insn,
the iteration counter needs to be biased by the same amount as the
decrement operation, in this case −1. Note that the following similar
pattern will not be matched by the combiner.
<pre class="smallexample"> (define_insn "decrement_and_branch_until_zero"
[(set (pc)
(if_then_else
(ge (match_operand:SI 0 "general_operand" "+d*am")
(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")
</pre>
<p>The other two special looping patterns, ‘<samp><span class="samp">doloop_begin</span></samp>’ and
‘<samp><span class="samp">doloop_end</span></samp>’, are emitted by the loop optimizer for certain
well-behaved loops with a finite number of loop iterations using
information collected during strength reduction.
<p>The ‘<samp><span class="samp">doloop_end</span></samp>’ pattern describes the actual looping instruction
(or the implicit looping operation) and the ‘<samp><span class="samp">doloop_begin</span></samp>’ pattern
is an optional companion pattern that can be used for initialization
needed for some low-overhead looping instructions.
<p>Note that some machines require the actual looping instruction to be
emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting
the true RTL for a looping instruction at the top of the loop can cause
problems with flow analysis. So instead, a dummy <code>doloop</code> insn is
emitted at the end of the loop. The machine dependent reorg pass checks
for the presence of this <code>doloop</code> insn and then searches back to
the top of the loop, where it inserts the true looping insn (provided
there are no instructions in the loop which would cause problems). Any
additional labels can be emitted at this point. In addition, if the
desired special iteration counter register was not allocated, this
machine dependent reorg pass could emit a traditional compare and jump
instruction pair.
<p>The essential difference between the
‘<samp><span class="samp">decrement_and_branch_until_zero</span></samp>’ and the ‘<samp><span class="samp">doloop_end</span></samp>’
patterns is that the loop optimizer allocates an additional pseudo
register for the latter as an iteration counter. This pseudo register
cannot be used within the loop (i.e., general induction variables cannot
be derived from it), however, in many cases the loop induction variable
may become redundant and removed by the flow pass.
<div class="node">
<a name="Insn-Canonicalizations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Expander-Definitions">Expander Definitions</a>,
Previous: <a rel="previous" accesskey="p" href="#Looping-Patterns">Looping Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.14 Canonicalization of Instructions</h3>
<p><a name="index-canonicalization-of-instructions-3576"></a><a name="index-insn-canonicalization-3577"></a>
There are often cases where multiple RTL expressions could represent an
operation performed by a single machine instruction. This situation is
most commonly encountered with logical, branch, and multiply-accumulate
instructions. In such cases, the compiler attempts to convert these
multiple RTL expressions into a single canonical form to reduce the
number of insn patterns required.
<p>In addition to algebraic simplifications, following canonicalizations
are performed:
<ul>
<li>For commutative and comparison operators, a constant is always made the
second operand. If a machine only supports a constant as the second
operand, only patterns that match a constant in the second operand need
be supplied.
<li>For associative operators, a sequence of operators will always chain
to the left; for instance, only the left operand of an integer <code>plus</code>
can itself be a <code>plus</code>. <code>and</code>, <code>ior</code>, <code>xor</code>,
<code>plus</code>, <code>mult</code>, <code>smin</code>, <code>smax</code>, <code>umin</code>, and
<code>umax</code> are associative when applied to integers, and sometimes to
floating-point.
<li><a name="index-g_t_0040code_007bneg_007d_002c-canonicalization-of-3578"></a><a name="index-g_t_0040code_007bnot_007d_002c-canonicalization-of-3579"></a><a name="index-g_t_0040code_007bmult_007d_002c-canonicalization-of-3580"></a><a name="index-g_t_0040code_007bplus_007d_002c-canonicalization-of-3581"></a><a name="index-g_t_0040code_007bminus_007d_002c-canonicalization-of-3582"></a>For these operators, if only one operand is a <code>neg</code>, <code>not</code>,
<code>mult</code>, <code>plus</code>, or <code>minus</code> expression, it will be the
first operand.
<li>In combinations of <code>neg</code>, <code>mult</code>, <code>plus</code>, and
<code>minus</code>, the <code>neg</code> operations (if any) will be moved inside
the operations as far as possible. For instance,
<code>(neg (mult A B))</code> is canonicalized as <code>(mult (neg A) B)</code>, but
<code>(plus (mult (neg B) C) A)</code> is canonicalized as
<code>(minus A (mult B C))</code>.
<p><a name="index-g_t_0040code_007bcompare_007d_002c-canonicalization-of-3583"></a><li>For the <code>compare</code> operator, a constant is always the second operand
if the first argument is a condition code register or <code>(cc0)</code>.
<li>An operand of <code>neg</code>, <code>not</code>, <code>mult</code>, <code>plus</code>, or
<code>minus</code> is made the first operand under the same conditions as
above.
<li><code>(ltu (plus </code><var>a</var> <var>b</var><code>) </code><var>b</var><code>)</code> is converted to
<code>(ltu (plus </code><var>a</var> <var>b</var><code>) </code><var>a</var><code>)</code>. Likewise with <code>geu</code> instead
of <code>ltu</code>.
<li><code>(minus </code><var>x</var><code> (const_int </code><var>n</var><code>))</code> is converted to
<code>(plus </code><var>x</var><code> (const_int </code><var>-n</var><code>))</code>.
<li>Within address computations (i.e., inside <code>mem</code>), a left shift is
converted into the appropriate multiplication by a power of two.
<p><a name="index-g_t_0040code_007bior_007d_002c-canonicalization-of-3584"></a><a name="index-g_t_0040code_007band_007d_002c-canonicalization-of-3585"></a><a name="index-De-Morgan_0027s-law-3586"></a><li>De Morgan's Law is used to move bitwise negation inside a bitwise
logical-and or logical-or operation. If this results in only one
operand being a <code>not</code> expression, it will be the first one.
<p>A machine that has an instruction that performs a bitwise logical-and of one
operand with the bitwise negation of the other should specify the pattern
for that instruction as
<pre class="smallexample"> (define_insn ""
[(set (match_operand:<var>m</var> 0 ...)
(and:<var>m</var> (not:<var>m</var> (match_operand:<var>m</var> 1 ...))
(match_operand:<var>m</var> 2 ...)))]
"..."
"...")
</pre>
<p class="noindent">Similarly, a pattern for a “NAND” instruction should be written
<pre class="smallexample"> (define_insn ""
[(set (match_operand:<var>m</var> 0 ...)
(ior:<var>m</var> (not:<var>m</var> (match_operand:<var>m</var> 1 ...))
(not:<var>m</var> (match_operand:<var>m</var> 2 ...))))]
"..."
"...")
</pre>
<p>In both cases, it is not necessary to include patterns for the many
logically equivalent RTL expressions.
<p><a name="index-g_t_0040code_007bxor_007d_002c-canonicalization-of-3587"></a><li>The only possible RTL expressions involving both bitwise exclusive-or
and bitwise negation are <code>(xor:</code><var>m</var> <var>x</var> <var>y</var><code>)</code>
and <code>(not:</code><var>m</var><code> (xor:</code><var>m</var> <var>x</var> <var>y</var><code>))</code>.
<li>The sum of three items, one of which is a constant, will only appear in
the form
<pre class="smallexample"> (plus:<var>m</var> (plus:<var>m</var> <var>x</var> <var>y</var>) <var>constant</var>)
</pre>
<p><a name="index-g_t_0040code_007bzero_005fextract_007d_002c-canonicalization-of-3588"></a><a name="index-g_t_0040code_007bsign_005fextract_007d_002c-canonicalization-of-3589"></a><li>Equality comparisons of a group of bits (usually a single bit) with zero
will be written using <code>zero_extract</code> rather than the equivalent
<code>and</code> or <code>sign_extract</code> operations.
<p><a name="index-g_t_0040code_007bmult_007d_002c-canonicalization-of-3590"></a><li><code>(sign_extend:</code><var>m1</var><code> (mult:</code><var>m2</var><code> (sign_extend:</code><var>m2</var> <var>x</var><code>)
(sign_extend:</code><var>m2</var> <var>y</var><code>)))</code> is converted to <code>(mult:</code><var>m1</var><code>
(sign_extend:</code><var>m1</var> <var>x</var><code>) (sign_extend:</code><var>m1</var> <var>y</var><code>))</code>, and likewise
for <code>zero_extend</code>.
<li><code>(sign_extend:</code><var>m1</var><code> (mult:</code><var>m2</var><code> (ashiftrt:</code><var>m2</var>
<var>x</var> <var>s</var><code>) (sign_extend:</code><var>m2</var> <var>y</var><code>)))</code> is converted
to <code>(mult:</code><var>m1</var><code> (sign_extend:</code><var>m1</var><code> (ashiftrt:</code><var>m2</var>
<var>x</var> <var>s</var><code>)) (sign_extend:</code><var>m1</var> <var>y</var><code>))</code>, and likewise for
patterns using <code>zero_extend</code> and <code>lshiftrt</code>. If the second
operand of <code>mult</code> is also a shift, then that is extended also.
This transformation is only applied when it can be proven that the
original operation had sufficient precision to prevent overflow.
</ul>
<p>Further canonicalization rules are defined in the function
<code>commutative_operand_precedence</code> in <samp><span class="file">gcc/rtlanal.c</span></samp>.
<div class="node">
<a name="Expander-Definitions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Insn-Splitting">Insn Splitting</a>,
Previous: <a rel="previous" accesskey="p" href="#Insn-Canonicalizations">Insn Canonicalizations</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.15 Defining RTL Sequences for Code Generation</h3>
<p><a name="index-expander-definitions-3591"></a><a name="index-code-generation-RTL-sequences-3592"></a><a name="index-defining-RTL-sequences-for-code-generation-3593"></a>
On some target machines, some standard pattern names for RTL generation
cannot be handled with single insn, but a sequence of RTL insns can
represent them. For these target machines, you can write a
<code>define_expand</code> to specify how to generate the sequence of RTL.
<p><a name="index-define_005fexpand-3594"></a>A <code>define_expand</code> is an RTL expression that looks almost like a
<code>define_insn</code>; but, unlike the latter, a <code>define_expand</code> is used
only for RTL generation and it can produce more than one RTL insn.
<p>A <code>define_expand</code> RTX has four operands:
<ul>
<li>The name. Each <code>define_expand</code> must have a name, since the only
use for it is to refer to it by name.
<li>The RTL template. This is a vector of RTL expressions representing
a sequence of separate instructions. Unlike <code>define_insn</code>, there
is no implicit surrounding <code>PARALLEL</code>.
<li>The condition, a string containing a C expression. This expression is
used to express how the availability of this pattern depends on
subclasses of target machine, selected by command-line options when GCC
is run. This is just like the condition of a <code>define_insn</code> that
has a standard name. Therefore, the condition (if present) may not
depend on the data in the insn being matched, but only the
target-machine-type flags. The compiler needs to test these conditions
during initialization in order to learn exactly which named instructions
are available in a particular run.
<li>The preparation statements, a string containing zero or more C
statements which are to be executed before RTL code is generated from
the RTL template.
<p>Usually these statements prepare temporary registers for use as
internal operands in the RTL template, but they can also generate RTL
insns directly by calling routines such as <code>emit_insn</code>, etc.
Any such insns precede the ones that come from the RTL template.
</ul>
<p>Every RTL insn emitted by a <code>define_expand</code> must match some
<code>define_insn</code> in the machine description. Otherwise, the compiler
will crash when trying to generate code for the insn or trying to optimize
it.
<p>The RTL template, in addition to controlling generation of RTL insns,
also describes the operands that need to be specified when this pattern
is used. In particular, it gives a predicate for each operand.
<p>A true operand, which needs to be specified in order to generate RTL from
the pattern, should be described with a <code>match_operand</code> in its first
occurrence in the RTL template. This enters information on the operand's
predicate into the tables that record such things. GCC uses the
information to preload the operand into a register if that is required for
valid RTL code. If the operand is referred to more than once, subsequent
references should use <code>match_dup</code>.
<p>The RTL template may also refer to internal “operands” which are
temporary registers or labels used only within the sequence made by the
<code>define_expand</code>. Internal operands are substituted into the RTL
template with <code>match_dup</code>, never with <code>match_operand</code>. The
values of the internal operands are not passed in as arguments by the
compiler when it requests use of this pattern. Instead, they are computed
within the pattern, in the preparation statements. These statements
compute the values and store them into the appropriate elements of
<code>operands</code> so that <code>match_dup</code> can find them.
<p>There are two special macros defined for use in the preparation statements:
<code>DONE</code> and <code>FAIL</code>. Use them with a following semicolon,
as a statement.
<a name="index-DONE-3595"></a>
<dl><dt><code>DONE</code><dd>Use the <code>DONE</code> macro to end RTL generation for the pattern. The
only RTL insns resulting from the pattern on this occasion will be
those already emitted by explicit calls to <code>emit_insn</code> within the
preparation statements; the RTL template will not be generated.
<p><a name="index-FAIL-3596"></a><br><dt><code>FAIL</code><dd>Make the pattern fail on this occasion. When a pattern fails, it means
that the pattern was not truly available. The calling routines in the
compiler will try other strategies for code generation using other patterns.
<p>Failure is currently supported only for binary (addition, multiplication,
shifting, etc.) and bit-field (<code>extv</code>, <code>extzv</code>, and <code>insv</code>)
operations.
</dl>
<p>If the preparation falls through (invokes neither <code>DONE</code> nor
<code>FAIL</code>), then the <code>define_expand</code> acts like a
<code>define_insn</code> in that the RTL template is used to generate the
insn.
<p>The RTL template is not used for matching, only for generating the
initial insn list. If the preparation statement always invokes
<code>DONE</code> or <code>FAIL</code>, the RTL template may be reduced to a simple
list of operands, such as this example:
<pre class="smallexample"> (define_expand "addsi3"
[(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")]
""
"
{
handle_add (operands[0], operands[1], operands[2]);
DONE;
}")
</pre>
<p>Here is an example, the definition of left-shift for the SPUR chip:
<pre class="smallexample"> (define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashift:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"
</pre>
<pre class="smallexample"> {
if (GET_CODE (operands[2]) != CONST_INT
|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;
}")
</pre>
<p class="noindent">This example uses <code>define_expand</code> so that it can generate an RTL insn
for shifting when the shift-count is in the supported range of 0 to 3 but
fail in other cases where machine insns aren't available. When it fails,
the compiler tries another strategy using different patterns (such as, a
library call).
<p>If the compiler were able to handle nontrivial condition-strings in
patterns with names, then it would be possible to use a
<code>define_insn</code> in that case. Here is another case (zero-extension
on the 68000) which makes more use of the power of <code>define_expand</code>:
<pre class="smallexample"> (define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")
(const_int 0))
(set (strict_low_part
(subreg:HI
(match_dup 0)
0))
(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")
</pre>
<p class="noindent"><a name="index-make_005fsafe_005ffrom-3597"></a>Here two RTL insns are generated, one to clear the entire output operand
and the other to copy the input operand into its low half. This sequence
is incorrect if the input operand refers to [the old value of] the output
operand, so the preparation statement makes sure this isn't so. The
function <code>make_safe_from</code> copies the <code>operands[1]</code> into a
temporary register if it refers to <code>operands[0]</code>. It does this
by emitting another RTL insn.
<p>Finally, a third example shows the use of an internal operand.
Zero-extension on the SPUR chip is done by <code>and</code>-ing the result
against a halfword mask. But this mask cannot be represented by a
<code>const_int</code> because the constant value is too large to be legitimate
on this machine. So it must be copied into a register with
<code>force_reg</code> and then the register used in the <code>and</code>.
<pre class="smallexample"> (define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)
(match_dup 2)))]
""
"operands[2]
= force_reg (SImode, GEN_INT (65535)); ")
</pre>
<p><em>Note:</em> If the <code>define_expand</code> is used to serve a
standard binary or unary arithmetic operation or a bit-field operation,
then the last insn it generates must not be a <code>code_label</code>,
<code>barrier</code> or <code>note</code>. It must be an <code>insn</code>,
<code>jump_insn</code> or <code>call_insn</code>. If you don't need a real insn
at the end, emit an insn to copy the result of the operation into
itself. Such an insn will generate no code, but it can avoid problems
in the compiler.
<div class="node">
<a name="Insn-Splitting"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Including-Patterns">Including Patterns</a>,
Previous: <a rel="previous" accesskey="p" href="#Expander-Definitions">Expander Definitions</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.16 Defining How to Split Instructions</h3>
<p><a name="index-insn-splitting-3598"></a><a name="index-instruction-splitting-3599"></a><a name="index-splitting-instructions-3600"></a>
There are two cases where you should specify how to split a pattern
into multiple insns. On machines that have instructions requiring
delay slots (see <a href="#Delay-Slots">Delay Slots</a>) or that have instructions whose
output is not available for multiple cycles (see <a href="#Processor-pipeline-description">Processor pipeline description</a>), the compiler phases that optimize these cases need to
be able to move insns into one-instruction delay slots. However, some
insns may generate more than one machine instruction. These insns
cannot be placed into a delay slot.
<p>Often you can rewrite the single insn as a list of individual insns,
each corresponding to one machine instruction. The disadvantage of
doing so is that it will cause the compilation to be slower and require
more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a
reason to believe that it might improve instruction or delay slot
scheduling.
<p>The insn combiner phase also splits putative insns. If three insns are
merged into one insn with a complex expression that cannot be matched by
some <code>define_insn</code> pattern, the combiner phase attempts to split
the complex pattern into two insns that are recognized. Usually it can
break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an
addition of a large constant in two insns on a RISC machine, the way to
split the addition into two insns is machine-dependent.
<p><a name="index-define_005fsplit-3601"></a>The <code>define_split</code> definition tells the compiler how to split a
complex insn into several simpler insns. It looks like this:
<pre class="smallexample"> (define_split
[<var>insn-pattern</var>]
"<var>condition</var>"
[<var>new-insn-pattern-1</var>
<var>new-insn-pattern-2</var>
...]
"<var>preparation-statements</var>")
</pre>
<p><var>insn-pattern</var> is a pattern that needs to be split and
<var>condition</var> is the final condition to be tested, as in a
<code>define_insn</code>. When an insn matching <var>insn-pattern</var> and
satisfying <var>condition</var> is found, it is replaced in the insn list
with the insns given by <var>new-insn-pattern-1</var>,
<var>new-insn-pattern-2</var>, etc.
<p>The <var>preparation-statements</var> are similar to those statements that
are specified for <code>define_expand</code> (see <a href="#Expander-Definitions">Expander Definitions</a>)
and are executed before the new RTL is generated to prepare for the
generated code or emit some insns whose pattern is not fixed. Unlike
those in <code>define_expand</code>, however, these statements must not
generate any new pseudo-registers. Once reload has completed, they also
must not allocate any space in the stack frame.
<p>Patterns are matched against <var>insn-pattern</var> in two different
circumstances. If an insn needs to be split for delay slot scheduling
or insn scheduling, the insn is already known to be valid, which means
that it must have been matched by some <code>define_insn</code> and, if
<code>reload_completed</code> is nonzero, is known to satisfy the constraints
of that <code>define_insn</code>. In that case, the new insn patterns must
also be insns that are matched by some <code>define_insn</code> and, if
<code>reload_completed</code> is nonzero, must also satisfy the constraints
of those definitions.
<p>As an example of this usage of <code>define_split</code>, consider the following
example from <samp><span class="file">a29k.md</span></samp>, which splits a <code>sign_extend</code> from
<code>HImode</code> to <code>SImode</code> into a pair of shift insns:
<pre class="smallexample"> (define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")
(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)
(ashift:SI (match_dup 1)
(const_int 16)))
(set (match_dup 0)
(ashiftrt:SI (match_dup 0)
(const_int 16)))]
"
{ operands[1] = gen_lowpart (SImode, operands[1]); }")
</pre>
<p>When the combiner phase tries to split an insn pattern, it is always the
case that the pattern is <em>not</em> matched by any <code>define_insn</code>.
The combiner pass first tries to split a single <code>set</code> expression
and then the same <code>set</code> expression inside a <code>parallel</code>, but
followed by a <code>clobber</code> of a pseudo-reg to use as a scratch
register. In these cases, the combiner expects exactly two new insn
patterns to be generated. It will verify that these patterns match some
<code>define_insn</code> definitions, so you need not do this test in the
<code>define_split</code> (of course, there is no point in writing a
<code>define_split</code> that will never produce insns that match).
<p>Here is an example of this use of <code>define_split</code>, taken from
<samp><span class="file">rs6000.md</span></samp>:
<pre class="smallexample"> (define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")
(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]
""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
"
{
int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;
if (low & 0x8000)
high++, low |= 0xffff0000;
operands[3] = GEN_INT (high << 16);
operands[4] = GEN_INT (low);
}")
</pre>
<p>Here the predicate <code>non_add_cint_operand</code> matches any
<code>const_int</code> that is <em>not</em> a valid operand of a single add
insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.
<p>An example that uses a scratch register, from the same file, generates
an equality comparison of a register and a large constant:
<pre class="smallexample"> (define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")
(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))
(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
"
{
/* <span class="roman">Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR'ed with C to get the sign-extended value.</span> */
int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;
operands[4] = GEN_INT (xorv);
operands[5] = GEN_INT (sextc);
}")
</pre>
<p>To avoid confusion, don't write a single <code>define_split</code> that
accepts some insns that match some <code>define_insn</code> as well as some
insns that don't. Instead, write two separate <code>define_split</code>
definitions, one for the insns that are valid and one for the insns that
are not valid.
<p>The splitter is allowed to split jump instructions into sequence of
jumps or create new jumps in while splitting non-jump instructions. As
the central flowgraph and branch prediction information needs to be updated,
several restriction apply.
<p>Splitting of jump instruction into sequence that over by another jump
instruction is always valid, as compiler expect identical behavior of new
jump. When new sequence contains multiple jump instructions or new labels,
more assistance is needed. Splitter is required to create only unconditional
jumps, or simple conditional jump instructions. Additionally it must attach a
<code>REG_BR_PROB</code> note to each conditional jump. A global variable
<code>split_branch_probability</code> holds the probability of the original branch in case
it was a simple conditional jump, −1 otherwise. To simplify
recomputing of edge frequencies, the new sequence is required to have only
forward jumps to the newly created labels.
<p><a name="index-define_005finsn_005fand_005fsplit-3602"></a>For the common case where the pattern of a define_split exactly matches the
pattern of a define_insn, use <code>define_insn_and_split</code>. It looks like
this:
<pre class="smallexample"> (define_insn_and_split
[<var>insn-pattern</var>]
"<var>condition</var>"
"<var>output-template</var>"
"<var>split-condition</var>"
[<var>new-insn-pattern-1</var>
<var>new-insn-pattern-2</var>
...]
"<var>preparation-statements</var>"
[<var>insn-attributes</var>])
</pre>
<p><var>insn-pattern</var>, <var>condition</var>, <var>output-template</var>, and
<var>insn-attributes</var> are used as in <code>define_insn</code>. The
<var>new-insn-pattern</var> vector and the <var>preparation-statements</var> are used as
in a <code>define_split</code>. The <var>split-condition</var> is also used as in
<code>define_split</code>, with the additional behavior that if the condition starts
with ‘<samp><span class="samp">&&</span></samp>’, the condition used for the split will be the constructed as a
logical “and” of the split condition with the insn condition. For example,
from i386.md:
<pre class="smallexample"> (define_insn_and_split "zero_extendhisi2_and"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
(clobber (reg:CC 17))]
"TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
"#"
"&& reload_completed"
[(parallel [(set (match_dup 0)
(and:SI (match_dup 0) (const_int 65535)))
(clobber (reg:CC 17))])]
""
[(set_attr "type" "alu1")])
</pre>
<p>In this case, the actual split condition will be
‘<samp><span class="samp">TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed</span></samp>’.
<p>The <code>define_insn_and_split</code> construction provides exactly the same
functionality as two separate <code>define_insn</code> and <code>define_split</code>
patterns. It exists for compactness, and as a maintenance tool to prevent
having to ensure the two patterns' templates match.
<div class="node">
<a name="Including-Patterns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Peephole-Definitions">Peephole Definitions</a>,
Previous: <a rel="previous" accesskey="p" href="#Insn-Splitting">Insn Splitting</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.17 Including Patterns in Machine Descriptions.</h3>
<p><a name="index-insn-includes-3603"></a>
<a name="index-include-3604"></a>The <code>include</code> pattern tells the compiler tools where to
look for patterns that are in files other than in the file
<samp><span class="file">.md</span></samp>. This is used only at build time and there is no preprocessing allowed.
<p>It looks like:
<pre class="smallexample">
(include
<var>pathname</var>)
</pre>
<p>For example:
<pre class="smallexample">
(include "filestuff")
</pre>
<p>Where <var>pathname</var> is a string that specifies the location of the file,
specifies the include file to be in <samp><span class="file">gcc/config/target/filestuff</span></samp>. The
directory <samp><span class="file">gcc/config/target</span></samp> is regarded as the default directory.
<p>Machine descriptions may be split up into smaller more manageable subsections
and placed into subdirectories.
<p>By specifying:
<pre class="smallexample">
(include "BOGUS/filestuff")
</pre>
<p>the include file is specified to be in <samp><span class="file">gcc/config/</span><var>target</var><span class="file">/BOGUS/filestuff</span></samp>.
<p>Specifying an absolute path for the include file such as;
<pre class="smallexample">
(include "/u2/BOGUS/filestuff")
</pre>
<p>is permitted but is not encouraged.
<h4 class="subsection">16.17.1 RTL Generation Tool Options for Directory Search</h4>
<p><a name="index-directory-options-_002emd-3605"></a><a name="index-options_002c-directory-search-3606"></a><a name="index-search-options-3607"></a>
The <samp><span class="option">-I</span><var>dir</var></samp> option specifies directories to search for machine descriptions.
For example:
<pre class="smallexample">
genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
</pre>
<p>Add the directory <var>dir</var> to the head of the list of directories to be
searched for header files. This can be used to override a system machine definition
file, substituting your own version, since these directories are
searched before the default machine description file directories. If you use more than
one <samp><span class="option">-I</span></samp> option, the directories are scanned in left-to-right
order; the standard default directory come after.
<div class="node">
<a name="Peephole-Definitions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Insn-Attributes">Insn Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Including-Patterns">Including Patterns</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.18 Machine-Specific Peephole Optimizers</h3>
<p><a name="index-peephole-optimizer-definitions-3608"></a><a name="index-defining-peephole-optimizers-3609"></a>
In addition to instruction patterns the <samp><span class="file">md</span></samp> file may contain
definitions of machine-specific peephole optimizations.
<p>The combiner does not notice certain peephole optimizations when the data
flow in the program does not suggest that it should try them. For example,
sometimes two consecutive insns related in purpose can be combined even
though the second one does not appear to use a register computed in the
first one. A machine-specific peephole optimizer can detect such
opportunities.
<p>There are two forms of peephole definitions that may be used. The
original <code>define_peephole</code> is run at assembly output time to
match insns and substitute assembly text. Use of <code>define_peephole</code>
is deprecated.
<p>A newer <code>define_peephole2</code> matches insns and substitutes new
insns. The <code>peephole2</code> pass is run after register allocation
but before scheduling, which may result in much better code for
targets that do scheduling.
<ul class="menu">
<li><a accesskey="1" href="#define_005fpeephole">define_peephole</a>: RTL to Text Peephole Optimizers
<li><a accesskey="2" href="#define_005fpeephole2">define_peephole2</a>: RTL to RTL Peephole Optimizers
</ul>
<div class="node">
<a name="define_peephole"></a>
<a name="define_005fpeephole"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#define_005fpeephole2">define_peephole2</a>,
Up: <a rel="up" accesskey="u" href="#Peephole-Definitions">Peephole Definitions</a>
</div>
<h4 class="subsection">16.18.1 RTL to Text Peephole Optimizers</h4>
<p><a name="index-define_005fpeephole-3610"></a>
A definition looks like this:
<pre class="smallexample"> (define_peephole
[<var>insn-pattern-1</var>
<var>insn-pattern-2</var>
...]
"<var>condition</var>"
"<var>template</var>"
"<var>optional-insn-attributes</var>")
</pre>
<p class="noindent">The last string operand may be omitted if you are not using any
machine-specific information in this machine description. If present,
it must obey the same rules as in a <code>define_insn</code>.
<p>In this skeleton, <var>insn-pattern-1</var> and so on are patterns to match
consecutive insns. The optimization applies to a sequence of insns when
<var>insn-pattern-1</var> matches the first one, <var>insn-pattern-2</var> matches
the next, and so on.
<p>Each of the insns matched by a peephole must also match a
<code>define_insn</code>. Peepholes are checked only at the last stage just
before code generation, and only optionally. Therefore, any insn which
would match a peephole but no <code>define_insn</code> will cause a crash in code
generation in an unoptimized compilation, or at various optimization
stages.
<p>The operands of the insns are matched with <code>match_operands</code>,
<code>match_operator</code>, and <code>match_dup</code>, as usual. What is not
usual is that the operand numbers apply to all the insn patterns in the
definition. So, you can check for identical operands in two insns by
using <code>match_operand</code> in one insn and <code>match_dup</code> in the
other.
<p>The operand constraints used in <code>match_operand</code> patterns do not have
any direct effect on the applicability of the peephole, but they will
be validated afterward, so make sure your constraints are general enough
to apply whenever the peephole matches. If the peephole matches
but the constraints are not satisfied, the compiler will crash.
<p>It is safe to omit constraints in all the operands of the peephole; or
you can write constraints which serve as a double-check on the criteria
previously tested.
<p>Once a sequence of insns matches the patterns, the <var>condition</var> is
checked. This is a C expression which makes the final decision whether to
perform the optimization (we do so if the expression is nonzero). If
<var>condition</var> is omitted (in other words, the string is empty) then the
optimization is applied to every sequence of insns that matches the
patterns.
<p>The defined peephole optimizations are applied after register allocation
is complete. Therefore, the peephole definition can check which
operands have ended up in which kinds of registers, just by looking at
the operands.
<p><a name="index-prev_005factive_005finsn-3611"></a>The way to refer to the operands in <var>condition</var> is to write
<code>operands[</code><var>i</var><code>]</code> for operand number <var>i</var> (as matched by
<code>(match_operand </code><var>i</var><code> ...)</code>). Use the variable <code>insn</code>
to refer to the last of the insns being matched; use
<code>prev_active_insn</code> to find the preceding insns.
<p><a name="index-dead_005for_005fset_005fp-3612"></a>When optimizing computations with intermediate results, you can use
<var>condition</var> to match only when the intermediate results are not used
elsewhere. Use the C expression <code>dead_or_set_p (</code><var>insn</var><code>,
</code><var>op</var><code>)</code>, where <var>insn</var> is the insn in which you expect the value
to be used for the last time (from the value of <code>insn</code>, together
with use of <code>prev_nonnote_insn</code>), and <var>op</var> is the intermediate
value (from <code>operands[</code><var>i</var><code>]</code>).
<p>Applying the optimization means replacing the sequence of insns with one
new insn. The <var>template</var> controls ultimate output of assembler code
for this combined insn. It works exactly like the template of a
<code>define_insn</code>. Operand numbers in this template are the same ones
used in matching the original sequence of insns.
<p>The result of a defined peephole optimizer does not need to match any of
the insn patterns in the machine description; it does not even have an
opportunity to match them. The peephole optimizer definition itself serves
as the insn pattern to control how the insn is output.
<p>Defined peephole optimizers are run as assembler code is being output,
so the insns they produce are never combined or rearranged in any way.
<p>Here is an example, taken from the 68000 machine description:
<pre class="smallexample"> (define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")
(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
{
rtx xoperands[2];
xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
#ifdef MOTOROLA
output_asm_insn ("move.l %1,(sp)", xoperands);
output_asm_insn ("move.l %1,-(sp)", operands);
return "fmove.d (sp)+,%0";
#else
output_asm_insn ("movel %1,sp@", xoperands);
output_asm_insn ("movel %1,sp@-", operands);
return "fmoved sp@+,%0";
#endif
})
</pre>
<p>The effect of this optimization is to change
<pre class="smallexample"> jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d0,sp@-
fmoved sp@+,fp0
</pre>
<p class="noindent">into
<pre class="smallexample"> jbsr _foobar
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0
</pre>
<p><var>insn-pattern-1</var> and so on look <em>almost</em> like the second
operand of <code>define_insn</code>. There is one important difference: the
second operand of <code>define_insn</code> consists of one or more RTX's
enclosed in square brackets. Usually, there is only one: then the same
action can be written as an element of a <code>define_peephole</code>. But
when there are multiple actions in a <code>define_insn</code>, they are
implicitly enclosed in a <code>parallel</code>. Then you must explicitly
write the <code>parallel</code>, and the square brackets within it, in the
<code>define_peephole</code>. Thus, if an insn pattern looks like this,
<pre class="smallexample"> (define_insn "divmodsi4"
[(set (match_operand:SI 0 "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]
"TARGET_68020"
"divsl%.l %2,%3:%0")
</pre>
<p class="noindent">then the way to mention this insn in a peephole is as follows:
<pre class="smallexample"> (define_peephole
[...
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])
...]
...)
</pre>
<div class="node">
<a name="define_peephole2"></a>
<a name="define_005fpeephole2"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#define_005fpeephole">define_peephole</a>,
Up: <a rel="up" accesskey="u" href="#Peephole-Definitions">Peephole Definitions</a>
</div>
<h4 class="subsection">16.18.2 RTL to RTL Peephole Optimizers</h4>
<p><a name="index-define_005fpeephole2-3613"></a>
The <code>define_peephole2</code> definition tells the compiler how to
substitute one sequence of instructions for another sequence,
what additional scratch registers may be needed and what their
lifetimes must be.
<pre class="smallexample"> (define_peephole2
[<var>insn-pattern-1</var>
<var>insn-pattern-2</var>
...]
"<var>condition</var>"
[<var>new-insn-pattern-1</var>
<var>new-insn-pattern-2</var>
...]
"<var>preparation-statements</var>")
</pre>
<p>The definition is almost identical to <code>define_split</code>
(see <a href="#Insn-Splitting">Insn Splitting</a>) except that the pattern to match is not a
single instruction, but a sequence of instructions.
<p>It is possible to request additional scratch registers for use in the
output template. If appropriate registers are not free, the pattern
will simply not match.
<p><a name="index-match_005fscratch-3614"></a><a name="index-match_005fdup-3615"></a>Scratch registers are requested with a <code>match_scratch</code> pattern at
the top level of the input pattern. The allocated register (initially) will
be dead at the point requested within the original sequence. If the scratch
is used at more than a single point, a <code>match_dup</code> pattern at the
top level of the input pattern marks the last position in the input sequence
at which the register must be available.
<p>Here is an example from the IA-32 machine description:
<pre class="smallexample"> (define_peephole2
[(match_scratch:SI 2 "r")
(parallel [(set (match_operand:SI 0 "register_operand" "")
(match_operator:SI 3 "arith_or_logical_operator"
[(match_dup 0)
(match_operand:SI 1 "memory_operand" "")]))
(clobber (reg:CC 17))])]
"! optimize_size && ! TARGET_READ_MODIFY"
[(set (match_dup 2) (match_dup 1))
(parallel [(set (match_dup 0)
(match_op_dup 3 [(match_dup 0) (match_dup 2)]))
(clobber (reg:CC 17))])]
"")
</pre>
<p class="noindent">This pattern tries to split a load from its use in the hopes that we'll be
able to schedule around the memory load latency. It allocates a single
<code>SImode</code> register of class <code>GENERAL_REGS</code> (<code>"r"</code>) that needs
to be live only at the point just before the arithmetic.
<p>A real example requiring extended scratch lifetimes is harder to come by,
so here's a silly made-up example:
<pre class="smallexample"> (define_peephole2
[(match_scratch:SI 4 "r")
(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
(set (match_operand:SI 2 "" "") (match_dup 1))
(match_dup 4)
(set (match_operand:SI 3 "" "") (match_dup 1))]
"/* <span class="roman">determine 1 does not overlap 0 and 2</span> */"
[(set (match_dup 4) (match_dup 1))
(set (match_dup 0) (match_dup 4))
(set (match_dup 2) (match_dup 4))]
(set (match_dup 3) (match_dup 4))]
"")
</pre>
<p class="noindent">If we had not added the <code>(match_dup 4)</code> in the middle of the input
sequence, it might have been the case that the register we chose at the
beginning of the sequence is killed by the first or second <code>set</code>.
<div class="node">
<a name="Insn-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Conditional-Execution">Conditional Execution</a>,
Previous: <a rel="previous" accesskey="p" href="#Peephole-Definitions">Peephole Definitions</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.19 Instruction Attributes</h3>
<p><a name="index-insn-attributes-3616"></a><a name="index-instruction-attributes-3617"></a>
In addition to describing the instruction supported by the target machine,
the <samp><span class="file">md</span></samp> file also defines a group of <dfn>attributes</dfn> and a set of
values for each. Every generated insn is assigned a value for each attribute.
One possible attribute would be the effect that the insn has on the machine's
condition code. This attribute can then be used by <code>NOTICE_UPDATE_CC</code>
to track the condition codes.
<ul class="menu">
<li><a accesskey="1" href="#Defining-Attributes">Defining Attributes</a>: Specifying attributes and their values.
<li><a accesskey="2" href="#Expressions">Expressions</a>: Valid expressions for attribute values.
<li><a accesskey="3" href="#Tagging-Insns">Tagging Insns</a>: Assigning attribute values to insns.
<li><a accesskey="4" href="#Attr-Example">Attr Example</a>: An example of assigning attributes.
<li><a accesskey="5" href="#Insn-Lengths">Insn Lengths</a>: Computing the length of insns.
<li><a accesskey="6" href="#Constant-Attributes">Constant Attributes</a>: Defining attributes that are constant.
<li><a accesskey="7" href="#Delay-Slots">Delay Slots</a>: Defining delay slots required for a machine.
<li><a accesskey="8" href="#Processor-pipeline-description">Processor pipeline description</a>: Specifying information for insn scheduling.
</ul>
<div class="node">
<a name="Defining-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Expressions">Expressions</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.1 Defining Attributes and their Values</h4>
<p><a name="index-defining-attributes-and-their-values-3618"></a><a name="index-attributes_002c-defining-3619"></a>
<a name="index-define_005fattr-3620"></a>The <code>define_attr</code> expression is used to define each attribute required
by the target machine. It looks like:
<pre class="smallexample"> (define_attr <var>name</var> <var>list-of-values</var> <var>default</var>)
</pre>
<p><var>name</var> is a string specifying the name of the attribute being defined.
<p><var>list-of-values</var> is either a string that specifies a comma-separated
list of values that can be assigned to the attribute, or a null string to
indicate that the attribute takes numeric values.
<p><var>default</var> is an attribute expression that gives the value of this
attribute for insns that match patterns whose definition does not include
an explicit value for this attribute. See <a href="#Attr-Example">Attr Example</a>, for more
information on the handling of defaults. See <a href="#Constant-Attributes">Constant Attributes</a>,
for information on attributes that do not depend on any particular insn.
<p><a name="index-insn_002dattr_002eh-3621"></a>For each defined attribute, a number of definitions are written to the
<samp><span class="file">insn-attr.h</span></samp> file. For cases where an explicit set of values is
specified for an attribute, the following are defined:
<ul>
<li>A ‘<samp><span class="samp">#define</span></samp>’ is written for the symbol ‘<samp><span class="samp">HAVE_ATTR_</span><var>name</var></samp>’.
<li>An enumerated class is defined for ‘<samp><span class="samp">attr_</span><var>name</var></samp>’ with
elements of the form ‘<samp><var>upper-name</var><span class="samp">_</span><var>upper-value</var></samp>’ where
the attribute name and value are first converted to uppercase.
<li>A function ‘<samp><span class="samp">get_attr_</span><var>name</var></samp>’ is defined that is passed an insn and
returns the attribute value for that insn.
</ul>
<p>For example, if the following is present in the <samp><span class="file">md</span></samp> file:
<pre class="smallexample"> (define_attr "type" "branch,fp,load,store,arith" ...)
</pre>
<p class="noindent">the following lines will be written to the file <samp><span class="file">insn-attr.h</span></samp>.
<pre class="smallexample"> #define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();
</pre>
<p>If the attribute takes numeric values, no <code>enum</code> type will be
defined and the function to obtain the attribute's value will return
<code>int</code>.
<p>There are attributes which are tied to a specific meaning. These
attributes are not free to use for other purposes:
<dl>
<dt><code>length</code><dd>The <code>length</code> attribute is used to calculate the length of emitted
code chunks. This is especially important when verifying branch
distances. See <a href="#Insn-Lengths">Insn Lengths</a>.
<br><dt><code>enabled</code><dd>The <code>enabled</code> attribute can be defined to prevent certain
alternatives of an insn definition from being used during code
generation. See <a href="#Disable-Insn-Alternatives">Disable Insn Alternatives</a>.
</dl>
<p><a name="index-define_005fenum_005fattr-3622"></a><a name="define_005fenum_005fattr"></a>Another way of defining an attribute is to use:
<pre class="smallexample"> (define_enum_attr "<var>attr</var>" "<var>enum</var>" <var>default</var>)
</pre>
<p>This works in just the same way as <code>define_attr</code>, except that
the list of values is taken from a separate enumeration called
<var>enum</var> (see <a href="#define_005fenum">define_enum</a>). This form allows you to use
the same list of values for several attributes without having to
repeat the list each time. For example:
<pre class="smallexample"> (define_enum "processor" [
model_a
model_b
...
])
(define_enum_attr "arch" "processor"
(const (symbol_ref "target_arch")))
(define_enum_attr "tune" "processor"
(const (symbol_ref "target_tune")))
</pre>
<p>defines the same attributes as:
<pre class="smallexample"> (define_attr "arch" "model_a,model_b,..."
(const (symbol_ref "target_arch")))
(define_attr "tune" "model_a,model_b,..."
(const (symbol_ref "target_tune")))
</pre>
<p>but without duplicating the processor list. The second example defines two
separate C enums (<code>attr_arch</code> and <code>attr_tune</code>) whereas the first
defines a single C enum (<code>processor</code>).
<div class="node">
<a name="Expressions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tagging-Insns">Tagging Insns</a>,
Previous: <a rel="previous" accesskey="p" href="#Defining-Attributes">Defining Attributes</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.2 Attribute Expressions</h4>
<p><a name="index-attribute-expressions-3623"></a>
RTL expressions used to define attributes use the codes described above
plus a few specific to attribute definitions, to be discussed below.
Attribute value expressions must have one of the following forms:
<a name="index-g_t_0040code_007bconst_005fint_007d-and-attributes-3624"></a>
<dl><dt><code>(const_int </code><var>i</var><code>)</code><dd>The integer <var>i</var> specifies the value of a numeric attribute. <var>i</var>
must be non-negative.
<p>The value of a numeric attribute can be specified either with a
<code>const_int</code>, or as an integer represented as a string in
<code>const_string</code>, <code>eq_attr</code> (see below), <code>attr</code>,
<code>symbol_ref</code>, simple arithmetic expressions, and <code>set_attr</code>
overrides on specific instructions (see <a href="#Tagging-Insns">Tagging Insns</a>).
<p><a name="index-g_t_0040code_007bconst_005fstring_007d-and-attributes-3625"></a><br><dt><code>(const_string </code><var>value</var><code>)</code><dd>The string <var>value</var> specifies a constant attribute value.
If <var>value</var> is specified as ‘<samp><span class="samp">"*"</span></samp>’, it means that the default value of
the attribute is to be used for the insn containing this expression.
‘<samp><span class="samp">"*"</span></samp>’ obviously cannot be used in the <var>default</var> expression
of a <code>define_attr</code>.
<p>If the attribute whose value is being specified is numeric, <var>value</var>
must be a string containing a non-negative integer (normally
<code>const_int</code> would be used in this case). Otherwise, it must
contain one of the valid values for the attribute.
<p><a name="index-g_t_0040code_007bif_005fthen_005felse_007d-and-attributes-3626"></a><br><dt><code>(if_then_else </code><var>test</var> <var>true-value</var> <var>false-value</var><code>)</code><dd><var>test</var> specifies an attribute test, whose format is defined below.
The value of this expression is <var>true-value</var> if <var>test</var> is true,
otherwise it is <var>false-value</var>.
<p><a name="index-g_t_0040code_007bcond_007d-and-attributes-3627"></a><br><dt><code>(cond [</code><var>test1</var> <var>value1</var><code> ...] </code><var>default</var><code>)</code><dd>The first operand of this expression is a vector containing an even
number of expressions and consisting of pairs of <var>test</var> and <var>value</var>
expressions. The value of the <code>cond</code> expression is that of the
<var>value</var> corresponding to the first true <var>test</var> expression. If
none of the <var>test</var> expressions are true, the value of the <code>cond</code>
expression is that of the <var>default</var> expression.
</dl>
<p><var>test</var> expressions can have one of the following forms:
<a name="index-g_t_0040code_007bconst_005fint_007d-and-attribute-tests-3628"></a>
<dl><dt><code>(const_int </code><var>i</var><code>)</code><dd>This test is true if <var>i</var> is nonzero and false otherwise.
<p><a name="index-g_t_0040code_007bnot_007d-and-attributes-3629"></a><a name="index-g_t_0040code_007bior_007d-and-attributes-3630"></a><a name="index-g_t_0040code_007band_007d-and-attributes-3631"></a><br><dt><code>(not </code><var>test</var><code>)</code><dt><code>(ior </code><var>test1</var> <var>test2</var><code>)</code><dt><code>(and </code><var>test1</var> <var>test2</var><code>)</code><dd>These tests are true if the indicated logical function is true.
<p><a name="index-g_t_0040code_007bmatch_005foperand_007d-and-attributes-3632"></a><br><dt><code>(match_operand:</code><var>m</var> <var>n</var> <var>pred</var> <var>constraints</var><code>)</code><dd>This test is true if operand <var>n</var> of the insn whose attribute value
is being determined has mode <var>m</var> (this part of the test is ignored
if <var>m</var> is <code>VOIDmode</code>) and the function specified by the string
<var>pred</var> returns a nonzero value when passed operand <var>n</var> and mode
<var>m</var> (this part of the test is ignored if <var>pred</var> is the null
string).
<p>The <var>constraints</var> operand is ignored and should be the null string.
<p><a name="index-g_t_0040code_007ble_007d-and-attributes-3633"></a><a name="index-g_t_0040code_007bleu_007d-and-attributes-3634"></a><a name="index-g_t_0040code_007blt_007d-and-attributes-3635"></a><a name="index-g_t_0040code_007bgt_007d-and-attributes-3636"></a><a name="index-g_t_0040code_007bgtu_007d-and-attributes-3637"></a><a name="index-g_t_0040code_007bge_007d-and-attributes-3638"></a><a name="index-g_t_0040code_007bgeu_007d-and-attributes-3639"></a><a name="index-g_t_0040code_007bne_007d-and-attributes-3640"></a><a name="index-g_t_0040code_007beq_007d-and-attributes-3641"></a><a name="index-g_t_0040code_007bplus_007d-and-attributes-3642"></a><a name="index-g_t_0040code_007bminus_007d-and-attributes-3643"></a><a name="index-g_t_0040code_007bmult_007d-and-attributes-3644"></a><a name="index-g_t_0040code_007bdiv_007d-and-attributes-3645"></a><a name="index-g_t_0040code_007bmod_007d-and-attributes-3646"></a><a name="index-g_t_0040code_007babs_007d-and-attributes-3647"></a><a name="index-g_t_0040code_007bneg_007d-and-attributes-3648"></a><a name="index-g_t_0040code_007bashift_007d-and-attributes-3649"></a><a name="index-g_t_0040code_007blshiftrt_007d-and-attributes-3650"></a><a name="index-g_t_0040code_007bashiftrt_007d-and-attributes-3651"></a><br><dt><code>(le </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(leu </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(lt </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(ltu </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(gt </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(gtu </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(ge </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(geu </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(ne </code><var>arith1</var> <var>arith2</var><code>)</code><dt><code>(eq </code><var>arith1</var> <var>arith2</var><code>)</code><dd>These tests are true if the indicated comparison of the two arithmetic
expressions is true. Arithmetic expressions are formed with
<code>plus</code>, <code>minus</code>, <code>mult</code>, <code>div</code>, <code>mod</code>,
<code>abs</code>, <code>neg</code>, <code>and</code>, <code>ior</code>, <code>xor</code>, <code>not</code>,
<code>ashift</code>, <code>lshiftrt</code>, and <code>ashiftrt</code> expressions.
<p><a name="index-get_005fattr-3652"></a><code>const_int</code> and <code>symbol_ref</code> are always valid terms (see <a href="#Insn-Lengths">Insn Lengths</a>,for additional forms). <code>symbol_ref</code> is a string
denoting a C expression that yields an <code>int</code> when evaluated by the
‘<samp><span class="samp">get_attr_...</span></samp>’ routine. It should normally be a global
variable.
<p><a name="index-eq_005fattr-3653"></a><br><dt><code>(eq_attr </code><var>name</var> <var>value</var><code>)</code><dd><var>name</var> is a string specifying the name of an attribute.
<p><var>value</var> is a string that is either a valid value for attribute
<var>name</var>, a comma-separated list of values, or ‘<samp><span class="samp">!</span></samp>’ followed by a
value or list. If <var>value</var> does not begin with a ‘<samp><span class="samp">!</span></samp>’, this
test is true if the value of the <var>name</var> attribute of the current
insn is in the list specified by <var>value</var>. If <var>value</var> begins
with a ‘<samp><span class="samp">!</span></samp>’, this test is true if the attribute's value is
<em>not</em> in the specified list.
<p>For example,
<pre class="smallexample"> (eq_attr "type" "load,store")
</pre>
<p class="noindent">is equivalent to
<pre class="smallexample"> (ior (eq_attr "type" "load") (eq_attr "type" "store"))
</pre>
<p>If <var>name</var> specifies an attribute of ‘<samp><span class="samp">alternative</span></samp>’, it refers to the
value of the compiler variable <code>which_alternative</code>
(see <a href="#Output-Statement">Output Statement</a>) and the values must be small integers. For
example,
<pre class="smallexample"> (eq_attr "alternative" "2,3")
</pre>
<p class="noindent">is equivalent to
<pre class="smallexample"> (ior (eq (symbol_ref "which_alternative") (const_int 2))
(eq (symbol_ref "which_alternative") (const_int 3)))
</pre>
<p>Note that, for most attributes, an <code>eq_attr</code> test is simplified in cases
where the value of the attribute being tested is known for all insns matching
a particular pattern. This is by far the most common case.
<p><a name="index-attr_005fflag-3654"></a><br><dt><code>(attr_flag </code><var>name</var><code>)</code><dd>The value of an <code>attr_flag</code> expression is true if the flag
specified by <var>name</var> is true for the <code>insn</code> currently being
scheduled.
<p><var>name</var> is a string specifying one of a fixed set of flags to test.
Test the flags <code>forward</code> and <code>backward</code> to determine the
direction of a conditional branch. Test the flags <code>very_likely</code>,
<code>likely</code>, <code>very_unlikely</code>, and <code>unlikely</code> to determine
if a conditional branch is expected to be taken.
<p>If the <code>very_likely</code> flag is true, then the <code>likely</code> flag is also
true. Likewise for the <code>very_unlikely</code> and <code>unlikely</code> flags.
<p>This example describes a conditional branch delay slot which
can be nullified for forward branches that are taken (annul-true) or
for backward branches which are not taken (annul-false).
<pre class="smallexample"> (define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")
(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")
(attr_flag "backward"))])
</pre>
<p>The <code>forward</code> and <code>backward</code> flags are false if the current
<code>insn</code> being scheduled is not a conditional branch.
<p>The <code>very_likely</code> and <code>likely</code> flags are true if the
<code>insn</code> being scheduled is not a conditional branch.
The <code>very_unlikely</code> and <code>unlikely</code> flags are false if the
<code>insn</code> being scheduled is not a conditional branch.
<p><code>attr_flag</code> is only used during delay slot scheduling and has no
meaning to other passes of the compiler.
<p><a name="index-attr-3655"></a><br><dt><code>(attr </code><var>name</var><code>)</code><dd>The value of another attribute is returned. This is most useful
for numeric attributes, as <code>eq_attr</code> and <code>attr_flag</code>
produce more efficient code for non-numeric attributes.
</dl>
<div class="node">
<a name="Tagging-Insns"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attr-Example">Attr Example</a>,
Previous: <a rel="previous" accesskey="p" href="#Expressions">Expressions</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.3 Assigning Attribute Values to Insns</h4>
<p><a name="index-tagging-insns-3656"></a><a name="index-assigning-attribute-values-to-insns-3657"></a>
The value assigned to an attribute of an insn is primarily determined by
which pattern is matched by that insn (or which <code>define_peephole</code>
generated it). Every <code>define_insn</code> and <code>define_peephole</code> can
have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular
insn is set to the default value for that attribute, as specified in its
<code>define_attr</code>. Extensive use of default values for attributes
permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the
next section.
<p>The optional last argument of <code>define_insn</code> and
<code>define_peephole</code> is a vector of expressions, each of which defines
the value for a single attribute. The most general way of assigning an
attribute's value is to use a <code>set</code> expression whose first operand is an
<code>attr</code> expression giving the name of the attribute being set. The
second operand of the <code>set</code> is an attribute expression
(see <a href="#Expressions">Expressions</a>) giving the value of the attribute.
<p>When the attribute value depends on the ‘<samp><span class="samp">alternative</span></samp>’ attribute
(i.e., which is the applicable alternative in the constraint of the
insn), the <code>set_attr_alternative</code> expression can be used. It
allows the specification of a vector of attribute expressions, one for
each alternative.
<p><a name="index-set_005fattr-3658"></a>When the generality of arbitrary attribute expressions is not required,
the simpler <code>set_attr</code> expression can be used, which allows
specifying a string giving either a single attribute value or a list
of attribute values, one for each alternative.
<p>The form of each of the above specifications is shown below. In each case,
<var>name</var> is a string specifying the attribute to be set.
<dl>
<dt><code>(set_attr </code><var>name</var> <var>value-string</var><code>)</code><dd><var>value-string</var> is either a string giving the desired attribute value,
or a string containing a comma-separated list giving the values for
succeeding alternatives. The number of elements must match the number
of alternatives in the constraint of the insn pattern.
<p>Note that it may be useful to specify ‘<samp><span class="samp">*</span></samp>’ for some alternative, in
which case the attribute will assume its default value for insns matching
that alternative.
<p><a name="index-set_005fattr_005falternative-3659"></a><br><dt><code>(set_attr_alternative </code><var>name</var><code> [</code><var>value1</var> <var>value2</var><code> ...])</code><dd>Depending on the alternative of the insn, the value will be one of the
specified values. This is a shorthand for using a <code>cond</code> with
tests on the ‘<samp><span class="samp">alternative</span></samp>’ attribute.
<p><a name="index-attr-3660"></a><br><dt><code>(set (attr </code><var>name</var><code>) </code><var>value</var><code>)</code><dd>The first operand of this <code>set</code> must be the special RTL expression
<code>attr</code>, whose sole operand is a string giving the name of the
attribute being set. <var>value</var> is the value of the attribute.
</dl>
<p>The following shows three different ways of representing the same
attribute value specification:
<pre class="smallexample"> (set_attr "type" "load,store,arith")
(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])
(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")
(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))
</pre>
<p><a name="index-define_005fasm_005fattributes-3661"></a>The <code>define_asm_attributes</code> expression provides a mechanism to
specify the attributes assigned to insns produced from an <code>asm</code>
statement. It has the form:
<pre class="smallexample"> (define_asm_attributes [<var>attr-sets</var>])
</pre>
<p class="noindent">where <var>attr-sets</var> is specified the same as for both the
<code>define_insn</code> and the <code>define_peephole</code> expressions.
<p>These values will typically be the “worst case” attribute values. For
example, they might indicate that the condition code will be clobbered.
<p>A specification for a <code>length</code> attribute is handled specially. The
way to compute the length of an <code>asm</code> insn is to multiply the
length specified in the expression <code>define_asm_attributes</code> by the
number of machine instructions specified in the <code>asm</code> statement,
determined by counting the number of semicolons and newlines in the
string. Therefore, the value of the <code>length</code> attribute specified
in a <code>define_asm_attributes</code> should be the maximum possible length
of a single machine instruction.
<div class="node">
<a name="Attr-Example"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Insn-Lengths">Insn Lengths</a>,
Previous: <a rel="previous" accesskey="p" href="#Tagging-Insns">Tagging Insns</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.4 Example of Attribute Specifications</h4>
<p><a name="index-attribute-specifications-example-3662"></a><a name="index-attribute-specifications-3663"></a>
The judicious use of defaulting is important in the efficient use of
insn attributes. Typically, insns are divided into <dfn>types</dfn> and an
attribute, customarily called <code>type</code>, is used to represent this
value. This attribute is normally used only to define the default value
for other attributes. An example will clarify this usage.
<p>Assume we have a RISC machine with a condition code and in which only
full-word operations are performed in registers. Let us assume that we
can divide all insns into loads, stores, (integer) arithmetic
operations, floating point operations, and branches.
<p>Here we will concern ourselves with determining the effect of an insn on
the condition code and will limit ourselves to the following possible
effects: The condition code can be set unpredictably (clobbered), not
be changed, be set to agree with the results of the operation, or only
changed if the item previously set into the condition code has been
modified.
<p>Here is part of a sample <samp><span class="file">md</span></samp> file for such a machine:
<pre class="smallexample"> (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")
(const_string "change0")
(eq_attr "type" "store,branch")
(const_string "unchanged")
(eq_attr "type" "arith")
(if_then_else (match_operand:SI 0 "" "")
(const_string "set")
(const_string "clobber"))]
(const_string "clobber")))
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")
(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"
[(set_attr "type" "arith,load,store")])
</pre>
<p>Note that we assume in the above example that arithmetic operations
performed on quantities smaller than a machine word clobber the condition
code since they will set the condition code to a value corresponding to the
full-word result.
<div class="node">
<a name="Insn-Lengths"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constant-Attributes">Constant Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Attr-Example">Attr Example</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.5 Computing the Length of an Insn</h4>
<p><a name="index-insn-lengths_002c-computing-3664"></a><a name="index-computing-the-length-of-an-insn-3665"></a>
For many machines, multiple types of branch instructions are provided, each
for different length branch displacements. In most cases, the assembler
will choose the correct instruction to use. However, when the assembler
cannot do so, GCC can when a special attribute, the <code>length</code>
attribute, is defined. This attribute must be defined to have numeric
values by specifying a null string in its <code>define_attr</code>.
<p>In the case of the <code>length</code> attribute, two additional forms of
arithmetic terms are allowed in test expressions:
<a name="index-g_t_0040code_007bmatch_005fdup_007d-and-attributes-3666"></a>
<dl><dt><code>(match_dup </code><var>n</var><code>)</code><dd>This refers to the address of operand <var>n</var> of the current insn, which
must be a <code>label_ref</code>.
<p><a name="index-g_t_0040code_007bpc_007d-and-attributes-3667"></a><br><dt><code>(pc)</code><dd>This refers to the address of the <em>current</em> insn. It might have
been more consistent with other usage to make this the address of the
<em>next</em> insn but this would be confusing because the length of the
current insn is to be computed.
</dl>
<p><a name="index-g_t_0040code_007baddr_005fvec_007d_002c-length-of-3668"></a><a name="index-g_t_0040code_007baddr_005fdiff_005fvec_007d_002c-length-of-3669"></a>For normal insns, the length will be determined by value of the
<code>length</code> attribute. In the case of <code>addr_vec</code> and
<code>addr_diff_vec</code> insn patterns, the length is computed as
the number of vectors multiplied by the size of each vector.
<p>Lengths are measured in addressable storage units (bytes).
<p>The following macros can be used to refine the length computation:
<a name="index-ADJUST_005fINSN_005fLENGTH-3670"></a>
<dl><dt><code>ADJUST_INSN_LENGTH (</code><var>insn</var><code>, </code><var>length</var><code>)</code><dd>If defined, modifies the length assigned to instruction <var>insn</var> as a
function of the context in which it is used. <var>length</var> is an lvalue
that contains the initially computed length of the insn and should be
updated with the correct length of the insn.
<p>This macro will normally not be required. A case in which it is
required is the ROMP. On this machine, the size of an <code>addr_vec</code>
insn must be increased by two to compensate for the fact that alignment
may be required.
</dl>
<p><a name="index-get_005fattr_005flength-3671"></a>The routine that returns <code>get_attr_length</code> (the value of the
<code>length</code> attribute) can be used by the output routine to
determine the form of the branch instruction to be written, as the
example below illustrates.
<p>As an example of the specification of variable-length branches, consider
the IBM 360. If we adopt the convention that a register will be set to
the starting address of a function, we can jump to labels within 4k of
the start using a four-byte instruction. Otherwise, we need a six-byte
sequence to load the address from memory and then branch to it.
<p>On such a machine, a pattern for a branch instruction might be specified
as follows:
<pre class="smallexample"> (define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
{
return (get_attr_length (insn) == 4
? "b %l0" : "l r15,=a(%l0); br r15");
}
[(set (attr "length")
(if_then_else (lt (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])
</pre>
<div class="node">
<a name="Constant-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Delay-Slots">Delay Slots</a>,
Previous: <a rel="previous" accesskey="p" href="#Insn-Lengths">Insn Lengths</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.6 Constant Attributes</h4>
<p><a name="index-constant-attributes-3672"></a>
A special form of <code>define_attr</code>, where the expression for the
default value is a <code>const</code> expression, indicates an attribute that
is constant for a given run of the compiler. Constant attributes may be
used to specify which variety of processor is used. For example,
<pre class="smallexample"> (define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")
(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))
(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")
(const_string "fast")
(const_string "slow"))))
</pre>
<p>The routine generated for constant attributes has no parameters as it
does not depend on any particular insn. RTL expressions used to define
the value of a constant attribute may use the <code>symbol_ref</code> form,
but may not use either the <code>match_operand</code> form or <code>eq_attr</code>
forms involving insn attributes.
<div class="node">
<a name="Delay-Slots"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Processor-pipeline-description">Processor pipeline description</a>,
Previous: <a rel="previous" accesskey="p" href="#Constant-Attributes">Constant Attributes</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.7 Delay Slot Scheduling</h4>
<p><a name="index-delay-slots_002c-defining-3673"></a>
The insn attribute mechanism can be used to specify the requirements for
delay slots, if any, on a target machine. An instruction is said to
require a <dfn>delay slot</dfn> if some instructions that are physically
after the instruction are executed as if they were located before it.
Classic examples are branch and call instructions, which often execute
the following instruction before the branch or call is performed.
<p>On some machines, conditional branch instructions can optionally
<dfn>annul</dfn> instructions in the delay slot. This means that the
instruction will not be executed for certain branch outcomes. Both
instructions that annul if the branch is true and instructions that
annul if the branch is false are supported.
<p>Delay slot scheduling differs from instruction scheduling in that
determining whether an instruction needs a delay slot is dependent only
on the type of instruction being generated, not on data flow between the
instructions. See the next section for a discussion of data-dependent
instruction scheduling.
<p><a name="index-define_005fdelay-3674"></a>The requirement of an insn needing one or more delay slots is indicated
via the <code>define_delay</code> expression. It has the following form:
<pre class="smallexample"> (define_delay <var>test</var>
[<var>delay-1</var> <var>annul-true-1</var> <var>annul-false-1</var>
<var>delay-2</var> <var>annul-true-2</var> <var>annul-false-2</var>
...])
</pre>
<p><var>test</var> is an attribute test that indicates whether this
<code>define_delay</code> applies to a particular insn. If so, the number of
required delay slots is determined by the length of the vector specified
as the second argument. An insn placed in delay slot <var>n</var> must
satisfy attribute test <var>delay-n</var>. <var>annul-true-n</var> is an
attribute test that specifies which insns may be annulled if the branch
is true. Similarly, <var>annul-false-n</var> specifies which insns in the
delay slot may be annulled if the branch is false. If annulling is not
supported for that delay slot, <code>(nil)</code> should be coded.
<p>For example, in the common case where branch and call insns require
a single delay slot, which may contain any insn other than a branch or
call, the following would be placed in the <samp><span class="file">md</span></samp> file:
<pre class="smallexample"> (define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])
</pre>
<p>Multiple <code>define_delay</code> expressions may be specified. In this
case, each such expression specifies different delay slot requirements
and there must be no insn for which tests in two <code>define_delay</code>
expressions are both true.
<p>For example, if we have a machine that requires one delay slot for branches
but two for calls, no delay slot can contain a branch or call insn,
and any valid insn in the delay slot for the branch can be annulled if the
branch is true, we might represent this as follows:
<pre class="smallexample"> (define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
(nil)])
(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])
</pre>
<!-- the above is *still* too long. -mew 4feb93 -->
<div class="node">
<a name="Processor-pipeline-description"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Delay-Slots">Delay Slots</a>,
Up: <a rel="up" accesskey="u" href="#Insn-Attributes">Insn Attributes</a>
</div>
<h4 class="subsection">16.19.8 Specifying processor pipeline description</h4>
<p><a name="index-processor-pipeline-description-3675"></a><a name="index-processor-functional-units-3676"></a><a name="index-instruction-latency-time-3677"></a><a name="index-interlock-delays-3678"></a><a name="index-data-dependence-delays-3679"></a><a name="index-reservation-delays-3680"></a><a name="index-pipeline-hazard-recognizer-3681"></a><a name="index-automaton-based-pipeline-description-3682"></a><a name="index-regular-expressions-3683"></a><a name="index-deterministic-finite-state-automaton-3684"></a><a name="index-automaton-based-scheduler-3685"></a><a name="index-RISC-3686"></a><a name="index-VLIW-3687"></a>
To achieve better performance, most modern processors
(super-pipelined, superscalar <acronym>RISC</acronym>, and <acronym>VLIW</acronym>
processors) have many <dfn>functional units</dfn> on which several
instructions can be executed simultaneously. An instruction starts
execution if its issue conditions are satisfied. If not, the
instruction is stalled until its conditions are satisfied. Such
<dfn>interlock (pipeline) delay</dfn> causes interruption of the fetching
of successor instructions (or demands nop instructions, e.g. for some
MIPS processors).
<p>There are two major kinds of interlock delays in modern processors.
The first one is a data dependence delay determining <dfn>instruction
latency time</dfn>. The instruction execution is not started until all
source data have been evaluated by prior instructions (there are more
complex cases when the instruction execution starts even when the data
are not available but will be ready in given time after the
instruction execution start). Taking the data dependence delays into
account is simple. The data dependence (true, output, and
anti-dependence) delay between two instructions is given by a
constant. In most cases this approach is adequate. The second kind
of interlock delays is a reservation delay. The reservation delay
means that two instructions under execution will be in need of shared
processors resources, i.e. buses, internal registers, and/or
functional units, which are reserved for some time. Taking this kind
of delay into account is complex especially for modern <acronym>RISC</acronym>
processors.
<p>The task of exploiting more processor parallelism is solved by an
instruction scheduler. For a better solution to this problem, the
instruction scheduler has to have an adequate description of the
processor parallelism (or <dfn>pipeline description</dfn>). GCC
machine descriptions describe processor parallelism and functional
unit reservations for groups of instructions with the aid of
<dfn>regular expressions</dfn>.
<p>The GCC instruction scheduler uses a <dfn>pipeline hazard recognizer</dfn> to
figure out the possibility of the instruction issue by the processor
on a given simulated processor cycle. The pipeline hazard recognizer is
automatically generated from the processor pipeline description. The
pipeline hazard recognizer generated from the machine description
is based on a deterministic finite state automaton (<acronym>DFA</acronym>):
the instruction issue is possible if there is a transition from one
automaton state to another one. This algorithm is very fast, and
furthermore, its speed is not dependent on processor
complexity<a rel="footnote" href="#fn-5" name="fnd-5"><sup>5</sup></a>.
<p><a name="index-automaton-based-pipeline-description-3688"></a>The rest of this section describes the directives that constitute
an automaton-based processor pipeline description. The order of
these constructions within the machine description file is not
important.
<p><a name="index-define_005fautomaton-3689"></a><a name="index-pipeline-hazard-recognizer-3690"></a>The following optional construction describes names of automata
generated and used for the pipeline hazards recognition. Sometimes
the generated finite state automaton used by the pipeline hazard
recognizer is large. If we use more than one automaton and bind functional
units to the automata, the total size of the automata is usually
less than the size of the single automaton. If there is no one such
construction, only one finite state automaton is generated.
<pre class="smallexample"> (define_automaton <var>automata-names</var>)
</pre>
<p><var>automata-names</var> is a string giving names of the automata. The
names are separated by commas. All the automata should have unique names.
The automaton name is used in the constructions <code>define_cpu_unit</code> and
<code>define_query_cpu_unit</code>.
<p><a name="index-define_005fcpu_005funit-3691"></a><a name="index-processor-functional-units-3692"></a>Each processor functional unit used in the description of instruction
reservations should be described by the following construction.
<pre class="smallexample"> (define_cpu_unit <var>unit-names</var> [<var>automaton-name</var>])
</pre>
<p><var>unit-names</var> is a string giving the names of the functional units
separated by commas. Don't use name ‘<samp><span class="samp">nothing</span></samp>’, it is reserved
for other goals.
<p><var>automaton-name</var> is a string giving the name of the automaton with
which the unit is bound. The automaton should be described in
construction <code>define_automaton</code>. You should give
<dfn>automaton-name</dfn>, if there is a defined automaton.
<p>The assignment of units to automata are constrained by the uses of the
units in insn reservations. The most important constraint is: if a
unit reservation is present on a particular cycle of an alternative
for an insn reservation, then some unit from the same automaton must
be present on the same cycle for the other alternatives of the insn
reservation. The rest of the constraints are mentioned in the
description of the subsequent constructions.
<p><a name="index-define_005fquery_005fcpu_005funit-3693"></a><a name="index-querying-function-unit-reservations-3694"></a>The following construction describes CPU functional units analogously
to <code>define_cpu_unit</code>. The reservation of such units can be
queried for an automaton state. The instruction scheduler never
queries reservation of functional units for given automaton state. So
as a rule, you don't need this construction. This construction could
be used for future code generation goals (e.g. to generate
<acronym>VLIW</acronym> insn templates).
<pre class="smallexample"> (define_query_cpu_unit <var>unit-names</var> [<var>automaton-name</var>])
</pre>
<p><var>unit-names</var> is a string giving names of the functional units
separated by commas.
<p><var>automaton-name</var> is a string giving the name of the automaton with
which the unit is bound.
<p><a name="index-define_005finsn_005freservation-3695"></a><a name="index-instruction-latency-time-3696"></a><a name="index-regular-expressions-3697"></a><a name="index-data-bypass-3698"></a>The following construction is the major one to describe pipeline
characteristics of an instruction.
<pre class="smallexample"> (define_insn_reservation <var>insn-name</var> <var>default_latency</var>
<var>condition</var> <var>regexp</var>)
</pre>
<p><var>default_latency</var> is a number giving latency time of the
instruction. There is an important difference between the old
description and the automaton based pipeline description. The latency
time is used for all dependencies when we use the old description. In
the automaton based pipeline description, the given latency time is only
used for true dependencies. The cost of anti-dependencies is always
zero and the cost of output dependencies is the difference between
latency times of the producing and consuming insns (if the difference
is negative, the cost is considered to be zero). You can always
change the default costs for any description by using the target hook
<code>TARGET_SCHED_ADJUST_COST</code> (see <a href="#Scheduling">Scheduling</a>).
<p><var>insn-name</var> is a string giving the internal name of the insn. The
internal names are used in constructions <code>define_bypass</code> and in
the automaton description file generated for debugging. The internal
name has nothing in common with the names in <code>define_insn</code>. It is a
good practice to use insn classes described in the processor manual.
<p><var>condition</var> defines what RTL insns are described by this
construction. You should remember that you will be in trouble if
<var>condition</var> for two or more different
<code>define_insn_reservation</code> constructions is TRUE for an insn. In
this case what reservation will be used for the insn is not defined.
Such cases are not checked during generation of the pipeline hazards
recognizer because in general recognizing that two conditions may have
the same value is quite difficult (especially if the conditions
contain <code>symbol_ref</code>). It is also not checked during the
pipeline hazard recognizer work because it would slow down the
recognizer considerably.
<p><var>regexp</var> is a string describing the reservation of the cpu's functional
units by the instruction. The reservations are described by a regular
expression according to the following syntax:
<pre class="smallexample"> regexp = regexp "," oneof
| oneof
oneof = oneof "|" allof
| allof
allof = allof "+" repeat
| repeat
repeat = element "*" number
| element
element = cpu_function_unit_name
| reservation_name
| result_name
| "nothing"
| "(" regexp ")"
</pre>
<ul>
<li>‘<samp><span class="samp">,</span></samp>’ is used for describing the start of the next cycle in
the reservation.
<li>‘<samp><span class="samp">|</span></samp>’ is used for describing a reservation described by the first
regular expression <strong>or</strong> a reservation described by the second
regular expression <strong>or</strong> etc.
<li>‘<samp><span class="samp">+</span></samp>’ is used for describing a reservation described by the first
regular expression <strong>and</strong> a reservation described by the
second regular expression <strong>and</strong> etc.
<li>‘<samp><span class="samp">*</span></samp>’ is used for convenience and simply means a sequence in which
the regular expression are repeated <var>number</var> times with cycle
advancing (see ‘<samp><span class="samp">,</span></samp>’).
<li>‘<samp><span class="samp">cpu_function_unit_name</span></samp>’ denotes reservation of the named
functional unit.
<li>‘<samp><span class="samp">reservation_name</span></samp>’ — see description of construction
‘<samp><span class="samp">define_reservation</span></samp>’.
<li>‘<samp><span class="samp">nothing</span></samp>’ denotes no unit reservations.
</ul>
<p><a name="index-define_005freservation-3699"></a>Sometimes unit reservations for different insns contain common parts.
In such case, you can simplify the pipeline description by describing
the common part by the following construction
<pre class="smallexample"> (define_reservation <var>reservation-name</var> <var>regexp</var>)
</pre>
<p><var>reservation-name</var> is a string giving name of <var>regexp</var>.
Functional unit names and reservation names are in the same name
space. So the reservation names should be different from the
functional unit names and can not be the reserved name ‘<samp><span class="samp">nothing</span></samp>’.
<p><a name="index-define_005fbypass-3700"></a><a name="index-instruction-latency-time-3701"></a><a name="index-data-bypass-3702"></a>The following construction is used to describe exceptions in the
latency time for given instruction pair. This is so called bypasses.
<pre class="smallexample"> (define_bypass <var>number</var> <var>out_insn_names</var> <var>in_insn_names</var>
[<var>guard</var>])
</pre>
<p><var>number</var> defines when the result generated by the instructions
given in string <var>out_insn_names</var> will be ready for the
instructions given in string <var>in_insn_names</var>. The instructions in
the string are separated by commas.
<p><var>guard</var> is an optional string giving the name of a C function which
defines an additional guard for the bypass. The function will get the
two insns as parameters. If the function returns zero the bypass will
be ignored for this case. The additional guard is necessary to
recognize complicated bypasses, e.g. when the consumer is only an address
of insn ‘<samp><span class="samp">store</span></samp>’ (not a stored value).
<p>If there are more one bypass with the same output and input insns, the
chosen bypass is the first bypass with a guard in description whose
guard function returns nonzero. If there is no such bypass, then
bypass without the guard function is chosen.
<p><a name="index-exclusion_005fset-3703"></a><a name="index-presence_005fset-3704"></a><a name="index-final_005fpresence_005fset-3705"></a><a name="index-absence_005fset-3706"></a><a name="index-final_005fabsence_005fset-3707"></a><a name="index-VLIW-3708"></a><a name="index-RISC-3709"></a>The following five constructions are usually used to describe
<acronym>VLIW</acronym> processors, or more precisely, to describe a placement
of small instructions into <acronym>VLIW</acronym> instruction slots. They
can be used for <acronym>RISC</acronym> processors, too.
<pre class="smallexample"> (exclusion_set <var>unit-names</var> <var>unit-names</var>)
(presence_set <var>unit-names</var> <var>patterns</var>)
(final_presence_set <var>unit-names</var> <var>patterns</var>)
(absence_set <var>unit-names</var> <var>patterns</var>)
(final_absence_set <var>unit-names</var> <var>patterns</var>)
</pre>
<p><var>unit-names</var> is a string giving names of functional units
separated by commas.
<p><var>patterns</var> is a string giving patterns of functional units
separated by comma. Currently pattern is one unit or units
separated by white-spaces.
<p>The first construction (‘<samp><span class="samp">exclusion_set</span></samp>’) means that each
functional unit in the first string can not be reserved simultaneously
with a unit whose name is in the second string and vice versa. For
example, the construction is useful for describing processors
(e.g. some SPARC processors) with a fully pipelined floating point
functional unit which can execute simultaneously only single floating
point insns or only double floating point insns.
<p>The second construction (‘<samp><span class="samp">presence_set</span></samp>’) means that each
functional unit in the first string can not be reserved unless at
least one of pattern of units whose names are in the second string is
reserved. This is an asymmetric relation. For example, it is useful
for description that <acronym>VLIW</acronym> ‘<samp><span class="samp">slot1</span></samp>’ is reserved after
‘<samp><span class="samp">slot0</span></samp>’ reservation. We could describe it by the following
construction
<pre class="smallexample"> (presence_set "slot1" "slot0")
</pre>
<p>Or ‘<samp><span class="samp">slot1</span></samp>’ is reserved only after ‘<samp><span class="samp">slot0</span></samp>’ and unit ‘<samp><span class="samp">b0</span></samp>’
reservation. In this case we could write
<pre class="smallexample"> (presence_set "slot1" "slot0 b0")
</pre>
<p>The third construction (‘<samp><span class="samp">final_presence_set</span></samp>’) is analogous to
‘<samp><span class="samp">presence_set</span></samp>’. The difference between them is when checking is
done. When an instruction is issued in given automaton state
reflecting all current and planned unit reservations, the automaton
state is changed. The first state is a source state, the second one
is a result state. Checking for ‘<samp><span class="samp">presence_set</span></samp>’ is done on the
source state reservation, checking for ‘<samp><span class="samp">final_presence_set</span></samp>’ is
done on the result reservation. This construction is useful to
describe a reservation which is actually two subsequent reservations.
For example, if we use
<pre class="smallexample"> (presence_set "slot1" "slot0")
</pre>
<p>the following insn will be never issued (because ‘<samp><span class="samp">slot1</span></samp>’ requires
‘<samp><span class="samp">slot0</span></samp>’ which is absent in the source state).
<pre class="smallexample"> (define_reservation "insn_and_nop" "slot0 + slot1")
</pre>
<p>but it can be issued if we use analogous ‘<samp><span class="samp">final_presence_set</span></samp>’.
<p>The forth construction (‘<samp><span class="samp">absence_set</span></samp>’) means that each functional
unit in the first string can be reserved only if each pattern of units
whose names are in the second string is not reserved. This is an
asymmetric relation (actually ‘<samp><span class="samp">exclusion_set</span></samp>’ is analogous to
this one but it is symmetric). For example it might be useful in a
<acronym>VLIW</acronym> description to say that ‘<samp><span class="samp">slot0</span></samp>’ cannot be reserved
after either ‘<samp><span class="samp">slot1</span></samp>’ or ‘<samp><span class="samp">slot2</span></samp>’ have been reserved. This
can be described as:
<pre class="smallexample"> (absence_set "slot0" "slot1, slot2")
</pre>
<p>Or ‘<samp><span class="samp">slot2</span></samp>’ can not be reserved if ‘<samp><span class="samp">slot0</span></samp>’ and unit ‘<samp><span class="samp">b0</span></samp>’
are reserved or ‘<samp><span class="samp">slot1</span></samp>’ and unit ‘<samp><span class="samp">b1</span></samp>’ are reserved. In
this case we could write
<pre class="smallexample"> (absence_set "slot2" "slot0 b0, slot1 b1")
</pre>
<p>All functional units mentioned in a set should belong to the same
automaton.
<p>The last construction (‘<samp><span class="samp">final_absence_set</span></samp>’) is analogous to
‘<samp><span class="samp">absence_set</span></samp>’ but checking is done on the result (state)
reservation. See comments for ‘<samp><span class="samp">final_presence_set</span></samp>’.
<p><a name="index-automata_005foption-3710"></a><a name="index-deterministic-finite-state-automaton-3711"></a><a name="index-nondeterministic-finite-state-automaton-3712"></a><a name="index-finite-state-automaton-minimization-3713"></a>You can control the generator of the pipeline hazard recognizer with
the following construction.
<pre class="smallexample"> (automata_option <var>options</var>)
</pre>
<p><var>options</var> is a string giving options which affect the generated
code. Currently there are the following options:
<ul>
<li><dfn>no-minimization</dfn> makes no minimization of the automaton. This is
only worth to do when we are debugging the description and need to
look more accurately at reservations of states.
<li><dfn>time</dfn> means printing time statistics about the generation of
automata.
<li><dfn>stats</dfn> means printing statistics about the generated automata
such as the number of DFA states, NDFA states and arcs.
<li><dfn>v</dfn> means a generation of the file describing the result automata.
The file has suffix ‘<samp><span class="samp">.dfa</span></samp>’ and can be used for the description
verification and debugging.
<li><dfn>w</dfn> means a generation of warning instead of error for
non-critical errors.
<li><dfn>ndfa</dfn> makes nondeterministic finite state automata. This affects
the treatment of operator ‘<samp><span class="samp">|</span></samp>’ in the regular expressions. The
usual treatment of the operator is to try the first alternative and,
if the reservation is not possible, the second alternative. The
nondeterministic treatment means trying all alternatives, some of them
may be rejected by reservations in the subsequent insns.
<li><dfn>progress</dfn> means output of a progress bar showing how many states
were generated so far for automaton being processed. This is useful
during debugging a <acronym>DFA</acronym> description. If you see too many
generated states, you could interrupt the generator of the pipeline
hazard recognizer and try to figure out a reason for generation of the
huge automaton.
</ul>
<p>As an example, consider a superscalar <acronym>RISC</acronym> machine which can
issue three insns (two integer insns and one floating point insn) on
the cycle but can finish only two insns. To describe this, we define
the following functional units.
<pre class="smallexample"> (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
(define_cpu_unit "port0, port1")
</pre>
<p>All simple integer insns can be executed in any integer pipeline and
their result is ready in two cycles. The simple integer insns are
issued into the first pipeline unless it is reserved, otherwise they
are issued into the second pipeline. Integer division and
multiplication insns can be executed only in the second integer
pipeline and their results are ready correspondingly in 8 and 4
cycles. The integer division is not pipelined, i.e. the subsequent
integer division insn can not be issued until the current division
insn finished. Floating point insns are fully pipelined and their
results are ready in 3 cycles. Where the result of a floating point
insn is used by an integer insn, an additional delay of one cycle is
incurred. To describe all of this we could specify
<pre class="smallexample"> (define_cpu_unit "div")
(define_insn_reservation "simple" 2 (eq_attr "type" "int")
"(i0_pipeline | i1_pipeline), (port0 | port1)")
(define_insn_reservation "mult" 4 (eq_attr "type" "mult")
"i1_pipeline, nothing*2, (port0 | port1)")
(define_insn_reservation "div" 8 (eq_attr "type" "div")
"i1_pipeline, div*7, div + (port0 | port1)")
(define_insn_reservation "float" 3 (eq_attr "type" "float")
"f_pipeline, nothing, (port0 | port1))
(define_bypass 4 "float" "simple,mult,div")
</pre>
<p>To simplify the description we could describe the following reservation
<pre class="smallexample"> (define_reservation "finish" "port0|port1")
</pre>
<p>and use it in all <code>define_insn_reservation</code> as in the following
construction
<pre class="smallexample"> (define_insn_reservation "simple" 2 (eq_attr "type" "int")
"(i0_pipeline | i1_pipeline), finish")
</pre>
<div class="node">
<a name="Conditional-Execution"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Constant-Definitions">Constant Definitions</a>,
Previous: <a rel="previous" accesskey="p" href="#Insn-Attributes">Insn Attributes</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.20 Conditional Execution</h3>
<p><a name="index-conditional-execution-3714"></a><a name="index-predication-3715"></a>
A number of architectures provide for some form of conditional
execution, or predication. The hallmark of this feature is the
ability to nullify most of the instructions in the instruction set.
When the instruction set is large and not entirely symmetric, it
can be quite tedious to describe these forms directly in the
<samp><span class="file">.md</span></samp> file. An alternative is the <code>define_cond_exec</code> template.
<p><a name="index-define_005fcond_005fexec-3716"></a>
<pre class="smallexample"> (define_cond_exec
[<var>predicate-pattern</var>]
"<var>condition</var>"
"<var>output-template</var>")
</pre>
<p><var>predicate-pattern</var> is the condition that must be true for the
insn to be executed at runtime and should match a relational operator.
One can use <code>match_operator</code> to match several relational operators
at once. Any <code>match_operand</code> operands must have no more than one
alternative.
<p><var>condition</var> is a C expression that must be true for the generated
pattern to match.
<p><a name="index-current_005finsn_005fpredicate-3717"></a><var>output-template</var> is a string similar to the <code>define_insn</code>
output template (see <a href="#Output-Template">Output Template</a>), except that the ‘<samp><span class="samp">*</span></samp>’
and ‘<samp><span class="samp">@</span></samp>’ special cases do not apply. This is only useful if the
assembly text for the predicate is a simple prefix to the main insn.
In order to handle the general case, there is a global variable
<code>current_insn_predicate</code> that will contain the entire predicate
if the current insn is predicated, and will otherwise be <code>NULL</code>.
<p>When <code>define_cond_exec</code> is used, an implicit reference to
the <code>predicable</code> instruction attribute is made.
See <a href="#Insn-Attributes">Insn Attributes</a>. This attribute must be boolean (i.e. have
exactly two elements in its <var>list-of-values</var>). Further, it must
not be used with complex expressions. That is, the default and all
uses in the insns must be a simple constant, not dependent on the
alternative or anything else.
<p>For each <code>define_insn</code> for which the <code>predicable</code>
attribute is true, a new <code>define_insn</code> pattern will be
generated that matches a predicated version of the instruction.
For example,
<pre class="smallexample"> (define_insn "addsi"
[(set (match_operand:SI 0 "register_operand" "r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"<var>test1</var>"
"add %2,%1,%0")
(define_cond_exec
[(ne (match_operand:CC 0 "register_operand" "c")
(const_int 0))]
"<var>test2</var>"
"(%0)")
</pre>
<p class="noindent">generates a new pattern
<pre class="smallexample"> (define_insn ""
[(cond_exec
(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
(set (match_operand:SI 0 "register_operand" "r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))))]
"(<var>test2</var>) && (<var>test1</var>)"
"(%3) add %2,%1,%0")
</pre>
<div class="node">
<a name="Constant-Definitions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Iterators">Iterators</a>,
Previous: <a rel="previous" accesskey="p" href="#Conditional-Execution">Conditional Execution</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.21 Constant Definitions</h3>
<p><a name="index-constant-definitions-3718"></a><a name="index-define_005fconstants-3719"></a>
Using literal constants inside instruction patterns reduces legibility and
can be a maintenance problem.
<p>To overcome this problem, you may use the <code>define_constants</code>
expression. It contains a vector of name-value pairs. From that
point on, wherever any of the names appears in the MD file, it is as
if the corresponding value had been written instead. You may use
<code>define_constants</code> multiple times; each appearance adds more
constants to the table. It is an error to redefine a constant with
a different value.
<p>To come back to the a29k load multiple example, instead of
<pre class="smallexample"> (define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
""
"loadm 0,0,%1,%2")
</pre>
<p>You could write:
<pre class="smallexample"> (define_constants [
(R_BP 177)
(R_FC 178)
(R_CR 179)
(R_Q 180)
])
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI R_CR))
(clobber (reg:SI R_CR))])]
""
"loadm 0,0,%1,%2")
</pre>
<p>The constants that are defined with a define_constant are also output
in the insn-codes.h header file as #defines.
<p><a name="index-enumerations-3720"></a><a name="index-define_005fc_005fenum-3721"></a>You can also use the machine description file to define enumerations.
Like the constants defined by <code>define_constant</code>, these enumerations
are visible to both the machine description file and the main C code.
<p>The syntax is as follows:
<pre class="smallexample"> (define_c_enum "<var>name</var>" [
<var>value0</var>
<var>value1</var>
...
<var>valuen</var>
])
</pre>
<p>This definition causes the equivalent of the following C code to appear
in <samp><span class="file">insn-constants.h</span></samp>:
<pre class="smallexample"> enum <var>name</var> {
<var>value0</var> = 0,
<var>value1</var> = 1,
...
<var>valuen</var> = <var>n</var>
};
#define NUM_<var>cname</var>_VALUES (<var>n</var> + 1)
</pre>
<p>where <var>cname</var> is the capitalized form of <var>name</var>.
It also makes each <var>valuei</var> available in the machine description
file, just as if it had been declared with:
<pre class="smallexample"> (define_constants [(<var>valuei</var> <var>i</var>)])
</pre>
<p>Each <var>valuei</var> is usually an upper-case identifier and usually
begins with <var>cname</var>.
<p>You can split the enumeration definition into as many statements as
you like. The above example is directly equivalent to:
<pre class="smallexample"> (define_c_enum "<var>name</var>" [<var>value0</var>])
(define_c_enum "<var>name</var>" [<var>value1</var>])
...
(define_c_enum "<var>name</var>" [<var>valuen</var>])
</pre>
<p>Splitting the enumeration helps to improve the modularity of each
individual <code>.md</code> file. For example, if a port defines its
synchronization instructions in a separate <samp><span class="file">sync.md</span></samp> file,
it is convenient to define all synchronization-specific enumeration
values in <samp><span class="file">sync.md</span></samp> rather than in the main <samp><span class="file">.md</span></samp> file.
<p>Some enumeration names have special significance to GCC:
<dl>
<dt><code>unspecv</code><dd><a name="index-unspec_005fvolatile-3722"></a>If an enumeration called <code>unspecv</code> is defined, GCC will use it
when printing out <code>unspec_volatile</code> expressions. For example:
<pre class="smallexample"> (define_c_enum "unspecv" [
UNSPECV_BLOCKAGE
])
</pre>
<p>causes GCC to print ‘<samp><span class="samp">(unspec_volatile ... 0)</span></samp>’ as:
<pre class="smallexample"> (unspec_volatile ... UNSPECV_BLOCKAGE)
</pre>
<br><dt><code>unspec</code><dd><a name="index-unspec-3723"></a>If an enumeration called <code>unspec</code> is defined, GCC will use
it when printing out <code>unspec</code> expressions. GCC will also use
it when printing out <code>unspec_volatile</code> expressions unless an
<code>unspecv</code> enumeration is also defined. You can therefore
decide whether to keep separate enumerations for volatile and
non-volatile expressions or whether to use the same enumeration
for both.
</dl>
<p><a name="index-define_005fenum-3724"></a><a name="define_005fenum"></a>Another way of defining an enumeration is to use <code>define_enum</code>:
<pre class="smallexample"> (define_enum "<var>name</var>" [
<var>value0</var>
<var>value1</var>
...
<var>valuen</var>
])
</pre>
<p>This directive implies:
<pre class="smallexample"> (define_c_enum "<var>name</var>" [
<var>cname</var>_<var>cvalue0</var>
<var>cname</var>_<var>cvalue1</var>
...
<var>cname</var>_<var>cvaluen</var>
])
</pre>
<p><a name="index-define_005fenum_005fattr-3725"></a>where <var>cvaluei</var> is the capitalized form of <var>valuei</var>.
However, unlike <code>define_c_enum</code>, the enumerations defined
by <code>define_enum</code> can be used in attribute specifications
(see <a href="#define_005fenum_005fattr">define_enum_attr</a>).
<div class="node">
<a name="Iterators"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Constant-Definitions">Constant Definitions</a>,
Up: <a rel="up" accesskey="u" href="#Machine-Desc">Machine Desc</a>
</div>
<h3 class="section">16.22 Iterators</h3>
<p><a name="index-iterators-in-_0040file_007b_002emd_007d-files-3726"></a>
Ports often need to define similar patterns for more than one machine
mode or for more than one rtx code. GCC provides some simple iterator
facilities to make this process easier.
<ul class="menu">
<li><a accesskey="1" href="#Mode-Iterators">Mode Iterators</a>: Generating variations of patterns for different modes.
<li><a accesskey="2" href="#Code-Iterators">Code Iterators</a>: Doing the same for codes.
</ul>
<div class="node">
<a name="Mode-Iterators"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Code-Iterators">Code Iterators</a>,
Up: <a rel="up" accesskey="u" href="#Iterators">Iterators</a>
</div>
<h4 class="subsection">16.22.1 Mode Iterators</h4>
<p><a name="index-mode-iterators-in-_0040file_007b_002emd_007d-files-3727"></a>
Ports often need to define similar patterns for two or more different modes.
For example:
<ul>
<li>If a processor has hardware support for both single and double
floating-point arithmetic, the <code>SFmode</code> patterns tend to be
very similar to the <code>DFmode</code> ones.
<li>If a port uses <code>SImode</code> pointers in one configuration and
<code>DImode</code> pointers in another, it will usually have very similar
<code>SImode</code> and <code>DImode</code> patterns for manipulating pointers.
</ul>
<p>Mode iterators allow several patterns to be instantiated from one
<samp><span class="file">.md</span></samp> file template. They can be used with any type of
rtx-based construct, such as a <code>define_insn</code>,
<code>define_split</code>, or <code>define_peephole2</code>.
<ul class="menu">
<li><a accesskey="1" href="#Defining-Mode-Iterators">Defining Mode Iterators</a>: Defining a new mode iterator.
<li><a accesskey="2" href="#Substitutions">Substitutions</a>: Combining mode iterators with substitutions
<li><a accesskey="3" href="#Examples">Examples</a>: Examples
</ul>
<div class="node">
<a name="Defining-Mode-Iterators"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Substitutions">Substitutions</a>,
Up: <a rel="up" accesskey="u" href="#Mode-Iterators">Mode Iterators</a>
</div>
<h5 class="subsubsection">16.22.1.1 Defining Mode Iterators</h5>
<p><a name="index-define_005fmode_005fiterator-3728"></a>
The syntax for defining a mode iterator is:
<pre class="smallexample"> (define_mode_iterator <var>name</var> [(<var>mode1</var> "<var>cond1</var>") ... (<var>moden</var> "<var>condn</var>")])
</pre>
<p>This allows subsequent <samp><span class="file">.md</span></samp> file constructs to use the mode suffix
<code>:</code><var>name</var>. Every construct that does so will be expanded
<var>n</var> times, once with every use of <code>:</code><var>name</var> replaced by
<code>:</code><var>mode1</var>, once with every use replaced by <code>:</code><var>mode2</var>,
and so on. In the expansion for a particular <var>modei</var>, every
C condition will also require that <var>condi</var> be true.
<p>For example:
<pre class="smallexample"> (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
</pre>
<p>defines a new mode suffix <code>:P</code>. Every construct that uses
<code>:P</code> will be expanded twice, once with every <code>:P</code> replaced
by <code>:SI</code> and once with every <code>:P</code> replaced by <code>:DI</code>.
The <code>:SI</code> version will only apply if <code>Pmode == SImode</code> and
the <code>:DI</code> version will only apply if <code>Pmode == DImode</code>.
<p>As with other <samp><span class="file">.md</span></samp> conditions, an empty string is treated
as “always true”. <code>(</code><var>mode</var><code> "")</code> can also be abbreviated
to <var>mode</var>. For example:
<pre class="smallexample"> (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
</pre>
<p>means that the <code>:DI</code> expansion only applies if <code>TARGET_64BIT</code>
but that the <code>:SI</code> expansion has no such constraint.
<p>Iterators are applied in the order they are defined. This can be
significant if two iterators are used in a construct that requires
substitutions. See <a href="#Substitutions">Substitutions</a>.
<div class="node">
<a name="Substitutions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Examples">Examples</a>,
Previous: <a rel="previous" accesskey="p" href="#Defining-Mode-Iterators">Defining Mode Iterators</a>,
Up: <a rel="up" accesskey="u" href="#Mode-Iterators">Mode Iterators</a>
</div>
<h5 class="subsubsection">16.22.1.2 Substitution in Mode Iterators</h5>
<p><a name="index-define_005fmode_005fattr-3729"></a>
If an <samp><span class="file">.md</span></samp> file construct uses mode iterators, each version of the
construct will often need slightly different strings or modes. For
example:
<ul>
<li>When a <code>define_expand</code> defines several <code>add</code><var>m</var><code>3</code> patterns
(see <a href="#Standard-Names">Standard Names</a>), each expander will need to use the
appropriate mode name for <var>m</var>.
<li>When a <code>define_insn</code> defines several instruction patterns,
each instruction will often use a different assembler mnemonic.
<li>When a <code>define_insn</code> requires operands with different modes,
using an iterator for one of the operand modes usually requires a specific
mode for the other operand(s).
</ul>
<p>GCC supports such variations through a system of “mode attributes”.
There are two standard attributes: <code>mode</code>, which is the name of
the mode in lower case, and <code>MODE</code>, which is the same thing in
upper case. You can define other attributes using:
<pre class="smallexample"> (define_mode_attr <var>name</var> [(<var>mode1</var> "<var>value1</var>") ... (<var>moden</var> "<var>valuen</var>")])
</pre>
<p>where <var>name</var> is the name of the attribute and <var>valuei</var>
is the value associated with <var>modei</var>.
<p>When GCC replaces some <var>:iterator</var> with <var>:mode</var>, it will scan
each string and mode in the pattern for sequences of the form
<code><</code><var>iterator</var><code>:</code><var>attr</var><code>></code>, where <var>attr</var> is the name of a
mode attribute. If the attribute is defined for <var>mode</var>, the whole
<code><...></code> sequence will be replaced by the appropriate attribute
value.
<p>For example, suppose an <samp><span class="file">.md</span></samp> file has:
<pre class="smallexample"> (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
(define_mode_attr load [(SI "lw") (DI "ld")])
</pre>
<p>If one of the patterns that uses <code>:P</code> contains the string
<code>"<P:load>\t%0,%1"</code>, the <code>SI</code> version of that pattern
will use <code>"lw\t%0,%1"</code> and the <code>DI</code> version will use
<code>"ld\t%0,%1"</code>.
<p>Here is an example of using an attribute for a mode:
<pre class="smallexample"> (define_mode_iterator LONG [SI DI])
(define_mode_attr SHORT [(SI "HI") (DI "SI")])
(define_insn ...
(sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)
</pre>
<p>The <var>iterator</var><code>:</code> prefix may be omitted, in which case the
substitution will be attempted for every iterator expansion.
<div class="node">
<a name="Examples"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Substitutions">Substitutions</a>,
Up: <a rel="up" accesskey="u" href="#Mode-Iterators">Mode Iterators</a>
</div>
<h5 class="subsubsection">16.22.1.3 Mode Iterator Examples</h5>
<p>Here is an example from the MIPS port. It defines the following
modes and attributes (among others):
<pre class="smallexample"> (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
(define_mode_attr d [(SI "") (DI "d")])
</pre>
<p>and uses the following template to define both <code>subsi3</code>
and <code>subdi3</code>:
<pre class="smallexample"> (define_insn "sub<mode>3"
[(set (match_operand:GPR 0 "register_operand" "=d")
(minus:GPR (match_operand:GPR 1 "register_operand" "d")
(match_operand:GPR 2 "register_operand" "d")))]
""
"<d>subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")])
</pre>
<p>This is exactly equivalent to:
<pre class="smallexample"> (define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(minus:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]
""
"subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=d")
(minus:DI (match_operand:DI 1 "register_operand" "d")
(match_operand:DI 2 "register_operand" "d")))]
""
"dsubu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
</pre>
<div class="node">
<a name="Code-Iterators"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Mode-Iterators">Mode Iterators</a>,
Up: <a rel="up" accesskey="u" href="#Iterators">Iterators</a>
</div>
<h4 class="subsection">16.22.2 Code Iterators</h4>
<p><a name="index-code-iterators-in-_0040file_007b_002emd_007d-files-3730"></a><a name="index-define_005fcode_005fiterator-3731"></a><a name="index-define_005fcode_005fattr-3732"></a>
Code iterators operate in a similar way to mode iterators. See <a href="#Mode-Iterators">Mode Iterators</a>.
<p>The construct:
<pre class="smallexample"> (define_code_iterator <var>name</var> [(<var>code1</var> "<var>cond1</var>") ... (<var>coden</var> "<var>condn</var>")])
</pre>
<p>defines a pseudo rtx code <var>name</var> that can be instantiated as
<var>codei</var> if condition <var>condi</var> is true. Each <var>codei</var>
must have the same rtx format. See <a href="#RTL-Classes">RTL Classes</a>.
<p>As with mode iterators, each pattern that uses <var>name</var> will be
expanded <var>n</var> times, once with all uses of <var>name</var> replaced by
<var>code1</var>, once with all uses replaced by <var>code2</var>, and so on.
See <a href="#Defining-Mode-Iterators">Defining Mode Iterators</a>.
<p>It is possible to define attributes for codes as well as for modes.
There are two standard code attributes: <code>code</code>, the name of the
code in lower case, and <code>CODE</code>, the name of the code in upper case.
Other attributes are defined using:
<pre class="smallexample"> (define_code_attr <var>name</var> [(<var>code1</var> "<var>value1</var>") ... (<var>coden</var> "<var>valuen</var>")])
</pre>
<p>Here's an example of code iterators in action, taken from the MIPS port:
<pre class="smallexample"> (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
eq ne gt ge lt le gtu geu ltu leu])
(define_expand "b<code>"
[(set (pc)
(if_then_else (any_cond:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, <CODE>);
DONE;
})
</pre>
<p>This is equivalent to:
<pre class="smallexample"> (define_expand "bunordered"
[(set (pc)
(if_then_else (unordered:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNORDERED);
DONE;
})
(define_expand "bordered"
[(set (pc)
(if_then_else (ordered:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, ORDERED);
DONE;
})
...
</pre>
<!-- Copyright (C) 1988,1989,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Target-Macros"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Host-Config">Host Config</a>,
Previous: <a rel="previous" accesskey="p" href="#Machine-Desc">Machine Desc</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">17 Target Description Macros and Functions</h2>
<p><a name="index-machine-description-macros-3733"></a><a name="index-target-description-macros-3734"></a><a name="index-macros_002c-target-description-3735"></a><a name="index-g_t_0040file_007btm_002eh_007d-macros-3736"></a>
In addition to the file <samp><var>machine</var><span class="file">.md</span></samp>, a machine description
includes a C header file conventionally given the name
<samp><var>machine</var><span class="file">.h</span></samp> and a C source file named <samp><var>machine</var><span class="file">.c</span></samp>.
The header file defines numerous macros that convey the information
about the target machine that does not fit into the scheme of the
<samp><span class="file">.md</span></samp> file. The file <samp><span class="file">tm.h</span></samp> should be a link to
<samp><var>machine</var><span class="file">.h</span></samp>. The header file <samp><span class="file">config.h</span></samp> includes
<samp><span class="file">tm.h</span></samp> and most compiler source files include <samp><span class="file">config.h</span></samp>. The
source file defines a variable <code>targetm</code>, which is a structure
containing pointers to functions and data relating to the target
machine. <samp><var>machine</var><span class="file">.c</span></samp> should also contain their definitions,
if they are not defined elsewhere in GCC, and other functions called
through the macros defined in the <samp><span class="file">.h</span></samp> file.
<ul class="menu">
<li><a accesskey="1" href="#Target-Structure">Target Structure</a>: The <code>targetm</code> variable.
<li><a accesskey="2" href="#Driver">Driver</a>: Controlling how the driver runs the compilation passes.
<li><a accesskey="3" href="#Run_002dtime-Target">Run-time Target</a>: Defining ‘<samp><span class="samp">-m</span></samp>’ options like <samp><span class="option">-m68000</span></samp> and <samp><span class="option">-m68020</span></samp>.
<li><a accesskey="4" href="#Per_002dFunction-Data">Per-Function Data</a>: Defining data structures for per-function information.
<li><a accesskey="5" href="#Storage-Layout">Storage Layout</a>: Defining sizes and alignments of data.
<li><a accesskey="6" href="#Type-Layout">Type Layout</a>: Defining sizes and properties of basic user data types.
<li><a accesskey="7" href="#Registers">Registers</a>: Naming and describing the hardware registers.
<li><a accesskey="8" href="#Register-Classes">Register Classes</a>: Defining the classes of hardware registers.
<li><a accesskey="9" href="#Old-Constraints">Old Constraints</a>: The old way to define machine-specific constraints.
<li><a href="#Stack-and-Calling">Stack and Calling</a>: Defining which way the stack grows and by how much.
<li><a href="#Varargs">Varargs</a>: Defining the varargs macros.
<li><a href="#Trampolines">Trampolines</a>: Code set up at run time to enter a nested function.
<li><a href="#Library-Calls">Library Calls</a>: Controlling how library routines are implicitly called.
<li><a href="#Addressing-Modes">Addressing Modes</a>: Defining addressing modes valid for memory operands.
<li><a href="#Anchored-Addresses">Anchored Addresses</a>: Defining how <samp><span class="option">-fsection-anchors</span></samp> should work.
<li><a href="#Condition-Code">Condition Code</a>: Defining how insns update the condition code.
<li><a href="#Costs">Costs</a>: Defining relative costs of different operations.
<li><a href="#Scheduling">Scheduling</a>: Adjusting the behavior of the instruction scheduler.
<li><a href="#Sections">Sections</a>: Dividing storage into text, data, and other sections.
<li><a href="#PIC">PIC</a>: Macros for position independent code.
<li><a href="#Assembler-Format">Assembler Format</a>: Defining how to write insns and pseudo-ops to output.
<li><a href="#Debugging-Info">Debugging Info</a>: Defining the format of debugging output.
<li><a href="#Floating-Point">Floating Point</a>: Handling floating point for cross-compilers.
<li><a href="#Mode-Switching">Mode Switching</a>: Insertion of mode-switching instructions.
<li><a href="#Target-Attributes">Target Attributes</a>: Defining target-specific uses of <code>__attribute__</code>.
<li><a href="#Emulated-TLS">Emulated TLS</a>: Emulated TLS support.
<li><a href="#MIPS-Coprocessors">MIPS Coprocessors</a>: MIPS coprocessor support and how to customize it.
<li><a href="#PCH-Target">PCH Target</a>: Validity checking for precompiled headers.
<li><a href="#C_002b_002b-ABI">C++ ABI</a>: Controlling C++ ABI changes.
<li><a href="#Named-Address-Spaces">Named Address Spaces</a>: Adding support for named address spaces
<li><a href="#Misc">Misc</a>: Everything else.
</ul>
<div class="node">
<a name="Target-Structure"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Driver">Driver</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.1 The Global <code>targetm</code> Variable</h3>
<p><a name="index-target-hooks-3737"></a><a name="index-target-functions-3738"></a>
<div class="defun">
— Variable: struct gcc_target <b>targetm</b><var><a name="index-targetm-3739"></a></var><br>
<blockquote><p>The target <samp><span class="file">.c</span></samp> file must define the global <code>targetm</code> variable
which contains pointers to functions and data relating to the target
machine. The variable is declared in <samp><span class="file">target.h</span></samp>;
<samp><span class="file">target-def.h</span></samp> defines the macro <code>TARGET_INITIALIZER</code> which is
used to initialize the variable, and macros for the default initializers
for elements of the structure. The <samp><span class="file">.c</span></samp> file should override those
macros for which the default definition is inappropriate. For example:
<pre class="smallexample"> #include "target.h"
#include "target-def.h"
/* <span class="roman">Initialize the GCC target structure.</span> */
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES <var>machine</var>_comp_type_attributes
struct gcc_target targetm = TARGET_INITIALIZER;
</pre>
</blockquote></div>
<p>Where a macro should be defined in the <samp><span class="file">.c</span></samp> file in this manner to
form part of the <code>targetm</code> structure, it is documented below as a
“Target Hook” with a prototype. Many macros will change in future
from being defined in the <samp><span class="file">.h</span></samp> file to being part of the
<code>targetm</code> structure.
<div class="node">
<a name="Driver"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Run_002dtime-Target">Run-time Target</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Structure">Target Structure</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.2 Controlling the Compilation Driver, <samp><span class="file">gcc</span></samp></h3>
<p><a name="index-driver-3740"></a><a name="index-controlling-the-compilation-driver-3741"></a>
<!-- prevent bad page break with this line -->
You can control the compilation driver.
<div class="defun">
— Macro: <b>DRIVER_SELF_SPECS</b><var><a name="index-DRIVER_005fSELF_005fSPECS-3742"></a></var><br>
<blockquote><p>A list of specs for the driver itself. It should be a suitable
initializer for an array of strings, with no surrounding braces.
<p>The driver applies these specs to its own command line between loading
default <samp><span class="file">specs</span></samp> files (but not command-line specified ones) and
choosing the multilib directory or running any subcommands. It
applies them in the order given, so each spec can depend on the
options added by earlier ones. It is also possible to remove options
using ‘<samp><span class="samp">%<</span><var>option</var></samp>’ in the usual way.
<p>This macro can be useful when a port has several interdependent target
options. It provides a way of standardizing the command line so
that the other specs are easier to write.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OPTION_DEFAULT_SPECS</b><var><a name="index-OPTION_005fDEFAULT_005fSPECS-3743"></a></var><br>
<blockquote><p>A list of specs used to support configure-time default options (i.e.
<samp><span class="option">--with</span></samp> options) in the driver. It should be a suitable initializer
for an array of structures, each containing two strings, without the
outermost pair of surrounding braces.
<p>The first item in the pair is the name of the default. This must match
the code in <samp><span class="file">config.gcc</span></samp> for the target. The second item is a spec
to apply if a default with this name was specified. The string
‘<samp><span class="samp">%(VALUE)</span></samp>’ in the spec will be replaced by the value of the default
everywhere it occurs.
<p>The driver will apply these specs to its own command line between loading
default <samp><span class="file">specs</span></samp> files and processing <code>DRIVER_SELF_SPECS</code>, using
the same mechanism as <code>DRIVER_SELF_SPECS</code>.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CPP_SPEC</b><var><a name="index-CPP_005fSPEC-3744"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program options to
pass to CPP. It can also specify how to translate options you
give to GCC into options for GCC to pass to the CPP.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CPLUSPLUS_CPP_SPEC</b><var><a name="index-CPLUSPLUS_005fCPP_005fSPEC-3745"></a></var><br>
<blockquote><p>This macro is just like <code>CPP_SPEC</code>, but is used for C++, rather
than C. If you do not define this macro, then the value of
<code>CPP_SPEC</code> (if any) will be used instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CC1_SPEC</b><var><a name="index-CC1_005fSPEC-3746"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program options to
pass to <code>cc1</code>, <code>cc1plus</code>, <code>f771</code>, and the other language
front ends.
It can also specify how to translate options you give to GCC into options
for GCC to pass to front ends.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CC1PLUS_SPEC</b><var><a name="index-CC1PLUS_005fSPEC-3747"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program options to
pass to <code>cc1plus</code>. It can also specify how to translate options you
give to GCC into options for GCC to pass to the <code>cc1plus</code>.
<p>Do not define this macro if it does not need to do anything.
Note that everything defined in CC1_SPEC is already passed to
<code>cc1plus</code> so there is no need to duplicate the contents of
CC1_SPEC in CC1PLUS_SPEC.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_SPEC</b><var><a name="index-ASM_005fSPEC-3748"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program options to
pass to the assembler. It can also specify how to translate options
you give to GCC into options for GCC to pass to the assembler.
See the file <samp><span class="file">sun3.h</span></samp> for an example of this.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_FINAL_SPEC</b><var><a name="index-ASM_005fFINAL_005fSPEC-3749"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program how to
run any programs which cleanup after the normal assembler.
Normally, this is not needed. See the file <samp><span class="file">mips.h</span></samp> for
an example of this.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>AS_NEEDS_DASH_FOR_PIPED_INPUT</b><var><a name="index-AS_005fNEEDS_005fDASH_005fFOR_005fPIPED_005fINPUT-3750"></a></var><br>
<blockquote><p>Define this macro, with no value, if the driver should give the assembler
an argument consisting of a single dash, <samp><span class="option">-</span></samp>, to instruct it to
read from its standard input (which will be a pipe connected to the
output of the compiler proper). This argument is given after any
<samp><span class="option">-o</span></samp> option specifying the name of the output file.
<p>If you do not define this macro, the assembler is assumed to read its
standard input if given no non-option arguments. If your assembler
cannot read standard input at all, use a ‘<samp><span class="samp">%{pipe:%e}</span></samp>’ construct;
see <samp><span class="file">mips.h</span></samp> for instance.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LINK_SPEC</b><var><a name="index-LINK_005fSPEC-3751"></a></var><br>
<blockquote><p>A C string constant that tells the GCC driver program options to
pass to the linker. It can also specify how to translate options you
give to GCC into options for GCC to pass to the linker.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIB_SPEC</b><var><a name="index-LIB_005fSPEC-3752"></a></var><br>
<blockquote><p>Another C string constant used much like <code>LINK_SPEC</code>. The difference
between the two is that <code>LIB_SPEC</code> is used at the end of the
command given to the linker.
<p>If this macro is not defined, a default is provided that
loads the standard C library from the usual place. See <samp><span class="file">gcc.c</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC_SPEC</b><var><a name="index-LIBGCC_005fSPEC-3753"></a></var><br>
<blockquote><p>Another C string constant that tells the GCC driver program
how and when to place a reference to <samp><span class="file">libgcc.a</span></samp> into the
linker command line. This constant is placed both before and after
the value of <code>LIB_SPEC</code>.
<p>If this macro is not defined, the GCC driver provides a default that
passes the string <samp><span class="option">-lgcc</span></samp> to the linker.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REAL_LIBGCC_SPEC</b><var><a name="index-REAL_005fLIBGCC_005fSPEC-3754"></a></var><br>
<blockquote><p>By default, if <code>ENABLE_SHARED_LIBGCC</code> is defined, the
<code>LIBGCC_SPEC</code> is not directly used by the driver program but is
instead modified to refer to different versions of <samp><span class="file">libgcc.a</span></samp>
depending on the values of the command line flags <samp><span class="option">-static</span></samp>,
<samp><span class="option">-shared</span></samp>, <samp><span class="option">-static-libgcc</span></samp>, and <samp><span class="option">-shared-libgcc</span></samp>. On
targets where these modifications are inappropriate, define
<code>REAL_LIBGCC_SPEC</code> instead. <code>REAL_LIBGCC_SPEC</code> tells the
driver how to place a reference to <samp><span class="file">libgcc</span></samp> on the link command
line, but, unlike <code>LIBGCC_SPEC</code>, it is used unmodified.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_LD_AS_NEEDED</b><var><a name="index-USE_005fLD_005fAS_005fNEEDED-3755"></a></var><br>
<blockquote><p>A macro that controls the modifications to <code>LIBGCC_SPEC</code>
mentioned in <code>REAL_LIBGCC_SPEC</code>. If nonzero, a spec will be
generated that uses –as-needed and the shared libgcc in place of the
static exception handler library, when linking without any of
<code>-static</code>, <code>-static-libgcc</code>, or <code>-shared-libgcc</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LINK_EH_SPEC</b><var><a name="index-LINK_005fEH_005fSPEC-3756"></a></var><br>
<blockquote><p>If defined, this C string constant is added to <code>LINK_SPEC</code>.
When <code>USE_LD_AS_NEEDED</code> is zero or undefined, it also affects
the modifications to <code>LIBGCC_SPEC</code> mentioned in
<code>REAL_LIBGCC_SPEC</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STARTFILE_SPEC</b><var><a name="index-STARTFILE_005fSPEC-3757"></a></var><br>
<blockquote><p>Another C string constant used much like <code>LINK_SPEC</code>. The
difference between the two is that <code>STARTFILE_SPEC</code> is used at
the very beginning of the command given to the linker.
<p>If this macro is not defined, a default is provided that loads the
standard C startup file from the usual place. See <samp><span class="file">gcc.c</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ENDFILE_SPEC</b><var><a name="index-ENDFILE_005fSPEC-3758"></a></var><br>
<blockquote><p>Another C string constant used much like <code>LINK_SPEC</code>. The
difference between the two is that <code>ENDFILE_SPEC</code> is used at
the very end of the command given to the linker.
<p>Do not define this macro if it does not need to do anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>THREAD_MODEL_SPEC</b><var><a name="index-THREAD_005fMODEL_005fSPEC-3759"></a></var><br>
<blockquote><p>GCC <code>-v</code> will print the thread model GCC was configured to use.
However, this doesn't work on platforms that are multilibbed on thread
models, such as AIX 4.3. On such platforms, define
<code>THREAD_MODEL_SPEC</code> such that it evaluates to a string without
blanks that names one of the recognized thread models. <code>%*</code>, the
default value of this macro, will expand to the value of
<code>thread_file</code> set in <samp><span class="file">config.gcc</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SYSROOT_SUFFIX_SPEC</b><var><a name="index-SYSROOT_005fSUFFIX_005fSPEC-3760"></a></var><br>
<blockquote><p>Define this macro to add a suffix to the target sysroot when GCC is
configured with a sysroot. This will cause GCC to search for usr/lib,
et al, within sysroot+suffix.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SYSROOT_HEADERS_SUFFIX_SPEC</b><var><a name="index-SYSROOT_005fHEADERS_005fSUFFIX_005fSPEC-3761"></a></var><br>
<blockquote><p>Define this macro to add a headers_suffix to the target sysroot when
GCC is configured with a sysroot. This will cause GCC to pass the
updated sysroot+headers_suffix to CPP, causing it to search for
usr/include, et al, within sysroot+headers_suffix.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EXTRA_SPECS</b><var><a name="index-EXTRA_005fSPECS-3762"></a></var><br>
<blockquote><p>Define this macro to provide additional specifications to put in the
<samp><span class="file">specs</span></samp> file that can be used in various specifications like
<code>CC1_SPEC</code>.
<p>The definition should be an initializer for an array of structures,
containing a string constant, that defines the specification name, and a
string constant that provides the specification.
<p>Do not define this macro if it does not need to do anything.
<p><code>EXTRA_SPECS</code> is useful when an architecture contains several
related targets, which have various <code>..._SPECS</code> which are similar
to each other, and the maintainer would like one central place to keep
these definitions.
<p>For example, the PowerPC System V.4 targets use <code>EXTRA_SPECS</code> to
define either <code>_CALL_SYSV</code> when the System V calling sequence is
used or <code>_CALL_AIX</code> when the older AIX-based calling sequence is
used.
<p>The <samp><span class="file">config/rs6000/rs6000.h</span></samp> target file defines:
<pre class="smallexample"> #define EXTRA_SPECS \
{ "cpp_sysv_default", CPP_SYSV_DEFAULT },
#define CPP_SYS_DEFAULT ""
</pre>
<p>The <samp><span class="file">config/rs6000/sysv.h</span></samp> target file defines:
<pre class="smallexample"> #undef CPP_SPEC
#define CPP_SPEC \
"%{posix: -D_POSIX_SOURCE } \
%{mcall-sysv: -D_CALL_SYSV } \
%{!mcall-sysv: %(cpp_sysv_default) } \
%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"
#undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
</pre>
<p>while the <samp><span class="file">config/rs6000/eabiaix.h</span></samp> target file defines
<code>CPP_SYSV_DEFAULT</code> as:
<pre class="smallexample"> #undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_AIX"
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>LINK_LIBGCC_SPECIAL_1</b><var><a name="index-LINK_005fLIBGCC_005fSPECIAL_005f1-3763"></a></var><br>
<blockquote><p>Define this macro if the driver program should find the library
<samp><span class="file">libgcc.a</span></samp>. If you do not define this macro, the driver program will pass
the argument <samp><span class="option">-lgcc</span></samp> to tell the linker to do the search.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LINK_GCC_C_SEQUENCE_SPEC</b><var><a name="index-LINK_005fGCC_005fC_005fSEQUENCE_005fSPEC-3764"></a></var><br>
<blockquote><p>The sequence in which libgcc and libc are specified to the linker.
By default this is <code>%G %L %G</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LINK_COMMAND_SPEC</b><var><a name="index-LINK_005fCOMMAND_005fSPEC-3765"></a></var><br>
<blockquote><p>A C string constant giving the complete command line need to execute the
linker. When you do this, you will need to update your port each time a
change is made to the link command line within <samp><span class="file">gcc.c</span></samp>. Therefore,
define this macro only if you need to completely redefine the command
line for invoking the linker and there is no other way to accomplish
the effect you need. Overriding this macro may be avoidable by overriding
<code>LINK_GCC_C_SEQUENCE_SPEC</code> instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LINK_ELIMINATE_DUPLICATE_LDIRECTORIES</b><var><a name="index-LINK_005fELIMINATE_005fDUPLICATE_005fLDIRECTORIES-3766"></a></var><br>
<blockquote><p>A nonzero value causes <samp><span class="command">collect2</span></samp> to remove duplicate <samp><span class="option">-L</span><var>directory</var></samp> search
directories from linking commands. Do not give it a nonzero value if
removing duplicate search directories changes the linker's semantics.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MULTILIB_DEFAULTS</b><var><a name="index-MULTILIB_005fDEFAULTS-3767"></a></var><br>
<blockquote><p>Define this macro as a C expression for the initializer of an array of
string to tell the driver program which options are defaults for this
target and thus do not need to be handled specially when using
<code>MULTILIB_OPTIONS</code>.
<p>Do not define this macro if <code>MULTILIB_OPTIONS</code> is not defined in
the target makefile fragment or if none of the options listed in
<code>MULTILIB_OPTIONS</code> are set by default.
See <a href="#Target-Fragment">Target Fragment</a>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RELATIVE_PREFIX_NOT_LINKDIR</b><var><a name="index-RELATIVE_005fPREFIX_005fNOT_005fLINKDIR-3768"></a></var><br>
<blockquote><p>Define this macro to tell <samp><span class="command">gcc</span></samp> that it should only translate
a <samp><span class="option">-B</span></samp> prefix into a <samp><span class="option">-L</span></samp> linker option if the prefix
indicates an absolute file name.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_EXEC_PREFIX</b><var><a name="index-MD_005fEXEC_005fPREFIX-3769"></a></var><br>
<blockquote><p>If defined, this macro is an additional prefix to try after
<code>STANDARD_EXEC_PREFIX</code>. <code>MD_EXEC_PREFIX</code> is not searched
when the compiler is built as a cross
compiler. If you define <code>MD_EXEC_PREFIX</code>, then be sure to add it
to the list of directories used to find the assembler in <samp><span class="file">configure.in</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STANDARD_STARTFILE_PREFIX</b><var><a name="index-STANDARD_005fSTARTFILE_005fPREFIX-3770"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to override the
standard choice of <code>libdir</code> as the default prefix to
try when searching for startup files such as <samp><span class="file">crt0.o</span></samp>.
<code>STANDARD_STARTFILE_PREFIX</code> is not searched when the compiler
is built as a cross compiler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STANDARD_STARTFILE_PREFIX_1</b><var><a name="index-STANDARD_005fSTARTFILE_005fPREFIX_005f1-3771"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to override the
standard choice of <code>/lib</code> as a prefix to try after the default prefix
when searching for startup files such as <samp><span class="file">crt0.o</span></samp>.
<code>STANDARD_STARTFILE_PREFIX_1</code> is not searched when the compiler
is built as a cross compiler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STANDARD_STARTFILE_PREFIX_2</b><var><a name="index-STANDARD_005fSTARTFILE_005fPREFIX_005f2-3772"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to override the
standard choice of <code>/lib</code> as yet another prefix to try after the
default prefix when searching for startup files such as <samp><span class="file">crt0.o</span></samp>.
<code>STANDARD_STARTFILE_PREFIX_2</code> is not searched when the compiler
is built as a cross compiler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_STARTFILE_PREFIX</b><var><a name="index-MD_005fSTARTFILE_005fPREFIX-3773"></a></var><br>
<blockquote><p>If defined, this macro supplies an additional prefix to try after the
standard prefixes. <code>MD_EXEC_PREFIX</code> is not searched when the
compiler is built as a cross compiler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_STARTFILE_PREFIX_1</b><var><a name="index-MD_005fSTARTFILE_005fPREFIX_005f1-3774"></a></var><br>
<blockquote><p>If defined, this macro supplies yet another prefix to try after the
standard prefixes. It is not searched when the compiler is built as a
cross compiler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_ENVIRONMENT</b><var><a name="index-INIT_005fENVIRONMENT-3775"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to set environment
variables for programs called by the driver, such as the assembler and
loader. The driver passes the value of this macro to <code>putenv</code> to
initialize the necessary environment variables.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOCAL_INCLUDE_DIR</b><var><a name="index-LOCAL_005fINCLUDE_005fDIR-3776"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to override the
standard choice of <samp><span class="file">/usr/local/include</span></samp> as the default prefix to
try when searching for local header files. <code>LOCAL_INCLUDE_DIR</code>
comes before <code>SYSTEM_INCLUDE_DIR</code> in the search order.
<p>Cross compilers do not search either <samp><span class="file">/usr/local/include</span></samp> or its
replacement.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SYSTEM_INCLUDE_DIR</b><var><a name="index-SYSTEM_005fINCLUDE_005fDIR-3777"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to specify a
system-specific directory to search for header files before the standard
directory. <code>SYSTEM_INCLUDE_DIR</code> comes before
<code>STANDARD_INCLUDE_DIR</code> in the search order.
<p>Cross compilers do not use this macro and do not search the directory
specified.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STANDARD_INCLUDE_DIR</b><var><a name="index-STANDARD_005fINCLUDE_005fDIR-3778"></a></var><br>
<blockquote><p>Define this macro as a C string constant if you wish to override the
standard choice of <samp><span class="file">/usr/include</span></samp> as the default prefix to
try when searching for header files.
<p>Cross compilers ignore this macro and do not search either
<samp><span class="file">/usr/include</span></samp> or its replacement.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STANDARD_INCLUDE_COMPONENT</b><var><a name="index-STANDARD_005fINCLUDE_005fCOMPONENT-3779"></a></var><br>
<blockquote><p>The “component” corresponding to <code>STANDARD_INCLUDE_DIR</code>.
See <code>INCLUDE_DEFAULTS</code>, below, for the description of components.
If you do not define this macro, no component is used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INCLUDE_DEFAULTS</b><var><a name="index-INCLUDE_005fDEFAULTS-3780"></a></var><br>
<blockquote><p>Define this macro if you wish to override the entire default search path
for include files. For a native compiler, the default search path
usually consists of <code>GCC_INCLUDE_DIR</code>, <code>LOCAL_INCLUDE_DIR</code>,
<code>SYSTEM_INCLUDE_DIR</code>, <code>GPLUSPLUS_INCLUDE_DIR</code>, and
<code>STANDARD_INCLUDE_DIR</code>. In addition, <code>GPLUSPLUS_INCLUDE_DIR</code>
and <code>GCC_INCLUDE_DIR</code> are defined automatically by <samp><span class="file">Makefile</span></samp>,
and specify private search areas for GCC. The directory
<code>GPLUSPLUS_INCLUDE_DIR</code> is used only for C++ programs.
<p>The definition should be an initializer for an array of structures.
Each array element should have four elements: the directory name (a
string constant), the component name (also a string constant), a flag
for C++-only directories,
and a flag showing that the includes in the directory don't need to be
wrapped in <code>extern ‘</code><samp><span class="samp">C</span></samp><code>’</code> when compiling C++. Mark the end of
the array with a null element.
<p>The component name denotes what GNU package the include file is part of,
if any, in all uppercase letters. For example, it might be ‘<samp><span class="samp">GCC</span></samp>’
or ‘<samp><span class="samp">BINUTILS</span></samp>’. If the package is part of a vendor-supplied
operating system, code the component name as ‘<samp><span class="samp">0</span></samp>’.
<p>For example, here is the definition used for VAX/VMS:
<pre class="smallexample"> #define INCLUDE_DEFAULTS \
{ \
{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
{ "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
{ ".", 0, 0, 0}, \
{ 0, 0, 0, 0} \
}
</pre>
</blockquote></div>
<p>Here is the order of prefixes tried for exec files:
<ol type=1 start=1>
<li>Any prefixes specified by the user with <samp><span class="option">-B</span></samp>.
<li>The environment variable <code>GCC_EXEC_PREFIX</code> or, if <code>GCC_EXEC_PREFIX</code>
is not set and the compiler has not been installed in the configure-time
<var>prefix</var>, the location in which the compiler has actually been installed.
<li>The directories specified by the environment variable <code>COMPILER_PATH</code>.
<li>The macro <code>STANDARD_EXEC_PREFIX</code>, if the compiler has been installed
in the configured-time <var>prefix</var>.
<li>The location <samp><span class="file">/usr/libexec/gcc/</span></samp>, but only if this is a native compiler.
<li>The location <samp><span class="file">/usr/lib/gcc/</span></samp>, but only if this is a native compiler.
<li>The macro <code>MD_EXEC_PREFIX</code>, if defined, but only if this is a native
compiler.
</ol>
<p>Here is the order of prefixes tried for startfiles:
<ol type=1 start=1>
<li>Any prefixes specified by the user with <samp><span class="option">-B</span></samp>.
<li>The environment variable <code>GCC_EXEC_PREFIX</code> or its automatically determined
value based on the installed toolchain location.
<li>The directories specified by the environment variable <code>LIBRARY_PATH</code>
(or port-specific name; native only, cross compilers do not use this).
<li>The macro <code>STANDARD_EXEC_PREFIX</code>, but only if the toolchain is installed
in the configured <var>prefix</var> or this is a native compiler.
<li>The location <samp><span class="file">/usr/lib/gcc/</span></samp>, but only if this is a native compiler.
<li>The macro <code>MD_EXEC_PREFIX</code>, if defined, but only if this is a native
compiler.
<li>The macro <code>MD_STARTFILE_PREFIX</code>, if defined, but only if this is a
native compiler, or we have a target system root.
<li>The macro <code>MD_STARTFILE_PREFIX_1</code>, if defined, but only if this is a
native compiler, or we have a target system root.
<li>The macro <code>STANDARD_STARTFILE_PREFIX</code>, with any sysroot modifications.
If this path is relative it will be prefixed by <code>GCC_EXEC_PREFIX</code> and
the machine suffix or <code>STANDARD_EXEC_PREFIX</code> and the machine suffix.
<li>The macro <code>STANDARD_STARTFILE_PREFIX_1</code>, but only if this is a native
compiler, or we have a target system root. The default for this macro is
<samp><span class="file">/lib/</span></samp>.
<li>The macro <code>STANDARD_STARTFILE_PREFIX_2</code>, but only if this is a native
compiler, or we have a target system root. The default for this macro is
<samp><span class="file">/usr/lib/</span></samp>.
</ol>
<div class="node">
<a name="Run-time-Target"></a>
<a name="Run_002dtime-Target"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Per_002dFunction-Data">Per-Function Data</a>,
Previous: <a rel="previous" accesskey="p" href="#Driver">Driver</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.3 Run-time Target Specification</h3>
<p><a name="index-run_002dtime-target-specification-3781"></a><a name="index-predefined-macros-3782"></a><a name="index-target-specifications-3783"></a>
<!-- prevent bad page break with this line -->
Here are run-time target specifications.
<div class="defun">
— Macro: <b>TARGET_CPU_CPP_BUILTINS</b> ()<var><a name="index-TARGET_005fCPU_005fCPP_005fBUILTINS-3784"></a></var><br>
<blockquote><p>This function-like macro expands to a block of code that defines
built-in preprocessor macros and assertions for the target CPU, using
the functions <code>builtin_define</code>, <code>builtin_define_std</code> and
<code>builtin_assert</code>. When the front end
calls this macro it provides a trailing semicolon, and since it has
finished command line option processing your code can use those
results freely.
<p><code>builtin_assert</code> takes a string in the form you pass to the
command-line option <samp><span class="option">-A</span></samp>, such as <code>cpu=mips</code>, and creates
the assertion. <code>builtin_define</code> takes a string in the form
accepted by option <samp><span class="option">-D</span></samp> and unconditionally defines the macro.
<p><code>builtin_define_std</code> takes a string representing the name of an
object-like macro. If it doesn't lie in the user's namespace,
<code>builtin_define_std</code> defines it unconditionally. Otherwise, it
defines a version with two leading underscores, and another version
with two leading and trailing underscores, and defines the original
only if an ISO standard was not requested on the command line. For
example, passing <code>unix</code> defines <code>__unix</code>, <code>__unix__</code>
and possibly <code>unix</code>; passing <code>_mips</code> defines <code>__mips</code>,
<code>__mips__</code> and possibly <code>_mips</code>, and passing <code>_ABI64</code>
defines only <code>_ABI64</code>.
<p>You can also test for the C dialect being compiled. The variable
<code>c_language</code> is set to one of <code>clk_c</code>, <code>clk_cplusplus</code>
or <code>clk_objective_c</code>. Note that if we are preprocessing
assembler, this variable will be <code>clk_c</code> but the function-like
macro <code>preprocessing_asm_p()</code> will return true, so you might want
to check for that first. If you need to check for strict ANSI, the
variable <code>flag_iso</code> can be used. The function-like macro
<code>preprocessing_trad_p()</code> can be used to check for traditional
preprocessing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OS_CPP_BUILTINS</b> ()<var><a name="index-TARGET_005fOS_005fCPP_005fBUILTINS-3785"></a></var><br>
<blockquote><p>Similarly to <code>TARGET_CPU_CPP_BUILTINS</code> but this macro is optional
and is used for the target operating system instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OBJFMT_CPP_BUILTINS</b> ()<var><a name="index-TARGET_005fOBJFMT_005fCPP_005fBUILTINS-3786"></a></var><br>
<blockquote><p>Similarly to <code>TARGET_CPU_CPP_BUILTINS</code> but this macro is optional
and is used for the target object format. <samp><span class="file">elfos.h</span></samp> uses this
macro to define <code>__ELF__</code>, so you probably do not need to define
it yourself.
</p></blockquote></div>
<div class="defun">
— Variable: extern int <b>target_flags</b><var><a name="index-target_005fflags-3787"></a></var><br>
<blockquote><p>This variable is declared in <samp><span class="file">options.h</span></samp>, which is included before
any target-specific headers.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_DEFAULT_TARGET_FLAGS</b><var><a name="index-TARGET_005fDEFAULT_005fTARGET_005fFLAGS-3788"></a></var><br>
<blockquote><p>This variable specifies the initial value of <code>target_flags</code>.
Its default setting is 0.
</p></blockquote></div>
<p><a name="index-optional-hardware-or-system-features-3789"></a><a name="index-features_002c-optional_002c-in-system-conventions-3790"></a>
<div class="defun">
— Target Hook: bool <b>TARGET_HANDLE_OPTION</b> (<var>size_t code, const char *arg, int value</var>)<var><a name="index-TARGET_005fHANDLE_005fOPTION-3791"></a></var><br>
<blockquote><p>This hook is called whenever the user specifies one of the
target-specific options described by the <samp><span class="file">.opt</span></samp> definition files
(see <a href="#Options">Options</a>). It has the opportunity to do some option-specific
processing and should return true if the option is valid. The default
definition does nothing but return true.
<p><var>code</var> specifies the <code>OPT_</code><var>name</var> enumeration value
associated with the selected option; <var>name</var> is just a rendering of
the option name in which non-alphanumeric characters are replaced by
underscores. <var>arg</var> specifies the string argument and is null if
no argument was given. If the option is flagged as a <code>UInteger</code>
(see <a href="#Option-properties">Option properties</a>), <var>value</var> is the numeric value of the
argument. Otherwise <var>value</var> is 1 if the positive form of the
option was used and 0 if the “no-” form was.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HANDLE_C_OPTION</b> (<var>size_t code, const char *arg, int value</var>)<var><a name="index-TARGET_005fHANDLE_005fC_005fOPTION-3792"></a></var><br>
<blockquote><p>This target hook is called whenever the user specifies one of the
target-specific C language family options described by the <samp><span class="file">.opt</span></samp>
definition files(see <a href="#Options">Options</a>). It has the opportunity to do some
option-specific processing and should return true if the option is
valid. The arguments are like for <code>TARGET_HANDLE_OPTION</code>. The
default definition does nothing but return false.
<p>In general, you should use <code>TARGET_HANDLE_OPTION</code> to handle
options. However, if processing an option requires routines that are
only available in the C (and related language) front ends, then you
should use <code>TARGET_HANDLE_C_OPTION</code> instead.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_OBJC_CONSTRUCT_STRING_OBJECT</b> (<var>tree string</var>)<var><a name="index-TARGET_005fOBJC_005fCONSTRUCT_005fSTRING_005fOBJECT-3793"></a></var><br>
<blockquote><p>Targets may provide a string object type that can be used within and between C, C++ and their respective Objective-C dialects. A string object might, for example, embed encoding and length information. These objects are considered opaque to the compiler and handled as references. An ideal implementation makes the composition of the string object match that of the Objective-C <code>NSString</code> (<code>NXString</code> for GNUStep), allowing efficient interworking between C-only and Objective-C code. If a target implements string objects then this hook should return a reference to such an object constructed from the normal `C' string representation provided in <var>string</var>. At present, the hook is used by Objective-C only, to obtain a common-format string object when the target provides one.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_STRING_OBJECT_REF_TYPE_P</b> (<var>const_tree stringref</var>)<var><a name="index-TARGET_005fSTRING_005fOBJECT_005fREF_005fTYPE_005fP-3794"></a></var><br>
<blockquote><p>If a target implements string objects then this hook should return <code>true</code> if <var>stringref</var> is a valid reference to such an object.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_CHECK_STRING_OBJECT_FORMAT_ARG</b> (<var>tree format_arg, tree args_list</var>)<var><a name="index-TARGET_005fCHECK_005fSTRING_005fOBJECT_005fFORMAT_005fARG-3795"></a></var><br>
<blockquote><p>If a target implements string objects then this hook should should provide a facility to check the function arguments in <var>args_list</var> against the format specifiers in <var>format_arg</var> where the type of <var>format_arg</var> is one recognized as a valid string reference type.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_VERSION</b><var><a name="index-TARGET_005fVERSION-3796"></a></var><br>
<blockquote><p>This macro is a C statement to print on <code>stderr</code> a string
describing the particular machine description choice. Every machine
description should define <code>TARGET_VERSION</code>. For example:
<pre class="smallexample"> #ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");
#endif
</pre>
</blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE</b> (<var>void</var>)<var><a name="index-TARGET_005fOVERRIDE_005fOPTIONS_005fAFTER_005fCHANGE-3797"></a></var><br>
<blockquote><p>This target function is similar to the hook <code>TARGET_OPTION_OVERRIDE</code>
but is called when the optimize level is changed via an attribute or
pragma or when it is reset at the end of the code affected by the
attribute or pragma. It is not called at the beginning of compilation
when <code>TARGET_OPTION_OVERRIDE</code> is called so if you want to perform these
actions then, you should have <code>TARGET_OPTION_OVERRIDE</code> call
<code>TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>C_COMMON_OVERRIDE_OPTIONS</b><var><a name="index-C_005fCOMMON_005fOVERRIDE_005fOPTIONS-3798"></a></var><br>
<blockquote><p>This is similar to the <code>TARGET_OPTION_OVERRIDE</code> hook
but is only used in the C
language frontends (C, Objective-C, C++, Objective-C++) and so can be
used to alter option flag variables which only exist in those
frontends.
</p></blockquote></div>
<div class="defun">
— Target Hook: const struct default_options * <b>TARGET_OPTION_OPTIMIZATION_TABLE</b><var><a name="index-TARGET_005fOPTION_005fOPTIMIZATION_005fTABLE-3799"></a></var><br>
<blockquote><p>Some machines may desire to change what optimizations are performed for
various optimization levels. This variable, if defined, describes
options to enable at particular sets of optimization levels. These
options are processed once
just after the optimization level is determined and before the remainder
of the command options have been parsed, so may be overridden by other
options passed explicitly.
<p>This processing is run once at program startup and when the optimization
options are changed via <code>#pragma GCC optimize</code> or by using the
<code>optimize</code> attribute.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_INIT_STRUCT</b> (<var>struct gcc_options *opts</var>)<var><a name="index-TARGET_005fOPTION_005fINIT_005fSTRUCT-3800"></a></var><br>
<blockquote><p>Set target-dependent initial values of fields in <var>opts</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_DEFAULT_PARAMS</b> (<var>void</var>)<var><a name="index-TARGET_005fOPTION_005fDEFAULT_005fPARAMS-3801"></a></var><br>
<blockquote><p>Set target-dependent default values for <samp><span class="option">--param</span></samp> settings, using calls to <code>set_default_param_value</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_HELP</b> (<var>void</var>)<var><a name="index-TARGET_005fHELP-3802"></a></var><br>
<blockquote><p>This hook is called in response to the user invoking
<samp><span class="option">--target-help</span></samp> on the command line. It gives the target a
chance to display extra information on the target specific command
line options found in its <samp><span class="file">.opt</span></samp> file.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SWITCHABLE_TARGET</b><var><a name="index-SWITCHABLE_005fTARGET-3803"></a></var><br>
<blockquote><p>Some targets need to switch between substantially different subtargets
during compilation. For example, the MIPS target has one subtarget for
the traditional MIPS architecture and another for MIPS16. Source code
can switch between these two subarchitectures using the <code>mips16</code>
and <code>nomips16</code> attributes.
<p>Such subtargets can differ in things like the set of available
registers, the set of available instructions, the costs of various
operations, and so on. GCC caches a lot of this type of information
in global variables, and recomputing them for each subtarget takes a
significant amount of time. The compiler therefore provides a facility
for maintaining several versions of the global variables and quickly
switching between them; see <samp><span class="file">target-globals.h</span></samp> for details.
<p>Define this macro to 1 if your target needs this facility. The default
is 0.
</p></blockquote></div>
<div class="node">
<a name="Per-Function-Data"></a>
<a name="Per_002dFunction-Data"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Storage-Layout">Storage Layout</a>,
Previous: <a rel="previous" accesskey="p" href="#Run_002dtime-Target">Run-time Target</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.4 Defining data structures for per-function information.</h3>
<p><a name="index-per_002dfunction-data-3804"></a><a name="index-data-structures-3805"></a>
If the target needs to store information on a per-function basis, GCC
provides a macro and a couple of variables to allow this. Note, just
using statics to store the information is a bad idea, since GCC supports
nested functions, so you can be halfway through encoding one function
when another one comes along.
<p>GCC defines a data structure called <code>struct function</code> which
contains all of the data specific to an individual function. This
structure contains a field called <code>machine</code> whose type is
<code>struct machine_function *</code>, which can be used by targets to point
to their own specific data.
<p>If a target needs per-function specific data it should define the type
<code>struct machine_function</code> and also the macro <code>INIT_EXPANDERS</code>.
This macro should be used to initialize the function pointer
<code>init_machine_status</code>. This pointer is explained below.
<p>One typical use of per-function, target specific data is to create an
RTX to hold the register containing the function's return address. This
RTX can then be used to implement the <code>__builtin_return_address</code>
function, for level 0.
<p>Note—earlier implementations of GCC used a single data area to hold
all of the per-function information. Thus when processing of a nested
function began the old per-function data had to be pushed onto a
stack, and when the processing was finished, it had to be popped off the
stack. GCC used to provide function pointers called
<code>save_machine_status</code> and <code>restore_machine_status</code> to handle
the saving and restoring of the target specific information. Since the
single data area approach is no longer used, these pointers are no
longer supported.
<div class="defun">
— Macro: <b>INIT_EXPANDERS</b><var><a name="index-INIT_005fEXPANDERS-3806"></a></var><br>
<blockquote><p>Macro called to initialize any target specific information. This macro
is called once per function, before generation of any RTL has begun.
The intention of this macro is to allow the initialization of the
function pointer <code>init_machine_status</code>.
</p></blockquote></div>
<div class="defun">
— Variable: void (*)(struct function *) <b>init_machine_status</b><var><a name="index-init_005fmachine_005fstatus-3807"></a></var><br>
<blockquote><p>If this function pointer is non-<code>NULL</code> it will be called once per
function, before function compilation starts, in order to allow the
target to perform any target specific initialization of the
<code>struct function</code> structure. It is intended that this would be
used to initialize the <code>machine</code> of that structure.
<p><code>struct machine_function</code> structures are expected to be freed by GC.
Generally, any memory that they reference must be allocated by using
GC allocation, including the structure itself.
</p></blockquote></div>
<div class="node">
<a name="Storage-Layout"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-Layout">Type Layout</a>,
Previous: <a rel="previous" accesskey="p" href="#Per_002dFunction-Data">Per-Function Data</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.5 Storage Layout</h3>
<p><a name="index-storage-layout-3808"></a>
Note that the definitions of the macros in this table which are sizes or
alignments measured in bits do not need to be constant. They can be C
expressions that refer to static variables, such as the <code>target_flags</code>.
See <a href="#Run_002dtime-Target">Run-time Target</a>.
<div class="defun">
— Macro: <b>BITS_BIG_ENDIAN</b><var><a name="index-BITS_005fBIG_005fENDIAN-3809"></a></var><br>
<blockquote><p>Define this macro to have the value 1 if the most significant bit in a
byte has the lowest number; otherwise define it to have the value zero.
This means that bit-field instructions count from the most significant
bit. If the machine has no bit-field instructions, then this must still
be defined, but it doesn't matter which value it is defined to. This
macro need not be a constant.
<p>This macro does not affect the way structure fields are packed into
bytes or words; that is controlled by <code>BYTES_BIG_ENDIAN</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BYTES_BIG_ENDIAN</b><var><a name="index-BYTES_005fBIG_005fENDIAN-3810"></a></var><br>
<blockquote><p>Define this macro to have the value 1 if the most significant byte in a
word has the lowest number. This macro need not be a constant.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WORDS_BIG_ENDIAN</b><var><a name="index-WORDS_005fBIG_005fENDIAN-3811"></a></var><br>
<blockquote><p>Define this macro to have the value 1 if, in a multiword object, the
most significant word has the lowest number. This applies to both
memory locations and registers; GCC fundamentally assumes that the
order of words in memory is the same as the order in registers. This
macro need not be a constant.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FLOAT_WORDS_BIG_ENDIAN</b><var><a name="index-FLOAT_005fWORDS_005fBIG_005fENDIAN-3812"></a></var><br>
<blockquote><p>Define this macro to have the value 1 if <code>DFmode</code>, <code>XFmode</code> or
<code>TFmode</code> floating point numbers are stored in memory with the word
containing the sign bit at the lowest address; otherwise define it to
have the value 0. This macro need not be a constant.
<p>You need not define this macro if the ordering is the same as for
multi-word integers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BITS_PER_UNIT</b><var><a name="index-BITS_005fPER_005fUNIT-3813"></a></var><br>
<blockquote><p>Define this macro to be the number of bits in an addressable storage
unit (byte). If you do not define this macro the default is 8.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BITS_PER_WORD</b><var><a name="index-BITS_005fPER_005fWORD-3814"></a></var><br>
<blockquote><p>Number of bits in a word. If you do not define this macro, the default
is <code>BITS_PER_UNIT * UNITS_PER_WORD</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_BITS_PER_WORD</b><var><a name="index-MAX_005fBITS_005fPER_005fWORD-3815"></a></var><br>
<blockquote><p>Maximum number of bits in a word. If this is undefined, the default is
<code>BITS_PER_WORD</code>. Otherwise, it is the constant value that is the
largest value that <code>BITS_PER_WORD</code> can have at run-time.
</p></blockquote></div>
<div class="defun">
— Macro: <b>UNITS_PER_WORD</b><var><a name="index-UNITS_005fPER_005fWORD-3816"></a></var><br>
<blockquote><p>Number of storage units in a word; normally the size of a general-purpose
register, a power of two from 1 or 8.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MIN_UNITS_PER_WORD</b><var><a name="index-MIN_005fUNITS_005fPER_005fWORD-3817"></a></var><br>
<blockquote><p>Minimum number of units in a word. If this is undefined, the default is
<code>UNITS_PER_WORD</code>. Otherwise, it is the constant value that is the
smallest value that <code>UNITS_PER_WORD</code> can have at run-time.
</p></blockquote></div>
<div class="defun">
— Macro: <b>POINTER_SIZE</b><var><a name="index-POINTER_005fSIZE-3818"></a></var><br>
<blockquote><p>Width of a pointer, in bits. You must specify a value no wider than the
width of <code>Pmode</code>. If it is not equal to the width of <code>Pmode</code>,
you must define <code>POINTERS_EXTEND_UNSIGNED</code>. If you do not specify
a value the default is <code>BITS_PER_WORD</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>POINTERS_EXTEND_UNSIGNED</b><var><a name="index-POINTERS_005fEXTEND_005fUNSIGNED-3819"></a></var><br>
<blockquote><p>A C expression that determines how pointers should be extended from
<code>ptr_mode</code> to either <code>Pmode</code> or <code>word_mode</code>. It is
greater than zero if pointers should be zero-extended, zero if they
should be sign-extended, and negative if some other sort of conversion
is needed. In the last case, the extension is done by the target's
<code>ptr_extend</code> instruction.
<p>You need not define this macro if the <code>ptr_mode</code>, <code>Pmode</code>
and <code>word_mode</code> are all the same width.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PROMOTE_MODE</b> (<var>m, unsignedp, type</var>)<var><a name="index-PROMOTE_005fMODE-3820"></a></var><br>
<blockquote><p>A macro to update <var>m</var> and <var>unsignedp</var> when an object whose type
is <var>type</var> and which has the specified mode and signedness is to be
stored in a register. This macro is only called when <var>type</var> is a
scalar type.
<p>On most RISC machines, which only have operations that operate on a full
register, define this macro to set <var>m</var> to <code>word_mode</code> if
<var>m</var> is an integer mode narrower than <code>BITS_PER_WORD</code>. In most
cases, only integer modes should be widened because wider-precision
floating-point operations are usually more expensive than their narrower
counterparts.
<p>For most machines, the macro definition does not change <var>unsignedp</var>.
However, some machines, have instructions that preferentially handle
either signed or unsigned quantities of certain modes. For example, on
the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
sign-extend the result to 64 bits. On such machines, set
<var>unsignedp</var> according to which kind of extension is more efficient.
<p>Do not define this macro if it would never modify <var>m</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_PROMOTE_FUNCTION_MODE</b> (<var>const_tree type, enum machine_mode mode, int *punsignedp, const_tree funtype, int for_return</var>)<var><a name="index-TARGET_005fPROMOTE_005fFUNCTION_005fMODE-3821"></a></var><br>
<blockquote><p>Like <code>PROMOTE_MODE</code>, but it is applied to outgoing function arguments or
function return values. The target hook should return the new mode
and possibly change <code>*</code><var>punsignedp</var> if the promotion should
change signedness. This function is called only for scalar <em>or
pointer</em> types.
<p><var>for_return</var> allows to distinguish the promotion of arguments and
return values. If it is <code>1</code>, a return value is being promoted and
<code>TARGET_FUNCTION_VALUE</code> must perform the same promotions done here.
If it is <code>2</code>, the returned mode should be that of the register in
which an incoming parameter is copied, or the outgoing result is computed;
then the hook should return the same mode as <code>promote_mode</code>, though
the signedness may be different.
<p>The default is to not promote arguments and return values. You can
also define the hook to <code>default_promote_function_mode_always_promote</code>
if you would like to apply the same rules given by <code>PROMOTE_MODE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PARM_BOUNDARY</b><var><a name="index-PARM_005fBOUNDARY-3822"></a></var><br>
<blockquote><p>Normal alignment required for function parameters on the stack, in
bits. All stack parameters receive at least this much alignment
regardless of data type. On most machines, this is the same as the
size of an integer.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_BOUNDARY</b><var><a name="index-STACK_005fBOUNDARY-3823"></a></var><br>
<blockquote><p>Define this macro to the minimum alignment enforced by hardware for the
stack pointer on this machine. The definition is a C expression for the
desired alignment (measured in bits). This value is used as a default
if <code>PREFERRED_STACK_BOUNDARY</code> is not defined. On most machines,
this should be the same as <code>PARM_BOUNDARY</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PREFERRED_STACK_BOUNDARY</b><var><a name="index-PREFERRED_005fSTACK_005fBOUNDARY-3824"></a></var><br>
<blockquote><p>Define this macro if you wish to preserve a certain alignment for the
stack pointer, greater than what the hardware enforces. The definition
is a C expression for the desired alignment (measured in bits). This
macro must evaluate to a value equal to or larger than
<code>STACK_BOUNDARY</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INCOMING_STACK_BOUNDARY</b><var><a name="index-INCOMING_005fSTACK_005fBOUNDARY-3825"></a></var><br>
<blockquote><p>Define this macro if the incoming stack boundary may be different
from <code>PREFERRED_STACK_BOUNDARY</code>. This macro must evaluate
to a value equal to or larger than <code>STACK_BOUNDARY</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_BOUNDARY</b><var><a name="index-FUNCTION_005fBOUNDARY-3826"></a></var><br>
<blockquote><p>Alignment required for a function entry point, in bits.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BIGGEST_ALIGNMENT</b><var><a name="index-BIGGEST_005fALIGNMENT-3827"></a></var><br>
<blockquote><p>Biggest alignment that any data type can require on this machine, in
bits. Note that this is not the biggest alignment that is supported,
just the biggest alignment that, when violated, may cause a fault.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MALLOC_ABI_ALIGNMENT</b><var><a name="index-MALLOC_005fABI_005fALIGNMENT-3828"></a></var><br>
<blockquote><p>Alignment, in bits, a C conformant malloc implementation has to
provide. If not defined, the default value is <code>BITS_PER_WORD</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ATTRIBUTE_ALIGNED_VALUE</b><var><a name="index-ATTRIBUTE_005fALIGNED_005fVALUE-3829"></a></var><br>
<blockquote><p>Alignment used by the <code>__attribute__ ((aligned))</code> construct. If
not defined, the default value is <code>BIGGEST_ALIGNMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MINIMUM_ATOMIC_ALIGNMENT</b><var><a name="index-MINIMUM_005fATOMIC_005fALIGNMENT-3830"></a></var><br>
<blockquote><p>If defined, the smallest alignment, in bits, that can be given to an
object that can be referenced in one operation, without disturbing any
nearby object. Normally, this is <code>BITS_PER_UNIT</code>, but may be larger
on machines that don't have byte or half-word store operations.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BIGGEST_FIELD_ALIGNMENT</b><var><a name="index-BIGGEST_005fFIELD_005fALIGNMENT-3831"></a></var><br>
<blockquote><p>Biggest alignment that any structure or union field can require on this
machine, in bits. If defined, this overrides <code>BIGGEST_ALIGNMENT</code> for
structure and union fields only, unless the field alignment has been set
by the <code>__attribute__ ((aligned (</code><var>n</var><code>)))</code> construct.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ADJUST_FIELD_ALIGN</b> (<var>field, computed</var>)<var><a name="index-ADJUST_005fFIELD_005fALIGN-3832"></a></var><br>
<blockquote><p>An expression for the alignment of a structure field <var>field</var> if the
alignment computed in the usual way (including applying of
<code>BIGGEST_ALIGNMENT</code> and <code>BIGGEST_FIELD_ALIGNMENT</code> to the
alignment) is <var>computed</var>. It overrides alignment only if the
field alignment has not been set by the
<code>__attribute__ ((aligned (</code><var>n</var><code>)))</code> construct.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_STACK_ALIGNMENT</b><var><a name="index-MAX_005fSTACK_005fALIGNMENT-3833"></a></var><br>
<blockquote><p>Biggest stack alignment guaranteed by the backend. Use this macro
to specify the maximum alignment of a variable on stack.
<p>If not defined, the default value is <code>STACK_BOUNDARY</code>.
<!-- FIXME: The default should be @code{PREFERRED_STACK_BOUNDARY}. -->
<!-- But the fix for PR 32893 indicates that we can only guarantee -->
<!-- maximum stack alignment on stack up to @code{STACK_BOUNDARY}, not -->
<!-- @code{PREFERRED_STACK_BOUNDARY}, if stack alignment isn't supported. -->
</blockquote></div>
<div class="defun">
— Macro: <b>MAX_OFILE_ALIGNMENT</b><var><a name="index-MAX_005fOFILE_005fALIGNMENT-3834"></a></var><br>
<blockquote><p>Biggest alignment supported by the object file format of this machine.
Use this macro to limit the alignment which can be specified using the
<code>__attribute__ ((aligned (</code><var>n</var><code>)))</code> construct. If not defined,
the default value is <code>BIGGEST_ALIGNMENT</code>.
<p>On systems that use ELF, the default (in <samp><span class="file">config/elfos.h</span></samp>) is
the largest supported 32-bit ELF section alignment representable on
a 32-bit host e.g. ‘<samp><span class="samp">(((unsigned HOST_WIDEST_INT) 1 << 28) * 8)</span></samp>’.
On 32-bit ELF the largest supported section alignment in bits is
‘<samp><span class="samp">(0x80000000 * 8)</span></samp>’, but this is not representable on 32-bit hosts.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DATA_ALIGNMENT</b> (<var>type, basic-align</var>)<var><a name="index-DATA_005fALIGNMENT-3835"></a></var><br>
<blockquote><p>If defined, a C expression to compute the alignment for a variable in
the static store. <var>type</var> is the data type, and <var>basic-align</var> is
the alignment that the object would ordinarily have. The value of this
macro is used instead of that alignment to align the object.
<p>If this macro is not defined, then <var>basic-align</var> is used.
<p><a name="index-strcpy-3836"></a>One use of this macro is to increase alignment of medium-size data to
make it all fit in fewer cache lines. Another is to cause character
arrays to be word-aligned so that <code>strcpy</code> calls that copy
constants to character arrays can be done inline.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONSTANT_ALIGNMENT</b> (<var>constant, basic-align</var>)<var><a name="index-CONSTANT_005fALIGNMENT-3837"></a></var><br>
<blockquote><p>If defined, a C expression to compute the alignment given to a constant
that is being placed in memory. <var>constant</var> is the constant and
<var>basic-align</var> is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to
align the object.
<p>If this macro is not defined, then <var>basic-align</var> is used.
<p>The typical use of this macro is to increase alignment for string
constants to be word aligned so that <code>strcpy</code> calls that copy
constants can be done inline.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOCAL_ALIGNMENT</b> (<var>type, basic-align</var>)<var><a name="index-LOCAL_005fALIGNMENT-3838"></a></var><br>
<blockquote><p>If defined, a C expression to compute the alignment for a variable in
the local store. <var>type</var> is the data type, and <var>basic-align</var> is
the alignment that the object would ordinarily have. The value of this
macro is used instead of that alignment to align the object.
<p>If this macro is not defined, then <var>basic-align</var> is used.
<p>One use of this macro is to increase alignment of medium-size data to
make it all fit in fewer cache lines.
<p>If the value of this macro has a type, it should be an unsigned type.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_SLOT_ALIGNMENT</b> (<var>type, mode, basic-align</var>)<var><a name="index-STACK_005fSLOT_005fALIGNMENT-3839"></a></var><br>
<blockquote><p>If defined, a C expression to compute the alignment for stack slot.
<var>type</var> is the data type, <var>mode</var> is the widest mode available,
and <var>basic-align</var> is the alignment that the slot would ordinarily
have. The value of this macro is used instead of that alignment to
align the slot.
<p>If this macro is not defined, then <var>basic-align</var> is used when
<var>type</var> is <code>NULL</code>. Otherwise, <code>LOCAL_ALIGNMENT</code> will
be used.
<p>This macro is to set alignment of stack slot to the maximum alignment
of all possible modes which the slot may have.
<p>If the value of this macro has a type, it should be an unsigned type.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOCAL_DECL_ALIGNMENT</b> (<var>decl</var>)<var><a name="index-LOCAL_005fDECL_005fALIGNMENT-3840"></a></var><br>
<blockquote><p>If defined, a C expression to compute the alignment for a local
variable <var>decl</var>.
<p>If this macro is not defined, then
<code>LOCAL_ALIGNMENT (TREE_TYPE (</code><var>decl</var><code>), DECL_ALIGN (</code><var>decl</var><code>))</code>
is used.
<p>One use of this macro is to increase alignment of medium-size data to
make it all fit in fewer cache lines.
<p>If the value of this macro has a type, it should be an unsigned type.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MINIMUM_ALIGNMENT</b> (<var>exp, mode, align</var>)<var><a name="index-MINIMUM_005fALIGNMENT-3841"></a></var><br>
<blockquote><p>If defined, a C expression to compute the minimum required alignment
for dynamic stack realignment purposes for <var>exp</var> (a type or decl),
<var>mode</var>, assuming normal alignment <var>align</var>.
<p>If this macro is not defined, then <var>align</var> will be used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EMPTY_FIELD_BOUNDARY</b><var><a name="index-EMPTY_005fFIELD_005fBOUNDARY-3842"></a></var><br>
<blockquote><p>Alignment in bits to be given to a structure bit-field that follows an
empty field such as <code>int : 0;</code>.
<p>If <code>PCC_BITFIELD_TYPE_MATTERS</code> is true, it overrides this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STRUCTURE_SIZE_BOUNDARY</b><var><a name="index-STRUCTURE_005fSIZE_005fBOUNDARY-3843"></a></var><br>
<blockquote><p>Number of bits which any structure or union's size must be a multiple of.
Each structure or union's size is rounded up to a multiple of this.
<p>If you do not define this macro, the default is the same as
<code>BITS_PER_UNIT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STRICT_ALIGNMENT</b><var><a name="index-STRICT_005fALIGNMENT-3844"></a></var><br>
<blockquote><p>Define this macro to be the value 1 if instructions will fail to work
if given data not on the nominal alignment. If instructions will merely
go slower in that case, define this macro as 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PCC_BITFIELD_TYPE_MATTERS</b><var><a name="index-PCC_005fBITFIELD_005fTYPE_005fMATTERS-3845"></a></var><br>
<blockquote><p>Define this if you wish to imitate the way many other C compilers handle
alignment of bit-fields and the structures that contain them.
<p>The behavior is that the type written for a named bit-field (<code>int</code>,
<code>short</code>, or other integer type) imposes an alignment for the entire
structure, as if the structure really did contain an ordinary field of
that type. In addition, the bit-field is placed within the structure so
that it would fit within such a field, not crossing a boundary for it.
<p>Thus, on most machines, a named bit-field whose type is written as
<code>int</code> would not cross a four-byte boundary, and would force
four-byte alignment for the whole structure. (The alignment used may
not be four bytes; it is controlled by the other alignment parameters.)
<p>An unnamed bit-field will not affect the alignment of the containing
structure.
<p>If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior.
<p>Note that if this macro is not defined, or its value is zero, some
bit-fields may cross more than one alignment boundary. The compiler can
support such references if there are ‘<samp><span class="samp">insv</span></samp>’, ‘<samp><span class="samp">extv</span></samp>’, and
‘<samp><span class="samp">extzv</span></samp>’ insns that can directly reference memory.
<p>The other known way of making bit-fields work is to define
<code>STRUCTURE_SIZE_BOUNDARY</code> as large as <code>BIGGEST_ALIGNMENT</code>.
Then every structure can be accessed with fullwords.
<p>Unless the machine has bit-field instructions or you define
<code>STRUCTURE_SIZE_BOUNDARY</code> that way, you must define
<code>PCC_BITFIELD_TYPE_MATTERS</code> to have a nonzero value.
<p>If your aim is to make GCC use the same conventions for laying out
bit-fields as are used by another compiler, here is how to investigate
what the other compiler does. Compile and run this program:
<pre class="smallexample"> struct foo1
{
char x;
char :0;
char y;
};
struct foo2
{
char x;
int :0;
char y;
};
main ()
{
printf ("Size of foo1 is %d\n",
sizeof (struct foo1));
printf ("Size of foo2 is %d\n",
sizeof (struct foo2));
exit (0);
}
</pre>
<p>If this prints 2 and 5, then the compiler's behavior is what you would
get from <code>PCC_BITFIELD_TYPE_MATTERS</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BITFIELD_NBYTES_LIMITED</b><var><a name="index-BITFIELD_005fNBYTES_005fLIMITED-3846"></a></var><br>
<blockquote><p>Like <code>PCC_BITFIELD_TYPE_MATTERS</code> except that its effect is limited
to aligning a bit-field within the structure.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ALIGN_ANON_BITFIELD</b> (<var>void</var>)<var><a name="index-TARGET_005fALIGN_005fANON_005fBITFIELD-3847"></a></var><br>
<blockquote><p>When <code>PCC_BITFIELD_TYPE_MATTERS</code> is true this hook will determine
whether unnamed bitfields affect the alignment of the containing
structure. The hook should return true if the structure should inherit
the alignment requirements of an unnamed bitfield's type.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_NARROW_VOLATILE_BITFIELD</b> (<var>void</var>)<var><a name="index-TARGET_005fNARROW_005fVOLATILE_005fBITFIELD-3848"></a></var><br>
<blockquote><p>This target hook should return <code>true</code> if accesses to volatile bitfields
should use the narrowest mode possible. It should return <code>false</code> if
these accesses should use the bitfield container type.
<p>The default is <code>!TARGET_STRICT_ALIGN</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MEMBER_TYPE_FORCES_BLK</b> (<var>field, mode</var>)<var><a name="index-MEMBER_005fTYPE_005fFORCES_005fBLK-3849"></a></var><br>
<blockquote><p>Return 1 if a structure or array containing <var>field</var> should be accessed using
<code>BLKMODE</code>.
<p>If <var>field</var> is the only field in the structure, <var>mode</var> is its
mode, otherwise <var>mode</var> is VOIDmode. <var>mode</var> is provided in the
case where structures of one field would require the structure's mode to
retain the field's mode.
<p>Normally, this is not needed.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ROUND_TYPE_ALIGN</b> (<var>type, computed, specified</var>)<var><a name="index-ROUND_005fTYPE_005fALIGN-3850"></a></var><br>
<blockquote><p>Define this macro as an expression for the alignment of a type (given
by <var>type</var> as a tree node) if the alignment computed in the usual
way is <var>computed</var> and the alignment explicitly specified was
<var>specified</var>.
<p>The default is to use <var>specified</var> if it is larger; otherwise, use
the smaller of <var>computed</var> and <code>BIGGEST_ALIGNMENT</code>
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_FIXED_MODE_SIZE</b><var><a name="index-MAX_005fFIXED_005fMODE_005fSIZE-3851"></a></var><br>
<blockquote><p>An integer expression for the size in bits of the largest integer
machine mode that should actually be used. All integer machine modes of
this size or smaller can be used for structures and unions with the
appropriate sizes. If this macro is undefined, <code>GET_MODE_BITSIZE
(DImode)</code> is assumed.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_SAVEAREA_MODE</b> (<var>save_level</var>)<var><a name="index-STACK_005fSAVEAREA_005fMODE-3852"></a></var><br>
<blockquote><p>If defined, an expression of type <code>enum machine_mode</code> that
specifies the mode of the save area operand of a
<code>save_stack_</code><var>level</var> named pattern (see <a href="#Standard-Names">Standard Names</a>).
<var>save_level</var> is one of <code>SAVE_BLOCK</code>, <code>SAVE_FUNCTION</code>, or
<code>SAVE_NONLOCAL</code> and selects which of the three named patterns is
having its mode specified.
<p>You need not define this macro if it always returns <code>Pmode</code>. You
would most commonly define this macro if the
<code>save_stack_</code><var>level</var> patterns need to support both a 32- and a
64-bit mode.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_SIZE_MODE</b><var><a name="index-STACK_005fSIZE_005fMODE-3853"></a></var><br>
<blockquote><p>If defined, an expression of type <code>enum machine_mode</code> that
specifies the mode of the size increment operand of an
<code>allocate_stack</code> named pattern (see <a href="#Standard-Names">Standard Names</a>).
<p>You need not define this macro if it always returns <code>word_mode</code>.
You would most commonly define this macro if the <code>allocate_stack</code>
pattern needs to support both a 32- and a 64-bit mode.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_LIBGCC_CMP_RETURN_MODE</b> (<var>void</var>)<var><a name="index-TARGET_005fLIBGCC_005fCMP_005fRETURN_005fMODE-3854"></a></var><br>
<blockquote><p>This target hook should return the mode to be used for the return value
of compare instructions expanded to libgcc calls. If not defined
<code>word_mode</code> is returned which is the right choice for a majority of
targets.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_LIBGCC_SHIFT_COUNT_MODE</b> (<var>void</var>)<var><a name="index-TARGET_005fLIBGCC_005fSHIFT_005fCOUNT_005fMODE-3855"></a></var><br>
<blockquote><p>This target hook should return the mode to be used for the shift count operand
of shift instructions expanded to libgcc calls. If not defined
<code>word_mode</code> is returned which is the right choice for a majority of
targets.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_UNWIND_WORD_MODE</b> (<var>void</var>)<var><a name="index-TARGET_005fUNWIND_005fWORD_005fMODE-3856"></a></var><br>
<blockquote><p>Return machine mode to be used for <code>_Unwind_Word</code> type.
The default is to use <code>word_mode</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ROUND_TOWARDS_ZERO</b><var><a name="index-ROUND_005fTOWARDS_005fZERO-3857"></a></var><br>
<blockquote><p>If defined, this macro should be true if the prevailing rounding
mode is towards zero.
<p>Defining this macro only affects the way <samp><span class="file">libgcc.a</span></samp> emulates
floating-point arithmetic.
<p>Not defining this macro is equivalent to returning zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LARGEST_EXPONENT_IS_NORMAL</b> (<var>size</var>)<var><a name="index-LARGEST_005fEXPONENT_005fIS_005fNORMAL-3858"></a></var><br>
<blockquote><p>This macro should return true if floats with <var>size</var>
bits do not have a NaN or infinity representation, but use the largest
exponent for normal numbers instead.
<p>Defining this macro only affects the way <samp><span class="file">libgcc.a</span></samp> emulates
floating-point arithmetic.
<p>The default definition of this macro returns false for all sizes.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_MS_BITFIELD_LAYOUT_P</b> (<var>const_tree record_type</var>)<var><a name="index-TARGET_005fMS_005fBITFIELD_005fLAYOUT_005fP-3859"></a></var><br>
<blockquote><p>This target hook returns <code>true</code> if bit-fields in the given
<var>record_type</var> are to be laid out following the rules of Microsoft
Visual C/C++, namely: (i) a bit-field won't share the same storage
unit with the previous bit-field if their underlying types have
different sizes, and the bit-field will be aligned to the highest
alignment of the underlying types of itself and of the previous
bit-field; (ii) a zero-sized bit-field will affect the alignment of
the whole enclosing structure, even if it is unnamed; except that
(iii) a zero-sized bit-field will be disregarded unless it follows
another bit-field of nonzero size. If this hook returns <code>true</code>,
other macros that control bit-field layout are ignored.
<p>When a bit-field is inserted into a packed record, the whole size
of the underlying type is used by one or more same-size adjacent
bit-fields (that is, if its long:3, 32 bits is used in the record,
and any additional adjacent long bit-fields are packed into the same
chunk of 32 bits. However, if the size changes, a new field of that
size is allocated). In an unpacked record, this is the same as using
alignment, but not equivalent when packing.
<p>If both MS bit-fields and ‘<samp><span class="samp">__attribute__((packed))</span></samp>’ are used,
the latter will take precedence. If ‘<samp><span class="samp">__attribute__((packed))</span></samp>’ is
used on a single field when MS bit-fields are in use, it will take
precedence for that field, but the alignment of the rest of the structure
may affect its placement.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_DECIMAL_FLOAT_SUPPORTED_P</b> (<var>void</var>)<var><a name="index-TARGET_005fDECIMAL_005fFLOAT_005fSUPPORTED_005fP-3860"></a></var><br>
<blockquote><p>Returns true if the target supports decimal floating point.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_FIXED_POINT_SUPPORTED_P</b> (<var>void</var>)<var><a name="index-TARGET_005fFIXED_005fPOINT_005fSUPPORTED_005fP-3861"></a></var><br>
<blockquote><p>Returns true if the target supports fixed-point arithmetic.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_EXPAND_TO_RTL_HOOK</b> (<var>void</var>)<var><a name="index-TARGET_005fEXPAND_005fTO_005fRTL_005fHOOK-3862"></a></var><br>
<blockquote><p>This hook is called just before expansion into rtl, allowing the target
to perform additional initializations or analysis before the expansion.
For example, the rs6000 port uses it to allocate a scratch stack slot
for use in copying SDmode values between memory and floating point
registers whenever the function being expanded has any SDmode
usage.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_INSTANTIATE_DECLS</b> (<var>void</var>)<var><a name="index-TARGET_005fINSTANTIATE_005fDECLS-3863"></a></var><br>
<blockquote><p>This hook allows the backend to perform additional instantiations on rtl
that are not actually in any insns yet, but will be later.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_MANGLE_TYPE</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fMANGLE_005fTYPE-3864"></a></var><br>
<blockquote><p>If your target defines any fundamental types, or any types your target
uses should be mangled differently from the default, define this hook
to return the appropriate encoding for these types as part of a C++
mangled name. The <var>type</var> argument is the tree structure representing
the type to be mangled. The hook may be applied to trees which are
not target-specific fundamental types; it should return <code>NULL</code>
for all such types, as well as arguments it does not recognize. If the
return value is not <code>NULL</code>, it must point to a statically-allocated
string constant.
<p>Target-specific fundamental types might be new fundamental types or
qualified versions of ordinary fundamental types. Encode new
fundamental types as ‘<samp><span class="samp">u </span><var>n</var><span class="samp"> </span><var>name</var><span class="samp"><!-- /@w --></span></samp>’, where <var>name</var>
is the name used for the type in source code, and <var>n</var> is the
length of <var>name</var> in decimal. Encode qualified versions of
ordinary types as ‘<samp><span class="samp">U </span><var>n</var><span class="samp"> </span><var>name</var><span class="samp"> </span><var>code</var><span class="samp"><!-- /@w --></span></samp>’, where
<var>name</var> is the name used for the type qualifier in source code,
<var>n</var> is the length of <var>name</var> as above, and <var>code</var> is the
code used to represent the unqualified version of this type. (See
<code>write_builtin_type</code> in <samp><span class="file">cp/mangle.c</span></samp> for the list of
codes.) In both cases the spaces are for clarity; do not include any
spaces in your string.
<p>This hook is applied to types prior to typedef resolution. If the mangled
name for a particular type depends only on that type's main variant, you
can perform typedef resolution yourself using <code>TYPE_MAIN_VARIANT</code>
before mangling.
<p>The default version of this hook always returns <code>NULL</code>, which is
appropriate for a target that does not define any new fundamental
types.
</p></blockquote></div>
<div class="node">
<a name="Type-Layout"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Registers">Registers</a>,
Previous: <a rel="previous" accesskey="p" href="#Storage-Layout">Storage Layout</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.6 Layout of Source Language Data Types</h3>
<p>These macros define the sizes and other characteristics of the standard
basic data types used in programs being compiled. Unlike the macros in
the previous section, these apply to specific features of C and related
languages, rather than to fundamental aspects of storage layout.
<div class="defun">
— Macro: <b>INT_TYPE_SIZE</b><var><a name="index-INT_005fTYPE_005fSIZE-3865"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>int</code> on the
target machine. If you don't define this, the default is one word.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHORT_TYPE_SIZE</b><var><a name="index-SHORT_005fTYPE_005fSIZE-3866"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>short</code> on the
target machine. If you don't define this, the default is half a word.
(If this would be less than one storage unit, it is rounded up to one
unit.)
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_TYPE_SIZE</b><var><a name="index-LONG_005fTYPE_005fSIZE-3867"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long</code> on the
target machine. If you don't define this, the default is one word.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ADA_LONG_TYPE_SIZE</b><var><a name="index-ADA_005fLONG_005fTYPE_005fSIZE-3868"></a></var><br>
<blockquote><p>On some machines, the size used for the Ada equivalent of the type
<code>long</code> by a native Ada compiler differs from that used by C. In
that situation, define this macro to be a C expression to be used for
the size of that type. If you don't define this, the default is the
value of <code>LONG_TYPE_SIZE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_LONG_TYPE_SIZE</b><var><a name="index-LONG_005fLONG_005fTYPE_005fSIZE-3869"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long long</code> on the
target machine. If you don't define this, the default is two
words. If you want to support GNU Ada on your machine, the value of this
macro must be at least 64.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CHAR_TYPE_SIZE</b><var><a name="index-CHAR_005fTYPE_005fSIZE-3870"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>char</code> on the
target machine. If you don't define this, the default is
<code>BITS_PER_UNIT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BOOL_TYPE_SIZE</b><var><a name="index-BOOL_005fTYPE_005fSIZE-3871"></a></var><br>
<blockquote><p>A C expression for the size in bits of the C++ type <code>bool</code> and
C99 type <code>_Bool</code> on the target machine. If you don't define
this, and you probably shouldn't, the default is <code>CHAR_TYPE_SIZE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FLOAT_TYPE_SIZE</b><var><a name="index-FLOAT_005fTYPE_005fSIZE-3872"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>float</code> on the
target machine. If you don't define this, the default is one word.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DOUBLE_TYPE_SIZE</b><var><a name="index-DOUBLE_005fTYPE_005fSIZE-3873"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>double</code> on the
target machine. If you don't define this, the default is two
words.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_DOUBLE_TYPE_SIZE</b><var><a name="index-LONG_005fDOUBLE_005fTYPE_005fSIZE-3874"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long double</code> on
the target machine. If you don't define this, the default is two
words.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHORT_FRACT_TYPE_SIZE</b><var><a name="index-SHORT_005fFRACT_005fTYPE_005fSIZE-3875"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>short _Fract</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FRACT_TYPE_SIZE</b><var><a name="index-FRACT_005fTYPE_005fSIZE-3876"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>_Fract</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 2</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_FRACT_TYPE_SIZE</b><var><a name="index-LONG_005fFRACT_005fTYPE_005fSIZE-3877"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long _Fract</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 4</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_LONG_FRACT_TYPE_SIZE</b><var><a name="index-LONG_005fLONG_005fFRACT_005fTYPE_005fSIZE-3878"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long long _Fract</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 8</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHORT_ACCUM_TYPE_SIZE</b><var><a name="index-SHORT_005fACCUM_005fTYPE_005fSIZE-3879"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>short _Accum</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 2</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ACCUM_TYPE_SIZE</b><var><a name="index-ACCUM_005fTYPE_005fSIZE-3880"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>_Accum</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 4</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_ACCUM_TYPE_SIZE</b><var><a name="index-LONG_005fACCUM_005fTYPE_005fSIZE-3881"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long _Accum</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 8</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LONG_LONG_ACCUM_TYPE_SIZE</b><var><a name="index-LONG_005fLONG_005fACCUM_005fTYPE_005fSIZE-3882"></a></var><br>
<blockquote><p>A C expression for the size in bits of the type <code>long long _Accum</code> on
the target machine. If you don't define this, the default is
<code>BITS_PER_UNIT * 16</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</b><var><a name="index-LIBGCC2_005fLONG_005fDOUBLE_005fTYPE_005fSIZE-3883"></a></var><br>
<blockquote><p>Define this macro if <code>LONG_DOUBLE_TYPE_SIZE</code> is not constant or
if you want routines in <samp><span class="file">libgcc2.a</span></samp> for a size other than
<code>LONG_DOUBLE_TYPE_SIZE</code>. If you don't define this, the
default is <code>LONG_DOUBLE_TYPE_SIZE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC2_HAS_DF_MODE</b><var><a name="index-LIBGCC2_005fHAS_005fDF_005fMODE-3884"></a></var><br>
<blockquote><p>Define this macro if neither <code>DOUBLE_TYPE_SIZE</code> nor
<code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code> is
<code>DFmode</code> but you want <code>DFmode</code> routines in <samp><span class="file">libgcc2.a</span></samp>
anyway. If you don't define this and either <code>DOUBLE_TYPE_SIZE</code>
or <code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code> is 64 then the default is 1,
otherwise it is 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC2_HAS_XF_MODE</b><var><a name="index-LIBGCC2_005fHAS_005fXF_005fMODE-3885"></a></var><br>
<blockquote><p>Define this macro if <code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code> is not
<code>XFmode</code> but you want <code>XFmode</code> routines in <samp><span class="file">libgcc2.a</span></samp>
anyway. If you don't define this and <code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code>
is 80 then the default is 1, otherwise it is 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC2_HAS_TF_MODE</b><var><a name="index-LIBGCC2_005fHAS_005fTF_005fMODE-3886"></a></var><br>
<blockquote><p>Define this macro if <code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code> is not
<code>TFmode</code> but you want <code>TFmode</code> routines in <samp><span class="file">libgcc2.a</span></samp>
anyway. If you don't define this and <code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code>
is 128 then the default is 1, otherwise it is 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SF_SIZE</b><var><a name="index-SF_005fSIZE-3887"></a></var><br>
— Macro: <b>DF_SIZE</b><var><a name="index-DF_005fSIZE-3888"></a></var><br>
— Macro: <b>XF_SIZE</b><var><a name="index-XF_005fSIZE-3889"></a></var><br>
— Macro: <b>TF_SIZE</b><var><a name="index-TF_005fSIZE-3890"></a></var><br>
<blockquote><p>Define these macros to be the size in bits of the mantissa of
<code>SFmode</code>, <code>DFmode</code>, <code>XFmode</code> and <code>TFmode</code> values,
if the defaults in <samp><span class="file">libgcc2.h</span></samp> are inappropriate. By default,
<code>FLT_MANT_DIG</code> is used for <code>SF_SIZE</code>, <code>LDBL_MANT_DIG</code>
for <code>XF_SIZE</code> and <code>TF_SIZE</code>, and <code>DBL_MANT_DIG</code> or
<code>LDBL_MANT_DIG</code> for <code>DF_SIZE</code> according to whether
<code>DOUBLE_TYPE_SIZE</code> or
<code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code> is 64.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_FLT_EVAL_METHOD</b><var><a name="index-TARGET_005fFLT_005fEVAL_005fMETHOD-3891"></a></var><br>
<blockquote><p>A C expression for the value for <code>FLT_EVAL_METHOD</code> in <samp><span class="file">float.h</span></samp>,
assuming, if applicable, that the floating-point control word is in its
default state. If you do not define this macro the value of
<code>FLT_EVAL_METHOD</code> will be zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WIDEST_HARDWARE_FP_SIZE</b><var><a name="index-WIDEST_005fHARDWARE_005fFP_005fSIZE-3892"></a></var><br>
<blockquote><p>A C expression for the size in bits of the widest floating-point format
supported by the hardware. If you define this macro, you must specify a
value less than or equal to the value of <code>LONG_DOUBLE_TYPE_SIZE</code>.
If you do not define this macro, the value of <code>LONG_DOUBLE_TYPE_SIZE</code>
is the default.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEFAULT_SIGNED_CHAR</b><var><a name="index-DEFAULT_005fSIGNED_005fCHAR-3893"></a></var><br>
<blockquote><p>An expression whose value is 1 or 0, according to whether the type
<code>char</code> should be signed or unsigned by default. The user can
always override this default with the options <samp><span class="option">-fsigned-char</span></samp>
and <samp><span class="option">-funsigned-char</span></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_DEFAULT_SHORT_ENUMS</b> (<var>void</var>)<var><a name="index-TARGET_005fDEFAULT_005fSHORT_005fENUMS-3894"></a></var><br>
<blockquote><p>This target hook should return true if the compiler should give an
<code>enum</code> type only as many bytes as it takes to represent the range
of possible values of that type. It should return false if all
<code>enum</code> types should be allocated like <code>int</code>.
<p>The default is to return false.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SIZE_TYPE</b><var><a name="index-SIZE_005fTYPE-3895"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type to use
for size values. The typedef name <code>size_t</code> is defined using the
contents of the string.
<p>The string can contain more than one keyword. If so, separate them with
spaces, and write first any length keyword, then <code>unsigned</code> if
appropriate, and finally <code>int</code>. The string must exactly match one
of the data type names defined in the function
<code>init_decl_processing</code> in the file <samp><span class="file">c-decl.c</span></samp>. You may not
omit <code>int</code> or change the order—that would cause the compiler to
crash on startup.
<p>If you don't define this macro, the default is <code>"long unsigned
int"</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PTRDIFF_TYPE</b><var><a name="index-PTRDIFF_005fTYPE-3896"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type to use
for the result of subtracting two pointers. The typedef name
<code>ptrdiff_t</code> is defined using the contents of the string. See
<code>SIZE_TYPE</code> above for more information.
<p>If you don't define this macro, the default is <code>"long int"</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WCHAR_TYPE</b><var><a name="index-WCHAR_005fTYPE-3897"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type to use
for wide characters. The typedef name <code>wchar_t</code> is defined using
the contents of the string. See <code>SIZE_TYPE</code> above for more
information.
<p>If you don't define this macro, the default is <code>"int"</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WCHAR_TYPE_SIZE</b><var><a name="index-WCHAR_005fTYPE_005fSIZE-3898"></a></var><br>
<blockquote><p>A C expression for the size in bits of the data type for wide
characters. This is used in <code>cpp</code>, which cannot make use of
<code>WCHAR_TYPE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WINT_TYPE</b><var><a name="index-WINT_005fTYPE-3899"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type to
use for wide characters passed to <code>printf</code> and returned from
<code>getwc</code>. The typedef name <code>wint_t</code> is defined using the
contents of the string. See <code>SIZE_TYPE</code> above for more
information.
<p>If you don't define this macro, the default is <code>"unsigned int"</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INTMAX_TYPE</b><var><a name="index-INTMAX_005fTYPE-3900"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type that
can represent any value of any standard or extended signed integer type.
The typedef name <code>intmax_t</code> is defined using the contents of the
string. See <code>SIZE_TYPE</code> above for more information.
<p>If you don't define this macro, the default is the first of
<code>"int"</code>, <code>"long int"</code>, or <code>"long long int"</code> that has as
much precision as <code>long long int</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>UINTMAX_TYPE</b><var><a name="index-UINTMAX_005fTYPE-3901"></a></var><br>
<blockquote><p>A C expression for a string describing the name of the data type that
can represent any value of any standard or extended unsigned integer
type. The typedef name <code>uintmax_t</code> is defined using the contents
of the string. See <code>SIZE_TYPE</code> above for more information.
<p>If you don't define this macro, the default is the first of
<code>"unsigned int"</code>, <code>"long unsigned int"</code>, or <code>"long long
unsigned int"</code> that has as much precision as <code>long long unsigned
int</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SIG_ATOMIC_TYPE</b><var><a name="index-SIG_005fATOMIC_005fTYPE-3902"></a></var><br>
— Macro: <b>INT8_TYPE</b><var><a name="index-INT8_005fTYPE-3903"></a></var><br>
— Macro: <b>INT16_TYPE</b><var><a name="index-INT16_005fTYPE-3904"></a></var><br>
— Macro: <b>INT32_TYPE</b><var><a name="index-INT32_005fTYPE-3905"></a></var><br>
— Macro: <b>INT64_TYPE</b><var><a name="index-INT64_005fTYPE-3906"></a></var><br>
— Macro: <b>UINT8_TYPE</b><var><a name="index-UINT8_005fTYPE-3907"></a></var><br>
— Macro: <b>UINT16_TYPE</b><var><a name="index-UINT16_005fTYPE-3908"></a></var><br>
— Macro: <b>UINT32_TYPE</b><var><a name="index-UINT32_005fTYPE-3909"></a></var><br>
— Macro: <b>UINT64_TYPE</b><var><a name="index-UINT64_005fTYPE-3910"></a></var><br>
— Macro: <b>INT_LEAST8_TYPE</b><var><a name="index-INT_005fLEAST8_005fTYPE-3911"></a></var><br>
— Macro: <b>INT_LEAST16_TYPE</b><var><a name="index-INT_005fLEAST16_005fTYPE-3912"></a></var><br>
— Macro: <b>INT_LEAST32_TYPE</b><var><a name="index-INT_005fLEAST32_005fTYPE-3913"></a></var><br>
— Macro: <b>INT_LEAST64_TYPE</b><var><a name="index-INT_005fLEAST64_005fTYPE-3914"></a></var><br>
— Macro: <b>UINT_LEAST8_TYPE</b><var><a name="index-UINT_005fLEAST8_005fTYPE-3915"></a></var><br>
— Macro: <b>UINT_LEAST16_TYPE</b><var><a name="index-UINT_005fLEAST16_005fTYPE-3916"></a></var><br>
— Macro: <b>UINT_LEAST32_TYPE</b><var><a name="index-UINT_005fLEAST32_005fTYPE-3917"></a></var><br>
— Macro: <b>UINT_LEAST64_TYPE</b><var><a name="index-UINT_005fLEAST64_005fTYPE-3918"></a></var><br>
— Macro: <b>INT_FAST8_TYPE</b><var><a name="index-INT_005fFAST8_005fTYPE-3919"></a></var><br>
— Macro: <b>INT_FAST16_TYPE</b><var><a name="index-INT_005fFAST16_005fTYPE-3920"></a></var><br>
— Macro: <b>INT_FAST32_TYPE</b><var><a name="index-INT_005fFAST32_005fTYPE-3921"></a></var><br>
— Macro: <b>INT_FAST64_TYPE</b><var><a name="index-INT_005fFAST64_005fTYPE-3922"></a></var><br>
— Macro: <b>UINT_FAST8_TYPE</b><var><a name="index-UINT_005fFAST8_005fTYPE-3923"></a></var><br>
— Macro: <b>UINT_FAST16_TYPE</b><var><a name="index-UINT_005fFAST16_005fTYPE-3924"></a></var><br>
— Macro: <b>UINT_FAST32_TYPE</b><var><a name="index-UINT_005fFAST32_005fTYPE-3925"></a></var><br>
— Macro: <b>UINT_FAST64_TYPE</b><var><a name="index-UINT_005fFAST64_005fTYPE-3926"></a></var><br>
— Macro: <b>INTPTR_TYPE</b><var><a name="index-INTPTR_005fTYPE-3927"></a></var><br>
— Macro: <b>UINTPTR_TYPE</b><var><a name="index-UINTPTR_005fTYPE-3928"></a></var><br>
<blockquote><p>C expressions for the standard types <code>sig_atomic_t</code>,
<code>int8_t</code>, <code>int16_t</code>, <code>int32_t</code>, <code>int64_t</code>,
<code>uint8_t</code>, <code>uint16_t</code>, <code>uint32_t</code>, <code>uint64_t</code>,
<code>int_least8_t</code>, <code>int_least16_t</code>, <code>int_least32_t</code>,
<code>int_least64_t</code>, <code>uint_least8_t</code>, <code>uint_least16_t</code>,
<code>uint_least32_t</code>, <code>uint_least64_t</code>, <code>int_fast8_t</code>,
<code>int_fast16_t</code>, <code>int_fast32_t</code>, <code>int_fast64_t</code>,
<code>uint_fast8_t</code>, <code>uint_fast16_t</code>, <code>uint_fast32_t</code>,
<code>uint_fast64_t</code>, <code>intptr_t</code>, and <code>uintptr_t</code>. See
<code>SIZE_TYPE</code> above for more information.
<p>If any of these macros evaluates to a null pointer, the corresponding
type is not supported; if GCC is configured to provide
<code><stdint.h></code> in such a case, the header provided may not conform
to C99, depending on the type in question. The defaults for all of
these macros are null pointers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_PTRMEMFUNC_VBIT_LOCATION</b><var><a name="index-TARGET_005fPTRMEMFUNC_005fVBIT_005fLOCATION-3929"></a></var><br>
<blockquote><p>The C++ compiler represents a pointer-to-member-function with a struct
that looks like:
<pre class="smallexample"> struct {
union {
void (*fn)();
ptrdiff_t vtable_index;
};
ptrdiff_t delta;
};
</pre>
<p class="noindent">The C++ compiler must use one bit to indicate whether the function that
will be called through a pointer-to-member-function is virtual.
Normally, we assume that the low-order bit of a function pointer must
always be zero. Then, by ensuring that the vtable_index is odd, we can
distinguish which variant of the union is in use. But, on some
platforms function pointers can be odd, and so this doesn't work. In
that case, we use the low-order bit of the <code>delta</code> field, and shift
the remainder of the <code>delta</code> field to the left.
<p>GCC will automatically make the right selection about where to store
this bit using the <code>FUNCTION_BOUNDARY</code> setting for your platform.
However, some platforms such as ARM/Thumb have <code>FUNCTION_BOUNDARY</code>
set such that functions always start at even addresses, but the lowest
bit of pointers to functions indicate whether the function at that
address is in ARM or Thumb mode. If this is the case of your
architecture, you should define this macro to
<code>ptrmemfunc_vbit_in_delta</code>.
<p>In general, you should not have to define this macro. On architectures
in which function addresses are always even, according to
<code>FUNCTION_BOUNDARY</code>, GCC will automatically define this macro to
<code>ptrmemfunc_vbit_in_pfn</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_VTABLE_USES_DESCRIPTORS</b><var><a name="index-TARGET_005fVTABLE_005fUSES_005fDESCRIPTORS-3930"></a></var><br>
<blockquote><p>Normally, the C++ compiler uses function pointers in vtables. This
macro allows the target to change to use “function descriptors”
instead. Function descriptors are found on targets for whom a
function pointer is actually a small data structure. Normally the
data structure consists of the actual code address plus a data
pointer to which the function's data is relative.
<p>If vtables are used, the value of this macro should be the number
of words that the function descriptor occupies.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_VTABLE_ENTRY_ALIGN</b><var><a name="index-TARGET_005fVTABLE_005fENTRY_005fALIGN-3931"></a></var><br>
<blockquote><p>By default, the vtable entries are void pointers, the so the alignment
is the same as pointer alignment. The value of this macro specifies
the alignment of the vtable entry in bits. It should be defined only
when special alignment is necessary. */
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_VTABLE_DATA_ENTRY_DISTANCE</b><var><a name="index-TARGET_005fVTABLE_005fDATA_005fENTRY_005fDISTANCE-3932"></a></var><br>
<blockquote><p>There are a few non-descriptor entries in the vtable at offsets below
zero. If these entries must be padded (say, to preserve the alignment
specified by <code>TARGET_VTABLE_ENTRY_ALIGN</code>), set this to the number
of words in each data entry.
</p></blockquote></div>
<div class="node">
<a name="Registers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Register-Classes">Register Classes</a>,
Previous: <a rel="previous" accesskey="p" href="#Type-Layout">Type Layout</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.7 Register Usage</h3>
<p><a name="index-register-usage-3933"></a>
This section explains how to describe what registers the target machine
has, and how (in general) they can be used.
<p>The description of which registers a specific instruction can use is
done with register classes; see <a href="#Register-Classes">Register Classes</a>. For information
on using registers to access a stack frame, see <a href="#Frame-Registers">Frame Registers</a>.
For passing values in registers, see <a href="#Register-Arguments">Register Arguments</a>.
For returning values in registers, see <a href="#Scalar-Return">Scalar Return</a>.
<ul class="menu">
<li><a accesskey="1" href="#Register-Basics">Register Basics</a>: Number and kinds of registers.
<li><a accesskey="2" href="#Allocation-Order">Allocation Order</a>: Order in which registers are allocated.
<li><a accesskey="3" href="#Values-in-Registers">Values in Registers</a>: What kinds of values each reg can hold.
<li><a accesskey="4" href="#Leaf-Functions">Leaf Functions</a>: Renumbering registers for leaf functions.
<li><a accesskey="5" href="#Stack-Registers">Stack Registers</a>: Handling a register stack such as 80387.
</ul>
<div class="node">
<a name="Register-Basics"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Allocation-Order">Allocation Order</a>,
Up: <a rel="up" accesskey="u" href="#Registers">Registers</a>
</div>
<h4 class="subsection">17.7.1 Basic Characteristics of Registers</h4>
<!-- prevent bad page break with this line -->
<p>Registers have various characteristics.
<div class="defun">
— Macro: <b>FIRST_PSEUDO_REGISTER</b><var><a name="index-FIRST_005fPSEUDO_005fREGISTER-3934"></a></var><br>
<blockquote><p>Number of hardware registers known to the compiler. They receive
numbers 0 through <code>FIRST_PSEUDO_REGISTER-1</code>; thus, the first
pseudo register's number really is assigned the number
<code>FIRST_PSEUDO_REGISTER</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FIXED_REGISTERS</b><var><a name="index-FIXED_005fREGISTERS-3935"></a></var><br>
<blockquote><p><a name="index-fixed-register-3936"></a>An initializer that says which registers are used for fixed purposes
all throughout the compiled code and are therefore not available for
general allocation. These would include the stack pointer, the frame
pointer (except on machines where that can be used as a general
register when no frame pointer is needed), the program counter on
machines where that is considered one of the addressable registers,
and any other numbered register with a standard use.
<p>This information is expressed as a sequence of numbers, separated by
commas and surrounded by braces. The <var>n</var>th number is 1 if
register <var>n</var> is fixed, 0 otherwise.
<p>The table initialized from this macro, and the table initialized by
the following one, may be overridden at run time either automatically,
by the actions of the macro <code>CONDITIONAL_REGISTER_USAGE</code>, or by
the user with the command options <samp><span class="option">-ffixed-</span><var>reg</var></samp>,
<samp><span class="option">-fcall-used-</span><var>reg</var></samp> and <samp><span class="option">-fcall-saved-</span><var>reg</var></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CALL_USED_REGISTERS</b><var><a name="index-CALL_005fUSED_005fREGISTERS-3937"></a></var><br>
<blockquote><p><a name="index-call_002dused-register-3938"></a><a name="index-call_002dclobbered-register-3939"></a><a name="index-call_002dsaved-register-3940"></a>Like <code>FIXED_REGISTERS</code> but has 1 for each register that is
clobbered (in general) by function calls as well as for fixed
registers. This macro therefore identifies the registers that are not
available for general allocation of values that must live across
function calls.
<p>If a register has 0 in <code>CALL_USED_REGISTERS</code>, the compiler
automatically saves it on function entry and restores it on function
exit, if the register is used within the function.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CALL_REALLY_USED_REGISTERS</b><var><a name="index-CALL_005fREALLY_005fUSED_005fREGISTERS-3941"></a></var><br>
<blockquote><p><a name="index-call_002dused-register-3942"></a><a name="index-call_002dclobbered-register-3943"></a><a name="index-call_002dsaved-register-3944"></a>Like <code>CALL_USED_REGISTERS</code> except this macro doesn't require
that the entire set of <code>FIXED_REGISTERS</code> be included.
(<code>CALL_USED_REGISTERS</code> must be a superset of <code>FIXED_REGISTERS</code>).
This macro is optional. If not specified, it defaults to the value
of <code>CALL_USED_REGISTERS</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_CALL_PART_CLOBBERED</b> (<var>regno, mode</var>)<var><a name="index-HARD_005fREGNO_005fCALL_005fPART_005fCLOBBERED-3945"></a></var><br>
<blockquote><p><a name="index-call_002dused-register-3946"></a><a name="index-call_002dclobbered-register-3947"></a><a name="index-call_002dsaved-register-3948"></a>A C expression that is nonzero if it is not permissible to store a
value of mode <var>mode</var> in hard register number <var>regno</var> across a
call without some part of it being clobbered. For most machines this
macro need not be defined. It is only required for machines that do not
preserve the entire contents of a register across a call.
</p></blockquote></div>
<p><a name="index-fixed_005fregs-3949"></a><a name="index-call_005fused_005fregs-3950"></a><a name="index-global_005fregs-3951"></a><a name="index-reg_005fnames-3952"></a><a name="index-reg_005fclass_005fcontents-3953"></a>
<div class="defun">
— Target Hook: void <b>TARGET_CONDITIONAL_REGISTER_USAGE</b> (<var>void</var>)<var><a name="index-TARGET_005fCONDITIONAL_005fREGISTER_005fUSAGE-3954"></a></var><br>
<blockquote><p>This hook may conditionally modify five variables
<code>fixed_regs</code>, <code>call_used_regs</code>, <code>global_regs</code>,
<code>reg_names</code>, and <code>reg_class_contents</code>, to take into account
any dependence of these register sets on target flags. The first three
of these are of type <code>char []</code> (interpreted as Boolean vectors).
<code>global_regs</code> is a <code>const char *[]</code>, and
<code>reg_class_contents</code> is a <code>HARD_REG_SET</code>. Before the macro is
called, <code>fixed_regs</code>, <code>call_used_regs</code>,
<code>reg_class_contents</code>, and <code>reg_names</code> have been initialized
from <code>FIXED_REGISTERS</code>, <code>CALL_USED_REGISTERS</code>,
<code>REG_CLASS_CONTENTS</code>, and <code>REGISTER_NAMES</code>, respectively.
<code>global_regs</code> has been cleared, and any <samp><span class="option">-ffixed-</span><var>reg</var></samp>,
<samp><span class="option">-fcall-used-</span><var>reg</var></samp> and <samp><span class="option">-fcall-saved-</span><var>reg</var></samp>
command options have been applied.
<p><a name="index-disabling-certain-registers-3955"></a><a name="index-controlling-register-usage-3956"></a>If the usage of an entire class of registers depends on the target
flags, you may indicate this to GCC by using this macro to modify
<code>fixed_regs</code> and <code>call_used_regs</code> to 1 for each of the
registers in the classes which should not be used by GCC. Also define
the macro <code>REG_CLASS_FROM_LETTER</code> / <code>REG_CLASS_FROM_CONSTRAINT</code>
to return <code>NO_REGS</code> if it
is called with a letter for a class that shouldn't be used.
<p>(However, if this class is not included in <code>GENERAL_REGS</code> and all
of the insn patterns whose constraints permit this class are
controlled by target switches, then GCC will automatically avoid using
these registers when the target switches are opposed to them.)
</p></blockquote></div>
<div class="defun">
— Macro: <b>INCOMING_REGNO</b> (<var>out</var>)<var><a name="index-INCOMING_005fREGNO-3957"></a></var><br>
<blockquote><p>Define this macro if the target machine has register windows. This C
expression returns the register number as seen by the called function
corresponding to the register number <var>out</var> as seen by the calling
function. Return <var>out</var> if register number <var>out</var> is not an
outbound register.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OUTGOING_REGNO</b> (<var>in</var>)<var><a name="index-OUTGOING_005fREGNO-3958"></a></var><br>
<blockquote><p>Define this macro if the target machine has register windows. This C
expression returns the register number as seen by the calling function
corresponding to the register number <var>in</var> as seen by the called
function. Return <var>in</var> if register number <var>in</var> is not an inbound
register.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOCAL_REGNO</b> (<var>regno</var>)<var><a name="index-LOCAL_005fREGNO-3959"></a></var><br>
<blockquote><p>Define this macro if the target machine has register windows. This C
expression returns true if the register is call-saved but is in the
register window. Unlike most call-saved registers, such registers
need not be explicitly restored on function exit or during non-local
gotos.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PC_REGNUM</b><var><a name="index-PC_005fREGNUM-3960"></a></var><br>
<blockquote><p>If the program counter has a register number, define this as that
register number. Otherwise, do not define it.
</p></blockquote></div>
<div class="node">
<a name="Allocation-Order"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Values-in-Registers">Values in Registers</a>,
Previous: <a rel="previous" accesskey="p" href="#Register-Basics">Register Basics</a>,
Up: <a rel="up" accesskey="u" href="#Registers">Registers</a>
</div>
<h4 class="subsection">17.7.2 Order of Allocation of Registers</h4>
<p><a name="index-order-of-register-allocation-3961"></a><a name="index-register-allocation-order-3962"></a>
<!-- prevent bad page break with this line -->
Registers are allocated in order.
<div class="defun">
— Macro: <b>REG_ALLOC_ORDER</b><var><a name="index-REG_005fALLOC_005fORDER-3963"></a></var><br>
<blockquote><p>If defined, an initializer for a vector of integers, containing the
numbers of hard registers in the order in which GCC should prefer
to use them (from most preferred to least).
<p>If this macro is not defined, registers are used lowest numbered first
(all else being equal).
<p>One use of this macro is on machines where the highest numbered
registers must always be saved and the save-multiple-registers
instruction supports only sequences of consecutive registers. On such
machines, define <code>REG_ALLOC_ORDER</code> to be an initializer that lists
the highest numbered allocable register first.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ADJUST_REG_ALLOC_ORDER</b><var><a name="index-ADJUST_005fREG_005fALLOC_005fORDER-3964"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to choose the order in which to allocate
hard registers for pseudo-registers local to a basic block.
<p>Store the desired register order in the array <code>reg_alloc_order</code>.
Element 0 should be the register to allocate first; element 1, the next
register; and so on.
<p>The macro body should not assume anything about the contents of
<code>reg_alloc_order</code> before execution of the macro.
<p>On most machines, it is not necessary to define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HONOR_REG_ALLOC_ORDER</b><var><a name="index-HONOR_005fREG_005fALLOC_005fORDER-3965"></a></var><br>
<blockquote><p>Normally, IRA tries to estimate the costs for saving a register in the
prologue and restoring it in the epilogue. This discourages it from
using call-saved registers. If a machine wants to ensure that IRA
allocates registers in the order given by REG_ALLOC_ORDER even if some
call-saved registers appear earlier than call-used ones, this macro
should be defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IRA_HARD_REGNO_ADD_COST_MULTIPLIER</b> (<var>regno</var>)<var><a name="index-IRA_005fHARD_005fREGNO_005fADD_005fCOST_005fMULTIPLIER-3966"></a></var><br>
<blockquote><p>In some case register allocation order is not enough for the
Integrated Register Allocator (<acronym>IRA</acronym>) to generate a good code.
If this macro is defined, it should return a floating point value
based on <var>regno</var>. The cost of using <var>regno</var> for a pseudo will
be increased by approximately the pseudo's usage frequency times the
value returned by this macro. Not defining this macro is equivalent
to having it always return <code>0.0</code>.
<p>On most machines, it is not necessary to define this macro.
</p></blockquote></div>
<div class="node">
<a name="Values-in-Registers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Leaf-Functions">Leaf Functions</a>,
Previous: <a rel="previous" accesskey="p" href="#Allocation-Order">Allocation Order</a>,
Up: <a rel="up" accesskey="u" href="#Registers">Registers</a>
</div>
<h4 class="subsection">17.7.3 How Values Fit in Registers</h4>
<p>This section discusses the macros that describe which kinds of values
(specifically, which machine modes) each register can hold, and how many
consecutive registers are needed for a given mode.
<div class="defun">
— Macro: <b>HARD_REGNO_NREGS</b> (<var>regno, mode</var>)<var><a name="index-HARD_005fREGNO_005fNREGS-3967"></a></var><br>
<blockquote><p>A C expression for the number of consecutive hard registers, starting
at register number <var>regno</var>, required to hold a value of mode
<var>mode</var>. This macro must never return zero, even if a register
cannot hold the requested mode - indicate that with HARD_REGNO_MODE_OK
and/or CANNOT_CHANGE_MODE_CLASS instead.
<p>On a machine where all registers are exactly one word, a suitable
definition of this macro is
<pre class="smallexample"> #define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_NREGS_HAS_PADDING</b> (<var>regno, mode</var>)<var><a name="index-HARD_005fREGNO_005fNREGS_005fHAS_005fPADDING-3968"></a></var><br>
<blockquote><p>A C expression that is nonzero if a value of mode <var>mode</var>, stored
in memory, ends with padding that causes it to take up more space than
in registers starting at register number <var>regno</var> (as determined by
multiplying GCC's notion of the size of the register when containing
this mode by the number of registers returned by
<code>HARD_REGNO_NREGS</code>). By default this is zero.
<p>For example, if a floating-point value is stored in three 32-bit
registers but takes up 128 bits in memory, then this would be
nonzero.
<p>This macros only needs to be defined if there are cases where
<code>subreg_get_info</code>
would otherwise wrongly determine that a <code>subreg</code> can be
represented by an offset to the register number, when in fact such a
<code>subreg</code> would contain some of the padding not stored in
registers and so not be representable.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_NREGS_WITH_PADDING</b> (<var>regno, mode</var>)<var><a name="index-HARD_005fREGNO_005fNREGS_005fWITH_005fPADDING-3969"></a></var><br>
<blockquote><p>For values of <var>regno</var> and <var>mode</var> for which
<code>HARD_REGNO_NREGS_HAS_PADDING</code> returns nonzero, a C expression
returning the greater number of registers required to hold the value
including any padding. In the example above, the value would be four.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGMODE_NATURAL_SIZE</b> (<var>mode</var>)<var><a name="index-REGMODE_005fNATURAL_005fSIZE-3970"></a></var><br>
<blockquote><p>Define this macro if the natural size of registers that hold values
of mode <var>mode</var> is not the word size. It is a C expression that
should give the natural size in bytes for the specified mode. It is
used by the register allocator to try to optimize its results. This
happens for example on SPARC 64-bit where the natural size of
floating-point registers is still 32-bit.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_MODE_OK</b> (<var>regno, mode</var>)<var><a name="index-HARD_005fREGNO_005fMODE_005fOK-3971"></a></var><br>
<blockquote><p>A C expression that is nonzero if it is permissible to store a value
of mode <var>mode</var> in hard register number <var>regno</var> (or in several
registers starting with that one). For a machine where all registers
are equivalent, a suitable definition is
<pre class="smallexample"> #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
</pre>
<p>You need not include code to check for the numbers of fixed registers,
because the allocation mechanism considers them to be always occupied.
<p><a name="index-register-pairs-3972"></a>On some machines, double-precision values must be kept in even/odd
register pairs. You can implement that by defining this macro to reject
odd register numbers for such modes.
<p>The minimum requirement for a mode to be OK in a register is that the
‘<samp><span class="samp">mov</span><var>mode</var></samp>’ instruction pattern support moves between the
register and other hard register in the same class and that moving a
value into the register and back out not alter it.
<p>Since the same instruction used to move <code>word_mode</code> will work for
all narrower integer modes, it is not necessary on any machine for
<code>HARD_REGNO_MODE_OK</code> to distinguish between these modes, provided
you define patterns ‘<samp><span class="samp">movhi</span></samp>’, etc., to take advantage of this. This
is useful because of the interaction between <code>HARD_REGNO_MODE_OK</code>
and <code>MODES_TIEABLE_P</code>; it is very desirable for all integer modes
to be tieable.
<p>Many machines have special registers for floating point arithmetic.
Often people assume that floating point machine modes are allowed only
in floating point registers. This is not true. Any registers that
can hold integers can safely <em>hold</em> a floating point machine
mode, whether or not floating arithmetic can be done on it in those
registers. Integer move instructions can be used to move the values.
<p>On some machines, though, the converse is true: fixed-point machine
modes may not go in floating registers. This is true if the floating
registers normalize any value stored in them, because storing a
non-floating value there would garble it. In this case,
<code>HARD_REGNO_MODE_OK</code> should reject fixed-point machine modes in
floating registers. But if the floating registers do not automatically
normalize, if you can store any bit pattern in one and retrieve it
unchanged without a trap, then any machine mode may go in a floating
register, so you can define this macro to say so.
<p>The primary significance of special floating registers is rather that
they are the registers acceptable in floating point arithmetic
instructions. However, this is of no concern to
<code>HARD_REGNO_MODE_OK</code>. You handle it by writing the proper
constraints for those instructions.
<p>On some machines, the floating registers are especially slow to access,
so that it is better to store a value in a stack frame than in such a
register if floating point arithmetic is not being done. As long as the
floating registers are not in class <code>GENERAL_REGS</code>, they will not
be used unless some pattern's constraint asks for one.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_RENAME_OK</b> (<var>from, to</var>)<var><a name="index-HARD_005fREGNO_005fRENAME_005fOK-3973"></a></var><br>
<blockquote><p>A C expression that is nonzero if it is OK to rename a hard register
<var>from</var> to another hard register <var>to</var>.
<p>One common use of this macro is to prevent renaming of a register to
another register that is not saved by a prologue in an interrupt
handler.
<p>The default is always nonzero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODES_TIEABLE_P</b> (<var>mode1, mode2</var>)<var><a name="index-MODES_005fTIEABLE_005fP-3974"></a></var><br>
<blockquote><p>A C expression that is nonzero if a value of mode
<var>mode1</var> is accessible in mode <var>mode2</var> without copying.
<p>If <code>HARD_REGNO_MODE_OK (</code><var>r</var><code>, </code><var>mode1</var><code>)</code> and
<code>HARD_REGNO_MODE_OK (</code><var>r</var><code>, </code><var>mode2</var><code>)</code> are always the same for
any <var>r</var>, then <code>MODES_TIEABLE_P (</code><var>mode1</var><code>, </code><var>mode2</var><code>)</code>
should be nonzero. If they differ for any <var>r</var>, you should define
this macro to return zero unless some other mechanism ensures the
accessibility of the value in a narrower mode.
<p>You should define this macro to return nonzero in as many cases as
possible since doing so will allow GCC to perform better register
allocation.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HARD_REGNO_SCRATCH_OK</b> (<var>unsigned int regno</var>)<var><a name="index-TARGET_005fHARD_005fREGNO_005fSCRATCH_005fOK-3975"></a></var><br>
<blockquote><p>This target hook should return <code>true</code> if it is OK to use a hard register
<var>regno</var> as scratch reg in peephole2.
<p>One common use of this macro is to prevent using of a register that
is not saved by a prologue in an interrupt handler.
<p>The default version of this hook always returns <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>AVOID_CCMODE_COPIES</b><var><a name="index-AVOID_005fCCMODE_005fCOPIES-3976"></a></var><br>
<blockquote><p>Define this macro if the compiler should avoid copies to/from <code>CCmode</code>
registers. You should only define this macro if support for copying to/from
<code>CCmode</code> is incomplete.
</p></blockquote></div>
<div class="node">
<a name="Leaf-Functions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Stack-Registers">Stack Registers</a>,
Previous: <a rel="previous" accesskey="p" href="#Values-in-Registers">Values in Registers</a>,
Up: <a rel="up" accesskey="u" href="#Registers">Registers</a>
</div>
<h4 class="subsection">17.7.4 Handling Leaf Functions</h4>
<p><a name="index-leaf-functions-3977"></a><a name="index-functions_002c-leaf-3978"></a>On some machines, a leaf function (i.e., one which makes no calls) can run
more efficiently if it does not make its own register window. Often this
means it is required to receive its arguments in the registers where they
are passed by the caller, instead of the registers where they would
normally arrive.
<p>The special treatment for leaf functions generally applies only when
other conditions are met; for example, often they may use only those
registers for its own variables and temporaries. We use the term “leaf
function” to mean a function that is suitable for this special
handling, so that functions with no calls are not necessarily “leaf
functions”.
<p>GCC assigns register numbers before it knows whether the function is
suitable for leaf function treatment. So it needs to renumber the
registers in order to output a leaf function. The following macros
accomplish this.
<div class="defun">
— Macro: <b>LEAF_REGISTERS</b><var><a name="index-LEAF_005fREGISTERS-3979"></a></var><br>
<blockquote><p>Name of a char vector, indexed by hard register number, which
contains 1 for a register that is allowable in a candidate for leaf
function treatment.
<p>If leaf function treatment involves renumbering the registers, then the
registers marked here should be the ones before renumbering—those that
GCC would ordinarily allocate. The registers which will actually be
used in the assembler code, after renumbering, should not be marked with 1
in this vector.
<p>Define this macro only if the target machine offers a way to optimize
the treatment of leaf functions.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LEAF_REG_REMAP</b> (<var>regno</var>)<var><a name="index-LEAF_005fREG_005fREMAP-3980"></a></var><br>
<blockquote><p>A C expression whose value is the register number to which <var>regno</var>
should be renumbered, when a function is treated as a leaf function.
<p>If <var>regno</var> is a register number which should not appear in a leaf
function before renumbering, then the expression should yield −1, which
will cause the compiler to abort.
<p>Define this macro only if the target machine offers a way to optimize the
treatment of leaf functions, and registers need to be renumbered to do
this.
</p></blockquote></div>
<p><a name="index-current_005ffunction_005fis_005fleaf-3981"></a><a name="index-current_005ffunction_005fuses_005fonly_005fleaf_005fregs-3982"></a><code>TARGET_ASM_FUNCTION_PROLOGUE</code> and
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> must usually treat leaf functions
specially. They can test the C variable <code>current_function_is_leaf</code>
which is nonzero for leaf functions. <code>current_function_is_leaf</code> is
set prior to local register allocation and is valid for the remaining
compiler passes. They can also test the C variable
<code>current_function_uses_only_leaf_regs</code> which is nonzero for leaf
functions which only use leaf registers.
<code>current_function_uses_only_leaf_regs</code> is valid after all passes
that modify the instructions have been run and is only useful if
<code>LEAF_REGISTERS</code> is defined.
<!-- changed this to fix overfull. ALSO: why the "it" at the beginning -->
<!-- of the next paragraph?! -mew 2feb93 -->
<div class="node">
<a name="Stack-Registers"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Leaf-Functions">Leaf Functions</a>,
Up: <a rel="up" accesskey="u" href="#Registers">Registers</a>
</div>
<h4 class="subsection">17.7.5 Registers That Form a Stack</h4>
<p>There are special features to handle computers where some of the
“registers” form a stack. Stack registers are normally written by
pushing onto the stack, and are numbered relative to the top of the
stack.
<p>Currently, GCC can only handle one group of stack-like registers, and
they must be consecutively numbered. Furthermore, the existing
support for stack-like registers is specific to the 80387 floating
point coprocessor. If you have a new architecture that uses
stack-like registers, you will need to do substantial work on
<samp><span class="file">reg-stack.c</span></samp> and write your machine description to cooperate
with it, as well as defining these macros.
<div class="defun">
— Macro: <b>STACK_REGS</b><var><a name="index-STACK_005fREGS-3983"></a></var><br>
<blockquote><p>Define this if the machine has any stack-like registers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_REG_COVER_CLASS</b><var><a name="index-STACK_005fREG_005fCOVER_005fCLASS-3984"></a></var><br>
<blockquote><p>This is a cover class containing the stack registers. Define this if
the machine has any stack-like registers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FIRST_STACK_REG</b><var><a name="index-FIRST_005fSTACK_005fREG-3985"></a></var><br>
<blockquote><p>The number of the first stack-like register. This one is the top
of the stack.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LAST_STACK_REG</b><var><a name="index-LAST_005fSTACK_005fREG-3986"></a></var><br>
<blockquote><p>The number of the last stack-like register. This one is the bottom of
the stack.
</p></blockquote></div>
<div class="node">
<a name="Register-Classes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Old-Constraints">Old Constraints</a>,
Previous: <a rel="previous" accesskey="p" href="#Registers">Registers</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.8 Register Classes</h3>
<p><a name="index-register-class-definitions-3987"></a><a name="index-class-definitions_002c-register-3988"></a>
On many machines, the numbered registers are not all equivalent.
For example, certain registers may not be allowed for indexed addressing;
certain registers may not be allowed in some instructions. These machine
restrictions are described to the compiler using <dfn>register classes</dfn>.
<p>You define a number of register classes, giving each one a name and saying
which of the registers belong to it. Then you can specify register classes
that are allowed as operands to particular instruction patterns.
<p><a name="index-ALL_005fREGS-3989"></a><a name="index-NO_005fREGS-3990"></a>In general, each register will belong to several classes. In fact, one
class must be named <code>ALL_REGS</code> and contain all the registers. Another
class must be named <code>NO_REGS</code> and contain no registers. Often the
union of two classes will be another class; however, this is not required.
<p><a name="index-GENERAL_005fREGS-3991"></a>One of the classes must be named <code>GENERAL_REGS</code>. There is nothing
terribly special about the name, but the operand constraint letters
‘<samp><span class="samp">r</span></samp>’ and ‘<samp><span class="samp">g</span></samp>’ specify this class. If <code>GENERAL_REGS</code> is
the same as <code>ALL_REGS</code>, just define it as a macro which expands
to <code>ALL_REGS</code>.
<p>Order the classes so that if class <var>x</var> is contained in class <var>y</var>
then <var>x</var> has a lower class number than <var>y</var>.
<p>The way classes other than <code>GENERAL_REGS</code> are specified in operand
constraints is through machine-dependent operand constraint letters.
You can define such letters to correspond to various classes, then use
them in operand constraints.
<p>You should define a class for the union of two classes whenever some
instruction allows both classes. For example, if an instruction allows
either a floating point (coprocessor) register or a general register for a
certain operand, you should define a class <code>FLOAT_OR_GENERAL_REGS</code>
which includes both of them. Otherwise you will get suboptimal code,
or even internal compiler errors when reload cannot find a register in the
the class computed via <code>reg_class_subunion</code>.
<p>You must also specify certain redundant information about the register
classes: for each class, which classes contain it and which ones are
contained in it; for each pair of classes, the largest class contained
in their union.
<p>When a value occupying several consecutive registers is expected in a
certain class, all the registers used must belong to that class.
Therefore, register classes cannot be used to enforce a requirement for
a register pair to start with an even-numbered register. The way to
specify this requirement is with <code>HARD_REGNO_MODE_OK</code>.
<p>Register classes used for input-operands of bitwise-and or shift
instructions have a special requirement: each such class must have, for
each fixed-point machine mode, a subclass whose registers can transfer that
mode to or from memory. For example, on some machines, the operations for
single-byte values (<code>QImode</code>) are limited to certain registers. When
this is so, each register class that is used in a bitwise-and or shift
instruction must have a subclass consisting of registers from which
single-byte values can be loaded or stored. This is so that
<code>PREFERRED_RELOAD_CLASS</code> can always have a possible value to return.
<div class="defun">
— Data type: <b>enum reg_class</b><var><a name="index-enum-reg_005fclass-3992"></a></var><br>
<blockquote><p>An enumerated type that must be defined with all the register class names
as enumerated values. <code>NO_REGS</code> must be first. <code>ALL_REGS</code>
must be the last register class, followed by one more enumerated value,
<code>LIM_REG_CLASSES</code>, which is not a register class but rather
tells how many classes there are.
<p>Each register class has a number, which is the value of casting
the class name to type <code>int</code>. The number serves as an index
in many of the tables described below.
</p></blockquote></div>
<div class="defun">
— Macro: <b>N_REG_CLASSES</b><var><a name="index-N_005fREG_005fCLASSES-3993"></a></var><br>
<blockquote><p>The number of distinct register classes, defined as follows:
<pre class="smallexample"> #define N_REG_CLASSES (int) LIM_REG_CLASSES
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>REG_CLASS_NAMES</b><var><a name="index-REG_005fCLASS_005fNAMES-3994"></a></var><br>
<blockquote><p>An initializer containing the names of the register classes as C string
constants. These names are used in writing some of the debugging dumps.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REG_CLASS_CONTENTS</b><var><a name="index-REG_005fCLASS_005fCONTENTS-3995"></a></var><br>
<blockquote><p>An initializer containing the contents of the register classes, as integers
which are bit masks. The <var>n</var>th integer specifies the contents of class
<var>n</var>. The way the integer <var>mask</var> is interpreted is that
register <var>r</var> is in the class if <var>mask</var><code> & (1 << </code><var>r</var><code>)</code> is 1.
<p>When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings containing
several integers. Each sub-initializer must be suitable as an initializer
for the type <code>HARD_REG_SET</code> which is defined in <samp><span class="file">hard-reg-set.h</span></samp>.
In this situation, the first integer in each sub-initializer corresponds to
registers 0 through 31, the second integer to registers 32 through 63, and
so on.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_REG_CLASS</b> (<var>regno</var>)<var><a name="index-REGNO_005fREG_005fCLASS-3996"></a></var><br>
<blockquote><p>A C expression whose value is a register class containing hard register
<var>regno</var>. In general there is more than one such class; choose a class
which is <dfn>minimal</dfn>, meaning that no smaller class also contains the
register.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BASE_REG_CLASS</b><var><a name="index-BASE_005fREG_005fCLASS-3997"></a></var><br>
<blockquote><p>A macro whose definition is the name of the class to which a valid
base register must belong. A base register is one used in an address
which is the register value plus a displacement.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_BASE_REG_CLASS</b> (<var>mode</var>)<var><a name="index-MODE_005fBASE_005fREG_005fCLASS-3998"></a></var><br>
<blockquote><p>This is a variation of the <code>BASE_REG_CLASS</code> macro which allows
the selection of a base register in a mode dependent manner. If
<var>mode</var> is VOIDmode then it should return the same value as
<code>BASE_REG_CLASS</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_BASE_REG_REG_CLASS</b> (<var>mode</var>)<var><a name="index-MODE_005fBASE_005fREG_005fREG_005fCLASS-3999"></a></var><br>
<blockquote><p>A C expression whose value is the register class to which a valid
base register must belong in order to be used in a base plus index
register address. You should define this macro if base plus index
addresses have different requirements than other base register uses.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_CODE_BASE_REG_CLASS</b> (<var>mode, outer_code, index_code</var>)<var><a name="index-MODE_005fCODE_005fBASE_005fREG_005fCLASS-4000"></a></var><br>
<blockquote><p>A C expression whose value is the register class to which a valid
base register must belong. <var>outer_code</var> and <var>index_code</var> define the
context in which the base register occurs. <var>outer_code</var> is the code of
the immediately enclosing expression (<code>MEM</code> for the top level of an
address, <code>ADDRESS</code> for something that occurs in an
<code>address_operand</code>). <var>index_code</var> is the code of the corresponding
index expression if <var>outer_code</var> is <code>PLUS</code>; <code>SCRATCH</code> otherwise.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INDEX_REG_CLASS</b><var><a name="index-INDEX_005fREG_005fCLASS-4001"></a></var><br>
<blockquote><p>A macro whose definition is the name of the class to which a valid
index register must belong. An index register is one used in an
address where its value is either multiplied by a scale factor or
added to another register (as well as added to a displacement).
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_OK_FOR_BASE_P</b> (<var>num</var>)<var><a name="index-REGNO_005fOK_005fFOR_005fBASE_005fP-4002"></a></var><br>
<blockquote><p>A C expression which is nonzero if register number <var>num</var> is
suitable for use as a base register in operand addresses.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_MODE_OK_FOR_BASE_P</b> (<var>num, mode</var>)<var><a name="index-REGNO_005fMODE_005fOK_005fFOR_005fBASE_005fP-4003"></a></var><br>
<blockquote><p>A C expression that is just like <code>REGNO_OK_FOR_BASE_P</code>, except that
that expression may examine the mode of the memory reference in
<var>mode</var>. You should define this macro if the mode of the memory
reference affects whether a register may be used as a base register. If
you define this macro, the compiler will use it instead of
<code>REGNO_OK_FOR_BASE_P</code>. The mode may be <code>VOIDmode</code> for
addresses that appear outside a <code>MEM</code>, i.e., as an
<code>address_operand</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_MODE_OK_FOR_REG_BASE_P</b> (<var>num, mode</var>)<var><a name="index-REGNO_005fMODE_005fOK_005fFOR_005fREG_005fBASE_005fP-4004"></a></var><br>
<blockquote><p>A C expression which is nonzero if register number <var>num</var> is suitable for
use as a base register in base plus index operand addresses, accessing
memory in mode <var>mode</var>. It may be either a suitable hard register or a
pseudo register that has been allocated such a hard register. You should
define this macro if base plus index addresses have different requirements
than other base register uses.
<p>Use of this macro is deprecated; please use the more general
<code>REGNO_MODE_CODE_OK_FOR_BASE_P</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_MODE_CODE_OK_FOR_BASE_P</b> (<var>num, mode, outer_code, index_code</var>)<var><a name="index-REGNO_005fMODE_005fCODE_005fOK_005fFOR_005fBASE_005fP-4005"></a></var><br>
<blockquote><p>A C expression that is just like <code>REGNO_MODE_OK_FOR_BASE_P</code>, except
that that expression may examine the context in which the register
appears in the memory reference. <var>outer_code</var> is the code of the
immediately enclosing expression (<code>MEM</code> if at the top level of the
address, <code>ADDRESS</code> for something that occurs in an
<code>address_operand</code>). <var>index_code</var> is the code of the
corresponding index expression if <var>outer_code</var> is <code>PLUS</code>;
<code>SCRATCH</code> otherwise. The mode may be <code>VOIDmode</code> for addresses
that appear outside a <code>MEM</code>, i.e., as an <code>address_operand</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REGNO_OK_FOR_INDEX_P</b> (<var>num</var>)<var><a name="index-REGNO_005fOK_005fFOR_005fINDEX_005fP-4006"></a></var><br>
<blockquote><p>A C expression which is nonzero if register number <var>num</var> is
suitable for use as an index register in operand addresses. It may be
either a suitable hard register or a pseudo register that has been
allocated such a hard register.
<p>The difference between an index register and a base register is that
the index register may be scaled. If an address involves the sum of
two registers, neither one of them scaled, then either one may be
labeled the “base” and the other the “index”; but whichever
labeling is used must fit the machine's constraints of which registers
may serve in each capacity. The compiler will try both labelings,
looking for one that is valid, and will reload one or both registers
only if neither labeling works.
</p></blockquote></div>
<div class="defun">
— Target Hook: reg_class_t <b>TARGET_PREFERRED_RENAME_CLASS</b> (<var>reg_class_t rclass</var>)<var><a name="index-TARGET_005fPREFERRED_005fRENAME_005fCLASS-4007"></a></var><br>
<blockquote><p>A target hook that places additional preference on the register class to use when it is necessary to rename a register in class <var>rclass</var> to another class, or perhaps <var>NO_REGS</var>, if no preferred register class is found or hook <code>preferred_rename_class</code> is not implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using <code>LO_REGS</code> may be smaller than instructions using <code>GENERIC_REGS</code>. By returning <code>LO_REGS</code> from <code>preferred_rename_class</code>, code size can be reduced.
</p></blockquote></div>
<div class="defun">
— Target Hook: reg_class_t <b>TARGET_PREFERRED_RELOAD_CLASS</b> (<var>rtx x, reg_class_t rclass</var>)<var><a name="index-TARGET_005fPREFERRED_005fRELOAD_005fCLASS-4008"></a></var><br>
<blockquote><p>A target hook that places additional restrictions on the register class
to use when it is necessary to copy value <var>x</var> into a register in class
<var>rclass</var>. The value is a register class; perhaps <var>rclass</var>, or perhaps
another, smaller class.
<p>The default version of this hook always returns value of <code>rclass</code> argument.
<p>Sometimes returning a more restrictive class makes better code. For
example, on the 68000, when <var>x</var> is an integer constant that is in range
for a ‘<samp><span class="samp">moveq</span></samp>’ instruction, the value of this macro is always
<code>DATA_REGS</code> as long as <var>rclass</var> includes the data registers.
Requiring a data register guarantees that a ‘<samp><span class="samp">moveq</span></samp>’ will be used.
<p>One case where <code>TARGET_PREFERRED_RELOAD_CLASS</code> must not return
<var>rclass</var> is if <var>x</var> is a legitimate constant which cannot be
loaded into some register class. By returning <code>NO_REGS</code> you can
force <var>x</var> into a memory location. For example, rs6000 can load
immediate values into general-purpose registers, but does not have an
instruction for loading an immediate value into a floating-point
register, so <code>TARGET_PREFERRED_RELOAD_CLASS</code> returns <code>NO_REGS</code> when
<var>x</var> is a floating-point constant. If the constant can't be loaded
into any kind of register, code generation will be better if
<code>TARGET_LEGITIMATE_CONSTANT_P</code> makes the constant illegitimate instead
of using <code>TARGET_PREFERRED_RELOAD_CLASS</code>.
<p>If an insn has pseudos in it after register allocation, reload will go
through the alternatives and call repeatedly <code>TARGET_PREFERRED_RELOAD_CLASS</code>
to find the best one. Returning <code>NO_REGS</code>, in this case, makes
reload add a <code>!</code> in front of the constraint: the x86 back-end uses
this feature to discourage usage of 387 registers when math is done in
the SSE registers (and vice versa).
</p></blockquote></div>
<div class="defun">
— Macro: <b>PREFERRED_RELOAD_CLASS</b> (<var>x, class</var>)<var><a name="index-PREFERRED_005fRELOAD_005fCLASS-4009"></a></var><br>
<blockquote><p>A C expression that places additional restrictions on the register class
to use when it is necessary to copy value <var>x</var> into a register in class
<var>class</var>. The value is a register class; perhaps <var>class</var>, or perhaps
another, smaller class. On many machines, the following definition is
safe:
<pre class="smallexample"> #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
</pre>
<p>Sometimes returning a more restrictive class makes better code. For
example, on the 68000, when <var>x</var> is an integer constant that is in range
for a ‘<samp><span class="samp">moveq</span></samp>’ instruction, the value of this macro is always
<code>DATA_REGS</code> as long as <var>class</var> includes the data registers.
Requiring a data register guarantees that a ‘<samp><span class="samp">moveq</span></samp>’ will be used.
<p>One case where <code>PREFERRED_RELOAD_CLASS</code> must not return
<var>class</var> is if <var>x</var> is a legitimate constant which cannot be
loaded into some register class. By returning <code>NO_REGS</code> you can
force <var>x</var> into a memory location. For example, rs6000 can load
immediate values into general-purpose registers, but does not have an
instruction for loading an immediate value into a floating-point
register, so <code>PREFERRED_RELOAD_CLASS</code> returns <code>NO_REGS</code> when
<var>x</var> is a floating-point constant. If the constant can't be loaded
into any kind of register, code generation will be better if
<code>TARGET_LEGITIMATE_CONSTANT_P</code> makes the constant illegitimate instead
of using <code>TARGET_PREFERRED_RELOAD_CLASS</code>.
<p>If an insn has pseudos in it after register allocation, reload will go
through the alternatives and call repeatedly <code>PREFERRED_RELOAD_CLASS</code>
to find the best one. Returning <code>NO_REGS</code>, in this case, makes
reload add a <code>!</code> in front of the constraint: the x86 back-end uses
this feature to discourage usage of 387 registers when math is done in
the SSE registers (and vice versa).
</p></blockquote></div>
<div class="defun">
— Macro: <b>PREFERRED_OUTPUT_RELOAD_CLASS</b> (<var>x, class</var>)<var><a name="index-PREFERRED_005fOUTPUT_005fRELOAD_005fCLASS-4010"></a></var><br>
<blockquote><p>Like <code>PREFERRED_RELOAD_CLASS</code>, but for output reloads instead of
input reloads. If you don't define this macro, the default is to use
<var>class</var>, unchanged.
<p>You can also use <code>PREFERRED_OUTPUT_RELOAD_CLASS</code> to discourage
reload from using some alternatives, like <code>PREFERRED_RELOAD_CLASS</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: reg_class_t <b>TARGET_PREFERRED_OUTPUT_RELOAD_CLASS</b> (<var>rtx x, reg_class_t rclass</var>)<var><a name="index-TARGET_005fPREFERRED_005fOUTPUT_005fRELOAD_005fCLASS-4011"></a></var><br>
<blockquote><p>Like <code>TARGET_PREFERRED_RELOAD_CLASS</code>, but for output reloads instead of
input reloads.
<p>The default version of this hook always returns value of <code>rclass</code>
argument.
<p>You can also use <code>TARGET_PREFERRED_OUTPUT_RELOAD_CLASS</code> to discourage
reload from using some alternatives, like <code>TARGET_PREFERRED_RELOAD_CLASS</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIMIT_RELOAD_CLASS</b> (<var>mode, class</var>)<var><a name="index-LIMIT_005fRELOAD_005fCLASS-4012"></a></var><br>
<blockquote><p>A C expression that places additional restrictions on the register class
to use when it is necessary to be able to hold a value of mode
<var>mode</var> in a reload register for which class <var>class</var> would
ordinarily be used.
<p>Unlike <code>PREFERRED_RELOAD_CLASS</code>, this macro should be used when
there are certain modes that simply can't go in certain reload classes.
<p>The value is a register class; perhaps <var>class</var>, or perhaps another,
smaller class.
<p>Don't define this macro unless the target machine has limitations which
require the macro to do something nontrivial.
</p></blockquote></div>
<div class="defun">
— Target Hook: reg_class_t <b>TARGET_SECONDARY_RELOAD</b> (<var>bool in_p, rtx x, reg_class_t reload_class, enum machine_mode reload_mode, secondary_reload_info *sri</var>)<var><a name="index-TARGET_005fSECONDARY_005fRELOAD-4013"></a></var><br>
<blockquote><p>Many machines have some registers that cannot be copied directly to or
from memory or even from other types of registers. An example is the
‘<samp><span class="samp">MQ</span></samp>’ register, which on most machines, can only be copied to or
from general registers, but not memory. Below, we shall be using the
term 'intermediate register' when a move operation cannot be performed
directly, but has to be done by copying the source into the intermediate
register first, and then copying the intermediate register to the
destination. An intermediate register always has the same mode as
source and destination. Since it holds the actual value being copied,
reload might apply optimizations to re-use an intermediate register
and eliding the copy from the source when it can determine that the
intermediate register still holds the required value.
<p>Another kind of secondary reload is required on some machines which
allow copying all registers to and from memory, but require a scratch
register for stores to some memory locations (e.g., those with symbolic
address on the RT, and those with certain symbolic address on the SPARC
when compiling PIC). Scratch registers need not have the same mode
as the value being copied, and usually hold a different value than
that being copied. Special patterns in the md file are needed to
describe how the copy is performed with the help of the scratch register;
these patterns also describe the number, register class(es) and mode(s)
of the scratch register(s).
<p>In some cases, both an intermediate and a scratch register are required.
<p>For input reloads, this target hook is called with nonzero <var>in_p</var>,
and <var>x</var> is an rtx that needs to be copied to a register of class
<var>reload_class</var> in <var>reload_mode</var>. For output reloads, this target
hook is called with zero <var>in_p</var>, and a register of class <var>reload_class</var>
needs to be copied to rtx <var>x</var> in <var>reload_mode</var>.
<p>If copying a register of <var>reload_class</var> from/to <var>x</var> requires
an intermediate register, the hook <code>secondary_reload</code> should
return the register class required for this intermediate register.
If no intermediate register is required, it should return NO_REGS.
If more than one intermediate register is required, describe the one
that is closest in the copy chain to the reload register.
<p>If scratch registers are needed, you also have to describe how to
perform the copy from/to the reload register to/from this
closest intermediate register. Or if no intermediate register is
required, but still a scratch register is needed, describe the
copy from/to the reload register to/from the reload operand <var>x</var>.
<p>You do this by setting <code>sri->icode</code> to the instruction code of a pattern
in the md file which performs the move. Operands 0 and 1 are the output
and input of this copy, respectively. Operands from operand 2 onward are
for scratch operands. These scratch operands must have a mode, and a
single-register-class
<!-- [later: or memory] -->
output constraint.
<p>When an intermediate register is used, the <code>secondary_reload</code>
hook will be called again to determine how to copy the intermediate
register to/from the reload operand <var>x</var>, so your hook must also
have code to handle the register class of the intermediate operand.
<!-- [For later: maybe we'll allow multi-alternative reload patterns - -->
<!-- the port maintainer could name a mov<mode> pattern that has clobbers - -->
<!-- and match the constraints of input and output to determine the required -->
<!-- alternative. A restriction would be that constraints used to match -->
<!-- against reloads registers would have to be written as register class -->
<!-- constraints, or we need a new target macro / hook that tells us if an -->
<!-- arbitrary constraint can match an unknown register of a given class. -->
<!-- Such a macro / hook would also be useful in other places.] -->
<p><var>x</var> might be a pseudo-register or a <code>subreg</code> of a
pseudo-register, which could either be in a hard register or in memory.
Use <code>true_regnum</code> to find out; it will return −1 if the pseudo is
in memory and the hard register number if it is in a register.
<p>Scratch operands in memory (constraint <code>"=m"</code> / <code>"=&m"</code>) are
currently not supported. For the time being, you will have to continue
to use <code>SECONDARY_MEMORY_NEEDED</code> for that purpose.
<p><code>copy_cost</code> also uses this target hook to find out how values are
copied. If you want it to include some extra cost for the need to allocate
(a) scratch register(s), set <code>sri->extra_cost</code> to the additional cost.
Or if two dependent moves are supposed to have a lower cost than the sum
of the individual moves due to expected fortuitous scheduling and/or special
forwarding logic, you can set <code>sri->extra_cost</code> to a negative amount.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SECONDARY_RELOAD_CLASS</b> (<var>class, mode, x</var>)<var><a name="index-SECONDARY_005fRELOAD_005fCLASS-4014"></a></var><br>
— Macro: <b>SECONDARY_INPUT_RELOAD_CLASS</b> (<var>class, mode, x</var>)<var><a name="index-SECONDARY_005fINPUT_005fRELOAD_005fCLASS-4015"></a></var><br>
— Macro: <b>SECONDARY_OUTPUT_RELOAD_CLASS</b> (<var>class, mode, x</var>)<var><a name="index-SECONDARY_005fOUTPUT_005fRELOAD_005fCLASS-4016"></a></var><br>
<blockquote><p>These macros are obsolete, new ports should use the target hook
<code>TARGET_SECONDARY_RELOAD</code> instead.
<p>These are obsolete macros, replaced by the <code>TARGET_SECONDARY_RELOAD</code>
target hook. Older ports still define these macros to indicate to the
reload phase that it may
need to allocate at least one register for a reload in addition to the
register to contain the data. Specifically, if copying <var>x</var> to a
register <var>class</var> in <var>mode</var> requires an intermediate register,
you were supposed to define <code>SECONDARY_INPUT_RELOAD_CLASS</code> to return the
largest register class all of whose registers can be used as
intermediate registers or scratch registers.
<p>If copying a register <var>class</var> in <var>mode</var> to <var>x</var> requires an
intermediate or scratch register, <code>SECONDARY_OUTPUT_RELOAD_CLASS</code>
was supposed to be defined be defined to return the largest register
class required. If the
requirements for input and output reloads were the same, the macro
<code>SECONDARY_RELOAD_CLASS</code> should have been used instead of defining both
macros identically.
<p>The values returned by these macros are often <code>GENERAL_REGS</code>.
Return <code>NO_REGS</code> if no spare register is needed; i.e., if <var>x</var>
can be directly copied to or from a register of <var>class</var> in
<var>mode</var> without requiring a scratch register. Do not define this
macro if it would always return <code>NO_REGS</code>.
<p>If a scratch register is required (either with or without an
intermediate register), you were supposed to define patterns for
‘<samp><span class="samp">reload_in</span><var>m</var></samp>’ or ‘<samp><span class="samp">reload_out</span><var>m</var></samp>’, as required
(see <a href="#Standard-Names">Standard Names</a>. These patterns, which were normally
implemented with a <code>define_expand</code>, should be similar to the
‘<samp><span class="samp">mov</span><var>m</var></samp>’ patterns, except that operand 2 is the scratch
register.
<p>These patterns need constraints for the reload register and scratch
register that
contain a single register class. If the original reload register (whose
class is <var>class</var>) can meet the constraint given in the pattern, the
value returned by these macros is used for the class of the scratch
register. Otherwise, two additional reload registers are required.
Their classes are obtained from the constraints in the insn pattern.
<p><var>x</var> might be a pseudo-register or a <code>subreg</code> of a
pseudo-register, which could either be in a hard register or in memory.
Use <code>true_regnum</code> to find out; it will return −1 if the pseudo is
in memory and the hard register number if it is in a register.
<p>These macros should not be used in the case where a particular class of
registers can only be copied to memory and not to another class of
registers. In that case, secondary reload registers are not needed and
would not be helpful. Instead, a stack location must be used to perform
the copy and the <code>mov</code><var>m</var> pattern should use memory as an
intermediate storage. This case often occurs between floating-point and
general registers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SECONDARY_MEMORY_NEEDED</b> (<var>class1, class2, m</var>)<var><a name="index-SECONDARY_005fMEMORY_005fNEEDED-4017"></a></var><br>
<blockquote><p>Certain machines have the property that some registers cannot be copied
to some other registers without using memory. Define this macro on
those machines to be a C expression that is nonzero if objects of mode
<var>m</var> in registers of <var>class1</var> can only be copied to registers of
class <var>class2</var> by storing a register of <var>class1</var> into memory
and loading that memory location into a register of <var>class2</var>.
<p>Do not define this macro if its value would always be zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SECONDARY_MEMORY_NEEDED_RTX</b> (<var>mode</var>)<var><a name="index-SECONDARY_005fMEMORY_005fNEEDED_005fRTX-4018"></a></var><br>
<blockquote><p>Normally when <code>SECONDARY_MEMORY_NEEDED</code> is defined, the compiler
allocates a stack slot for a memory location needed for register copies.
If this macro is defined, the compiler instead uses the memory location
defined by this macro.
<p>Do not define this macro if you do not define
<code>SECONDARY_MEMORY_NEEDED</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SECONDARY_MEMORY_NEEDED_MODE</b> (<var>mode</var>)<var><a name="index-SECONDARY_005fMEMORY_005fNEEDED_005fMODE-4019"></a></var><br>
<blockquote><p>When the compiler needs a secondary memory location to copy between two
registers of mode <var>mode</var>, it normally allocates sufficient memory to
hold a quantity of <code>BITS_PER_WORD</code> bits and performs the store and
load operations in a mode that many bits wide and whose class is the
same as that of <var>mode</var>.
<p>This is right thing to do on most machines because it ensures that all
bits of the register are copied and prevents accesses to the registers
in a narrower mode, which some machines prohibit for floating-point
registers.
<p>However, this default behavior is not correct on some machines, such as
the DEC Alpha, that store short integers in floating-point registers
differently than in integer registers. On those machines, the default
widening will not work correctly and you must define this macro to
suppress that widening in some cases. See the file <samp><span class="file">alpha.h</span></samp> for
details.
<p>Do not define this macro if you do not define
<code>SECONDARY_MEMORY_NEEDED</code> or if widening <var>mode</var> to a mode that
is <code>BITS_PER_WORD</code> bits wide is correct for your machine.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CLASS_LIKELY_SPILLED_P</b> (<var>reg_class_t rclass</var>)<var><a name="index-TARGET_005fCLASS_005fLIKELY_005fSPILLED_005fP-4020"></a></var><br>
<blockquote><p>A target hook which returns <code>true</code> if pseudos that have been assigned
to registers of class <var>rclass</var> would likely be spilled because
registers of <var>rclass</var> are needed for spill registers.
<p>The default version of this target hook returns <code>true</code> if <var>rclass</var>
has exactly one register and <code>false</code> otherwise. On most machines, this
default should be used. Only use this target hook to some other expression
if pseudos allocated by <samp><span class="file">local-alloc.c</span></samp> end up in memory because their
hard registers were needed for spill registers. If this target hook returns
<code>false</code> for those classes, those pseudos will only be allocated by
<samp><span class="file">global.c</span></samp>, which knows how to reallocate the pseudo to another
register. If there would not be another register available for reallocation,
you should not change the implementation of this target hook since
the only effect of such implementation would be to slow down register
allocation.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CLASS_MAX_NREGS</b> (<var>class, mode</var>)<var><a name="index-CLASS_005fMAX_005fNREGS-4021"></a></var><br>
<blockquote><p>A C expression for the maximum number of consecutive registers
of class <var>class</var> needed to hold a value of mode <var>mode</var>.
<p>This is closely related to the macro <code>HARD_REGNO_NREGS</code>. In fact,
the value of the macro <code>CLASS_MAX_NREGS (</code><var>class</var><code>, </code><var>mode</var><code>)</code>
should be the maximum value of <code>HARD_REGNO_NREGS (</code><var>regno</var><code>,
</code><var>mode</var><code>)</code> for all <var>regno</var> values in the class <var>class</var>.
<p>This macro helps control the handling of multiple-word values
in the reload pass.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CANNOT_CHANGE_MODE_CLASS</b> (<var>from, to, class</var>)<var><a name="index-CANNOT_005fCHANGE_005fMODE_005fCLASS-4022"></a></var><br>
<blockquote><p>If defined, a C expression that returns nonzero for a <var>class</var> for which
a change from mode <var>from</var> to mode <var>to</var> is invalid.
<p>For the example, loading 32-bit integer or floating-point objects into
floating-point registers on the Alpha extends them to 64 bits.
Therefore loading a 64-bit object and then storing it as a 32-bit object
does not store the low-order 32 bits, as would be the case for a normal
register. Therefore, <samp><span class="file">alpha.h</span></samp> defines <code>CANNOT_CHANGE_MODE_CLASS</code>
as below:
<pre class="smallexample"> #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
</pre>
</blockquote></div>
<div class="defun">
— Target Hook: const reg_class_t * <b>TARGET_IRA_COVER_CLASSES</b> (<var>void</var>)<var><a name="index-TARGET_005fIRA_005fCOVER_005fCLASSES-4023"></a></var><br>
<blockquote><p>Return an array of cover classes for the Integrated Register Allocator
(<acronym>IRA</acronym>). Cover classes are a set of non-intersecting register
classes covering all hard registers used for register allocation
purposes. If a move between two registers in the same cover class is
possible, it should be cheaper than a load or store of the registers.
The array is terminated by a <code>LIM_REG_CLASSES</code> element.
<p>The order of cover classes in the array is important. If two classes
have the same cost of usage for a pseudo, the class occurred first in
the array is chosen for the pseudo.
<p>This hook is called once at compiler startup, after the command-line
options have been processed. It is then re-examined by every call to
<code>target_reinit</code>.
<p>The default implementation returns <code>IRA_COVER_CLASSES</code>, if defined,
otherwise there is no default implementation. You must define either this
macro or <code>IRA_COVER_CLASSES</code> in order to use the integrated register
allocator with Chaitin-Briggs coloring. If the macro is not defined,
the only available coloring algorithm is Chow's priority coloring.
<p>This hook must not be modified from <code>NULL</code> to non-<code>NULL</code> or
vice versa by command-line option processing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IRA_COVER_CLASSES</b><var><a name="index-IRA_005fCOVER_005fCLASSES-4024"></a></var><br>
<blockquote><p>See the documentation for <code>TARGET_IRA_COVER_CLASSES</code>.
</p></blockquote></div>
<div class="node">
<a name="Old-Constraints"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Stack-and-Calling">Stack and Calling</a>,
Previous: <a rel="previous" accesskey="p" href="#Register-Classes">Register Classes</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.9 Obsolete Macros for Defining Constraints</h3>
<p><a name="index-defining-constraints_002c-obsolete-method-4025"></a><a name="index-constraints_002c-defining_002c-obsolete-method-4026"></a>
Machine-specific constraints can be defined with these macros instead
of the machine description constructs described in <a href="#Define-Constraints">Define Constraints</a>. This mechanism is obsolete. New ports should not use
it; old ports should convert to the new mechanism.
<div class="defun">
— Macro: <b>CONSTRAINT_LEN</b> (<var>char, str</var>)<var><a name="index-CONSTRAINT_005fLEN-4027"></a></var><br>
<blockquote><p>For the constraint at the start of <var>str</var>, which starts with the letter
<var>c</var>, return the length. This allows you to have register class /
constant / extra constraints that are longer than a single letter;
you don't need to define this macro if you can do with single-letter
constraints only. The definition of this macro should use
DEFAULT_CONSTRAINT_LEN for all the characters that you don't want
to handle specially.
There are some sanity checks in genoutput.c that check the constraint lengths
for the md file, so you can also use this macro to help you while you are
transitioning from a byzantine single-letter-constraint scheme: when you
return a negative length for a constraint you want to re-use, genoutput
will complain about every instance where it is used in the md file.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REG_CLASS_FROM_LETTER</b> (<var>char</var>)<var><a name="index-REG_005fCLASS_005fFROM_005fLETTER-4028"></a></var><br>
<blockquote><p>A C expression which defines the machine-dependent operand constraint
letters for register classes. If <var>char</var> is such a letter, the
value should be the register class corresponding to it. Otherwise,
the value should be <code>NO_REGS</code>. The register letter ‘<samp><span class="samp">r</span></samp>’,
corresponding to class <code>GENERAL_REGS</code>, will not be passed
to this macro; you do not need to handle it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REG_CLASS_FROM_CONSTRAINT</b> (<var>char, str</var>)<var><a name="index-REG_005fCLASS_005fFROM_005fCONSTRAINT-4029"></a></var><br>
<blockquote><p>Like <code>REG_CLASS_FROM_LETTER</code>, but you also get the constraint string
passed in <var>str</var>, so that you can use suffixes to distinguish between
different variants.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONST_OK_FOR_LETTER_P</b> (<var>value, c</var>)<var><a name="index-CONST_005fOK_005fFOR_005fLETTER_005fP-4030"></a></var><br>
<blockquote><p>A C expression that defines the machine-dependent operand constraint
letters (‘<samp><span class="samp">I</span></samp>’, ‘<samp><span class="samp">J</span></samp>’, ‘<samp><span class="samp">K</span></samp>’, <small class="dots">...</small> ‘<samp><span class="samp">P</span></samp>’) that specify
particular ranges of integer values. If <var>c</var> is one of those
letters, the expression should check that <var>value</var>, an integer, is in
the appropriate range and return 1 if so, 0 otherwise. If <var>c</var> is
not one of those letters, the value should be 0 regardless of
<var>value</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONST_OK_FOR_CONSTRAINT_P</b> (<var>value, c, str</var>)<var><a name="index-CONST_005fOK_005fFOR_005fCONSTRAINT_005fP-4031"></a></var><br>
<blockquote><p>Like <code>CONST_OK_FOR_LETTER_P</code>, but you also get the constraint
string passed in <var>str</var>, so that you can use suffixes to distinguish
between different variants.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONST_DOUBLE_OK_FOR_LETTER_P</b> (<var>value, c</var>)<var><a name="index-CONST_005fDOUBLE_005fOK_005fFOR_005fLETTER_005fP-4032"></a></var><br>
<blockquote><p>A C expression that defines the machine-dependent operand constraint
letters that specify particular ranges of <code>const_double</code> values
(‘<samp><span class="samp">G</span></samp>’ or ‘<samp><span class="samp">H</span></samp>’).
<p>If <var>c</var> is one of those letters, the expression should check that
<var>value</var>, an RTX of code <code>const_double</code>, is in the appropriate
range and return 1 if so, 0 otherwise. If <var>c</var> is not one of those
letters, the value should be 0 regardless of <var>value</var>.
<p><code>const_double</code> is used for all floating-point constants and for
<code>DImode</code> fixed-point constants. A given letter can accept either
or both kinds of values. It can use <code>GET_MODE</code> to distinguish
between these kinds.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONST_DOUBLE_OK_FOR_CONSTRAINT_P</b> (<var>value, c, str</var>)<var><a name="index-CONST_005fDOUBLE_005fOK_005fFOR_005fCONSTRAINT_005fP-4033"></a></var><br>
<blockquote><p>Like <code>CONST_DOUBLE_OK_FOR_LETTER_P</code>, but you also get the constraint
string passed in <var>str</var>, so that you can use suffixes to distinguish
between different variants.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EXTRA_CONSTRAINT</b> (<var>value, c</var>)<var><a name="index-EXTRA_005fCONSTRAINT-4034"></a></var><br>
<blockquote><p>A C expression that defines the optional machine-dependent constraint
letters that can be used to segregate specific types of operands, usually
memory references, for the target machine. Any letter that is not
elsewhere defined and not matched by <code>REG_CLASS_FROM_LETTER</code> /
<code>REG_CLASS_FROM_CONSTRAINT</code>
may be used. Normally this macro will not be defined.
<p>If it is required for a particular target machine, it should return 1
if <var>value</var> corresponds to the operand type represented by the
constraint letter <var>c</var>. If <var>c</var> is not defined as an extra
constraint, the value returned should be 0 regardless of <var>value</var>.
<p>For example, on the ROMP, load instructions cannot have their output
in r0 if the memory reference contains a symbolic address. Constraint
letter ‘<samp><span class="samp">Q</span></samp>’ is defined as representing a memory address that does
<em>not</em> contain a symbolic address. An alternative is specified with
a ‘<samp><span class="samp">Q</span></samp>’ constraint on the input and ‘<samp><span class="samp">r</span></samp>’ on the output. The next
alternative specifies ‘<samp><span class="samp">m</span></samp>’ on the input and a register class that
does not include r0 on the output.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EXTRA_CONSTRAINT_STR</b> (<var>value, c, str</var>)<var><a name="index-EXTRA_005fCONSTRAINT_005fSTR-4035"></a></var><br>
<blockquote><p>Like <code>EXTRA_CONSTRAINT</code>, but you also get the constraint string passed
in <var>str</var>, so that you can use suffixes to distinguish between different
variants.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EXTRA_MEMORY_CONSTRAINT</b> (<var>c, str</var>)<var><a name="index-EXTRA_005fMEMORY_005fCONSTRAINT-4036"></a></var><br>
<blockquote><p>A C expression that defines the optional machine-dependent constraint
letters, amongst those accepted by <code>EXTRA_CONSTRAINT</code>, that should
be treated like memory constraints by the reload pass.
<p>It should return 1 if the operand type represented by the constraint
at the start of <var>str</var>, the first letter of which is the letter <var>c</var>,
comprises a subset of all memory references including
all those whose address is simply a base register. This allows the reload
pass to reload an operand, if it does not directly correspond to the operand
type of <var>c</var>, by copying its address into a base register.
<p>For example, on the S/390, some instructions do not accept arbitrary
memory references, but only those that do not make use of an index
register. The constraint letter ‘<samp><span class="samp">Q</span></samp>’ is defined via
<code>EXTRA_CONSTRAINT</code> as representing a memory address of this type.
If the letter ‘<samp><span class="samp">Q</span></samp>’ is marked as <code>EXTRA_MEMORY_CONSTRAINT</code>,
a ‘<samp><span class="samp">Q</span></samp>’ constraint can handle any memory operand, because the
reload pass knows it can be reloaded by copying the memory address
into a base register if required. This is analogous to the way
an ‘<samp><span class="samp">o</span></samp>’ constraint can handle any memory operand.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EXTRA_ADDRESS_CONSTRAINT</b> (<var>c, str</var>)<var><a name="index-EXTRA_005fADDRESS_005fCONSTRAINT-4037"></a></var><br>
<blockquote><p>A C expression that defines the optional machine-dependent constraint
letters, amongst those accepted by <code>EXTRA_CONSTRAINT</code> /
<code>EXTRA_CONSTRAINT_STR</code>, that should
be treated like address constraints by the reload pass.
<p>It should return 1 if the operand type represented by the constraint
at the start of <var>str</var>, which starts with the letter <var>c</var>, comprises
a subset of all memory addresses including
all those that consist of just a base register. This allows the reload
pass to reload an operand, if it does not directly correspond to the operand
type of <var>str</var>, by copying it into a base register.
<p>Any constraint marked as <code>EXTRA_ADDRESS_CONSTRAINT</code> can only
be used with the <code>address_operand</code> predicate. It is treated
analogously to the ‘<samp><span class="samp">p</span></samp>’ constraint.
</p></blockquote></div>
<div class="node">
<a name="Stack-and-Calling"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Varargs">Varargs</a>,
Previous: <a rel="previous" accesskey="p" href="#Old-Constraints">Old Constraints</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.10 Stack Layout and Calling Conventions</h3>
<p><a name="index-calling-conventions-4038"></a>
<!-- prevent bad page break with this line -->
This describes the stack layout and calling conventions.
<ul class="menu">
<li><a accesskey="1" href="#Frame-Layout">Frame Layout</a>
<li><a accesskey="2" href="#Exception-Handling">Exception Handling</a>
<li><a accesskey="3" href="#Stack-Checking">Stack Checking</a>
<li><a accesskey="4" href="#Frame-Registers">Frame Registers</a>
<li><a accesskey="5" href="#Elimination">Elimination</a>
<li><a accesskey="6" href="#Stack-Arguments">Stack Arguments</a>
<li><a accesskey="7" href="#Register-Arguments">Register Arguments</a>
<li><a accesskey="8" href="#Scalar-Return">Scalar Return</a>
<li><a accesskey="9" href="#Aggregate-Return">Aggregate Return</a>
<li><a href="#Caller-Saves">Caller Saves</a>
<li><a href="#Function-Entry">Function Entry</a>
<li><a href="#Profiling">Profiling</a>
<li><a href="#Tail-Calls">Tail Calls</a>
<li><a href="#Stack-Smashing-Protection">Stack Smashing Protection</a>
</ul>
<div class="node">
<a name="Frame-Layout"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Exception-Handling">Exception Handling</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.1 Basic Stack Layout</h4>
<p><a name="index-stack-frame-layout-4039"></a><a name="index-frame-layout-4040"></a>
<!-- prevent bad page break with this line -->
Here is the basic stack layout.
<div class="defun">
— Macro: <b>STACK_GROWS_DOWNWARD</b><var><a name="index-STACK_005fGROWS_005fDOWNWARD-4041"></a></var><br>
<blockquote><p>Define this macro if pushing a word onto the stack moves the stack
pointer to a smaller address.
<p>When we say, “define this macro if <small class="dots">...</small>”, it means that the
compiler checks this macro only with <code>#ifdef</code> so the precise
definition used does not matter.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_PUSH_CODE</b><var><a name="index-STACK_005fPUSH_005fCODE-4042"></a></var><br>
<blockquote><p>This macro defines the operation used when something is pushed
on the stack. In RTL, a push operation will be
<code>(set (mem (STACK_PUSH_CODE (reg sp))) ...)</code>
<p>The choices are <code>PRE_DEC</code>, <code>POST_DEC</code>, <code>PRE_INC</code>,
and <code>POST_INC</code>. Which of these is correct depends on
the stack direction and on whether the stack pointer points
to the last item on the stack or whether it points to the
space for the next item on the stack.
<p>The default is <code>PRE_DEC</code> when <code>STACK_GROWS_DOWNWARD</code> is
defined, which is almost always right, and <code>PRE_INC</code> otherwise,
which is often wrong.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FRAME_GROWS_DOWNWARD</b><var><a name="index-FRAME_005fGROWS_005fDOWNWARD-4043"></a></var><br>
<blockquote><p>Define this macro to nonzero value if the addresses of local variable slots
are at negative offsets from the frame pointer.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ARGS_GROW_DOWNWARD</b><var><a name="index-ARGS_005fGROW_005fDOWNWARD-4044"></a></var><br>
<blockquote><p>Define this macro if successive arguments to a function occupy decreasing
addresses on the stack.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STARTING_FRAME_OFFSET</b><var><a name="index-STARTING_005fFRAME_005fOFFSET-4045"></a></var><br>
<blockquote><p>Offset from the frame pointer to the first local variable slot to be allocated.
<p>If <code>FRAME_GROWS_DOWNWARD</code>, find the next slot's offset by
subtracting the first slot's length from <code>STARTING_FRAME_OFFSET</code>.
Otherwise, it is found by adding the length of the first slot to the
value <code>STARTING_FRAME_OFFSET</code>.
<!-- i'm not sure if the above is still correct.. had to change it to get -->
<!-- rid of an overfull. -mew 2feb93 -->
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_ALIGNMENT_NEEDED</b><var><a name="index-STACK_005fALIGNMENT_005fNEEDED-4046"></a></var><br>
<blockquote><p>Define to zero to disable final alignment of the stack during reload.
The nonzero default for this macro is suitable for most ports.
<p>On ports where <code>STARTING_FRAME_OFFSET</code> is nonzero or where there
is a register save block following the local block that doesn't require
alignment to <code>STACK_BOUNDARY</code>, it may be beneficial to disable
stack alignment and do it in the backend.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_POINTER_OFFSET</b><var><a name="index-STACK_005fPOINTER_005fOFFSET-4047"></a></var><br>
<blockquote><p>Offset from the stack pointer register to the first location at which
outgoing arguments are placed. If not specified, the default value of
zero is used. This is the proper value for most machines.
<p>If <code>ARGS_GROW_DOWNWARD</code>, this is the offset to the location above
the first location at which outgoing arguments are placed.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FIRST_PARM_OFFSET</b> (<var>fundecl</var>)<var><a name="index-FIRST_005fPARM_005fOFFSET-4048"></a></var><br>
<blockquote><p>Offset from the argument pointer register to the first argument's
address. On some machines it may depend on the data type of the
function.
<p>If <code>ARGS_GROW_DOWNWARD</code>, this is the offset to the location above
the first argument's address.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_DYNAMIC_OFFSET</b> (<var>fundecl</var>)<var><a name="index-STACK_005fDYNAMIC_005fOFFSET-4049"></a></var><br>
<blockquote><p>Offset from the stack pointer register to an item dynamically allocated
on the stack, e.g., by <code>alloca</code>.
<p>The default value for this macro is <code>STACK_POINTER_OFFSET</code> plus the
length of the outgoing arguments. The default is correct for most
machines. See <samp><span class="file">function.c</span></samp> for details.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INITIAL_FRAME_ADDRESS_RTX</b><var><a name="index-INITIAL_005fFRAME_005fADDRESS_005fRTX-4050"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing the address of the initial
stack frame. This address is passed to <code>RETURN_ADDR_RTX</code> and
<code>DYNAMIC_CHAIN_ADDRESS</code>. If you don't define this macro, a reasonable
default value will be used. Define this macro in order to make frame pointer
elimination work in the presence of <code>__builtin_frame_address (count)</code> and
<code>__builtin_return_address (count)</code> for <code>count</code> not equal to zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DYNAMIC_CHAIN_ADDRESS</b> (<var>frameaddr</var>)<var><a name="index-DYNAMIC_005fCHAIN_005fADDRESS-4051"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing the address in a stack
frame where the pointer to the caller's frame is stored. Assume that
<var>frameaddr</var> is an RTL expression for the address of the stack frame
itself.
<p>If you don't define this macro, the default is to return the value
of <var>frameaddr</var>—that is, the stack frame address is also the
address of the stack word that points to the previous frame.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SETUP_FRAME_ADDRESSES</b><var><a name="index-SETUP_005fFRAME_005fADDRESSES-4052"></a></var><br>
<blockquote><p>If defined, a C expression that produces the machine-specific code to
setup the stack so that arbitrary frames can be accessed. For example,
on the SPARC, we must flush all of the register windows to the stack
before we can access arbitrary stack frames. You will seldom need to
define this macro.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_BUILTIN_SETJMP_FRAME_VALUE</b> (<var>void</var>)<var><a name="index-TARGET_005fBUILTIN_005fSETJMP_005fFRAME_005fVALUE-4053"></a></var><br>
<blockquote><p>This target hook should return an rtx that is used to store
the address of the current frame into the built in <code>setjmp</code> buffer.
The default value, <code>virtual_stack_vars_rtx</code>, is correct for most
machines. One reason you may need to define this target hook is if
<code>hard_frame_pointer_rtx</code> is the appropriate value on your machine.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FRAME_ADDR_RTX</b> (<var>frameaddr</var>)<var><a name="index-FRAME_005fADDR_005fRTX-4054"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing the value of the frame
address for the current frame. <var>frameaddr</var> is the frame pointer
of the current frame. This is used for __builtin_frame_address.
You need only define this macro if the frame address is not the same
as the frame pointer. Most machines do not need to define it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RETURN_ADDR_RTX</b> (<var>count, frameaddr</var>)<var><a name="index-RETURN_005fADDR_005fRTX-4055"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing the value of the return
address for the frame <var>count</var> steps up from the current frame, after
the prologue. <var>frameaddr</var> is the frame pointer of the <var>count</var>
frame, or the frame pointer of the <var>count</var> − 1 frame if
<code>RETURN_ADDR_IN_PREVIOUS_FRAME</code> is defined.
<p>The value of the expression must always be the correct address when
<var>count</var> is zero, but may be <code>NULL_RTX</code> if there is no way to
determine the return address of other frames.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RETURN_ADDR_IN_PREVIOUS_FRAME</b><var><a name="index-RETURN_005fADDR_005fIN_005fPREVIOUS_005fFRAME-4056"></a></var><br>
<blockquote><p>Define this if the return address of a particular stack frame is accessed
from the frame pointer of the previous stack frame.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INCOMING_RETURN_ADDR_RTX</b><var><a name="index-INCOMING_005fRETURN_005fADDR_005fRTX-4057"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing the location of the
incoming return address at the beginning of any function, before the
prologue. This RTL is either a <code>REG</code>, indicating that the return
value is saved in ‘<samp><span class="samp">REG</span></samp>’, or a <code>MEM</code> representing a location in
the stack.
<p>You only need to define this macro if you want to support call frame
debugging information like that provided by DWARF 2.
<p>If this RTL is a <code>REG</code>, you should also define
<code>DWARF_FRAME_RETURN_COLUMN</code> to <code>DWARF_FRAME_REGNUM (REGNO)</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_ALT_FRAME_RETURN_COLUMN</b><var><a name="index-DWARF_005fALT_005fFRAME_005fRETURN_005fCOLUMN-4058"></a></var><br>
<blockquote><p>A C expression whose value is an integer giving a DWARF 2 column
number that may be used as an alternative return column. The column
must not correspond to any gcc hard register (that is, it must not
be in the range of <code>DWARF_FRAME_REGNUM</code>).
<p>This macro can be useful if <code>DWARF_FRAME_RETURN_COLUMN</code> is set to a
general register, but an alternative column needs to be used for signal
frames. Some targets have also used different frame return columns
over time.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_ZERO_REG</b><var><a name="index-DWARF_005fZERO_005fREG-4059"></a></var><br>
<blockquote><p>A C expression whose value is an integer giving a DWARF 2 register
number that is considered to always have the value zero. This should
only be defined if the target has an architected zero register, and
someone decided it was a good idea to use that register number to
terminate the stack backtrace. New ports should avoid this.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_DWARF_HANDLE_FRAME_UNSPEC</b> (<var>const char *label, rtx pattern, int index</var>)<var><a name="index-TARGET_005fDWARF_005fHANDLE_005fFRAME_005fUNSPEC-4060"></a></var><br>
<blockquote><p>This target hook allows the backend to emit frame-related insns that
contain UNSPECs or UNSPEC_VOLATILEs. The DWARF 2 call frame debugging
info engine will invoke it on insns of the form
<pre class="smallexample"> (set (reg) (unspec [...] UNSPEC_INDEX))
</pre>
<p>and
<pre class="smallexample"> (set (reg) (unspec_volatile [...] UNSPECV_INDEX)).
</pre>
<p>to let the backend emit the call frame instructions. <var>label</var> is
the CFI label attached to the insn, <var>pattern</var> is the pattern of
the insn and <var>index</var> is <code>UNSPEC_INDEX</code> or <code>UNSPECV_INDEX</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INCOMING_FRAME_SP_OFFSET</b><var><a name="index-INCOMING_005fFRAME_005fSP_005fOFFSET-4061"></a></var><br>
<blockquote><p>A C expression whose value is an integer giving the offset, in bytes,
from the value of the stack pointer register to the top of the stack
frame at the beginning of any function, before the prologue. The top of
the frame is defined to be the value of the stack pointer in the
previous frame, just before the call instruction.
<p>You only need to define this macro if you want to support call frame
debugging information like that provided by DWARF 2.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ARG_POINTER_CFA_OFFSET</b> (<var>fundecl</var>)<var><a name="index-ARG_005fPOINTER_005fCFA_005fOFFSET-4062"></a></var><br>
<blockquote><p>A C expression whose value is an integer giving the offset, in bytes,
from the argument pointer to the canonical frame address (cfa). The
final value should coincide with that calculated by
<code>INCOMING_FRAME_SP_OFFSET</code>. Which is unfortunately not usable
during virtual register instantiation.
<p>The default value for this macro is
<code>FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size</code>,
which is correct for most machines; in general, the arguments are found
immediately before the stack frame. Note that this is not the case on
some targets that save registers into the caller's frame, such as SPARC
and rs6000, and so such targets need to define this macro.
<p>You only need to define this macro if the default is incorrect, and you
want to support call frame debugging information like that provided by
DWARF 2.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FRAME_POINTER_CFA_OFFSET</b> (<var>fundecl</var>)<var><a name="index-FRAME_005fPOINTER_005fCFA_005fOFFSET-4063"></a></var><br>
<blockquote><p>If defined, a C expression whose value is an integer giving the offset
in bytes from the frame pointer to the canonical frame address (cfa).
The final value should coincide with that calculated by
<code>INCOMING_FRAME_SP_OFFSET</code>.
<p>Normally the CFA is calculated as an offset from the argument pointer,
via <code>ARG_POINTER_CFA_OFFSET</code>, but if the argument pointer is
variable due to the ABI, this may not be possible. If this macro is
defined, it implies that the virtual register instantiation should be
based on the frame pointer instead of the argument pointer. Only one
of <code>FRAME_POINTER_CFA_OFFSET</code> and <code>ARG_POINTER_CFA_OFFSET</code>
should be defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CFA_FRAME_BASE_OFFSET</b> (<var>fundecl</var>)<var><a name="index-CFA_005fFRAME_005fBASE_005fOFFSET-4064"></a></var><br>
<blockquote><p>If defined, a C expression whose value is an integer giving the offset
in bytes from the canonical frame address (cfa) to the frame base used
in DWARF 2 debug information. The default is zero. A different value
may reduce the size of debug information on some ports.
</p></blockquote></div>
<div class="node">
<a name="Exception-Handling"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Stack-Checking">Stack Checking</a>,
Previous: <a rel="previous" accesskey="p" href="#Frame-Layout">Frame Layout</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.2 Exception Handling Support</h4>
<p><a name="index-exception-handling-4065"></a>
<div class="defun">
— Macro: <b>EH_RETURN_DATA_REGNO</b> (<var>N</var>)<var><a name="index-EH_005fRETURN_005fDATA_005fREGNO-4066"></a></var><br>
<blockquote><p>A C expression whose value is the <var>N</var>th register number used for
data by exception handlers, or <code>INVALID_REGNUM</code> if fewer than
<var>N</var> registers are usable.
<p>The exception handling library routines communicate with the exception
handlers via a set of agreed upon registers. Ideally these registers
should be call-clobbered; it is possible to use call-saved registers,
but may negatively impact code size. The target must support at least
2 data registers, but should define 4 if there are enough free registers.
<p>You must define this macro if you want to support call frame exception
handling like that provided by DWARF 2.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EH_RETURN_STACKADJ_RTX</b><var><a name="index-EH_005fRETURN_005fSTACKADJ_005fRTX-4067"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing a location in which
to store a stack adjustment to be applied before function return.
This is used to unwind the stack to an exception handler's call frame.
It will be assigned zero on code paths that return normally.
<p>Typically this is a call-clobbered hard register that is otherwise
untouched by the epilogue, but could also be a stack slot.
<p>Do not define this macro if the stack pointer is saved and restored
by the regular prolog and epilog code in the call frame itself; in
this case, the exception handling library routines will update the
stack location to be restored in place. Otherwise, you must define
this macro if you want to support call frame exception handling like
that provided by DWARF 2.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EH_RETURN_HANDLER_RTX</b><var><a name="index-EH_005fRETURN_005fHANDLER_005fRTX-4068"></a></var><br>
<blockquote><p>A C expression whose value is RTL representing a location in which
to store the address of an exception handler to which we should
return. It will not be assigned on code paths that return normally.
<p>Typically this is the location in the call frame at which the normal
return address is stored. For targets that return by popping an
address off the stack, this might be a memory address just below
the <em>target</em> call frame rather than inside the current call
frame. If defined, <code>EH_RETURN_STACKADJ_RTX</code> will have already
been assigned, so it may be used to calculate the location of the
target call frame.
<p>Some targets have more complex requirements than storing to an
address calculable during initial code generation. In that case
the <code>eh_return</code> instruction pattern should be used instead.
<p>If you want to support call frame exception handling, you must
define either this macro or the <code>eh_return</code> instruction pattern.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RETURN_ADDR_OFFSET</b><var><a name="index-RETURN_005fADDR_005fOFFSET-4069"></a></var><br>
<blockquote><p>If defined, an integer-valued C expression for which rtl will be generated
to add it to the exception handler address before it is searched in the
exception handling tables, and to subtract it again from the address before
using it to return to the exception handler.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_PREFERRED_EH_DATA_FORMAT</b> (<var>code, global</var>)<var><a name="index-ASM_005fPREFERRED_005fEH_005fDATA_005fFORMAT-4070"></a></var><br>
<blockquote><p>This macro chooses the encoding of pointers embedded in the exception
handling sections. If at all possible, this should be defined such
that the exception handling section will not require dynamic relocations,
and so may be read-only.
<p><var>code</var> is 0 for data, 1 for code labels, 2 for function pointers.
<var>global</var> is true if the symbol may be affected by dynamic relocations.
The macro should return a combination of the <code>DW_EH_PE_*</code> defines
as found in <samp><span class="file">dwarf2.h</span></samp>.
<p>If this macro is not defined, pointers will not be encoded but
represented directly.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX</b> (<var>file, encoding, size, addr, done</var>)<var><a name="index-ASM_005fMAYBE_005fOUTPUT_005fENCODED_005fADDR_005fRTX-4071"></a></var><br>
<blockquote><p>This macro allows the target to emit whatever special magic is required
to represent the encoding chosen by <code>ASM_PREFERRED_EH_DATA_FORMAT</code>.
Generic code takes care of pc-relative and indirect encodings; this must
be defined if the target uses text-relative or data-relative encodings.
<p>This is a C statement that branches to <var>done</var> if the format was
handled. <var>encoding</var> is the format chosen, <var>size</var> is the number
of bytes that the format occupies, <var>addr</var> is the <code>SYMBOL_REF</code>
to be emitted.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_UNWIND_SUPPORT</b><var><a name="index-MD_005fUNWIND_005fSUPPORT-4072"></a></var><br>
<blockquote><p>A string specifying a file to be #include'd in unwind-dw2.c. The file
so included typically defines <code>MD_FALLBACK_FRAME_STATE_FOR</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_FALLBACK_FRAME_STATE_FOR</b> (<var>context, fs</var>)<var><a name="index-MD_005fFALLBACK_005fFRAME_005fSTATE_005fFOR-4073"></a></var><br>
<blockquote><p>This macro allows the target to add CPU and operating system specific
code to the call-frame unwinder for use when there is no unwind data
available. The most common reason to implement this macro is to unwind
through signal frames.
<p>This macro is called from <code>uw_frame_state_for</code> in
<samp><span class="file">unwind-dw2.c</span></samp>, <samp><span class="file">unwind-dw2-xtensa.c</span></samp> and
<samp><span class="file">unwind-ia64.c</span></samp>. <var>context</var> is an <code>_Unwind_Context</code>;
<var>fs</var> is an <code>_Unwind_FrameState</code>. Examine <code>context->ra</code>
for the address of the code being executed and <code>context->cfa</code> for
the stack pointer value. If the frame can be decoded, the register
save addresses should be updated in <var>fs</var> and the macro should
evaluate to <code>_URC_NO_REASON</code>. If the frame cannot be decoded,
the macro should evaluate to <code>_URC_END_OF_STACK</code>.
<p>For proper signal handling in Java this macro is accompanied by
<code>MAKE_THROW_FRAME</code>, defined in <samp><span class="file">libjava/include/*-signal.h</span></samp> headers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_HANDLE_UNWABI</b> (<var>context, fs</var>)<var><a name="index-MD_005fHANDLE_005fUNWABI-4074"></a></var><br>
<blockquote><p>This macro allows the target to add operating system specific code to the
call-frame unwinder to handle the IA-64 <code>.unwabi</code> unwinding directive,
usually used for signal or interrupt frames.
<p>This macro is called from <code>uw_update_context</code> in <samp><span class="file">unwind-ia64.c</span></samp>.
<var>context</var> is an <code>_Unwind_Context</code>;
<var>fs</var> is an <code>_Unwind_FrameState</code>. Examine <code>fs->unwabi</code>
for the abi and context in the <code>.unwabi</code> directive. If the
<code>.unwabi</code> directive can be handled, the register save addresses should
be updated in <var>fs</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_USES_WEAK_UNWIND_INFO</b><var><a name="index-TARGET_005fUSES_005fWEAK_005fUNWIND_005fINFO-4075"></a></var><br>
<blockquote><p>A C expression that evaluates to true if the target requires unwind
info to be given comdat linkage. Define it to be <code>1</code> if comdat
linkage is necessary. The default is <code>0</code>.
</p></blockquote></div>
<div class="node">
<a name="Stack-Checking"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Frame-Registers">Frame Registers</a>,
Previous: <a rel="previous" accesskey="p" href="#Exception-Handling">Exception Handling</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.3 Specifying How Stack Checking is Done</h4>
<p>GCC will check that stack references are within the boundaries of the
stack, if the option <samp><span class="option">-fstack-check</span></samp> is specified, in one of
three ways:
<ol type=1 start=1>
<li>If the value of the <code>STACK_CHECK_BUILTIN</code> macro is nonzero, GCC
will assume that you have arranged for full stack checking to be done
at appropriate places in the configuration files. GCC will not do
other special processing.
<li>If <code>STACK_CHECK_BUILTIN</code> is zero and the value of the
<code>STACK_CHECK_STATIC_BUILTIN</code> macro is nonzero, GCC will assume
that you have arranged for static stack checking (checking of the
static stack frame of functions) to be done at appropriate places
in the configuration files. GCC will only emit code to do dynamic
stack checking (checking on dynamic stack allocations) using the third
approach below.
<li>If neither of the above are true, GCC will generate code to periodically
“probe” the stack pointer using the values of the macros defined below.
</ol>
<p>If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined,
GCC will change its allocation strategy for large objects if the option
<samp><span class="option">-fstack-check</span></samp> is specified: they will always be allocated
dynamically if their size exceeds <code>STACK_CHECK_MAX_VAR_SIZE</code> bytes.
<div class="defun">
— Macro: <b>STACK_CHECK_BUILTIN</b><var><a name="index-STACK_005fCHECK_005fBUILTIN-4076"></a></var><br>
<blockquote><p>A nonzero value if stack checking is done by the configuration files in a
machine-dependent manner. You should define this macro if stack checking
is required by the ABI of your machine or if you would like to do stack
checking in some more efficient way than the generic approach. The default
value of this macro is zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_STATIC_BUILTIN</b><var><a name="index-STACK_005fCHECK_005fSTATIC_005fBUILTIN-4077"></a></var><br>
<blockquote><p>A nonzero value if static stack checking is done by the configuration files
in a machine-dependent manner. You should define this macro if you would
like to do static stack checking in some more efficient way than the generic
approach. The default value of this macro is zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_PROBE_INTERVAL_EXP</b><var><a name="index-STACK_005fCHECK_005fPROBE_005fINTERVAL_005fEXP-4078"></a></var><br>
<blockquote><p>An integer specifying the interval at which GCC must generate stack probe
instructions, defined as 2 raised to this integer. You will normally
define this macro so that the interval be no larger than the size of
the “guard pages” at the end of a stack area. The default value
of 12 (4096-byte interval) is suitable for most systems.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_MOVING_SP</b><var><a name="index-STACK_005fCHECK_005fMOVING_005fSP-4079"></a></var><br>
<blockquote><p>An integer which is nonzero if GCC should move the stack pointer page by page
when doing probes. This can be necessary on systems where the stack pointer
contains the bottom address of the memory area accessible to the executing
thread at any point in time. In this situation an alternate signal stack
is required in order to be able to recover from a stack overflow. The
default value of this macro is zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_PROTECT</b><var><a name="index-STACK_005fCHECK_005fPROTECT-4080"></a></var><br>
<blockquote><p>The number of bytes of stack needed to recover from a stack overflow, for
languages where such a recovery is supported. The default value of 75 words
with the <code>setjmp</code>/<code>longjmp</code>-based exception handling mechanism and
8192 bytes with other exception handling mechanisms should be adequate for
most machines.
</p></blockquote></div>
<p>The following macros are relevant only if neither STACK_CHECK_BUILTIN
nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether
in the opposite case.
<div class="defun">
— Macro: <b>STACK_CHECK_MAX_FRAME_SIZE</b><var><a name="index-STACK_005fCHECK_005fMAX_005fFRAME_005fSIZE-4081"></a></var><br>
<blockquote><p>The maximum size of a stack frame, in bytes. GCC will generate probe
instructions in non-leaf functions to ensure at least this many bytes of
stack are available. If a stack frame is larger than this size, stack
checking will not be reliable and GCC will issue a warning. The
default is chosen so that GCC only generates one instruction on most
systems. You should normally not change the default value of this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_FIXED_FRAME_SIZE</b><var><a name="index-STACK_005fCHECK_005fFIXED_005fFRAME_005fSIZE-4082"></a></var><br>
<blockquote><p>GCC uses this value to generate the above warning message. It
represents the amount of fixed frame used by a function, not including
space for any callee-saved registers, temporaries and user variables.
You need only specify an upper bound for this amount and will normally
use the default of four words.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_CHECK_MAX_VAR_SIZE</b><var><a name="index-STACK_005fCHECK_005fMAX_005fVAR_005fSIZE-4083"></a></var><br>
<blockquote><p>The maximum size, in bytes, of an object that GCC will place in the
fixed area of the stack frame when the user specifies
<samp><span class="option">-fstack-check</span></samp>.
GCC computed the default from the values of the above macros and you will
normally not need to override that default.
</p></blockquote></div>
<div class="node">
<a name="Frame-Registers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Elimination">Elimination</a>,
Previous: <a rel="previous" accesskey="p" href="#Stack-Checking">Stack Checking</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.4 Registers That Address the Stack Frame</h4>
<!-- prevent bad page break with this line -->
<p>This discusses registers that address the stack frame.
<div class="defun">
— Macro: <b>STACK_POINTER_REGNUM</b><var><a name="index-STACK_005fPOINTER_005fREGNUM-4084"></a></var><br>
<blockquote><p>The register number of the stack pointer register, which must also be a
fixed register according to <code>FIXED_REGISTERS</code>. On most machines,
the hardware determines which register this is.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FRAME_POINTER_REGNUM</b><var><a name="index-FRAME_005fPOINTER_005fREGNUM-4085"></a></var><br>
<blockquote><p>The register number of the frame pointer register, which is used to
access automatic variables in the stack frame. On some machines, the
hardware determines which register this is. On other machines, you can
choose any register you wish for this purpose.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_FRAME_POINTER_REGNUM</b><var><a name="index-HARD_005fFRAME_005fPOINTER_005fREGNUM-4086"></a></var><br>
<blockquote><p>On some machines the offset between the frame pointer and starting
offset of the automatic variables is not known until after register
allocation has been done (for example, because the saved registers are
between these two locations). On those machines, define
<code>FRAME_POINTER_REGNUM</code> the number of a special, fixed register to
be used internally until the offset is known, and define
<code>HARD_FRAME_POINTER_REGNUM</code> to be the actual hard register number
used for the frame pointer.
<p>You should define this macro only in the very rare circumstances when it
is not possible to calculate the offset between the frame pointer and
the automatic variables until after register allocation has been
completed. When this macro is defined, you must also indicate in your
definition of <code>ELIMINABLE_REGS</code> how to eliminate
<code>FRAME_POINTER_REGNUM</code> into either <code>HARD_FRAME_POINTER_REGNUM</code>
or <code>STACK_POINTER_REGNUM</code>.
<p>Do not define this macro if it would be the same as
<code>FRAME_POINTER_REGNUM</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ARG_POINTER_REGNUM</b><var><a name="index-ARG_005fPOINTER_005fREGNUM-4087"></a></var><br>
<blockquote><p>The register number of the arg pointer register, which is used to access
the function's argument list. On some machines, this is the same as the
frame pointer register. On some machines, the hardware determines which
register this is. On other machines, you can choose any register you
wish for this purpose. If this is not the same register as the frame
pointer register, then you must mark it as a fixed register according to
<code>FIXED_REGISTERS</code>, or arrange to be able to eliminate it
(see <a href="#Elimination">Elimination</a>).
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_FRAME_POINTER_IS_FRAME_POINTER</b><var><a name="index-HARD_005fFRAME_005fPOINTER_005fIS_005fFRAME_005fPOINTER-4088"></a></var><br>
<blockquote><p>Define this to a preprocessor constant that is nonzero if
<code>hard_frame_pointer_rtx</code> and <code>frame_pointer_rtx</code> should be
the same. The default definition is ‘<samp><span class="samp">(HARD_FRAME_POINTER_REGNUM
== FRAME_POINTER_REGNUM)</span></samp>’; you only need to define this macro if that
definition is not suitable for use in preprocessor conditionals.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_FRAME_POINTER_IS_ARG_POINTER</b><var><a name="index-HARD_005fFRAME_005fPOINTER_005fIS_005fARG_005fPOINTER-4089"></a></var><br>
<blockquote><p>Define this to a preprocessor constant that is nonzero if
<code>hard_frame_pointer_rtx</code> and <code>arg_pointer_rtx</code> should be the
same. The default definition is ‘<samp><span class="samp">(HARD_FRAME_POINTER_REGNUM ==
ARG_POINTER_REGNUM)</span></samp>’; you only need to define this macro if that
definition is not suitable for use in preprocessor conditionals.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RETURN_ADDRESS_POINTER_REGNUM</b><var><a name="index-RETURN_005fADDRESS_005fPOINTER_005fREGNUM-4090"></a></var><br>
<blockquote><p>The register number of the return address pointer register, which is used to
access the current function's return address from the stack. On some
machines, the return address is not at a fixed offset from the frame
pointer or stack pointer or argument pointer. This register can be defined
to point to the return address on the stack, and then be converted by
<code>ELIMINABLE_REGS</code> into either the frame pointer or stack pointer.
<p>Do not define this macro unless there is no other way to get the return
address from the stack.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STATIC_CHAIN_REGNUM</b><var><a name="index-STATIC_005fCHAIN_005fREGNUM-4091"></a></var><br>
— Macro: <b>STATIC_CHAIN_INCOMING_REGNUM</b><var><a name="index-STATIC_005fCHAIN_005fINCOMING_005fREGNUM-4092"></a></var><br>
<blockquote><p>Register numbers used for passing a function's static chain pointer. If
register windows are used, the register number as seen by the called
function is <code>STATIC_CHAIN_INCOMING_REGNUM</code>, while the register
number as seen by the calling function is <code>STATIC_CHAIN_REGNUM</code>. If
these registers are the same, <code>STATIC_CHAIN_INCOMING_REGNUM</code> need
not be defined.
<p>The static chain register need not be a fixed register.
<p>If the static chain is passed in memory, these macros should not be
defined; instead, the <code>TARGET_STATIC_CHAIN</code> hook should be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_STATIC_CHAIN</b> (<var>const_tree fndecl, bool incoming_p</var>)<var><a name="index-TARGET_005fSTATIC_005fCHAIN-4093"></a></var><br>
<blockquote><p>This hook replaces the use of <code>STATIC_CHAIN_REGNUM</code> et al for
targets that may use different static chain locations for different
nested functions. This may be required if the target has function
attributes that affect the calling conventions of the function and
those calling conventions use different static chain locations.
<p>The default version of this hook uses <code>STATIC_CHAIN_REGNUM</code> et al.
<p>If the static chain is passed in memory, this hook should be used to
provide rtx giving <code>mem</code> expressions that denote where they are stored.
Often the <code>mem</code> expression as seen by the caller will be at an offset
from the stack pointer and the <code>mem</code> expression as seen by the callee
will be at an offset from the frame pointer.
<a name="index-stack_005fpointer_005frtx-4094"></a><a name="index-frame_005fpointer_005frtx-4095"></a><a name="index-arg_005fpointer_005frtx-4096"></a>The variables <code>stack_pointer_rtx</code>, <code>frame_pointer_rtx</code>, and
<code>arg_pointer_rtx</code> will have been initialized and should be used
to refer to those items.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_FRAME_REGISTERS</b><var><a name="index-DWARF_005fFRAME_005fREGISTERS-4097"></a></var><br>
<blockquote><p>This macro specifies the maximum number of hard registers that can be
saved in a call frame. This is used to size data structures used in
DWARF2 exception handling.
<p>Prior to GCC 3.0, this macro was needed in order to establish a stable
exception handling ABI in the face of adding new hard registers for ISA
extensions. In GCC 3.0 and later, the EH ABI is insulated from changes
in the number of hard registers. Nevertheless, this macro can still be
used to reduce the runtime memory requirements of the exception handling
routines, which can be substantial if the ISA contains a lot of
registers that are not call-saved.
<p>If this macro is not defined, it defaults to
<code>FIRST_PSEUDO_REGISTER</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PRE_GCC3_DWARF_FRAME_REGISTERS</b><var><a name="index-PRE_005fGCC3_005fDWARF_005fFRAME_005fREGISTERS-4098"></a></var><br>
<blockquote>
<p>This macro is similar to <code>DWARF_FRAME_REGISTERS</code>, but is provided
for backward compatibility in pre GCC 3.0 compiled code.
<p>If this macro is not defined, it defaults to
<code>DWARF_FRAME_REGISTERS</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_REG_TO_UNWIND_COLUMN</b> (<var>regno</var>)<var><a name="index-DWARF_005fREG_005fTO_005fUNWIND_005fCOLUMN-4099"></a></var><br>
<blockquote>
<p>Define this macro if the target's representation for dwarf registers
is different than the internal representation for unwind column.
Given a dwarf register, this macro should return the internal unwind
column number to use instead.
<p>See the PowerPC's SPE target for an example.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_FRAME_REGNUM</b> (<var>regno</var>)<var><a name="index-DWARF_005fFRAME_005fREGNUM-4100"></a></var><br>
<blockquote>
<p>Define this macro if the target's representation for dwarf registers
used in .eh_frame or .debug_frame is different from that used in other
debug info sections. Given a GCC hard register number, this macro
should return the .eh_frame register number. The default is
<code>DBX_REGISTER_NUMBER (</code><var>regno</var><code>)</code>.
</blockquote></div>
<div class="defun">
— Macro: <b>DWARF2_FRAME_REG_OUT</b> (<var>regno, for_eh</var>)<var><a name="index-DWARF2_005fFRAME_005fREG_005fOUT-4101"></a></var><br>
<blockquote>
<p>Define this macro to map register numbers held in the call frame info
that GCC has collected using <code>DWARF_FRAME_REGNUM</code> to those that
should be output in .debug_frame (<var>for_eh</var> is zero) and
.eh_frame (<var>for_eh</var> is nonzero). The default is to
return <var>regno</var>.
</blockquote></div>
<div class="node">
<a name="Elimination"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Stack-Arguments">Stack Arguments</a>,
Previous: <a rel="previous" accesskey="p" href="#Frame-Registers">Frame Registers</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.5 Eliminating Frame Pointer and Arg Pointer</h4>
<!-- prevent bad page break with this line -->
<p>This is about eliminating the frame pointer and arg pointer.
<div class="defun">
— Target Hook: bool <b>TARGET_FRAME_POINTER_REQUIRED</b> (<var>void</var>)<var><a name="index-TARGET_005fFRAME_005fPOINTER_005fREQUIRED-4102"></a></var><br>
<blockquote><p>This target hook should return <code>true</code> if a function must have and use
a frame pointer. This target hook is called in the reload pass. If its return
value is <code>true</code> the function will have a frame pointer.
<p>This target hook can in principle examine the current function and decide
according to the facts, but on most machines the constant <code>false</code> or the
constant <code>true</code> suffices. Use <code>false</code> when the machine allows code
to be generated with no frame pointer, and doing so saves some time or space.
Use <code>true</code> when there is no possible advantage to avoiding a frame
pointer.
<p>In certain cases, the compiler does not know how to produce valid code
without a frame pointer. The compiler recognizes those cases and
automatically gives the function a frame pointer regardless of what
<code>TARGET_FRAME_POINTER_REQUIRED</code> returns. You don't need to worry about
them.
<p>In a function that does not require a frame pointer, the frame pointer
register can be allocated for ordinary usage, unless you mark it as a
fixed register. See <code>FIXED_REGISTERS</code> for more information.
<p>Default return value is <code>false</code>.
</p></blockquote></div>
<p><a name="index-get_005fframe_005fsize-4103"></a>
<div class="defun">
— Macro: <b>INITIAL_FRAME_POINTER_OFFSET</b> (<var>depth-var</var>)<var><a name="index-INITIAL_005fFRAME_005fPOINTER_005fOFFSET-4104"></a></var><br>
<blockquote><p>A C statement to store in the variable <var>depth-var</var> the difference
between the frame pointer and the stack pointer values immediately after
the function prologue. The value would be computed from information
such as the result of <code>get_frame_size ()</code> and the tables of
registers <code>regs_ever_live</code> and <code>call_used_regs</code>.
<p>If <code>ELIMINABLE_REGS</code> is defined, this macro will be not be used and
need not be defined. Otherwise, it must be defined even if
<code>TARGET_FRAME_POINTER_REQUIRED</code> always returns true; in that
case, you may set <var>depth-var</var> to anything.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ELIMINABLE_REGS</b><var><a name="index-ELIMINABLE_005fREGS-4105"></a></var><br>
<blockquote><p>If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If it is not
defined, the only elimination attempted by the compiler is to replace
references to the frame pointer with references to the stack pointer.
<p>The definition of this macro is a list of structure initializations, each
of which specifies an original and replacement register.
<p>On some machines, the position of the argument pointer is not known until
the compilation is completed. In such a case, a separate hard register
must be used for the argument pointer. This register can be eliminated by
replacing it with either the frame pointer or the argument pointer,
depending on whether or not the frame pointer has been eliminated.
<p>In this case, you might specify:
<pre class="smallexample"> #define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
</pre>
<p>Note that the elimination of the argument pointer with the stack pointer is
specified first since that is the preferred elimination.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CAN_ELIMINATE</b> (<var>const int from_reg, const int to_reg</var>)<var><a name="index-TARGET_005fCAN_005fELIMINATE-4106"></a></var><br>
<blockquote><p>This target hook should returns <code>true</code> if the compiler is allowed to
try to replace register number <var>from_reg</var> with register number
<var>to_reg</var>. This target hook need only be defined if <code>ELIMINABLE_REGS</code>
is defined, and will usually be <code>true</code>, since most of the cases
preventing register elimination are things that the compiler already
knows about.
<p>Default return value is <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INITIAL_ELIMINATION_OFFSET</b> (<var>from-reg, to-reg, offset-var</var>)<var><a name="index-INITIAL_005fELIMINATION_005fOFFSET-4107"></a></var><br>
<blockquote><p>This macro is similar to <code>INITIAL_FRAME_POINTER_OFFSET</code>. It
specifies the initial difference between the specified pair of
registers. This macro must be defined if <code>ELIMINABLE_REGS</code> is
defined.
</p></blockquote></div>
<div class="node">
<a name="Stack-Arguments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Register-Arguments">Register Arguments</a>,
Previous: <a rel="previous" accesskey="p" href="#Elimination">Elimination</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.6 Passing Function Arguments on the Stack</h4>
<p><a name="index-arguments-on-stack-4108"></a><a name="index-stack-arguments-4109"></a>
The macros in this section control how arguments are passed
on the stack. See the following section for other macros that
control passing certain arguments in registers.
<div class="defun">
— Target Hook: bool <b>TARGET_PROMOTE_PROTOTYPES</b> (<var>const_tree fntype</var>)<var><a name="index-TARGET_005fPROMOTE_005fPROTOTYPES-4110"></a></var><br>
<blockquote><p>This target hook returns <code>true</code> if an argument declared in a
prototype as an integral type smaller than <code>int</code> should actually be
passed as an <code>int</code>. In addition to avoiding errors in certain
cases of mismatch, it also makes for better code on certain machines.
The default is to not promote prototypes.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PUSH_ARGS</b><var><a name="index-PUSH_005fARGS-4111"></a></var><br>
<blockquote><p>A C expression. If nonzero, push insns will be used to pass
outgoing arguments.
If the target machine does not have a push instruction, set it to zero.
That directs GCC to use an alternate strategy: to
allocate the entire argument block and then store the arguments into
it. When <code>PUSH_ARGS</code> is nonzero, <code>PUSH_ROUNDING</code> must be defined too.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PUSH_ARGS_REVERSED</b><var><a name="index-PUSH_005fARGS_005fREVERSED-4112"></a></var><br>
<blockquote><p>A C expression. If nonzero, function arguments will be evaluated from
last to first, rather than from first to last. If this macro is not
defined, it defaults to <code>PUSH_ARGS</code> on targets where the stack
and args grow in opposite directions, and 0 otherwise.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PUSH_ROUNDING</b> (<var>npushed</var>)<var><a name="index-PUSH_005fROUNDING-4113"></a></var><br>
<blockquote><p>A C expression that is the number of bytes actually pushed onto the
stack when an instruction attempts to push <var>npushed</var> bytes.
<p>On some machines, the definition
<pre class="smallexample"> #define PUSH_ROUNDING(BYTES) (BYTES)
</pre>
<p class="noindent">will suffice. But on other machines, instructions that appear
to push one byte actually push two bytes in an attempt to maintain
alignment. Then the definition should be
<pre class="smallexample"> #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
</pre>
<p>If the value of this macro has a type, it should be an unsigned type.
</p></blockquote></div>
<p><a name="index-current_005ffunction_005foutgoing_005fargs_005fsize-4114"></a>
<div class="defun">
— Macro: <b>ACCUMULATE_OUTGOING_ARGS</b><var><a name="index-ACCUMULATE_005fOUTGOING_005fARGS-4115"></a></var><br>
<blockquote><p>A C expression. If nonzero, the maximum amount of space required for outgoing arguments
will be computed and placed into the variable
<code>current_function_outgoing_args_size</code>. No space will be pushed
onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount.
<p>Setting both <code>PUSH_ARGS</code> and <code>ACCUMULATE_OUTGOING_ARGS</code>
is not proper.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REG_PARM_STACK_SPACE</b> (<var>fndecl</var>)<var><a name="index-REG_005fPARM_005fSTACK_005fSPACE-4116"></a></var><br>
<blockquote><p>Define this macro if functions should assume that stack space has been
allocated for arguments even when their values are passed in
registers.
<p>The value of this macro is the size, in bytes, of the area reserved for
arguments passed in registers for the function represented by <var>fndecl</var>,
which can be zero if GCC is calling a library function.
The argument <var>fndecl</var> can be the FUNCTION_DECL, or the type itself
of the function.
<p>This space can be allocated by the caller, or be a part of the
machine-dependent stack frame: <code>OUTGOING_REG_PARM_STACK_SPACE</code> says
which.
</p></blockquote></div>
<!-- above is overfull. not sure what to do. -mew 5feb93 did -->
<!-- something, not sure if it looks good. -mew 10feb93 -->
<div class="defun">
— Macro: <b>OUTGOING_REG_PARM_STACK_SPACE</b> (<var>fntype</var>)<var><a name="index-OUTGOING_005fREG_005fPARM_005fSTACK_005fSPACE-4117"></a></var><br>
<blockquote><p>Define this to a nonzero value if it is the responsibility of the
caller to allocate the area reserved for arguments passed in registers
when calling a function of <var>fntype</var>. <var>fntype</var> may be NULL
if the function called is a library function.
<p>If <code>ACCUMULATE_OUTGOING_ARGS</code> is defined, this macro controls
whether the space for these arguments counts in the value of
<code>current_function_outgoing_args_size</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STACK_PARMS_IN_REG_PARM_AREA</b><var><a name="index-STACK_005fPARMS_005fIN_005fREG_005fPARM_005fAREA-4118"></a></var><br>
<blockquote><p>Define this macro if <code>REG_PARM_STACK_SPACE</code> is defined, but the
stack parameters don't skip the area specified by it.
<!-- i changed this, makes more sens and it should have taken care of the -->
<!-- overfull.. not as specific, tho. -mew 5feb93 -->
<p>Normally, when a parameter is not passed in registers, it is placed on the
stack beyond the <code>REG_PARM_STACK_SPACE</code> area. Defining this macro
suppresses this behavior and causes the parameter to be passed on the
stack in its natural location.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_RETURN_POPS_ARGS</b> (<var>tree fundecl, tree funtype, int size</var>)<var><a name="index-TARGET_005fRETURN_005fPOPS_005fARGS-4119"></a></var><br>
<blockquote><p>This target hook returns the number of bytes of its own arguments that
a function pops on returning, or 0 if the function pops no arguments
and the caller must therefore pop them all after the function returns.
<p><var>fundecl</var> is a C variable whose value is a tree node that describes
the function in question. Normally it is a node of type
<code>FUNCTION_DECL</code> that describes the declaration of the function.
From this you can obtain the <code>DECL_ATTRIBUTES</code> of the function.
<p><var>funtype</var> is a C variable whose value is a tree node that
describes the function in question. Normally it is a node of type
<code>FUNCTION_TYPE</code> that describes the data type of the function.
From this it is possible to obtain the data types of the value and
arguments (if known).
<p>When a call to a library function is being considered, <var>fundecl</var>
will contain an identifier node for the library function. Thus, if
you need to distinguish among various library functions, you can do so
by their names. Note that “library function” in this context means
a function used to perform arithmetic, whose name is known specially
in the compiler and was not mentioned in the C code being compiled.
<p><var>size</var> is the number of bytes of arguments passed on the
stack. If a variable number of bytes is passed, it is zero, and
argument popping will always be the responsibility of the calling function.
<p>On the VAX, all functions always pop their arguments, so the definition
of this macro is <var>size</var>. On the 68000, using the standard
calling convention, no functions pop their arguments, so the value of
the macro is always 0 in this case. But an alternative calling
convention is available in which functions that take a fixed number of
arguments pop them but other functions (such as <code>printf</code>) pop
nothing (the caller pops all). When this convention is in use,
<var>funtype</var> is examined to determine whether a function takes a fixed
number of arguments.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CALL_POPS_ARGS</b> (<var>cum</var>)<var><a name="index-CALL_005fPOPS_005fARGS-4120"></a></var><br>
<blockquote><p>A C expression that should indicate the number of bytes a call sequence
pops off the stack. It is added to the value of <code>RETURN_POPS_ARGS</code>
when compiling a function call.
<p><var>cum</var> is the variable in which all arguments to the called function
have been accumulated.
<p>On certain architectures, such as the SH5, a call trampoline is used
that pops certain registers off the stack, depending on the arguments
that have been passed to the function. Since this is a property of the
call site, not of the called function, <code>RETURN_POPS_ARGS</code> is not
appropriate.
</p></blockquote></div>
<div class="node">
<a name="Register-Arguments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Scalar-Return">Scalar Return</a>,
Previous: <a rel="previous" accesskey="p" href="#Stack-Arguments">Stack Arguments</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.7 Passing Arguments in Registers</h4>
<p><a name="index-arguments-in-registers-4121"></a><a name="index-registers-arguments-4122"></a>
This section describes the macros which let you control how various
types of arguments are passed in registers or how they are arranged in
the stack.
<div class="defun">
— Macro: <b>FUNCTION_ARG</b> (<var>cum, mode, type, named</var>)<var><a name="index-FUNCTION_005fARG-4123"></a></var><br>
<blockquote><p>A C expression that controls whether a function argument is passed
in a register, and which register.
<p>The arguments are <var>cum</var>, which summarizes all the previous
arguments; <var>mode</var>, the machine mode of the argument; <var>type</var>,
the data type of the argument as a tree node or 0 if that is not known
(which happens for C support library functions); and <var>named</var>,
which is 1 for an ordinary argument and 0 for nameless arguments that
correspond to ‘<samp><span class="samp">...</span></samp>’ in the called function's prototype.
<var>type</var> can be an incomplete type if a syntax error has previously
occurred.
<p>The value of the expression is usually either a <code>reg</code> RTX for the
hard register in which to pass the argument, or zero to pass the
argument on the stack.
<p>For machines like the VAX and 68000, where normally all arguments are
pushed, zero suffices as a definition.
<p>The value of the expression can also be a <code>parallel</code> RTX. This is
used when an argument is passed in multiple locations. The mode of the
<code>parallel</code> should be the mode of the entire argument. The
<code>parallel</code> holds any number of <code>expr_list</code> pairs; each one
describes where part of the argument is passed. In each
<code>expr_list</code> the first operand must be a <code>reg</code> RTX for the hard
register in which to pass this part of the argument, and the mode of the
register RTX indicates how large this part of the argument is. The
second operand of the <code>expr_list</code> is a <code>const_int</code> which gives
the offset in bytes into the entire argument of where this part starts.
As a special exception the first <code>expr_list</code> in the <code>parallel</code>
RTX may have a first operand of zero. This indicates that the entire
argument is also stored on the stack.
<p>The last time this macro is called, it is called with <code>MODE ==
VOIDmode</code>, and its result is passed to the <code>call</code> or <code>call_value</code>
pattern as operands 2 and 3 respectively.
<p><a name="index-g_t_0040file_007bstdarg_002eh_007d-and-register-arguments-4124"></a>The usual way to make the ISO library <samp><span class="file">stdarg.h</span></samp> work on a machine
where some arguments are usually passed in registers, is to cause
nameless arguments to be passed on the stack instead. This is done
by making <code>FUNCTION_ARG</code> return 0 whenever <var>named</var> is 0.
<p><a name="index-g_t_0040code_007bTARGET_005fMUST_005fPASS_005fIN_005fSTACK_007d_002c-and-_0040code_007bFUNCTION_005fARG_007d-4125"></a><a name="index-g_t_0040code_007bREG_005fPARM_005fSTACK_005fSPACE_007d_002c-and-_0040code_007bFUNCTION_005fARG_007d-4126"></a>You may use the hook <code>targetm.calls.must_pass_in_stack</code>
in the definition of this macro to determine if this argument is of a
type that must be passed in the stack. If <code>REG_PARM_STACK_SPACE</code>
is not defined and <code>FUNCTION_ARG</code> returns nonzero for such an
argument, the compiler will abort. If <code>REG_PARM_STACK_SPACE</code> is
defined, the argument will be computed in the stack and then loaded into
a register.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_MUST_PASS_IN_STACK</b> (<var>enum machine_mode mode, const_tree type</var>)<var><a name="index-TARGET_005fMUST_005fPASS_005fIN_005fSTACK-4127"></a></var><br>
<blockquote><p>This target hook should return <code>true</code> if we should not pass <var>type</var>
solely in registers. The file <samp><span class="file">expr.h</span></samp> defines a
definition that is usually appropriate, refer to <samp><span class="file">expr.h</span></samp> for additional
documentation.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_INCOMING_ARG</b> (<var>cum, mode, type, named</var>)<var><a name="index-FUNCTION_005fINCOMING_005fARG-4128"></a></var><br>
<blockquote><p>Define this macro if the target machine has “register windows”, so
that the register in which a function sees an arguments is not
necessarily the same as the one in which the caller passed the
argument.
<p>For such machines, <code>FUNCTION_ARG</code> computes the register in which
the caller passes the value, and <code>FUNCTION_INCOMING_ARG</code> should
be defined in a similar fashion to tell the function being called
where the arguments will arrive.
<p>If <code>FUNCTION_INCOMING_ARG</code> is not defined, <code>FUNCTION_ARG</code>
serves both purposes.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ARG_PARTIAL_BYTES</b> (<var>CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, bool named</var>)<var><a name="index-TARGET_005fARG_005fPARTIAL_005fBYTES-4129"></a></var><br>
<blockquote><p>This target hook returns the number of bytes at the beginning of an
argument that must be put in registers. The value must be zero for
arguments that are passed entirely in registers or that are entirely
pushed on the stack.
<p>On some machines, certain arguments must be passed partially in
registers and partially in memory. On these machines, typically the
first few words of arguments are passed in registers, and the rest
on the stack. If a multi-word argument (a <code>double</code> or a
structure) crosses that boundary, its first few words must be passed
in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many bytes should go in registers.
<p><code>FUNCTION_ARG</code> for these arguments should return the first
register to be used by the caller for this argument; likewise
<code>FUNCTION_INCOMING_ARG</code>, for the called function.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_PASS_BY_REFERENCE</b> (<var>CUMULATIVE_ARGS *cum, enum machine_mode mode, const_tree type, bool named</var>)<var><a name="index-TARGET_005fPASS_005fBY_005fREFERENCE-4130"></a></var><br>
<blockquote><p>This target hook should return <code>true</code> if an argument at the
position indicated by <var>cum</var> should be passed by reference. This
predicate is queried after target independent reasons for being
passed by reference, such as <code>TREE_ADDRESSABLE (type)</code>.
<p>If the hook returns true, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself.
The pointer is passed in whatever way is appropriate for passing a pointer
to that type.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CALLEE_COPIES</b> (<var>CUMULATIVE_ARGS *cum, enum machine_mode mode, const_tree type, bool named</var>)<var><a name="index-TARGET_005fCALLEE_005fCOPIES-4131"></a></var><br>
<blockquote><p>The function argument described by the parameters to this hook is
known to be passed by reference. The hook should return true if the
function argument should be copied by the callee instead of copied
by the caller.
<p>For any argument for which the hook returns true, if it can be
determined that the argument is not modified, then a copy need
not be generated.
<p>The default version of this hook always returns false.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CUMULATIVE_ARGS</b><var><a name="index-CUMULATIVE_005fARGS-4132"></a></var><br>
<blockquote><p>A C type for declaring a variable that is used as the first argument of
<code>FUNCTION_ARG</code> and other related values. For some target machines,
the type <code>int</code> suffices and can hold the number of bytes of
argument so far.
<p>There is no need to record in <code>CUMULATIVE_ARGS</code> anything about the
arguments that have been passed on the stack. The compiler has other
variables to keep track of that. For target machines on which all
arguments are passed on the stack, there is no need to store anything in
<code>CUMULATIVE_ARGS</code>; however, the data structure must exist and
should not be empty, so use <code>int</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OVERRIDE_ABI_FORMAT</b> (<var>fndecl</var>)<var><a name="index-OVERRIDE_005fABI_005fFORMAT-4133"></a></var><br>
<blockquote><p>If defined, this macro is called before generating any code for a
function, but after the <var>cfun</var> descriptor for the function has been
created. The back end may use this macro to update <var>cfun</var> to
reflect an ABI other than that which would normally be used by default.
If the compiler is generating code for a compiler-generated function,
<var>fndecl</var> may be <code>NULL</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_CUMULATIVE_ARGS</b> (<var>cum, fntype, libname, fndecl, n_named_args</var>)<var><a name="index-INIT_005fCUMULATIVE_005fARGS-4134"></a></var><br>
<blockquote><p>A C statement (sans semicolon) for initializing the variable
<var>cum</var> for the state at the beginning of the argument list. The
variable has type <code>CUMULATIVE_ARGS</code>. The value of <var>fntype</var>
is the tree node for the data type of the function which will receive
the args, or 0 if the args are to a compiler support library function.
For direct calls that are not libcalls, <var>fndecl</var> contain the
declaration node of the function. <var>fndecl</var> is also set when
<code>INIT_CUMULATIVE_ARGS</code> is used to find arguments for the function
being compiled. <var>n_named_args</var> is set to the number of named
arguments, including a structure return address if it is passed as a
parameter, when making a call. When processing incoming arguments,
<var>n_named_args</var> is set to −1.
<p>When processing a call to a compiler support library function,
<var>libname</var> identifies which one. It is a <code>symbol_ref</code> rtx which
contains the name of the function, as a string. <var>libname</var> is 0 when
an ordinary C function call is being processed. Thus, each time this
macro is called, either <var>libname</var> or <var>fntype</var> is nonzero, but
never both of them at once.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_CUMULATIVE_LIBCALL_ARGS</b> (<var>cum, mode, libname</var>)<var><a name="index-INIT_005fCUMULATIVE_005fLIBCALL_005fARGS-4135"></a></var><br>
<blockquote><p>Like <code>INIT_CUMULATIVE_ARGS</code> but only used for outgoing libcalls,
it gets a <code>MODE</code> argument instead of <var>fntype</var>, that would be
<code>NULL</code>. <var>indirect</var> would always be zero, too. If this macro
is not defined, <code>INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname,
0)</code> is used instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_CUMULATIVE_INCOMING_ARGS</b> (<var>cum, fntype, libname</var>)<var><a name="index-INIT_005fCUMULATIVE_005fINCOMING_005fARGS-4136"></a></var><br>
<blockquote><p>Like <code>INIT_CUMULATIVE_ARGS</code> but overrides it for the purposes of
finding the arguments for the function being compiled. If this macro is
undefined, <code>INIT_CUMULATIVE_ARGS</code> is used instead.
<p>The value passed for <var>libname</var> is always 0, since library routines
with special calling conventions are never compiled with GCC. The
argument <var>libname</var> exists for symmetry with
<code>INIT_CUMULATIVE_ARGS</code>.
<!-- could use "this macro" in place of @code{INIT_CUMULATIVE_ARGS}, maybe. -->
<!-- mew 5feb93 i switched the order of the sentences. -mew 10feb93 -->
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_ARG_ADVANCE</b> (<var>cum, mode, type, named</var>)<var><a name="index-FUNCTION_005fARG_005fADVANCE-4137"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to update the summarizer variable
<var>cum</var> to advance past an argument in the argument list. The
values <var>mode</var>, <var>type</var> and <var>named</var> describe that argument.
Once this is done, the variable <var>cum</var> is suitable for analyzing
the <em>following</em> argument with <code>FUNCTION_ARG</code>, etc.
<p>This macro need not do anything if the argument in question was passed
on the stack. The compiler knows how to track the amount of stack space
used for arguments without any special help.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_ARG_OFFSET</b> (<var>mode, type</var>)<var><a name="index-FUNCTION_005fARG_005fOFFSET-4138"></a></var><br>
<blockquote><p>If defined, a C expression that is the number of bytes to add to the
offset of the argument passed in memory. This is needed for the SPU,
which passes <code>char</code> and <code>short</code> arguments in the preferred
slot that is in the middle of the quad word instead of starting at the
top.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_ARG_PADDING</b> (<var>mode, type</var>)<var><a name="index-FUNCTION_005fARG_005fPADDING-4139"></a></var><br>
<blockquote><p>If defined, a C expression which determines whether, and in which direction,
to pad out an argument with extra space. The value should be of type
<code>enum direction</code>: either <code>upward</code> to pad above the argument,
<code>downward</code> to pad below, or <code>none</code> to inhibit padding.
<p>The <em>amount</em> of padding is always just enough to reach the next
multiple of <code>TARGET_FUNCTION_ARG_BOUNDARY</code>; this macro does not
control it.
<p>This macro has a default definition which is right for most systems.
For little-endian machines, the default is to pad upward. For
big-endian machines, the default is to pad downward for an argument of
constant size shorter than an <code>int</code>, and upward otherwise.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PAD_VARARGS_DOWN</b><var><a name="index-PAD_005fVARARGS_005fDOWN-4140"></a></var><br>
<blockquote><p>If defined, a C expression which determines whether the default
implementation of va_arg will attempt to pad down before reading the
next argument, if that argument is smaller than its aligned space as
controlled by <code>PARM_BOUNDARY</code>. If this macro is not defined, all such
arguments are padded down if <code>BYTES_BIG_ENDIAN</code> is true.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BLOCK_REG_PADDING</b> (<var>mode, type, first</var>)<var><a name="index-BLOCK_005fREG_005fPADDING-4141"></a></var><br>
<blockquote><p>Specify padding for the last element of a block move between registers and
memory. <var>first</var> is nonzero if this is the only element. Defining this
macro allows better control of register function parameters on big-endian
machines, without using <code>PARALLEL</code> rtl. In particular,
<code>MUST_PASS_IN_STACK</code> need not test padding and mode of types in
registers, as there is no longer a "wrong" part of a register; For example,
a three byte aggregate may be passed in the high part of a register if so
required.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_FUNCTION_ARG_BOUNDARY</b> (<var>enum machine_mode mode, const_tree type</var>)<var><a name="index-TARGET_005fFUNCTION_005fARG_005fBOUNDARY-4142"></a></var><br>
<blockquote><p>This hook returns the alignment boundary, in bits, of an argument
with the specified mode and type. The default hook returns
<code>PARM_BOUNDARY</code> for all arguments.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_ARG_REGNO_P</b> (<var>regno</var>)<var><a name="index-FUNCTION_005fARG_005fREGNO_005fP-4143"></a></var><br>
<blockquote><p>A C expression that is nonzero if <var>regno</var> is the number of a hard
register in which function arguments are sometimes passed. This does
<em>not</em> include implicit arguments such as the static chain and
the structure-value address. On many machines, no registers can be
used for this purpose since all function arguments are pushed on the
stack.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SPLIT_COMPLEX_ARG</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fSPLIT_005fCOMPLEX_005fARG-4144"></a></var><br>
<blockquote><p>This hook should return true if parameter of type <var>type</var> are passed
as two scalar parameters. By default, GCC will attempt to pack complex
arguments into the target's word size. Some ABIs require complex arguments
to be split and treated as their individual components. For example, on
AIX64, complex floats should be passed in a pair of floating point
registers, even though a complex float would fit in one 64-bit floating
point register.
<p>The default value of this hook is <code>NULL</code>, which is treated as always
false.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_BUILD_BUILTIN_VA_LIST</b> (<var>void</var>)<var><a name="index-TARGET_005fBUILD_005fBUILTIN_005fVA_005fLIST-4145"></a></var><br>
<blockquote><p>This hook returns a type node for <code>va_list</code> for the target.
The default version of the hook returns <code>void*</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ENUM_VA_LIST_P</b> (<var>int idx, const char **pname, tree *ptree</var>)<var><a name="index-TARGET_005fENUM_005fVA_005fLIST_005fP-4146"></a></var><br>
<blockquote><p>This target hook is used in function <code>c_common_nodes_and_builtins</code>
to iterate through the target specific builtin types for va_list. The
variable <var>idx</var> is used as iterator. <var>pname</var> has to be a pointer
to a <code>const char *</code> and <var>ptree</var> a pointer to a <code>tree</code> typed
variable.
The arguments <var>pname</var> and <var>ptree</var> are used to store the result of
this macro and are set to the name of the va_list builtin type and its
internal type.
If the return value of this macro is zero, then there is no more element.
Otherwise the <var>IDX</var> should be increased for the next call of this
macro to iterate through all types.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_FN_ABI_VA_LIST</b> (<var>tree fndecl</var>)<var><a name="index-TARGET_005fFN_005fABI_005fVA_005fLIST-4147"></a></var><br>
<blockquote><p>This hook returns the va_list type of the calling convention specified by
<var>fndecl</var>.
The default version of this hook returns <code>va_list_type_node</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_CANONICAL_VA_LIST_TYPE</b> (<var>tree type</var>)<var><a name="index-TARGET_005fCANONICAL_005fVA_005fLIST_005fTYPE-4148"></a></var><br>
<blockquote><p>This hook returns the va_list type of the calling convention specified by the
type of <var>type</var>. If <var>type</var> is not a valid va_list type, it returns
<code>NULL_TREE</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_GIMPLIFY_VA_ARG_EXPR</b> (<var>tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p</var>)<var><a name="index-TARGET_005fGIMPLIFY_005fVA_005fARG_005fEXPR-4149"></a></var><br>
<blockquote><p>This hook performs target-specific gimplification of
<code>VA_ARG_EXPR</code>. The first two parameters correspond to the
arguments to <code>va_arg</code>; the latter two are as in
<code>gimplify.c:gimplify_expr</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VALID_POINTER_MODE</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fVALID_005fPOINTER_005fMODE-4150"></a></var><br>
<blockquote><p>Define this to return nonzero if the port can handle pointers
with machine mode <var>mode</var>. The default version of this
hook returns true for both <code>ptr_mode</code> and <code>Pmode</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_REF_MAY_ALIAS_ERRNO</b> (<var>struct ao_ref_s *ref</var>)<var><a name="index-TARGET_005fREF_005fMAY_005fALIAS_005fERRNO-4151"></a></var><br>
<blockquote><p>Define this to return nonzero if the memory reference <var>ref</var> may alias with the system C library errno location. The default version of this hook assumes the system C library errno location is either a declaration of type int or accessed by dereferencing a pointer to int.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SCALAR_MODE_SUPPORTED_P</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fSCALAR_005fMODE_005fSUPPORTED_005fP-4152"></a></var><br>
<blockquote><p>Define this to return nonzero if the port is prepared to handle
insns involving scalar mode <var>mode</var>. For a scalar mode to be
considered supported, all the basic arithmetic and comparisons
must work.
<p>The default version of this hook returns true for any mode
required to handle the basic C types (as defined by the port).
Included here are the double-word arithmetic supported by the
code in <samp><span class="file">optabs.c</span></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VECTOR_MODE_SUPPORTED_P</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fVECTOR_005fMODE_005fSUPPORTED_005fP-4153"></a></var><br>
<blockquote><p>Define this to return nonzero if the port is prepared to handle
insns involving vector mode <var>mode</var>. At the very least, it
must have move patterns for this mode.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ARRAY_MODE_SUPPORTED_P</b> (<var>enum machine_mode mode, unsigned HOST_WIDE_INT nelems</var>)<var><a name="index-TARGET_005fARRAY_005fMODE_005fSUPPORTED_005fP-4154"></a></var><br>
<blockquote><p>Return true if GCC should try to use a scalar mode to store an array
of <var>nelems</var> elements, given that each element has mode <var>mode</var>.
Returning true here overrides the usual <code>MAX_FIXED_MODE</code> limit
and allows GCC to use any defined integer mode.
<p>One use of this hook is to support vector load and store operations
that operate on several homogeneous vectors. For example, ARM NEON
has operations like:
<pre class="smallexample"> int8x8x3_t vld3_s8 (const int8_t *)
</pre>
<p>where the return type is defined as:
<pre class="smallexample"> typedef struct int8x8x3_t
{
int8x8_t val[3];
} int8x8x3_t;
</pre>
<p>If this hook allows <code>val</code> to have a scalar mode, then
<code>int8x8x3_t</code> can have the same mode. GCC can then store
<code>int8x8x3_t</code>s in registers rather than forcing them onto the stack.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fSMALL_005fREGISTER_005fCLASSES_005fFOR_005fMODE_005fP-4155"></a></var><br>
<blockquote><p>Define this to return nonzero for machine modes for which the port has
small register classes. If this target hook returns nonzero for a given
<var>mode</var>, the compiler will try to minimize the lifetime of registers
in <var>mode</var>. The hook may be called with <code>VOIDmode</code> as argument.
In this case, the hook is expected to return nonzero if it returns nonzero
for any mode.
<p>On some machines, it is risky to let hard registers live across arbitrary
insns. Typically, these machines have instructions that require values
to be in specific registers (like an accumulator), and reload will fail
if the required hard register is used for another purpose across such an
insn.
<p>Passes before reload do not know which hard registers will be used
in an instruction, but the machine modes of the registers set or used in
the instruction are already known. And for some machines, register
classes are small for, say, integer registers but not for floating point
registers. For example, the AMD x86-64 architecture requires specific
registers for the legacy x86 integer instructions, but there are many
SSE registers for floating point operations. On such targets, a good
strategy may be to return nonzero from this hook for <code>INTEGRAL_MODE_P</code>
machine modes but zero for the SSE register classes.
<p>The default version of this hook returns false for any mode. It is always
safe to redefine this hook to return with a nonzero value. But if you
unnecessarily define it, you will reduce the amount of optimizations
that can be performed in some cases. If you do not define this hook
to return a nonzero value when it is required, the compiler will run out
of spill registers and print a fatal error message.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_FLAGS_REGNUM</b><var><a name="index-TARGET_005fFLAGS_005fREGNUM-4156"></a></var><br>
<blockquote><p>If the target has a dedicated flags register, and it needs to use the post-reload comparison elimination pass, then this value should be set appropriately.
</p></blockquote></div>
<div class="node">
<a name="Scalar-Return"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Aggregate-Return">Aggregate Return</a>,
Previous: <a rel="previous" accesskey="p" href="#Register-Arguments">Register Arguments</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.8 How Scalar Function Values Are Returned</h4>
<p><a name="index-return-values-in-registers-4157"></a><a name="index-values_002c-returned-by-functions-4158"></a><a name="index-scalars_002c-returned-as-values-4159"></a>
This section discusses the macros that control returning scalars as
values—values that can fit in registers.
<div class="defun">
— Target Hook: rtx <b>TARGET_FUNCTION_VALUE</b> (<var>const_tree ret_type, const_tree fn_decl_or_type, bool outgoing</var>)<var><a name="index-TARGET_005fFUNCTION_005fVALUE-4160"></a></var><br>
<blockquote>
<p>Define this to return an RTX representing the place where a function
returns or receives a value of data type <var>ret_type</var>, a tree node
representing a data type. <var>fn_decl_or_type</var> is a tree node
representing <code>FUNCTION_DECL</code> or <code>FUNCTION_TYPE</code> of a
function being called. If <var>outgoing</var> is false, the hook should
compute the register in which the caller will see the return value.
Otherwise, the hook should return an RTX representing the place where
a function returns a value.
<p>On many machines, only <code>TYPE_MODE (</code><var>ret_type</var><code>)</code> is relevant.
(Actually, on most machines, scalar values are returned in the same
place regardless of mode.) The value of the expression is usually a
<code>reg</code> RTX for the hard register where the return value is stored.
The value can also be a <code>parallel</code> RTX, if the return value is in
multiple places. See <code>FUNCTION_ARG</code> for an explanation of the
<code>parallel</code> form. Note that the callee will populate every
location specified in the <code>parallel</code>, but if the first element of
the <code>parallel</code> contains the whole return value, callers will use
that element as the canonical location and ignore the others. The m68k
port uses this type of <code>parallel</code> to return pointers in both
‘<samp><span class="samp">%a0</span></samp>’ (the canonical location) and ‘<samp><span class="samp">%d0</span></samp>’.
<p>If <code>TARGET_PROMOTE_FUNCTION_RETURN</code> returns true, you must apply
the same promotion rules specified in <code>PROMOTE_MODE</code> if
<var>valtype</var> is a scalar type.
<p>If the precise function being called is known, <var>func</var> is a tree
node (<code>FUNCTION_DECL</code>) for it; otherwise, <var>func</var> is a null
pointer. This makes it possible to use a different value-returning
convention for specific functions when all their calls are
known.
<p>Some target machines have “register windows” so that the register in
which a function returns its value is not the same as the one in which
the caller sees the value. For such machines, you should return
different RTX depending on <var>outgoing</var>.
<p><code>TARGET_FUNCTION_VALUE</code> is not used for return values with
aggregate data types, because these are returned in another way. See
<code>TARGET_STRUCT_VALUE_RTX</code> and related macros, below.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_VALUE</b> (<var>valtype, func</var>)<var><a name="index-FUNCTION_005fVALUE-4161"></a></var><br>
<blockquote><p>This macro has been deprecated. Use <code>TARGET_FUNCTION_VALUE</code> for
a new target instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBCALL_VALUE</b> (<var>mode</var>)<var><a name="index-LIBCALL_005fVALUE-4162"></a></var><br>
<blockquote><p>A C expression to create an RTX representing the place where a library
function returns a value of mode <var>mode</var>.
<p>Note that “library function” in this context means a compiler
support routine, used to perform arithmetic, whose name is known
specially by the compiler and was not mentioned in the C code being
compiled.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_LIBCALL_VALUE</b> (<var>enum machine_mode mode, const_rtx fun</var>)<var><a name="index-TARGET_005fLIBCALL_005fVALUE-4163"></a></var><br>
<blockquote><p>Define this hook if the back-end needs to know the name of the libcall
function in order to determine where the result should be returned.
<p>The mode of the result is given by <var>mode</var> and the name of the called
library function is given by <var>fun</var>. The hook should return an RTX
representing the place where the library function result will be returned.
<p>If this hook is not defined, then LIBCALL_VALUE will be used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_VALUE_REGNO_P</b> (<var>regno</var>)<var><a name="index-FUNCTION_005fVALUE_005fREGNO_005fP-4164"></a></var><br>
<blockquote><p>A C expression that is nonzero if <var>regno</var> is the number of a hard
register in which the values of called function may come back.
<p>A register whose use for returning values is limited to serving as the
second of a pair (for a value of type <code>double</code>, say) need not be
recognized by this macro. So for most machines, this definition
suffices:
<pre class="smallexample"> #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
</pre>
<p>If the machine has register windows, so that the caller and the called
function use different registers for the return value, this macro
should recognize only the caller's register numbers.
<p>This macro has been deprecated. Use <code>TARGET_FUNCTION_VALUE_REGNO_P</code>
for a new target instead.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_FUNCTION_VALUE_REGNO_P</b> (<var>const unsigned int regno</var>)<var><a name="index-TARGET_005fFUNCTION_005fVALUE_005fREGNO_005fP-4165"></a></var><br>
<blockquote><p>A target hook that return <code>true</code> if <var>regno</var> is the number of a hard
register in which the values of called function may come back.
<p>A register whose use for returning values is limited to serving as the
second of a pair (for a value of type <code>double</code>, say) need not be
recognized by this target hook.
<p>If the machine has register windows, so that the caller and the called
function use different registers for the return value, this target hook
should recognize only the caller's register numbers.
<p>If this hook is not defined, then FUNCTION_VALUE_REGNO_P will be used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>APPLY_RESULT_SIZE</b><var><a name="index-APPLY_005fRESULT_005fSIZE-4166"></a></var><br>
<blockquote><p>Define this macro if ‘<samp><span class="samp">untyped_call</span></samp>’ and ‘<samp><span class="samp">untyped_return</span></samp>’
need more space than is implied by <code>FUNCTION_VALUE_REGNO_P</code> for
saving and restoring an arbitrary return value.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_RETURN_IN_MSB</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fRETURN_005fIN_005fMSB-4167"></a></var><br>
<blockquote><p>This hook should return true if values of type <var>type</var> are returned
at the most significant end of a register (in other words, if they are
padded at the least significant end). You can assume that <var>type</var>
is returned in a register; the caller is required to check this.
<p>Note that the register provided by <code>TARGET_FUNCTION_VALUE</code> must
be able to hold the complete return value. For example, if a 1-, 2-
or 3-byte structure is returned at the most significant end of a
4-byte register, <code>TARGET_FUNCTION_VALUE</code> should provide an
<code>SImode</code> rtx.
</p></blockquote></div>
<div class="node">
<a name="Aggregate-Return"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Caller-Saves">Caller Saves</a>,
Previous: <a rel="previous" accesskey="p" href="#Scalar-Return">Scalar Return</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.9 How Large Values Are Returned</h4>
<p><a name="index-aggregates-as-return-values-4168"></a><a name="index-large-return-values-4169"></a><a name="index-returning-aggregate-values-4170"></a><a name="index-structure-value-address-4171"></a>
When a function value's mode is <code>BLKmode</code> (and in some other
cases), the value is not returned according to
<code>TARGET_FUNCTION_VALUE</code> (see <a href="#Scalar-Return">Scalar Return</a>). Instead, the
caller passes the address of a block of memory in which the value
should be stored. This address is called the <dfn>structure value
address</dfn>.
<p>This section describes how to control returning structure values in
memory.
<div class="defun">
— Target Hook: bool <b>TARGET_RETURN_IN_MEMORY</b> (<var>const_tree type, const_tree fntype</var>)<var><a name="index-TARGET_005fRETURN_005fIN_005fMEMORY-4172"></a></var><br>
<blockquote><p>This target hook should return a nonzero value to say to return the
function value in memory, just as large structures are always returned.
Here <var>type</var> will be the data type of the value, and <var>fntype</var>
will be the type of the function doing the returning, or <code>NULL</code> for
libcalls.
<p>Note that values of mode <code>BLKmode</code> must be explicitly handled
by this function. Also, the option <samp><span class="option">-fpcc-struct-return</span></samp>
takes effect regardless of this macro. On most systems, it is
possible to leave the hook undefined; this causes a default
definition to be used, whose value is the constant 1 for <code>BLKmode</code>
values, and 0 otherwise.
<p>Do not use this hook to indicate that structures and unions should always
be returned in memory. You should instead use <code>DEFAULT_PCC_STRUCT_RETURN</code>
to indicate this.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEFAULT_PCC_STRUCT_RETURN</b><var><a name="index-DEFAULT_005fPCC_005fSTRUCT_005fRETURN-4173"></a></var><br>
<blockquote><p>Define this macro to be 1 if all structure and union return values must be
in memory. Since this results in slower code, this should be defined
only if needed for compatibility with other compilers or with an ABI.
If you define this macro to be 0, then the conventions used for structure
and union return values are decided by the <code>TARGET_RETURN_IN_MEMORY</code>
target hook.
<p>If not defined, this defaults to the value 1.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_STRUCT_VALUE_RTX</b> (<var>tree fndecl, int incoming</var>)<var><a name="index-TARGET_005fSTRUCT_005fVALUE_005fRTX-4174"></a></var><br>
<blockquote><p>This target hook should return the location of the structure value
address (normally a <code>mem</code> or <code>reg</code>), or 0 if the address is
passed as an “invisible” first argument. Note that <var>fndecl</var> may
be <code>NULL</code>, for libcalls. You do not need to define this target
hook if the address is always passed as an “invisible” first
argument.
<p>On some architectures the place where the structure value address
is found by the called function is not the same place that the
caller put it. This can be due to register windows, or it could
be because the function prologue moves it to a different place.
<var>incoming</var> is <code>1</code> or <code>2</code> when the location is needed in
the context of the called function, and <code>0</code> in the context of
the caller.
<p>If <var>incoming</var> is nonzero and the address is to be found on the
stack, return a <code>mem</code> which refers to the frame pointer. If
<var>incoming</var> is <code>2</code>, the result is being used to fetch the
structure value address at the beginning of a function. If you need
to emit adjusting code, you should do it at this point.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PCC_STATIC_STRUCT_RETURN</b><var><a name="index-PCC_005fSTATIC_005fSTRUCT_005fRETURN-4175"></a></var><br>
<blockquote><p>Define this macro if the usual system convention on the target machine
for returning structures and unions is for the called function to return
the address of a static variable containing the value.
<p>Do not define this if the usual system convention is for the caller to
pass an address to the subroutine.
<p>This macro has effect in <samp><span class="option">-fpcc-struct-return</span></samp> mode, but it does
nothing when you use <samp><span class="option">-freg-struct-return</span></samp> mode.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_GET_RAW_RESULT_MODE</b> (<var>int regno</var>)<var><a name="index-TARGET_005fGET_005fRAW_005fRESULT_005fMODE-4176"></a></var><br>
<blockquote><p>This target hook returns the mode to be used when accessing raw return registers in <code>__builtin_return</code>. Define this macro if the value in <var>reg_raw_mode</var> is not correct.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_GET_RAW_ARG_MODE</b> (<var>int regno</var>)<var><a name="index-TARGET_005fGET_005fRAW_005fARG_005fMODE-4177"></a></var><br>
<blockquote><p>This target hook returns the mode to be used when accessing raw argument registers in <code>__builtin_apply_args</code>. Define this macro if the value in <var>reg_raw_mode</var> is not correct.
</p></blockquote></div>
<div class="node">
<a name="Caller-Saves"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Function-Entry">Function Entry</a>,
Previous: <a rel="previous" accesskey="p" href="#Aggregate-Return">Aggregate Return</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.10 Caller-Saves Register Allocation</h4>
<p>If you enable it, GCC can save registers around function calls. This
makes it possible to use call-clobbered registers to hold variables that
must live across calls.
<div class="defun">
— Macro: <b>CALLER_SAVE_PROFITABLE</b> (<var>refs, calls</var>)<var><a name="index-CALLER_005fSAVE_005fPROFITABLE-4178"></a></var><br>
<blockquote><p>A C expression to determine whether it is worthwhile to consider placing
a pseudo-register in a call-clobbered hard register and saving and
restoring it around each function call. The expression should be 1 when
this is worth doing, and 0 otherwise.
<p>If you don't define this macro, a default is used which is good on most
machines: <code>4 * </code><var>calls</var><code> < </code><var>refs</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HARD_REGNO_CALLER_SAVE_MODE</b> (<var>regno, nregs</var>)<var><a name="index-HARD_005fREGNO_005fCALLER_005fSAVE_005fMODE-4179"></a></var><br>
<blockquote><p>A C expression specifying which mode is required for saving <var>nregs</var>
of a pseudo-register in call-clobbered hard register <var>regno</var>. If
<var>regno</var> is unsuitable for caller save, <code>VOIDmode</code> should be
returned. For most machines this macro need not be defined since GCC
will select the smallest suitable mode.
</p></blockquote></div>
<div class="node">
<a name="Function-Entry"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Profiling">Profiling</a>,
Previous: <a rel="previous" accesskey="p" href="#Caller-Saves">Caller Saves</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.11 Function Entry and Exit</h4>
<p><a name="index-function-entry-and-exit-4180"></a><a name="index-prologue-4181"></a><a name="index-epilogue-4182"></a>
This section describes the macros that output function entry
(<dfn>prologue</dfn>) and exit (<dfn>epilogue</dfn>) code.
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FUNCTION_PROLOGUE</b> (<var>FILE *file, HOST_WIDE_INT size</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fPROLOGUE-4183"></a></var><br>
<blockquote><p>If defined, a function that outputs the assembler code for entry to a
function. The prologue is responsible for setting up the stack frame,
initializing the frame pointer register, saving registers that must be
saved, and allocating <var>size</var> additional bytes of storage for the
local variables. <var>size</var> is an integer. <var>file</var> is a stdio
stream to which the assembler code should be output.
<p>The label for the beginning of the function need not be output by this
macro. That has already been done when the macro is run.
<p><a name="index-regs_005fever_005flive-4184"></a>To determine which registers to save, the macro can refer to the array
<code>regs_ever_live</code>: element <var>r</var> is nonzero if hard register
<var>r</var> is used anywhere within the function. This implies the function
prologue should save register <var>r</var>, provided it is not one of the
call-used registers. (<code>TARGET_ASM_FUNCTION_EPILOGUE</code> must likewise use
<code>regs_ever_live</code>.)
<p>On machines that have “register windows”, the function entry code does
not save on the stack the registers that are in the windows, even if
they are supposed to be preserved by function calls; instead it takes
appropriate steps to “push” the register stack, if any non-call-used
registers are used in the function.
<p><a name="index-frame_005fpointer_005fneeded-4185"></a>On machines where functions may or may not have frame-pointers, the
function entry code must vary accordingly; it must set up the frame
pointer if one is wanted, and not otherwise. To determine whether a
frame pointer is in wanted, the macro can refer to the variable
<code>frame_pointer_needed</code>. The variable's value will be 1 at run
time in a function that needs a frame pointer. See <a href="#Elimination">Elimination</a>.
<p>The function entry code is responsible for allocating any stack space
required for the function. This stack space consists of the regions
listed below. In most cases, these regions are allocated in the
order listed, with the last listed region closest to the top of the
stack (the lowest address if <code>STACK_GROWS_DOWNWARD</code> is defined, and
the highest address if it is not defined). You can use a different order
for a machine if doing so is more convenient or required for
compatibility reasons. Except in cases where required by standard
or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FUNCTION_END_PROLOGUE</b> (<var>FILE *file</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fEND_005fPROLOGUE-4186"></a></var><br>
<blockquote><p>If defined, a function that outputs assembler code at the end of a
prologue. This should be used when the function prologue is being
emitted as RTL, and you have some extra assembler that needs to be
emitted. See <a href="#prologue-instruction-pattern">prologue instruction pattern</a>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FUNCTION_BEGIN_EPILOGUE</b> (<var>FILE *file</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fBEGIN_005fEPILOGUE-4187"></a></var><br>
<blockquote><p>If defined, a function that outputs assembler code at the start of an
epilogue. This should be used when the function epilogue is being
emitted as RTL, and you have some extra assembler that needs to be
emitted. See <a href="#epilogue-instruction-pattern">epilogue instruction pattern</a>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FUNCTION_EPILOGUE</b> (<var>FILE *file, HOST_WIDE_INT size</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fEPILOGUE-4188"></a></var><br>
<blockquote><p>If defined, a function that outputs the assembler code for exit from a
function. The epilogue is responsible for restoring the saved
registers and stack pointer to their values when the function was
called, and returning control to the caller. This macro takes the
same arguments as the macro <code>TARGET_ASM_FUNCTION_PROLOGUE</code>, and the
registers to restore are determined from <code>regs_ever_live</code> and
<code>CALL_USED_REGISTERS</code> in the same way.
<p>On some machines, there is a single instruction that does all the work
of returning from the function. On these machines, give that
instruction the name ‘<samp><span class="samp">return</span></samp>’ and do not define the macro
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> at all.
<p>Do not define a pattern named ‘<samp><span class="samp">return</span></samp>’ if you want the
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> to be used. If you want the target
switches to control whether return instructions or epilogues are used,
define a ‘<samp><span class="samp">return</span></samp>’ pattern with a validity condition that tests the
target switches appropriately. If the ‘<samp><span class="samp">return</span></samp>’ pattern's validity
condition is false, epilogues will be used.
<p>On machines where functions may or may not have frame-pointers, the
function exit code must vary accordingly. Sometimes the code for these
two cases is completely different. To determine whether a frame pointer
is wanted, the macro can refer to the variable
<code>frame_pointer_needed</code>. The variable's value will be 1 when compiling
a function that needs a frame pointer.
<p>Normally, <code>TARGET_ASM_FUNCTION_PROLOGUE</code> and
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> must treat leaf functions specially.
The C variable <code>current_function_is_leaf</code> is nonzero for such a
function. See <a href="#Leaf-Functions">Leaf Functions</a>.
<p>On some machines, some functions pop their arguments on exit while
others leave that for the caller to do. For example, the 68020 when
given <samp><span class="option">-mrtd</span></samp> pops arguments in functions that take a fixed
number of arguments.
<p><a name="index-current_005ffunction_005fpops_005fargs-4189"></a>Your definition of the macro <code>RETURN_POPS_ARGS</code> decides which
functions pop their own arguments. <code>TARGET_ASM_FUNCTION_EPILOGUE</code>
needs to know what was decided. The number of bytes of the current
function's arguments that this function should pop is available in
<code>crtl->args.pops_args</code>. See <a href="#Scalar-Return">Scalar Return</a>.
</p></blockquote></div>
<ul>
<li><a name="index-current_005ffunction_005fpretend_005fargs_005fsize-4190"></a>A region of <code>current_function_pretend_args_size</code> bytes of
uninitialized space just underneath the first argument arriving on the
stack. (This may not be at the very start of the allocated stack region
if the calling sequence has pushed anything else since pushing the stack
arguments. But usually, on such machines, nothing else has been pushed
yet, because the function prologue itself does all the pushing.) This
region is used on machines where an argument may be passed partly in
registers and partly in memory, and, in some cases to support the
features in <code><stdarg.h></code>.
<li>An area of memory used to save certain registers used by the function.
The size of this area, which may also include space for such things as
the return address and pointers to previous stack frames, is
machine-specific and usually depends on which registers have been used
in the function. Machines with register windows often do not require
a save area.
<li>A region of at least <var>size</var> bytes, possibly rounded up to an allocation
boundary, to contain the local variables of the function. On some machines,
this region and the save area may occur in the opposite order, with the
save area closer to the top of the stack.
<li><a name="index-g_t_0040code_007bACCUMULATE_005fOUTGOING_005fARGS_007d-and-stack-frames-4191"></a>Optionally, when <code>ACCUMULATE_OUTGOING_ARGS</code> is defined, a region of
<code>current_function_outgoing_args_size</code> bytes to be used for outgoing
argument lists of the function. See <a href="#Stack-Arguments">Stack Arguments</a>.
</ul>
<div class="defun">
— Macro: <b>EXIT_IGNORE_STACK</b><var><a name="index-EXIT_005fIGNORE_005fSTACK-4192"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero if the return
instruction or the function epilogue ignores the value of the stack
pointer; in other words, if it is safe to delete an instruction to
adjust the stack pointer before a return from the function. The
default is 0.
<p>Note that this macro's value is relevant only for functions for which
frame pointers are maintained. It is never safe to delete a final
stack adjustment in a function that has no frame pointer, and the
compiler knows this regardless of <code>EXIT_IGNORE_STACK</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EPILOGUE_USES</b> (<var>regno</var>)<var><a name="index-EPILOGUE_005fUSES-4193"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero for registers that are
used by the epilogue or the ‘<samp><span class="samp">return</span></samp>’ pattern. The stack and frame
pointer registers are already assumed to be used as needed.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EH_USES</b> (<var>regno</var>)<var><a name="index-EH_005fUSES-4194"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero for registers that are
used by the exception handling mechanism, and so should be considered live
on entry to an exception edge.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DELAY_SLOTS_FOR_EPILOGUE</b><var><a name="index-DELAY_005fSLOTS_005fFOR_005fEPILOGUE-4195"></a></var><br>
<blockquote><p>Define this macro if the function epilogue contains delay slots to which
instructions from the rest of the function can be “moved”. The
definition should be a C expression whose value is an integer
representing the number of delay slots there.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ELIGIBLE_FOR_EPILOGUE_DELAY</b> (<var>insn, n</var>)<var><a name="index-ELIGIBLE_005fFOR_005fEPILOGUE_005fDELAY-4196"></a></var><br>
<blockquote><p>A C expression that returns 1 if <var>insn</var> can be placed in delay
slot number <var>n</var> of the epilogue.
<p>The argument <var>n</var> is an integer which identifies the delay slot now
being considered (since different slots may have different rules of
eligibility). It is never negative and is always less than the number
of epilogue delay slots (what <code>DELAY_SLOTS_FOR_EPILOGUE</code> returns).
If you reject a particular insn for a given delay slot, in principle, it
may be reconsidered for a subsequent delay slot. Also, other insns may
(at least in principle) be considered for the so far unfilled delay
slot.
<p><a name="index-current_005ffunction_005fepilogue_005fdelay_005flist-4197"></a><a name="index-final_005fscan_005finsn-4198"></a>The insns accepted to fill the epilogue delay slots are put in an RTL
list made with <code>insn_list</code> objects, stored in the variable
<code>current_function_epilogue_delay_list</code>. The insn for the first
delay slot comes first in the list. Your definition of the macro
<code>TARGET_ASM_FUNCTION_EPILOGUE</code> should fill the delay slots by
outputting the insns in this list, usually by calling
<code>final_scan_insn</code>.
<p>You need not define this macro if you did not define
<code>DELAY_SLOTS_FOR_EPILOGUE</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_OUTPUT_MI_THUNK</b> (<var>FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function</var>)<var><a name="index-TARGET_005fASM_005fOUTPUT_005fMI_005fTHUNK-4199"></a></var><br>
<blockquote><p>A function that outputs the assembler code for a thunk
function, used to implement C++ virtual function calls with multiple
inheritance. The thunk acts as a wrapper around a virtual function,
adjusting the implicit object parameter before handing control off to
the real function.
<p>First, emit code to add the integer <var>delta</var> to the location that
contains the incoming first argument. Assume that this argument
contains a pointer, and is the one used to pass the <code>this</code> pointer
in C++. This is the incoming argument <em>before</em> the function prologue,
e.g. ‘<samp><span class="samp">%o0</span></samp>’ on a sparc. The addition must preserve the values of
all other incoming arguments.
<p>Then, if <var>vcall_offset</var> is nonzero, an additional adjustment should be
made after adding <code>delta</code>. In particular, if <var>p</var> is the
adjusted pointer, the following adjustment should be made:
<pre class="smallexample"> p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]
</pre>
<p>After the additions, emit code to jump to <var>function</var>, which is a
<code>FUNCTION_DECL</code>. This is a direct pure jump, not a call, and does
not touch the return address. Hence returning from <var>FUNCTION</var> will
return to whoever called the current ‘<samp><span class="samp">thunk</span></samp>’.
<p>The effect must be as if <var>function</var> had been called directly with
the adjusted first argument. This macro is responsible for emitting all
of the code for a thunk function; <code>TARGET_ASM_FUNCTION_PROLOGUE</code>
and <code>TARGET_ASM_FUNCTION_EPILOGUE</code> are not invoked.
<p>The <var>thunk_fndecl</var> is redundant. (<var>delta</var> and <var>function</var>
have already been extracted from it.) It might possibly be useful on
some targets, but probably not.
<p>If you do not define this macro, the target-independent code in the C++
front end will generate a less efficient heavyweight thunk that calls
<var>function</var> instead of jumping to it. The generic approach does
not support varargs.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_CAN_OUTPUT_MI_THUNK</b> (<var>const_tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, const_tree function</var>)<var><a name="index-TARGET_005fASM_005fCAN_005fOUTPUT_005fMI_005fTHUNK-4200"></a></var><br>
<blockquote><p>A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be able
to output the assembler code for the thunk function specified by the
arguments it is passed, and false otherwise. In the latter case, the
generic approach will be used by the C++ front end, with the limitations
previously exposed.
</p></blockquote></div>
<div class="node">
<a name="Profiling"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Tail-Calls">Tail Calls</a>,
Previous: <a rel="previous" accesskey="p" href="#Function-Entry">Function Entry</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.12 Generating Code for Profiling</h4>
<p><a name="index-profiling_002c-code-generation-4201"></a>
These macros will help you generate code for profiling.
<div class="defun">
— Macro: <b>FUNCTION_PROFILER</b> (<var>file, labelno</var>)<var><a name="index-FUNCTION_005fPROFILER-4202"></a></var><br>
<blockquote><p>A C statement or compound statement to output to <var>file</var> some
assembler code to call the profiling subroutine <code>mcount</code>.
<p><a name="index-mcount-4203"></a>The details of how <code>mcount</code> expects to be called are determined by
your operating system environment, not by GCC. To figure them out,
compile a small program for profiling using the system's installed C
compiler and look at the assembler code that results.
<p>Older implementations of <code>mcount</code> expect the address of a counter
variable to be loaded into some register. The name of this variable is
‘<samp><span class="samp">LP</span></samp>’ followed by the number <var>labelno</var>, so you would generate
the name using ‘<samp><span class="samp">LP%d</span></samp>’ in a <code>fprintf</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PROFILE_HOOK</b><var><a name="index-PROFILE_005fHOOK-4204"></a></var><br>
<blockquote><p>A C statement or compound statement to output to <var>file</var> some assembly
code to call the profiling subroutine <code>mcount</code> even the target does
not support profiling.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_PROFILE_COUNTERS</b><var><a name="index-NO_005fPROFILE_005fCOUNTERS-4205"></a></var><br>
<blockquote><p>Define this macro to be an expression with a nonzero value if the
<code>mcount</code> subroutine on your system does not need a counter variable
allocated for each function. This is true for almost all modern
implementations. If you define this macro, you must not use the
<var>labelno</var> argument to <code>FUNCTION_PROFILER</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PROFILE_BEFORE_PROLOGUE</b><var><a name="index-PROFILE_005fBEFORE_005fPROLOGUE-4206"></a></var><br>
<blockquote><p>Define this macro if the code for function profiling should come before
the function prologue. Normally, the profiling code comes after.
</p></blockquote></div>
<div class="node">
<a name="Tail-Calls"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Stack-Smashing-Protection">Stack Smashing Protection</a>,
Previous: <a rel="previous" accesskey="p" href="#Profiling">Profiling</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.13 Permitting tail calls</h4>
<p><a name="index-tail-calls-4207"></a>
<div class="defun">
— Target Hook: bool <b>TARGET_FUNCTION_OK_FOR_SIBCALL</b> (<var>tree decl, tree exp</var>)<var><a name="index-TARGET_005fFUNCTION_005fOK_005fFOR_005fSIBCALL-4208"></a></var><br>
<blockquote><p>True if it is ok to do sibling call optimization for the specified
call expression <var>exp</var>. <var>decl</var> will be the called function,
or <code>NULL</code> if this is an indirect call.
<p>It is not uncommon for limitations of calling conventions to prevent
tail calls to functions outside the current unit of translation, or
during PIC compilation. The hook is used to enforce these restrictions,
as the <code>sibcall</code> md pattern can not fail, or fall over to a
“normal” call. The criteria for successful sibling call optimization
may vary greatly between different architectures.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_EXTRA_LIVE_ON_ENTRY</b> (<var>bitmap regs</var>)<var><a name="index-TARGET_005fEXTRA_005fLIVE_005fON_005fENTRY-4209"></a></var><br>
<blockquote><p>Add any hard registers to <var>regs</var> that are live on entry to the
function. This hook only needs to be defined to provide registers that
cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved
registers, STATIC_CHAIN_INCOMING_REGNUM, STATIC_CHAIN_REGNUM,
TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM, EH_USES,
FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the PIC_OFFSET_TABLE_REGNUM.
</p></blockquote></div>
<div class="node">
<a name="Stack-Smashing-Protection"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Tail-Calls">Tail Calls</a>,
Up: <a rel="up" accesskey="u" href="#Stack-and-Calling">Stack and Calling</a>
</div>
<h4 class="subsection">17.10.14 Stack smashing protection</h4>
<p><a name="index-stack-smashing-protection-4210"></a>
<div class="defun">
— Target Hook: tree <b>TARGET_STACK_PROTECT_GUARD</b> (<var>void</var>)<var><a name="index-TARGET_005fSTACK_005fPROTECT_005fGUARD-4211"></a></var><br>
<blockquote><p>This hook returns a <code>DECL</code> node for the external variable to use
for the stack protection guard. This variable is initialized by the
runtime to some random value and is used to initialize the guard value
that is placed at the top of the local stack frame. The type of this
variable must be <code>ptr_type_node</code>.
<p>The default version of this hook creates a variable called
‘<samp><span class="samp">__stack_chk_guard</span></samp>’, which is normally defined in <samp><span class="file">libgcc2.c</span></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_STACK_PROTECT_FAIL</b> (<var>void</var>)<var><a name="index-TARGET_005fSTACK_005fPROTECT_005fFAIL-4212"></a></var><br>
<blockquote><p>This hook returns a tree expression that alerts the runtime that the
stack protect guard variable has been modified. This expression should
involve a call to a <code>noreturn</code> function.
<p>The default version of this hook invokes a function called
‘<samp><span class="samp">__stack_chk_fail</span></samp>’, taking no arguments. This function is
normally defined in <samp><span class="file">libgcc2.c</span></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SUPPORTS_SPLIT_STACK</b> (<var>bool report, struct gcc_options *opts</var>)<var><a name="index-TARGET_005fSUPPORTS_005fSPLIT_005fSTACK-4213"></a></var><br>
<blockquote><p>Whether this target supports splitting the stack when the options described in <var>opts</var> have been passed. This is called after options have been parsed, so the target may reject splitting the stack in some configurations. The default version of this hook returns false. If <var>report</var> is true, this function may issue a warning or error; if <var>report</var> is false, it must simply return a value
</p></blockquote></div>
<div class="node">
<a name="Varargs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Trampolines">Trampolines</a>,
Previous: <a rel="previous" accesskey="p" href="#Stack-and-Calling">Stack and Calling</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.11 Implementing the Varargs Macros</h3>
<p><a name="index-varargs-implementation-4214"></a>
GCC comes with an implementation of <code><varargs.h></code> and
<code><stdarg.h></code> that work without change on machines that pass arguments
on the stack. Other machines require their own implementations of
varargs, and the two machine independent header files must have
conditionals to include it.
<p>ISO <code><stdarg.h></code> differs from traditional <code><varargs.h></code> mainly in
the calling convention for <code>va_start</code>. The traditional
implementation takes just one argument, which is the variable in which
to store the argument pointer. The ISO implementation of
<code>va_start</code> takes an additional second argument. The user is
supposed to write the last named argument of the function here.
<p>However, <code>va_start</code> should not use this argument. The way to find
the end of the named arguments is with the built-in functions described
below.
<div class="defun">
— Macro: <b>__builtin_saveregs</b> ()<var><a name="index-g_t_005f_005fbuiltin_005fsaveregs-4215"></a></var><br>
<blockquote><p>Use this built-in function to save the argument registers in memory so
that the varargs mechanism can access them. Both ISO and traditional
versions of <code>va_start</code> must use <code>__builtin_saveregs</code>, unless
you use <code>TARGET_SETUP_INCOMING_VARARGS</code> (see below) instead.
<p>On some machines, <code>__builtin_saveregs</code> is open-coded under the
control of the target hook <code>TARGET_EXPAND_BUILTIN_SAVEREGS</code>. On
other machines, it calls a routine written in assembler language,
found in <samp><span class="file">libgcc2.c</span></samp>.
<p>Code generated for the call to <code>__builtin_saveregs</code> appears at the
beginning of the function, as opposed to where the call to
<code>__builtin_saveregs</code> is written, regardless of what the code is.
This is because the registers must be saved before the function starts
to use them for its own purposes.
<!-- i rewrote the first sentence above to fix an overfull hbox. -mew -->
<!-- 10feb93 -->
</p></blockquote></div>
<div class="defun">
— Macro: <b>__builtin_next_arg</b> (<var>lastarg</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnext_005farg-4216"></a></var><br>
<blockquote><p>This builtin returns the address of the first anonymous stack
argument, as type <code>void *</code>. If <code>ARGS_GROW_DOWNWARD</code>, it
returns the address of the location above the first anonymous stack
argument. Use it in <code>va_start</code> to initialize the pointer for
fetching arguments from the stack. Also use it in <code>va_start</code> to
verify that the second parameter <var>lastarg</var> is the last named argument
of the current function.
</p></blockquote></div>
<div class="defun">
— Macro: <b>__builtin_classify_type</b> (<var>object</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclassify_005ftype-4217"></a></var><br>
<blockquote><p>Since each machine has its own conventions for which data types are
passed in which kind of register, your implementation of <code>va_arg</code>
has to embody these conventions. The easiest way to categorize the
specified data type is to use <code>__builtin_classify_type</code> together
with <code>sizeof</code> and <code>__alignof__</code>.
<p><code>__builtin_classify_type</code> ignores the value of <var>object</var>,
considering only its data type. It returns an integer describing what
kind of type that is—integer, floating, pointer, structure, and so on.
<p>The file <samp><span class="file">typeclass.h</span></samp> defines an enumeration that you can use to
interpret the values of <code>__builtin_classify_type</code>.
</p></blockquote></div>
<p>These machine description macros help implement varargs:
<div class="defun">
— Target Hook: rtx <b>TARGET_EXPAND_BUILTIN_SAVEREGS</b> (<var>void</var>)<var><a name="index-TARGET_005fEXPAND_005fBUILTIN_005fSAVEREGS-4218"></a></var><br>
<blockquote><p>If defined, this hook produces the machine-specific code for a call to
<code>__builtin_saveregs</code>. This code will be moved to the very
beginning of the function, before any parameter access are made. The
return value of this function should be an RTX that contains the value
to use as the return of <code>__builtin_saveregs</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SETUP_INCOMING_VARARGS</b> (<var>CUMULATIVE_ARGS *args_so_far, enum machine_mode mode, tree type, int *pretend_args_size, int second_time</var>)<var><a name="index-TARGET_005fSETUP_005fINCOMING_005fVARARGS-4219"></a></var><br>
<blockquote><p>This target hook offers an alternative to using
<code>__builtin_saveregs</code> and defining the hook
<code>TARGET_EXPAND_BUILTIN_SAVEREGS</code>. Use it to store the anonymous
register arguments into the stack so that all the arguments appear to
have been passed consecutively on the stack. Once this is done, you can
use the standard implementation of varargs that works for machines that
pass all their arguments on the stack.
<p>The argument <var>args_so_far</var> points to the <code>CUMULATIVE_ARGS</code> data
structure, containing the values that are obtained after processing the
named arguments. The arguments <var>mode</var> and <var>type</var> describe the
last named argument—its machine mode and its data type as a tree node.
<p>The target hook should do two things: first, push onto the stack all the
argument registers <em>not</em> used for the named arguments, and second,
store the size of the data thus pushed into the <code>int</code>-valued
variable pointed to by <var>pretend_args_size</var>. The value that you
store here will serve as additional offset for setting up the stack
frame.
<p>Because you must generate code to push the anonymous arguments at
compile time without knowing their data types,
<code>TARGET_SETUP_INCOMING_VARARGS</code> is only useful on machines that
have just a single category of argument register and use it uniformly
for all data types.
<p>If the argument <var>second_time</var> is nonzero, it means that the
arguments of the function are being analyzed for the second time. This
happens for an inline function, which is not actually compiled until the
end of the source file. The hook <code>TARGET_SETUP_INCOMING_VARARGS</code> should
not generate any instructions in this case.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_STRICT_ARGUMENT_NAMING</b> (<var>CUMULATIVE_ARGS *ca</var>)<var><a name="index-TARGET_005fSTRICT_005fARGUMENT_005fNAMING-4220"></a></var><br>
<blockquote><p>Define this hook to return <code>true</code> if the location where a function
argument is passed depends on whether or not it is a named argument.
<p>This hook controls how the <var>named</var> argument to <code>FUNCTION_ARG</code>
is set for varargs and stdarg functions. If this hook returns
<code>true</code>, the <var>named</var> argument is always true for named
arguments, and false for unnamed arguments. If it returns <code>false</code>,
but <code>TARGET_PRETEND_OUTGOING_VARARGS_NAMED</code> returns <code>true</code>,
then all arguments are treated as named. Otherwise, all named arguments
except the last are treated as named.
<p>You need not define this hook if it always returns <code>false</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_PRETEND_OUTGOING_VARARGS_NAMED</b> (<var>CUMULATIVE_ARGS *ca</var>)<var><a name="index-TARGET_005fPRETEND_005fOUTGOING_005fVARARGS_005fNAMED-4221"></a></var><br>
<blockquote><p>If you need to conditionally change ABIs so that one works with
<code>TARGET_SETUP_INCOMING_VARARGS</code>, but the other works like neither
<code>TARGET_SETUP_INCOMING_VARARGS</code> nor <code>TARGET_STRICT_ARGUMENT_NAMING</code> was
defined, then define this hook to return <code>true</code> if
<code>TARGET_SETUP_INCOMING_VARARGS</code> is used, <code>false</code> otherwise.
Otherwise, you should not define this hook.
</p></blockquote></div>
<div class="node">
<a name="Trampolines"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Library-Calls">Library Calls</a>,
Previous: <a rel="previous" accesskey="p" href="#Varargs">Varargs</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.12 Trampolines for Nested Functions</h3>
<p><a name="index-trampolines-for-nested-functions-4222"></a><a name="index-nested-functions_002c-trampolines-for-4223"></a>
A <dfn>trampoline</dfn> is a small piece of code that is created at run time
when the address of a nested function is taken. It normally resides on
the stack, in the stack frame of the containing function. These macros
tell GCC how to generate code to allocate and initialize a
trampoline.
<p>The instructions in the trampoline must do two things: load a constant
address into the static chain register, and jump to the real address of
the nested function. On CISC machines such as the m68k, this requires
two instructions, a move immediate and a jump. Then the two addresses
exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in
two parts. Then pieces of each address form separate immediate
operands.
<p>The code generated to initialize the trampoline must store the variable
parts—the static chain value and the function address—into the
immediate operands of the instructions. On a CISC machine, this is
simply a matter of copying each address to a memory reference at the
proper offset from the start of the trampoline. On a RISC machine, it
may be necessary to take out pieces of the address and store them
separately.
<div class="defun">
— Target Hook: void <b>TARGET_ASM_TRAMPOLINE_TEMPLATE</b> (<var>FILE *f</var>)<var><a name="index-TARGET_005fASM_005fTRAMPOLINE_005fTEMPLATE-4224"></a></var><br>
<blockquote><p>This hook is called by <code>assemble_trampoline_template</code> to output,
on the stream <var>f</var>, assembler code for a block of data that contains
the constant parts of a trampoline. This code should not include a
label—the label is taken care of automatically.
<p>If you do not define this hook, it means no template is needed
for the target. Do not define this hook on systems where the block move
code to copy the trampoline into place would be larger than the code
to generate it on the spot.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TRAMPOLINE_SECTION</b><var><a name="index-TRAMPOLINE_005fSECTION-4225"></a></var><br>
<blockquote><p>Return the section into which the trampoline template is to be placed
(see <a href="#Sections">Sections</a>). The default value is <code>readonly_data_section</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TRAMPOLINE_SIZE</b><var><a name="index-TRAMPOLINE_005fSIZE-4226"></a></var><br>
<blockquote><p>A C expression for the size in bytes of the trampoline, as an integer.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TRAMPOLINE_ALIGNMENT</b><var><a name="index-TRAMPOLINE_005fALIGNMENT-4227"></a></var><br>
<blockquote><p>Alignment required for trampolines, in bits.
<p>If you don't define this macro, the value of <code>FUNCTION_ALIGNMENT</code>
is used for aligning trampolines.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_TRAMPOLINE_INIT</b> (<var>rtx m_tramp, tree fndecl, rtx static_chain</var>)<var><a name="index-TARGET_005fTRAMPOLINE_005fINIT-4228"></a></var><br>
<blockquote><p>This hook is called to initialize a trampoline.
<var>m_tramp</var> is an RTX for the memory block for the trampoline; <var>fndecl</var>
is the <code>FUNCTION_DECL</code> for the nested function; <var>static_chain</var> is an
RTX for the static chain value that should be passed to the function
when it is called.
<p>If the target defines <code>TARGET_ASM_TRAMPOLINE_TEMPLATE</code>, then the
first thing this hook should do is emit a block move into <var>m_tramp</var>
from the memory block returned by <code>assemble_trampoline_template</code>.
Note that the block move need only cover the constant parts of the
trampoline. If the target isolates the variable parts of the trampoline
to the end, not all <code>TRAMPOLINE_SIZE</code> bytes need be copied.
<p>If the target requires any other actions, such as flushing caches or
enabling stack execution, these actions should be performed after
initializing the trampoline proper.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_TRAMPOLINE_ADJUST_ADDRESS</b> (<var>rtx addr</var>)<var><a name="index-TARGET_005fTRAMPOLINE_005fADJUST_005fADDRESS-4229"></a></var><br>
<blockquote><p>This hook should perform any machine-specific adjustment in
the address of the trampoline. Its argument contains the address of the
memory block that was passed to <code>TARGET_TRAMPOLINE_INIT</code>. In case
the address to be used for a function call should be different from the
address at which the template was stored, the different address should
be returned; otherwise <var>addr</var> should be returned unchanged.
If this hook is not defined, <var>addr</var> will be used for function calls.
</p></blockquote></div>
<p>Implementing trampolines is difficult on many machines because they have
separate instruction and data caches. Writing into a stack location
fails to clear the memory in the instruction cache, so when the program
jumps to that location, it executes the old contents.
<p>Here are two possible solutions. One is to clear the relevant parts of
the instruction cache whenever a trampoline is set up. The other is to
make all trampolines identical, by having them jump to a standard
subroutine. The former technique makes trampoline execution faster; the
latter makes initialization faster.
<p>To clear the instruction cache when a trampoline is initialized, define
the following macro.
<div class="defun">
— Macro: <b>CLEAR_INSN_CACHE</b> (<var>beg, end</var>)<var><a name="index-CLEAR_005fINSN_005fCACHE-4230"></a></var><br>
<blockquote><p>If defined, expands to a C expression clearing the <em>instruction
cache</em> in the specified interval. The definition of this macro would
typically be a series of <code>asm</code> statements. Both <var>beg</var> and
<var>end</var> are both pointer expressions.
</p></blockquote></div>
<p>The operating system may also require the stack to be made executable
before calling the trampoline. To implement this requirement, define
the following macro.
<div class="defun">
— Macro: <b>ENABLE_EXECUTE_STACK</b><var><a name="index-ENABLE_005fEXECUTE_005fSTACK-4231"></a></var><br>
<blockquote><p>Define this macro if certain operations must be performed before executing
code located on the stack. The macro should expand to a series of C
file-scope constructs (e.g. functions) and provide a unique entry point
named <code>__enable_execute_stack</code>. The target is responsible for
emitting calls to the entry point in the code, for example from the
<code>TARGET_TRAMPOLINE_INIT</code> hook.
</p></blockquote></div>
<p>To use a standard subroutine, define the following macro. In addition,
you must make sure that the instructions in a trampoline fill an entire
cache line with identical instructions, or else ensure that the
beginning of the trampoline code is always aligned at the same point in
its cache line. Look in <samp><span class="file">m68k.h</span></samp> as a guide.
<div class="defun">
— Macro: <b>TRANSFER_FROM_TRAMPOLINE</b><var><a name="index-TRANSFER_005fFROM_005fTRAMPOLINE-4232"></a></var><br>
<blockquote><p>Define this macro if trampolines need a special subroutine to do their
work. The macro should expand to a series of <code>asm</code> statements
which will be compiled with GCC. They go in a library function named
<code>__transfer_from_trampoline</code>.
<p>If you need to avoid executing the ordinary prologue code of a compiled
C function when you jump to the subroutine, you can do so by placing a
special label of your own in the assembler code. Use one <code>asm</code>
statement to generate an assembler label, and another to make the label
global. Then trampolines can use that label to jump directly to your
special assembler code.
</p></blockquote></div>
<div class="node">
<a name="Library-Calls"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Addressing-Modes">Addressing Modes</a>,
Previous: <a rel="previous" accesskey="p" href="#Trampolines">Trampolines</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.13 Implicit Calls to Library Routines</h3>
<p><a name="index-library-subroutine-names-4233"></a><a name="index-g_t_0040file_007blibgcc_002ea_007d-4234"></a>
<!-- prevent bad page break with this line -->
Here is an explanation of implicit calls to library routines.
<div class="defun">
— Macro: <b>DECLARE_LIBRARY_RENAMES</b><var><a name="index-DECLARE_005fLIBRARY_005fRENAMES-4235"></a></var><br>
<blockquote><p>This macro, if defined, should expand to a piece of C code that will get
expanded when compiling functions for libgcc.a. It can be used to
provide alternate names for GCC's internal library functions if there
are ABI-mandated names that the compiler should provide.
</p></blockquote></div>
<p><a name="index-set_005foptab_005flibfunc-4236"></a><a name="index-init_005fone_005flibfunc-4237"></a>
<div class="defun">
— Target Hook: void <b>TARGET_INIT_LIBFUNCS</b> (<var>void</var>)<var><a name="index-TARGET_005fINIT_005fLIBFUNCS-4238"></a></var><br>
<blockquote><p>This hook should declare additional library routines or rename
existing ones, using the functions <code>set_optab_libfunc</code> and
<code>init_one_libfunc</code> defined in <samp><span class="file">optabs.c</span></samp>.
<code>init_optabs</code> calls this macro after initializing all the normal
library routines.
<p>The default is to do nothing. Most ports don't need to define this hook.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FLOAT_LIB_COMPARE_RETURNS_BOOL</b> (<var>mode, comparison</var>)<var><a name="index-FLOAT_005fLIB_005fCOMPARE_005fRETURNS_005fBOOL-4239"></a></var><br>
<blockquote><p>This macro should return <code>true</code> if the library routine that
implements the floating point comparison operator <var>comparison</var> in
mode <var>mode</var> will return a boolean, and <var>false</var> if it will
return a tristate.
<p>GCC's own floating point libraries return tristates from the
comparison operators, so the default returns false always. Most ports
don't need to define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_LIB_INT_CMP_BIASED</b><var><a name="index-TARGET_005fLIB_005fINT_005fCMP_005fBIASED-4240"></a></var><br>
<blockquote><p>This macro should evaluate to <code>true</code> if the integer comparison
functions (like <code>__cmpdi2</code>) return 0 to indicate that the first
operand is smaller than the second, 1 to indicate that they are equal,
and 2 to indicate that the first operand is greater than the second.
If this macro evaluates to <code>false</code> the comparison functions return
−1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines
in <samp><span class="file">libgcc.a</span></samp>, you do not need to define this macro.
</p></blockquote></div>
<p><a name="index-g_t_0040code_007bEDOM_007d_002c-implicit-usage-4241"></a><a name="index-matherr-4242"></a>
<div class="defun">
— Macro: <b>TARGET_EDOM</b><var><a name="index-TARGET_005fEDOM-4243"></a></var><br>
<blockquote><p>The value of <code>EDOM</code> on the target machine, as a C integer constant
expression. If you don't define this macro, GCC does not attempt to
deposit the value of <code>EDOM</code> into <code>errno</code> directly. Look in
<samp><span class="file">/usr/include/errno.h</span></samp> to find the value of <code>EDOM</code> on your
system.
<p>If you do not define <code>TARGET_EDOM</code>, then compiled code reports
domain errors by calling the library function and letting it report the
error. If mathematical functions on your system use <code>matherr</code> when
there is an error, then you should leave <code>TARGET_EDOM</code> undefined so
that <code>matherr</code> is used normally.
</p></blockquote></div>
<p><a name="index-g_t_0040code_007berrno_007d_002c-implicit-usage-4244"></a>
<div class="defun">
— Macro: <b>GEN_ERRNO_RTX</b><var><a name="index-GEN_005fERRNO_005fRTX-4245"></a></var><br>
<blockquote><p>Define this macro as a C expression to create an rtl expression that
refers to the global “variable” <code>errno</code>. (On certain systems,
<code>errno</code> may not actually be a variable.) If you don't define this
macro, a reasonable default is used.
</p></blockquote></div>
<p><a name="index-C99-math-functions_002c-implicit-usage-4246"></a>
<div class="defun">
— Macro: <b>TARGET_C99_FUNCTIONS</b><var><a name="index-TARGET_005fC99_005fFUNCTIONS-4247"></a></var><br>
<blockquote><p>When this macro is nonzero, GCC will implicitly optimize <code>sin</code> calls into
<code>sinf</code> and similarly for other functions defined by C99 standard. The
default is zero because a number of existing systems lack support for these
functions in their runtime so this macro needs to be redefined to one on
systems that do support the C99 runtime.
</p></blockquote></div>
<p><a name="index-sincos-math-function_002c-implicit-usage-4248"></a>
<div class="defun">
— Macro: <b>TARGET_HAS_SINCOS</b><var><a name="index-TARGET_005fHAS_005fSINCOS-4249"></a></var><br>
<blockquote><p>When this macro is nonzero, GCC will implicitly optimize calls to <code>sin</code>
and <code>cos</code> with the same argument to a call to <code>sincos</code>. The
default is zero. The target has to provide the following functions:
<pre class="smallexample"> void sincos(double x, double *sin, double *cos);
void sincosf(float x, float *sin, float *cos);
void sincosl(long double x, long double *sin, long double *cos);
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>NEXT_OBJC_RUNTIME</b><var><a name="index-NEXT_005fOBJC_005fRUNTIME-4250"></a></var><br>
<blockquote><p>Define this macro to generate code for Objective-C message sending using
the calling convention of the NeXT system. This calling convention
involves passing the object, the selector and the method arguments all
at once to the method-lookup library function.
<p>The default calling convention passes just the object and the selector
to the lookup function, which returns a pointer to the method.
</p></blockquote></div>
<div class="node">
<a name="Addressing-Modes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Anchored-Addresses">Anchored Addresses</a>,
Previous: <a rel="previous" accesskey="p" href="#Library-Calls">Library Calls</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.14 Addressing Modes</h3>
<p><a name="index-addressing-modes-4251"></a>
<!-- prevent bad page break with this line -->
This is about addressing modes.
<div class="defun">
— Macro: <b>HAVE_PRE_INCREMENT</b><var><a name="index-HAVE_005fPRE_005fINCREMENT-4252"></a></var><br>
— Macro: <b>HAVE_PRE_DECREMENT</b><var><a name="index-HAVE_005fPRE_005fDECREMENT-4253"></a></var><br>
— Macro: <b>HAVE_POST_INCREMENT</b><var><a name="index-HAVE_005fPOST_005fINCREMENT-4254"></a></var><br>
— Macro: <b>HAVE_POST_DECREMENT</b><var><a name="index-HAVE_005fPOST_005fDECREMENT-4255"></a></var><br>
<blockquote><p>A C expression that is nonzero if the machine supports pre-increment,
pre-decrement, post-increment, or post-decrement addressing respectively.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HAVE_PRE_MODIFY_DISP</b><var><a name="index-HAVE_005fPRE_005fMODIFY_005fDISP-4256"></a></var><br>
— Macro: <b>HAVE_POST_MODIFY_DISP</b><var><a name="index-HAVE_005fPOST_005fMODIFY_005fDISP-4257"></a></var><br>
<blockquote><p>A C expression that is nonzero if the machine supports pre- or
post-address side-effect generation involving constants other than
the size of the memory operand.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HAVE_PRE_MODIFY_REG</b><var><a name="index-HAVE_005fPRE_005fMODIFY_005fREG-4258"></a></var><br>
— Macro: <b>HAVE_POST_MODIFY_REG</b><var><a name="index-HAVE_005fPOST_005fMODIFY_005fREG-4259"></a></var><br>
<blockquote><p>A C expression that is nonzero if the machine supports pre- or
post-address side-effect generation involving a register displacement.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONSTANT_ADDRESS_P</b> (<var>x</var>)<var><a name="index-CONSTANT_005fADDRESS_005fP-4260"></a></var><br>
<blockquote><p>A C expression that is 1 if the RTX <var>x</var> is a constant which
is a valid address. On most machines the default definition of
<code>(CONSTANT_P (</code><var>x</var><code>) && GET_CODE (</code><var>x</var><code>) != CONST_DOUBLE)</code>
is acceptable, but a few machines are more restrictive as to which
constant addresses are supported.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONSTANT_P</b> (<var>x</var>)<var><a name="index-CONSTANT_005fP-4261"></a></var><br>
<blockquote><p><code>CONSTANT_P</code>, which is defined by target-independent code,
accepts integer-values expressions whose values are not explicitly
known, such as <code>symbol_ref</code>, <code>label_ref</code>, and <code>high</code>
expressions and <code>const</code> arithmetic expressions, in addition to
<code>const_int</code> and <code>const_double</code> expressions.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_REGS_PER_ADDRESS</b><var><a name="index-MAX_005fREGS_005fPER_005fADDRESS-4262"></a></var><br>
<blockquote><p>A number, the maximum number of registers that can appear in a valid
memory address. Note that it is up to you to specify a value equal to
the maximum number that <code>TARGET_LEGITIMATE_ADDRESS_P</code> would ever
accept.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_LEGITIMATE_ADDRESS_P</b> (<var>enum machine_mode mode, rtx x, bool strict</var>)<var><a name="index-TARGET_005fLEGITIMATE_005fADDRESS_005fP-4263"></a></var><br>
<blockquote><p>A function that returns whether <var>x</var> (an RTX) is a legitimate memory
address on the target machine for a memory operand of mode <var>mode</var>.
<p>Legitimate addresses are defined in two variants: a strict variant and a
non-strict one. The <var>strict</var> parameter chooses which variant is
desired by the caller.
<p>The strict variant is used in the reload pass. It must be defined so
that any pseudo-register that has not been allocated a hard register is
considered a memory reference. This is because in contexts where some
kind of register is required, a pseudo-register with no hard register
must be rejected. For non-hard registers, the strict variant should look
up the <code>reg_renumber</code> array; it should then proceed using the hard
register number in the array, or treat the pseudo as a memory reference
if the array holds <code>-1</code>.
<p>The non-strict variant is used in other passes. It must be defined to
accept all pseudo-registers in every context where some kind of
register is required.
<p>Normally, constant addresses which are the sum of a <code>symbol_ref</code>
and an integer are stored inside a <code>const</code> RTX to mark them as
constant. Therefore, there is no need to recognize such sums
specifically as legitimate addresses. Normally you would simply
recognize any <code>const</code> as legitimate.
<p>Usually <code>PRINT_OPERAND_ADDRESS</code> is not prepared to handle constant
sums that are not marked with <code>const</code>. It assumes that a naked
<code>plus</code> indicates indexing. If so, then you <em>must</em> reject such
naked constant sums as illegitimate addresses, so that none of them will
be given to <code>PRINT_OPERAND_ADDRESS</code>.
<p><a name="index-g_t_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-and-address-validation-4264"></a>On some machines, whether a symbolic address is legitimate depends on
the section that the address refers to. On these machines, define the
target hook <code>TARGET_ENCODE_SECTION_INFO</code> to store the information
into the <code>symbol_ref</code>, and then check for it here. When you see a
<code>const</code>, you will have to look inside it to find the
<code>symbol_ref</code> in order to determine the section. See <a href="#Assembler-Format">Assembler Format</a>.
<p><a name="index-g_t_0040code_007bGO_005fIF_005fLEGITIMATE_005fADDRESS_007d-4265"></a>Some ports are still using a deprecated legacy substitute for
this hook, the <code>GO_IF_LEGITIMATE_ADDRESS</code> macro. This macro
has this syntax:
<pre class="example"> #define GO_IF_LEGITIMATE_ADDRESS (<var>mode</var>, <var>x</var>, <var>label</var>)
</pre>
<p class="noindent">and should <code>goto </code><var>label</var> if the address <var>x</var> is a valid
address on the target machine for a memory operand of mode <var>mode</var>.
<p><a name="index-REG_005fOK_005fSTRICT-4266"></a>Compiler source files that want to use the strict variant of this
macro define the macro <code>REG_OK_STRICT</code>. You should use an
<code>#ifdef REG_OK_STRICT</code> conditional to define the strict variant in
that case and the non-strict variant otherwise.
<p>Using the hook is usually simpler because it limits the number of
files that are recompiled when changes are made.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_MEM_CONSTRAINT</b><var><a name="index-TARGET_005fMEM_005fCONSTRAINT-4267"></a></var><br>
<blockquote><p>A single character to be used instead of the default <code>'m'</code>
character for general memory addresses. This defines the constraint
letter which matches the memory addresses accepted by
<code>TARGET_LEGITIMATE_ADDRESS_P</code>. Define this macro if you want to
support new address formats in your back end without changing the
semantics of the <code>'m'</code> constraint. This is necessary in order to
preserve functionality of inline assembly constructs using the
<code>'m'</code> constraint.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FIND_BASE_TERM</b> (<var>x</var>)<var><a name="index-FIND_005fBASE_005fTERM-4268"></a></var><br>
<blockquote><p>A C expression to determine the base term of address <var>x</var>,
or to provide a simplified version of <var>x</var> from which <samp><span class="file">alias.c</span></samp>
can easily find the base term. This macro is used in only two places:
<code>find_base_value</code> and <code>find_base_term</code> in <samp><span class="file">alias.c</span></samp>.
<p>It is always safe for this macro to not be defined. It exists so
that alias analysis can understand machine-dependent addresses.
<p>The typical use of this macro is to handle addresses containing
a label_ref or symbol_ref within an UNSPEC.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_LEGITIMIZE_ADDRESS</b> (<var>rtx x, rtx oldx, enum machine_mode mode</var>)<var><a name="index-TARGET_005fLEGITIMIZE_005fADDRESS-4269"></a></var><br>
<blockquote><p>This hook is given an invalid memory address <var>x</var> for an
operand of mode <var>mode</var> and should try to return a valid memory
address.
<p><a name="index-break_005fout_005fmemory_005frefs-4270"></a><var>x</var> will always be the result of a call to <code>break_out_memory_refs</code>,
and <var>oldx</var> will be the operand that was given to that function to produce
<var>x</var>.
<p>The code of the hook should not alter the substructure of
<var>x</var>. If it transforms <var>x</var> into a more legitimate form, it
should return the new <var>x</var>.
<p>It is not necessary for this hook to come up with a legitimate address.
The compiler has standard ways of doing so in all cases. In fact, it
is safe to omit this hook or make it return <var>x</var> if it cannot find
a valid way to legitimize the address. But often a machine-dependent
strategy can generate better code.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LEGITIMIZE_RELOAD_ADDRESS</b> (<var>x, mode, opnum, type, ind_levels, win</var>)<var><a name="index-LEGITIMIZE_005fRELOAD_005fADDRESS-4271"></a></var><br>
<blockquote><p>A C compound statement that attempts to replace <var>x</var>, which is an address
that needs reloading, with a valid memory address for an operand of mode
<var>mode</var>. <var>win</var> will be a C statement label elsewhere in the code.
It is not necessary to define this macro, but it might be useful for
performance reasons.
<p>For example, on the i386, it is sometimes possible to use a single
reload register instead of two by reloading a sum of two pseudo
registers into a register. On the other hand, for number of RISC
processors offsets are limited so that often an intermediate address
needs to be generated in order to address a stack slot. By defining
<code>LEGITIMIZE_RELOAD_ADDRESS</code> appropriately, the intermediate addresses
generated for adjacent some stack slots can be made identical, and thus
be shared.
<p><em>Note</em>: This macro should be used with caution. It is necessary
to know something of how reload works in order to effectively use this,
and it is quite easy to produce macros that build in too much knowledge
of reload internals.
<p><em>Note</em>: This macro must be able to reload an address created by a
previous invocation of this macro. If it fails to handle such addresses
then the compiler may generate incorrect code or abort.
<p><a name="index-push_005freload-4272"></a>The macro definition should use <code>push_reload</code> to indicate parts that
need reloading; <var>opnum</var>, <var>type</var> and <var>ind_levels</var> are usually
suitable to be passed unaltered to <code>push_reload</code>.
<p>The code generated by this macro must not alter the substructure of
<var>x</var>. If it transforms <var>x</var> into a more legitimate form, it
should assign <var>x</var> (which will always be a C variable) a new value.
This also applies to parts that you change indirectly by calling
<code>push_reload</code>.
<p><a name="index-strict_005fmemory_005faddress_005fp-4273"></a>The macro definition may use <code>strict_memory_address_p</code> to test if
the address has become legitimate.
<p><a name="index-copy_005frtx-4274"></a>If you want to change only a part of <var>x</var>, one standard way of doing
this is to use <code>copy_rtx</code>. Note, however, that it unshares only a
single level of rtl. Thus, if the part to be changed is not at the
top level, you'll need to replace first the top level.
It is not necessary for this macro to come up with a legitimate
address; but often a machine-dependent strategy can generate better code.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_MODE_DEPENDENT_ADDRESS_P</b> (<var>const_rtx addr</var>)<var><a name="index-TARGET_005fMODE_005fDEPENDENT_005fADDRESS_005fP-4275"></a></var><br>
<blockquote><p>This hook returns <code>true</code> if memory address <var>addr</var> can have
different meanings depending on the machine mode of the memory
reference it is used for or if the address is valid for some modes
but not others.
<p>Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size
of the operand being addressed. Some machines have other mode-dependent
addresses. Many RISC machines have no mode-dependent addresses.
<p>You may assume that <var>addr</var> is a valid address for the machine.
<p>The default version of this hook returns <code>false</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>GO_IF_MODE_DEPENDENT_ADDRESS</b> (<var>addr, label</var>)<var><a name="index-GO_005fIF_005fMODE_005fDEPENDENT_005fADDRESS-4276"></a></var><br>
<blockquote><p>A C statement or compound statement with a conditional <code>goto
</code><var>label</var><code>;</code> executed if memory address <var>x</var> (an RTX) can have
different meanings depending on the machine mode of the memory
reference it is used for or if the address is valid for some modes
but not others.
<p>Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size
of the operand being addressed. Some machines have other mode-dependent
addresses. Many RISC machines have no mode-dependent addresses.
<p>You may assume that <var>addr</var> is a valid address for the machine.
<p>These are obsolete macros, replaced by the
<code>TARGET_MODE_DEPENDENT_ADDRESS_P</code> target hook.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_LEGITIMATE_CONSTANT_P</b> (<var>enum machine_mode mode, rtx x</var>)<var><a name="index-TARGET_005fLEGITIMATE_005fCONSTANT_005fP-4277"></a></var><br>
<blockquote><p>This hook returns true if <var>x</var> is a legitimate constant for a
<var>mode</var>-mode immediate operand on the target machine. You can assume that
<var>x</var> satisfies <code>CONSTANT_P</code>, so you need not check this.
<p>The default definition returns true.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_DELEGITIMIZE_ADDRESS</b> (<var>rtx x</var>)<var><a name="index-TARGET_005fDELEGITIMIZE_005fADDRESS-4278"></a></var><br>
<blockquote><p>This hook is used to undo the possibly obfuscating effects of the
<code>LEGITIMIZE_ADDRESS</code> and <code>LEGITIMIZE_RELOAD_ADDRESS</code> target
macros. Some backend implementations of these macros wrap symbol
references inside an <code>UNSPEC</code> rtx to represent PIC or similar
addressing modes. This target hook allows GCC's optimizers to understand
the semantics of these opaque <code>UNSPEC</code>s by converting them back
into their original form.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CANNOT_FORCE_CONST_MEM</b> (<var>rtx x</var>)<var><a name="index-TARGET_005fCANNOT_005fFORCE_005fCONST_005fMEM-4279"></a></var><br>
<blockquote><p>This hook should return true if <var>x</var> is of a form that cannot (or
should not) be spilled to the constant pool. The default version of
this hook returns false.
<p>The primary reason to define this hook is to prevent reload from
deciding that a non-legitimate constant would be better reloaded
from the constant pool instead of spilling and reloading a register
holding the constant. This restriction is often true of addresses
of TLS symbols for various targets.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_USE_BLOCKS_FOR_CONSTANT_P</b> (<var>enum machine_mode mode, const_rtx x</var>)<var><a name="index-TARGET_005fUSE_005fBLOCKS_005fFOR_005fCONSTANT_005fP-4280"></a></var><br>
<blockquote><p>This hook should return true if pool entries for constant <var>x</var> can
be placed in an <code>object_block</code> structure. <var>mode</var> is the mode
of <var>x</var>.
<p>The default version returns false for all constants.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_BUILTIN_RECIPROCAL</b> (<var>unsigned fn, bool md_fn, bool sqrt</var>)<var><a name="index-TARGET_005fBUILTIN_005fRECIPROCAL-4281"></a></var><br>
<blockquote><p>This hook should return the DECL of a function that implements reciprocal of
the builtin function with builtin function code <var>fn</var>, or
<code>NULL_TREE</code> if such a function is not available. <var>md_fn</var> is true
when <var>fn</var> is a code of a machine-dependent builtin function. When
<var>sqrt</var> is true, additional optimizations that apply only to the reciprocal
of a square root function are performed, and only reciprocals of <code>sqrt</code>
function are valid.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD</b> (<var>void</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fMASK_005fFOR_005fLOAD-4282"></a></var><br>
<blockquote><p>This hook should return the DECL of a function <var>f</var> that given an
address <var>addr</var> as an argument returns a mask <var>m</var> that can be
used to extract from two vectors the relevant data that resides in
<var>addr</var> in case <var>addr</var> is not properly aligned.
<p>The autovectorizer, when vectorizing a load operation from an address
<var>addr</var> that may be unaligned, will generate two vector loads from
the two aligned addresses around <var>addr</var>. It then generates a
<code>REALIGN_LOAD</code> operation to extract the relevant data from the
two loaded vectors. The first two arguments to <code>REALIGN_LOAD</code>,
<var>v1</var> and <var>v2</var>, are the two vectors, each of size <var>VS</var>, and
the third argument, <var>OFF</var>, defines how the data will be extracted
from these two vectors: if <var>OFF</var> is 0, then the returned vector is
<var>v2</var>; otherwise, the returned vector is composed from the last
<var>VS</var>-<var>OFF</var> elements of <var>v1</var> concatenated to the first
<var>OFF</var> elements of <var>v2</var>.
<p>If this hook is defined, the autovectorizer will generate a call
to <var>f</var> (using the DECL tree that this hook returns) and will
use the return value of <var>f</var> as the argument <var>OFF</var> to
<code>REALIGN_LOAD</code>. Therefore, the mask <var>m</var> returned by <var>f</var>
should comply with the semantics expected by <code>REALIGN_LOAD</code>
described above.
If this hook is not defined, then <var>addr</var> will be used as
the argument <var>OFF</var> to <code>REALIGN_LOAD</code>, in which case the low
log2(<var>VS</var>) − 1 bits of <var>addr</var> will be considered.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN</b> (<var>tree x</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fMUL_005fWIDEN_005fEVEN-4283"></a></var><br>
<blockquote><p>This hook should return the DECL of a function <var>f</var> that implements
widening multiplication of the even elements of two input vectors of type <var>x</var>.
<p>If this hook is defined, the autovectorizer will use it along with the
<code>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD</code> target hook when vectorizing
widening multiplication in cases that the order of the results does not have to be
preserved (e.g. used only by a reduction computation). Otherwise, the
<code>widen_mult_hi/lo</code> idioms will be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD</b> (<var>tree x</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fMUL_005fWIDEN_005fODD-4284"></a></var><br>
<blockquote><p>This hook should return the DECL of a function <var>f</var> that implements
widening multiplication of the odd elements of two input vectors of type <var>x</var>.
<p>If this hook is defined, the autovectorizer will use it along with the
<code>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN</code> target hook when vectorizing
widening multiplication in cases that the order of the results does not have to be
preserved (e.g. used only by a reduction computation). Otherwise, the
<code>widen_mult_hi/lo</code> idioms will be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST</b> (<var>enum vect_cost_for_stmt type_of_cost, tree vectype, int misalign</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fVECTORIZATION_005fCOST-4285"></a></var><br>
<blockquote><p>Returns cost of different scalar or vector statements for vectorization cost model.
For vector memory operations the cost may depend on type (<var>vectype</var>) and
misalignment value (<var>misalign</var>).
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE</b> (<var>const_tree type, bool is_packed</var>)<var><a name="index-TARGET_005fVECTORIZE_005fVECTOR_005fALIGNMENT_005fREACHABLE-4286"></a></var><br>
<blockquote><p>Return true if vector alignment is reachable (by peeling N iterations) for the given type.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_VEC_PERM</b> (<var>tree type, tree *mask_element_type</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fVEC_005fPERM-4287"></a></var><br>
<blockquote><p>Target builtin that implements vector permute.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK</b> (<var>tree vec_type, tree mask</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fVEC_005fPERM_005fOK-4288"></a></var><br>
<blockquote><p>Return true if a vector created for <code>builtin_vec_perm</code> is valid.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_CONVERSION</b> (<var>unsigned code, tree dest_type, tree src_type</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fCONVERSION-4289"></a></var><br>
<blockquote><p>This hook should return the DECL of a function that implements conversion of the
input vector of type <var>src_type</var> to type <var>dest_type</var>.
The value of <var>code</var> is one of the enumerators in <code>enum tree_code</code> and
specifies how the conversion is to be applied
(truncation, rounding, etc.).
<p>If this hook is defined, the autovectorizer will use the
<code>TARGET_VECTORIZE_BUILTIN_CONVERSION</code> target hook when vectorizing
conversion. Otherwise, it will return <code>NULL_TREE</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION</b> (<var>tree fndecl, tree vec_type_out, tree vec_type_in</var>)<var><a name="index-TARGET_005fVECTORIZE_005fBUILTIN_005fVECTORIZED_005fFUNCTION-4290"></a></var><br>
<blockquote><p>This hook should return the decl of a function that implements the
vectorized variant of the builtin function with builtin function code
<var>code</var> or <code>NULL_TREE</code> if such a function is not available.
The value of <var>fndecl</var> is the builtin function declaration. The
return type of the vectorized function shall be of vector type
<var>vec_type_out</var> and the argument types should be <var>vec_type_in</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT</b> (<var>enum machine_mode mode, const_tree type, int misalignment, bool is_packed</var>)<var><a name="index-TARGET_005fVECTORIZE_005fSUPPORT_005fVECTOR_005fMISALIGNMENT-4291"></a></var><br>
<blockquote><p>This hook should return true if the target supports misaligned vector
store/load of a specific factor denoted in the <var>misalignment</var>
parameter. The vector store/load should be of machine mode <var>mode</var> and
the elements in the vectors should be of type <var>type</var>. <var>is_packed</var>
parameter is true if the memory access is defined in a packed struct.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_VECTORIZE_PREFERRED_SIMD_MODE</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fVECTORIZE_005fPREFERRED_005fSIMD_005fMODE-4292"></a></var><br>
<blockquote><p>This hook should return the preferred mode for vectorizing scalar
mode <var>mode</var>. The default is
equal to <code>word_mode</code>, because the vectorizer can do some
transformations even in absence of specialized <acronym>SIMD</acronym> hardware.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES</b> (<var>void</var>)<var><a name="index-TARGET_005fVECTORIZE_005fAUTOVECTORIZE_005fVECTOR_005fSIZES-4293"></a></var><br>
<blockquote><p>This hook should return a mask of sizes that should be iterated over
after trying to autovectorize using the vector size derived from the
mode returned by <code>TARGET_VECTORIZE_PREFERRED_SIMD_MODE</code>.
The default is zero which means to not iterate over other vector sizes.
</p></blockquote></div>
<div class="node">
<a name="Anchored-Addresses"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Condition-Code">Condition Code</a>,
Previous: <a rel="previous" accesskey="p" href="#Addressing-Modes">Addressing Modes</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.15 Anchored Addresses</h3>
<p><a name="index-anchored-addresses-4294"></a><a name="index-g_t_0040option_007b_002dfsection_002danchors_007d-4295"></a>
GCC usually addresses every static object as a separate entity.
For example, if we have:
<pre class="smallexample"> static int a, b, c;
int foo (void) { return a + b + c; }
</pre>
<p>the code for <code>foo</code> will usually calculate three separate symbolic
addresses: those of <code>a</code>, <code>b</code> and <code>c</code>. On some targets,
it would be better to calculate just one symbolic address and access
the three variables relative to it. The equivalent pseudocode would
be something like:
<pre class="smallexample"> int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
}
</pre>
<p>(which isn't valid C). We refer to shared addresses like <code>x</code> as
“section anchors”. Their use is controlled by <samp><span class="option">-fsection-anchors</span></samp>.
<p>The hooks below describe the target properties that GCC needs to know
in order to make effective use of section anchors. It won't use
section anchors at all unless either <code>TARGET_MIN_ANCHOR_OFFSET</code>
or <code>TARGET_MAX_ANCHOR_OFFSET</code> is set to a nonzero value.
<div class="defun">
— Target Hook: HOST_WIDE_INT <b>TARGET_MIN_ANCHOR_OFFSET</b><var><a name="index-TARGET_005fMIN_005fANCHOR_005fOFFSET-4296"></a></var><br>
<blockquote><p>The minimum offset that should be applied to a section anchor.
On most targets, it should be the smallest offset that can be
applied to a base register while still giving a legitimate address
for every mode. The default value is 0.
</p></blockquote></div>
<div class="defun">
— Target Hook: HOST_WIDE_INT <b>TARGET_MAX_ANCHOR_OFFSET</b><var><a name="index-TARGET_005fMAX_005fANCHOR_005fOFFSET-4297"></a></var><br>
<blockquote><p>Like <code>TARGET_MIN_ANCHOR_OFFSET</code>, but the maximum (inclusive)
offset that should be applied to section anchors. The default
value is 0.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_OUTPUT_ANCHOR</b> (<var>rtx x</var>)<var><a name="index-TARGET_005fASM_005fOUTPUT_005fANCHOR-4298"></a></var><br>
<blockquote><p>Write the assembly code to define section anchor <var>x</var>, which is a
<code>SYMBOL_REF</code> for which ‘<samp><span class="samp">SYMBOL_REF_ANCHOR_P (</span><var>x</var><span class="samp">)</span></samp>’ is true.
The hook is called with the assembly output position set to the beginning
of <code>SYMBOL_REF_BLOCK (</code><var>x</var><code>)</code>.
<p>If <code>ASM_OUTPUT_DEF</code> is available, the hook's default definition uses
it to define the symbol as ‘<samp><span class="samp">. + SYMBOL_REF_BLOCK_OFFSET (</span><var>x</var><span class="samp">)</span></samp>’.
If <code>ASM_OUTPUT_DEF</code> is not available, the hook's default definition
is <code>NULL</code>, which disables the use of section anchors altogether.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_USE_ANCHORS_FOR_SYMBOL_P</b> (<var>const_rtx x</var>)<var><a name="index-TARGET_005fUSE_005fANCHORS_005fFOR_005fSYMBOL_005fP-4299"></a></var><br>
<blockquote><p>Return true if GCC should attempt to use anchors to access <code>SYMBOL_REF</code>
<var>x</var>. You can assume ‘<samp><span class="samp">SYMBOL_REF_HAS_BLOCK_INFO_P (</span><var>x</var><span class="samp">)</span></samp>’ and
‘<samp><span class="samp">!SYMBOL_REF_ANCHOR_P (</span><var>x</var><span class="samp">)</span></samp>’.
<p>The default version is correct for most targets, but you might need to
intercept this hook to handle things like target-specific attributes
or target-specific sections.
</p></blockquote></div>
<div class="node">
<a name="Condition-Code"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Costs">Costs</a>,
Previous: <a rel="previous" accesskey="p" href="#Anchored-Addresses">Anchored Addresses</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.16 Condition Code Status</h3>
<p><a name="index-condition-code-status-4300"></a>
The macros in this section can be split in two families, according to the
two ways of representing condition codes in GCC.
<p>The first representation is the so called <code>(cc0)</code> representation
(see <a href="#Jump-Patterns">Jump Patterns</a>), where all instructions can have an implicit
clobber of the condition codes. The second is the condition code
register representation, which provides better schedulability for
architectures that do have a condition code register, but on which
most instructions do not affect it. The latter category includes
most RISC machines.
<p>The implicit clobbering poses a strong restriction on the placement of
the definition and use of the condition code, which need to be in adjacent
insns for machines using <code>(cc0)</code>. This can prevent important
optimizations on some machines. For example, on the IBM RS/6000, there
is a delay for taken branches unless the condition code register is set
three instructions earlier than the conditional branch. The instruction
scheduler cannot perform this optimization if it is not permitted to
separate the definition and use of the condition code register.
<p>For this reason, it is possible and suggested to use a register to
represent the condition code for new ports. If there is a specific
condition code register in the machine, use a hard register. If the
condition code or comparison result can be placed in any general register,
or if there are multiple condition registers, use a pseudo register.
Registers used to store the condition code value will usually have a mode
that is in class <code>MODE_CC</code>.
<p>Alternatively, you can use <code>BImode</code> if the comparison operator is
specified already in the compare instruction. In this case, you are not
interested in most macros in this section.
<ul class="menu">
<li><a accesskey="1" href="#CC0-Condition-Codes">CC0 Condition Codes</a>: Old style representation of condition codes.
<li><a accesskey="2" href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a>: Modern representation of condition codes.
<li><a accesskey="3" href="#Cond-Exec-Macros">Cond Exec Macros</a>: Macros to control conditional execution.
</ul>
<div class="node">
<a name="CC0-Condition-Codes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a>,
Up: <a rel="up" accesskey="u" href="#Condition-Code">Condition Code</a>
</div>
<h4 class="subsection">17.16.1 Representation of condition codes using <code>(cc0)</code></h4>
<p><a name="index-cc0-4301"></a>
<a name="index-cc_005fstatus-4302"></a>The file <samp><span class="file">conditions.h</span></samp> defines a variable <code>cc_status</code> to
describe how the condition code was computed (in case the interpretation of
the condition code depends on the instruction that it was set by). This
variable contains the RTL expressions on which the condition code is
currently based, and several standard flags.
<p>Sometimes additional machine-specific flags must be defined in the machine
description header file. It can also add additional machine-specific
information by defining <code>CC_STATUS_MDEP</code>.
<div class="defun">
— Macro: <b>CC_STATUS_MDEP</b><var><a name="index-CC_005fSTATUS_005fMDEP-4303"></a></var><br>
<blockquote><p>C code for a data type which is used for declaring the <code>mdep</code>
component of <code>cc_status</code>. It defaults to <code>int</code>.
<p>This macro is not used on machines that do not use <code>cc0</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CC_STATUS_MDEP_INIT</b><var><a name="index-CC_005fSTATUS_005fMDEP_005fINIT-4304"></a></var><br>
<blockquote><p>A C expression to initialize the <code>mdep</code> field to “empty”.
The default definition does nothing, since most machines don't use
the field anyway. If you want to use the field, you should probably
define this macro to initialize it.
<p>This macro is not used on machines that do not use <code>cc0</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NOTICE_UPDATE_CC</b> (<var>exp, insn</var>)<var><a name="index-NOTICE_005fUPDATE_005fCC-4305"></a></var><br>
<blockquote><p>A C compound statement to set the components of <code>cc_status</code>
appropriately for an insn <var>insn</var> whose body is <var>exp</var>. It is
this macro's responsibility to recognize insns that set the condition
code as a byproduct of other activity as well as those that explicitly
set <code>(cc0)</code>.
<p>This macro is not used on machines that do not use <code>cc0</code>.
<p>If there are insns that do not set the condition code but do alter
other machine registers, this macro must check to see whether they
invalidate the expressions that the condition code is recorded as
reflecting. For example, on the 68000, insns that store in address
registers do not set the condition code, which means that usually
<code>NOTICE_UPDATE_CC</code> can leave <code>cc_status</code> unaltered for such
insns. But suppose that the previous insn set the condition code
based on location ‘<samp><span class="samp">a4@(102)</span></samp>’ and the current insn stores a new
value in ‘<samp><span class="samp">a4</span></samp>’. Although the condition code is not changed by
this, it will no longer be true that it reflects the contents of
‘<samp><span class="samp">a4@(102)</span></samp>’. Therefore, <code>NOTICE_UPDATE_CC</code> must alter
<code>cc_status</code> in this case to say that nothing is known about the
condition code value.
<p>The definition of <code>NOTICE_UPDATE_CC</code> must be prepared to deal
with the results of peephole optimization: insns whose patterns are
<code>parallel</code> RTXs containing various <code>reg</code>, <code>mem</code> or
constants which are just the operands. The RTL structure of these
insns is not sufficient to indicate what the insns actually do. What
<code>NOTICE_UPDATE_CC</code> should do when it sees one is just to run
<code>CC_STATUS_INIT</code>.
<p>A possible definition of <code>NOTICE_UPDATE_CC</code> is to call a function
that looks at an attribute (see <a href="#Insn-Attributes">Insn Attributes</a>) named, for example,
‘<samp><span class="samp">cc</span></samp>’. This avoids having detailed information about patterns in
two places, the <samp><span class="file">md</span></samp> file and in <code>NOTICE_UPDATE_CC</code>.
</p></blockquote></div>
<div class="node">
<a name="MODE_CC-Condition-Codes"></a>
<a name="MODE_005fCC-Condition-Codes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Cond-Exec-Macros">Cond Exec Macros</a>,
Previous: <a rel="previous" accesskey="p" href="#CC0-Condition-Codes">CC0 Condition Codes</a>,
Up: <a rel="up" accesskey="u" href="#Condition-Code">Condition Code</a>
</div>
<h4 class="subsection">17.16.2 Representation of condition codes using registers</h4>
<p><a name="index-CCmode-4306"></a><a name="index-MODE_005fCC-4307"></a>
<div class="defun">
— Macro: <b>SELECT_CC_MODE</b> (<var>op, x, y</var>)<var><a name="index-SELECT_005fCC_005fMODE-4308"></a></var><br>
<blockquote><p>On many machines, the condition code may be produced by other instructions
than compares, for example the branch can use directly the condition
code set by a subtract instruction. However, on some machines
when the condition code is set this way some bits (such as the overflow
bit) are not set in the same way as a test instruction, so that a different
branch instruction must be used for some conditional branches. When
this happens, use the machine mode of the condition code register to
record different formats of the condition code register. Modes can
also be used to record which compare instruction (e.g. a signed or an
unsigned comparison) produced the condition codes.
<p>If other modes than <code>CCmode</code> are required, add them to
<samp><var>machine</var><span class="file">-modes.def</span></samp> and define <code>SELECT_CC_MODE</code> to choose
a mode given an operand of a compare. This is needed because the modes
have to be chosen not only during RTL generation but also, for example,
by instruction combination. The result of <code>SELECT_CC_MODE</code> should
be consistent with the mode used in the patterns; for example to support
the case of the add on the SPARC discussed above, we have the pattern
<pre class="smallexample"> (define_insn ""
[(set (reg:CC_NOOV 0)
(compare:CC_NOOV
(plus:SI (match_operand:SI 0 "register_operand" "%r")
(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]
""
"...")
</pre>
<p class="noindent">together with a <code>SELECT_CC_MODE</code> that returns <code>CC_NOOVmode</code>
for comparisons whose argument is a <code>plus</code>:
<pre class="smallexample"> #define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))
</pre>
<p>Another reason to use modes is to retain information on which operands
were used by the comparison; see <code>REVERSIBLE_CC_MODE</code> later in
this section.
<p>You should define this macro if and only if you define extra CC modes
in <samp><var>machine</var><span class="file">-modes.def</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CANONICALIZE_COMPARISON</b> (<var>code, op0, op1</var>)<var><a name="index-CANONICALIZE_005fCOMPARISON-4309"></a></var><br>
<blockquote><p>On some machines not all possible comparisons are defined, but you can
convert an invalid comparison into a valid one. For example, the Alpha
does not have a <code>GT</code> comparison, but you can use an <code>LT</code>
comparison instead and swap the order of the operands.
<p>On such machines, define this macro to be a C statement to do any
required conversions. <var>code</var> is the initial comparison code
and <var>op0</var> and <var>op1</var> are the left and right operands of the
comparison, respectively. You should modify <var>code</var>, <var>op0</var>, and
<var>op1</var> as required.
<p>GCC will not assume that the comparison resulting from this macro is
valid but will see if the resulting insn matches a pattern in the
<samp><span class="file">md</span></samp> file.
<p>You need not define this macro if it would never change the comparison
code or operands.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REVERSIBLE_CC_MODE</b> (<var>mode</var>)<var><a name="index-REVERSIBLE_005fCC_005fMODE-4310"></a></var><br>
<blockquote><p>A C expression whose value is one if it is always safe to reverse a
comparison whose mode is <var>mode</var>. If <code>SELECT_CC_MODE</code>
can ever return <var>mode</var> for a floating-point inequality comparison,
then <code>REVERSIBLE_CC_MODE (</code><var>mode</var><code>)</code> must be zero.
<p>You need not define this macro if it would always returns zero or if the
floating-point format is anything other than <code>IEEE_FLOAT_FORMAT</code>.
For example, here is the definition used on the SPARC, where floating-point
inequality comparisons are always given <code>CCFPEmode</code>:
<pre class="smallexample"> #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>REVERSE_CONDITION</b> (<var>code, mode</var>)<var><a name="index-REVERSE_005fCONDITION-4311"></a></var><br>
<blockquote><p>A C expression whose value is reversed condition code of the <var>code</var> for
comparison done in CC_MODE <var>mode</var>. The macro is used only in case
<code>REVERSIBLE_CC_MODE (</code><var>mode</var><code>)</code> is nonzero. Define this macro in case
machine has some non-standard way how to reverse certain conditionals. For
instance in case all floating point conditions are non-trapping, compiler may
freely convert unordered compares to ordered one. Then definition may look
like:
<pre class="smallexample"> #define REVERSE_CONDITION(CODE, MODE) \
((MODE) != CCFPmode ? reverse_condition (CODE) \
: reverse_condition_maybe_unordered (CODE))
</pre>
</blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_FIXED_CONDITION_CODE_REGS</b> (<var>unsigned int *p1, unsigned int *p2</var>)<var><a name="index-TARGET_005fFIXED_005fCONDITION_005fCODE_005fREGS-4312"></a></var><br>
<blockquote><p>On targets which do not use <code>(cc0)</code>, and which use a hard
register rather than a pseudo-register to hold condition codes, the
regular CSE passes are often not able to identify cases in which the
hard register is set to a common value. Use this hook to enable a
small pass which optimizes such cases. This hook should return true
to enable this pass, and it should set the integers to which its
arguments point to the hard register numbers used for condition codes.
When there is only one such register, as is true on most systems, the
integer pointed to by <var>p2</var> should be set to
<code>INVALID_REGNUM</code>.
<p>The default version of this hook returns false.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_CC_MODES_COMPATIBLE</b> (<var>enum machine_mode m1, enum machine_mode m2</var>)<var><a name="index-TARGET_005fCC_005fMODES_005fCOMPATIBLE-4313"></a></var><br>
<blockquote><p>On targets which use multiple condition code modes in class
<code>MODE_CC</code>, it is sometimes the case that a comparison can be
validly done in more than one mode. On such a system, define this
target hook to take two mode arguments and to return a mode in which
both comparisons may be validly done. If there is no such mode,
return <code>VOIDmode</code>.
<p>The default version of this hook checks whether the modes are the
same. If they are, it returns that mode. If they are different, it
returns <code>VOIDmode</code>.
</p></blockquote></div>
<div class="node">
<a name="Cond-Exec-Macros"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a>,
Up: <a rel="up" accesskey="u" href="#Condition-Code">Condition Code</a>
</div>
<h4 class="subsection">17.16.3 Macros to control conditional execution</h4>
<p><a name="index-conditional-execution-4314"></a><a name="index-predication-4315"></a>
There is one macro that may need to be defined for targets
supporting conditional execution, independent of how they
represent conditional branches.
<div class="defun">
— Macro: <b>REVERSE_CONDEXEC_PREDICATES_P</b> (<var>op1, op2</var>)<var><a name="index-REVERSE_005fCONDEXEC_005fPREDICATES_005fP-4316"></a></var><br>
<blockquote><p>A C expression that returns true if the conditional execution predicate
<var>op1</var>, a comparison operation, is the inverse of <var>op2</var> and vice
versa. Define this to return 0 if the target has conditional execution
predicates that cannot be reversed safely. There is no need to validate
that the arguments of op1 and op2 are the same, this is done separately.
If no expansion is specified, this macro is defined as follows:
<pre class="smallexample"> #define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
(GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
</pre>
</blockquote></div>
<div class="node">
<a name="Costs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Scheduling">Scheduling</a>,
Previous: <a rel="previous" accesskey="p" href="#Condition-Code">Condition Code</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.17 Describing Relative Costs of Operations</h3>
<p><a name="index-costs-of-instructions-4317"></a><a name="index-relative-costs-4318"></a><a name="index-speed-of-instructions-4319"></a>
These macros let you describe the relative speed of various operations
on the target machine.
<div class="defun">
— Macro: <b>REGISTER_MOVE_COST</b> (<var>mode, from, to</var>)<var><a name="index-REGISTER_005fMOVE_005fCOST-4320"></a></var><br>
<blockquote><p>A C expression for the cost of moving data of mode <var>mode</var> from a
register in class <var>from</var> to one in class <var>to</var>. The classes are
expressed using the enumeration values such as <code>GENERAL_REGS</code>. A
value of 2 is the default; other values are interpreted relative to
that.
<p>It is not required that the cost always equal 2 when <var>from</var> is the
same as <var>to</var>; on some machines it is expensive to move between
registers if they are not general registers.
<p>If reload sees an insn consisting of a single <code>set</code> between two
hard registers, and if <code>REGISTER_MOVE_COST</code> applied to their
classes returns a value of 2, reload does not check to ensure that the
constraints of the insn are met. Setting a cost of other than 2 will
allow reload to verify that the constraints are met. You should do this
if the ‘<samp><span class="samp">mov</span><var>m</var></samp>’ pattern's constraints do not allow such copying.
<p>These macros are obsolete, new ports should use the target hook
<code>TARGET_REGISTER_MOVE_COST</code> instead.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_REGISTER_MOVE_COST</b> (<var>enum machine_mode mode, reg_class_t from, reg_class_t to</var>)<var><a name="index-TARGET_005fREGISTER_005fMOVE_005fCOST-4321"></a></var><br>
<blockquote><p>This target hook should return the cost of moving data of mode <var>mode</var>
from a register in class <var>from</var> to one in class <var>to</var>. The classes
are expressed using the enumeration values such as <code>GENERAL_REGS</code>.
A value of 2 is the default; other values are interpreted relative to
that.
<p>It is not required that the cost always equal 2 when <var>from</var> is the
same as <var>to</var>; on some machines it is expensive to move between
registers if they are not general registers.
<p>If reload sees an insn consisting of a single <code>set</code> between two
hard registers, and if <code>TARGET_REGISTER_MOVE_COST</code> applied to their
classes returns a value of 2, reload does not check to ensure that the
constraints of the insn are met. Setting a cost of other than 2 will
allow reload to verify that the constraints are met. You should do this
if the ‘<samp><span class="samp">mov</span><var>m</var></samp>’ pattern's constraints do not allow such copying.
<p>The default version of this function returns 2.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MEMORY_MOVE_COST</b> (<var>mode, class, in</var>)<var><a name="index-MEMORY_005fMOVE_005fCOST-4322"></a></var><br>
<blockquote><p>A C expression for the cost of moving data of mode <var>mode</var> between a
register of class <var>class</var> and memory; <var>in</var> is zero if the value
is to be written to memory, nonzero if it is to be read in. This cost
is relative to those in <code>REGISTER_MOVE_COST</code>. If moving between
registers and memory is more expensive than between two registers, you
should define this macro to express the relative cost.
<p>If you do not define this macro, GCC uses a default cost of 4 plus
the cost of copying via a secondary reload register, if one is
needed. If your machine requires a secondary reload register to copy
between memory and a register of <var>class</var> but the reload mechanism is
more complex than copying via an intermediate, define this macro to
reflect the actual cost of the move.
<p>GCC defines the function <code>memory_move_secondary_cost</code> if
secondary reloads are needed. It computes the costs due to copying via
a secondary register. If your machine copies from memory using a
secondary register in the conventional way but the default base value of
4 is not correct for your machine, define this macro to add some other
value to the result of that function. The arguments to that function
are the same as to this macro.
<p>These macros are obsolete, new ports should use the target hook
<code>TARGET_MEMORY_MOVE_COST</code> instead.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_MEMORY_MOVE_COST</b> (<var>enum machine_mode mode, reg_class_t rclass, bool in</var>)<var><a name="index-TARGET_005fMEMORY_005fMOVE_005fCOST-4323"></a></var><br>
<blockquote><p>This target hook should return the cost of moving data of mode <var>mode</var>
between a register of class <var>rclass</var> and memory; <var>in</var> is <code>false</code>
if the value is to be written to memory, <code>true</code> if it is to be read in.
This cost is relative to those in <code>TARGET_REGISTER_MOVE_COST</code>.
If moving between registers and memory is more expensive than between two
registers, you should add this target hook to express the relative cost.
<p>If you do not add this target hook, GCC uses a default cost of 4 plus
the cost of copying via a secondary reload register, if one is
needed. If your machine requires a secondary reload register to copy
between memory and a register of <var>rclass</var> but the reload mechanism is
more complex than copying via an intermediate, use this target hook to
reflect the actual cost of the move.
<p>GCC defines the function <code>memory_move_secondary_cost</code> if
secondary reloads are needed. It computes the costs due to copying via
a secondary register. If your machine copies from memory using a
secondary register in the conventional way but the default base value of
4 is not correct for your machine, use this target hook to add some other
value to the result of that function. The arguments to that function
are the same as to this target hook.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BRANCH_COST</b> (<var>speed_p, predictable_p</var>)<var><a name="index-BRANCH_005fCOST-4324"></a></var><br>
<blockquote><p>A C expression for the cost of a branch instruction. A value of 1 is
the default; other values are interpreted relative to that. Parameter
<var>speed_p</var> is true when the branch in question should be optimized
for speed. When it is false, <code>BRANCH_COST</code> should return a value
optimal for code size rather than performance. <var>predictable_p</var> is
true for well-predicted branches. On many architectures the
<code>BRANCH_COST</code> can be reduced then.
</p></blockquote></div>
<p>Here are additional macros which do not specify precise relative costs,
but only that certain actions are more expensive than GCC would
ordinarily expect.
<div class="defun">
— Macro: <b>SLOW_BYTE_ACCESS</b><var><a name="index-SLOW_005fBYTE_005fACCESS-4325"></a></var><br>
<blockquote><p>Define this macro as a C expression which is nonzero if accessing less
than a word of memory (i.e. a <code>char</code> or a <code>short</code>) is no
faster than accessing a word of memory, i.e., if such access
require more than one instruction or if there is no difference in cost
between byte and (aligned) word loads.
<p>When this macro is not defined, the compiler will access a field by
finding the smallest containing object; when it is defined, a fullword
load will be used if alignment permits. Unless bytes accesses are
faster than word accesses, using word accesses is preferable since it
may eliminate subsequent memory access if subsequent accesses occur to
other fields in the same word of the structure, but to different bytes.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SLOW_UNALIGNED_ACCESS</b> (<var>mode, alignment</var>)<var><a name="index-SLOW_005fUNALIGNED_005fACCESS-4326"></a></var><br>
<blockquote><p>Define this macro to be the value 1 if memory accesses described by the
<var>mode</var> and <var>alignment</var> parameters have a cost many times greater
than aligned accesses, for example if they are emulated in a trap
handler.
<p>When this macro is nonzero, the compiler will act as if
<code>STRICT_ALIGNMENT</code> were nonzero when generating code for block
moves. This can cause significantly more instructions to be produced.
Therefore, do not set this macro nonzero if unaligned accesses only add a
cycle or two to the time for a memory access.
<p>If the value of this macro is always zero, it need not be defined. If
this macro is defined, it should produce a nonzero value when
<code>STRICT_ALIGNMENT</code> is nonzero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MOVE_RATIO</b> (<var>speed</var>)<var><a name="index-MOVE_005fRATIO-4327"></a></var><br>
<blockquote><p>The threshold of number of scalar memory-to-memory move insns, <em>below</em>
which a sequence of insns should be generated instead of a
string move insn or a library call. Increasing the value will always
make code faster, but eventually incurs high cost in increased code size.
<p>Note that on machines where the corresponding move insn is a
<code>define_expand</code> that emits a sequence of insns, this macro counts
the number of such sequences.
<p>The parameter <var>speed</var> is true if the code is currently being
optimized for speed rather than size.
<p>If you don't define this, a reasonable default is used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MOVE_BY_PIECES_P</b> (<var>size, alignment</var>)<var><a name="index-MOVE_005fBY_005fPIECES_005fP-4328"></a></var><br>
<blockquote><p>A C expression used to determine whether <code>move_by_pieces</code> will be used to
copy a chunk of memory, or whether some other block move mechanism
will be used. Defaults to 1 if <code>move_by_pieces_ninsns</code> returns less
than <code>MOVE_RATIO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MOVE_MAX_PIECES</b><var><a name="index-MOVE_005fMAX_005fPIECES-4329"></a></var><br>
<blockquote><p>A C expression used by <code>move_by_pieces</code> to determine the largest unit
a load or store used to copy memory is. Defaults to <code>MOVE_MAX</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CLEAR_RATIO</b> (<var>speed</var>)<var><a name="index-CLEAR_005fRATIO-4330"></a></var><br>
<blockquote><p>The threshold of number of scalar move insns, <em>below</em> which a sequence
of insns should be generated to clear memory instead of a string clear insn
or a library call. Increasing the value will always make code faster, but
eventually incurs high cost in increased code size.
<p>The parameter <var>speed</var> is true if the code is currently being
optimized for speed rather than size.
<p>If you don't define this, a reasonable default is used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CLEAR_BY_PIECES_P</b> (<var>size, alignment</var>)<var><a name="index-CLEAR_005fBY_005fPIECES_005fP-4331"></a></var><br>
<blockquote><p>A C expression used to determine whether <code>clear_by_pieces</code> will be used
to clear a chunk of memory, or whether some other block clear mechanism
will be used. Defaults to 1 if <code>move_by_pieces_ninsns</code> returns less
than <code>CLEAR_RATIO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SET_RATIO</b> (<var>speed</var>)<var><a name="index-SET_005fRATIO-4332"></a></var><br>
<blockquote><p>The threshold of number of scalar move insns, <em>below</em> which a sequence
of insns should be generated to set memory to a constant value, instead of
a block set insn or a library call.
Increasing the value will always make code faster, but
eventually incurs high cost in increased code size.
<p>The parameter <var>speed</var> is true if the code is currently being
optimized for speed rather than size.
<p>If you don't define this, it defaults to the value of <code>MOVE_RATIO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SET_BY_PIECES_P</b> (<var>size, alignment</var>)<var><a name="index-SET_005fBY_005fPIECES_005fP-4333"></a></var><br>
<blockquote><p>A C expression used to determine whether <code>store_by_pieces</code> will be
used to set a chunk of memory to a constant value, or whether some
other mechanism will be used. Used by <code>__builtin_memset</code> when
storing values other than constant zero.
Defaults to 1 if <code>move_by_pieces_ninsns</code> returns less
than <code>SET_RATIO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STORE_BY_PIECES_P</b> (<var>size, alignment</var>)<var><a name="index-STORE_005fBY_005fPIECES_005fP-4334"></a></var><br>
<blockquote><p>A C expression used to determine whether <code>store_by_pieces</code> will be
used to set a chunk of memory to a constant string value, or whether some
other mechanism will be used. Used by <code>__builtin_strcpy</code> when
called with a constant source string.
Defaults to 1 if <code>move_by_pieces_ninsns</code> returns less
than <code>MOVE_RATIO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_LOAD_POST_INCREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fLOAD_005fPOST_005fINCREMENT-4335"></a></var><br>
<blockquote><p>A C expression used to determine whether a load postincrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_POST_INCREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_LOAD_POST_DECREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fLOAD_005fPOST_005fDECREMENT-4336"></a></var><br>
<blockquote><p>A C expression used to determine whether a load postdecrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_POST_DECREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_LOAD_PRE_INCREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fLOAD_005fPRE_005fINCREMENT-4337"></a></var><br>
<blockquote><p>A C expression used to determine whether a load preincrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_PRE_INCREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_LOAD_PRE_DECREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fLOAD_005fPRE_005fDECREMENT-4338"></a></var><br>
<blockquote><p>A C expression used to determine whether a load predecrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_PRE_DECREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_STORE_POST_INCREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fSTORE_005fPOST_005fINCREMENT-4339"></a></var><br>
<blockquote><p>A C expression used to determine whether a store postincrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_POST_INCREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_STORE_POST_DECREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fSTORE_005fPOST_005fDECREMENT-4340"></a></var><br>
<blockquote><p>A C expression used to determine whether a store postdecrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_POST_DECREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_STORE_PRE_INCREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fSTORE_005fPRE_005fINCREMENT-4341"></a></var><br>
<blockquote><p>This macro is used to determine whether a store preincrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_PRE_INCREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_STORE_PRE_DECREMENT</b> (<var>mode</var>)<var><a name="index-USE_005fSTORE_005fPRE_005fDECREMENT-4342"></a></var><br>
<blockquote><p>This macro is used to determine whether a store predecrement is a good
thing to use for a given mode. Defaults to the value of
<code>HAVE_PRE_DECREMENT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_FUNCTION_CSE</b><var><a name="index-NO_005fFUNCTION_005fCSE-4343"></a></var><br>
<blockquote><p>Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register.
</p></blockquote></div>
<div class="defun">
— Macro: <b>RANGE_TEST_NON_SHORT_CIRCUIT</b><var><a name="index-RANGE_005fTEST_005fNON_005fSHORT_005fCIRCUIT-4344"></a></var><br>
<blockquote><p>Define this macro if a non-short-circuit operation produced by
‘<samp><span class="samp">fold_range_test ()</span></samp>’ is optimal. This macro defaults to true if
<code>BRANCH_COST</code> is greater than or equal to the value 2.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_RTX_COSTS</b> (<var>rtx x, int code, int outer_code, int *total, bool speed</var>)<var><a name="index-TARGET_005fRTX_005fCOSTS-4345"></a></var><br>
<blockquote><p>This target hook describes the relative costs of RTL expressions.
<p>The cost may depend on the precise form of the expression, which is
available for examination in <var>x</var>, and the rtx code of the expression
in which it is contained, found in <var>outer_code</var>. <var>code</var> is the
expression code—redundant, since it can be obtained with
<code>GET_CODE (</code><var>x</var><code>)</code>.
<p>In implementing this hook, you can use the construct
<code>COSTS_N_INSNS (</code><var>n</var><code>)</code> to specify a cost equal to <var>n</var> fast
instructions.
<p>On entry to the hook, <code>*</code><var>total</var> contains a default estimate
for the cost of the expression. The hook should modify this value as
necessary. Traditionally, the default costs are <code>COSTS_N_INSNS (5)</code>
for multiplications, <code>COSTS_N_INSNS (7)</code> for division and modulus
operations, and <code>COSTS_N_INSNS (1)</code> for all other operations.
<p>When optimizing for code size, i.e. when <code>speed</code> is
false, this target hook should be used to estimate the relative
size cost of an expression, again relative to <code>COSTS_N_INSNS</code>.
<p>The hook returns true when all subexpressions of <var>x</var> have been
processed, and false when <code>rtx_cost</code> should recurse.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ADDRESS_COST</b> (<var>rtx address, bool speed</var>)<var><a name="index-TARGET_005fADDRESS_005fCOST-4346"></a></var><br>
<blockquote><p>This hook computes the cost of an addressing mode that contains
<var>address</var>. If not defined, the cost is computed from
the <var>address</var> expression and the <code>TARGET_RTX_COST</code> hook.
<p>For most CISC machines, the default cost is a good approximation of the
true cost of the addressing mode. However, on RISC machines, all
instructions normally have the same length and execution time. Hence
all addresses will have equal costs.
<p>In cases where more than one form of an address is known, the form with
the lowest cost will be used. If multiple forms have the same, lowest,
cost, the one that is the most complex will be used.
<p>For example, suppose an address that is equal to the sum of a register
and a constant is used twice in the same basic block. When this macro
is not defined, the address will be computed in a register and memory
references will be indirect through that register. On machines where
the cost of the addressing mode containing the sum is no higher than
that of a simple indirect reference, this will produce an additional
instruction and possibly require an additional register. Proper
specification of this macro eliminates this overhead for such machines.
<p>This hook is never called with an invalid address.
<p>On machines where an address involving more than one register is as
cheap as an address computation involving only one register, defining
<code>TARGET_ADDRESS_COST</code> to reflect this can cause two registers to
be live over a region of code where only one would have been if
<code>TARGET_ADDRESS_COST</code> were not defined in that manner. This effect
should be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers of
registers on machines with lots of registers.
</p></blockquote></div>
<div class="node">
<a name="Scheduling"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Sections">Sections</a>,
Previous: <a rel="previous" accesskey="p" href="#Costs">Costs</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.18 Adjusting the Instruction Scheduler</h3>
<p>The instruction scheduler may need a fair amount of machine-specific
adjustment in order to produce good code. GCC provides several target
hooks for this purpose. It is usually enough to define just a few of
them: try the first ones in this list first.
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_ISSUE_RATE</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fISSUE_005fRATE-4347"></a></var><br>
<blockquote><p>This hook returns the maximum number of instructions that can ever
issue at the same time on the target machine. The default is one.
Although the insn scheduler can define itself the possibility of issue
an insn on the same cycle, the value can serve as an additional
constraint to issue insns on the same simulated processor cycle (see
hooks ‘<samp><span class="samp">TARGET_SCHED_REORDER</span></samp>’ and ‘<samp><span class="samp">TARGET_SCHED_REORDER2</span></samp>’).
This value must be constant over the entire compilation. If you need
it to vary depending on what the instructions are, you must use
‘<samp><span class="samp">TARGET_SCHED_VARIABLE_ISSUE</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_VARIABLE_ISSUE</b> (<var>FILE *file, int verbose, rtx insn, int more</var>)<var><a name="index-TARGET_005fSCHED_005fVARIABLE_005fISSUE-4348"></a></var><br>
<blockquote><p>This hook is executed by the scheduler after it has scheduled an insn
from the ready list. It should return the number of insns which can
still be issued in the current cycle. The default is
‘<samp><var>more</var><span class="samp"> - 1<!-- /@w --></span></samp>’ for insns other than <code>CLOBBER</code> and
<code>USE</code>, which normally are not counted against the issue rate.
You should define this hook if some insns take more machine resources
than others, so that fewer insns can follow them in the same cycle.
<var>file</var> is either a null pointer, or a stdio stream to write any
debug output to. <var>verbose</var> is the verbose level provided by
<samp><span class="option">-fsched-verbose-</span><var>n</var></samp>. <var>insn</var> is the instruction that
was scheduled.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_ADJUST_COST</b> (<var>rtx insn, rtx link, rtx dep_insn, int cost</var>)<var><a name="index-TARGET_005fSCHED_005fADJUST_005fCOST-4349"></a></var><br>
<blockquote><p>This function corrects the value of <var>cost</var> based on the
relationship between <var>insn</var> and <var>dep_insn</var> through the
dependence <var>link</var>. It should return the new value. The default
is to make no adjustment to <var>cost</var>. This can be used for example
to specify to the scheduler using the traditional pipeline description
that an output- or anti-dependence does not incur the same cost as a
data-dependence. If the scheduler using the automaton based pipeline
description, the cost of anti-dependence is zero and the cost of
output-dependence is maximum of one and the difference of latency
times of the first and the second insns. If these values are not
acceptable, you could use the hook to modify them too. See also
see <a href="#Processor-pipeline-description">Processor pipeline description</a>.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_ADJUST_PRIORITY</b> (<var>rtx insn, int priority</var>)<var><a name="index-TARGET_005fSCHED_005fADJUST_005fPRIORITY-4350"></a></var><br>
<blockquote><p>This hook adjusts the integer scheduling priority <var>priority</var> of
<var>insn</var>. It should return the new priority. Increase the priority to
execute <var>insn</var> earlier, reduce the priority to execute <var>insn</var>
later. Do not define this hook if you do not need to adjust the
scheduling priorities of insns.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_REORDER</b> (<var>FILE *file, int verbose, rtx *ready, int *n_readyp, int clock</var>)<var><a name="index-TARGET_005fSCHED_005fREORDER-4351"></a></var><br>
<blockquote><p>This hook is executed by the scheduler after it has scheduled the ready
list, to allow the machine description to reorder it (for example to
combine two small instructions together on ‘<samp><span class="samp">VLIW</span></samp>’ machines).
<var>file</var> is either a null pointer, or a stdio stream to write any
debug output to. <var>verbose</var> is the verbose level provided by
<samp><span class="option">-fsched-verbose-</span><var>n</var></samp>. <var>ready</var> is a pointer to the ready
list of instructions that are ready to be scheduled. <var>n_readyp</var> is
a pointer to the number of elements in the ready list. The scheduler
reads the ready list in reverse order, starting with
<var>ready</var>[<var>*n_readyp</var> − 1] and going to <var>ready</var>[0]. <var>clock</var>
is the timer tick of the scheduler. You may modify the ready list and
the number of ready insns. The return value is the number of insns that
can issue this cycle; normally this is just <code>issue_rate</code>. See also
‘<samp><span class="samp">TARGET_SCHED_REORDER2</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_REORDER2</b> (<var>FILE *file, int verbose, rtx *ready, int *n_readyp, int clock</var>)<var><a name="index-TARGET_005fSCHED_005fREORDER2-4352"></a></var><br>
<blockquote><p>Like ‘<samp><span class="samp">TARGET_SCHED_REORDER</span></samp>’, but called at a different time. That
function is called whenever the scheduler starts a new cycle. This one
is called once per iteration over a cycle, immediately after
‘<samp><span class="samp">TARGET_SCHED_VARIABLE_ISSUE</span></samp>’; it can reorder the ready list and
return the number of insns to be scheduled in the same cycle. Defining
this hook can be useful if there are frequent situations where
scheduling one insn causes other insns to become ready in the same
cycle. These other insns can then be taken into account properly.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK</b> (<var>rtx head, rtx tail</var>)<var><a name="index-TARGET_005fSCHED_005fDEPENDENCIES_005fEVALUATION_005fHOOK-4353"></a></var><br>
<blockquote><p>This hook is called after evaluation forward dependencies of insns in
chain given by two parameter values (<var>head</var> and <var>tail</var>
correspondingly) but before insns scheduling of the insn chain. For
example, it can be used for better insn classification if it requires
analysis of dependencies. This hook can use backward and forward
dependencies of the insn scheduler because they are already
calculated.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_INIT</b> (<var>FILE *file, int verbose, int max_ready</var>)<var><a name="index-TARGET_005fSCHED_005fINIT-4354"></a></var><br>
<blockquote><p>This hook is executed by the scheduler at the beginning of each block of
instructions that are to be scheduled. <var>file</var> is either a null
pointer, or a stdio stream to write any debug output to. <var>verbose</var>
is the verbose level provided by <samp><span class="option">-fsched-verbose-</span><var>n</var></samp>.
<var>max_ready</var> is the maximum number of insns in the current scheduling
region that can be live at the same time. This can be used to allocate
scratch space if it is needed, e.g. by ‘<samp><span class="samp">TARGET_SCHED_REORDER</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FINISH</b> (<var>FILE *file, int verbose</var>)<var><a name="index-TARGET_005fSCHED_005fFINISH-4355"></a></var><br>
<blockquote><p>This hook is executed by the scheduler at the end of each block of
instructions that are to be scheduled. It can be used to perform
cleanup of any actions done by the other scheduling hooks. <var>file</var>
is either a null pointer, or a stdio stream to write any debug output
to. <var>verbose</var> is the verbose level provided by
<samp><span class="option">-fsched-verbose-</span><var>n</var></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_INIT_GLOBAL</b> (<var>FILE *file, int verbose, int old_max_uid</var>)<var><a name="index-TARGET_005fSCHED_005fINIT_005fGLOBAL-4356"></a></var><br>
<blockquote><p>This hook is executed by the scheduler after function level initializations.
<var>file</var> is either a null pointer, or a stdio stream to write any debug output to.
<var>verbose</var> is the verbose level provided by <samp><span class="option">-fsched-verbose-</span><var>n</var></samp>.
<var>old_max_uid</var> is the maximum insn uid when scheduling begins.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FINISH_GLOBAL</b> (<var>FILE *file, int verbose</var>)<var><a name="index-TARGET_005fSCHED_005fFINISH_005fGLOBAL-4357"></a></var><br>
<blockquote><p>This is the cleanup hook corresponding to <code>TARGET_SCHED_INIT_GLOBAL</code>.
<var>file</var> is either a null pointer, or a stdio stream to write any debug output to.
<var>verbose</var> is the verbose level provided by <samp><span class="option">-fsched-verbose-</span><var>n</var></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_SCHED_DFA_PRE_CYCLE_INSN</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fDFA_005fPRE_005fCYCLE_005fINSN-4358"></a></var><br>
<blockquote><p>The hook returns an RTL insn. The automaton state used in the
pipeline hazard recognizer is changed as if the insn were scheduled
when the new simulated processor cycle starts. Usage of the hook may
simplify the automaton pipeline description for some <acronym>VLIW</acronym>
processors. If the hook is defined, it is used only for the automaton
based pipeline description. The default is not to change the state
when the new simulated processor cycle starts.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fINIT_005fDFA_005fPRE_005fCYCLE_005fINSN-4359"></a></var><br>
<blockquote><p>The hook can be used to initialize data used by the previous hook.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_SCHED_DFA_POST_CYCLE_INSN</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fDFA_005fPOST_005fCYCLE_005fINSN-4360"></a></var><br>
<blockquote><p>The hook is analogous to ‘<samp><span class="samp">TARGET_SCHED_DFA_PRE_CYCLE_INSN</span></samp>’ but used
to changed the state as if the insn were scheduled when the new
simulated processor cycle finishes.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fINIT_005fDFA_005fPOST_005fCYCLE_005fINSN-4361"></a></var><br>
<blockquote><p>The hook is analogous to ‘<samp><span class="samp">TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN</span></samp>’ but
used to initialize data used by the previous hook.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fDFA_005fPRE_005fADVANCE_005fCYCLE-4362"></a></var><br>
<blockquote><p>The hook to notify target that the current simulated cycle is about to finish.
The hook is analogous to ‘<samp><span class="samp">TARGET_SCHED_DFA_PRE_CYCLE_INSN</span></samp>’ but used
to change the state in more complicated situations - e.g., when advancing
state on a single insn is not enough.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_DFA_POST_ADVANCE_CYCLE</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fDFA_005fPOST_005fADVANCE_005fCYCLE-4363"></a></var><br>
<blockquote><p>The hook to notify target that new simulated cycle has just started.
The hook is analogous to ‘<samp><span class="samp">TARGET_SCHED_DFA_POST_CYCLE_INSN</span></samp>’ but used
to change the state in more complicated situations - e.g., when advancing
state on a single insn is not enough.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD-4364"></a></var><br>
<blockquote><p>This hook controls better choosing an insn from the ready insn queue
for the <acronym>DFA</acronym>-based insn scheduler. Usually the scheduler
chooses the first insn from the queue. If the hook returns a positive
value, an additional scheduler code tries all permutations of
‘<samp><span class="samp">TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()</span></samp>’
subsequent ready insns to choose an insn whose issue will result in
maximal number of issued insns on the same cycle. For the
<acronym>VLIW</acronym> processor, the code could actually solve the problem of
packing simple insns into the <acronym>VLIW</acronym> insn. Of course, if the
rules of <acronym>VLIW</acronym> packing are described in the automaton.
<p>This code also could be used for superscalar <acronym>RISC</acronym>
processors. Let us consider a superscalar <acronym>RISC</acronym> processor
with 3 pipelines. Some insns can be executed in pipelines <var>A</var> or
<var>B</var>, some insns can be executed only in pipelines <var>B</var> or
<var>C</var>, and one insn can be executed in pipeline <var>B</var>. The
processor may issue the 1st insn into <var>A</var> and the 2nd one into
<var>B</var>. In this case, the 3rd insn will wait for freeing <var>B</var>
until the next cycle. If the scheduler issues the 3rd insn the first,
the processor could issue all 3 insns per cycle.
<p>Actually this code demonstrates advantages of the automaton based
pipeline hazard recognizer. We try quickly and easy many insn
schedules to choose the best one.
<p>The default is no multipass scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD</b> (<var>rtx insn</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD_005fGUARD-4365"></a></var><br>
<blockquote>
<p>This hook controls what insns from the ready insn queue will be
considered for the multipass insn scheduling. If the hook returns
zero for <var>insn</var>, the insn will be not chosen to
be issued.
<p>The default is that any ready insns can be chosen to be issued.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN</b> (<var>void *data, char *ready_try, int n_ready, bool first_cycle_insn_p</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fBEGIN-4366"></a></var><br>
<blockquote><p>This hook prepares the target backend for a new round of multipass
scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE</b> (<var>void *data, char *ready_try, int n_ready, rtx insn, const void *prev_data</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fISSUE-4367"></a></var><br>
<blockquote><p>This hook is called when multipass scheduling evaluates instruction INSN.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK</b> (<var>const void *data, char *ready_try, int n_ready</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fBACKTRACK-4368"></a></var><br>
<blockquote><p>This is called when multipass scheduling backtracks from evaluation of
an instruction.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END</b> (<var>const void *data</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fEND-4369"></a></var><br>
<blockquote><p>This hook notifies the target about the result of the concluded current
round of multipass scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT</b> (<var>void *data</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fINIT-4370"></a></var><br>
<blockquote><p>This hook initializes target-specific data used in multipass scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI</b> (<var>void *data</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fFINI-4371"></a></var><br>
<blockquote><p>This hook finalizes target-specific data used in multipass scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_DFA_NEW_CYCLE</b> (<var>FILE *dump, int verbose, rtx insn, int last_clock, int clock, int *sort_p</var>)<var><a name="index-TARGET_005fSCHED_005fDFA_005fNEW_005fCYCLE-4372"></a></var><br>
<blockquote><p>This hook is called by the insn scheduler before issuing <var>insn</var>
on cycle <var>clock</var>. If the hook returns nonzero,
<var>insn</var> is not issued on this processor cycle. Instead,
the processor cycle is advanced. If *<var>sort_p</var>
is zero, the insn ready queue is not sorted on the new cycle
start as usually. <var>dump</var> and <var>verbose</var> specify the file and
verbosity level to use for debugging output.
<var>last_clock</var> and <var>clock</var> are, respectively, the
processor cycle on which the previous insn has been issued,
and the current processor cycle.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SCHED_IS_COSTLY_DEPENDENCE</b> (<var>struct _dep *_dep, int cost, int distance</var>)<var><a name="index-TARGET_005fSCHED_005fIS_005fCOSTLY_005fDEPENDENCE-4373"></a></var><br>
<blockquote><p>This hook is used to define which dependences are considered costly by
the target, so costly that it is not advisable to schedule the insns that
are involved in the dependence too close to one another. The parameters
to this hook are as follows: The first parameter <var>_dep</var> is the dependence
being evaluated. The second parameter <var>cost</var> is the cost of the
dependence as estimated by the scheduler, and the third
parameter <var>distance</var> is the distance in cycles between the two insns.
The hook returns <code>true</code> if considering the distance between the two
insns the dependence between them is considered costly by the target,
and <code>false</code> otherwise.
<p>Defining this hook can be useful in multiple-issue out-of-order machines,
where (a) it's practically hopeless to predict the actual data/resource
delays, however: (b) there's a better chance to predict the actual grouping
that will be formed, and (c) correctly emulating the grouping can be very
important. In such targets one may want to allow issuing dependent insns
closer to one another—i.e., closer than the dependence distance; however,
not in cases of “costly dependences”, which this hooks allows to define.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_H_I_D_EXTENDED</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fH_005fI_005fD_005fEXTENDED-4374"></a></var><br>
<blockquote><p>This hook is called by the insn scheduler after emitting a new instruction to
the instruction stream. The hook notifies a target backend to extend its
per instruction data structures.
</p></blockquote></div>
<div class="defun">
— Target Hook: void * <b>TARGET_SCHED_ALLOC_SCHED_CONTEXT</b> (<var>void</var>)<var><a name="index-TARGET_005fSCHED_005fALLOC_005fSCHED_005fCONTEXT-4375"></a></var><br>
<blockquote><p>Return a pointer to a store large enough to hold target scheduling context.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_INIT_SCHED_CONTEXT</b> (<var>void *tc, bool clean_p</var>)<var><a name="index-TARGET_005fSCHED_005fINIT_005fSCHED_005fCONTEXT-4376"></a></var><br>
<blockquote><p>Initialize store pointed to by <var>tc</var> to hold target scheduling context.
It <var>clean_p</var> is true then initialize <var>tc</var> as if scheduler is at the
beginning of the block. Otherwise, copy the current context into <var>tc</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_SET_SCHED_CONTEXT</b> (<var>void *tc</var>)<var><a name="index-TARGET_005fSCHED_005fSET_005fSCHED_005fCONTEXT-4377"></a></var><br>
<blockquote><p>Copy target scheduling context pointed to by <var>tc</var> to the current context.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_CLEAR_SCHED_CONTEXT</b> (<var>void *tc</var>)<var><a name="index-TARGET_005fSCHED_005fCLEAR_005fSCHED_005fCONTEXT-4378"></a></var><br>
<blockquote><p>Deallocate internal data in target scheduling context pointed to by <var>tc</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_FREE_SCHED_CONTEXT</b> (<var>void *tc</var>)<var><a name="index-TARGET_005fSCHED_005fFREE_005fSCHED_005fCONTEXT-4379"></a></var><br>
<blockquote><p>Deallocate a store for target scheduling context pointed to by <var>tc</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_SPECULATE_INSN</b> (<var>rtx insn, int request, rtx *new_pat</var>)<var><a name="index-TARGET_005fSCHED_005fSPECULATE_005fINSN-4380"></a></var><br>
<blockquote><p>This hook is called by the insn scheduler when <var>insn</var> has only
speculative dependencies and therefore can be scheduled speculatively.
The hook is used to check if the pattern of <var>insn</var> has a speculative
version and, in case of successful check, to generate that speculative
pattern. The hook should return 1, if the instruction has a speculative form,
or −1, if it doesn't. <var>request</var> describes the type of requested
speculation. If the return value equals 1 then <var>new_pat</var> is assigned
the generated speculative pattern.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SCHED_NEEDS_BLOCK_P</b> (<var>int dep_status</var>)<var><a name="index-TARGET_005fSCHED_005fNEEDS_005fBLOCK_005fP-4381"></a></var><br>
<blockquote><p>This hook is called by the insn scheduler during generation of recovery code
for <var>insn</var>. It should return <code>true</code>, if the corresponding check
instruction should branch to recovery code, or <code>false</code> otherwise.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_SCHED_GEN_SPEC_CHECK</b> (<var>rtx insn, rtx label, int mutate_p</var>)<var><a name="index-TARGET_005fSCHED_005fGEN_005fSPEC_005fCHECK-4382"></a></var><br>
<blockquote><p>This hook is called by the insn scheduler to generate a pattern for recovery
check instruction. If <var>mutate_p</var> is zero, then <var>insn</var> is a
speculative instruction for which the check should be generated.
<var>label</var> is either a label of a basic block, where recovery code should
be emitted, or a null pointer, when requested check doesn't branch to
recovery code (a simple check). If <var>mutate_p</var> is nonzero, then
a pattern for a branchy check corresponding to a simple check denoted by
<var>insn</var> should be generated. In this case <var>label</var> can't be null.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC</b> (<var>const_rtx insn</var>)<var><a name="index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD_005fGUARD_005fSPEC-4383"></a></var><br>
<blockquote><p>This hook is used as a workaround for
‘<samp><span class="samp">TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD</span></samp>’ not being
called on the first instruction of the ready list. The hook is used to
discard speculative instructions that stand first in the ready list from
being scheduled on the current cycle. If the hook returns <code>false</code>,
<var>insn</var> will not be chosen to be issued.
For non-speculative instructions,
the hook should always return <code>true</code>. For example, in the ia64 backend
the hook is used to cancel data speculative insns when the ALAT table
is nearly full.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_SET_SCHED_FLAGS</b> (<var>struct spec_info_def *spec_info</var>)<var><a name="index-TARGET_005fSCHED_005fSET_005fSCHED_005fFLAGS-4384"></a></var><br>
<blockquote><p>This hook is used by the insn scheduler to find out what features should be
enabled/used.
The structure *<var>spec_info</var> should be filled in by the target.
The structure describes speculation types that can be used in the scheduler.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_SCHED_SMS_RES_MII</b> (<var>struct ddg *g</var>)<var><a name="index-TARGET_005fSCHED_005fSMS_005fRES_005fMII-4385"></a></var><br>
<blockquote><p>This hook is called by the swing modulo scheduler to calculate a
resource-based lower bound which is based on the resources available in
the machine and the resources required by each instruction. The target
backend can use <var>g</var> to calculate such bound. A very simple lower
bound will be used in case this hook is not implemented: the total number
of instructions divided by the issue rate.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_SCHED_DISPATCH</b> (<var>rtx insn, int x</var>)<var><a name="index-TARGET_005fSCHED_005fDISPATCH-4386"></a></var><br>
<blockquote><p>This hook is called by Haifa Scheduler. It returns true if dispatch scheduling
is supported in hardware and the condition specified in the parameter is true.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SCHED_DISPATCH_DO</b> (<var>rtx insn, int x</var>)<var><a name="index-TARGET_005fSCHED_005fDISPATCH_005fDO-4387"></a></var><br>
<blockquote><p>This hook is called by Haifa Scheduler. It performs the operation specified
in its second parameter.
</p></blockquote></div>
<div class="node">
<a name="Sections"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#PIC">PIC</a>,
Previous: <a rel="previous" accesskey="p" href="#Scheduling">Scheduling</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.19 Dividing the Output into Sections (Texts, Data, <small class="dots">...</small>)</h3>
<!-- the above section title is WAY too long. maybe cut the part between -->
<!-- the (...)? -mew 10feb93 -->
<p>An object file is divided into sections containing different types of
data. In the most common case, there are three sections: the <dfn>text
section</dfn>, which holds instructions and read-only data; the <dfn>data
section</dfn>, which holds initialized writable data; and the <dfn>bss
section</dfn>, which holds uninitialized data. Some systems have other kinds
of sections.
<p><samp><span class="file">varasm.c</span></samp> provides several well-known sections, such as
<code>text_section</code>, <code>data_section</code> and <code>bss_section</code>.
The normal way of controlling a <var>foo</var><code>_section</code> variable
is to define the associated <var>FOO</var><code>_SECTION_ASM_OP</code> macro,
as described below. The macros are only read once, when <samp><span class="file">varasm.c</span></samp>
initializes itself, so their values must be run-time constants.
They may however depend on command-line flags.
<p><em>Note:</em> Some run-time files, such <samp><span class="file">crtstuff.c</span></samp>, also make
use of the <var>FOO</var><code>_SECTION_ASM_OP</code> macros, and expect them
to be string literals.
<p>Some assemblers require a different string to be written every time a
section is selected. If your assembler falls into this category, you
should define the <code>TARGET_ASM_INIT_SECTIONS</code> hook and use
<code>get_unnamed_section</code> to set up the sections.
<p>You must always create a <code>text_section</code>, either by defining
<code>TEXT_SECTION_ASM_OP</code> or by initializing <code>text_section</code>
in <code>TARGET_ASM_INIT_SECTIONS</code>. The same is true of
<code>data_section</code> and <code>DATA_SECTION_ASM_OP</code>. If you do not
create a distinct <code>readonly_data_section</code>, the default is to
reuse <code>text_section</code>.
<p>All the other <samp><span class="file">varasm.c</span></samp> sections are optional, and are null
if the target does not provide them.
<div class="defun">
— Macro: <b>TEXT_SECTION_ASM_OP</b><var><a name="index-TEXT_005fSECTION_005fASM_005fOP-4388"></a></var><br>
<blockquote><p>A C expression whose value is a string, including spacing, containing the
assembler operation that should precede instructions and read-only data.
Normally <code>"\t.text"</code> is right.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HOT_TEXT_SECTION_NAME</b><var><a name="index-HOT_005fTEXT_005fSECTION_005fNAME-4389"></a></var><br>
<blockquote><p>If defined, a C string constant for the name of the section containing most
frequently executed functions of the program. If not defined, GCC will provide
a default definition if the target supports named sections.
</p></blockquote></div>
<div class="defun">
— Macro: <b>UNLIKELY_EXECUTED_TEXT_SECTION_NAME</b><var><a name="index-UNLIKELY_005fEXECUTED_005fTEXT_005fSECTION_005fNAME-4390"></a></var><br>
<blockquote><p>If defined, a C string constant for the name of the section containing unlikely
executed functions in the program.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DATA_SECTION_ASM_OP</b><var><a name="index-DATA_005fSECTION_005fASM_005fOP-4391"></a></var><br>
<blockquote><p>A C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as writable initialized
data. Normally <code>"\t.data"</code> is right.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SDATA_SECTION_ASM_OP</b><var><a name="index-SDATA_005fSECTION_005fASM_005fOP-4392"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
initialized, writable small data.
</p></blockquote></div>
<div class="defun">
— Macro: <b>READONLY_DATA_SECTION_ASM_OP</b><var><a name="index-READONLY_005fDATA_005fSECTION_005fASM_005fOP-4393"></a></var><br>
<blockquote><p>A C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as read-only initialized
data.
</p></blockquote></div>
<div class="defun">
— Macro: <b>BSS_SECTION_ASM_OP</b><var><a name="index-BSS_005fSECTION_005fASM_005fOP-4394"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
uninitialized global data. If not defined, and neither
<code>ASM_OUTPUT_BSS</code> nor <code>ASM_OUTPUT_ALIGNED_BSS</code> are defined,
uninitialized global data will be output in the data section if
<samp><span class="option">-fno-common</span></samp> is passed, otherwise <code>ASM_OUTPUT_COMMON</code> will be
used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SBSS_SECTION_ASM_OP</b><var><a name="index-SBSS_005fSECTION_005fASM_005fOP-4395"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
uninitialized, writable small data.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TLS_COMMON_ASM_OP</b><var><a name="index-TLS_005fCOMMON_005fASM_005fOP-4396"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string containing the
assembler operation to identify the following data as thread-local
common data. The default is <code>".tls_common"</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TLS_SECTION_ASM_FLAG</b><var><a name="index-TLS_005fSECTION_005fASM_005fFLAG-4397"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a character constant
containing the flag used to mark a section as a TLS section. The
default is <code>'T'</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_SECTION_ASM_OP</b><var><a name="index-INIT_005fSECTION_005fASM_005fOP-4398"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
initialization code. If not defined, GCC will assume such a section does
not exist. This section has no corresponding <code>init_section</code>
variable; it is used entirely in runtime code.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FINI_SECTION_ASM_OP</b><var><a name="index-FINI_005fSECTION_005fASM_005fOP-4399"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
finalization code. If not defined, GCC will assume such a section does
not exist. This section has no corresponding <code>fini_section</code>
variable; it is used entirely in runtime code.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INIT_ARRAY_SECTION_ASM_OP</b><var><a name="index-INIT_005fARRAY_005fSECTION_005fASM_005fOP-4400"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
part of the <code>.init_array</code> (or equivalent) section. If not
defined, GCC will assume such a section does not exist. Do not define
both this macro and <code>INIT_SECTION_ASM_OP</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FINI_ARRAY_SECTION_ASM_OP</b><var><a name="index-FINI_005fARRAY_005fSECTION_005fASM_005fOP-4401"></a></var><br>
<blockquote><p>If defined, a C expression whose value is a string, including spacing,
containing the assembler operation to identify the following data as
part of the <code>.fini_array</code> (or equivalent) section. If not
defined, GCC will assume such a section does not exist. Do not define
both this macro and <code>FINI_SECTION_ASM_OP</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CRT_CALL_STATIC_FUNCTION</b> (<var>section_op, function</var>)<var><a name="index-CRT_005fCALL_005fSTATIC_005fFUNCTION-4402"></a></var><br>
<blockquote><p>If defined, an ASM statement that switches to a different section
via <var>section_op</var>, calls <var>function</var>, and switches back to
the text section. This is used in <samp><span class="file">crtstuff.c</span></samp> if
<code>INIT_SECTION_ASM_OP</code> or <code>FINI_SECTION_ASM_OP</code> to calls
to initialization and finalization functions from the init and fini
sections. By default, this macro uses a simple function call. Some
ports need hand-crafted assembly code to avoid dependencies on
registers initialized in the function prologue or to ensure that
constant pools don't end up too far way in the text section.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_LIBGCC_SDATA_SECTION</b><var><a name="index-TARGET_005fLIBGCC_005fSDATA_005fSECTION-4403"></a></var><br>
<blockquote><p>If defined, a string which names the section into which small
variables defined in crtstuff and libgcc should go. This is useful
when the target has options for optimizing access to small data, and
you want the crtstuff and libgcc routines to be conservative in what
they expect of your application yet liberal in what your application
expects. For example, for targets with a <code>.sdata</code> section (like
MIPS), you could compile crtstuff with <code>-G 0</code> so that it doesn't
require small data support from your application, but use this macro
to put small data into <code>.sdata</code> so that your application can
access these variables whether it uses small data or not.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FORCE_CODE_SECTION_ALIGN</b><var><a name="index-FORCE_005fCODE_005fSECTION_005fALIGN-4404"></a></var><br>
<blockquote><p>If defined, an ASM statement that aligns a code section to some
arbitrary boundary. This is used to force all fragments of the
<code>.init</code> and <code>.fini</code> sections to have to same alignment
and thus prevent the linker from having to add any padding.
</p></blockquote></div>
<div class="defun">
— Macro: <b>JUMP_TABLES_IN_TEXT_SECTION</b><var><a name="index-JUMP_005fTABLES_005fIN_005fTEXT_005fSECTION-4405"></a></var><br>
<blockquote><p>Define this macro to be an expression with a nonzero value if jump
tables (for <code>tablejump</code> insns) should be output in the text
section, along with the assembler instructions. Otherwise, the
readonly data section is used.
<p>This macro is irrelevant if there is no separate readonly data section.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_INIT_SECTIONS</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fINIT_005fSECTIONS-4406"></a></var><br>
<blockquote><p>Define this hook if you need to do something special to set up the
<samp><span class="file">varasm.c</span></samp> sections, or if your target has some special sections
of its own that you need to create.
<p>GCC calls this hook after processing the command line, but before writing
any assembly code, and before calling any of the section-returning hooks
described below.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_RELOC_RW_MASK</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fRELOC_005fRW_005fMASK-4407"></a></var><br>
<blockquote><p>Return a mask describing how relocations should be treated when
selecting sections. Bit 1 should be set if global relocations
should be placed in a read-write section; bit 0 should be set if
local relocations should be placed in a read-write section.
<p>The default version of this function returns 3 when <samp><span class="option">-fpic</span></samp>
is in effect, and 0 otherwise. The hook is typically redefined
when the target cannot support (some kinds of) dynamic relocations
in read-only sections even in executables.
</p></blockquote></div>
<div class="defun">
— Target Hook: section * <b>TARGET_ASM_SELECT_SECTION</b> (<var>tree exp, int reloc, unsigned HOST_WIDE_INT align</var>)<var><a name="index-TARGET_005fASM_005fSELECT_005fSECTION-4408"></a></var><br>
<blockquote><p>Return the section into which <var>exp</var> should be placed. You can
assume that <var>exp</var> is either a <code>VAR_DECL</code> node or a constant of
some sort. <var>reloc</var> indicates whether the initial value of <var>exp</var>
requires link-time relocations. Bit 0 is set when variable contains
local relocations only, while bit 1 is set for global relocations.
<var>align</var> is the constant alignment in bits.
<p>The default version of this function takes care of putting read-only
variables in <code>readonly_data_section</code>.
<p>See also <var>USE_SELECT_SECTION_FOR_FUNCTIONS</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>USE_SELECT_SECTION_FOR_FUNCTIONS</b><var><a name="index-USE_005fSELECT_005fSECTION_005fFOR_005fFUNCTIONS-4409"></a></var><br>
<blockquote><p>Define this macro if you wish TARGET_ASM_SELECT_SECTION to be called
for <code>FUNCTION_DECL</code>s as well as for variables and constants.
<p>In the case of a <code>FUNCTION_DECL</code>, <var>reloc</var> will be zero if the
function has been determined to be likely to be called, and nonzero if
it is unlikely to be called.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_UNIQUE_SECTION</b> (<var>tree decl, int reloc</var>)<var><a name="index-TARGET_005fASM_005fUNIQUE_005fSECTION-4410"></a></var><br>
<blockquote><p>Build up a unique section name, expressed as a <code>STRING_CST</code> node,
and assign it to ‘<samp><span class="samp">DECL_SECTION_NAME (</span><var>decl</var><span class="samp">)</span></samp>’.
As with <code>TARGET_ASM_SELECT_SECTION</code>, <var>reloc</var> indicates whether
the initial value of <var>exp</var> requires link-time relocations.
<p>The default version of this function appends the symbol name to the
ELF section name that would normally be used for the symbol. For
example, the function <code>foo</code> would be placed in <code>.text.foo</code>.
Whatever the actual target object format, this is often good enough.
</p></blockquote></div>
<div class="defun">
— Target Hook: section * <b>TARGET_ASM_FUNCTION_RODATA_SECTION</b> (<var>tree decl</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fRODATA_005fSECTION-4411"></a></var><br>
<blockquote><p>Return the readonly data section associated with
‘<samp><span class="samp">DECL_SECTION_NAME (</span><var>decl</var><span class="samp">)</span></samp>’.
The default version of this function selects <code>.gnu.linkonce.r.name</code> if
the function's section is <code>.gnu.linkonce.t.name</code>, <code>.rodata.name</code>
if function is in <code>.text.name</code>, and the normal readonly-data section
otherwise.
</p></blockquote></div>
<div class="defun">
— Target Hook: section * <b>TARGET_ASM_SELECT_RTX_SECTION</b> (<var>enum machine_mode mode, rtx x, unsigned HOST_WIDE_INT align</var>)<var><a name="index-TARGET_005fASM_005fSELECT_005fRTX_005fSECTION-4412"></a></var><br>
<blockquote><p>Return the section into which a constant <var>x</var>, of mode <var>mode</var>,
should be placed. You can assume that <var>x</var> is some kind of
constant in RTL. The argument <var>mode</var> is redundant except in the
case of a <code>const_int</code> rtx. <var>align</var> is the constant alignment
in bits.
<p>The default version of this function takes care of putting symbolic
constants in <code>flag_pic</code> mode in <code>data_section</code> and everything
else in <code>readonly_data_section</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_MANGLE_DECL_ASSEMBLER_NAME</b> (<var>tree decl, tree id</var>)<var><a name="index-TARGET_005fMANGLE_005fDECL_005fASSEMBLER_005fNAME-4413"></a></var><br>
<blockquote><p>Define this hook if you need to postprocess the assembler name generated
by target-independent code. The <var>id</var> provided to this hook will be
the computed name (e.g., the macro <code>DECL_NAME</code> of the <var>decl</var> in C,
or the mangled name of the <var>decl</var> in C++). The return value of the
hook is an <code>IDENTIFIER_NODE</code> for the appropriate mangled name on
your target system. The default implementation of this hook just
returns the <var>id</var> provided.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ENCODE_SECTION_INFO</b> (<var>tree decl, rtx rtl, int new_decl_p</var>)<var><a name="index-TARGET_005fENCODE_005fSECTION_005fINFO-4414"></a></var><br>
<blockquote><p>Define this hook if references to a symbol or a constant must be
treated differently depending on something about the variable or
function named by the symbol (such as what section it is in).
<p>The hook is executed immediately after rtl has been created for
<var>decl</var>, which may be a variable or function declaration or
an entry in the constant pool. In either case, <var>rtl</var> is the
rtl in question. Do <em>not</em> use <code>DECL_RTL (</code><var>decl</var><code>)</code>
in this hook; that field may not have been initialized yet.
<p>In the case of a constant, it is safe to assume that the rtl is
a <code>mem</code> whose address is a <code>symbol_ref</code>. Most decls
will also have this form, but that is not guaranteed. Global
register variables, for instance, will have a <code>reg</code> for their
rtl. (Normally the right thing to do with such unusual rtl is
leave it alone.)
<p>The <var>new_decl_p</var> argument will be true if this is the first time
that <code>TARGET_ENCODE_SECTION_INFO</code> has been invoked on this decl. It will
be false for subsequent invocations, which will happen for duplicate
declarations. Whether or not anything must be done for the duplicate
declaration depends on whether the hook examines <code>DECL_ATTRIBUTES</code>.
<var>new_decl_p</var> is always true when the hook is called for a constant.
<p><a name="index-g_t_0040code_007bSYMBOL_005fREF_005fFLAG_007d_002c-in-_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-4415"></a>The usual thing for this hook to do is to record flags in the
<code>symbol_ref</code>, using <code>SYMBOL_REF_FLAG</code> or <code>SYMBOL_REF_FLAGS</code>.
Historically, the name string was modified if it was necessary to
encode more than one bit of information, but this practice is now
discouraged; use <code>SYMBOL_REF_FLAGS</code>.
<p>The default definition of this hook, <code>default_encode_section_info</code>
in <samp><span class="file">varasm.c</span></samp>, sets a number of commonly-useful bits in
<code>SYMBOL_REF_FLAGS</code>. Check whether the default does what you need
before overriding it.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_STRIP_NAME_ENCODING</b> (<var>const char *name</var>)<var><a name="index-TARGET_005fSTRIP_005fNAME_005fENCODING-4416"></a></var><br>
<blockquote><p>Decode <var>name</var> and return the real name part, sans
the characters that <code>TARGET_ENCODE_SECTION_INFO</code>
may have added.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_IN_SMALL_DATA_P</b> (<var>const_tree exp</var>)<var><a name="index-TARGET_005fIN_005fSMALL_005fDATA_005fP-4417"></a></var><br>
<blockquote><p>Returns true if <var>exp</var> should be placed into a “small data” section.
The default version of this hook always returns false.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_SRODATA_SECTION</b><var><a name="index-TARGET_005fHAVE_005fSRODATA_005fSECTION-4418"></a></var><br>
<blockquote><p>Contains the value true if the target places read-only
“small data” into a separate section. The default value is false.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_PROFILE_BEFORE_PROLOGUE</b> (<var>void</var>)<var><a name="index-TARGET_005fPROFILE_005fBEFORE_005fPROLOGUE-4419"></a></var><br>
<blockquote><p>It returns true if target wants profile code emitted before prologue.
<p>The default version of this hook use the target macro
<code>PROFILE_BEFORE_PROLOGUE</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_BINDS_LOCAL_P</b> (<var>const_tree exp</var>)<var><a name="index-TARGET_005fBINDS_005fLOCAL_005fP-4420"></a></var><br>
<blockquote><p>Returns true if <var>exp</var> names an object for which name resolution
rules must resolve to the current “module” (dynamic shared library
or executable image).
<p>The default version of this hook implements the name resolution rules
for ELF, which has a looser model of global name binding than other
currently supported object file formats.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_TLS</b><var><a name="index-TARGET_005fHAVE_005fTLS-4421"></a></var><br>
<blockquote><p>Contains the value true if the target supports thread-local storage.
The default value is false.
</p></blockquote></div>
<div class="node">
<a name="PIC"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Assembler-Format">Assembler Format</a>,
Previous: <a rel="previous" accesskey="p" href="#Sections">Sections</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.20 Position Independent Code</h3>
<p><a name="index-position-independent-code-4422"></a><a name="index-PIC-4423"></a>
This section describes macros that help implement generation of position
independent code. Simply defining these macros is not enough to
generate valid PIC; you must also add support to the hook
<code>TARGET_LEGITIMATE_ADDRESS_P</code> and to the macro
<code>PRINT_OPERAND_ADDRESS</code>, as well as <code>LEGITIMIZE_ADDRESS</code>. You
must modify the definition of ‘<samp><span class="samp">movsi</span></samp>’ to do something appropriate
when the source operand contains a symbolic address. You may also
need to alter the handling of switch statements so that they use
relative addresses.
<!-- i rearranged the order of the macros above to try to force one of -->
<!-- them to the next line, to eliminate an overfull hbox. -mew 10feb93 -->
<div class="defun">
— Macro: <b>PIC_OFFSET_TABLE_REGNUM</b><var><a name="index-PIC_005fOFFSET_005fTABLE_005fREGNUM-4424"></a></var><br>
<blockquote><p>The register number of the register used to address a table of static
data addresses in memory. In some cases this register is defined by a
processor's “application binary interface” (ABI). When this macro
is defined, RTL is generated for this register once, as with the stack
pointer and frame pointer registers. If this macro is not defined, it
is up to the machine-dependent files to allocate such a register (if
necessary). Note that this register must be fixed when in use (e.g.
when <code>flag_pic</code> is true).
</p></blockquote></div>
<div class="defun">
— Macro: <b>PIC_OFFSET_TABLE_REG_CALL_CLOBBERED</b><var><a name="index-PIC_005fOFFSET_005fTABLE_005fREG_005fCALL_005fCLOBBERED-4425"></a></var><br>
<blockquote><p>A C expression that is nonzero if the register defined by
<code>PIC_OFFSET_TABLE_REGNUM</code> is clobbered by calls. If not defined,
the default is zero. Do not define
this macro if <code>PIC_OFFSET_TABLE_REGNUM</code> is not defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LEGITIMATE_PIC_OPERAND_P</b> (<var>x</var>)<var><a name="index-LEGITIMATE_005fPIC_005fOPERAND_005fP-4426"></a></var><br>
<blockquote><p>A C expression that is nonzero if <var>x</var> is a legitimate immediate
operand on the target machine when generating position independent code.
You can assume that <var>x</var> satisfies <code>CONSTANT_P</code>, so you need not
check this. You can also assume <var>flag_pic</var> is true, so you need not
check it either. You need not define this macro if all constants
(including <code>SYMBOL_REF</code>) can be immediate operands when generating
position independent code.
</p></blockquote></div>
<div class="node">
<a name="Assembler-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Debugging-Info">Debugging Info</a>,
Previous: <a rel="previous" accesskey="p" href="#PIC">PIC</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.21 Defining the Output Assembler Language</h3>
<p>This section describes macros whose principal purpose is to describe how
to write instructions in assembler language—rather than what the
instructions do.
<ul class="menu">
<li><a accesskey="1" href="#File-Framework">File Framework</a>: Structural information for the assembler file.
<li><a accesskey="2" href="#Data-Output">Data Output</a>: Output of constants (numbers, strings, addresses).
<li><a accesskey="3" href="#Uninitialized-Data">Uninitialized Data</a>: Output of uninitialized variables.
<li><a accesskey="4" href="#Label-Output">Label Output</a>: Output and generation of labels.
<li><a accesskey="5" href="#Initialization">Initialization</a>: General principles of initialization
and termination routines.
<li><a accesskey="6" href="#Macros-for-Initialization">Macros for Initialization</a>
Specific macros that control the handling of
initialization and termination routines.
<li><a accesskey="7" href="#Instruction-Output">Instruction Output</a>: Output of actual instructions.
<li><a accesskey="8" href="#Dispatch-Tables">Dispatch Tables</a>: Output of jump tables.
<li><a accesskey="9" href="#Exception-Region-Output">Exception Region Output</a>: Output of exception region code.
<li><a href="#Alignment-Output">Alignment Output</a>: Pseudo ops for alignment and skipping data.
</ul>
<div class="node">
<a name="File-Framework"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Data-Output">Data Output</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.1 The Overall Framework of an Assembler File</h4>
<p><a name="index-assembler-format-4427"></a><a name="index-output-of-assembler-code-4428"></a>
<!-- prevent bad page break with this line -->
This describes the overall framework of an assembly file.
<p><a name="index-default_005ffile_005fstart-4429"></a>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FILE_START</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fFILE_005fSTART-4430"></a></var><br>
<blockquote><p>Output to <code>asm_out_file</code> any text which the assembler expects to
find at the beginning of a file. The default behavior is controlled
by two flags, documented below. Unless your target's assembler is
quite unusual, if you override the default, you should call
<code>default_file_start</code> at some point in your target hook. This
lets other target files rely on these variables.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_FILE_START_APP_OFF</b><var><a name="index-TARGET_005fASM_005fFILE_005fSTART_005fAPP_005fOFF-4431"></a></var><br>
<blockquote><p>If this flag is true, the text of the macro <code>ASM_APP_OFF</code> will be
printed as the very first line in the assembly file, unless
<samp><span class="option">-fverbose-asm</span></samp> is in effect. (If that macro has been defined
to the empty string, this variable has no effect.) With the normal
definition of <code>ASM_APP_OFF</code>, the effect is to notify the GNU
assembler that it need not bother stripping comments or extra
whitespace from its input. This allows it to work a bit faster.
<p>The default is false. You should not set it to true unless you have
verified that your port does not generate any extra whitespace or
comments that will cause GAS to issue errors in NO_APP mode.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_FILE_START_FILE_DIRECTIVE</b><var><a name="index-TARGET_005fASM_005fFILE_005fSTART_005fFILE_005fDIRECTIVE-4432"></a></var><br>
<blockquote><p>If this flag is true, <code>output_file_directive</code> will be called
for the primary source file, immediately after printing
<code>ASM_APP_OFF</code> (if that is enabled). Most ELF assemblers expect
this to be done. The default is false.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FILE_END</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fFILE_005fEND-4433"></a></var><br>
<blockquote><p>Output to <code>asm_out_file</code> any text which the assembler expects
to find at the end of a file. The default is to output nothing.
</p></blockquote></div>
<div class="defun">
— Function: void <b>file_end_indicate_exec_stack</b> ()<var><a name="index-file_005fend_005findicate_005fexec_005fstack-4434"></a></var><br>
<blockquote><p>Some systems use a common convention, the ‘<samp><span class="samp">.note.GNU-stack</span></samp>’
special section, to indicate whether or not an object file relies on
the stack being executable. If your system uses this convention, you
should define <code>TARGET_ASM_FILE_END</code> to this function. If you
need to do other things in that hook, have your hook function call
this function.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_LTO_START</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fLTO_005fSTART-4435"></a></var><br>
<blockquote><p>Output to <code>asm_out_file</code> any text which the assembler expects
to find at the start of an LTO section. The default is to output
nothing.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_LTO_END</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fLTO_005fEND-4436"></a></var><br>
<blockquote><p>Output to <code>asm_out_file</code> any text which the assembler expects
to find at the end of an LTO section. The default is to output
nothing.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_CODE_END</b> (<var>void</var>)<var><a name="index-TARGET_005fASM_005fCODE_005fEND-4437"></a></var><br>
<blockquote><p>Output to <code>asm_out_file</code> any text which is needed before emitting
unwind info and debug info at the end of a file. Some targets emit
here PIC setup thunks that cannot be emitted at the end of file,
because they couldn't have unwind info then. The default is to output
nothing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_COMMENT_START</b><var><a name="index-ASM_005fCOMMENT_005fSTART-4438"></a></var><br>
<blockquote><p>A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_APP_ON</b><var><a name="index-ASM_005fAPP_005fON-4439"></a></var><br>
<blockquote><p>A C string constant for text to be output before each <code>asm</code>
statement or group of consecutive ones. Normally this is
<code>"#APP"</code>, which is a comment that has no effect on most
assemblers but tells the GNU assembler that it must check the lines
that follow for all valid assembler constructs.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_APP_OFF</b><var><a name="index-ASM_005fAPP_005fOFF-4440"></a></var><br>
<blockquote><p>A C string constant for text to be output after each <code>asm</code>
statement or group of consecutive ones. Normally this is
<code>"#NO_APP"</code>, which tells the GNU assembler to resume making the
time-saving assumptions that are valid for ordinary compiler output.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_SOURCE_FILENAME</b> (<var>stream, name</var>)<var><a name="index-ASM_005fOUTPUT_005fSOURCE_005fFILENAME-4441"></a></var><br>
<blockquote><p>A C statement to output COFF information or DWARF debugging information
which indicates that filename <var>name</var> is the current source file to
the stdio stream <var>stream</var>.
<p>This macro need not be defined if the standard form of output
for the file format in use is appropriate.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_OUTPUT_SOURCE_FILENAME</b> (<var>FILE *file, const char *name</var>)<var><a name="index-TARGET_005fASM_005fOUTPUT_005fSOURCE_005fFILENAME-4442"></a></var><br>
<blockquote><p>Output COFF information or DWARF debugging information which indicates that filename <var>name</var> is the current source file to the stdio stream <var>file</var>.
<p>This target hook need not be defined if the standard form of output for the file format in use is appropriate.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OUTPUT_QUOTED_STRING</b> (<var>stream, string</var>)<var><a name="index-OUTPUT_005fQUOTED_005fSTRING-4443"></a></var><br>
<blockquote><p>A C statement to output the string <var>string</var> to the stdio stream
<var>stream</var>. If you do not call the function <code>output_quoted_string</code>
in your config files, GCC will only call it to output filenames to
the assembler source. So you can use it to canonicalize the format
of the filename using this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_IDENT</b> (<var>stream, string</var>)<var><a name="index-ASM_005fOUTPUT_005fIDENT-4444"></a></var><br>
<blockquote><p>A C statement to output something to the assembler file to handle a
‘<samp><span class="samp">#ident</span></samp>’ directive containing the text <var>string</var>. If this
macro is not defined, nothing is output for a ‘<samp><span class="samp">#ident</span></samp>’ directive.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_NAMED_SECTION</b> (<var>const char *name, unsigned int flags, tree decl</var>)<var><a name="index-TARGET_005fASM_005fNAMED_005fSECTION-4445"></a></var><br>
<blockquote><p>Output assembly directives to switch to section <var>name</var>. The section
should have attributes as specified by <var>flags</var>, which is a bit mask
of the <code>SECTION_*</code> flags defined in <samp><span class="file">output.h</span></samp>. If <var>decl</var>
is non-NULL, it is the <code>VAR_DECL</code> or <code>FUNCTION_DECL</code> with which
this section is associated.
</p></blockquote></div>
<div class="defun">
— Target Hook: section * <b>TARGET_ASM_FUNCTION_SECTION</b> (<var>tree decl, enum node_frequency freq, bool startup, bool exit</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fSECTION-4446"></a></var><br>
<blockquote><p>Return preferred text (sub)section for function <var>decl</var>.
Main purpose of this function is to separate cold, normal and hot
functions. <var>startup</var> is true when function is known to be used only
at startup (from static constructors or it is <code>main()</code>).
<var>exit</var> is true when function is known to be used only at exit
(from static destructors).
Return NULL if function should go to default text section.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS</b> (<var>FILE *file, tree decl, bool new_is_cold</var>)<var><a name="index-TARGET_005fASM_005fFUNCTION_005fSWITCHED_005fTEXT_005fSECTIONS-4447"></a></var><br>
<blockquote><p>Used by the target to emit any assembler directives or additional labels needed when a function is partitioned between different sections. Output should be written to <var>file</var>. The function decl is available as <var>decl</var> and the new section is `cold' if <var>new_is_cold</var> is <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_NAMED_SECTIONS</b><var><a name="index-TARGET_005fHAVE_005fNAMED_005fSECTIONS-4448"></a></var><br>
<blockquote><p>This flag is true if the target supports <code>TARGET_ASM_NAMED_SECTION</code>.
It must not be modified by command-line option processing.
</p></blockquote></div>
<p><a name="TARGET_005fHAVE_005fSWITCHABLE_005fBSS_005fSECTIONS"></a>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_SWITCHABLE_BSS_SECTIONS</b><var><a name="index-TARGET_005fHAVE_005fSWITCHABLE_005fBSS_005fSECTIONS-4449"></a></var><br>
<blockquote><p>This flag is true if we can create zeroed data by switching to a BSS
section and then using <code>ASM_OUTPUT_SKIP</code> to allocate the space.
This is true on most ELF targets.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_SECTION_TYPE_FLAGS</b> (<var>tree decl, const char *name, int reloc</var>)<var><a name="index-TARGET_005fSECTION_005fTYPE_005fFLAGS-4450"></a></var><br>
<blockquote><p>Choose a set of section attributes for use by <code>TARGET_ASM_NAMED_SECTION</code>
based on a variable or function decl, a section name, and whether or not the
declaration's initializer may contain runtime relocations. <var>decl</var> may be
null, in which case read-write data should be assumed.
<p>The default version of this function handles choosing code vs data,
read-only vs read-write data, and <code>flag_pic</code>. You should only
need to override this if your target has special flags that might be
set via <code>__attribute__</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_RECORD_GCC_SWITCHES</b> (<var>print_switch_type type, const char *text</var>)<var><a name="index-TARGET_005fASM_005fRECORD_005fGCC_005fSWITCHES-4451"></a></var><br>
<blockquote><p>Provides the target with the ability to record the gcc command line
switches that have been passed to the compiler, and options that are
enabled. The <var>type</var> argument specifies what is being recorded.
It can take the following values:
<dl>
<dt><code>SWITCH_TYPE_PASSED</code><dd><var>text</var> is a command line switch that has been set by the user.
<br><dt><code>SWITCH_TYPE_ENABLED</code><dd><var>text</var> is an option which has been enabled. This might be as a
direct result of a command line switch, or because it is enabled by
default or because it has been enabled as a side effect of a different
command line switch. For example, the <samp><span class="option">-O2</span></samp> switch enables
various different individual optimization passes.
<br><dt><code>SWITCH_TYPE_DESCRIPTIVE</code><dd><var>text</var> is either NULL or some descriptive text which should be
ignored. If <var>text</var> is NULL then it is being used to warn the
target hook that either recording is starting or ending. The first
time <var>type</var> is SWITCH_TYPE_DESCRIPTIVE and <var>text</var> is NULL, the
warning is for start up and the second time the warning is for
wind down. This feature is to allow the target hook to make any
necessary preparations before it starts to record switches and to
perform any necessary tidying up after it has finished recording
switches.
<br><dt><code>SWITCH_TYPE_LINE_START</code><dd>This option can be ignored by this target hook.
<br><dt><code>SWITCH_TYPE_LINE_END</code><dd>This option can be ignored by this target hook.
</dl>
<p>The hook's return value must be zero. Other return values may be
supported in the future.
<p>By default this hook is set to NULL, but an example implementation is
provided for ELF based targets. Called <var>elf_record_gcc_switches</var>,
it records the switches as ASCII text inside a new, string mergeable
section in the assembler output file. The name of the new section is
provided by the <code>TARGET_ASM_RECORD_GCC_SWITCHES_SECTION</code> target
hook.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_ASM_RECORD_GCC_SWITCHES_SECTION</b><var><a name="index-TARGET_005fASM_005fRECORD_005fGCC_005fSWITCHES_005fSECTION-4452"></a></var><br>
<blockquote><p>This is the name of the section that will be created by the example
ELF implementation of the <code>TARGET_ASM_RECORD_GCC_SWITCHES</code> target
hook.
</p></blockquote></div>
<div class="node">
<a name="Data-Output"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Uninitialized-Data">Uninitialized Data</a>,
Previous: <a rel="previous" accesskey="p" href="#File-Framework">File Framework</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.2 Output of Data</h4>
<div class="defun">
— Target Hook: const char * <b>TARGET_ASM_BYTE_OP</b><var><a name="index-TARGET_005fASM_005fBYTE_005fOP-4453"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_ALIGNED_HI_OP</b><var><a name="index-TARGET_005fASM_005fALIGNED_005fHI_005fOP-4454"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_ALIGNED_SI_OP</b><var><a name="index-TARGET_005fASM_005fALIGNED_005fSI_005fOP-4455"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_ALIGNED_DI_OP</b><var><a name="index-TARGET_005fASM_005fALIGNED_005fDI_005fOP-4456"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_ALIGNED_TI_OP</b><var><a name="index-TARGET_005fASM_005fALIGNED_005fTI_005fOP-4457"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_UNALIGNED_HI_OP</b><var><a name="index-TARGET_005fASM_005fUNALIGNED_005fHI_005fOP-4458"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_UNALIGNED_SI_OP</b><var><a name="index-TARGET_005fASM_005fUNALIGNED_005fSI_005fOP-4459"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_UNALIGNED_DI_OP</b><var><a name="index-TARGET_005fASM_005fUNALIGNED_005fDI_005fOP-4460"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_UNALIGNED_TI_OP</b><var><a name="index-TARGET_005fASM_005fUNALIGNED_005fTI_005fOP-4461"></a></var><br>
<blockquote><p>These hooks specify assembly directives for creating certain kinds
of integer object. The <code>TARGET_ASM_BYTE_OP</code> directive creates a
byte-sized object, the <code>TARGET_ASM_ALIGNED_HI_OP</code> one creates an
aligned two-byte object, and so on. Any of the hooks may be
<code>NULL</code>, indicating that no suitable directive is available.
<p>The compiler will print these strings at the start of a new line,
followed immediately by the object's initial value. In most cases,
the string should contain a tab, a pseudo-op, and then another tab.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_INTEGER</b> (<var>rtx x, unsigned int size, int aligned_p</var>)<var><a name="index-TARGET_005fASM_005fINTEGER-4462"></a></var><br>
<blockquote><p>The <code>assemble_integer</code> function uses this hook to output an
integer object. <var>x</var> is the object's value, <var>size</var> is its size
in bytes and <var>aligned_p</var> indicates whether it is aligned. The
function should return <code>true</code> if it was able to output the
object. If it returns false, <code>assemble_integer</code> will try to
split the object into smaller parts.
<p>The default implementation of this hook will use the
<code>TARGET_ASM_BYTE_OP</code> family of strings, returning <code>false</code>
when the relevant string is <code>NULL</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA</b> (<var>FILE *file, rtx x</var>)<var><a name="index-TARGET_005fASM_005fOUTPUT_005fADDR_005fCONST_005fEXTRA-4463"></a></var><br>
<blockquote><p>A target hook to recognize <var>rtx</var> patterns that <code>output_addr_const</code>
can't deal with, and output assembly code to <var>file</var> corresponding to
the pattern <var>x</var>. This may be used to allow machine-dependent
<code>UNSPEC</code>s to appear within constants.
<p>If target hook fails to recognize a pattern, it must return <code>false</code>,
so that a standard error message is printed. If it prints an error message
itself, by calling, for example, <code>output_operand_lossage</code>, it may just
return <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OUTPUT_ADDR_CONST_EXTRA</b> (<var>stream, x, fail</var>)<var><a name="index-OUTPUT_005fADDR_005fCONST_005fEXTRA-4464"></a></var><br>
<blockquote><p>A C statement to recognize <var>rtx</var> patterns that
<code>output_addr_const</code> can't deal with, and output assembly code to
<var>stream</var> corresponding to the pattern <var>x</var>. This may be used to
allow machine-dependent <code>UNSPEC</code>s to appear within constants.
<p>If <code>OUTPUT_ADDR_CONST_EXTRA</code> fails to recognize a pattern, it must
<code>goto fail</code>, so that a standard error message is printed. If it
prints an error message itself, by calling, for example,
<code>output_operand_lossage</code>, it may just complete normally.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ASCII</b> (<var>stream, ptr, len</var>)<var><a name="index-ASM_005fOUTPUT_005fASCII-4465"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> an assembler
instruction to assemble a string constant containing the <var>len</var>
bytes at <var>ptr</var>. <var>ptr</var> will be a C expression of type
<code>char *</code> and <var>len</var> a C expression of type <code>int</code>.
<p>If the assembler has a <code>.ascii</code> pseudo-op as found in the
Berkeley Unix assembler, do not define the macro
<code>ASM_OUTPUT_ASCII</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_FDESC</b> (<var>stream, decl, n</var>)<var><a name="index-ASM_005fOUTPUT_005fFDESC-4466"></a></var><br>
<blockquote><p>A C statement to output word <var>n</var> of a function descriptor for
<var>decl</var>. This must be defined if <code>TARGET_VTABLE_USES_DESCRIPTORS</code>
is defined, and is otherwise unused.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CONSTANT_POOL_BEFORE_FUNCTION</b><var><a name="index-CONSTANT_005fPOOL_005fBEFORE_005fFUNCTION-4467"></a></var><br>
<blockquote><p>You may define this macro as a C expression. You should define the
expression to have a nonzero value if GCC should output the constant
pool for a function before the code for the function, or a zero value if
GCC should output the constant pool after the function. If you do
not define this macro, the usual case, GCC will output the constant
pool before the function.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_POOL_PROLOGUE</b> (<var>file, funname, fundecl, size</var>)<var><a name="index-ASM_005fOUTPUT_005fPOOL_005fPROLOGUE-4468"></a></var><br>
<blockquote><p>A C statement to output assembler commands to define the start of the
constant pool for a function. <var>funname</var> is a string giving
the name of the function. Should the return type of the function
be required, it can be obtained via <var>fundecl</var>. <var>size</var>
is the size, in bytes, of the constant pool that will be written
immediately after this call.
<p>If no constant-pool prefix is required, the usual case, this macro need
not be defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_SPECIAL_POOL_ENTRY</b> (<var>file, x, mode, align, labelno, jumpto</var>)<var><a name="index-ASM_005fOUTPUT_005fSPECIAL_005fPOOL_005fENTRY-4469"></a></var><br>
<blockquote><p>A C statement (with or without semicolon) to output a constant in the
constant pool, if it needs special treatment. (This macro need not do
anything for RTL expressions that can be output normally.)
<p>The argument <var>file</var> is the standard I/O stream to output the
assembler code on. <var>x</var> is the RTL expression for the constant to
output, and <var>mode</var> is the machine mode (in case <var>x</var> is a
‘<samp><span class="samp">const_int</span></samp>’). <var>align</var> is the required alignment for the value
<var>x</var>; you should output an assembler directive to force this much
alignment.
<p>The argument <var>labelno</var> is a number to use in an internal label for
the address of this pool entry. The definition of this macro is
responsible for outputting the label definition at the proper place.
Here is how to do this:
<pre class="smallexample"> <code>(*targetm.asm_out.internal_label)</code> (<var>file</var>, "LC", <var>labelno</var>);
</pre>
<p>When you output a pool entry specially, you should end with a
<code>goto</code> to the label <var>jumpto</var>. This will prevent the same pool
entry from being output a second time in the usual manner.
<p>You need not define this macro if it would do nothing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_POOL_EPILOGUE</b> (<var>file funname fundecl size</var>)<var><a name="index-ASM_005fOUTPUT_005fPOOL_005fEPILOGUE-4470"></a></var><br>
<blockquote><p>A C statement to output assembler commands to at the end of the constant
pool for a function. <var>funname</var> is a string giving the name of the
function. Should the return type of the function be required, you can
obtain it via <var>fundecl</var>. <var>size</var> is the size, in bytes, of the
constant pool that GCC wrote immediately before this call.
<p>If no constant-pool epilogue is required, the usual case, you need not
define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IS_ASM_LOGICAL_LINE_SEPARATOR</b> (<var>C, STR</var>)<var><a name="index-IS_005fASM_005fLOGICAL_005fLINE_005fSEPARATOR-4471"></a></var><br>
<blockquote><p>Define this macro as a C expression which is nonzero if <var>C</var> is
used as a logical line separator by the assembler. <var>STR</var> points
to the position in the string where <var>C</var> was found; this can be used if
a line separator uses multiple characters.
<p>If you do not define this macro, the default is that only
the character ‘<samp><span class="samp">;</span></samp>’ is treated as a logical line separator.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_ASM_OPEN_PAREN</b><var><a name="index-TARGET_005fASM_005fOPEN_005fPAREN-4472"></a></var><br>
— Target Hook: const char * <b>TARGET_ASM_CLOSE_PAREN</b><var><a name="index-TARGET_005fASM_005fCLOSE_005fPAREN-4473"></a></var><br>
<blockquote><p>These target hooks are C string constants, describing the syntax in the
assembler for grouping arithmetic expressions. If not overridden, they
default to normal parentheses, which is correct for most assemblers.
</p></blockquote></div>
<p>These macros are provided by <samp><span class="file">real.h</span></samp> for writing the definitions
of <code>ASM_OUTPUT_DOUBLE</code> and the like:
<div class="defun">
— Macro: <b>REAL_VALUE_TO_TARGET_SINGLE</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fSINGLE-4474"></a></var><br>
— Macro: <b>REAL_VALUE_TO_TARGET_DOUBLE</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fDOUBLE-4475"></a></var><br>
— Macro: <b>REAL_VALUE_TO_TARGET_LONG_DOUBLE</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fLONG_005fDOUBLE-4476"></a></var><br>
— Macro: <b>REAL_VALUE_TO_TARGET_DECIMAL32</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL32-4477"></a></var><br>
— Macro: <b>REAL_VALUE_TO_TARGET_DECIMAL64</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL64-4478"></a></var><br>
— Macro: <b>REAL_VALUE_TO_TARGET_DECIMAL128</b> (<var>x, l</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL128-4479"></a></var><br>
<blockquote><p>These translate <var>x</var>, of type <code>REAL_VALUE_TYPE</code>, to the
target's floating point representation, and store its bit pattern in
the variable <var>l</var>. For <code>REAL_VALUE_TO_TARGET_SINGLE</code> and
<code>REAL_VALUE_TO_TARGET_DECIMAL32</code>, this variable should be a
simple <code>long int</code>. For the others, it should be an array of
<code>long int</code>. The number of elements in this array is determined
by the size of the desired target floating point data type: 32 bits of
it go in each <code>long int</code> array element. Each array element holds
32 bits of the result, even if <code>long int</code> is wider than 32 bits
on the host machine.
<p>The array element values are designed so that you can print them out
using <code>fprintf</code> in the order they should appear in the target
machine's memory.
</p></blockquote></div>
<div class="node">
<a name="Uninitialized-Data"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Label-Output">Label Output</a>,
Previous: <a rel="previous" accesskey="p" href="#Data-Output">Data Output</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.3 Output of Uninitialized Variables</h4>
<p>Each of the macros in this section is used to do the whole job of
outputting a single uninitialized variable.
<div class="defun">
— Macro: <b>ASM_OUTPUT_COMMON</b> (<var>stream, name, size, rounded</var>)<var><a name="index-ASM_005fOUTPUT_005fCOMMON-4480"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> the assembler definition of a common-label named
<var>name</var> whose size is <var>size</var> bytes. The variable <var>rounded</var>
is the size rounded up to whatever alignment the caller wants. It is
possible that <var>size</var> may be zero, for instance if a struct with no
other member than a zero-length array is defined. In this case, the
backend must output a symbol definition that allocates at least one
byte, both so that the address of the resulting object does not compare
equal to any other, and because some object formats cannot even express
the concept of a zero-sized common symbol, as that is how they represent
an ordinary undefined external.
<p>Use the expression <code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to
output the name itself; before and after that, output the additional
assembler syntax for defining the name, and a newline.
<p>This macro controls how the assembler definitions of uninitialized
common global variables are output.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGNED_COMMON</b> (<var>stream, name, size, alignment</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGNED_005fCOMMON-4481"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_COMMON</code> except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used in
place of <code>ASM_OUTPUT_COMMON</code>, and gives you more flexibility in
handling the required alignment of the variable. The alignment is specified
as the number of bits.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGNED_DECL_COMMON</b> (<var>stream, decl, name, size, alignment</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGNED_005fDECL_005fCOMMON-4482"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_ALIGNED_COMMON</code> except that <var>decl</var> of the
variable to be output, if there is one, or <code>NULL_TREE</code> if there
is no corresponding variable. If you define this macro, GCC will use it
in place of both <code>ASM_OUTPUT_COMMON</code> and
<code>ASM_OUTPUT_ALIGNED_COMMON</code>. Define this macro when you need to see
the variable's decl in order to chose what to output.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_BSS</b> (<var>stream, decl, name, size, rounded</var>)<var><a name="index-ASM_005fOUTPUT_005fBSS-4483"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> the assembler definition of uninitialized global <var>decl</var> named
<var>name</var> whose size is <var>size</var> bytes. The variable <var>rounded</var>
is the size rounded up to whatever alignment the caller wants.
<p>Try to use function <code>asm_output_bss</code> defined in <samp><span class="file">varasm.c</span></samp> when
defining this macro. If unable, use the expression
<code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to output the name itself;
before and after that, output the additional assembler syntax for defining
the name, and a newline.
<p>There are two ways of handling global BSS. One is to define either
this macro or its aligned counterpart, <code>ASM_OUTPUT_ALIGNED_BSS</code>.
The other is to have <code>TARGET_ASM_SELECT_SECTION</code> return a
switchable BSS section (see <a href="#TARGET_005fHAVE_005fSWITCHABLE_005fBSS_005fSECTIONS">TARGET_HAVE_SWITCHABLE_BSS_SECTIONS</a>).
You do not need to do both.
<p>Some languages do not have <code>common</code> data, and require a
non-common form of global BSS in order to handle uninitialized globals
efficiently. C++ is one example of this. However, if the target does
not support global BSS, the front end may choose to make globals
common in order to save space in the object file.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGNED_BSS</b> (<var>stream, decl, name, size, alignment</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGNED_005fBSS-4484"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_BSS</code> except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used in
place of <code>ASM_OUTPUT_BSS</code>, and gives you more flexibility in
handling the required alignment of the variable. The alignment is specified
as the number of bits.
<p>Try to use function <code>asm_output_aligned_bss</code> defined in file
<samp><span class="file">varasm.c</span></samp> when defining this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_LOCAL</b> (<var>stream, name, size, rounded</var>)<var><a name="index-ASM_005fOUTPUT_005fLOCAL-4485"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> the assembler definition of a local-common-label named
<var>name</var> whose size is <var>size</var> bytes. The variable <var>rounded</var>
is the size rounded up to whatever alignment the caller wants.
<p>Use the expression <code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to
output the name itself; before and after that, output the additional
assembler syntax for defining the name, and a newline.
<p>This macro controls how the assembler definitions of uninitialized
static variables are output.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGNED_LOCAL</b> (<var>stream, name, size, alignment</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGNED_005fLOCAL-4486"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_LOCAL</code> except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used in
place of <code>ASM_OUTPUT_LOCAL</code>, and gives you more flexibility in
handling the required alignment of the variable. The alignment is specified
as the number of bits.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGNED_DECL_LOCAL</b> (<var>stream, decl, name, size, alignment</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGNED_005fDECL_005fLOCAL-4487"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_ALIGNED_DECL</code> except that <var>decl</var> of the
variable to be output, if there is one, or <code>NULL_TREE</code> if there
is no corresponding variable. If you define this macro, GCC will use it
in place of both <code>ASM_OUTPUT_DECL</code> and
<code>ASM_OUTPUT_ALIGNED_DECL</code>. Define this macro when you need to see
the variable's decl in order to chose what to output.
</p></blockquote></div>
<div class="node">
<a name="Label-Output"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Initialization">Initialization</a>,
Previous: <a rel="previous" accesskey="p" href="#Uninitialized-Data">Uninitialized Data</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.4 Output and Generation of Labels</h4>
<!-- prevent bad page break with this line -->
<p>This is about outputting labels.
<p><a name="index-assemble_005fname-4488"></a>
<div class="defun">
— Macro: <b>ASM_OUTPUT_LABEL</b> (<var>stream, name</var>)<var><a name="index-ASM_005fOUTPUT_005fLABEL-4489"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> the assembler definition of a label named <var>name</var>.
Use the expression <code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to
output the name itself; before and after that, output the additional
assembler syntax for defining the name, and a newline. A default
definition of this macro is provided which is correct for most systems.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_FUNCTION_LABEL</b> (<var>stream, name, decl</var>)<var><a name="index-ASM_005fOUTPUT_005fFUNCTION_005fLABEL-4490"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> the assembler definition of a label named <var>name</var> of
a function.
Use the expression <code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to
output the name itself; before and after that, output the additional
assembler syntax for defining the name, and a newline. A default
definition of this macro is provided which is correct for most systems.
<p>If this macro is not defined, then the function name is defined in the
usual manner as a label (by means of <code>ASM_OUTPUT_LABEL</code>).
</p></blockquote></div>
<p><a name="index-assemble_005fname_005fraw-4491"></a>
<div class="defun">
— Macro: <b>ASM_OUTPUT_INTERNAL_LABEL</b> (<var>stream, name</var>)<var><a name="index-ASM_005fOUTPUT_005fINTERNAL_005fLABEL-4492"></a></var><br>
<blockquote><p>Identical to <code>ASM_OUTPUT_LABEL</code>, except that <var>name</var> is known
to refer to a compiler-generated label. The default definition uses
<code>assemble_name_raw</code>, which is like <code>assemble_name</code> except
that it is more efficient.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SIZE_ASM_OP</b><var><a name="index-SIZE_005fASM_005fOP-4493"></a></var><br>
<blockquote><p>A C string containing the appropriate assembler directive to specify the
size of a symbol, without any arguments. On systems that use ELF, the
default (in <samp><span class="file">config/elfos.h</span></samp>) is ‘<samp><span class="samp">"\t.size\t"</span></samp>’; on other
systems, the default is not to define this macro.
<p>Define this macro only if it is correct to use the default definitions
of <code>ASM_OUTPUT_SIZE_DIRECTIVE</code> and <code>ASM_OUTPUT_MEASURED_SIZE</code>
for your system. If you need your own custom definitions of those
macros, or if you do not need explicit symbol sizes at all, do not
define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_SIZE_DIRECTIVE</b> (<var>stream, name, size</var>)<var><a name="index-ASM_005fOUTPUT_005fSIZE_005fDIRECTIVE-4494"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> a directive telling the assembler that the size of the
symbol <var>name</var> is <var>size</var>. <var>size</var> is a <code>HOST_WIDE_INT</code>.
If you define <code>SIZE_ASM_OP</code>, a default definition of this macro is
provided.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_MEASURED_SIZE</b> (<var>stream, name</var>)<var><a name="index-ASM_005fOUTPUT_005fMEASURED_005fSIZE-4495"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> a directive telling the assembler to calculate the size of
the symbol <var>name</var> by subtracting its address from the current
address.
<p>If you define <code>SIZE_ASM_OP</code>, a default definition of this macro is
provided. The default assumes that the assembler recognizes a special
‘<samp><span class="samp">.</span></samp>’ symbol as referring to the current address, and can calculate
the difference between this and another symbol. If your assembler does
not recognize ‘<samp><span class="samp">.</span></samp>’ or cannot do calculations with it, you will need
to redefine <code>ASM_OUTPUT_MEASURED_SIZE</code> to use some other technique.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TYPE_ASM_OP</b><var><a name="index-TYPE_005fASM_005fOP-4496"></a></var><br>
<blockquote><p>A C string containing the appropriate assembler directive to specify the
type of a symbol, without any arguments. On systems that use ELF, the
default (in <samp><span class="file">config/elfos.h</span></samp>) is ‘<samp><span class="samp">"\t.type\t"</span></samp>’; on other
systems, the default is not to define this macro.
<p>Define this macro only if it is correct to use the default definition of
<code>ASM_OUTPUT_TYPE_DIRECTIVE</code> for your system. If you need your own
custom definition of this macro, or if you do not need explicit symbol
types at all, do not define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TYPE_OPERAND_FMT</b><var><a name="index-TYPE_005fOPERAND_005fFMT-4497"></a></var><br>
<blockquote><p>A C string which specifies (using <code>printf</code> syntax) the format of
the second operand to <code>TYPE_ASM_OP</code>. On systems that use ELF, the
default (in <samp><span class="file">config/elfos.h</span></samp>) is ‘<samp><span class="samp">"@%s"</span></samp>’; on other systems,
the default is not to define this macro.
<p>Define this macro only if it is correct to use the default definition of
<code>ASM_OUTPUT_TYPE_DIRECTIVE</code> for your system. If you need your own
custom definition of this macro, or if you do not need explicit symbol
types at all, do not define this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_TYPE_DIRECTIVE</b> (<var>stream, type</var>)<var><a name="index-ASM_005fOUTPUT_005fTYPE_005fDIRECTIVE-4498"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> a directive telling the assembler that the type of the
symbol <var>name</var> is <var>type</var>. <var>type</var> is a C string; currently,
that string is always either ‘<samp><span class="samp">"function"</span></samp>’ or ‘<samp><span class="samp">"object"</span></samp>’, but
you should not count on this.
<p>If you define <code>TYPE_ASM_OP</code> and <code>TYPE_OPERAND_FMT</code>, a default
definition of this macro is provided.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_FUNCTION_NAME</b> (<var>stream, name, decl</var>)<var><a name="index-ASM_005fDECLARE_005fFUNCTION_005fNAME-4499"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> any text necessary for declaring the name <var>name</var> of a
function which is being defined. This macro is responsible for
outputting the label definition (perhaps using
<code>ASM_OUTPUT_FUNCTION_LABEL</code>). The argument <var>decl</var> is the
<code>FUNCTION_DECL</code> tree node representing the function.
<p>If this macro is not defined, then the function name is defined in the
usual manner as a label (by means of <code>ASM_OUTPUT_FUNCTION_LABEL</code>).
<p>You may wish to use <code>ASM_OUTPUT_TYPE_DIRECTIVE</code> in the definition
of this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_FUNCTION_SIZE</b> (<var>stream, name, decl</var>)<var><a name="index-ASM_005fDECLARE_005fFUNCTION_005fSIZE-4500"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> any text necessary for declaring the size of a function
which is being defined. The argument <var>name</var> is the name of the
function. The argument <var>decl</var> is the <code>FUNCTION_DECL</code> tree node
representing the function.
<p>If this macro is not defined, then the function size is not defined.
<p>You may wish to use <code>ASM_OUTPUT_MEASURED_SIZE</code> in the definition
of this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_OBJECT_NAME</b> (<var>stream, name, decl</var>)<var><a name="index-ASM_005fDECLARE_005fOBJECT_005fNAME-4501"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> any text necessary for declaring the name <var>name</var> of an
initialized variable which is being defined. This macro must output the
label definition (perhaps using <code>ASM_OUTPUT_LABEL</code>). The argument
<var>decl</var> is the <code>VAR_DECL</code> tree node representing the variable.
<p>If this macro is not defined, then the variable name is defined in the
usual manner as a label (by means of <code>ASM_OUTPUT_LABEL</code>).
<p>You may wish to use <code>ASM_OUTPUT_TYPE_DIRECTIVE</code> and/or
<code>ASM_OUTPUT_SIZE_DIRECTIVE</code> in the definition of this macro.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_DECLARE_CONSTANT_NAME</b> (<var>FILE *file, const char *name, const_tree expr, HOST_WIDE_INT size</var>)<var><a name="index-TARGET_005fASM_005fDECLARE_005fCONSTANT_005fNAME-4502"></a></var><br>
<blockquote><p>A target hook to output to the stdio stream <var>file</var> any text necessary
for declaring the name <var>name</var> of a constant which is being defined. This
target hook is responsible for outputting the label definition (perhaps using
<code>assemble_label</code>). The argument <var>exp</var> is the value of the constant,
and <var>size</var> is the size of the constant in bytes. The <var>name</var>
will be an internal label.
<p>The default version of this target hook, define the <var>name</var> in the
usual manner as a label (by means of <code>assemble_label</code>).
<p>You may wish to use <code>ASM_OUTPUT_TYPE_DIRECTIVE</code> in this target hook.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_REGISTER_GLOBAL</b> (<var>stream, decl, regno, name</var>)<var><a name="index-ASM_005fDECLARE_005fREGISTER_005fGLOBAL-4503"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> any text necessary for claiming a register <var>regno</var>
for a global variable <var>decl</var> with name <var>name</var>.
<p>If you don't define this macro, that is equivalent to defining it to do
nothing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_FINISH_DECLARE_OBJECT</b> (<var>stream, decl, toplevel, atend</var>)<var><a name="index-ASM_005fFINISH_005fDECLARE_005fOBJECT-4504"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to finish up declaring a variable name
once the compiler has processed its initializer fully and thus has had a
chance to determine the size of an array when controlled by an
initializer. This is used on systems where it's necessary to declare
something about the size of the object.
<p>If you don't define this macro, that is equivalent to defining it to do
nothing.
<p>You may wish to use <code>ASM_OUTPUT_SIZE_DIRECTIVE</code> and/or
<code>ASM_OUTPUT_MEASURED_SIZE</code> in the definition of this macro.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_GLOBALIZE_LABEL</b> (<var>FILE *stream, const char *name</var>)<var><a name="index-TARGET_005fASM_005fGLOBALIZE_005fLABEL-4505"></a></var><br>
<blockquote><p>This target hook is a function to output to the stdio stream
<var>stream</var> some commands that will make the label <var>name</var> global;
that is, available for reference from other files.
<p>The default implementation relies on a proper definition of
<code>GLOBAL_ASM_OP</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_GLOBALIZE_DECL_NAME</b> (<var>FILE *stream, tree decl</var>)<var><a name="index-TARGET_005fASM_005fGLOBALIZE_005fDECL_005fNAME-4506"></a></var><br>
<blockquote><p>This target hook is a function to output to the stdio stream
<var>stream</var> some commands that will make the name associated with <var>decl</var>
global; that is, available for reference from other files.
<p>The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_WEAKEN_LABEL</b> (<var>stream, name</var>)<var><a name="index-ASM_005fWEAKEN_005fLABEL-4507"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> some commands that will make the label <var>name</var> weak;
that is, available for reference from other files but only used if
no other definition is available. Use the expression
<code>assemble_name (</code><var>stream</var><code>, </code><var>name</var><code>)</code> to output the name
itself; before and after that, output the additional assembler syntax
for making that name weak, and a newline.
<p>If you don't define this macro or <code>ASM_WEAKEN_DECL</code>, GCC will not
support weak symbols and you should not define the <code>SUPPORTS_WEAK</code>
macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_WEAKEN_DECL</b> (<var>stream, decl, name, value</var>)<var><a name="index-ASM_005fWEAKEN_005fDECL-4508"></a></var><br>
<blockquote><p>Combines (and replaces) the function of <code>ASM_WEAKEN_LABEL</code> and
<code>ASM_OUTPUT_WEAK_ALIAS</code>, allowing access to the associated function
or variable decl. If <var>value</var> is not <code>NULL</code>, this C statement
should output to the stdio stream <var>stream</var> assembler code which
defines (equates) the weak symbol <var>name</var> to have the value
<var>value</var>. If <var>value</var> is <code>NULL</code>, it should output commands
to make <var>name</var> weak.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_WEAKREF</b> (<var>stream, decl, name, value</var>)<var><a name="index-ASM_005fOUTPUT_005fWEAKREF-4509"></a></var><br>
<blockquote><p>Outputs a directive that enables <var>name</var> to be used to refer to
symbol <var>value</var> with weak-symbol semantics. <code>decl</code> is the
declaration of <code>name</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SUPPORTS_WEAK</b><var><a name="index-SUPPORTS_005fWEAK-4510"></a></var><br>
<blockquote><p>A preprocessor constant expression which evaluates to true if the target
supports weak symbols.
<p>If you don't define this macro, <samp><span class="file">defaults.h</span></samp> provides a default
definition. If either <code>ASM_WEAKEN_LABEL</code> or <code>ASM_WEAKEN_DECL</code>
is defined, the default definition is ‘<samp><span class="samp">1</span></samp>’; otherwise, it is ‘<samp><span class="samp">0</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_SUPPORTS_WEAK</b><var><a name="index-TARGET_005fSUPPORTS_005fWEAK-4511"></a></var><br>
<blockquote><p>A C expression which evaluates to true if the target supports weak symbols.
<p>If you don't define this macro, <samp><span class="file">defaults.h</span></samp> provides a default
definition. The default definition is ‘<samp><span class="samp">(SUPPORTS_WEAK)</span></samp>’. Define
this macro if you want to control weak symbol support with a compiler
flag such as <samp><span class="option">-melf</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAKE_DECL_ONE_ONLY</b> (<var>decl</var>)<var><a name="index-MAKE_005fDECL_005fONE_005fONLY-4512"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to mark <var>decl</var> to be emitted as a
public symbol such that extra copies in multiple translation units will
be discarded by the linker. Define this macro if your object file
format provides support for this concept, such as the ‘<samp><span class="samp">COMDAT</span></samp>’
section flags in the Microsoft Windows PE/COFF format, and this support
requires changes to <var>decl</var>, such as putting it in a separate section.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SUPPORTS_ONE_ONLY</b><var><a name="index-SUPPORTS_005fONE_005fONLY-4513"></a></var><br>
<blockquote><p>A C expression which evaluates to true if the target supports one-only
semantics.
<p>If you don't define this macro, <samp><span class="file">varasm.c</span></samp> provides a default
definition. If <code>MAKE_DECL_ONE_ONLY</code> is defined, the default
definition is ‘<samp><span class="samp">1</span></samp>’; otherwise, it is ‘<samp><span class="samp">0</span></samp>’. Define this macro if
you want to control one-only symbol support with a compiler flag, or if
setting the <code>DECL_ONE_ONLY</code> flag is enough to mark a declaration to
be emitted as one-only.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_ASSEMBLE_VISIBILITY</b> (<var>tree decl, int visibility</var>)<var><a name="index-TARGET_005fASM_005fASSEMBLE_005fVISIBILITY-4514"></a></var><br>
<blockquote><p>This target hook is a function to output to <var>asm_out_file</var> some
commands that will make the symbol(s) associated with <var>decl</var> have
hidden, protected or internal visibility as specified by <var>visibility</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_WEAK_NOT_IN_ARCHIVE_TOC</b><var><a name="index-TARGET_005fWEAK_005fNOT_005fIN_005fARCHIVE_005fTOC-4515"></a></var><br>
<blockquote><p>A C expression that evaluates to true if the target's linker expects
that weak symbols do not appear in a static archive's table of contents.
The default is <code>0</code>.
<p>Leaving weak symbols out of an archive's table of contents means that,
if a symbol will only have a definition in one translation unit and
will have undefined references from other translation units, that
symbol should not be weak. Defining this macro to be nonzero will
thus have the effect that certain symbols that would normally be weak
(explicit template instantiations, and vtables for polymorphic classes
with noninline key methods) will instead be nonweak.
<p>The C++ ABI requires this macro to be zero. Define this macro for
targets where full C++ ABI compliance is impossible and where linker
restrictions require weak symbols to be left out of a static archive's
table of contents.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_EXTERNAL</b> (<var>stream, decl, name</var>)<var><a name="index-ASM_005fOUTPUT_005fEXTERNAL-4516"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> any text necessary for declaring the name of an external
symbol named <var>name</var> which is referenced in this compilation but
not defined. The value of <var>decl</var> is the tree node for the
declaration.
<p>This macro need not be defined if it does not need to output anything.
The GNU assembler and most Unix assemblers don't require anything.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_EXTERNAL_LIBCALL</b> (<var>rtx symref</var>)<var><a name="index-TARGET_005fASM_005fEXTERNAL_005fLIBCALL-4517"></a></var><br>
<blockquote><p>This target hook is a function to output to <var>asm_out_file</var> an assembler
pseudo-op to declare a library function name external. The name of the
library function is given by <var>symref</var>, which is a <code>symbol_ref</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_MARK_DECL_PRESERVED</b> (<var>const char *symbol</var>)<var><a name="index-TARGET_005fASM_005fMARK_005fDECL_005fPRESERVED-4518"></a></var><br>
<blockquote><p>This target hook is a function to output to <var>asm_out_file</var> an assembler
directive to annotate <var>symbol</var> as used. The Darwin target uses the
.no_dead_code_strip directive.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_LABELREF</b> (<var>stream, name</var>)<var><a name="index-ASM_005fOUTPUT_005fLABELREF-4519"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> a reference in assembler syntax to a label named
<var>name</var>. This should add ‘<samp><span class="samp">_</span></samp>’ to the front of the name, if that
is customary on your operating system, as it is in most Berkeley Unix
systems. This macro is used in <code>assemble_name</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_MANGLE_ASSEMBLER_NAME</b> (<var>const char *name</var>)<var><a name="index-TARGET_005fMANGLE_005fASSEMBLER_005fNAME-4520"></a></var><br>
<blockquote><p>Given a symbol <var>name</var>, perform same mangling as <code>varasm.c</code>'s <code>assemble_name</code>, but in memory rather than to a file stream, returning result as an <code>IDENTIFIER_NODE</code>. Required for correct LTO symtabs. The default implementation calls the <code>TARGET_STRIP_NAME_ENCODING</code> hook and then prepends the <code>USER_LABEL_PREFIX</code>, if any.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_SYMBOL_REF</b> (<var>stream, sym</var>)<var><a name="index-ASM_005fOUTPUT_005fSYMBOL_005fREF-4521"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output a reference to
<code>SYMBOL_REF</code> <var>sym</var>. If not defined, <code>assemble_name</code>
will be used to output the name of the symbol. This macro may be used
to modify the way a symbol is referenced depending on information
encoded by <code>TARGET_ENCODE_SECTION_INFO</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_LABEL_REF</b> (<var>stream, buf</var>)<var><a name="index-ASM_005fOUTPUT_005fLABEL_005fREF-4522"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output a reference to <var>buf</var>, the
result of <code>ASM_GENERATE_INTERNAL_LABEL</code>. If not defined,
<code>assemble_name</code> will be used to output the name of the symbol.
This macro is not used by <code>output_asm_label</code>, or the <code>%l</code>
specifier that calls it; the intention is that this macro should be set
when it is necessary to output a label differently when its address is
being taken.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_INTERNAL_LABEL</b> (<var>FILE *stream, const char *prefix, unsigned long labelno</var>)<var><a name="index-TARGET_005fASM_005fINTERNAL_005fLABEL-4523"></a></var><br>
<blockquote><p>A function to output to the stdio stream <var>stream</var> a label whose
name is made from the string <var>prefix</var> and the number <var>labelno</var>.
<p>It is absolutely essential that these labels be distinct from the labels
used for user-level functions and variables. Otherwise, certain programs
will have name conflicts with internal labels.
<p>It is desirable to exclude internal labels from the symbol table of the
object file. Most assemblers have a naming convention for labels that
should be excluded; on many systems, the letter ‘<samp><span class="samp">L</span></samp>’ at the
beginning of a label has this effect. You should find out what
convention your system uses, and follow it.
<p>The default version of this function utilizes <code>ASM_GENERATE_INTERNAL_LABEL</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DEBUG_LABEL</b> (<var>stream, prefix, num</var>)<var><a name="index-ASM_005fOUTPUT_005fDEBUG_005fLABEL-4524"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> a debug info
label whose name is made from the string <var>prefix</var> and the number
<var>num</var>. This is useful for VLIW targets, where debug info labels
may need to be treated differently than branch target labels. On some
systems, branch target labels must be at the beginning of instruction
bundles, but debug info labels can occur in the middle of instruction
bundles.
<p>If this macro is not defined, then <code>(*targetm.asm_out.internal_label)</code> will be
used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_GENERATE_INTERNAL_LABEL</b> (<var>string, prefix, num</var>)<var><a name="index-ASM_005fGENERATE_005fINTERNAL_005fLABEL-4525"></a></var><br>
<blockquote><p>A C statement to store into the string <var>string</var> a label whose name
is made from the string <var>prefix</var> and the number <var>num</var>.
<p>This string, when output subsequently by <code>assemble_name</code>, should
produce the output that <code>(*targetm.asm_out.internal_label)</code> would produce
with the same <var>prefix</var> and <var>num</var>.
<p>If the string begins with ‘<samp><span class="samp">*</span></samp>’, then <code>assemble_name</code> will
output the rest of the string unchanged. It is often convenient for
<code>ASM_GENERATE_INTERNAL_LABEL</code> to use ‘<samp><span class="samp">*</span></samp>’ in this way. If the
string doesn't start with ‘<samp><span class="samp">*</span></samp>’, then <code>ASM_OUTPUT_LABELREF</code> gets
to output the string, and may change it. (Of course,
<code>ASM_OUTPUT_LABELREF</code> is also part of your machine description, so
you should know what it does on your machine.)
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_FORMAT_PRIVATE_NAME</b> (<var>outvar, name, number</var>)<var><a name="index-ASM_005fFORMAT_005fPRIVATE_005fNAME-4526"></a></var><br>
<blockquote><p>A C expression to assign to <var>outvar</var> (which is a variable of type
<code>char *</code>) a newly allocated string made from the string
<var>name</var> and the number <var>number</var>, with some suitable punctuation
added. Use <code>alloca</code> to get space for the string.
<p>The string will be used as an argument to <code>ASM_OUTPUT_LABELREF</code> to
produce an assembler label for an internal static variable whose name is
<var>name</var>. Therefore, the string must be such as to result in valid
assembler code. The argument <var>number</var> is different each time this
macro is executed; it prevents conflicts between similarly-named
internal static variables in different scopes.
<p>Ideally this string should not be a valid C identifier, to prevent any
conflict with the user's own symbols. Most assemblers allow periods
or percent signs in assembler symbols; putting at least one of these
between the name and the number will suffice.
<p>If this macro is not defined, a default definition will be provided
which is correct for most systems.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DEF</b> (<var>stream, name, value</var>)<var><a name="index-ASM_005fOUTPUT_005fDEF-4527"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> assembler code
which defines (equates) the symbol <var>name</var> to have the value <var>value</var>.
<p><a name="index-SET_005fASM_005fOP-4528"></a>If <code>SET_ASM_OP</code> is defined, a default definition is provided which is
correct for most systems.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DEF_FROM_DECLS</b> (<var>stream, decl_of_name, decl_of_value</var>)<var><a name="index-ASM_005fOUTPUT_005fDEF_005fFROM_005fDECLS-4529"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> assembler code
which defines (equates) the symbol whose tree node is <var>decl_of_name</var>
to have the value of the tree node <var>decl_of_value</var>. This macro will
be used in preference to ‘<samp><span class="samp">ASM_OUTPUT_DEF</span></samp>’ if it is defined and if
the tree nodes are available.
<p><a name="index-SET_005fASM_005fOP-4530"></a>If <code>SET_ASM_OP</code> is defined, a default definition is provided which is
correct for most systems.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_DEFERRED_OUTPUT_DEFS</b> (<var>decl_of_name, decl_of_value</var>)<var><a name="index-TARGET_005fDEFERRED_005fOUTPUT_005fDEFS-4531"></a></var><br>
<blockquote><p>A C statement that evaluates to true if the assembler code which defines
(equates) the symbol whose tree node is <var>decl_of_name</var> to have the value
of the tree node <var>decl_of_value</var> should be emitted near the end of the
current compilation unit. The default is to not defer output of defines.
This macro affects defines output by ‘<samp><span class="samp">ASM_OUTPUT_DEF</span></samp>’ and
‘<samp><span class="samp">ASM_OUTPUT_DEF_FROM_DECLS</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_WEAK_ALIAS</b> (<var>stream, name, value</var>)<var><a name="index-ASM_005fOUTPUT_005fWEAK_005fALIAS-4532"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> assembler code
which defines (equates) the weak symbol <var>name</var> to have the value
<var>value</var>. If <var>value</var> is <code>NULL</code>, it defines <var>name</var> as
an undefined weak symbol.
<p>Define this macro if the target only supports weak aliases; define
<code>ASM_OUTPUT_DEF</code> instead if possible.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OBJC_GEN_METHOD_LABEL</b> (<var>buf, is_inst, class_name, cat_name, sel_name</var>)<var><a name="index-OBJC_005fGEN_005fMETHOD_005fLABEL-4533"></a></var><br>
<blockquote><p>Define this macro to override the default assembler names used for
Objective-C methods.
<p>The default name is a unique method number followed by the name of the
class (e.g. ‘<samp><span class="samp">_1_Foo</span></samp>’). For methods in categories, the name of
the category is also included in the assembler name (e.g.
‘<samp><span class="samp">_1_Foo_Bar</span></samp>’).
<p>These names are safe on most systems, but make debugging difficult since
the method's selector is not present in the name. Therefore, particular
systems define other ways of computing names.
<p><var>buf</var> is an expression of type <code>char *</code> which gives you a
buffer in which to store the name; its length is as long as
<var>class_name</var>, <var>cat_name</var> and <var>sel_name</var> put together, plus
50 characters extra.
<p>The argument <var>is_inst</var> specifies whether the method is an instance
method or a class method; <var>class_name</var> is the name of the class;
<var>cat_name</var> is the name of the category (or <code>NULL</code> if the method is not
in a category); and <var>sel_name</var> is the name of the selector.
<p>On systems where the assembler can handle quoted names, you can use this
macro to provide more human-readable names.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_CLASS_REFERENCE</b> (<var>stream, name</var>)<var><a name="index-ASM_005fDECLARE_005fCLASS_005fREFERENCE-4534"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> commands to declare that the label <var>name</var> is an
Objective-C class reference. This is only needed for targets whose
linkers have special support for NeXT-style runtimes.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_DECLARE_UNRESOLVED_REFERENCE</b> (<var>stream, name</var>)<var><a name="index-ASM_005fDECLARE_005fUNRESOLVED_005fREFERENCE-4535"></a></var><br>
<blockquote><p>A C statement (sans semicolon) to output to the stdio stream
<var>stream</var> commands to declare that the label <var>name</var> is an
unresolved Objective-C class reference. This is only needed for targets
whose linkers have special support for NeXT-style runtimes.
</p></blockquote></div>
<div class="node">
<a name="Initialization"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Macros-for-Initialization">Macros for Initialization</a>,
Previous: <a rel="previous" accesskey="p" href="#Label-Output">Label Output</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.5 How Initialization Functions Are Handled</h4>
<p><a name="index-initialization-routines-4536"></a><a name="index-termination-routines-4537"></a><a name="index-constructors_002c-output-of-4538"></a><a name="index-destructors_002c-output-of-4539"></a>
The compiled code for certain languages includes <dfn>constructors</dfn>
(also called <dfn>initialization routines</dfn>)—functions to initialize
data in the program when the program is started. These functions need
to be called before the program is “started”—that is to say, before
<code>main</code> is called.
<p>Compiling some languages generates <dfn>destructors</dfn> (also called
<dfn>termination routines</dfn>) that should be called when the program
terminates.
<p>To make the initialization and termination functions work, the compiler
must output something in the assembler code to cause those functions to
be called at the appropriate time. When you port the compiler to a new
system, you need to specify how to do this.
<p>There are two major ways that GCC currently supports the execution of
initialization and termination functions. Each way has two variants.
Much of the structure is common to all four variations.
<p><a name="index-g_t_005f_005fCTOR_005fLIST_005f_005f-4540"></a><a name="index-g_t_005f_005fDTOR_005fLIST_005f_005f-4541"></a>The linker must build two lists of these functions—a list of
initialization functions, called <code>__CTOR_LIST__</code>, and a list of
termination functions, called <code>__DTOR_LIST__</code>.
<p>Each list always begins with an ignored function pointer (which may hold
0, −1, or a count of the function pointers after it, depending on
the environment). This is followed by a series of zero or more function
pointers to constructors (or destructors), followed by a function
pointer containing zero.
<p>Depending on the operating system and its executable file format, either
<samp><span class="file">crtstuff.c</span></samp> or <samp><span class="file">libgcc2.c</span></samp> traverses these lists at startup
time and exit time. Constructors are called in reverse order of the
list; destructors in forward order.
<p>The best way to handle static constructors works only for object file
formats which provide arbitrarily-named sections. A section is set
aside for a list of constructors, and another for a list of destructors.
Traditionally these are called ‘<samp><span class="samp">.ctors</span></samp>’ and ‘<samp><span class="samp">.dtors</span></samp>’. Each
object file that defines an initialization function also puts a word in
the constructor section to point to that function. The linker
accumulates all these words into one contiguous ‘<samp><span class="samp">.ctors</span></samp>’ section.
Termination functions are handled similarly.
<p>This method will be chosen as the default by <samp><span class="file">target-def.h</span></samp> if
<code>TARGET_ASM_NAMED_SECTION</code> is defined. A target that does not
support arbitrary sections, but does support special designated
constructor and destructor sections may define <code>CTORS_SECTION_ASM_OP</code>
and <code>DTORS_SECTION_ASM_OP</code> to achieve the same effect.
<p>When arbitrary sections are available, there are two variants, depending
upon how the code in <samp><span class="file">crtstuff.c</span></samp> is called. On systems that
support a <dfn>.init</dfn> section which is executed at program startup,
parts of <samp><span class="file">crtstuff.c</span></samp> are compiled into that section. The
program is linked by the <samp><span class="command">gcc</span></samp> driver like this:
<pre class="smallexample"> ld -o <var>output_file</var> crti.o crtbegin.o ... -lgcc crtend.o crtn.o
</pre>
<p>The prologue of a function (<code>__init</code>) appears in the <code>.init</code>
section of <samp><span class="file">crti.o</span></samp>; the epilogue appears in <samp><span class="file">crtn.o</span></samp>. Likewise
for the function <code>__fini</code> in the <dfn>.fini</dfn> section. Normally these
files are provided by the operating system or by the GNU C library, but
are provided by GCC for a few targets.
<p>The objects <samp><span class="file">crtbegin.o</span></samp> and <samp><span class="file">crtend.o</span></samp> are (for most targets)
compiled from <samp><span class="file">crtstuff.c</span></samp>. They contain, among other things, code
fragments within the <code>.init</code> and <code>.fini</code> sections that branch
to routines in the <code>.text</code> section. The linker will pull all parts
of a section together, which results in a complete <code>__init</code> function
that invokes the routines we need at startup.
<p>To use this variant, you must define the <code>INIT_SECTION_ASM_OP</code>
macro properly.
<p>If no init section is available, when GCC compiles any function called
<code>main</code> (or more accurately, any function designated as a program
entry point by the language front end calling <code>expand_main_function</code>),
it inserts a procedure call to <code>__main</code> as the first executable code
after the function prologue. The <code>__main</code> function is defined
in <samp><span class="file">libgcc2.c</span></samp> and runs the global constructors.
<p>In file formats that don't support arbitrary sections, there are again
two variants. In the simplest variant, the GNU linker (GNU <code>ld</code>)
and an `a.out' format must be used. In this case,
<code>TARGET_ASM_CONSTRUCTOR</code> is defined to produce a <code>.stabs</code>
entry of type ‘<samp><span class="samp">N_SETT</span></samp>’, referencing the name <code>__CTOR_LIST__</code>,
and with the address of the void function containing the initialization
code as its value. The GNU linker recognizes this as a request to add
the value to a <dfn>set</dfn>; the values are accumulated, and are eventually
placed in the executable as a vector in the format described above, with
a leading (ignored) count and a trailing zero element.
<code>TARGET_ASM_DESTRUCTOR</code> is handled similarly. Since no init
section is available, the absence of <code>INIT_SECTION_ASM_OP</code> causes
the compilation of <code>main</code> to call <code>__main</code> as above, starting
the initialization process.
<p>The last variant uses neither arbitrary sections nor the GNU linker.
This is preferable when you want to do dynamic linking and when using
file formats which the GNU linker does not support, such as `ECOFF'. In
this case, <code>TARGET_HAVE_CTORS_DTORS</code> is false, initialization and
termination functions are recognized simply by their names. This requires
an extra program in the linkage step, called <samp><span class="command">collect2</span></samp>. This program
pretends to be the linker, for use with GCC; it does its job by running
the ordinary linker, but also arranges to include the vectors of
initialization and termination functions. These functions are called
via <code>__main</code> as described above. In order to use this method,
<code>use_collect2</code> must be defined in the target in <samp><span class="file">config.gcc</span></samp>.
<div class="node">
<a name="Macros-for-Initialization"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Instruction-Output">Instruction Output</a>,
Previous: <a rel="previous" accesskey="p" href="#Initialization">Initialization</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.6 Macros Controlling Initialization Routines</h4>
<p>Here are the macros that control how the compiler handles initialization
and termination functions:
<div class="defun">
— Macro: <b>INIT_SECTION_ASM_OP</b><var><a name="index-INIT_005fSECTION_005fASM_005fOP-4542"></a></var><br>
<blockquote><p>If defined, a C string constant, including spacing, for the assembler
operation to identify the following data as initialization code. If not
defined, GCC will assume such a section does not exist. When you are
using special sections for initialization and termination functions, this
macro also controls how <samp><span class="file">crtstuff.c</span></samp> and <samp><span class="file">libgcc2.c</span></samp> arrange to
run the initialization functions.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HAS_INIT_SECTION</b><var><a name="index-HAS_005fINIT_005fSECTION-4543"></a></var><br>
<blockquote><p>If defined, <code>main</code> will not call <code>__main</code> as described above.
This macro should be defined for systems that control start-up code
on a symbol-by-symbol basis, such as OSF/1, and should not
be defined explicitly for systems that support <code>INIT_SECTION_ASM_OP</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LD_INIT_SWITCH</b><var><a name="index-LD_005fINIT_005fSWITCH-4544"></a></var><br>
<blockquote><p>If defined, a C string constant for a switch that tells the linker that
the following symbol is an initialization routine.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LD_FINI_SWITCH</b><var><a name="index-LD_005fFINI_005fSWITCH-4545"></a></var><br>
<blockquote><p>If defined, a C string constant for a switch that tells the linker that
the following symbol is a finalization routine.
</p></blockquote></div>
<div class="defun">
— Macro: <b>COLLECT_SHARED_INIT_FUNC</b> (<var>stream, func</var>)<var><a name="index-COLLECT_005fSHARED_005fINIT_005fFUNC-4546"></a></var><br>
<blockquote><p>If defined, a C statement that will write a function that can be
automatically called when a shared library is loaded. The function
should call <var>func</var>, which takes no arguments. If not defined, and
the object format requires an explicit initialization function, then a
function called <code>_GLOBAL__DI</code> will be generated.
<p>This function and the following one are used by collect2 when linking a
shared library that needs constructors or destructors, or has DWARF2
exception tables embedded in the code.
</p></blockquote></div>
<div class="defun">
— Macro: <b>COLLECT_SHARED_FINI_FUNC</b> (<var>stream, func</var>)<var><a name="index-COLLECT_005fSHARED_005fFINI_005fFUNC-4547"></a></var><br>
<blockquote><p>If defined, a C statement that will write a function that can be
automatically called when a shared library is unloaded. The function
should call <var>func</var>, which takes no arguments. If not defined, and
the object format requires an explicit finalization function, then a
function called <code>_GLOBAL__DD</code> will be generated.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INVOKE__main</b><var><a name="index-INVOKE_005f_005fmain-4548"></a></var><br>
<blockquote><p>If defined, <code>main</code> will call <code>__main</code> despite the presence of
<code>INIT_SECTION_ASM_OP</code>. This macro should be defined for systems
where the init section is not actually run automatically, but is still
useful for collecting the lists of constructors and destructors.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SUPPORTS_INIT_PRIORITY</b><var><a name="index-SUPPORTS_005fINIT_005fPRIORITY-4549"></a></var><br>
<blockquote><p>If nonzero, the C++ <code>init_priority</code> attribute is supported and the
compiler should emit instructions to control the order of initialization
of objects. If zero, the compiler will issue an error message upon
encountering an <code>init_priority</code> attribute.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_CTORS_DTORS</b><var><a name="index-TARGET_005fHAVE_005fCTORS_005fDTORS-4550"></a></var><br>
<blockquote><p>This value is true if the target supports some “native” method of
collecting constructors and destructors to be run at startup and exit.
It is false if we must use <samp><span class="command">collect2</span></samp>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_CONSTRUCTOR</b> (<var>rtx symbol, int priority</var>)<var><a name="index-TARGET_005fASM_005fCONSTRUCTOR-4551"></a></var><br>
<blockquote><p>If defined, a function that outputs assembler code to arrange to call
the function referenced by <var>symbol</var> at initialization time.
<p>Assume that <var>symbol</var> is a <code>SYMBOL_REF</code> for a function taking
no arguments and with no return value. If the target supports initialization
priorities, <var>priority</var> is a value between 0 and <code>MAX_INIT_PRIORITY</code>;
otherwise it must be <code>DEFAULT_INIT_PRIORITY</code>.
<p>If this macro is not defined by the target, a suitable default will
be chosen if (1) the target supports arbitrary section names, (2) the
target defines <code>CTORS_SECTION_ASM_OP</code>, or (3) <code>USE_COLLECT2</code>
is not defined.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_DESTRUCTOR</b> (<var>rtx symbol, int priority</var>)<var><a name="index-TARGET_005fASM_005fDESTRUCTOR-4552"></a></var><br>
<blockquote><p>This is like <code>TARGET_ASM_CONSTRUCTOR</code> but used for termination
functions rather than initialization functions.
</p></blockquote></div>
<p>If <code>TARGET_HAVE_CTORS_DTORS</code> is true, the initialization routine
generated for the generated object file will have static linkage.
<p>If your system uses <samp><span class="command">collect2</span></samp> as the means of processing
constructors, then that program normally uses <samp><span class="command">nm</span></samp> to scan
an object file for constructor functions to be called.
<p>On certain kinds of systems, you can define this macro to make
<samp><span class="command">collect2</span></samp> work faster (and, in some cases, make it work at all):
<div class="defun">
— Macro: <b>OBJECT_FORMAT_COFF</b><var><a name="index-OBJECT_005fFORMAT_005fCOFF-4553"></a></var><br>
<blockquote><p>Define this macro if the system uses COFF (Common Object File Format)
object files, so that <samp><span class="command">collect2</span></samp> can assume this format and scan
object files directly for dynamic constructor/destructor functions.
<p>This macro is effective only in a native compiler; <samp><span class="command">collect2</span></samp> as
part of a cross compiler always uses <samp><span class="command">nm</span></samp> for the target machine.
</p></blockquote></div>
<div class="defun">
— Macro: <b>REAL_NM_FILE_NAME</b><var><a name="index-REAL_005fNM_005fFILE_005fNAME-4554"></a></var><br>
<blockquote><p>Define this macro as a C string constant containing the file name to use
to execute <samp><span class="command">nm</span></samp>. The default is to search the path normally for
<samp><span class="command">nm</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NM_FLAGS</b><var><a name="index-NM_005fFLAGS-4555"></a></var><br>
<blockquote><p><samp><span class="command">collect2</span></samp> calls <samp><span class="command">nm</span></samp> to scan object files for static
constructors and destructors and LTO info. By default, <samp><span class="option">-n</span></samp> is
passed. Define <code>NM_FLAGS</code> to a C string constant if other options
are needed to get the same output format as GNU <samp><span class="command">nm -n</span></samp>
produces.
</p></blockquote></div>
<p>If your system supports shared libraries and has a program to list the
dynamic dependencies of a given library or executable, you can define
these macros to enable support for running initialization and
termination functions in shared libraries:
<div class="defun">
— Macro: <b>LDD_SUFFIX</b><var><a name="index-LDD_005fSUFFIX-4556"></a></var><br>
<blockquote><p>Define this macro to a C string constant containing the name of the program
which lists dynamic dependencies, like <samp><span class="command">ldd</span></samp> under SunOS 4.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PARSE_LDD_OUTPUT</b> (<var>ptr</var>)<var><a name="index-PARSE_005fLDD_005fOUTPUT-4557"></a></var><br>
<blockquote><p>Define this macro to be C code that extracts filenames from the output
of the program denoted by <code>LDD_SUFFIX</code>. <var>ptr</var> is a variable
of type <code>char *</code> that points to the beginning of a line of output
from <code>LDD_SUFFIX</code>. If the line lists a dynamic dependency, the
code must advance <var>ptr</var> to the beginning of the filename on that
line. Otherwise, it must set <var>ptr</var> to <code>NULL</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHLIB_SUFFIX</b><var><a name="index-SHLIB_005fSUFFIX-4558"></a></var><br>
<blockquote><p>Define this macro to a C string constant containing the default shared
library extension of the target (e.g., ‘<samp><span class="samp">".so"</span></samp>’). <samp><span class="command">collect2</span></samp>
strips version information after this suffix when generating global
constructor and destructor names. This define is only needed on targets
that use <samp><span class="command">collect2</span></samp> to process constructors and destructors.
</p></blockquote></div>
<div class="node">
<a name="Instruction-Output"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dispatch-Tables">Dispatch Tables</a>,
Previous: <a rel="previous" accesskey="p" href="#Macros-for-Initialization">Macros for Initialization</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.7 Output of Assembler Instructions</h4>
<!-- prevent bad page break with this line -->
<p>This describes assembler instruction output.
<div class="defun">
— Macro: <b>REGISTER_NAMES</b><var><a name="index-REGISTER_005fNAMES-4559"></a></var><br>
<blockquote><p>A C initializer containing the assembler's names for the machine
registers, each one as a C string constant. This is what translates
register numbers in the compiler into assembler language.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ADDITIONAL_REGISTER_NAMES</b><var><a name="index-ADDITIONAL_005fREGISTER_005fNAMES-4560"></a></var><br>
<blockquote><p>If defined, a C initializer for an array of structures containing a name
and a register number. This macro defines additional names for hard
registers, thus allowing the <code>asm</code> option in declarations to refer
to registers using alternate names.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OVERLAPPING_REGISTER_NAMES</b><var><a name="index-OVERLAPPING_005fREGISTER_005fNAMES-4561"></a></var><br>
<blockquote><p>If defined, a C initializer for an array of structures containing a
name, a register number and a count of the number of consecutive
machine registers the name overlaps. This macro defines additional
names for hard registers, thus allowing the <code>asm</code> option in
declarations to refer to registers using alternate names. Unlike
<code>ADDITIONAL_REGISTER_NAMES</code>, this macro should be used when the
register name implies multiple underlying registers.
<p>This macro should be used when it is important that a clobber in an
<code>asm</code> statement clobbers all the underlying values implied by the
register name. For example, on ARM, clobbering the double-precision
VFP register “d0” implies clobbering both single-precision registers
“s0” and “s1”.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_OPCODE</b> (<var>stream, ptr</var>)<var><a name="index-ASM_005fOUTPUT_005fOPCODE-4562"></a></var><br>
<blockquote><p>Define this macro if you are using an unusual assembler that
requires different names for the machine instructions.
<p>The definition is a C statement or statements which output an
assembler instruction opcode to the stdio stream <var>stream</var>. The
macro-operand <var>ptr</var> is a variable of type <code>char *</code> which
points to the opcode name in its “internal” form—the form that is
written in the machine description. The definition should output the
opcode name to <var>stream</var>, performing any translation you desire, and
increment the variable <var>ptr</var> to point at the end of the opcode
so that it will not be output twice.
<p>In fact, your macro definition may process less than the entire opcode
name, or more than the opcode name; but if you want to process text
that includes ‘<samp><span class="samp">%</span></samp>’-sequences to substitute operands, you must take
care of the substitution yourself. Just be sure to increment
<var>ptr</var> over whatever text should not be output normally.
<p><a name="index-recog_005fdata_002eoperand-4563"></a>If you need to look at the operand values, they can be found as the
elements of <code>recog_data.operand</code>.
<p>If the macro definition does nothing, the instruction is output
in the usual way.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FINAL_PRESCAN_INSN</b> (<var>insn, opvec, noperands</var>)<var><a name="index-FINAL_005fPRESCAN_005fINSN-4564"></a></var><br>
<blockquote><p>If defined, a C statement to be executed just prior to the output of
assembler code for <var>insn</var>, to modify the extracted operands so
they will be output differently.
<p>Here the argument <var>opvec</var> is the vector containing the operands
extracted from <var>insn</var>, and <var>noperands</var> is the number of
elements of the vector which contain meaningful data for this insn.
The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output
by changing the contents of the vector.
<p>This macro is useful when various assembler syntaxes share a single
file of instruction patterns; by defining this macro differently, you
can cause a large class of instructions to be output differently (such
as with rearranged operands). Naturally, variations in assembler
syntax affecting individual insn patterns ought to be handled by
writing conditional output routines in those patterns.
<p>If this macro is not defined, it is equivalent to a null statement.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_FINAL_POSTSCAN_INSN</b> (<var>FILE *file, rtx insn, rtx *opvec, int noperands</var>)<var><a name="index-TARGET_005fASM_005fFINAL_005fPOSTSCAN_005fINSN-4565"></a></var><br>
<blockquote><p>If defined, this target hook is a function which is executed just after the
output of assembler code for <var>insn</var>, to change the mode of the assembler
if necessary.
<p>Here the argument <var>opvec</var> is the vector containing the operands
extracted from <var>insn</var>, and <var>noperands</var> is the number of
elements of the vector which contain meaningful data for this insn.
The contents of this vector are what was used to convert the insn
template into assembler code, so you can change the assembler mode
by checking the contents of the vector.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PRINT_OPERAND</b> (<var>stream, x, code</var>)<var><a name="index-PRINT_005fOPERAND-4566"></a></var><br>
<blockquote><p>A C compound statement to output to stdio stream <var>stream</var> the
assembler syntax for an instruction operand <var>x</var>. <var>x</var> is an
RTL expression.
<p><var>code</var> is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands must be
printed differently depending on the context. <var>code</var> comes from
the ‘<samp><span class="samp">%</span></samp>’ specification that was used to request printing of the
operand. If the specification was just ‘<samp><span class="samp">%</span><var>digit</var></samp>’ then
<var>code</var> is 0; if the specification was ‘<samp><span class="samp">%</span><var>ltr</var>
<var>digit</var></samp>’ then <var>code</var> is the ASCII code for <var>ltr</var>.
<p><a name="index-reg_005fnames-4567"></a>If <var>x</var> is a register, this macro should print the register's name.
The names can be found in an array <code>reg_names</code> whose type is
<code>char *[]</code>. <code>reg_names</code> is initialized from
<code>REGISTER_NAMES</code>.
<p>When the machine description has a specification ‘<samp><span class="samp">%</span><var>punct</var></samp>’
(a ‘<samp><span class="samp">%</span></samp>’ followed by a punctuation character), this macro is called
with a null pointer for <var>x</var> and the punctuation character for
<var>code</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PRINT_OPERAND_PUNCT_VALID_P</b> (<var>code</var>)<var><a name="index-PRINT_005fOPERAND_005fPUNCT_005fVALID_005fP-4568"></a></var><br>
<blockquote><p>A C expression which evaluates to true if <var>code</var> is a valid
punctuation character for use in the <code>PRINT_OPERAND</code> macro. If
<code>PRINT_OPERAND_PUNCT_VALID_P</code> is not defined, it means that no
punctuation characters (except for the standard one, ‘<samp><span class="samp">%</span></samp>’) are used
in this way.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PRINT_OPERAND_ADDRESS</b> (<var>stream, x</var>)<var><a name="index-PRINT_005fOPERAND_005fADDRESS-4569"></a></var><br>
<blockquote><p>A C compound statement to output to stdio stream <var>stream</var> the
assembler syntax for an instruction operand that is a memory reference
whose address is <var>x</var>. <var>x</var> is an RTL expression.
<p><a name="index-g_t_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-usage-4570"></a>On some machines, the syntax for a symbolic address depends on the
section that the address refers to. On these machines, define the hook
<code>TARGET_ENCODE_SECTION_INFO</code> to store the information into the
<code>symbol_ref</code>, and then check for it here. See <a href="#Assembler-Format">Assembler Format</a>.
</p></blockquote></div>
<p><a name="index-dbr_005fsequence_005flength-4571"></a>
<div class="defun">
— Macro: <b>DBR_OUTPUT_SEQEND</b> (<var>file</var>)<var><a name="index-DBR_005fOUTPUT_005fSEQEND-4572"></a></var><br>
<blockquote><p>A C statement, to be executed after all slot-filler instructions have
been output. If necessary, call <code>dbr_sequence_length</code> to
determine the number of slots filled in a sequence (zero if not
currently outputting a sequence), to decide how many no-ops to output,
or whatever.
<p>Don't define this macro if it has nothing to do, but it is helpful in
reading assembly output if the extent of the delay sequence is made
explicit (e.g. with white space).
</p></blockquote></div>
<p><a name="index-final_005fsequence-4573"></a>Note that output routines for instructions with delay slots must be
prepared to deal with not being output as part of a sequence
(i.e. when the scheduling pass is not run, or when no slot fillers could be
found.) The variable <code>final_sequence</code> is null when not
processing a sequence, otherwise it contains the <code>sequence</code> rtx
being output.
<p><a name="index-asm_005ffprintf-4574"></a>
<div class="defun">
— Macro: <b>REGISTER_PREFIX</b><var><a name="index-REGISTER_005fPREFIX-4575"></a></var><br>
— Macro: <b>LOCAL_LABEL_PREFIX</b><var><a name="index-LOCAL_005fLABEL_005fPREFIX-4576"></a></var><br>
— Macro: <b>USER_LABEL_PREFIX</b><var><a name="index-USER_005fLABEL_005fPREFIX-4577"></a></var><br>
— Macro: <b>IMMEDIATE_PREFIX</b><var><a name="index-IMMEDIATE_005fPREFIX-4578"></a></var><br>
<blockquote><p>If defined, C string expressions to be used for the ‘<samp><span class="samp">%R</span></samp>’, ‘<samp><span class="samp">%L</span></samp>’,
‘<samp><span class="samp">%U</span></samp>’, and ‘<samp><span class="samp">%I</span></samp>’ options of <code>asm_fprintf</code> (see
<samp><span class="file">final.c</span></samp>). These are useful when a single <samp><span class="file">md</span></samp> file must
support multiple assembler formats. In that case, the various <samp><span class="file">tm.h</span></samp>
files can define these macros differently.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_FPRINTF_EXTENSIONS</b> (<var>file, argptr, format</var>)<var><a name="index-ASM_005fFPRINTF_005fEXTENSIONS-4579"></a></var><br>
<blockquote><p>If defined this macro should expand to a series of <code>case</code>
statements which will be parsed inside the <code>switch</code> statement of
the <code>asm_fprintf</code> function. This allows targets to define extra
printf formats which may useful when generating their assembler
statements. Note that uppercase letters are reserved for future
generic extensions to asm_fprintf, and so are not available to target
specific code. The output file is given by the parameter <var>file</var>.
The varargs input pointer is <var>argptr</var> and the rest of the format
string, starting the character after the one that is being switched
upon, is pointed to by <var>format</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASSEMBLER_DIALECT</b><var><a name="index-ASSEMBLER_005fDIALECT-4580"></a></var><br>
<blockquote><p>If your target supports multiple dialects of assembler language (such as
different opcodes), define this macro as a C expression that gives the
numeric index of the assembler language dialect to use, with zero as the
first variant.
<p>If this macro is defined, you may use constructs of the form
<pre class="smallexample"> ‘<samp><span class="samp">{option0|option1|option2...}</span></samp>’
</pre>
<p class="noindent">in the output templates of patterns (see <a href="#Output-Template">Output Template</a>) or in the
first argument of <code>asm_fprintf</code>. This construct outputs
‘<samp><span class="samp">option0</span></samp>’, ‘<samp><span class="samp">option1</span></samp>’, ‘<samp><span class="samp">option2</span></samp>’, etc., if the value of
<code>ASSEMBLER_DIALECT</code> is zero, one, two, etc. Any special characters
within these strings retain their usual meaning. If there are fewer
alternatives within the braces than the value of
<code>ASSEMBLER_DIALECT</code>, the construct outputs nothing.
<p>If you do not define this macro, the characters ‘<samp><span class="samp">{</span></samp>’, ‘<samp><span class="samp">|</span></samp>’ and
‘<samp><span class="samp">}</span></samp>’ do not have any special meaning when used in templates or
operands to <code>asm_fprintf</code>.
<p>Define the macros <code>REGISTER_PREFIX</code>, <code>LOCAL_LABEL_PREFIX</code>,
<code>USER_LABEL_PREFIX</code> and <code>IMMEDIATE_PREFIX</code> if you can express
the variations in assembler language syntax with that mechanism. Define
<code>ASSEMBLER_DIALECT</code> and use the ‘<samp><span class="samp">{option0|option1}</span></samp>’ syntax
if the syntax variant are larger and involve such things as different
opcodes or operand order.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_REG_PUSH</b> (<var>stream, regno</var>)<var><a name="index-ASM_005fOUTPUT_005fREG_005fPUSH-4581"></a></var><br>
<blockquote><p>A C expression to output to <var>stream</var> some assembler code
which will push hard register number <var>regno</var> onto the stack.
The code need not be optimal, since this macro is used only when
profiling.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_REG_POP</b> (<var>stream, regno</var>)<var><a name="index-ASM_005fOUTPUT_005fREG_005fPOP-4582"></a></var><br>
<blockquote><p>A C expression to output to <var>stream</var> some assembler code
which will pop hard register number <var>regno</var> off of the stack.
The code need not be optimal, since this macro is used only when
profiling.
</p></blockquote></div>
<div class="node">
<a name="Dispatch-Tables"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Exception-Region-Output">Exception Region Output</a>,
Previous: <a rel="previous" accesskey="p" href="#Instruction-Output">Instruction Output</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.8 Output of Dispatch Tables</h4>
<!-- prevent bad page break with this line -->
<p>This concerns dispatch tables.
<p><a name="index-dispatch-table-4583"></a>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ADDR_DIFF_ELT</b> (<var>stream, body, value, rel</var>)<var><a name="index-ASM_005fOUTPUT_005fADDR_005fDIFF_005fELT-4584"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> an assembler
pseudo-instruction to generate a difference between two labels.
<var>value</var> and <var>rel</var> are the numbers of two internal labels. The
definitions of these labels are output using
<code>(*targetm.asm_out.internal_label)</code>, and they must be printed in the same
way here. For example,
<pre class="smallexample"> fprintf (<var>stream</var>, "\t.word L%d-L%d\n",
<var>value</var>, <var>rel</var>)
</pre>
<p>You must provide this macro on machines where the addresses in a
dispatch table are relative to the table's own address. If defined, GCC
will also use this macro on all machines when producing PIC.
<var>body</var> is the body of the <code>ADDR_DIFF_VEC</code>; it is provided so that the
mode and flags can be read.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ADDR_VEC_ELT</b> (<var>stream, value</var>)<var><a name="index-ASM_005fOUTPUT_005fADDR_005fVEC_005fELT-4585"></a></var><br>
<blockquote><p>This macro should be provided on machines where the addresses
in a dispatch table are absolute.
<p>The definition should be a C statement to output to the stdio stream
<var>stream</var> an assembler pseudo-instruction to generate a reference to
a label. <var>value</var> is the number of an internal label whose
definition is output using <code>(*targetm.asm_out.internal_label)</code>.
For example,
<pre class="smallexample"> fprintf (<var>stream</var>, "\t.word L%d\n", <var>value</var>)
</pre>
</blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_CASE_LABEL</b> (<var>stream, prefix, num, table</var>)<var><a name="index-ASM_005fOUTPUT_005fCASE_005fLABEL-4586"></a></var><br>
<blockquote><p>Define this if the label before a jump-table needs to be output
specially. The first three arguments are the same as for
<code>(*targetm.asm_out.internal_label)</code>; the fourth argument is the
jump-table which follows (a <code>jump_insn</code> containing an
<code>addr_vec</code> or <code>addr_diff_vec</code>).
<p>This feature is used on system V to output a <code>swbeg</code> statement
for the table.
<p>If this macro is not defined, these labels are output with
<code>(*targetm.asm_out.internal_label)</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_CASE_END</b> (<var>stream, num, table</var>)<var><a name="index-ASM_005fOUTPUT_005fCASE_005fEND-4587"></a></var><br>
<blockquote><p>Define this if something special must be output at the end of a
jump-table. The definition should be a C statement to be executed
after the assembler code for the table is written. It should write
the appropriate code to stdio stream <var>stream</var>. The argument
<var>table</var> is the jump-table insn, and <var>num</var> is the label-number
of the preceding label.
<p>If this macro is not defined, nothing special is output at the end of
the jump-table.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_EMIT_UNWIND_LABEL</b> (<var>FILE *stream, tree decl, int for_eh, int empty</var>)<var><a name="index-TARGET_005fASM_005fEMIT_005fUNWIND_005fLABEL-4588"></a></var><br>
<blockquote><p>This target hook emits a label at the beginning of each FDE. It
should be defined on targets where FDEs need special labels, and it
should write the appropriate label, for the FDE associated with the
function declaration <var>decl</var>, to the stdio stream <var>stream</var>.
The third argument, <var>for_eh</var>, is a boolean: true if this is for an
exception table. The fourth argument, <var>empty</var>, is a boolean:
true if this is a placeholder label for an omitted FDE.
<p>The default is that FDEs are not given nonlocal labels.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL</b> (<var>FILE *stream</var>)<var><a name="index-TARGET_005fASM_005fEMIT_005fEXCEPT_005fTABLE_005fLABEL-4589"></a></var><br>
<blockquote><p>This target hook emits a label at the beginning of the exception table.
It should be defined on targets where it is desirable for the table
to be broken up according to function.
<p>The default is that no label is emitted.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_EMIT_EXCEPT_PERSONALITY</b> (<var>rtx personality</var>)<var><a name="index-TARGET_005fASM_005fEMIT_005fEXCEPT_005fPERSONALITY-4590"></a></var><br>
<blockquote><p>If the target implements <code>TARGET_ASM_UNWIND_EMIT</code>, this hook may be used to emit a directive to install a personality hook into the unwind info. This hook should not be used if dwarf2 unwind info is used.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_UNWIND_EMIT</b> (<var>FILE *stream, rtx insn</var>)<var><a name="index-TARGET_005fASM_005fUNWIND_005fEMIT-4591"></a></var><br>
<blockquote><p>This target hook emits assembly directives required to unwind the
given instruction. This is only used when <code>TARGET_EXCEPT_UNWIND_INFO</code>
returns <code>UI_TARGET</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_UNWIND_EMIT_BEFORE_INSN</b><var><a name="index-TARGET_005fASM_005fUNWIND_005fEMIT_005fBEFORE_005fINSN-4592"></a></var><br>
<blockquote><p>True if the <code>TARGET_ASM_UNWIND_EMIT</code> hook should be called before the assembly for <var>insn</var> has been emitted, false if the hook should be called afterward.
</p></blockquote></div>
<div class="node">
<a name="Exception-Region-Output"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Alignment-Output">Alignment Output</a>,
Previous: <a rel="previous" accesskey="p" href="#Dispatch-Tables">Dispatch Tables</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.9 Assembler Commands for Exception Regions</h4>
<!-- prevent bad page break with this line -->
<p>This describes commands marking the start and the end of an exception
region.
<div class="defun">
— Macro: <b>EH_FRAME_SECTION_NAME</b><var><a name="index-EH_005fFRAME_005fSECTION_005fNAME-4593"></a></var><br>
<blockquote><p>If defined, a C string constant for the name of the section containing
exception handling frame unwind information. If not defined, GCC will
provide a default definition if the target supports named sections.
<samp><span class="file">crtstuff.c</span></samp> uses this macro to switch to the appropriate section.
<p>You should define this symbol if your target supports DWARF 2 frame
unwind information and the default definition does not work.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EH_FRAME_IN_DATA_SECTION</b><var><a name="index-EH_005fFRAME_005fIN_005fDATA_005fSECTION-4594"></a></var><br>
<blockquote><p>If defined, DWARF 2 frame unwind information will be placed in the
data section even though the target supports named sections. This
might be necessary, for instance, if the system linker does garbage
collection and sections cannot be marked as not to be collected.
<p>Do not define this macro unless <code>TARGET_ASM_NAMED_SECTION</code> is
also defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EH_TABLES_CAN_BE_READ_ONLY</b><var><a name="index-EH_005fTABLES_005fCAN_005fBE_005fREAD_005fONLY-4595"></a></var><br>
<blockquote><p>Define this macro to 1 if your target is such that no frame unwind
information encoding used with non-PIC code will ever require a
runtime relocation, but the linker may not support merging read-only
and read-write sections into a single read-write section.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MASK_RETURN_ADDR</b><var><a name="index-MASK_005fRETURN_005fADDR-4596"></a></var><br>
<blockquote><p>An rtx used to mask the return address found via <code>RETURN_ADDR_RTX</code>, so
that it does not contain any extraneous set bits in it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF2_UNWIND_INFO</b><var><a name="index-DWARF2_005fUNWIND_005fINFO-4597"></a></var><br>
<blockquote><p>Define this macro to 0 if your target supports DWARF 2 frame unwind
information, but it does not yet work with exception handling.
Otherwise, if your target supports this information (if it defines
<code>INCOMING_RETURN_ADDR_RTX</code> and either <code>UNALIGNED_INT_ASM_OP</code>
or <code>OBJECT_FORMAT_ELF</code>), GCC will provide a default definition of 1.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum unwind_info_type <b>TARGET_EXCEPT_UNWIND_INFO</b> (<var>struct gcc_options *opts</var>)<var><a name="index-TARGET_005fEXCEPT_005fUNWIND_005fINFO-4598"></a></var><br>
<blockquote><p>This hook defines the mechanism that will be used for exception handling
by the target. If the target has ABI specified unwind tables, the hook
should return <code>UI_TARGET</code>. If the target is to use the
<code>setjmp</code>/<code>longjmp</code>-based exception handling scheme, the hook
should return <code>UI_SJLJ</code>. If the target supports DWARF 2 frame unwind
information, the hook should return <code>UI_DWARF2</code>.
<p>A target may, if exceptions are disabled, choose to return <code>UI_NONE</code>.
This may end up simplifying other parts of target-specific code. The
default implementation of this hook never returns <code>UI_NONE</code>.
<p>Note that the value returned by this hook should be constant. It should
not depend on anything except the command-line switches described by
<var>opts</var>. In particular, the
setting <code>UI_SJLJ</code> must be fixed at compiler start-up as C pre-processor
macros and builtin functions related to exception handling are set up
depending on this setting.
<p>The default implementation of the hook first honors the
<samp><span class="option">--enable-sjlj-exceptions</span></samp> configure option, then
<code>DWARF2_UNWIND_INFO</code>, and finally defaults to <code>UI_SJLJ</code>. If
<code>DWARF2_UNWIND_INFO</code> depends on command-line options, the target
must define this hook so that <var>opts</var> is used correctly.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_UNWIND_TABLES_DEFAULT</b><var><a name="index-TARGET_005fUNWIND_005fTABLES_005fDEFAULT-4599"></a></var><br>
<blockquote><p>This variable should be set to <code>true</code> if the target ABI requires unwinding
tables even when exceptions are not used. It must not be modified by
command-line option processing.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DONT_USE_BUILTIN_SETJMP</b><var><a name="index-DONT_005fUSE_005fBUILTIN_005fSETJMP-4600"></a></var><br>
<blockquote><p>Define this macro to 1 if the <code>setjmp</code>/<code>longjmp</code>-based scheme
should use the <code>setjmp</code>/<code>longjmp</code> functions from the C library
instead of the <code>__builtin_setjmp</code>/<code>__builtin_longjmp</code> machinery.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF_CIE_DATA_ALIGNMENT</b><var><a name="index-DWARF_005fCIE_005fDATA_005fALIGNMENT-4601"></a></var><br>
<blockquote><p>This macro need only be defined if the target might save registers in the
function prologue at an offset to the stack pointer that is not aligned to
<code>UNITS_PER_WORD</code>. The definition should be the negative minimum
alignment if <code>STACK_GROWS_DOWNWARD</code> is defined, and the positive
minimum alignment otherwise. See <a href="#SDB-and-DWARF">SDB and DWARF</a>. Only applicable if
the target supports DWARF 2 frame unwind information.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_TERMINATE_DW2_EH_FRAME_INFO</b><var><a name="index-TARGET_005fTERMINATE_005fDW2_005fEH_005fFRAME_005fINFO-4602"></a></var><br>
<blockquote><p>Contains the value true if the target should add a zero word onto the
end of a Dwarf-2 frame info section when used for exception handling.
Default value is false if <code>EH_FRAME_SECTION_NAME</code> is defined, and
true otherwise.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_DWARF_REGISTER_SPAN</b> (<var>rtx reg</var>)<var><a name="index-TARGET_005fDWARF_005fREGISTER_005fSPAN-4603"></a></var><br>
<blockquote><p>Given a register, this hook should return a parallel of registers to
represent where to find the register pieces. Define this hook if the
register and its mode are represented in Dwarf in non-contiguous
locations, or if the register should be represented in more than one
register in Dwarf. Otherwise, this hook should return <code>NULL_RTX</code>.
If not defined, the default is to return <code>NULL_RTX</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_INIT_DWARF_REG_SIZES_EXTRA</b> (<var>tree address</var>)<var><a name="index-TARGET_005fINIT_005fDWARF_005fREG_005fSIZES_005fEXTRA-4604"></a></var><br>
<blockquote><p>If some registers are represented in Dwarf-2 unwind information in
multiple pieces, define this hook to fill in information about the
sizes of those pieces in the table used by the unwinder at runtime.
It will be called by <code>expand_builtin_init_dwarf_reg_sizes</code> after
filling in a single size corresponding to each hard register;
<var>address</var> is the address of the table.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ASM_TTYPE</b> (<var>rtx sym</var>)<var><a name="index-TARGET_005fASM_005fTTYPE-4605"></a></var><br>
<blockquote><p>This hook is used to output a reference from a frame unwinding table to
the type_info object identified by <var>sym</var>. It should return <code>true</code>
if the reference was output. Returning <code>false</code> will cause the
reference to be output using the normal Dwarf2 routines.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ARM_EABI_UNWINDER</b><var><a name="index-TARGET_005fARM_005fEABI_005fUNWINDER-4606"></a></var><br>
<blockquote><p>This flag should be set to <code>true</code> on targets that use an ARM EABI
based unwinding library, and <code>false</code> on other targets. This effects
the format of unwinding tables, and how the unwinder in entered after
running a cleanup. The default is <code>false</code>.
</p></blockquote></div>
<div class="node">
<a name="Alignment-Output"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Exception-Region-Output">Exception Region Output</a>,
Up: <a rel="up" accesskey="u" href="#Assembler-Format">Assembler Format</a>
</div>
<h4 class="subsection">17.21.10 Assembler Commands for Alignment</h4>
<!-- prevent bad page break with this line -->
<p>This describes commands for alignment.
<div class="defun">
— Macro: <b>JUMP_ALIGN</b> (<var>label</var>)<var><a name="index-JUMP_005fALIGN-4607"></a></var><br>
<blockquote><p>The alignment (log base 2) to put in front of <var>label</var>, which is
a common destination of jumps and has no fallthru incoming edge.
<p>This macro need not be defined if you don't want any special alignment
to be done at such a time. Most machine descriptions do not currently
define the macro.
<p>Unless it's necessary to inspect the <var>label</var> parameter, it is better
to set the variable <var>align_jumps</var> in the target's
<code>TARGET_OPTION_OVERRIDE</code>. Otherwise, you should try to honor the user's
selection in <var>align_jumps</var> in a <code>JUMP_ALIGN</code> implementation.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_JUMP_ALIGN_MAX_SKIP</b> (<var>rtx label</var>)<var><a name="index-TARGET_005fASM_005fJUMP_005fALIGN_005fMAX_005fSKIP-4608"></a></var><br>
<blockquote><p>The maximum number of bytes to skip before <var>label</var> when applying
<code>JUMP_ALIGN</code>. This works only if
<code>ASM_OUTPUT_MAX_SKIP_ALIGN</code> is defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LABEL_ALIGN_AFTER_BARRIER</b> (<var>label</var>)<var><a name="index-LABEL_005fALIGN_005fAFTER_005fBARRIER-4609"></a></var><br>
<blockquote><p>The alignment (log base 2) to put in front of <var>label</var>, which follows
a <code>BARRIER</code>.
<p>This macro need not be defined if you don't want any special alignment
to be done at such a time. Most machine descriptions do not currently
define the macro.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP</b> (<var>rtx label</var>)<var><a name="index-TARGET_005fASM_005fLABEL_005fALIGN_005fAFTER_005fBARRIER_005fMAX_005fSKIP-4610"></a></var><br>
<blockquote><p>The maximum number of bytes to skip before <var>label</var> when applying
<code>LABEL_ALIGN_AFTER_BARRIER</code>. This works only if
<code>ASM_OUTPUT_MAX_SKIP_ALIGN</code> is defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOOP_ALIGN</b> (<var>label</var>)<var><a name="index-LOOP_005fALIGN-4611"></a></var><br>
<blockquote><p>The alignment (log base 2) to put in front of <var>label</var>, which follows
a <code>NOTE_INSN_LOOP_BEG</code> note.
<p>This macro need not be defined if you don't want any special alignment
to be done at such a time. Most machine descriptions do not currently
define the macro.
<p>Unless it's necessary to inspect the <var>label</var> parameter, it is better
to set the variable <code>align_loops</code> in the target's
<code>TARGET_OPTION_OVERRIDE</code>. Otherwise, you should try to honor the user's
selection in <code>align_loops</code> in a <code>LOOP_ALIGN</code> implementation.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_LOOP_ALIGN_MAX_SKIP</b> (<var>rtx label</var>)<var><a name="index-TARGET_005fASM_005fLOOP_005fALIGN_005fMAX_005fSKIP-4612"></a></var><br>
<blockquote><p>The maximum number of bytes to skip when applying <code>LOOP_ALIGN</code> to
<var>label</var>. This works only if <code>ASM_OUTPUT_MAX_SKIP_ALIGN</code> is
defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LABEL_ALIGN</b> (<var>label</var>)<var><a name="index-LABEL_005fALIGN-4613"></a></var><br>
<blockquote><p>The alignment (log base 2) to put in front of <var>label</var>.
If <code>LABEL_ALIGN_AFTER_BARRIER</code> / <code>LOOP_ALIGN</code> specify a different alignment,
the maximum of the specified values is used.
<p>Unless it's necessary to inspect the <var>label</var> parameter, it is better
to set the variable <code>align_labels</code> in the target's
<code>TARGET_OPTION_OVERRIDE</code>. Otherwise, you should try to honor the user's
selection in <code>align_labels</code> in a <code>LABEL_ALIGN</code> implementation.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_ASM_LABEL_ALIGN_MAX_SKIP</b> (<var>rtx label</var>)<var><a name="index-TARGET_005fASM_005fLABEL_005fALIGN_005fMAX_005fSKIP-4614"></a></var><br>
<blockquote><p>The maximum number of bytes to skip when applying <code>LABEL_ALIGN</code>
to <var>label</var>. This works only if <code>ASM_OUTPUT_MAX_SKIP_ALIGN</code>
is defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_SKIP</b> (<var>stream, nbytes</var>)<var><a name="index-ASM_005fOUTPUT_005fSKIP-4615"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> an assembler
instruction to advance the location counter by <var>nbytes</var> bytes.
Those bytes should be zero when loaded. <var>nbytes</var> will be a C
expression of type <code>unsigned HOST_WIDE_INT</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_NO_SKIP_IN_TEXT</b><var><a name="index-ASM_005fNO_005fSKIP_005fIN_005fTEXT-4616"></a></var><br>
<blockquote><p>Define this macro if <code>ASM_OUTPUT_SKIP</code> should not be used in the
text section because it fails to put zeros in the bytes that are skipped.
This is true on many Unix systems, where the pseudo–op to skip bytes
produces no-op instructions rather than zeros when used in the text
section.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGN</b> (<var>stream, power</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGN-4617"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> an assembler
command to advance the location counter to a multiple of 2 to the
<var>power</var> bytes. <var>power</var> will be a C expression of type <code>int</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_ALIGN_WITH_NOP</b> (<var>stream, power</var>)<var><a name="index-ASM_005fOUTPUT_005fALIGN_005fWITH_005fNOP-4618"></a></var><br>
<blockquote><p>Like <code>ASM_OUTPUT_ALIGN</code>, except that the “nop” instruction is used
for padding, if necessary.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_MAX_SKIP_ALIGN</b> (<var>stream, power, max_skip</var>)<var><a name="index-ASM_005fOUTPUT_005fMAX_005fSKIP_005fALIGN-4619"></a></var><br>
<blockquote><p>A C statement to output to the stdio stream <var>stream</var> an assembler
command to advance the location counter to a multiple of 2 to the
<var>power</var> bytes, but only if <var>max_skip</var> or fewer bytes are needed to
satisfy the alignment request. <var>power</var> and <var>max_skip</var> will be
a C expression of type <code>int</code>.
</p></blockquote></div>
<div class="node">
<a name="Debugging-Info"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Floating-Point">Floating Point</a>,
Previous: <a rel="previous" accesskey="p" href="#Assembler-Format">Assembler Format</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.22 Controlling Debugging Information Format</h3>
<!-- prevent bad page break with this line -->
<p>This describes how to specify debugging information.
<ul class="menu">
<li><a accesskey="1" href="#All-Debuggers">All Debuggers</a>: Macros that affect all debugging formats uniformly.
<li><a accesskey="2" href="#DBX-Options">DBX Options</a>: Macros enabling specific options in DBX format.
<li><a accesskey="3" href="#DBX-Hooks">DBX Hooks</a>: Hook macros for varying DBX format.
<li><a accesskey="4" href="#File-Names-and-DBX">File Names and DBX</a>: Macros controlling output of file names in DBX format.
<li><a accesskey="5" href="#SDB-and-DWARF">SDB and DWARF</a>: Macros for SDB (COFF) and DWARF formats.
<li><a accesskey="6" href="#VMS-Debug">VMS Debug</a>: Macros for VMS debug format.
</ul>
<div class="node">
<a name="All-Debuggers"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#DBX-Options">DBX Options</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.1 Macros Affecting All Debugging Formats</h4>
<!-- prevent bad page break with this line -->
<p>These macros affect all debugging formats.
<div class="defun">
— Macro: <b>DBX_REGISTER_NUMBER</b> (<var>regno</var>)<var><a name="index-DBX_005fREGISTER_005fNUMBER-4620"></a></var><br>
<blockquote><p>A C expression that returns the DBX register number for the compiler
register number <var>regno</var>. In the default macro provided, the value
of this expression will be <var>regno</var> itself. But sometimes there are
some registers that the compiler knows about and DBX does not, or vice
versa. In such cases, some register may need to have one number in the
compiler and another for DBX.
<p>If two registers have consecutive numbers inside GCC, and they can be
used as a pair to hold a multiword value, then they <em>must</em> have
consecutive numbers after renumbering with <code>DBX_REGISTER_NUMBER</code>.
Otherwise, debuggers will be unable to access such a pair, because they
expect register pairs to be consecutive in their own numbering scheme.
<p>If you find yourself defining <code>DBX_REGISTER_NUMBER</code> in way that
does not preserve register pairs, then what you must do instead is
redefine the actual register numbering scheme.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEBUGGER_AUTO_OFFSET</b> (<var>x</var>)<var><a name="index-DEBUGGER_005fAUTO_005fOFFSET-4621"></a></var><br>
<blockquote><p>A C expression that returns the integer offset value for an automatic
variable having address <var>x</var> (an RTL expression). The default
computation assumes that <var>x</var> is based on the frame-pointer and
gives the offset from the frame-pointer. This is required for targets
that produce debugging output for DBX or COFF-style debugging output
for SDB and allow the frame-pointer to be eliminated when the
<samp><span class="option">-g</span></samp> options is used.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEBUGGER_ARG_OFFSET</b> (<var>offset, x</var>)<var><a name="index-DEBUGGER_005fARG_005fOFFSET-4622"></a></var><br>
<blockquote><p>A C expression that returns the integer offset value for an argument
having address <var>x</var> (an RTL expression). The nominal offset is
<var>offset</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PREFERRED_DEBUGGING_TYPE</b><var><a name="index-PREFERRED_005fDEBUGGING_005fTYPE-4623"></a></var><br>
<blockquote><p>A C expression that returns the type of debugging output GCC should
produce when the user specifies just <samp><span class="option">-g</span></samp>. Define
this if you have arranged for GCC to support more than one format of
debugging output. Currently, the allowable values are <code>DBX_DEBUG</code>,
<code>SDB_DEBUG</code>, <code>DWARF_DEBUG</code>, <code>DWARF2_DEBUG</code>,
<code>XCOFF_DEBUG</code>, <code>VMS_DEBUG</code>, and <code>VMS_AND_DWARF2_DEBUG</code>.
<p>When the user specifies <samp><span class="option">-ggdb</span></samp>, GCC normally also uses the
value of this macro to select the debugging output format, but with two
exceptions. If <code>DWARF2_DEBUGGING_INFO</code> is defined, GCC uses the
value <code>DWARF2_DEBUG</code>. Otherwise, if <code>DBX_DEBUGGING_INFO</code> is
defined, GCC uses <code>DBX_DEBUG</code>.
<p>The value of this macro only affects the default debugging output; the
user can always get a specific type of output by using <samp><span class="option">-gstabs</span></samp>,
<samp><span class="option">-gcoff</span></samp>, <samp><span class="option">-gdwarf-2</span></samp>, <samp><span class="option">-gxcoff</span></samp>, or <samp><span class="option">-gvms</span></samp>.
</p></blockquote></div>
<div class="node">
<a name="DBX-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#DBX-Hooks">DBX Hooks</a>,
Previous: <a rel="previous" accesskey="p" href="#All-Debuggers">All Debuggers</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.2 Specific Options for DBX Output</h4>
<!-- prevent bad page break with this line -->
<p>These are specific options for DBX output.
<div class="defun">
— Macro: <b>DBX_DEBUGGING_INFO</b><var><a name="index-DBX_005fDEBUGGING_005fINFO-4624"></a></var><br>
<blockquote><p>Define this macro if GCC should produce debugging output for DBX
in response to the <samp><span class="option">-g</span></samp> option.
</p></blockquote></div>
<div class="defun">
— Macro: <b>XCOFF_DEBUGGING_INFO</b><var><a name="index-XCOFF_005fDEBUGGING_005fINFO-4625"></a></var><br>
<blockquote><p>Define this macro if GCC should produce XCOFF format debugging output
in response to the <samp><span class="option">-g</span></samp> option. This is a variant of DBX format.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEFAULT_GDB_EXTENSIONS</b><var><a name="index-DEFAULT_005fGDB_005fEXTENSIONS-4626"></a></var><br>
<blockquote><p>Define this macro to control whether GCC should by default generate
GDB's extended version of DBX debugging information (assuming DBX-format
debugging information is enabled at all). If you don't define the
macro, the default is 1: always generate the extended information
if there is any occasion to.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DEBUG_SYMS_TEXT</b><var><a name="index-DEBUG_005fSYMS_005fTEXT-4627"></a></var><br>
<blockquote><p>Define this macro if all <code>.stabs</code> commands should be output while
in the text section.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_STABS_OP</b><var><a name="index-ASM_005fSTABS_005fOP-4628"></a></var><br>
<blockquote><p>A C string constant, including spacing, naming the assembler pseudo op to
use instead of <code>"\t.stabs\t"</code> to define an ordinary debugging symbol.
If you don't define this macro, <code>"\t.stabs\t"</code> is used. This macro
applies only to DBX debugging information format.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_STABD_OP</b><var><a name="index-ASM_005fSTABD_005fOP-4629"></a></var><br>
<blockquote><p>A C string constant, including spacing, naming the assembler pseudo op to
use instead of <code>"\t.stabd\t"</code> to define a debugging symbol whose
value is the current location. If you don't define this macro,
<code>"\t.stabd\t"</code> is used. This macro applies only to DBX debugging
information format.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_STABN_OP</b><var><a name="index-ASM_005fSTABN_005fOP-4630"></a></var><br>
<blockquote><p>A C string constant, including spacing, naming the assembler pseudo op to
use instead of <code>"\t.stabn\t"</code> to define a debugging symbol with no
name. If you don't define this macro, <code>"\t.stabn\t"</code> is used. This
macro applies only to DBX debugging information format.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_NO_XREFS</b><var><a name="index-DBX_005fNO_005fXREFS-4631"></a></var><br>
<blockquote><p>Define this macro if DBX on your system does not support the construct
‘<samp><span class="samp">xs</span><var>tagname</var></samp>’. On some systems, this construct is used to
describe a forward reference to a structure named <var>tagname</var>.
On other systems, this construct is not supported at all.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_CONTIN_LENGTH</b><var><a name="index-DBX_005fCONTIN_005fLENGTH-4632"></a></var><br>
<blockquote><p>A symbol name in DBX-format debugging information is normally
continued (split into two separate <code>.stabs</code> directives) when it
exceeds a certain length (by default, 80 characters). On some
operating systems, DBX requires this splitting; on others, splitting
must not be done. You can inhibit splitting by defining this macro
with the value zero. You can override the default splitting-length by
defining this macro as an expression for the length you desire.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_CONTIN_CHAR</b><var><a name="index-DBX_005fCONTIN_005fCHAR-4633"></a></var><br>
<blockquote><p>Normally continuation is indicated by adding a ‘<samp><span class="samp">\</span></samp>’ character to
the end of a <code>.stabs</code> string when a continuation follows. To use
a different character instead, define this macro as a character
constant for the character you want to use. Do not define this macro
if backslash is correct for your system.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_STATIC_STAB_DATA_SECTION</b><var><a name="index-DBX_005fSTATIC_005fSTAB_005fDATA_005fSECTION-4634"></a></var><br>
<blockquote><p>Define this macro if it is necessary to go to the data section before
outputting the ‘<samp><span class="samp">.stabs</span></samp>’ pseudo-op for a non-global static
variable.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_TYPE_DECL_STABS_CODE</b><var><a name="index-DBX_005fTYPE_005fDECL_005fSTABS_005fCODE-4635"></a></var><br>
<blockquote><p>The value to use in the “code” field of the <code>.stabs</code> directive
for a typedef. The default is <code>N_LSYM</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_STATIC_CONST_VAR_CODE</b><var><a name="index-DBX_005fSTATIC_005fCONST_005fVAR_005fCODE-4636"></a></var><br>
<blockquote><p>The value to use in the “code” field of the <code>.stabs</code> directive
for a static variable located in the text section. DBX format does not
provide any “right” way to do this. The default is <code>N_FUN</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_REGPARM_STABS_CODE</b><var><a name="index-DBX_005fREGPARM_005fSTABS_005fCODE-4637"></a></var><br>
<blockquote><p>The value to use in the “code” field of the <code>.stabs</code> directive
for a parameter passed in registers. DBX format does not provide any
“right” way to do this. The default is <code>N_RSYM</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_REGPARM_STABS_LETTER</b><var><a name="index-DBX_005fREGPARM_005fSTABS_005fLETTER-4638"></a></var><br>
<blockquote><p>The letter to use in DBX symbol data to identify a symbol as a parameter
passed in registers. DBX format does not customarily provide any way to
do this. The default is <code>'P'</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_FUNCTION_FIRST</b><var><a name="index-DBX_005fFUNCTION_005fFIRST-4639"></a></var><br>
<blockquote><p>Define this macro if the DBX information for a function and its
arguments should precede the assembler code for the function. Normally,
in DBX format, the debugging information entirely follows the assembler
code.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_BLOCKS_FUNCTION_RELATIVE</b><var><a name="index-DBX_005fBLOCKS_005fFUNCTION_005fRELATIVE-4640"></a></var><br>
<blockquote><p>Define this macro, with value 1, if the value of a symbol describing
the scope of a block (<code>N_LBRAC</code> or <code>N_RBRAC</code>) should be
relative to the start of the enclosing function. Normally, GCC uses
an absolute address.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_LINES_FUNCTION_RELATIVE</b><var><a name="index-DBX_005fLINES_005fFUNCTION_005fRELATIVE-4641"></a></var><br>
<blockquote><p>Define this macro, with value 1, if the value of a symbol indicating
the current line number (<code>N_SLINE</code>) should be relative to the
start of the enclosing function. Normally, GCC uses an absolute address.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_USE_BINCL</b><var><a name="index-DBX_005fUSE_005fBINCL-4642"></a></var><br>
<blockquote><p>Define this macro if GCC should generate <code>N_BINCL</code> and
<code>N_EINCL</code> stabs for included header files, as on Sun systems. This
macro also directs GCC to output a type number as a pair of a file
number and a type number within the file. Normally, GCC does not
generate <code>N_BINCL</code> or <code>N_EINCL</code> stabs, and it outputs a single
number for a type number.
</p></blockquote></div>
<div class="node">
<a name="DBX-Hooks"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#File-Names-and-DBX">File Names and DBX</a>,
Previous: <a rel="previous" accesskey="p" href="#DBX-Options">DBX Options</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.3 Open-Ended Hooks for DBX Format</h4>
<!-- prevent bad page break with this line -->
<p>These are hooks for DBX format.
<div class="defun">
— Macro: <b>DBX_OUTPUT_LBRAC</b> (<var>stream, name</var>)<var><a name="index-DBX_005fOUTPUT_005fLBRAC-4643"></a></var><br>
<blockquote><p>Define this macro to say how to output to <var>stream</var> the debugging
information for the start of a scope level for variable names. The
argument <var>name</var> is the name of an assembler symbol (for use with
<code>assemble_name</code>) whose value is the address where the scope begins.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_OUTPUT_RBRAC</b> (<var>stream, name</var>)<var><a name="index-DBX_005fOUTPUT_005fRBRAC-4644"></a></var><br>
<blockquote><p>Like <code>DBX_OUTPUT_LBRAC</code>, but for the end of a scope level.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_OUTPUT_NFUN</b> (<var>stream, lscope_label, decl</var>)<var><a name="index-DBX_005fOUTPUT_005fNFUN-4645"></a></var><br>
<blockquote><p>Define this macro if the target machine requires special handling to
output an <code>N_FUN</code> entry for the function <var>decl</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_OUTPUT_SOURCE_LINE</b> (<var>stream, line, counter</var>)<var><a name="index-DBX_005fOUTPUT_005fSOURCE_005fLINE-4646"></a></var><br>
<blockquote><p>A C statement to output DBX debugging information before code for line
number <var>line</var> of the current source file to the stdio stream
<var>stream</var>. <var>counter</var> is the number of time the macro was
invoked, including the current invocation; it is intended to generate
unique labels in the assembly output.
<p>This macro should not be defined if the default output is correct, or
if it can be made correct by defining <code>DBX_LINES_FUNCTION_RELATIVE</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DBX_FUNCTION_END</b><var><a name="index-NO_005fDBX_005fFUNCTION_005fEND-4647"></a></var><br>
<blockquote><p>Some stabs encapsulation formats (in particular ECOFF), cannot handle the
<code>.stabs "",N_FUN,,0,0,Lscope-function-1</code> gdb dbx extension construct.
On those machines, define this macro to turn this feature off without
disturbing the rest of the gdb extensions.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DBX_BNSYM_ENSYM</b><var><a name="index-NO_005fDBX_005fBNSYM_005fENSYM-4648"></a></var><br>
<blockquote><p>Some assemblers cannot handle the <code>.stabd BNSYM/ENSYM,0,0</code> gdb dbx
extension construct. On those machines, define this macro to turn this
feature off without disturbing the rest of the gdb extensions.
</p></blockquote></div>
<div class="node">
<a name="File-Names-and-DBX"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#SDB-and-DWARF">SDB and DWARF</a>,
Previous: <a rel="previous" accesskey="p" href="#DBX-Hooks">DBX Hooks</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.4 File Names in DBX Format</h4>
<!-- prevent bad page break with this line -->
<p>This describes file names in DBX format.
<div class="defun">
— Macro: <b>DBX_OUTPUT_MAIN_SOURCE_FILENAME</b> (<var>stream, name</var>)<var><a name="index-DBX_005fOUTPUT_005fMAIN_005fSOURCE_005fFILENAME-4649"></a></var><br>
<blockquote><p>A C statement to output DBX debugging information to the stdio stream
<var>stream</var>, which indicates that file <var>name</var> is the main source
file—the file specified as the input file for compilation.
This macro is called only once, at the beginning of compilation.
<p>This macro need not be defined if the standard form of output
for DBX debugging information is appropriate.
<p>It may be necessary to refer to a label equal to the beginning of the
text section. You can use ‘<samp><span class="samp">assemble_name (stream, ltext_label_name)</span></samp>’
to do so. If you do this, you must also set the variable
<var>used_ltext_label_name</var> to <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DBX_MAIN_SOURCE_DIRECTORY</b><var><a name="index-NO_005fDBX_005fMAIN_005fSOURCE_005fDIRECTORY-4650"></a></var><br>
<blockquote><p>Define this macro, with value 1, if GCC should not emit an indication
of the current directory for compilation and current source language at
the beginning of the file.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DBX_GCC_MARKER</b><var><a name="index-NO_005fDBX_005fGCC_005fMARKER-4651"></a></var><br>
<blockquote><p>Define this macro, with value 1, if GCC should not emit an indication
that this object file was compiled by GCC. The default is to emit
an <code>N_OPT</code> stab at the beginning of every source file, with
‘<samp><span class="samp">gcc2_compiled.</span></samp>’ for the string and value 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_OUTPUT_MAIN_SOURCE_FILE_END</b> (<var>stream, name</var>)<var><a name="index-DBX_005fOUTPUT_005fMAIN_005fSOURCE_005fFILE_005fEND-4652"></a></var><br>
<blockquote><p>A C statement to output DBX debugging information at the end of
compilation of the main source file <var>name</var>. Output should be
written to the stdio stream <var>stream</var>.
<p>If you don't define this macro, nothing special is output at the end
of compilation, which is correct for most machines.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END</b><var><a name="index-DBX_005fOUTPUT_005fNULL_005fN_005fSO_005fAT_005fMAIN_005fSOURCE_005fFILE_005fEND-4653"></a></var><br>
<blockquote><p>Define this macro <em>instead of</em> defining
<code>DBX_OUTPUT_MAIN_SOURCE_FILE_END</code>, if what needs to be output at
the end of compilation is an <code>N_SO</code> stab with an empty string,
whose value is the highest absolute text address in the file.
</p></blockquote></div>
<div class="node">
<a name="SDB-and-DWARF"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#VMS-Debug">VMS Debug</a>,
Previous: <a rel="previous" accesskey="p" href="#File-Names-and-DBX">File Names and DBX</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.5 Macros for SDB and DWARF Output</h4>
<!-- prevent bad page break with this line -->
<p>Here are macros for SDB and DWARF output.
<div class="defun">
— Macro: <b>SDB_DEBUGGING_INFO</b><var><a name="index-SDB_005fDEBUGGING_005fINFO-4654"></a></var><br>
<blockquote><p>Define this macro if GCC should produce COFF-style debugging output
for SDB in response to the <samp><span class="option">-g</span></samp> option.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF2_DEBUGGING_INFO</b><var><a name="index-DWARF2_005fDEBUGGING_005fINFO-4655"></a></var><br>
<blockquote><p>Define this macro if GCC should produce dwarf version 2 format
debugging output in response to the <samp><span class="option">-g</span></samp> option.
<div class="defun">
— Target Hook: int <b>TARGET_DWARF_CALLING_CONVENTION</b> (<var>const_tree function</var>)<var><a name="index-TARGET_005fDWARF_005fCALLING_005fCONVENTION-4656"></a></var><br>
<blockquote><p>Define this to enable the dwarf attribute <code>DW_AT_calling_convention</code> to
be emitted for each function. Instead of an integer return the enum
value for the <code>DW_CC_</code> tag.
</p></blockquote></div>
<p>To support optional call frame debugging information, you must also
define <code>INCOMING_RETURN_ADDR_RTX</code> and either set
<code>RTX_FRAME_RELATED_P</code> on the prologue insns if you use RTL for the
prologue, or call <code>dwarf2out_def_cfa</code> and <code>dwarf2out_reg_save</code>
as appropriate from <code>TARGET_ASM_FUNCTION_PROLOGUE</code> if you don't.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF2_FRAME_INFO</b><var><a name="index-DWARF2_005fFRAME_005fINFO-4657"></a></var><br>
<blockquote><p>Define this macro to a nonzero value if GCC should always output
Dwarf 2 frame information. If <code>TARGET_EXCEPT_UNWIND_INFO</code>
(see <a href="#Exception-Region-Output">Exception Region Output</a>) returns <code>UI_DWARF2</code>, and
exceptions are enabled, GCC will output this information not matter
how you define <code>DWARF2_FRAME_INFO</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum unwind_info_type <b>TARGET_DEBUG_UNWIND_INFO</b> (<var>void</var>)<var><a name="index-TARGET_005fDEBUG_005fUNWIND_005fINFO-4658"></a></var><br>
<blockquote><p>This hook defines the mechanism that will be used for describing frame
unwind information to the debugger. Normally the hook will return
<code>UI_DWARF2</code> if DWARF 2 debug information is enabled, and
return <code>UI_NONE</code> otherwise.
<p>A target may return <code>UI_DWARF2</code> even when DWARF 2 debug information
is disabled in order to always output DWARF 2 frame information.
<p>A target may return <code>UI_TARGET</code> if it has ABI specified unwind tables.
This will suppress generation of the normal debug frame unwind information.
</p></blockquote></div>
<div class="defun">
— Macro: <b>DWARF2_ASM_LINE_DEBUG_INFO</b><var><a name="index-DWARF2_005fASM_005fLINE_005fDEBUG_005fINFO-4659"></a></var><br>
<blockquote><p>Define this macro to be a nonzero value if the assembler can generate Dwarf 2
line debug info sections. This will result in much more compact line number
tables, and hence is desirable if it works.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_WANT_DEBUG_PUB_SECTIONS</b><var><a name="index-TARGET_005fWANT_005fDEBUG_005fPUB_005fSECTIONS-4660"></a></var><br>
<blockquote><p>True if the <code>.debug_pubtypes</code> and <code>.debug_pubnames</code> sections should be emitted. These sections are not used on most platforms, and in particular GDB does not use them.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_DELAY_SCHED2</b><var><a name="index-TARGET_005fDELAY_005fSCHED2-4661"></a></var><br>
<blockquote><p>True if sched2 is not to be run at its normal place. This usually means it will be run as part of machine-specific reorg.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_DELAY_VARTRACK</b><var><a name="index-TARGET_005fDELAY_005fVARTRACK-4662"></a></var><br>
<blockquote><p>True if vartrack is not to be run at its normal place. This usually means it will be run as part of machine-specific reorg.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DWARF_DELTA</b> (<var>stream, size, label1, label2</var>)<var><a name="index-ASM_005fOUTPUT_005fDWARF_005fDELTA-4663"></a></var><br>
<blockquote><p>A C statement to issue assembly directives that create a difference
<var>lab1</var> minus <var>lab2</var>, using an integer of the given <var>size</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DWARF_VMS_DELTA</b> (<var>stream, size, label1, label2</var>)<var><a name="index-ASM_005fOUTPUT_005fDWARF_005fVMS_005fDELTA-4664"></a></var><br>
<blockquote><p>A C statement to issue assembly directives that create a difference
between the two given labels in system defined units, e.g. instruction
slots on IA64 VMS, using an integer of the given size.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DWARF_OFFSET</b> (<var>stream, size, label, section</var>)<var><a name="index-ASM_005fOUTPUT_005fDWARF_005fOFFSET-4665"></a></var><br>
<blockquote><p>A C statement to issue assembly directives that create a
section-relative reference to the given <var>label</var>, using an integer of the
given <var>size</var>. The label is known to be defined in the given <var>section</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DWARF_PCREL</b> (<var>stream, size, label</var>)<var><a name="index-ASM_005fOUTPUT_005fDWARF_005fPCREL-4666"></a></var><br>
<blockquote><p>A C statement to issue assembly directives that create a self-relative
reference to the given <var>label</var>, using an integer of the given <var>size</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>ASM_OUTPUT_DWARF_TABLE_REF</b> (<var>label</var>)<var><a name="index-ASM_005fOUTPUT_005fDWARF_005fTABLE_005fREF-4667"></a></var><br>
<blockquote><p>A C statement to issue assembly directives that create a reference to
the DWARF table identifier <var>label</var> from the current section. This
is used on some systems to avoid garbage collecting a DWARF table which
is referenced by a function.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_ASM_OUTPUT_DWARF_DTPREL</b> (<var>FILE *file, int size, rtx x</var>)<var><a name="index-TARGET_005fASM_005fOUTPUT_005fDWARF_005fDTPREL-4668"></a></var><br>
<blockquote><p>If defined, this target hook is a function which outputs a DTP-relative
reference to the given TLS symbol of the specified size.
</p></blockquote></div>
<div class="defun">
— Macro: <b>PUT_SDB_</b><var><small class="dots">...</small><a name="index-PUT_005fSDB_005f-4669"></a></var><br>
<blockquote><p>Define these macros to override the assembler syntax for the special
SDB assembler directives. See <samp><span class="file">sdbout.c</span></samp> for a list of these
macros and their arguments. If the standard syntax is used, you need
not define them yourself.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SDB_DELIM</b><var><a name="index-SDB_005fDELIM-4670"></a></var><br>
<blockquote><p>Some assemblers do not support a semicolon as a delimiter, even between
SDB assembler directives. In that case, define this macro to be the
delimiter to use (usually ‘<samp><span class="samp">\n</span></samp>’). It is not necessary to define
a new set of <code>PUT_SDB_</code><var>op</var> macros if this is the only change
required.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SDB_ALLOW_UNKNOWN_REFERENCES</b><var><a name="index-SDB_005fALLOW_005fUNKNOWN_005fREFERENCES-4671"></a></var><br>
<blockquote><p>Define this macro to allow references to unknown structure,
union, or enumeration tags to be emitted. Standard COFF does not
allow handling of unknown references, MIPS ECOFF has support for
it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SDB_ALLOW_FORWARD_REFERENCES</b><var><a name="index-SDB_005fALLOW_005fFORWARD_005fREFERENCES-4672"></a></var><br>
<blockquote><p>Define this macro to allow references to structure, union, or
enumeration tags that have not yet been seen to be handled. Some
assemblers choke if forward tags are used, while some require it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SDB_OUTPUT_SOURCE_LINE</b> (<var>stream, line</var>)<var><a name="index-SDB_005fOUTPUT_005fSOURCE_005fLINE-4673"></a></var><br>
<blockquote><p>A C statement to output SDB debugging information before code for line
number <var>line</var> of the current source file to the stdio stream
<var>stream</var>. The default is to emit an <code>.ln</code> directive.
</p></blockquote></div>
<div class="node">
<a name="VMS-Debug"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#SDB-and-DWARF">SDB and DWARF</a>,
Up: <a rel="up" accesskey="u" href="#Debugging-Info">Debugging Info</a>
</div>
<h4 class="subsection">17.22.6 Macros for VMS Debug Format</h4>
<!-- prevent bad page break with this line -->
<p>Here are macros for VMS debug format.
<div class="defun">
— Macro: <b>VMS_DEBUGGING_INFO</b><var><a name="index-VMS_005fDEBUGGING_005fINFO-4674"></a></var><br>
<blockquote><p>Define this macro if GCC should produce debugging output for VMS
in response to the <samp><span class="option">-g</span></samp> option. The default behavior for VMS
is to generate minimal debug info for a traceback in the absence of
<samp><span class="option">-g</span></samp> unless explicitly overridden with <samp><span class="option">-g0</span></samp>. This
behavior is controlled by <code>TARGET_OPTION_OPTIMIZATION</code> and
<code>TARGET_OPTION_OVERRIDE</code>.
</p></blockquote></div>
<div class="node">
<a name="Floating-Point"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Mode-Switching">Mode Switching</a>,
Previous: <a rel="previous" accesskey="p" href="#Debugging-Info">Debugging Info</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.23 Cross Compilation and Floating Point</h3>
<p><a name="index-cross-compilation-and-floating-point-4675"></a><a name="index-floating-point-and-cross-compilation-4676"></a>
While all modern machines use twos-complement representation for integers,
there are a variety of representations for floating point numbers. This
means that in a cross-compiler the representation of floating point numbers
in the compiled program may be different from that used in the machine
doing the compilation.
<p>Because different representation systems may offer different amounts of
range and precision, all floating point constants must be represented in
the target machine's format. Therefore, the cross compiler cannot
safely use the host machine's floating point arithmetic; it must emulate
the target's arithmetic. To ensure consistency, GCC always uses
emulation to work with floating point values, even when the host and
target floating point formats are identical.
<p>The following macros are provided by <samp><span class="file">real.h</span></samp> for the compiler to
use. All parts of the compiler which generate or optimize
floating-point calculations must use these macros. They may evaluate
their operands more than once, so operands must not have side effects.
<div class="defun">
— Macro: <b>REAL_VALUE_TYPE</b><var><a name="index-REAL_005fVALUE_005fTYPE-4677"></a></var><br>
<blockquote><p>The C data type to be used to hold a floating point value in the target
machine's format. Typically this is a <code>struct</code> containing an
array of <code>HOST_WIDE_INT</code>, but all code should treat it as an opaque
quantity.
</p></blockquote></div>
<div class="defun">
— Macro: int <b>REAL_VALUES_EQUAL</b> (<var>REAL_VALUE_TYPE x, REAL_VALUE_TYPE y</var>)<var><a name="index-REAL_005fVALUES_005fEQUAL-4678"></a></var><br>
<blockquote><p>Compares for equality the two values, <var>x</var> and <var>y</var>. If the target
floating point format supports negative zeroes and/or NaNs,
‘<samp><span class="samp">REAL_VALUES_EQUAL (-0.0, 0.0)</span></samp>’ is true, and
‘<samp><span class="samp">REAL_VALUES_EQUAL (NaN, NaN)</span></samp>’ is false.
</p></blockquote></div>
<div class="defun">
— Macro: int <b>REAL_VALUES_LESS</b> (<var>REAL_VALUE_TYPE x, REAL_VALUE_TYPE y</var>)<var><a name="index-REAL_005fVALUES_005fLESS-4679"></a></var><br>
<blockquote><p>Tests whether <var>x</var> is less than <var>y</var>.
</p></blockquote></div>
<div class="defun">
— Macro: HOST_WIDE_INT <b>REAL_VALUE_FIX</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fFIX-4680"></a></var><br>
<blockquote><p>Truncates <var>x</var> to a signed integer, rounding toward zero.
</p></blockquote></div>
<div class="defun">
— Macro: unsigned HOST_WIDE_INT <b>REAL_VALUE_UNSIGNED_FIX</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fUNSIGNED_005fFIX-4681"></a></var><br>
<blockquote><p>Truncates <var>x</var> to an unsigned integer, rounding toward zero. If
<var>x</var> is negative, returns zero.
</p></blockquote></div>
<div class="defun">
— Macro: REAL_VALUE_TYPE <b>REAL_VALUE_ATOF</b> (<var>const char *string, enum machine_mode mode</var>)<var><a name="index-REAL_005fVALUE_005fATOF-4682"></a></var><br>
<blockquote><p>Converts <var>string</var> into a floating point number in the target machine's
representation for mode <var>mode</var>. This routine can handle both
decimal and hexadecimal floating point constants, using the syntax
defined by the C language for both.
</p></blockquote></div>
<div class="defun">
— Macro: int <b>REAL_VALUE_NEGATIVE</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fNEGATIVE-4683"></a></var><br>
<blockquote><p>Returns 1 if <var>x</var> is negative (including negative zero), 0 otherwise.
</p></blockquote></div>
<div class="defun">
— Macro: int <b>REAL_VALUE_ISINF</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fISINF-4684"></a></var><br>
<blockquote><p>Determines whether <var>x</var> represents infinity (positive or negative).
</p></blockquote></div>
<div class="defun">
— Macro: int <b>REAL_VALUE_ISNAN</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fISNAN-4685"></a></var><br>
<blockquote><p>Determines whether <var>x</var> represents a “NaN” (not-a-number).
</p></blockquote></div>
<div class="defun">
— Macro: void <b>REAL_ARITHMETIC</b> (<var>REAL_VALUE_TYPE output, enum tree_code code, REAL_VALUE_TYPE x, REAL_VALUE_TYPE y</var>)<var><a name="index-REAL_005fARITHMETIC-4686"></a></var><br>
<blockquote><p>Calculates an arithmetic operation on the two floating point values
<var>x</var> and <var>y</var>, storing the result in <var>output</var> (which must be a
variable).
<p>The operation to be performed is specified by <var>code</var>. Only the
following codes are supported: <code>PLUS_EXPR</code>, <code>MINUS_EXPR</code>,
<code>MULT_EXPR</code>, <code>RDIV_EXPR</code>, <code>MAX_EXPR</code>, <code>MIN_EXPR</code>.
<p>If <code>REAL_ARITHMETIC</code> is asked to evaluate division by zero and the
target's floating point format cannot represent infinity, it will call
<code>abort</code>. Callers should check for this situation first, using
<code>MODE_HAS_INFINITIES</code>. See <a href="#Storage-Layout">Storage Layout</a>.
</p></blockquote></div>
<div class="defun">
— Macro: REAL_VALUE_TYPE <b>REAL_VALUE_NEGATE</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fNEGATE-4687"></a></var><br>
<blockquote><p>Returns the negative of the floating point value <var>x</var>.
</p></blockquote></div>
<div class="defun">
— Macro: REAL_VALUE_TYPE <b>REAL_VALUE_ABS</b> (<var>REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fABS-4688"></a></var><br>
<blockquote><p>Returns the absolute value of <var>x</var>.
</p></blockquote></div>
<div class="defun">
— Macro: REAL_VALUE_TYPE <b>REAL_VALUE_TRUNCATE</b> (<var>REAL_VALUE_TYPE mode, enum machine_mode x</var>)<var><a name="index-REAL_005fVALUE_005fTRUNCATE-4689"></a></var><br>
<blockquote><p>Truncates the floating point value <var>x</var> to fit in <var>mode</var>. The
return value is still a full-size <code>REAL_VALUE_TYPE</code>, but it has an
appropriate bit pattern to be output as a floating constant whose
precision accords with mode <var>mode</var>.
</p></blockquote></div>
<div class="defun">
— Macro: void <b>REAL_VALUE_TO_INT</b> (<var>HOST_WIDE_INT low, HOST_WIDE_INT high, REAL_VALUE_TYPE x</var>)<var><a name="index-REAL_005fVALUE_005fTO_005fINT-4690"></a></var><br>
<blockquote><p>Converts a floating point value <var>x</var> into a double-precision integer
which is then stored into <var>low</var> and <var>high</var>. If the value is not
integral, it is truncated.
</p></blockquote></div>
<div class="defun">
— Macro: void <b>REAL_VALUE_FROM_INT</b> (<var>REAL_VALUE_TYPE x, HOST_WIDE_INT low, HOST_WIDE_INT high, enum machine_mode mode</var>)<var><a name="index-REAL_005fVALUE_005fFROM_005fINT-4691"></a></var><br>
<blockquote><p>Converts a double-precision integer found in <var>low</var> and <var>high</var>,
into a floating point value which is then stored into <var>x</var>. The
value is truncated to fit in mode <var>mode</var>.
</p></blockquote></div>
<div class="node">
<a name="Mode-Switching"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Target-Attributes">Target Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Floating-Point">Floating Point</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.24 Mode Switching Instructions</h3>
<p><a name="index-mode-switching-4692"></a>The following macros control mode switching optimizations:
<div class="defun">
— Macro: <b>OPTIMIZE_MODE_SWITCHING</b> (<var>entity</var>)<var><a name="index-OPTIMIZE_005fMODE_005fSWITCHING-4693"></a></var><br>
<blockquote><p>Define this macro if the port needs extra instructions inserted for mode
switching in an optimizing compilation.
<p>For an example, the SH4 can perform both single and double precision
floating point operations, but to perform a single precision operation,
the FPSCR PR bit has to be cleared, while for a double precision
operation, this bit has to be set. Changing the PR bit requires a general
purpose register as a scratch register, hence these FPSCR sets have to
be inserted before reload, i.e. you can't put this into instruction emitting
or <code>TARGET_MACHINE_DEPENDENT_REORG</code>.
<p>You can have multiple entities that are mode-switched, and select at run time
which entities actually need it. <code>OPTIMIZE_MODE_SWITCHING</code> should
return nonzero for any <var>entity</var> that needs mode-switching.
If you define this macro, you also have to define
<code>NUM_MODES_FOR_MODE_SWITCHING</code>, <code>MODE_NEEDED</code>,
<code>MODE_PRIORITY_TO_MODE</code> and <code>EMIT_MODE_SET</code>.
<code>MODE_AFTER</code>, <code>MODE_ENTRY</code>, and <code>MODE_EXIT</code>
are optional.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NUM_MODES_FOR_MODE_SWITCHING</b><var><a name="index-NUM_005fMODES_005fFOR_005fMODE_005fSWITCHING-4694"></a></var><br>
<blockquote><p>If you define <code>OPTIMIZE_MODE_SWITCHING</code>, you have to define this as
initializer for an array of integers. Each initializer element
N refers to an entity that needs mode switching, and specifies the number
of different modes that might need to be set for this entity.
The position of the initializer in the initializer—starting counting at
zero—determines the integer that is used to refer to the mode-switched
entity in question.
In macros that take mode arguments / yield a mode result, modes are
represented as numbers 0 <small class="dots">...</small> N − 1. N is used to specify that no mode
switch is needed / supplied.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_NEEDED</b> (<var>entity, insn</var>)<var><a name="index-MODE_005fNEEDED-4695"></a></var><br>
<blockquote><p><var>entity</var> is an integer specifying a mode-switched entity. If
<code>OPTIMIZE_MODE_SWITCHING</code> is defined, you must define this macro to
return an integer value not larger than the corresponding element in
<code>NUM_MODES_FOR_MODE_SWITCHING</code>, to denote the mode that <var>entity</var> must
be switched into prior to the execution of <var>insn</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_AFTER</b> (<var>mode, insn</var>)<var><a name="index-MODE_005fAFTER-4696"></a></var><br>
<blockquote><p>If this macro is defined, it is evaluated for every <var>insn</var> during
mode switching. It determines the mode that an insn results in (if
different from the incoming mode).
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_ENTRY</b> (<var>entity</var>)<var><a name="index-MODE_005fENTRY-4697"></a></var><br>
<blockquote><p>If this macro is defined, it is evaluated for every <var>entity</var> that needs
mode switching. It should evaluate to an integer, which is a mode that
<var>entity</var> is assumed to be switched to at function entry. If <code>MODE_ENTRY</code>
is defined then <code>MODE_EXIT</code> must be defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_EXIT</b> (<var>entity</var>)<var><a name="index-MODE_005fEXIT-4698"></a></var><br>
<blockquote><p>If this macro is defined, it is evaluated for every <var>entity</var> that needs
mode switching. It should evaluate to an integer, which is a mode that
<var>entity</var> is assumed to be switched to at function exit. If <code>MODE_EXIT</code>
is defined then <code>MODE_ENTRY</code> must be defined.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODE_PRIORITY_TO_MODE</b> (<var>entity, n</var>)<var><a name="index-MODE_005fPRIORITY_005fTO_005fMODE-4699"></a></var><br>
<blockquote><p>This macro specifies the order in which modes for <var>entity</var> are processed.
0 is the highest priority, <code>NUM_MODES_FOR_MODE_SWITCHING[</code><var>entity</var><code>] - 1</code> the
lowest. The value of the macro should be an integer designating a mode
for <var>entity</var>. For any fixed <var>entity</var>, <code>mode_priority_to_mode</code>
(<var>entity</var>, <var>n</var>) shall be a bijection in 0 <small class="dots">...</small>
<code>num_modes_for_mode_switching[</code><var>entity</var><code>] - 1</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>EMIT_MODE_SET</b> (<var>entity, mode, hard_regs_live</var>)<var><a name="index-EMIT_005fMODE_005fSET-4700"></a></var><br>
<blockquote><p>Generate one or more insns to set <var>entity</var> to <var>mode</var>.
<var>hard_reg_live</var> is the set of hard registers live at the point where
the insn(s) are to be inserted.
</p></blockquote></div>
<div class="node">
<a name="Target-Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Emulated-TLS">Emulated TLS</a>,
Previous: <a rel="previous" accesskey="p" href="#Mode-Switching">Mode Switching</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.25 Defining target-specific uses of <code>__attribute__</code></h3>
<p><a name="index-target-attributes-4701"></a><a name="index-machine-attributes-4702"></a><a name="index-attributes_002c-target_002dspecific-4703"></a>
Target-specific attributes may be defined for functions, data and types.
These are described using the following target hooks; they also need to
be documented in <samp><span class="file">extend.texi</span></samp>.
<div class="defun">
— Target Hook: const struct attribute_spec * <b>TARGET_ATTRIBUTE_TABLE</b><var><a name="index-TARGET_005fATTRIBUTE_005fTABLE-4704"></a></var><br>
<blockquote><p>If defined, this target hook points to an array of ‘<samp><span class="samp">struct
attribute_spec</span></samp>’ (defined in <samp><span class="file">tree.h</span></samp>) specifying the machine
specific attributes for this target and some of the restrictions on the
entities to which these attributes are applied and the arguments they
take.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P</b> (<var>const_tree name</var>)<var><a name="index-TARGET_005fATTRIBUTE_005fTAKES_005fIDENTIFIER_005fP-4705"></a></var><br>
<blockquote><p>If defined, this target hook is a function which returns true if the
machine-specific attribute named <var>name</var> expects an identifier
given as its first argument to be passed on as a plain identifier, not
subjected to name lookup. If this is not defined, the default is
false for all machine-specific attributes.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_COMP_TYPE_ATTRIBUTES</b> (<var>const_tree type1, const_tree type2</var>)<var><a name="index-TARGET_005fCOMP_005fTYPE_005fATTRIBUTES-4706"></a></var><br>
<blockquote><p>If defined, this target hook is a function which returns zero if the attributes on
<var>type1</var> and <var>type2</var> are incompatible, one if they are compatible,
and two if they are nearly compatible (which causes a warning to be
generated). If this is not defined, machine-specific attributes are
supposed always to be compatible.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SET_DEFAULT_TYPE_ATTRIBUTES</b> (<var>tree type</var>)<var><a name="index-TARGET_005fSET_005fDEFAULT_005fTYPE_005fATTRIBUTES-4707"></a></var><br>
<blockquote><p>If defined, this target hook is a function which assigns default attributes to
the newly defined <var>type</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_MERGE_TYPE_ATTRIBUTES</b> (<var>tree type1, tree type2</var>)<var><a name="index-TARGET_005fMERGE_005fTYPE_005fATTRIBUTES-4708"></a></var><br>
<blockquote><p>Define this target hook if the merging of type attributes needs special
handling. If defined, the result is a list of the combined
<code>TYPE_ATTRIBUTES</code> of <var>type1</var> and <var>type2</var>. It is assumed
that <code>comptypes</code> has already been called and returned 1. This
function may call <code>merge_attributes</code> to handle machine-independent
merging.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_MERGE_DECL_ATTRIBUTES</b> (<var>tree olddecl, tree newdecl</var>)<var><a name="index-TARGET_005fMERGE_005fDECL_005fATTRIBUTES-4709"></a></var><br>
<blockquote><p>Define this target hook if the merging of decl attributes needs special
handling. If defined, the result is a list of the combined
<code>DECL_ATTRIBUTES</code> of <var>olddecl</var> and <var>newdecl</var>.
<var>newdecl</var> is a duplicate declaration of <var>olddecl</var>. Examples of
when this is needed are when one attribute overrides another, or when an
attribute is nullified by a subsequent definition. This function may
call <code>merge_attributes</code> to handle machine-independent merging.
<p><a name="index-TARGET_005fDLLIMPORT_005fDECL_005fATTRIBUTES-4710"></a>If the only target-specific handling you require is ‘<samp><span class="samp">dllimport</span></samp>’
for Microsoft Windows targets, you should define the macro
<code>TARGET_DLLIMPORT_DECL_ATTRIBUTES</code> to <code>1</code>. The compiler
will then define a function called
<code>merge_dllimport_decl_attributes</code> which can then be defined as
the expansion of <code>TARGET_MERGE_DECL_ATTRIBUTES</code>. You can also
add <code>handle_dll_attribute</code> in the attribute table for your port
to perform initial processing of the ‘<samp><span class="samp">dllimport</span></samp>’ and
‘<samp><span class="samp">dllexport</span></samp>’ attributes. This is done in <samp><span class="file">i386/cygwin.h</span></samp> and
<samp><span class="file">i386/i386.c</span></samp>, for example.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_VALID_DLLIMPORT_ATTRIBUTE_P</b> (<var>const_tree decl</var>)<var><a name="index-TARGET_005fVALID_005fDLLIMPORT_005fATTRIBUTE_005fP-4711"></a></var><br>
<blockquote><p><var>decl</var> is a variable or function with <code>__attribute__((dllimport))</code> specified. Use this hook if the target needs to add extra validation checks to <code>handle_dll_attribute</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_DECLSPEC</b><var><a name="index-TARGET_005fDECLSPEC-4712"></a></var><br>
<blockquote><p>Define this macro to a nonzero value if you want to treat
<code>__declspec(X)</code> as equivalent to <code>__attribute((X))</code>. By
default, this behavior is enabled only for targets that define
<code>TARGET_DLLIMPORT_DECL_ATTRIBUTES</code>. The current implementation
of <code>__declspec</code> is via a built-in macro, but you should not rely
on this implementation detail.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_INSERT_ATTRIBUTES</b> (<var>tree node, tree *attr_ptr</var>)<var><a name="index-TARGET_005fINSERT_005fATTRIBUTES-4713"></a></var><br>
<blockquote><p>Define this target hook if you want to be able to add attributes to a decl
when it is being created. This is normally useful for back ends which
wish to implement a pragma by using the attributes which correspond to
the pragma's effect. The <var>node</var> argument is the decl which is being
created. The <var>attr_ptr</var> argument is a pointer to the attribute list
for this decl. The list itself should not be modified, since it may be
shared with other decls, but attributes may be chained on the head of
the list and <code>*</code><var>attr_ptr</var> modified to point to the new
attributes, or a copy of the list may be made if further changes are
needed.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P</b> (<var>const_tree fndecl</var>)<var><a name="index-TARGET_005fFUNCTION_005fATTRIBUTE_005fINLINABLE_005fP-4714"></a></var><br>
<blockquote><p><a name="index-inlining-4715"></a>This target hook returns <code>true</code> if it is ok to inline <var>fndecl</var>
into the current function, despite its having target-specific
attributes, <code>false</code> otherwise. By default, if a function has a
target specific attribute attached to it, it will not be inlined.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_OPTION_VALID_ATTRIBUTE_P</b> (<var>tree fndecl, tree name, tree args, int flags</var>)<var><a name="index-TARGET_005fOPTION_005fVALID_005fATTRIBUTE_005fP-4716"></a></var><br>
<blockquote><p>This hook is called to parse the <code>attribute(option("..."))</code>, and
it allows the function to set different target machine compile time
options for the current function that might be different than the
options specified on the command line. The hook should return
<code>true</code> if the options are valid.
<p>The hook should set the <var>DECL_FUNCTION_SPECIFIC_TARGET</var> field in
the function declaration to hold a pointer to a target specific
<var>struct cl_target_option</var> structure.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_SAVE</b> (<var>struct cl_target_option *ptr</var>)<var><a name="index-TARGET_005fOPTION_005fSAVE-4717"></a></var><br>
<blockquote><p>This hook is called to save any additional target specific information
in the <var>struct cl_target_option</var> structure for function specific
options.
See <a href="#Option-file-format">Option file format</a>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_RESTORE</b> (<var>struct cl_target_option *ptr</var>)<var><a name="index-TARGET_005fOPTION_005fRESTORE-4718"></a></var><br>
<blockquote><p>This hook is called to restore any additional target specific
information in the <var>struct cl_target_option</var> structure for
function specific options.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_PRINT</b> (<var>FILE *file, int indent, struct cl_target_option *ptr</var>)<var><a name="index-TARGET_005fOPTION_005fPRINT-4719"></a></var><br>
<blockquote><p>This hook is called to print any additional target specific
information in the <var>struct cl_target_option</var> structure for
function specific options.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_OPTION_PRAGMA_PARSE</b> (<var>tree args, tree pop_target</var>)<var><a name="index-TARGET_005fOPTION_005fPRAGMA_005fPARSE-4720"></a></var><br>
<blockquote><p>This target hook parses the options for <code>#pragma GCC option</code> to
set the machine specific options for functions that occur later in the
input stream. The options should be the same as handled by the
<code>TARGET_OPTION_VALID_ATTRIBUTE_P</code> hook.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_OPTION_OVERRIDE</b> (<var>void</var>)<var><a name="index-TARGET_005fOPTION_005fOVERRIDE-4721"></a></var><br>
<blockquote><p>Sometimes certain combinations of command options do not make sense on
a particular target machine. You can override the hook
<code>TARGET_OPTION_OVERRIDE</code> to take account of this. This hooks is called
once just after all the command options have been parsed.
<p>Don't use this hook to turn on various extra optimizations for
<samp><span class="option">-O</span></samp>. That is what <code>TARGET_OPTION_OPTIMIZATION</code> is for.
<p>If you need to do something whenever the optimization level is
changed via the optimize attribute or pragma, see
<code>TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE</code>
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CAN_INLINE_P</b> (<var>tree caller, tree callee</var>)<var><a name="index-TARGET_005fCAN_005fINLINE_005fP-4722"></a></var><br>
<blockquote><p>This target hook returns <code>false</code> if the <var>caller</var> function
cannot inline <var>callee</var>, based on target specific information. By
default, inlining is not allowed if the callee function has function
specific target options and the caller does not use the same options.
</p></blockquote></div>
<div class="node">
<a name="Emulated-TLS"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#MIPS-Coprocessors">MIPS Coprocessors</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Attributes">Target Attributes</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.26 Emulating TLS</h3>
<p><a name="index-Emulated-TLS-4723"></a>
For targets whose psABI does not provide Thread Local Storage via
specific relocations and instruction sequences, an emulation layer is
used. A set of target hooks allows this emulation layer to be
configured for the requirements of a particular target. For instance
the psABI may in fact specify TLS support in terms of an emulation
layer.
<p>The emulation layer works by creating a control object for every TLS
object. To access the TLS object, a lookup function is provided
which, when given the address of the control object, will return the
address of the current thread's instance of the TLS object.
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_GET_ADDRESS</b><var><a name="index-TARGET_005fEMUTLS_005fGET_005fADDRESS-4724"></a></var><br>
<blockquote><p>Contains the name of the helper function that uses a TLS control
object to locate a TLS instance. The default causes libgcc's
emulated TLS helper function to be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_REGISTER_COMMON</b><var><a name="index-TARGET_005fEMUTLS_005fREGISTER_005fCOMMON-4725"></a></var><br>
<blockquote><p>Contains the name of the helper function that should be used at
program startup to register TLS objects that are implicitly
initialized to zero. If this is <code>NULL</code>, all TLS objects will
have explicit initializers. The default causes libgcc's emulated TLS
registration function to be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_VAR_SECTION</b><var><a name="index-TARGET_005fEMUTLS_005fVAR_005fSECTION-4726"></a></var><br>
<blockquote><p>Contains the name of the section in which TLS control variables should
be placed. The default of <code>NULL</code> allows these to be placed in
any section.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_TMPL_SECTION</b><var><a name="index-TARGET_005fEMUTLS_005fTMPL_005fSECTION-4727"></a></var><br>
<blockquote><p>Contains the name of the section in which TLS initializers should be
placed. The default of <code>NULL</code> allows these to be placed in any
section.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_VAR_PREFIX</b><var><a name="index-TARGET_005fEMUTLS_005fVAR_005fPREFIX-4728"></a></var><br>
<blockquote><p>Contains the prefix to be prepended to TLS control variable names.
The default of <code>NULL</code> uses a target-specific prefix.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_EMUTLS_TMPL_PREFIX</b><var><a name="index-TARGET_005fEMUTLS_005fTMPL_005fPREFIX-4729"></a></var><br>
<blockquote><p>Contains the prefix to be prepended to TLS initializer objects. The
default of <code>NULL</code> uses a target-specific prefix.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_EMUTLS_VAR_FIELDS</b> (<var>tree type, tree *name</var>)<var><a name="index-TARGET_005fEMUTLS_005fVAR_005fFIELDS-4730"></a></var><br>
<blockquote><p>Specifies a function that generates the FIELD_DECLs for a TLS control
object type. <var>type</var> is the RECORD_TYPE the fields are for and
<var>name</var> should be filled with the structure tag, if the default of
<code>__emutls_object</code> is unsuitable. The default creates a type suitable
for libgcc's emulated TLS function.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_EMUTLS_VAR_INIT</b> (<var>tree var, tree decl, tree tmpl_addr</var>)<var><a name="index-TARGET_005fEMUTLS_005fVAR_005fINIT-4731"></a></var><br>
<blockquote><p>Specifies a function that generates the CONSTRUCTOR to initialize a
TLS control object. <var>var</var> is the TLS control object, <var>decl</var>
is the TLS object and <var>tmpl_addr</var> is the address of the
initializer. The default initializes libgcc's emulated TLS control object.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_EMUTLS_VAR_ALIGN_FIXED</b><var><a name="index-TARGET_005fEMUTLS_005fVAR_005fALIGN_005fFIXED-4732"></a></var><br>
<blockquote><p>Specifies whether the alignment of TLS control variable objects is
fixed and should not be increased as some backends may do to optimize
single objects. The default is false.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS</b><var><a name="index-TARGET_005fEMUTLS_005fDEBUG_005fFORM_005fTLS_005fADDRESS-4733"></a></var><br>
<blockquote><p>Specifies whether a DWARF <code>DW_OP_form_tls_address</code> location descriptor
may be used to describe emulated TLS control objects.
</p></blockquote></div>
<div class="node">
<a name="MIPS-Coprocessors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#PCH-Target">PCH Target</a>,
Previous: <a rel="previous" accesskey="p" href="#Emulated-TLS">Emulated TLS</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.27 Defining coprocessor specifics for MIPS targets.</h3>
<p><a name="index-MIPS-coprocessor_002ddefinition-macros-4734"></a>
The MIPS specification allows MIPS implementations to have as many as 4
coprocessors, each with as many as 32 private registers. GCC supports
accessing these registers and transferring values between the registers
and memory using asm-ized variables. For example:
<pre class="smallexample"> register unsigned int cp0count asm ("c0r1");
unsigned int d;
d = cp0count + 3;
</pre>
<p>(“c0r1” is the default name of register 1 in coprocessor 0; alternate
names may be added as described below, or the default names may be
overridden entirely in <code>SUBTARGET_CONDITIONAL_REGISTER_USAGE</code>.)
<p>Coprocessor registers are assumed to be epilogue-used; sets to them will
be preserved even if it does not appear that the register is used again
later in the function.
<p>Another note: according to the MIPS spec, coprocessor 1 (if present) is
the FPU. One accesses COP1 registers through standard mips
floating-point support; they are not included in this mechanism.
<p>There is one macro used in defining the MIPS coprocessor interface which
you may want to override in subtargets; it is described below.
<div class="defun">
— Macro: <b>ALL_COP_ADDITIONAL_REGISTER_NAMES</b><var><a name="index-ALL_005fCOP_005fADDITIONAL_005fREGISTER_005fNAMES-4735"></a></var><br>
<blockquote><p>A comma-separated list (with leading comma) of pairs describing the
alternate names of coprocessor registers. The format of each entry should be
<pre class="smallexample"> { <var>alternatename</var>, <var>register_number</var>}
</pre>
<p>Default: empty.
</p></blockquote></div>
<div class="node">
<a name="PCH-Target"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#C_002b_002b-ABI">C++ ABI</a>,
Previous: <a rel="previous" accesskey="p" href="#MIPS-Coprocessors">MIPS Coprocessors</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.28 Parameters for Precompiled Header Validity Checking</h3>
<p><a name="index-parameters_002c-precompiled-headers-4736"></a>
<div class="defun">
— Target Hook: void * <b>TARGET_GET_PCH_VALIDITY</b> (<var>size_t *sz</var>)<var><a name="index-TARGET_005fGET_005fPCH_005fVALIDITY-4737"></a></var><br>
<blockquote><p>This hook returns a pointer to the data needed by
<code>TARGET_PCH_VALID_P</code> and sets
‘<samp><span class="samp">*</span><var>sz</var></samp>’ to the size of the data in bytes.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_PCH_VALID_P</b> (<var>const void *data, size_t sz</var>)<var><a name="index-TARGET_005fPCH_005fVALID_005fP-4738"></a></var><br>
<blockquote><p>This hook checks whether the options used to create a PCH file are
compatible with the current settings. It returns <code>NULL</code>
if so and a suitable error message if not. Error messages will
be presented to the user and must be localized using ‘<samp><span class="samp">_(</span><var>msg</var><span class="samp">)</span></samp>’.
<p><var>data</var> is the data that was returned by <code>TARGET_GET_PCH_VALIDITY</code>
when the PCH file was created and <var>sz</var> is the size of that data in bytes.
It's safe to assume that the data was created by the same version of the
compiler, so no format checking is needed.
<p>The default definition of <code>default_pch_valid_p</code> should be
suitable for most targets.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_CHECK_PCH_TARGET_FLAGS</b> (<var>int pch_flags</var>)<var><a name="index-TARGET_005fCHECK_005fPCH_005fTARGET_005fFLAGS-4739"></a></var><br>
<blockquote><p>If this hook is nonnull, the default implementation of
<code>TARGET_PCH_VALID_P</code> will use it to check for compatible values
of <code>target_flags</code>. <var>pch_flags</var> specifies the value that
<code>target_flags</code> had when the PCH file was created. The return
value is the same as for <code>TARGET_PCH_VALID_P</code>.
</p></blockquote></div>
<div class="node">
<a name="C++-ABI"></a>
<a name="C_002b_002b-ABI"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Named-Address-Spaces">Named Address Spaces</a>,
Previous: <a rel="previous" accesskey="p" href="#PCH-Target">PCH Target</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.29 C++ ABI parameters</h3>
<p><a name="index-parameters_002c-c_002b_002b-abi-4740"></a>
<div class="defun">
— Target Hook: tree <b>TARGET_CXX_GUARD_TYPE</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fGUARD_005fTYPE-4741"></a></var><br>
<blockquote><p>Define this hook to override the integer type used for guard variables.
These are used to implement one-time construction of static objects. The
default is long_long_integer_type_node.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_GUARD_MASK_BIT</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fGUARD_005fMASK_005fBIT-4742"></a></var><br>
<blockquote><p>This hook determines how guard variables are used. It should return
<code>false</code> (the default) if the first byte should be used. A return value of
<code>true</code> indicates that only the least significant bit should be used.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_CXX_GET_COOKIE_SIZE</b> (<var>tree type</var>)<var><a name="index-TARGET_005fCXX_005fGET_005fCOOKIE_005fSIZE-4743"></a></var><br>
<blockquote><p>This hook returns the size of the cookie to use when allocating an array
whose elements have the indicated <var>type</var>. Assumes that it is already
known that a cookie is needed. The default is
<code>max(sizeof (size_t), alignof(type))</code>, as defined in section 2.7 of the
IA64/Generic C++ ABI.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_COOKIE_HAS_SIZE</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fCOOKIE_005fHAS_005fSIZE-4744"></a></var><br>
<blockquote><p>This hook should return <code>true</code> if the element size should be stored in
array cookies. The default is to return <code>false</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_CXX_IMPORT_EXPORT_CLASS</b> (<var>tree type, int import_export</var>)<var><a name="index-TARGET_005fCXX_005fIMPORT_005fEXPORT_005fCLASS-4745"></a></var><br>
<blockquote><p>If defined by a backend this hook allows the decision made to export
class <var>type</var> to be overruled. Upon entry <var>import_export</var>
will contain 1 if the class is going to be exported, −1 if it is going
to be imported and 0 otherwise. This function should return the
modified value and perform any other actions necessary to support the
backend's targeted operating system.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_CDTOR_RETURNS_THIS</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fCDTOR_005fRETURNS_005fTHIS-4746"></a></var><br>
<blockquote><p>This hook should return <code>true</code> if constructors and destructors return
the address of the object created/destroyed. The default is to return
<code>false</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_KEY_METHOD_MAY_BE_INLINE</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fKEY_005fMETHOD_005fMAY_005fBE_005fINLINE-4747"></a></var><br>
<blockquote><p>This hook returns true if the key method for a class (i.e., the method
which, if defined in the current translation unit, causes the virtual
table to be emitted) may be an inline function. Under the standard
Itanium C++ ABI the key method may be an inline function so long as
the function is not declared inline in the class definition. Under
some variants of the ABI, an inline function can never be the key
method. The default is to return <code>true</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY</b> (<var>tree decl</var>)<var><a name="index-TARGET_005fCXX_005fDETERMINE_005fCLASS_005fDATA_005fVISIBILITY-4748"></a></var><br>
<blockquote><p><var>decl</var> is a virtual table, virtual table table, typeinfo object, or other similar implicit class data object that will be emitted with external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook to set <code>DECL_VISIBILITY</code> and <code>DECL_VISIBILITY_SPECIFIED</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fCLASS_005fDATA_005fALWAYS_005fCOMDAT-4749"></a></var><br>
<blockquote><p>This hook returns true (the default) if virtual tables and other
similar implicit class data objects are always COMDAT if they have
external linkage. If this hook returns false, then class data for
classes whose virtual table will be emitted in only one translation
unit will not be COMDAT.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_LIBRARY_RTTI_COMDAT</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fLIBRARY_005fRTTI_005fCOMDAT-4750"></a></var><br>
<blockquote><p>This hook returns true (the default) if the RTTI information for
the basic types which is defined in the C++ runtime should always
be COMDAT, false if it should not be COMDAT.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_USE_AEABI_ATEXIT</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fUSE_005fAEABI_005fATEXIT-4751"></a></var><br>
<blockquote><p>This hook returns true if <code>__aeabi_atexit</code> (as defined by the ARM EABI)
should be used to register static destructors when <samp><span class="option">-fuse-cxa-atexit</span></samp>
is in effect. The default is to return false to use <code>__cxa_atexit</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT</b> (<var>void</var>)<var><a name="index-TARGET_005fCXX_005fUSE_005fATEXIT_005fFOR_005fCXA_005fATEXIT-4752"></a></var><br>
<blockquote><p>This hook returns true if the target <code>atexit</code> function can be used
in the same manner as <code>__cxa_atexit</code> to register C++ static
destructors. This requires that <code>atexit</code>-registered functions in
shared libraries are run in the correct order when the libraries are
unloaded. The default is to return false.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_CXX_ADJUST_CLASS_AT_DEFINITION</b> (<var>tree type</var>)<var><a name="index-TARGET_005fCXX_005fADJUST_005fCLASS_005fAT_005fDEFINITION-4753"></a></var><br>
<blockquote><p><var>type</var> is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just been defined. Use this hook to make adjustments to the class (eg, tweak visibility or perform any other required target modifications).
</p></blockquote></div>
<div class="node">
<a name="Named-Address-Spaces"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Misc">Misc</a>,
Previous: <a rel="previous" accesskey="p" href="#C_002b_002b-ABI">C++ ABI</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.30 Adding support for named address spaces</h3>
<p><a name="index-named-address-spaces-4754"></a>
The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275
standards committee, <cite>Programming Languages - C - Extensions to
support embedded processors</cite>, specifies a syntax for embedded
processors to specify alternate address spaces. You can configure a
GCC port to support section 5.1 of the draft report to add support for
address spaces other than the default address space. These address
spaces are new keywords that are similar to the <code>volatile</code> and
<code>const</code> type attributes.
<p>Pointers to named address spaces can have a different size than
pointers to the generic address space.
<p>For example, the SPU port uses the <code>__ea</code> address space to refer
to memory in the host processor, rather than memory local to the SPU
processor. Access to memory in the <code>__ea</code> address space involves
issuing DMA operations to move data between the host processor and the
local processor memory address space. Pointers in the <code>__ea</code>
address space are either 32 bits or 64 bits based on the
<samp><span class="option">-mea32</span></samp> or <samp><span class="option">-mea64</span></samp> switches (native SPU pointers are
always 32 bits).
<p>Internally, address spaces are represented as a small integer in the
range 0 to 15 with address space 0 being reserved for the generic
address space.
<p>To register a named address space qualifier keyword with the C front end,
the target may call the <code>c_register_addr_space</code> routine. For example,
the SPU port uses the following to declare <code>__ea</code> as the keyword for
named address space #1:
<pre class="smallexample"> #define ADDR_SPACE_EA 1
c_register_addr_space ("__ea", ADDR_SPACE_EA);
</pre>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_ADDR_SPACE_POINTER_MODE</b> (<var>addr_space_t address_space</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fPOINTER_005fMODE-4755"></a></var><br>
<blockquote><p>Define this to return the machine mode to use for pointers to
<var>address_space</var> if the target supports named address spaces.
The default version of this hook returns <code>ptr_mode</code> for the
generic address space only.
</p></blockquote></div>
<div class="defun">
— Target Hook: enum machine_mode <b>TARGET_ADDR_SPACE_ADDRESS_MODE</b> (<var>addr_space_t address_space</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fADDRESS_005fMODE-4756"></a></var><br>
<blockquote><p>Define this to return the machine mode to use for addresses in
<var>address_space</var> if the target supports named address spaces.
The default version of this hook returns <code>Pmode</code> for the
generic address space only.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ADDR_SPACE_VALID_POINTER_MODE</b> (<var>enum machine_mode mode, addr_space_t as</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fVALID_005fPOINTER_005fMODE-4757"></a></var><br>
<blockquote><p>Define this to return nonzero if the port can handle pointers
with machine mode <var>mode</var> to address space <var>as</var>. This target
hook is the same as the <code>TARGET_VALID_POINTER_MODE</code> target hook,
except that it includes explicit named address space support. The default
version of this hook returns true for the modes returned by either the
<code>TARGET_ADDR_SPACE_POINTER_MODE</code> or <code>TARGET_ADDR_SPACE_ADDRESS_MODE</code>
target hooks for the given address space.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P</b> (<var>enum machine_mode mode, rtx exp, bool strict, addr_space_t as</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fLEGITIMATE_005fADDRESS_005fP-4758"></a></var><br>
<blockquote><p>Define this to return true if <var>exp</var> is a valid address for mode
<var>mode</var> in the named address space <var>as</var>. The <var>strict</var>
parameter says whether strict addressing is in effect after reload has
finished. This target hook is the same as the
<code>TARGET_LEGITIMATE_ADDRESS_P</code> target hook, except that it includes
explicit named address space support.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS</b> (<var>rtx x, rtx oldx, enum machine_mode mode, addr_space_t as</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fLEGITIMIZE_005fADDRESS-4759"></a></var><br>
<blockquote><p>Define this to modify an invalid address <var>x</var> to be a valid address
with mode <var>mode</var> in the named address space <var>as</var>. This target
hook is the same as the <code>TARGET_LEGITIMIZE_ADDRESS</code> target hook,
except that it includes explicit named address space support.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ADDR_SPACE_SUBSET_P</b> (<var>addr_space_t superset, addr_space_t subset</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fSUBSET_005fP-4760"></a></var><br>
<blockquote><p>Define this to return whether the <var>subset</var> named address space is
contained within the <var>superset</var> named address space. Pointers to
a named address space that is a subset of another named address space
will be converted automatically without a cast if used together in
arithmetic operations. Pointers to a superset address space can be
converted to pointers to a subset address space via explicit casts.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_ADDR_SPACE_CONVERT</b> (<var>rtx op, tree from_type, tree to_type</var>)<var><a name="index-TARGET_005fADDR_005fSPACE_005fCONVERT-4761"></a></var><br>
<blockquote><p>Define this to convert the pointer expression represented by the RTL
<var>op</var> with type <var>from_type</var> that points to a named address
space to a new pointer expression with type <var>to_type</var> that points
to a different named address space. When this hook it called, it is
guaranteed that one of the two address spaces is a subset of the other,
as determined by the <code>TARGET_ADDR_SPACE_SUBSET_P</code> target hook.
</p></blockquote></div>
<div class="node">
<a name="Misc"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Named-Address-Spaces">Named Address Spaces</a>,
Up: <a rel="up" accesskey="u" href="#Target-Macros">Target Macros</a>
</div>
<h3 class="section">17.31 Miscellaneous Parameters</h3>
<p><a name="index-parameters_002c-miscellaneous-4762"></a>
<!-- prevent bad page break with this line -->
Here are several miscellaneous parameters.
<div class="defun">
— Macro: <b>HAS_LONG_COND_BRANCH</b><var><a name="index-HAS_005fLONG_005fCOND_005fBRANCH-4763"></a></var><br>
<blockquote><p>Define this boolean macro to indicate whether or not your architecture
has conditional branches that can span all of memory. It is used in
conjunction with an optimization that partitions hot and cold basic
blocks into separate sections of the executable. If this macro is
set to false, gcc will convert any conditional branches that attempt
to cross between sections into unconditional branches or indirect jumps.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HAS_LONG_UNCOND_BRANCH</b><var><a name="index-HAS_005fLONG_005fUNCOND_005fBRANCH-4764"></a></var><br>
<blockquote><p>Define this boolean macro to indicate whether or not your architecture
has unconditional branches that can span all of memory. It is used in
conjunction with an optimization that partitions hot and cold basic
blocks into separate sections of the executable. If this macro is
set to false, gcc will convert any unconditional branches that attempt
to cross between sections into indirect jumps.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CASE_VECTOR_MODE</b><var><a name="index-CASE_005fVECTOR_005fMODE-4765"></a></var><br>
<blockquote><p>An alias for a machine mode name. This is the machine mode that
elements of a jump-table should have.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CASE_VECTOR_SHORTEN_MODE</b> (<var>min_offset, max_offset, body</var>)<var><a name="index-CASE_005fVECTOR_005fSHORTEN_005fMODE-4766"></a></var><br>
<blockquote><p>Optional: return the preferred mode for an <code>addr_diff_vec</code>
when the minimum and maximum offset are known. If you define this,
it enables extra code in branch shortening to deal with <code>addr_diff_vec</code>.
To make this work, you also have to define <code>INSN_ALIGN</code> and
make the alignment for <code>addr_diff_vec</code> explicit.
The <var>body</var> argument is provided so that the offset_unsigned and scale
flags can be updated.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CASE_VECTOR_PC_RELATIVE</b><var><a name="index-CASE_005fVECTOR_005fPC_005fRELATIVE-4767"></a></var><br>
<blockquote><p>Define this macro to be a C expression to indicate when jump-tables
should contain relative addresses. You need not define this macro if
jump-tables never contain relative addresses, or jump-tables should
contain relative addresses only when <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fPIC</span></samp>
is in effect.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_CASE_VALUES_THRESHOLD</b> (<var>void</var>)<var><a name="index-TARGET_005fCASE_005fVALUES_005fTHRESHOLD-4768"></a></var><br>
<blockquote><p>This function return the smallest number of different values for which it
is best to use a jump-table instead of a tree of conditional branches.
The default is four for machines with a <code>casesi</code> instruction and
five otherwise. This is best for most machines.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CASE_USE_BIT_TESTS</b><var><a name="index-CASE_005fUSE_005fBIT_005fTESTS-4769"></a></var><br>
<blockquote><p>Define this macro to be a C expression to indicate whether C switch
statements may be implemented by a sequence of bit tests. This is
advantageous on processors that can efficiently implement left shift
of 1 by the number of bits held in a register, but inappropriate on
targets that would require a loop. By default, this macro returns
<code>true</code> if the target defines an <code>ashlsi3</code> pattern, and
<code>false</code> otherwise.
</p></blockquote></div>
<div class="defun">
— Macro: <b>WORD_REGISTER_OPERATIONS</b><var><a name="index-WORD_005fREGISTER_005fOPERATIONS-4770"></a></var><br>
<blockquote><p>Define this macro if operations between registers with integral mode
smaller than a word are always performed on the entire register.
Most RISC machines have this property and most CISC machines do not.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LOAD_EXTEND_OP</b> (<var>mem_mode</var>)<var><a name="index-LOAD_005fEXTEND_005fOP-4771"></a></var><br>
<blockquote><p>Define this macro to be a C expression indicating when insns that read
memory in <var>mem_mode</var>, an integral mode narrower than a word, set the
bits outside of <var>mem_mode</var> to be either the sign-extension or the
zero-extension of the data read. Return <code>SIGN_EXTEND</code> for values
of <var>mem_mode</var> for which the
insn sign-extends, <code>ZERO_EXTEND</code> for which it zero-extends, and
<code>UNKNOWN</code> for other modes.
<p>This macro is not called with <var>mem_mode</var> non-integral or with a width
greater than or equal to <code>BITS_PER_WORD</code>, so you may return any
value in this case. Do not define this macro if it would always return
<code>UNKNOWN</code>. On machines where this macro is defined, you will normally
define it as the constant <code>SIGN_EXTEND</code> or <code>ZERO_EXTEND</code>.
<p>You may return a non-<code>UNKNOWN</code> value even if for some hard registers
the sign extension is not performed, if for the <code>REGNO_REG_CLASS</code>
of these hard registers <code>CANNOT_CHANGE_MODE_CLASS</code> returns nonzero
when the <var>from</var> mode is <var>mem_mode</var> and the <var>to</var> mode is any
integral mode larger than this but not larger than <code>word_mode</code>.
<p>You must return <code>UNKNOWN</code> if for some hard registers that allow this
mode, <code>CANNOT_CHANGE_MODE_CLASS</code> says that they cannot change to
<code>word_mode</code>, but that they can change to another integral mode that
is larger then <var>mem_mode</var> but still smaller than <code>word_mode</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHORT_IMMEDIATES_SIGN_EXTEND</b><var><a name="index-SHORT_005fIMMEDIATES_005fSIGN_005fEXTEND-4772"></a></var><br>
<blockquote><p>Define this macro if loading short immediate values into registers sign
extends.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FIXUNS_TRUNC_LIKE_FIX_TRUNC</b><var><a name="index-FIXUNS_005fTRUNC_005fLIKE_005fFIX_005fTRUNC-4773"></a></var><br>
<blockquote><p>Define this macro if the same instructions that convert a floating
point number to a signed fixed point number also convert validly to an
unsigned one.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned int <b>TARGET_MIN_DIVISIONS_FOR_RECIP_MUL</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fMIN_005fDIVISIONS_005fFOR_005fRECIP_005fMUL-4774"></a></var><br>
<blockquote><p>When <samp><span class="option">-ffast-math</span></samp> is in effect, GCC tries to optimize
divisions by the same divisor, by turning them into multiplications by
the reciprocal. This target hook specifies the minimum number of divisions
that should be there for GCC to perform the optimization for a variable
of mode <var>mode</var>. The default implementation returns 3 if the machine
has an instruction for the division, and 2 if it does not.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MOVE_MAX</b><var><a name="index-MOVE_005fMAX-4775"></a></var><br>
<blockquote><p>The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_MOVE_MAX</b><var><a name="index-MAX_005fMOVE_005fMAX-4776"></a></var><br>
<blockquote><p>The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. If this
is undefined, the default is <code>MOVE_MAX</code>. Otherwise, it is the
constant value that is the largest value that <code>MOVE_MAX</code> can have
at run-time.
</p></blockquote></div>
<div class="defun">
— Macro: <b>SHIFT_COUNT_TRUNCATED</b><var><a name="index-SHIFT_005fCOUNT_005fTRUNCATED-4777"></a></var><br>
<blockquote><p>A C expression that is nonzero if on this machine the number of bits
actually used for the count of a shift operation is equal to the number
of bits needed to represent the size of the object being shifted. When
this macro is nonzero, the compiler will assume that it is safe to omit
a sign-extend, zero-extend, and certain bitwise `and' instructions that
truncates the count of a shift operation. On machines that have
instructions that act on bit-fields at variable positions, which may
include `bit test' instructions, a nonzero <code>SHIFT_COUNT_TRUNCATED</code>
also enables deletion of truncations of the values that serve as
arguments to bit-field instructions.
<p>If both types of instructions truncate the count (for shifts) and
position (for bit-field operations), or if no variable-position bit-field
instructions exist, you should define this macro.
<p>However, on some machines, such as the 80386 and the 680x0, truncation
only applies to shift operations and not the (real or pretended)
bit-field operations. Define <code>SHIFT_COUNT_TRUNCATED</code> to be zero on
such machines. Instead, add patterns to the <samp><span class="file">md</span></samp> file that include
the implied truncation of the shift instructions.
<p>You need not define this macro if it would always have the value of zero.
</p></blockquote></div>
<p><a name="TARGET_005fSHIFT_005fTRUNCATION_005fMASK"></a>
<div class="defun">
— Target Hook: unsigned HOST_WIDE_INT <b>TARGET_SHIFT_TRUNCATION_MASK</b> (<var>enum machine_mode mode</var>)<var><a name="index-TARGET_005fSHIFT_005fTRUNCATION_005fMASK-4778"></a></var><br>
<blockquote><p>This function describes how the standard shift patterns for <var>mode</var>
deal with shifts by negative amounts or by more than the width of the mode.
See <a href="#shift-patterns">shift patterns</a>.
<p>On many machines, the shift patterns will apply a mask <var>m</var> to the
shift count, meaning that a fixed-width shift of <var>x</var> by <var>y</var> is
equivalent to an arbitrary-width shift of <var>x</var> by <var>y & m</var>. If
this is true for mode <var>mode</var>, the function should return <var>m</var>,
otherwise it should return 0. A return value of 0 indicates that no
particular behavior is guaranteed.
<p>Note that, unlike <code>SHIFT_COUNT_TRUNCATED</code>, this function does
<em>not</em> apply to general shift rtxes; it applies only to instructions
that are generated by the named shift patterns.
<p>The default implementation of this function returns
<code>GET_MODE_BITSIZE (</code><var>mode</var><code>) - 1</code> if <code>SHIFT_COUNT_TRUNCATED</code>
and 0 otherwise. This definition is always safe, but if
<code>SHIFT_COUNT_TRUNCATED</code> is false, and some shift patterns
nevertheless truncate the shift count, you may get better code
by overriding it.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TRULY_NOOP_TRUNCATION</b> (<var>outprec, inprec</var>)<var><a name="index-TRULY_005fNOOP_005fTRUNCATION-4779"></a></var><br>
<blockquote><p>A C expression which is nonzero if on this machine it is safe to
“convert” an integer of <var>inprec</var> bits to one of <var>outprec</var>
bits (where <var>outprec</var> is smaller than <var>inprec</var>) by merely
operating on it as if it had only <var>outprec</var> bits.
<p>On many machines, this expression can be 1.
<!-- rearranged this, removed the phrase "it is reported that". this was -->
<!-- to fix an overfull hbox. -mew 10feb93 -->
<p>When <code>TRULY_NOOP_TRUNCATION</code> returns 1 for a pair of sizes for
modes for which <code>MODES_TIEABLE_P</code> is 0, suboptimal code can result.
If this is the case, making <code>TRULY_NOOP_TRUNCATION</code> return 0 in
such cases may improve things.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_MODE_REP_EXTENDED</b> (<var>enum machine_mode mode, enum machine_mode rep_mode</var>)<var><a name="index-TARGET_005fMODE_005fREP_005fEXTENDED-4780"></a></var><br>
<blockquote><p>The representation of an integral mode can be such that the values
are always extended to a wider integral mode. Return
<code>SIGN_EXTEND</code> if values of <var>mode</var> are represented in
sign-extended form to <var>rep_mode</var>. Return <code>UNKNOWN</code>
otherwise. (Currently, none of the targets use zero-extended
representation this way so unlike <code>LOAD_EXTEND_OP</code>,
<code>TARGET_MODE_REP_EXTENDED</code> is expected to return either
<code>SIGN_EXTEND</code> or <code>UNKNOWN</code>. Also no target extends
<var>mode</var> to <var>rep_mode</var> so that <var>rep_mode</var> is not the next
widest integral mode and currently we take advantage of this fact.)
<p>Similarly to <code>LOAD_EXTEND_OP</code> you may return a non-<code>UNKNOWN</code>
value even if the extension is not performed on certain hard registers
as long as for the <code>REGNO_REG_CLASS</code> of these hard registers
<code>CANNOT_CHANGE_MODE_CLASS</code> returns nonzero.
<p>Note that <code>TARGET_MODE_REP_EXTENDED</code> and <code>LOAD_EXTEND_OP</code>
describe two related properties. If you define
<code>TARGET_MODE_REP_EXTENDED (mode, word_mode)</code> you probably also want
to define <code>LOAD_EXTEND_OP (mode)</code> to return the same type of
extension.
<p>In order to enforce the representation of <code>mode</code>,
<code>TRULY_NOOP_TRUNCATION</code> should return false when truncating to
<code>mode</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STORE_FLAG_VALUE</b><var><a name="index-STORE_005fFLAG_005fVALUE-4781"></a></var><br>
<blockquote><p>A C expression describing the value returned by a comparison operator
with an integral mode and stored by a store-flag instruction
(‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’) when the condition is true. This description must
apply to <em>all</em> the ‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’ patterns and all the
comparison operators whose results have a <code>MODE_INT</code> mode.
<p>A value of 1 or −1 means that the instruction implementing the
comparison operator returns exactly 1 or −1 when the comparison is true
and 0 when the comparison is false. Otherwise, the value indicates
which bits of the result are guaranteed to be 1 when the comparison is
true. This value is interpreted in the mode of the comparison
operation, which is given by the mode of the first operand in the
‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’ pattern. Either the low bit or the sign bit of
<code>STORE_FLAG_VALUE</code> be on. Presently, only those bits are used by
the compiler.
<p>If <code>STORE_FLAG_VALUE</code> is neither 1 or −1, the compiler will
generate code that depends only on the specified bits. It can also
replace comparison operators with equivalent operations if they cause
the required bits to be set, even if the remaining bits are undefined.
For example, on a machine whose comparison operators return an
<code>SImode</code> value and where <code>STORE_FLAG_VALUE</code> is defined as
‘<samp><span class="samp">0x80000000</span></samp>’, saying that just the sign bit is relevant, the
expression
<pre class="smallexample"> (ne:SI (and:SI <var>x</var> (const_int <var>power-of-2</var>)) (const_int 0))
</pre>
<p class="noindent">can be converted to
<pre class="smallexample"> (ashift:SI <var>x</var> (const_int <var>n</var>))
</pre>
<p class="noindent">where <var>n</var> is the appropriate shift count to move the bit being
tested into the sign bit.
<p>There is no way to describe a machine that always sets the low-order bit
for a true value, but does not guarantee the value of any other bits,
but we do not know of any machine that has such an instruction. If you
are trying to port GCC to such a machine, include an instruction to
perform a logical-and of the result with 1 in the pattern for the
comparison operators and let us know at <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>.
<p>Often, a machine will have multiple instructions that obtain a value
from a comparison (or the condition codes). Here are rules to guide the
choice of value for <code>STORE_FLAG_VALUE</code>, and hence the instructions
to be used:
<ul>
<li>Use the shortest sequence that yields a valid definition for
<code>STORE_FLAG_VALUE</code>. It is more efficient for the compiler to
“normalize” the value (convert it to, e.g., 1 or 0) than for the
comparison operators to do so because there may be opportunities to
combine the normalization with other operations.
<li>For equal-length sequences, use a value of 1 or −1, with −1 being
slightly preferred on machines with expensive jumps and 1 preferred on
other machines.
<li>As a second choice, choose a value of ‘<samp><span class="samp">0x80000001</span></samp>’ if instructions
exist that set both the sign and low-order bits but do not define the
others.
<li>Otherwise, use a value of ‘<samp><span class="samp">0x80000000</span></samp>’.
</ul>
<p>Many machines can produce both the value chosen for
<code>STORE_FLAG_VALUE</code> and its negation in the same number of
instructions. On those machines, you should also define a pattern for
those cases, e.g., one matching
<pre class="smallexample"> (set <var>A</var> (neg:<var>m</var> (ne:<var>m</var> <var>B</var> <var>C</var>)))
</pre>
<p>Some machines can also perform <code>and</code> or <code>plus</code> operations on
condition code values with less instructions than the corresponding
‘<samp><span class="samp">cstore</span><var>mode</var><span class="samp">4</span></samp>’ insn followed by <code>and</code> or <code>plus</code>. On those
machines, define the appropriate patterns. Use the names <code>incscc</code>
and <code>decscc</code>, respectively, for the patterns which perform
<code>plus</code> or <code>minus</code> operations on condition code values. See
<samp><span class="file">rs6000.md</span></samp> for some examples. The GNU Superoptimizer can be used to
find such instruction sequences on other machines.
<p>If this macro is not defined, the default value, 1, is used. You need
not define <code>STORE_FLAG_VALUE</code> if the machine has no store-flag
instructions, or if the value generated by these instructions is 1.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FLOAT_STORE_FLAG_VALUE</b> (<var>mode</var>)<var><a name="index-FLOAT_005fSTORE_005fFLAG_005fVALUE-4782"></a></var><br>
<blockquote><p>A C expression that gives a nonzero <code>REAL_VALUE_TYPE</code> value that is
returned when comparison operators with floating-point results are true.
Define this macro on machines that have comparison operations that return
floating-point values. If there are no such operations, do not define
this macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>VECTOR_STORE_FLAG_VALUE</b> (<var>mode</var>)<var><a name="index-VECTOR_005fSTORE_005fFLAG_005fVALUE-4783"></a></var><br>
<blockquote><p>A C expression that gives a rtx representing the nonzero true element
for vector comparisons. The returned rtx should be valid for the inner
mode of <var>mode</var> which is guaranteed to be a vector mode. Define
this macro on machines that have vector comparison operations that
return a vector result. If there are no such operations, do not define
this macro. Typically, this macro is defined as <code>const1_rtx</code> or
<code>constm1_rtx</code>. This macro may return <code>NULL_RTX</code> to prevent
the compiler optimizing such vector comparison operations for the
given mode.
</p></blockquote></div>
<div class="defun">
— Macro: <b>CLZ_DEFINED_VALUE_AT_ZERO</b> (<var>mode, value</var>)<var><a name="index-CLZ_005fDEFINED_005fVALUE_005fAT_005fZERO-4784"></a></var><br>
— Macro: <b>CTZ_DEFINED_VALUE_AT_ZERO</b> (<var>mode, value</var>)<var><a name="index-CTZ_005fDEFINED_005fVALUE_005fAT_005fZERO-4785"></a></var><br>
<blockquote><p>A C expression that indicates whether the architecture defines a value
for <code>clz</code> or <code>ctz</code> with a zero operand.
A result of <code>0</code> indicates the value is undefined.
If the value is defined for only the RTL expression, the macro should
evaluate to <code>1</code>; if the value applies also to the corresponding optab
entry (which is normally the case if it expands directly into
the corresponding RTL), then the macro should evaluate to <code>2</code>.
In the cases where the value is defined, <var>value</var> should be set to
this value.
<p>If this macro is not defined, the value of <code>clz</code> or
<code>ctz</code> at zero is assumed to be undefined.
<p>This macro must be defined if the target's expansion for <code>ffs</code>
relies on a particular value to get correct results. Otherwise it
is not necessary, though it may be used to optimize some corner cases, and
to provide a default expansion for the <code>ffs</code> optab.
<p>Note that regardless of this macro the “definedness” of <code>clz</code>
and <code>ctz</code> at zero do <em>not</em> extend to the builtin functions
visible to the user. Thus one may be free to adjust the value at will
to match the target expansion of these operations without fear of
breaking the API.
</p></blockquote></div>
<div class="defun">
— Macro: <b>Pmode</b><var><a name="index-Pmode-4786"></a></var><br>
<blockquote><p>An alias for the machine mode for pointers. On most machines, define
this to be the integer mode corresponding to the width of a hardware
pointer; <code>SImode</code> on 32-bit machine or <code>DImode</code> on 64-bit machines.
On some machines you must define this to be one of the partial integer
modes, such as <code>PSImode</code>.
<p>The width of <code>Pmode</code> must be at least as large as the value of
<code>POINTER_SIZE</code>. If it is not equal, you must define the macro
<code>POINTERS_EXTEND_UNSIGNED</code> to specify how pointers are extended
to <code>Pmode</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>FUNCTION_MODE</b><var><a name="index-FUNCTION_005fMODE-4787"></a></var><br>
<blockquote><p>An alias for the machine mode used for memory references to functions
being called, in <code>call</code> RTL expressions. On most CISC machines,
where an instruction can begin at any byte address, this should be
<code>QImode</code>. On most RISC machines, where all instructions have fixed
size and alignment, this should be a mode with the same size and alignment
as the machine instruction words - typically <code>SImode</code> or <code>HImode</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>STDC_0_IN_SYSTEM_HEADERS</b><var><a name="index-STDC_005f0_005fIN_005fSYSTEM_005fHEADERS-4788"></a></var><br>
<blockquote><p>In normal operation, the preprocessor expands <code>__STDC__</code> to the
constant 1, to signify that GCC conforms to ISO Standard C. On some
hosts, like Solaris, the system compiler uses a different convention,
where <code>__STDC__</code> is normally 0, but is 1 if the user specifies
strict conformance to the C Standard.
<p>Defining <code>STDC_0_IN_SYSTEM_HEADERS</code> makes GNU CPP follows the host
convention when processing system header files, but when processing user
files <code>__STDC__</code> will always expand to 1.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_IMPLICIT_EXTERN_C</b><var><a name="index-NO_005fIMPLICIT_005fEXTERN_005fC-4789"></a></var><br>
<blockquote><p>Define this macro if the system header files support C++ as well as C.
This macro inhibits the usual method of using system header files in
C++, which is to pretend that the file's contents are enclosed in
‘<samp><span class="samp">extern "C" {...}</span></samp>’.
</p></blockquote></div>
<p><a name="index-g_t_0023pragma-4790"></a><a name="index-pragma-4791"></a>
<div class="defun">
— Macro: <b>REGISTER_TARGET_PRAGMAS</b> ()<var><a name="index-REGISTER_005fTARGET_005fPRAGMAS-4792"></a></var><br>
<blockquote><p>Define this macro if you want to implement any target-specific pragmas.
If defined, it is a C expression which makes a series of calls to
<code>c_register_pragma</code> or <code>c_register_pragma_with_expansion</code>
for each pragma. The macro may also do any
setup required for the pragmas.
<p>The primary reason to define this macro is to provide compatibility with
other compilers for the same target. In general, we discourage
definition of target-specific pragmas for GCC.
<p>If the pragma can be implemented by attributes then you should consider
defining the target hook ‘<samp><span class="samp">TARGET_INSERT_ATTRIBUTES</span></samp>’ as well.
<p>Preprocessor macros that appear on pragma lines are not expanded. All
‘<samp><span class="samp">#pragma</span></samp>’ directives that do not match any registered pragma are
silently ignored, unless the user specifies <samp><span class="option">-Wunknown-pragmas</span></samp>.
</p></blockquote></div>
<div class="defun">
— Function: void <b>c_register_pragma</b> (<var>const char *space, const char *name, void </var>(<var>*callback</var>) (<var>struct cpp_reader *</var>))<var><a name="index-c_005fregister_005fpragma-4793"></a></var><br>
— Function: void <b>c_register_pragma_with_expansion</b> (<var>const char *space, const char *name, void </var>(<var>*callback</var>) (<var>struct cpp_reader *</var>))<var><a name="index-c_005fregister_005fpragma_005fwith_005fexpansion-4794"></a></var><br>
<blockquote>
<p>Each call to <code>c_register_pragma</code> or
<code>c_register_pragma_with_expansion</code> establishes one pragma. The
<var>callback</var> routine will be called when the preprocessor encounters a
pragma of the form
<pre class="smallexample"> #pragma [<var>space</var>] <var>name</var> ...
</pre>
<p><var>space</var> is the case-sensitive namespace of the pragma, or
<code>NULL</code> to put the pragma in the global namespace. The callback
routine receives <var>pfile</var> as its first argument, which can be passed
on to cpplib's functions if necessary. You can lex tokens after the
<var>name</var> by calling <code>pragma_lex</code>. Tokens that are not read by the
callback will be silently ignored. The end of the line is indicated by
a token of type <code>CPP_EOF</code>. Macro expansion occurs on the
arguments of pragmas registered with
<code>c_register_pragma_with_expansion</code> but not on the arguments of
pragmas registered with <code>c_register_pragma</code>.
<p>Note that the use of <code>pragma_lex</code> is specific to the C and C++
compilers. It will not work in the Java or Fortran compilers, or any
other language compilers for that matter. Thus if <code>pragma_lex</code> is going
to be called from target-specific code, it must only be done so when
building the C and C++ compilers. This can be done by defining the
variables <code>c_target_objs</code> and <code>cxx_target_objs</code> in the
target entry in the <samp><span class="file">config.gcc</span></samp> file. These variables should name
the target-specific, language-specific object file which contains the
code that uses <code>pragma_lex</code>. Note it will also be necessary to add a
rule to the makefile fragment pointed to by <code>tmake_file</code> that shows
how to build this object file.
</p></blockquote></div>
<div class="defun">
— Macro: <b>HANDLE_PRAGMA_PACK_WITH_EXPANSION</b><var><a name="index-HANDLE_005fPRAGMA_005fPACK_005fWITH_005fEXPANSION-4795"></a></var><br>
<blockquote><p>Define this macro if macros should be expanded in the
arguments of ‘<samp><span class="samp">#pragma pack</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HANDLE_PRAGMA_EXTERN_PREFIX</b><var><a name="index-TARGET_005fHANDLE_005fPRAGMA_005fEXTERN_005fPREFIX-4796"></a></var><br>
<blockquote><p>True if <code>#pragma extern_prefix</code> is to be supported.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_DEFAULT_PACK_STRUCT</b><var><a name="index-TARGET_005fDEFAULT_005fPACK_005fSTRUCT-4797"></a></var><br>
<blockquote><p>If your target requires a structure packing default other than 0 (meaning
the machine default), define this macro to the necessary value (in bytes).
This must be a value that would also be valid to use with
‘<samp><span class="samp">#pragma pack()</span></samp>’ (that is, a small power of two).
</p></blockquote></div>
<div class="defun">
— Macro: <b>DOLLARS_IN_IDENTIFIERS</b><var><a name="index-DOLLARS_005fIN_005fIDENTIFIERS-4798"></a></var><br>
<blockquote><p>Define this macro to control use of the character ‘<samp><span class="samp">$</span></samp>’ in
identifier names for the C family of languages. 0 means ‘<samp><span class="samp">$</span></samp>’ is
not allowed by default; 1 means it is allowed. 1 is the default;
there is no need to define this macro in that case.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DOLLAR_IN_LABEL</b><var><a name="index-NO_005fDOLLAR_005fIN_005fLABEL-4799"></a></var><br>
<blockquote><p>Define this macro if the assembler does not accept the character
‘<samp><span class="samp">$</span></samp>’ in label names. By default constructors and destructors in
G++ have ‘<samp><span class="samp">$</span></samp>’ in the identifiers. If this macro is defined,
‘<samp><span class="samp">.</span></samp>’ is used instead.
</p></blockquote></div>
<div class="defun">
— Macro: <b>NO_DOT_IN_LABEL</b><var><a name="index-NO_005fDOT_005fIN_005fLABEL-4800"></a></var><br>
<blockquote><p>Define this macro if the assembler does not accept the character
‘<samp><span class="samp">.</span></samp>’ in label names. By default constructors and destructors in G++
have names that use ‘<samp><span class="samp">.</span></samp>’. If this macro is defined, these names
are rewritten to avoid ‘<samp><span class="samp">.</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INSN_SETS_ARE_DELAYED</b> (<var>insn</var>)<var><a name="index-INSN_005fSETS_005fARE_005fDELAYED-4801"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero if it is safe for the
delay slot scheduler to place instructions in the delay slot of <var>insn</var>,
even if they appear to use a resource set or clobbered in <var>insn</var>.
<var>insn</var> is always a <code>jump_insn</code> or an <code>insn</code>; GCC knows that
every <code>call_insn</code> has this behavior. On machines where some <code>insn</code>
or <code>jump_insn</code> is really a function call and hence has this behavior,
you should define this macro.
<p>You need not define this macro if it would always return zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>INSN_REFERENCES_ARE_DELAYED</b> (<var>insn</var>)<var><a name="index-INSN_005fREFERENCES_005fARE_005fDELAYED-4802"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero if it is safe for the
delay slot scheduler to place instructions in the delay slot of <var>insn</var>,
even if they appear to set or clobber a resource referenced in <var>insn</var>.
<var>insn</var> is always a <code>jump_insn</code> or an <code>insn</code>. On machines where
some <code>insn</code> or <code>jump_insn</code> is really a function call and its operands
are registers whose use is actually in the subroutine it calls, you should
define this macro. Doing so allows the delay slot scheduler to move
instructions which copy arguments into the argument registers into the delay
slot of <var>insn</var>.
<p>You need not define this macro if it would always return zero.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MULTIPLE_SYMBOL_SPACES</b><var><a name="index-MULTIPLE_005fSYMBOL_005fSPACES-4803"></a></var><br>
<blockquote><p>Define this macro as a C expression that is nonzero if, in some cases,
global symbols from one translation unit may not be bound to undefined
symbols in another translation unit without user intervention. For
instance, under Microsoft Windows symbols must be explicitly imported
from shared libraries (DLLs).
<p>You need not define this macro if it would always evaluate to zero.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_MD_ASM_CLOBBERS</b> (<var>tree outputs, tree inputs, tree clobbers</var>)<var><a name="index-TARGET_005fMD_005fASM_005fCLOBBERS-4804"></a></var><br>
<blockquote><p>This target hook should add to <var>clobbers</var> <code>STRING_CST</code> trees for
any hard regs the port wishes to automatically clobber for an asm.
It should return the result of the last <code>tree_cons</code> used to add a
clobber. The <var>outputs</var>, <var>inputs</var> and <var>clobber</var> lists are the
corresponding parameters to the asm and may be inspected to avoid
clobbering a register that is an input or output of the asm. You can use
<code>tree_overlaps_hard_reg_set</code>, declared in <samp><span class="file">tree.h</span></samp>, to test
for overlap with regards to asm-declared registers.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MATH_LIBRARY</b><var><a name="index-MATH_005fLIBRARY-4805"></a></var><br>
<blockquote><p>Define this macro as a C string constant for the linker argument to link
in the system math library, minus the initial ‘<samp><span class="samp">"-l"</span></samp>’, or
‘<samp><span class="samp">""</span></samp>’ if the target does not have a
separate math library.
<p>You need only define this macro if the default of ‘<samp><span class="samp">"m"</span></samp>’ is wrong.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBRARY_PATH_ENV</b><var><a name="index-LIBRARY_005fPATH_005fENV-4806"></a></var><br>
<blockquote><p>Define this macro as a C string constant for the environment variable that
specifies where the linker should look for libraries.
<p>You need only define this macro if the default of ‘<samp><span class="samp">"LIBRARY_PATH"</span></samp>’
is wrong.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_POSIX_IO</b><var><a name="index-TARGET_005fPOSIX_005fIO-4807"></a></var><br>
<blockquote><p>Define this macro if the target supports the following POSIX file
functions, access, mkdir and file locking with fcntl / F_SETLKW.
Defining <code>TARGET_POSIX_IO</code> will enable the test coverage code
to use file locking when exiting a program, which avoids race conditions
if the program has forked. It will also create directories at run-time
for cross-profiling.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MAX_CONDITIONAL_EXECUTE</b><var><a name="index-MAX_005fCONDITIONAL_005fEXECUTE-4808"></a></var><br>
<blockquote>
<p>A C expression for the maximum number of instructions to execute via
conditional execution instructions instead of a branch. A value of
<code>BRANCH_COST</code>+1 is the default if the machine does not use cc0, and
1 if it does use cc0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_MODIFY_TESTS</b> (<var>ce_info, true_expr, false_expr</var>)<var><a name="index-IFCVT_005fMODIFY_005fTESTS-4809"></a></var><br>
<blockquote><p>Used if the target needs to perform machine-dependent modifications on the
conditionals used for turning basic blocks into conditionally executed code.
<var>ce_info</var> points to a data structure, <code>struct ce_if_block</code>, which
contains information about the currently processed blocks. <var>true_expr</var>
and <var>false_expr</var> are the tests that are used for converting the
then-block and the else-block, respectively. Set either <var>true_expr</var> or
<var>false_expr</var> to a null pointer if the tests cannot be converted.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_MODIFY_MULTIPLE_TESTS</b> (<var>ce_info, bb, true_expr, false_expr</var>)<var><a name="index-IFCVT_005fMODIFY_005fMULTIPLE_005fTESTS-4810"></a></var><br>
<blockquote><p>Like <code>IFCVT_MODIFY_TESTS</code>, but used when converting more complicated
if-statements into conditions combined by <code>and</code> and <code>or</code> operations.
<var>bb</var> contains the basic block that contains the test that is currently
being processed and about to be turned into a condition.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_MODIFY_INSN</b> (<var>ce_info, pattern, insn</var>)<var><a name="index-IFCVT_005fMODIFY_005fINSN-4811"></a></var><br>
<blockquote><p>A C expression to modify the <var>PATTERN</var> of an <var>INSN</var> that is to
be converted to conditional execution format. <var>ce_info</var> points to
a data structure, <code>struct ce_if_block</code>, which contains information
about the currently processed blocks.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_MODIFY_FINAL</b> (<var>ce_info</var>)<var><a name="index-IFCVT_005fMODIFY_005fFINAL-4812"></a></var><br>
<blockquote><p>A C expression to perform any final machine dependent modifications in
converting code to conditional execution. The involved basic blocks
can be found in the <code>struct ce_if_block</code> structure that is pointed
to by <var>ce_info</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_MODIFY_CANCEL</b> (<var>ce_info</var>)<var><a name="index-IFCVT_005fMODIFY_005fCANCEL-4813"></a></var><br>
<blockquote><p>A C expression to cancel any machine dependent modifications in
converting code to conditional execution. The involved basic blocks
can be found in the <code>struct ce_if_block</code> structure that is pointed
to by <var>ce_info</var>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_INIT_EXTRA_FIELDS</b> (<var>ce_info</var>)<var><a name="index-IFCVT_005fINIT_005fEXTRA_005fFIELDS-4814"></a></var><br>
<blockquote><p>A C expression to initialize any extra fields in a <code>struct ce_if_block</code>
structure, which are defined by the <code>IFCVT_EXTRA_FIELDS</code> macro.
</p></blockquote></div>
<div class="defun">
— Macro: <b>IFCVT_EXTRA_FIELDS</b><var><a name="index-IFCVT_005fEXTRA_005fFIELDS-4815"></a></var><br>
<blockquote><p>If defined, it should expand to a set of field declarations that will be
added to the <code>struct ce_if_block</code> structure. These should be initialized
by the <code>IFCVT_INIT_EXTRA_FIELDS</code> macro.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_MACHINE_DEPENDENT_REORG</b> (<var>void</var>)<var><a name="index-TARGET_005fMACHINE_005fDEPENDENT_005fREORG-4816"></a></var><br>
<blockquote><p>If non-null, this hook performs a target-specific pass over the
instruction stream. The compiler will run it at all optimization levels,
just before the point at which it normally does delayed-branch scheduling.
<p>The exact purpose of the hook varies from target to target. Some use
it to do transformations that are necessary for correctness, such as
laying out in-function constant pools or avoiding hardware hazards.
Others use it as an opportunity to do some machine-dependent optimizations.
<p>You need not implement the hook if it has nothing to do. The default
definition is null.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_INIT_BUILTINS</b> (<var>void</var>)<var><a name="index-TARGET_005fINIT_005fBUILTINS-4817"></a></var><br>
<blockquote><p>Define this hook if you have any machine-specific built-in functions
that need to be defined. It should be a function that performs the
necessary setup.
<p>Machine specific built-in functions can be useful to expand special machine
instructions that would otherwise not normally be generated because
they have no equivalent in the source language (for example, SIMD vector
instructions or prefetch instructions).
<p>To create a built-in function, call the function
<code>lang_hooks.builtin_function</code>
which is defined by the language front end. You can use any type nodes set
up by <code>build_common_tree_nodes</code> and <code>build_common_tree_nodes_2</code>;
only language front ends that use those two functions will call
‘<samp><span class="samp">TARGET_INIT_BUILTINS</span></samp>’.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_BUILTIN_DECL</b> (<var>unsigned code, bool initialize_p</var>)<var><a name="index-TARGET_005fBUILTIN_005fDECL-4818"></a></var><br>
<blockquote><p>Define this hook if you have any machine-specific built-in functions
that need to be defined. It should be a function that returns the
builtin function declaration for the builtin function code <var>code</var>.
If there is no such builtin and it cannot be initialized at this time
if <var>initialize_p</var> is true the function should return <code>NULL_TREE</code>.
If <var>code</var> is out of range the function should return
<code>error_mark_node</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_EXPAND_BUILTIN</b> (<var>tree exp, rtx target, rtx subtarget, enum machine_mode mode, int ignore</var>)<var><a name="index-TARGET_005fEXPAND_005fBUILTIN-4819"></a></var><br>
<blockquote>
<p>Expand a call to a machine specific built-in function that was set up by
‘<samp><span class="samp">TARGET_INIT_BUILTINS</span></samp>’. <var>exp</var> is the expression for the
function call; the result should go to <var>target</var> if that is
convenient, and have mode <var>mode</var> if that is convenient.
<var>subtarget</var> may be used as the target for computing one of
<var>exp</var>'s operands. <var>ignore</var> is nonzero if the value is to be
ignored. This function should return the result of the call to the
built-in function.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_RESOLVE_OVERLOADED_BUILTIN</b> (<var>unsigned int loc, tree fndecl, void *arglist</var>)<var><a name="index-TARGET_005fRESOLVE_005fOVERLOADED_005fBUILTIN-4820"></a></var><br>
<blockquote><p>Select a replacement for a machine specific built-in function that
was set up by ‘<samp><span class="samp">TARGET_INIT_BUILTINS</span></samp>’. This is done
<em>before</em> regular type checking, and so allows the target to
implement a crude form of function overloading. <var>fndecl</var> is the
declaration of the built-in function. <var>arglist</var> is the list of
arguments passed to the built-in function. The result is a
complete expression that implements the operation, usually
another <code>CALL_EXPR</code>.
<var>arglist</var> really has type ‘<samp><span class="samp">VEC(tree,gc)*</span></samp>’
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_FOLD_BUILTIN</b> (<var>tree fndecl, int n_args, tree *argp, bool ignore</var>)<var><a name="index-TARGET_005fFOLD_005fBUILTIN-4821"></a></var><br>
<blockquote><p>Fold a call to a machine specific built-in function that was set up by
‘<samp><span class="samp">TARGET_INIT_BUILTINS</span></samp>’. <var>fndecl</var> is the declaration of the
built-in function. <var>n_args</var> is the number of arguments passed to
the function; the arguments themselves are pointed to by <var>argp</var>.
The result is another tree containing a simplified expression for the
call's result. If <var>ignore</var> is true the value will be ignored.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_WITHIN_DOLOOP</b> (<var>const_rtx insn</var>)<var><a name="index-TARGET_005fINVALID_005fWITHIN_005fDOLOOP-4822"></a></var><br>
<blockquote>
<p>Take an instruction in <var>insn</var> and return NULL if it is valid within a
low-overhead loop, otherwise return a string explaining why doloop
could not be applied.
<p>Many targets use special registers for low-overhead looping. For any
instruction that clobbers these this function should return a string indicating
the reason why the doloop could not be applied.
By default, the RTL loop optimizer does not use a present doloop pattern for
loops containing function calls or branch on table instructions.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MD_CAN_REDIRECT_BRANCH</b> (<var>branch1, branch2</var>)<var><a name="index-MD_005fCAN_005fREDIRECT_005fBRANCH-4823"></a></var><br>
<blockquote>
<p>Take a branch insn in <var>branch1</var> and another in <var>branch2</var>.
Return true if redirecting <var>branch1</var> to the destination of
<var>branch2</var> is possible.
<p>On some targets, branches may have a limited range. Optimizing the
filling of delay slots can result in branches being redirected, and this
may in turn cause a branch offset to overflow.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_COMMUTATIVE_P</b> (<var>const_rtx x, int outer_code</var>)<var><a name="index-TARGET_005fCOMMUTATIVE_005fP-4824"></a></var><br>
<blockquote><p>This target hook returns <code>true</code> if <var>x</var> is considered to be commutative.
Usually, this is just COMMUTATIVE_P (<var>x</var>), but the HP PA doesn't consider
PLUS to be commutative inside a MEM. <var>outer_code</var> is the rtx code
of the enclosing rtl, if known, otherwise it is UNKNOWN.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_ALLOCATE_INITIAL_VALUE</b> (<var>rtx hard_reg</var>)<var><a name="index-TARGET_005fALLOCATE_005fINITIAL_005fVALUE-4825"></a></var><br>
<blockquote>
<p>When the initial value of a hard register has been copied in a pseudo
register, it is often not necessary to actually allocate another register
to this pseudo register, because the original hard register or a stack slot
it has been saved into can be used. <code>TARGET_ALLOCATE_INITIAL_VALUE</code>
is called at the start of register allocation once for each hard register
that had its initial value copied by using
<code>get_func_hard_reg_initial_val</code> or <code>get_hard_reg_initial_val</code>.
Possible values are <code>NULL_RTX</code>, if you don't want
to do any special allocation, a <code>REG</code> rtx—that would typically be
the hard register itself, if it is known not to be clobbered—or a
<code>MEM</code>.
If you are returning a <code>MEM</code>, this is only a hint for the allocator;
it might decide to use another register anyways.
You may use <code>current_function_leaf_function</code> in the hook, functions
that use <code>REG_N_SETS</code>, to determine if the hard
register in question will not be clobbered.
The default value of this hook is <code>NULL</code>, which disables any special
allocation.
</p></blockquote></div>
<div class="defun">
— Target Hook: int <b>TARGET_UNSPEC_MAY_TRAP_P</b> (<var>const_rtx x, unsigned flags</var>)<var><a name="index-TARGET_005fUNSPEC_005fMAY_005fTRAP_005fP-4826"></a></var><br>
<blockquote><p>This target hook returns nonzero if <var>x</var>, an <code>unspec</code> or
<code>unspec_volatile</code> operation, might cause a trap. Targets can use
this hook to enhance precision of analysis for <code>unspec</code> and
<code>unspec_volatile</code> operations. You may call <code>may_trap_p_1</code>
to analyze inner elements of <var>x</var> in which case <var>flags</var> should be
passed along.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_SET_CURRENT_FUNCTION</b> (<var>tree decl</var>)<var><a name="index-TARGET_005fSET_005fCURRENT_005fFUNCTION-4827"></a></var><br>
<blockquote><p>The compiler invokes this hook whenever it changes its current function
context (<code>cfun</code>). You can define this function if
the back end needs to perform any initialization or reset actions on a
per-function basis. For example, it may be used to implement function
attributes that affect register usage or code generation patterns.
The argument <var>decl</var> is the declaration for the new function context,
and may be null to indicate that the compiler has left a function context
and is returning to processing at the top level.
The default hook function does nothing.
<p>GCC sets <code>cfun</code> to a dummy function context during initialization of
some parts of the back end. The hook function is not invoked in this
situation; you need not worry about the hook being invoked recursively,
or when the back end is in a partially-initialized state.
<code>cfun</code> might be <code>NULL</code> to indicate processing at top level,
outside of any function scope.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OBJECT_SUFFIX</b><var><a name="index-TARGET_005fOBJECT_005fSUFFIX-4828"></a></var><br>
<blockquote><p>Define this macro to be a C string representing the suffix for object
files on your target machine. If you do not define this macro, GCC will
use ‘<samp><span class="samp">.o</span></samp>’ as the suffix for object files.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_EXECUTABLE_SUFFIX</b><var><a name="index-TARGET_005fEXECUTABLE_005fSUFFIX-4829"></a></var><br>
<blockquote><p>Define this macro to be a C string representing the suffix to be
automatically added to executable files on your target machine. If you
do not define this macro, GCC will use the null string as the suffix for
executable files.
</p></blockquote></div>
<div class="defun">
— Macro: <b>COLLECT_EXPORT_LIST</b><var><a name="index-COLLECT_005fEXPORT_005fLIST-4830"></a></var><br>
<blockquote><p>If defined, <code>collect2</code> will scan the individual object files
specified on its command line and create an export list for the linker.
Define this macro for systems like AIX, where the linker discards
object files that are not referenced from <code>main</code> and uses export
lists.
</p></blockquote></div>
<div class="defun">
— Macro: <b>MODIFY_JNI_METHOD_CALL</b> (<var>mdecl</var>)<var><a name="index-MODIFY_005fJNI_005fMETHOD_005fCALL-4831"></a></var><br>
<blockquote><p>Define this macro to a C expression representing a variant of the
method call <var>mdecl</var>, if Java Native Interface (JNI) methods
must be invoked differently from other methods on your target.
For example, on 32-bit Microsoft Windows, JNI methods must be invoked using
the <code>stdcall</code> calling convention and this macro is then
defined as this expression:
<pre class="smallexample"> build_type_attribute_variant (<var>mdecl</var>,
build_tree_list
(get_identifier ("stdcall"),
NULL))
</pre>
</blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_CANNOT_MODIFY_JUMPS_P</b> (<var>void</var>)<var><a name="index-TARGET_005fCANNOT_005fMODIFY_005fJUMPS_005fP-4832"></a></var><br>
<blockquote><p>This target hook returns <code>true</code> past the point in which new jump
instructions could be created. On machines that require a register for
every jump such as the SHmedia ISA of SH5, this point would typically be
reload, so this target hook should be defined to a function such as:
<pre class="smallexample"> static bool
cannot_modify_jumps_past_reload_p ()
{
return (reload_completed || reload_in_progress);
}
</pre>
</blockquote></div>
<div class="defun">
— Target Hook: reg_class_t <b>TARGET_BRANCH_TARGET_REGISTER_CLASS</b> (<var>void</var>)<var><a name="index-TARGET_005fBRANCH_005fTARGET_005fREGISTER_005fCLASS-4833"></a></var><br>
<blockquote><p>This target hook returns a register class for which branch target register
optimizations should be applied. All registers in this class should be
usable interchangeably. After reload, registers in this class will be
re-allocated and loads will be hoisted out of loops and be subjected
to inter-block scheduling.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED</b> (<var>bool after_prologue_epilogue_gen</var>)<var><a name="index-TARGET_005fBRANCH_005fTARGET_005fREGISTER_005fCALLEE_005fSAVED-4834"></a></var><br>
<blockquote><p>Branch target register optimization will by default exclude callee-saved
registers
that are not already live during the current function; if this target hook
returns true, they will be included. The target code must than make sure
that all target registers in the class returned by
‘<samp><span class="samp">TARGET_BRANCH_TARGET_REGISTER_CLASS</span></samp>’ that might need saving are
saved. <var>after_prologue_epilogue_gen</var> indicates if prologues and
epilogues have already been generated. Note, even if you only return
true when <var>after_prologue_epilogue_gen</var> is false, you still are likely
to have to make special provisions in <code>INITIAL_ELIMINATION_OFFSET</code>
to reserve space for caller-saved target registers.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_HAVE_CONDITIONAL_EXECUTION</b> (<var>void</var>)<var><a name="index-TARGET_005fHAVE_005fCONDITIONAL_005fEXECUTION-4835"></a></var><br>
<blockquote><p>This target hook returns true if the target supports conditional execution.
This target hook is required only when the target has several different
modes and they have different conditional execution capability, such as ARM.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned <b>TARGET_LOOP_UNROLL_ADJUST</b> (<var>unsigned nunroll, struct loop *loop</var>)<var><a name="index-TARGET_005fLOOP_005fUNROLL_005fADJUST-4836"></a></var><br>
<blockquote><p>This target hook returns a new value for the number of times <var>loop</var>
should be unrolled. The parameter <var>nunroll</var> is the number of times
the loop is to be unrolled. The parameter <var>loop</var> is a pointer to
the loop, which is going to be checked for unrolling. This target hook
is required only when the target has special constraints like maximum
number of memory accesses.
</p></blockquote></div>
<div class="defun">
— Macro: <b>POWI_MAX_MULTS</b><var><a name="index-POWI_005fMAX_005fMULTS-4837"></a></var><br>
<blockquote><p>If defined, this macro is interpreted as a signed integer C expression
that specifies the maximum number of floating point multiplications
that should be emitted when expanding exponentiation by an integer
constant inline. When this value is defined, exponentiation requiring
more than this number of multiplications is implemented by calling the
system library's <code>pow</code>, <code>powf</code> or <code>powl</code> routines.
The default value places no upper bound on the multiplication count.
</p></blockquote></div>
<div class="defun">
— Macro: void <b>TARGET_EXTRA_INCLUDES</b> (<var>const char *sysroot, const char *iprefix, int stdinc</var>)<var><a name="index-TARGET_005fEXTRA_005fINCLUDES-4838"></a></var><br>
<blockquote><p>This target hook should register any extra include files for the
target. The parameter <var>stdinc</var> indicates if normal include files
are present. The parameter <var>sysroot</var> is the system root directory.
The parameter <var>iprefix</var> is the prefix for the gcc directory.
</p></blockquote></div>
<div class="defun">
— Macro: void <b>TARGET_EXTRA_PRE_INCLUDES</b> (<var>const char *sysroot, const char *iprefix, int stdinc</var>)<var><a name="index-TARGET_005fEXTRA_005fPRE_005fINCLUDES-4839"></a></var><br>
<blockquote><p>This target hook should register any extra include files for the
target before any standard headers. The parameter <var>stdinc</var>
indicates if normal include files are present. The parameter
<var>sysroot</var> is the system root directory. The parameter
<var>iprefix</var> is the prefix for the gcc directory.
</p></blockquote></div>
<div class="defun">
— Macro: void <b>TARGET_OPTF</b> (<var>char *path</var>)<var><a name="index-TARGET_005fOPTF-4840"></a></var><br>
<blockquote><p>This target hook should register special include paths for the target.
The parameter <var>path</var> is the include to register. On Darwin
systems, this is used for Framework includes, which have semantics
that are different from <samp><span class="option">-I</span></samp>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>bool</b><var> TARGET_USE_LOCAL_THUNK_ALIAS_P </var>(<var>tree fndecl</var>)<var><a name="index-bool-4841"></a></var><br>
<blockquote><p>This target macro returns <code>true</code> if it is safe to use a local alias
for a virtual function <var>fndecl</var> when constructing thunks,
<code>false</code> otherwise. By default, the macro returns <code>true</code> for all
functions, if a target supports aliases (i.e. defines
<code>ASM_OUTPUT_DEF</code>), <code>false</code> otherwise,
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_FORMAT_TYPES</b><var><a name="index-TARGET_005fFORMAT_005fTYPES-4842"></a></var><br>
<blockquote><p>If defined, this macro is the name of a global variable containing
target-specific format checking information for the <samp><span class="option">-Wformat</span></samp>
option. The default is to have no target-specific format checks.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_N_FORMAT_TYPES</b><var><a name="index-TARGET_005fN_005fFORMAT_005fTYPES-4843"></a></var><br>
<blockquote><p>If defined, this macro is the number of entries in
<code>TARGET_FORMAT_TYPES</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OVERRIDES_FORMAT_ATTRIBUTES</b><var><a name="index-TARGET_005fOVERRIDES_005fFORMAT_005fATTRIBUTES-4844"></a></var><br>
<blockquote><p>If defined, this macro is the name of a global variable containing
target-specific format overrides for the <samp><span class="option">-Wformat</span></samp> option. The
default is to have no target-specific format overrides. If defined,
<code>TARGET_FORMAT_TYPES</code> must be defined, too.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT</b><var><a name="index-TARGET_005fOVERRIDES_005fFORMAT_005fATTRIBUTES_005fCOUNT-4845"></a></var><br>
<blockquote><p>If defined, this macro specifies the number of entries in
<code>TARGET_OVERRIDES_FORMAT_ATTRIBUTES</code>.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_OVERRIDES_FORMAT_INIT</b><var><a name="index-TARGET_005fOVERRIDES_005fFORMAT_005fINIT-4846"></a></var><br>
<blockquote><p>If defined, this macro specifies the optional initialization
routine for target specific customizations of the system printf
and scanf formatter settings.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_RELAXED_ORDERING</b><var><a name="index-TARGET_005fRELAXED_005fORDERING-4847"></a></var><br>
<blockquote><p>If set to <code>true</code>, means that the target's memory model does not
guarantee that loads which do not depend on one another will access
main memory in the order of the instruction stream; if ordering is
important, an explicit memory barrier must be used. This is true of
many recent processors which implement a policy of “relaxed,”
“weak,” or “release” memory consistency, such as Alpha, PowerPC,
and ia64. The default is <code>false</code>.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN</b> (<var>const_tree typelist, const_tree funcdecl, const_tree val</var>)<var><a name="index-TARGET_005fINVALID_005fARG_005fFOR_005fUNPROTOTYPED_005fFN-4848"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
illegal to pass argument <var>val</var> to function <var>funcdecl</var>
with prototype <var>typelist</var>.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_CONVERSION</b> (<var>const_tree fromtype, const_tree totype</var>)<var><a name="index-TARGET_005fINVALID_005fCONVERSION-4849"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
invalid to convert from <var>fromtype</var> to <var>totype</var>, or <code>NULL</code>
if validity should be determined by the front end.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_UNARY_OP</b> (<var>int op, const_tree type</var>)<var><a name="index-TARGET_005fINVALID_005fUNARY_005fOP-4850"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
invalid to apply operation <var>op</var> (where unary plus is denoted by
<code>CONVERT_EXPR</code>) to an operand of type <var>type</var>, or <code>NULL</code>
if validity should be determined by the front end.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_BINARY_OP</b> (<var>int op, const_tree type1, const_tree type2</var>)<var><a name="index-TARGET_005fINVALID_005fBINARY_005fOP-4851"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
invalid to apply operation <var>op</var> to operands of types <var>type1</var>
and <var>type2</var>, or <code>NULL</code> if validity should be determined by
the front end.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_PARAMETER_TYPE</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fINVALID_005fPARAMETER_005fTYPE-4852"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
invalid for functions to include parameters of type <var>type</var>,
or <code>NULL</code> if validity should be determined by
the front end. This is currently used only by the C and C++ front ends.
</p></blockquote></div>
<div class="defun">
— Target Hook: const char * <b>TARGET_INVALID_RETURN_TYPE</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fINVALID_005fRETURN_005fTYPE-4853"></a></var><br>
<blockquote><p>If defined, this macro returns the diagnostic message when it is
invalid for functions to have return type <var>type</var>,
or <code>NULL</code> if validity should be determined by
the front end. This is currently used only by the C and C++ front ends.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_PROMOTED_TYPE</b> (<var>const_tree type</var>)<var><a name="index-TARGET_005fPROMOTED_005fTYPE-4854"></a></var><br>
<blockquote><p>If defined, this target hook returns the type to which values of
<var>type</var> should be promoted when they appear in expressions,
analogous to the integer promotions, or <code>NULL_TREE</code> to use the
front end's normal promotion rules. This hook is useful when there are
target-specific types with special promotion rules.
This is currently used only by the C and C++ front ends.
</p></blockquote></div>
<div class="defun">
— Target Hook: tree <b>TARGET_CONVERT_TO_TYPE</b> (<var>tree type, tree expr</var>)<var><a name="index-TARGET_005fCONVERT_005fTO_005fTYPE-4855"></a></var><br>
<blockquote><p>If defined, this hook returns the result of converting <var>expr</var> to
<var>type</var>. It should return the converted expression,
or <code>NULL_TREE</code> to apply the front end's normal conversion rules.
This hook is useful when there are target-specific types with special
conversion rules.
This is currently used only by the C and C++ front ends.
</p></blockquote></div>
<div class="defun">
— Macro: <b>TARGET_USE_JCR_SECTION</b><var><a name="index-TARGET_005fUSE_005fJCR_005fSECTION-4856"></a></var><br>
<blockquote><p>This macro determines whether to use the JCR section to register Java
classes. By default, TARGET_USE_JCR_SECTION is defined to 1 if both
SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else 0.
</p></blockquote></div>
<div class="defun">
— Macro: <b>OBJC_JBLEN</b><var><a name="index-OBJC_005fJBLEN-4857"></a></var><br>
<blockquote><p>This macro determines the size of the objective C jump buffer for the
NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value.
</p></blockquote></div>
<div class="defun">
— Macro: <b>LIBGCC2_UNWIND_ATTRIBUTE</b><var><a name="index-LIBGCC2_005fUNWIND_005fATTRIBUTE-4858"></a></var><br>
<blockquote><p>Define this macro if any target-specific attributes need to be attached
to the functions in <samp><span class="file">libgcc</span></samp> that provide low-level support for
call stack unwinding. It is used in declarations in <samp><span class="file">unwind-generic.h</span></samp>
and the associated definitions of those functions.
</p></blockquote></div>
<div class="defun">
— Target Hook: void <b>TARGET_UPDATE_STACK_BOUNDARY</b> (<var>void</var>)<var><a name="index-TARGET_005fUPDATE_005fSTACK_005fBOUNDARY-4859"></a></var><br>
<blockquote><p>Define this macro to update the current function stack boundary if
necessary.
</p></blockquote></div>
<div class="defun">
— Target Hook: rtx <b>TARGET_GET_DRAP_RTX</b> (<var>void</var>)<var><a name="index-TARGET_005fGET_005fDRAP_005fRTX-4860"></a></var><br>
<blockquote><p>This hook should return an rtx for Dynamic Realign Argument Pointer (DRAP) if a
different argument pointer register is needed to access the function's
argument list due to stack realignment. Return <code>NULL</code> if no DRAP
is needed.
</p></blockquote></div>
<div class="defun">
— Target Hook: bool <b>TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS</b> (<var>void</var>)<var><a name="index-TARGET_005fALLOCATE_005fSTACK_005fSLOTS_005fFOR_005fARGS-4861"></a></var><br>
<blockquote><p>When optimization is disabled, this hook indicates whether or not
arguments should be allocated to stack slots. Normally, GCC allocates
stacks slots for arguments when not optimizing in order to make
debugging easier. However, when a function is declared with
<code>__attribute__((naked))</code>, there is no stack frame, and the compiler
cannot safely move arguments from the registers in which they are passed
to the stack. Therefore, this hook should return true in general, but
false for naked functions. The default implementation always returns true.
</p></blockquote></div>
<div class="defun">
— Target Hook: unsigned HOST_WIDE_INT <b>TARGET_CONST_ANCHOR</b><var><a name="index-TARGET_005fCONST_005fANCHOR-4862"></a></var><br>
<blockquote><p>On some architectures it can take multiple instructions to synthesize
a constant. If there is another constant already in a register that
is close enough in value then it is preferable that the new constant
is computed from this register using immediate addition or
subtraction. We accomplish this through CSE. Besides the value of
the constant we also add a lower and an upper constant anchor to the
available expressions. These are then queried when encountering new
constants. The anchors are computed by rounding the constant up and
down to a multiple of the value of <code>TARGET_CONST_ANCHOR</code>.
<code>TARGET_CONST_ANCHOR</code> should be the maximum positive value
accepted by immediate-add plus one. We currently assume that the
value of <code>TARGET_CONST_ANCHOR</code> is a power of 2. For example, on
MIPS, where add-immediate takes a 16-bit signed value,
<code>TARGET_CONST_ANCHOR</code> is set to ‘<samp><span class="samp">0x8000</span></samp>’. The default value
is zero, which disables this optimization. </p></blockquote></div>
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, -->
<!-- 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gccint.texi. -->
<div class="node">
<a name="Host-Config"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Fragments">Fragments</a>,
Previous: <a rel="previous" accesskey="p" href="#Target-Macros">Target Macros</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">18 Host Configuration</h2>
<p><a name="index-host-configuration-4863"></a>
Most details about the machine and system on which the compiler is
actually running are detected by the <samp><span class="command">configure</span></samp> script. Some
things are impossible for <samp><span class="command">configure</span></samp> to detect; these are
described in two ways, either by macros defined in a file named
<samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp> or by hook functions in the file specified
by the <var>out_host_hook_obj</var> variable in <samp><span class="file">config.gcc</span></samp>. (The
intention is that very few hosts will need a header file but nearly
every fully supported host will need to override some hooks.)
<p>If you need to define only a few macros, and they have simple
definitions, consider using the <code>xm_defines</code> variable in your
<samp><span class="file">config.gcc</span></samp> entry instead of creating a host configuration
header. See <a href="#System-Config">System Config</a>.
<ul class="menu">
<li><a accesskey="1" href="#Host-Common">Host Common</a>: Things every host probably needs implemented.
<li><a accesskey="2" href="#Filesystem">Filesystem</a>: Your host can't have the letter `a' in filenames?
<li><a accesskey="3" href="#Host-Misc">Host Misc</a>: Rare configuration options for hosts.
</ul>
<div class="node">
<a name="Host-Common"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Filesystem">Filesystem</a>,
Up: <a rel="up" accesskey="u" href="#Host-Config">Host Config</a>
</div>
<h3 class="section">18.1 Host Common</h3>
<p><a name="index-host-hooks-4864"></a><a name="index-host-functions-4865"></a>
Some things are just not portable, even between similar operating systems,
and are too difficult for autoconf to detect. They get implemented using
hook functions in the file specified by the <var>host_hook_obj</var>
variable in <samp><span class="file">config.gcc</span></samp>.
<div class="defun">
— Host Hook: void <b>HOST_HOOKS_EXTRA_SIGNALS</b> (<var>void</var>)<var><a name="index-HOST_005fHOOKS_005fEXTRA_005fSIGNALS-4866"></a></var><br>
<blockquote><p>This host hook is used to set up handling for extra signals. The most
common thing to do in this hook is to detect stack overflow.
</p></blockquote></div>
<div class="defun">
— Host Hook: void * <b>HOST_HOOKS_GT_PCH_GET_ADDRESS</b> (<var>size_t size, int fd</var>)<var><a name="index-HOST_005fHOOKS_005fGT_005fPCH_005fGET_005fADDRESS-4867"></a></var><br>
<blockquote><p>This host hook returns the address of some space that is likely to be
free in some subsequent invocation of the compiler. We intend to load
the PCH data at this address such that the data need not be relocated.
The area should be able to hold <var>size</var> bytes. If the host uses
<code>mmap</code>, <var>fd</var> is an open file descriptor that can be used for
probing.
</p></blockquote></div>
<div class="defun">
— Host Hook: int <b>HOST_HOOKS_GT_PCH_USE_ADDRESS</b> (<var>void * address, size_t size, int fd, size_t offset</var>)<var><a name="index-HOST_005fHOOKS_005fGT_005fPCH_005fUSE_005fADDRESS-4868"></a></var><br>
<blockquote><p>This host hook is called when a PCH file is about to be loaded.
We want to load <var>size</var> bytes from <var>fd</var> at <var>offset</var>
into memory at <var>address</var>. The given address will be the result of
a previous invocation of <code>HOST_HOOKS_GT_PCH_GET_ADDRESS</code>.
Return −1 if we couldn't allocate <var>size</var> bytes at <var>address</var>.
Return 0 if the memory is allocated but the data is not loaded. Return 1
if the hook has performed everything.
<p>If the implementation uses reserved address space, free any reserved
space beyond <var>size</var>, regardless of the return value. If no PCH will
be loaded, this hook may be called with <var>size</var> zero, in which case
all reserved address space should be freed.
<p>Do not try to handle values of <var>address</var> that could not have been
returned by this executable; just return −1. Such values usually
indicate an out-of-date PCH file (built by some other GCC executable),
and such a PCH file won't work.
</p></blockquote></div>
<div class="defun">
— Host Hook: size_t <b>HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY</b> (<var>void</var>)<var>;<a name="index-HOST_005fHOOKS_005fGT_005fPCH_005fALLOC_005fGRANULARITY-4869"></a></var><br>
<blockquote><p>This host hook returns the alignment required for allocating virtual
memory. Usually this is the same as getpagesize, but on some hosts the
alignment for reserving memory differs from the pagesize for committing
memory.
</p></blockquote></div>
<div class="node">
<a name="Filesystem"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Host-Misc">Host Misc</a>,
Previous: <a rel="previous" accesskey="p" href="#Host-Common">Host Common</a>,
Up: <a rel="up" accesskey="u" href="#Host-Config">Host Config</a>
</div>
<h3 class="section">18.2 Host Filesystem</h3>
<p><a name="index-configuration-file-4870"></a><a name="index-g_t_0040file_007bxm_002d_0040var_007bmachine_007d_002eh_007d-4871"></a>
GCC needs to know a number of things about the semantics of the host
machine's filesystem. Filesystems with Unix and MS-DOS semantics are
automatically detected. For other systems, you can define the
following macros in <samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp>.
<dl>
<dt><code>HAVE_DOS_BASED_FILE_SYSTEM</code><a name="index-HAVE_005fDOS_005fBASED_005fFILE_005fSYSTEM-4872"></a><dd>This macro is automatically defined by <samp><span class="file">system.h</span></samp> if the host
file system obeys the semantics defined by MS-DOS instead of Unix.
DOS file systems are case insensitive, file specifications may begin
with a drive letter, and both forward slash and backslash (‘<samp><span class="samp">/</span></samp>’
and ‘<samp><span class="samp">\</span></samp>’) are directory separators.
<br><dt><code>DIR_SEPARATOR</code><a name="index-DIR_005fSEPARATOR-4873"></a><dt><code>DIR_SEPARATOR_2</code><a name="index-DIR_005fSEPARATOR_005f2-4874"></a><dd>If defined, these macros expand to character constants specifying
separators for directory names within a file specification.
<samp><span class="file">system.h</span></samp> will automatically give them appropriate values on
Unix and MS-DOS file systems. If your file system is neither of
these, define one or both appropriately in <samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp>.
<p>However, operating systems like VMS, where constructing a pathname is
more complicated than just stringing together directory names
separated by a special character, should not define either of these
macros.
<br><dt><code>PATH_SEPARATOR</code><a name="index-PATH_005fSEPARATOR-4875"></a><dd>If defined, this macro should expand to a character constant
specifying the separator for elements of search paths. The default
value is a colon (‘<samp><span class="samp">:</span></samp>’). DOS-based systems usually, but not
always, use semicolon (‘<samp><span class="samp">;</span></samp>’).
<br><dt><code>VMS</code><a name="index-VMS-4876"></a><dd>Define this macro if the host system is VMS.
<br><dt><code>HOST_OBJECT_SUFFIX</code><a name="index-HOST_005fOBJECT_005fSUFFIX-4877"></a><dd>Define this macro to be a C string representing the suffix for object
files on your host machine. If you do not define this macro, GCC will
use ‘<samp><span class="samp">.o</span></samp>’ as the suffix for object files.
<br><dt><code>HOST_EXECUTABLE_SUFFIX</code><a name="index-HOST_005fEXECUTABLE_005fSUFFIX-4878"></a><dd>Define this macro to be a C string representing the suffix for
executable files on your host machine. If you do not define this macro,
GCC will use the null string as the suffix for executable files.
<br><dt><code>HOST_BIT_BUCKET</code><a name="index-HOST_005fBIT_005fBUCKET-4879"></a><dd>A pathname defined by the host operating system, which can be opened as
a file and written to, but all the information written is discarded.
This is commonly known as a <dfn>bit bucket</dfn> or <dfn>null device</dfn>. If
you do not define this macro, GCC will use ‘<samp><span class="samp">/dev/null</span></samp>’ as the bit
bucket. If the host does not support a bit bucket, define this macro to
an invalid filename.
<br><dt><code>UPDATE_PATH_HOST_CANONICALIZE (</code><var>path</var><code>)</code><a name="index-UPDATE_005fPATH_005fHOST_005fCANONICALIZE-_0028_0040var_007bpath_007d_0029-4880"></a><dd>If defined, a C statement (sans semicolon) that performs host-dependent
canonicalization when a path used in a compilation driver or
preprocessor is canonicalized. <var>path</var> is a malloc-ed path to be
canonicalized. If the C statement does canonicalize <var>path</var> into a
different buffer, the old path should be freed and the new buffer should
have been allocated with malloc.
<br><dt><code>DUMPFILE_FORMAT</code><a name="index-DUMPFILE_005fFORMAT-4881"></a><dd>Define this macro to be a C string representing the format to use for
constructing the index part of debugging dump file names. The resultant
string must fit in fifteen bytes. The full filename will be the
concatenation of: the prefix of the assembler file name, the string
resulting from applying this format to an index number, and a string
unique to each dump file kind, e.g. ‘<samp><span class="samp">rtl</span></samp>’.
<p>If you do not define this macro, GCC will use ‘<samp><span class="samp">.%02d.</span></samp>’. You should
define this macro if using the default will create an invalid file name.
<br><dt><code>DELETE_IF_ORDINARY</code><a name="index-DELETE_005fIF_005fORDINARY-4882"></a><dd>Define this macro to be a C statement (sans semicolon) that performs
host-dependent removal of ordinary temp files in the compilation driver.
<p>If you do not define this macro, GCC will use the default version. You
should define this macro if the default version does not reliably remove
the temp file as, for example, on VMS which allows multiple versions
of a file.
<br><dt><code>HOST_LACKS_INODE_NUMBERS</code><a name="index-HOST_005fLACKS_005fINODE_005fNUMBERS-4883"></a><dd>Define this macro if the host filesystem does not report meaningful inode
numbers in struct stat.
</dl>
<div class="node">
<a name="Host-Misc"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Filesystem">Filesystem</a>,
Up: <a rel="up" accesskey="u" href="#Host-Config">Host Config</a>
</div>
<h3 class="section">18.3 Host Misc</h3>
<p><a name="index-configuration-file-4884"></a><a name="index-g_t_0040file_007bxm_002d_0040var_007bmachine_007d_002eh_007d-4885"></a>
<dl>
<dt><code>FATAL_EXIT_CODE</code><a name="index-FATAL_005fEXIT_005fCODE-4886"></a><dd>A C expression for the status code to be returned when the compiler
exits after serious errors. The default is the system-provided macro
‘<samp><span class="samp">EXIT_FAILURE</span></samp>’, or ‘<samp><span class="samp">1</span></samp>’ if the system doesn't define that
macro. Define this macro only if these defaults are incorrect.
<br><dt><code>SUCCESS_EXIT_CODE</code><a name="index-SUCCESS_005fEXIT_005fCODE-4887"></a><dd>A C expression for the status code to be returned when the compiler
exits without serious errors. (Warnings are not serious errors.) The
default is the system-provided macro ‘<samp><span class="samp">EXIT_SUCCESS</span></samp>’, or ‘<samp><span class="samp">0</span></samp>’ if
the system doesn't define that macro. Define this macro only if these
defaults are incorrect.
<br><dt><code>USE_C_ALLOCA</code><a name="index-USE_005fC_005fALLOCA-4888"></a><dd>Define this macro if GCC should use the C implementation of <code>alloca</code>
provided by <samp><span class="file">libiberty.a</span></samp>. This only affects how some parts of the
compiler itself allocate memory. It does not change code generation.
<p>When GCC is built with a compiler other than itself, the C <code>alloca</code>
is always used. This is because most other implementations have serious
bugs. You should define this macro only on a system where no
stack-based <code>alloca</code> can possibly work. For instance, if a system
has a small limit on the size of the stack, GCC's builtin <code>alloca</code>
will not work reliably.
<br><dt><code>COLLECT2_HOST_INITIALIZATION</code><a name="index-COLLECT2_005fHOST_005fINITIALIZATION-4889"></a><dd>If defined, a C statement (sans semicolon) that performs host-dependent
initialization when <code>collect2</code> is being initialized.
<br><dt><code>GCC_DRIVER_HOST_INITIALIZATION</code><a name="index-GCC_005fDRIVER_005fHOST_005fINITIALIZATION-4890"></a><dd>If defined, a C statement (sans semicolon) that performs host-dependent
initialization when a compilation driver is being initialized.
<br><dt><code>HOST_LONG_LONG_FORMAT</code><a name="index-HOST_005fLONG_005fLONG_005fFORMAT-4891"></a><dd>If defined, the string used to indicate an argument of type <code>long
long</code> to functions like <code>printf</code>. The default value is
<code>"ll"</code>.
<br><dt><code>HOST_LONG_FORMAT</code><a name="index-HOST_005fLONG_005fFORMAT-4892"></a><dd>If defined, the string used to indicate an argument of type <code>long</code>
to functions like <code>printf</code>. The default value is <code>"l"</code>.
<br><dt><code>HOST_PTR_PRINTF</code><a name="index-HOST_005fPTR_005fPRINTF-4893"></a><dd>If defined, the string used to indicate an argument of type <code>void *</code>
to functions like <code>printf</code>. The default value is <code>"%p"</code>.
</dl>
<p>In addition, if <samp><span class="command">configure</span></samp> generates an incorrect definition of
any of the macros in <samp><span class="file">auto-host.h</span></samp>, you can override that
definition in a host configuration header. If you need to do this,
first see if it is possible to fix <samp><span class="command">configure</span></samp>.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2003, 2004, 2005, 2008 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Fragments"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Collect2">Collect2</a>,
Previous: <a rel="previous" accesskey="p" href="#Host-Config">Host Config</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">19 Makefile Fragments</h2>
<p><a name="index-makefile-fragment-4894"></a>
When you configure GCC using the <samp><span class="file">configure</span></samp> script, it will
construct the file <samp><span class="file">Makefile</span></samp> from the template file
<samp><span class="file">Makefile.in</span></samp>. When it does this, it can incorporate makefile
fragments from the <samp><span class="file">config</span></samp> directory. These are used to set
Makefile parameters that are not amenable to being calculated by
autoconf. The list of fragments to incorporate is set by
<samp><span class="file">config.gcc</span></samp> (and occasionally <samp><span class="file">config.build</span></samp>
and <samp><span class="file">config.host</span></samp>); See <a href="#System-Config">System Config</a>.
<p>Fragments are named either <samp><span class="file">t-</span><var>target</var></samp> or <samp><span class="file">x-</span><var>host</var></samp>,
depending on whether they are relevant to configuring GCC to produce
code for a particular target, or to configuring GCC to run on a
particular host. Here <var>target</var> and <var>host</var> are mnemonics
which usually have some relationship to the canonical system name, but
no formal connection.
<p>If these files do not exist, it means nothing needs to be added for a
given target or host. Most targets need a few <samp><span class="file">t-</span><var>target</var></samp>
fragments, but needing <samp><span class="file">x-</span><var>host</var></samp> fragments is rare.
<ul class="menu">
<li><a accesskey="1" href="#Target-Fragment">Target Fragment</a>: Writing <samp><span class="file">t-</span><var>target</var></samp> files.
<li><a accesskey="2" href="#Host-Fragment">Host Fragment</a>: Writing <samp><span class="file">x-</span><var>host</var></samp> files.
</ul>
<div class="node">
<a name="Target-Fragment"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Host-Fragment">Host Fragment</a>,
Up: <a rel="up" accesskey="u" href="#Fragments">Fragments</a>
</div>
<h3 class="section">19.1 Target Makefile Fragments</h3>
<p><a name="index-target-makefile-fragment-4895"></a><a name="index-g_t_0040file_007bt_002d_0040var_007btarget_007d_007d-4896"></a>
Target makefile fragments can set these Makefile variables.
<a name="index-LIBGCC2_005fCFLAGS-4897"></a>
<dl><dt><code>LIBGCC2_CFLAGS</code><dd>Compiler flags to use when compiling <samp><span class="file">libgcc2.c</span></samp>.
<p><a name="index-LIB2FUNCS_005fEXTRA-4898"></a><br><dt><code>LIB2FUNCS_EXTRA</code><dd>A list of source file names to be compiled or assembled and inserted
into <samp><span class="file">libgcc.a</span></samp>.
<p><a name="index-Floating-Point-Emulation-4899"></a><br><dt><code>Floating Point Emulation</code><dd>To have GCC include software floating point libraries in <samp><span class="file">libgcc.a</span></samp>
define <code>FPBIT</code> and <code>DPBIT</code> along with a few rules as follows:
<pre class="smallexample"> # We want fine grained libraries, so use the new code
# to build the floating point emulation libraries.
FPBIT = fp-bit.c
DPBIT = dp-bit.c
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c
</pre>
<p>You may need to provide additional #defines at the beginning of <samp><span class="file">fp-bit.c</span></samp>
and <samp><span class="file">dp-bit.c</span></samp> to control target endianness and other options.
<p><a name="index-CRTSTUFF_005fT_005fCFLAGS-4900"></a><br><dt><code>CRTSTUFF_T_CFLAGS</code><dd>Special flags used when compiling <samp><span class="file">crtstuff.c</span></samp>.
See <a href="#Initialization">Initialization</a>.
<p><a name="index-CRTSTUFF_005fT_005fCFLAGS_005fS-4901"></a><br><dt><code>CRTSTUFF_T_CFLAGS_S</code><dd>Special flags used when compiling <samp><span class="file">crtstuff.c</span></samp> for shared
linking. Used if you use <samp><span class="file">crtbeginS.o</span></samp> and <samp><span class="file">crtendS.o</span></samp>
in <code>EXTRA-PARTS</code>.
See <a href="#Initialization">Initialization</a>.
<p><a name="index-MULTILIB_005fOPTIONS-4902"></a><br><dt><code>MULTILIB_OPTIONS</code><dd>For some targets, invoking GCC in different ways produces objects
that can not be linked together. For example, for some targets GCC
produces both big and little endian code. For these targets, you must
arrange for multiple versions of <samp><span class="file">libgcc.a</span></samp> to be compiled, one for
each set of incompatible options. When GCC invokes the linker, it
arranges to link in the right version of <samp><span class="file">libgcc.a</span></samp>, based on
the command line options used.
<p>The <code>MULTILIB_OPTIONS</code> macro lists the set of options for which
special versions of <samp><span class="file">libgcc.a</span></samp> must be built. Write options that
are mutually incompatible side by side, separated by a slash. Write
options that may be used together separated by a space. The build
procedure will build all combinations of compatible options.
<p>For example, if you set <code>MULTILIB_OPTIONS</code> to ‘<samp><span class="samp">m68000/m68020
msoft-float</span></samp>’, <samp><span class="file">Makefile</span></samp> will build special versions of
<samp><span class="file">libgcc.a</span></samp> using the following sets of options: <samp><span class="option">-m68000</span></samp>,
<samp><span class="option">-m68020</span></samp>, <samp><span class="option">-msoft-float</span></samp>, ‘<samp><span class="samp">-m68000 -msoft-float</span></samp>’, and
‘<samp><span class="samp">-m68020 -msoft-float</span></samp>’.
<p><a name="index-MULTILIB_005fDIRNAMES-4903"></a><br><dt><code>MULTILIB_DIRNAMES</code><dd>If <code>MULTILIB_OPTIONS</code> is used, this variable specifies the
directory names that should be used to hold the various libraries.
Write one element in <code>MULTILIB_DIRNAMES</code> for each element in
<code>MULTILIB_OPTIONS</code>. If <code>MULTILIB_DIRNAMES</code> is not used, the
default value will be <code>MULTILIB_OPTIONS</code>, with all slashes treated
as spaces.
<p>For example, if <code>MULTILIB_OPTIONS</code> is set to ‘<samp><span class="samp">m68000/m68020
msoft-float</span></samp>’, then the default value of <code>MULTILIB_DIRNAMES</code> is
‘<samp><span class="samp">m68000 m68020 msoft-float</span></samp>’. You may specify a different value if
you desire a different set of directory names.
<p><a name="index-MULTILIB_005fMATCHES-4904"></a><br><dt><code>MULTILIB_MATCHES</code><dd>Sometimes the same option may be written in two different ways. If an
option is listed in <code>MULTILIB_OPTIONS</code>, GCC needs to know about
any synonyms. In that case, set <code>MULTILIB_MATCHES</code> to a list of
items of the form ‘<samp><span class="samp">option=option</span></samp>’ to describe all relevant
synonyms. For example, ‘<samp><span class="samp">m68000=mc68000 m68020=mc68020</span></samp>’.
<p><a name="index-MULTILIB_005fEXCEPTIONS-4905"></a><br><dt><code>MULTILIB_EXCEPTIONS</code><dd>Sometimes when there are multiple sets of <code>MULTILIB_OPTIONS</code> being
specified, there are combinations that should not be built. In that
case, set <code>MULTILIB_EXCEPTIONS</code> to be all of the switch exceptions
in shell case syntax that should not be built.
<p>For example the ARM processor cannot execute both hardware floating
point instructions and the reduced size THUMB instructions at the same
time, so there is no need to build libraries with both of these
options enabled. Therefore <code>MULTILIB_EXCEPTIONS</code> is set to:
<pre class="smallexample"> *mthumb/*mhard-float*
</pre>
<p><a name="index-MULTILIB_005fEXTRA_005fOPTS-4906"></a><br><dt><code>MULTILIB_EXTRA_OPTS</code><dd>Sometimes it is desirable that when building multiple versions of
<samp><span class="file">libgcc.a</span></samp> certain options should always be passed on to the
compiler. In that case, set <code>MULTILIB_EXTRA_OPTS</code> to be the list
of options to be used for all builds. If you set this, you should
probably set <code>CRTSTUFF_T_CFLAGS</code> to a dash followed by it.
<p><a name="index-NATIVE_005fSYSTEM_005fHEADER_005fDIR-4907"></a><br><dt><code>NATIVE_SYSTEM_HEADER_DIR</code><dd>If the default location for system headers is not <samp><span class="file">/usr/include</span></samp>,
you must set this to the directory containing the headers. This value
should match the value of the <code>SYSTEM_INCLUDE_DIR</code> macro.
<p><a name="index-SPECS-4908"></a><br><dt><code>SPECS</code><dd>Unfortunately, setting <code>MULTILIB_EXTRA_OPTS</code> is not enough, since
it does not affect the build of target libraries, at least not the
build of the default multilib. One possible work-around is to use
<code>DRIVER_SELF_SPECS</code> to bring options from the <samp><span class="file">specs</span></samp> file
as if they had been passed in the compiler driver command line.
However, you don't want to be adding these options after the toolchain
is installed, so you can instead tweak the <samp><span class="file">specs</span></samp> file that will
be used during the toolchain build, while you still install the
original, built-in <samp><span class="file">specs</span></samp>. The trick is to set <code>SPECS</code> to
some other filename (say <samp><span class="file">specs.install</span></samp>), that will then be
created out of the built-in specs, and introduce a <samp><span class="file">Makefile</span></samp>
rule to generate the <samp><span class="file">specs</span></samp> file that's going to be used at
build time out of your <samp><span class="file">specs.install</span></samp>.
<br><dt><code>T_CFLAGS</code><dd>These are extra flags to pass to the C compiler. They are used both
when building GCC, and when compiling things with the just-built GCC.
This variable is deprecated and should not be used.
</dl>
<div class="node">
<a name="Host-Fragment"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Target-Fragment">Target Fragment</a>,
Up: <a rel="up" accesskey="u" href="#Fragments">Fragments</a>
</div>
<h3 class="section">19.2 Host Makefile Fragments</h3>
<p><a name="index-host-makefile-fragment-4909"></a><a name="index-g_t_0040file_007bx_002d_0040var_007bhost_007d_007d-4910"></a>
The use of <samp><span class="file">x-</span><var>host</var></samp> fragments is discouraged. You should only
use it for makefile dependencies.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Collect2"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Header-Dirs">Header Dirs</a>,
Previous: <a rel="previous" accesskey="p" href="#Fragments">Fragments</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">20 <code>collect2</code></h2>
<p>GCC uses a utility called <code>collect2</code> on nearly all systems to arrange
to call various initialization functions at start time.
<p>The program <code>collect2</code> works by linking the program once and
looking through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it
creates a new temporary ‘<samp><span class="samp">.c</span></samp>’ file containing a table of them,
compiles it, and links the program a second time including that file.
<p><a name="index-g_t_005f_005fmain-4911"></a><a name="index-constructors_002c-automatic-calls-4912"></a>The actual calls to the constructors are carried out by a subroutine
called <code>__main</code>, which is called (automatically) at the beginning
of the body of <code>main</code> (provided <code>main</code> was compiled with GNU
CC). Calling <code>__main</code> is necessary, even when compiling C code, to
allow linking C and C++ object code together. (If you use
<samp><span class="option">-nostdlib</span></samp>, you get an unresolved reference to <code>__main</code>,
since it's defined in the standard GCC library. Include <samp><span class="option">-lgcc</span></samp> at
the end of your compiler command line to resolve this reference.)
<p>The program <code>collect2</code> is installed as <code>ld</code> in the directory
where the passes of the compiler are installed. When <code>collect2</code>
needs to find the <em>real</em> <code>ld</code>, it tries the following file
names:
<ul>
<li>a hard coded linker file name, if GCC was configured with the
<samp><span class="option">--with-ld</span></samp> option.
<li><samp><span class="file">real-ld</span></samp> in the directories listed in the compiler's search
directories.
<li><samp><span class="file">real-ld</span></samp> in the directories listed in the environment variable
<code>PATH</code>.
<li>The file specified in the <code>REAL_LD_FILE_NAME</code> configuration macro,
if specified.
<li><samp><span class="file">ld</span></samp> in the compiler's search directories, except that
<code>collect2</code> will not execute itself recursively.
<li><samp><span class="file">ld</span></samp> in <code>PATH</code>.
</ul>
<p>“The compiler's search directories” means all the directories where
<samp><span class="command">gcc</span></samp> searches for passes of the compiler. This includes
directories that you specify with <samp><span class="option">-B</span></samp>.
<p>Cross-compilers search a little differently:
<ul>
<li><samp><span class="file">real-ld</span></samp> in the compiler's search directories.
<li><samp><var>target</var><span class="file">-real-ld</span></samp> in <code>PATH</code>.
<li>The file specified in the <code>REAL_LD_FILE_NAME</code> configuration macro,
if specified.
<li><samp><span class="file">ld</span></samp> in the compiler's search directories.
<li><samp><var>target</var><span class="file">-ld</span></samp> in <code>PATH</code>.
</ul>
<p><code>collect2</code> explicitly avoids running <code>ld</code> using the file name
under which <code>collect2</code> itself was invoked. In fact, it remembers
up a list of such names—in case one copy of <code>collect2</code> finds
another copy (or version) of <code>collect2</code> installed as <code>ld</code> in a
second place in the search path.
<p><code>collect2</code> searches for the utilities <code>nm</code> and <code>strip</code>
using the same algorithm as above for <code>ld</code>.
<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Header-Dirs"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-Information">Type Information</a>,
Previous: <a rel="previous" accesskey="p" href="#Collect2">Collect2</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">21 Standard Header File Directories</h2>
<p><code>GCC_INCLUDE_DIR</code> means the same thing for native and cross. It is
where GCC stores its private include files, and also where GCC
stores the fixed include files. A cross compiled GCC runs
<code>fixincludes</code> on the header files in <samp><span class="file">$(tooldir)/include</span></samp>.
(If the cross compilation header files need to be fixed, they must be
installed before GCC is built. If the cross compilation header files
are already suitable for GCC, nothing special need be done).
<p><code>GPLUSPLUS_INCLUDE_DIR</code> means the same thing for native and cross. It
is where <samp><span class="command">g++</span></samp> looks first for header files. The C++ library
installs only target independent header files in that directory.
<p><code>LOCAL_INCLUDE_DIR</code> is used only by native compilers. GCC
doesn't install anything there. It is normally
<samp><span class="file">/usr/local/include</span></samp>. This is where local additions to a packaged
system should place header files.
<p><code>CROSS_INCLUDE_DIR</code> is used only by cross compilers. GCC
doesn't install anything there.
<p><code>TOOL_INCLUDE_DIR</code> is used for both native and cross compilers. It
is the place for other packages to install header files that GCC will
use. For a cross-compiler, this is the equivalent of
<samp><span class="file">/usr/include</span></samp>. When you build a cross-compiler,
<code>fixincludes</code> processes any header files in this directory.
<!-- Copyright (C) 2002, 2003, 2004, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Type-Information"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Plugins">Plugins</a>,
Previous: <a rel="previous" accesskey="p" href="#Header-Dirs">Header Dirs</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">22 Memory Management and Type Information</h2>
<p><a name="index-GGC-4913"></a><a name="index-GTY-4914"></a>
GCC uses some fairly sophisticated memory management techniques, which
involve determining information about GCC's data structures from GCC's
source code and using this information to perform garbage collection and
implement precompiled headers.
<p>A full C parser would be too complicated for this task, so a limited
subset of C is interpreted and special markers are used to determine
what parts of the source to look at. All <code>struct</code> and
<code>union</code> declarations that define data structures that are
allocated under control of the garbage collector must be marked. All
global variables that hold pointers to garbage-collected memory must
also be marked. Finally, all global variables that need to be saved
and restored by a precompiled header must be marked. (The precompiled
header mechanism can only save static variables if they're scalar.
Complex data structures must be allocated in garbage-collected memory
to be saved in a precompiled header.)
<p>The full format of a marker is
<pre class="smallexample"> GTY (([<var>option</var>] [(<var>param</var>)], [<var>option</var>] [(<var>param</var>)] ...))
</pre>
<p class="noindent">but in most cases no options are needed. The outer double parentheses
are still necessary, though: <code>GTY(())</code>. Markers can appear:
<ul>
<li>In a structure definition, before the open brace;
<li>In a global variable declaration, after the keyword <code>static</code> or
<code>extern</code>; and
<li>In a structure field definition, before the name of the field.
</ul>
<p>Here are some examples of marking simple data structures and globals.
<pre class="smallexample"> struct GTY(()) <var>tag</var>
{
<var>fields</var>...
};
typedef struct GTY(()) <var>tag</var>
{
<var>fields</var>...
} *<var>typename</var>;
static GTY(()) struct <var>tag</var> *<var>list</var>; /* <span class="roman">points to GC memory</span> */
static GTY(()) int <var>counter</var>; /* <span class="roman">save counter in a PCH</span> */
</pre>
<p>The parser understands simple typedefs such as
<code>typedef struct </code><var>tag</var><code> *</code><var>name</var><code>;</code> and
<code>typedef int </code><var>name</var><code>;</code>.
These don't need to be marked.
<ul class="menu">
<li><a accesskey="1" href="#GTY-Options">GTY Options</a>: What goes inside a <code>GTY(())</code>.
<li><a accesskey="2" href="#GGC-Roots">GGC Roots</a>: Making global variables GGC roots.
<li><a accesskey="3" href="#Files">Files</a>: How the generated files work.
<li><a accesskey="4" href="#Invoking-the-garbage-collector">Invoking the garbage collector</a>: How to invoke the garbage collector.
<li><a accesskey="5" href="#Troubleshooting">Troubleshooting</a>: When something does not work as expected.
</ul>
<div class="node">
<a name="GTY-Options"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GGC-Roots">GGC Roots</a>,
Up: <a rel="up" accesskey="u" href="#Type-Information">Type Information</a>
</div>
<h3 class="section">22.1 The Inside of a <code>GTY(())</code></h3>
<p>Sometimes the C code is not enough to fully describe the type
structure. Extra information can be provided with <code>GTY</code> options
and additional markers. Some options take a parameter, which may be
either a string or a type name, depending on the parameter. If an
option takes no parameter, it is acceptable either to omit the
parameter entirely, or to provide an empty string as a parameter. For
example, <code>GTY ((skip))<!-- /@w --></code> and <code>GTY ((skip ("")))<!-- /@w --></code> are
equivalent.
<p>When the parameter is a string, often it is a fragment of C code. Four
special escapes may be used in these strings, to refer to pieces of
the data structure being marked:
<p><a name="index-g_t_0025-in-GTY-option-4915"></a>
<dl>
<dt><code>%h</code><dd>The current structure.
<br><dt><code>%1</code><dd>The structure that immediately contains the current structure.
<br><dt><code>%0</code><dd>The outermost structure that contains the current structure.
<br><dt><code>%a</code><dd>A partial expression of the form <code>[i1][i2]...</code> that indexes
the array item currently being marked.
</dl>
<p>For instance, suppose that you have a structure of the form
<pre class="smallexample"> struct A {
...
};
struct B {
struct A foo[12];
};
</pre>
<p class="noindent">and <code>b</code> is a variable of type <code>struct B</code>. When marking
‘<samp><span class="samp">b.foo[11]</span></samp>’, <code>%h</code> would expand to ‘<samp><span class="samp">b.foo[11]</span></samp>’,
<code>%0</code> and <code>%1</code> would both expand to ‘<samp><span class="samp">b</span></samp>’, and <code>%a</code>
would expand to ‘<samp><span class="samp">[11]</span></samp>’.
<p>As in ordinary C, adjacent strings will be concatenated; this is
helpful when you have a complicated expression.
<pre class="smallexample"> GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"
" ? TYPE_NEXT_VARIANT (&%h.generic)"
" : TREE_CHAIN (&%h.generic)")))
</pre>
<p>The available options are:
<a name="index-length-4916"></a>
<dl><dt><code>length ("</code><var>expression</var><code>")</code><dd>
There are two places the type machinery will need to be explicitly told
the length of an array. The first case is when a structure ends in a
variable-length array, like this:
<pre class="smallexample"> struct GTY(()) rtvec_def {
int num_elem; /* <span class="roman">number of elements</span> */
rtx GTY ((length ("%h.num_elem"))) elem[1];
};
</pre>
<p>In this case, the <code>length</code> option is used to override the specified
array length (which should usually be <code>1</code>). The parameter of the
option is a fragment of C code that calculates the length.
<p>The second case is when a structure or a global variable contains a
pointer to an array, like this:
<pre class="smallexample"> struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter;
</pre>
<p>In this case, <code>iter</code> has been allocated by writing something like
<pre class="smallexample"> x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
</pre>
<p>and the <code>collapse</code> provides the length of the field.
<p>This second use of <code>length</code> also works on global variables, like:
<pre class="verbatim"> static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
</pre>
<p><a name="index-skip-4917"></a><br><dt><code>skip</code><dd>
If <code>skip</code> is applied to a field, the type machinery will ignore it.
This is somewhat dangerous; the only safe use is in a union when one
field really isn't ever used.
<p><a name="index-desc-4918"></a><a name="index-tag-4919"></a><a name="index-default-4920"></a><br><dt><code>desc ("</code><var>expression</var><code>")</code><dt><code>tag ("</code><var>constant</var><code>")</code><dt><code>default</code><dd>
The type machinery needs to be told which field of a <code>union</code> is
currently active. This is done by giving each field a constant
<code>tag</code> value, and then specifying a discriminator using <code>desc</code>.
The value of the expression given by <code>desc</code> is compared against
each <code>tag</code> value, each of which should be different. If no
<code>tag</code> is matched, the field marked with <code>default</code> is used if
there is one, otherwise no field in the union will be marked.
<p>In the <code>desc</code> option, the “current structure” is the union that
it discriminates. Use <code>%1</code> to mean the structure containing it.
There are no escapes available to the <code>tag</code> option, since it is a
constant.
<p>For example,
<pre class="smallexample"> struct GTY(()) tree_binding
{
struct tree_common common;
union tree_binding_u {
tree GTY ((tag ("0"))) scope;
struct cp_binding_level * GTY ((tag ("1"))) level;
} GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;
tree value;
};
</pre>
<p>In this example, the value of BINDING_HAS_LEVEL_P when applied to a
<code>struct tree_binding *</code> is presumed to be 0 or 1. If 1, the type
mechanism will treat the field <code>level</code> as being present and if 0,
will treat the field <code>scope</code> as being present.
<p><a name="index-param_005fis-4921"></a><a name="index-use_005fparam-4922"></a><br><dt><code>param_is (</code><var>type</var><code>)</code><dt><code>use_param</code><dd>
Sometimes it's convenient to define some data structure to work on
generic pointers (that is, <code>PTR</code>) and then use it with a specific
type. <code>param_is</code> specifies the real type pointed to, and
<code>use_param</code> says where in the generic data structure that type
should be put.
<p>For instance, to have a <code>htab_t</code> that points to trees, one would
write the definition of <code>htab_t</code> like this:
<pre class="smallexample"> typedef struct GTY(()) {
...
void ** GTY ((use_param, ...)) entries;
...
} htab_t;
</pre>
<p>and then declare variables like this:
<pre class="smallexample"> static htab_t GTY ((param_is (union tree_node))) ict;
</pre>
<p><a name="index-param_0040var_007bn_007d_005fis-4923"></a><a name="index-use_005fparam_0040var_007bn_007d-4924"></a><br><dt><code>param</code><var>n</var><code>_is (</code><var>type</var><code>)</code><dt><code>use_param</code><var>n</var><dd>
In more complicated cases, the data structure might need to work on
several different types, which might not necessarily all be pointers.
For this, <code>param1_is</code> through <code>param9_is</code> may be used to
specify the real type of a field identified by <code>use_param1</code> through
<code>use_param9</code>.
<p><a name="index-use_005fparams-4925"></a><br><dt><code>use_params</code><dd>
When a structure contains another structure that is parameterized,
there's no need to do anything special, the inner structure inherits the
parameters of the outer one. When a structure contains a pointer to a
parameterized structure, the type machinery won't automatically detect
this (it could, it just doesn't yet), so it's necessary to tell it that
the pointed-to structure should use the same parameters as the outer
structure. This is done by marking the pointer with the
<code>use_params</code> option.
<p><a name="index-deletable-4926"></a><br><dt><code>deletable</code><dd>
<code>deletable</code>, when applied to a global variable, indicates that when
garbage collection runs, there's no need to mark anything pointed to
by this variable, it can just be set to <code>NULL</code> instead. This is used
to keep a list of free structures around for re-use.
<p><a name="index-if_005fmarked-4927"></a><br><dt><code>if_marked ("</code><var>expression</var><code>")</code><dd>
Suppose you want some kinds of object to be unique, and so you put them
in a hash table. If garbage collection marks the hash table, these
objects will never be freed, even if the last other reference to them
goes away. GGC has special handling to deal with this: if you use the
<code>if_marked</code> option on a global hash table, GGC will call the
routine whose name is the parameter to the option on each hash table
entry. If the routine returns nonzero, the hash table entry will
be marked as usual. If the routine returns zero, the hash table entry
will be deleted.
<p>The routine <code>ggc_marked_p</code> can be used to determine if an element
has been marked already; in fact, the usual case is to use
<code>if_marked ("ggc_marked_p")</code>.
<p><a name="index-mark_005fhook-4928"></a><br><dt><code>mark_hook ("</code><var>hook-routine-name</var><code>")</code><dd>
If provided for a structure or union type, the given
<var>hook-routine-name</var> (between double-quotes) is the name of a
routine called when the garbage collector has just marked the data as
reachable. This routine should not change the data, or call any ggc
routine. Its only argument is a pointer to the just marked (const)
structure or union.
<p><a name="index-maybe_005fundef-4929"></a><br><dt><code>maybe_undef</code><dd>
When applied to a field, <code>maybe_undef</code> indicates that it's OK if
the structure that this fields points to is never defined, so long as
this field is always <code>NULL</code>. This is used to avoid requiring
backends to define certain optional structures. It doesn't work with
language frontends.
<p><a name="index-nested_005fptr-4930"></a><br><dt><code>nested_ptr (</code><var>type</var><code>, "</code><var>to expression</var><code>", "</code><var>from expression</var><code>")</code><dd>
The type machinery expects all pointers to point to the start of an
object. Sometimes for abstraction purposes it's convenient to have
a pointer which points inside an object. So long as it's possible to
convert the original object to and from the pointer, such pointers
can still be used. <var>type</var> is the type of the original object,
the <var>to expression</var> returns the pointer given the original object,
and the <var>from expression</var> returns the original object given
the pointer. The pointer will be available using the <code>%h</code>
escape.
<p><a name="index-chain_005fnext-4931"></a><a name="index-chain_005fprev-4932"></a><a name="index-chain_005fcircular-4933"></a><br><dt><code>chain_next ("</code><var>expression</var><code>")</code><dt><code>chain_prev ("</code><var>expression</var><code>")</code><dt><code>chain_circular ("</code><var>expression</var><code>")</code><dd>
It's helpful for the type machinery to know if objects are often
chained together in long lists; this lets it generate code that uses
less stack space by iterating along the list instead of recursing down
it. <code>chain_next</code> is an expression for the next item in the list,
<code>chain_prev</code> is an expression for the previous item. For singly
linked lists, use only <code>chain_next</code>; for doubly linked lists, use
both. The machinery requires that taking the next item of the
previous item gives the original item. <code>chain_circular</code> is similar
to <code>chain_next</code>, but can be used for circular single linked lists.
<p><a name="index-reorder-4934"></a><br><dt><code>reorder ("</code><var>function name</var><code>")</code><dd>
Some data structures depend on the relative ordering of pointers. If
the precompiled header machinery needs to change that ordering, it
will call the function referenced by the <code>reorder</code> option, before
changing the pointers in the object that's pointed to by the field the
option applies to. The function must take four arguments, with the
signature ‘<samp><span class="samp">void *, void *, gt_pointer_operator, void *<!-- /@w --></span></samp>’.
The first parameter is a pointer to the structure that contains the
object being updated, or the object itself if there is no containing
structure. The second parameter is a cookie that should be ignored.
The third parameter is a routine that, given a pointer, will update it
to its correct new value. The fourth parameter is a cookie that must
be passed to the second parameter.
<p>PCH cannot handle data structures that depend on the absolute values
of pointers. <code>reorder</code> functions can be expensive. When
possible, it is better to depend on properties of the data, like an ID
number or the hash of a string instead.
<p><a name="index-variable_005fsize-4935"></a><br><dt><code>variable_size</code><dd>
The type machinery expects the types to be of constant size. When this
is not true, for example, with structs that have array fields or unions,
the type machinery cannot tell how many bytes need to be allocated at
each allocation. The <code>variable_size</code> is used to mark such types.
The type machinery then provides allocators that take a parameter
indicating an exact size of object being allocated. Note that the size
must be provided in bytes whereas the <code>length</code> option works with
array lengths in number of elements.
<p>For example,
<pre class="smallexample"> struct GTY((variable_size)) sorted_fields_type {
int len;
tree GTY((length ("%h.len"))) elts[1];
};
</pre>
<p>Then the objects of <code>struct sorted_fields_type</code> are allocated in GC
memory as follows:
<pre class="smallexample"> field_vec = ggc_alloc_sorted_fields_type (size);
</pre>
<p>If <var>field_vec->elts</var> stores <var>n</var> elements, then <var>size</var>
could be calculated as follows:
<pre class="smallexample"> size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree);
</pre>
<p><a name="index-special-4936"></a><br><dt><code>special ("</code><var>name</var><code>")</code><dd>
The <code>special</code> option is used to mark types that have to be dealt
with by special case machinery. The parameter is the name of the
special case. See <samp><span class="file">gengtype.c</span></samp> for further details. Avoid
adding new special cases unless there is no other alternative.
</dl>
<div class="node">
<a name="GGC-Roots"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Files">Files</a>,
Previous: <a rel="previous" accesskey="p" href="#GTY-Options">GTY Options</a>,
Up: <a rel="up" accesskey="u" href="#Type-Information">Type Information</a>
</div>
<h3 class="section">22.2 Marking Roots for the Garbage Collector</h3>
<p><a name="index-roots_002c-marking-4937"></a><a name="index-marking-roots-4938"></a>
In addition to keeping track of types, the type machinery also locates
the global variables (<dfn>roots</dfn>) that the garbage collector starts
at. Roots must be declared using one of the following syntaxes:
<ul>
<li><code>extern GTY(([</code><var>options</var><code>])) </code><var>type</var> <var>name</var><code>;</code>
<li><code>static GTY(([</code><var>options</var><code>])) </code><var>type</var> <var>name</var><code>;</code>
</ul>
The syntax
<ul>
<li><code>GTY(([</code><var>options</var><code>])) </code><var>type</var> <var>name</var><code>;</code>
</ul>
is <em>not</em> accepted. There should be an <code>extern</code> declaration
of such a variable in a header somewhere—mark that, not the
definition. Or, if the variable is only used in one file, make it
<code>static</code>.
<div class="node">
<a name="Files"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Invoking-the-garbage-collector">Invoking the garbage collector</a>,
Previous: <a rel="previous" accesskey="p" href="#GGC-Roots">GGC Roots</a>,
Up: <a rel="up" accesskey="u" href="#Type-Information">Type Information</a>
</div>
<h3 class="section">22.3 Source Files Containing Type Information</h3>
<p><a name="index-generated-files-4939"></a><a name="index-files_002c-generated-4940"></a>
Whenever you add <code>GTY</code> markers to a source file that previously
had none, or create a new source file containing <code>GTY</code> markers,
there are three things you need to do:
<ol type=1 start=1>
<li>You need to add the file to the list of source files the type
machinery scans. There are four cases:
<ol type=a start=1>
<li>For a back-end file, this is usually done
automatically; if not, you should add it to <code>target_gtfiles</code> in
the appropriate port's entries in <samp><span class="file">config.gcc</span></samp>.
<li>For files shared by all front ends, add the filename to the
<code>GTFILES</code> variable in <samp><span class="file">Makefile.in</span></samp>.
<li>For files that are part of one front end, add the filename to the
<code>gtfiles</code> variable defined in the appropriate
<samp><span class="file">config-lang.in</span></samp>. For C, the file is <samp><span class="file">c-config-lang.in</span></samp>.
Headers should appear before non-headers in this list.
<li>For files that are part of some but not all front ends, add the
filename to the <code>gtfiles</code> variable of <em>all</em> the front ends
that use it.
</ol>
<li>If the file was a header file, you'll need to check that it's included
in the right place to be visible to the generated files. For a back-end
header file, this should be done automatically. For a front-end header
file, it needs to be included by the same file that includes
<samp><span class="file">gtype-</span><var>lang</var><span class="file">.h</span></samp>. For other header files, it needs to be
included in <samp><span class="file">gtype-desc.c</span></samp>, which is a generated file, so add it to
<code>ifiles</code> in <code>open_base_file</code> in <samp><span class="file">gengtype.c</span></samp>.
<p>For source files that aren't header files, the machinery will generate a
header file that should be included in the source file you just changed.
The file will be called <samp><span class="file">gt-</span><var>path</var><span class="file">.h</span></samp> where <var>path</var> is the
pathname relative to the <samp><span class="file">gcc</span></samp> directory with slashes replaced by
<tt>-</tt>, so for example the header file to be included in
<samp><span class="file">cp/parser.c</span></samp> is called <samp><span class="file">gt-cp-parser.c</span></samp>. The
generated header file should be included after everything else in the
source file. Don't forget to mention this file as a dependency in the
<samp><span class="file">Makefile</span></samp>!
</ol>
<p>For language frontends, there is another file that needs to be included
somewhere. It will be called <samp><span class="file">gtype-</span><var>lang</var><span class="file">.h</span></samp>, where
<var>lang</var> is the name of the subdirectory the language is contained in.
<p>Plugins can add additional root tables. Run the <code>gengtype</code>
utility in plugin mode as <code>gengtype -P pluginout.h </code><var>source-dir</var>
<var>file-list</var> <var>plugin*.c</var> with your plugin files
<var>plugin*.c</var> using <code>GTY</code> to generate the <var>pluginout.h</var> file.
The GCC build tree is needed to be present in that mode.
<div class="node">
<a name="Invoking-the-garbage-collector"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Troubleshooting">Troubleshooting</a>,
Previous: <a rel="previous" accesskey="p" href="#Files">Files</a>,
Up: <a rel="up" accesskey="u" href="#Type-Information">Type Information</a>
</div>
<h3 class="section">22.4 How to invoke the garbage collector</h3>
<p><a name="index-garbage-collector_002c-invocation-4941"></a><a name="index-ggc_005fcollect-4942"></a>
The GCC garbage collector GGC is only invoked explicitly. In contrast
with many other garbage collectors, it is not implicitly invoked by
allocation routines when a lot of memory has been consumed. So the
only way to have GGC reclaim storage it to call the <code>ggc_collect</code>
function explicitly. This call is an expensive operation, as it may
have to scan the entire heap. Beware that local variables (on the GCC
call stack) are not followed by such an invocation (as many other
garbage collectors do): you should reference all your data from static
or external <code>GTY</code>-ed variables, and it is advised to call
<code>ggc_collect</code> with a shallow call stack. The GGC is an exact mark
and sweep garbage collector (so it does not scan the call stack for
pointers). In practice GCC passes don't often call <code>ggc_collect</code>
themselves, because it is called by the pass manager between passes.
<p>At the time of the <code>ggc_collect</code> call all pointers in the GC-marked
structures must be valid or <code>NULL</code>. In practice this means that
there should not be uninitialized pointer fields in the structures even
if your code never reads or writes those fields at a particular
instance. One way to ensure this is to use cleared versions of
allocators unless all the fields are initialized manually immediately
after allocation.
<div class="node">
<a name="Troubleshooting"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Invoking-the-garbage-collector">Invoking the garbage collector</a>,
Up: <a rel="up" accesskey="u" href="#Type-Information">Type Information</a>
</div>
<h3 class="section">22.5 Troubleshooting the garbage collector</h3>
<p><a name="index-garbage-collector_002c-troubleshooting-4943"></a>
With the current garbage collector implementation, most issues should
show up as GCC compilation errors. Some of the most commonly
encountered issues are described below.
<ul>
<li>Gengtype does not produce allocators for a <code>GTY</code>-marked type.
Gengtype checks if there is at least one possible path from GC roots to
at least one instance of each type before outputting allocators. If
there is no such path, the <code>GTY</code> markers will be ignored and no
allocators will be output. Solve this by making sure that there exists
at least one such path. If creating it is unfeasible or raises a “code
smell”, consider if you really must use GC for allocating such type.
<li>Link-time errors about undefined <code>gt_ggc_r_foo_bar</code> and
similarly-named symbols. Check if your <samp><span class="file">foo_bar</span></samp> source file has
<code>#include "gt-foo_bar.h"</code> as its very last line.
</ul>
<!-- Copyright (c) 2009, 2010 Free Software Foundation, Inc. -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Plugins"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#LTO">LTO</a>,
Previous: <a rel="previous" accesskey="p" href="#Type-Information">Type Information</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">23 Plugins</h2>
<p><a name="index-Plugins-4944"></a>
<h3 class="section">23.1 Loading Plugins</h3>
<p>Plugins are supported on platforms that support <samp><span class="option">-ldl
-rdynamic</span></samp>. They are loaded by the compiler using <code>dlopen</code>
and invoked at pre-determined locations in the compilation
process.
<p>Plugins are loaded with
<p><samp><span class="option">-fplugin=/path/to/</span><var>name</var><span class="option">.so</span></samp> <samp><span class="option">-fplugin-arg-</span><var>name</var><span class="option">-</span><var>key1</var><span class="option">[=</span><var>value1</var><span class="option">]</span></samp>
<p>The plugin arguments are parsed by GCC and passed to respective
plugins as key-value pairs. Multiple plugins can be invoked by
specifying multiple <samp><span class="option">-fplugin</span></samp> arguments.
<p>A plugin can be simply given by its short name (no dots or
slashes). When simply passing <samp><span class="option">-fplugin=</span><var>name</var></samp>, the plugin is
loaded from the <samp><span class="file">plugin</span></samp> directory, so <samp><span class="option">-fplugin=</span><var>name</var></samp> is
the same as <samp><span class="option">-fplugin=`gcc -print-file-name=plugin`/</span><var>name</var><span class="option">.so</span></samp>,
using backquote shell syntax to query the <samp><span class="file">plugin</span></samp> directory.
<h3 class="section">23.2 Plugin API</h3>
<p>Plugins are activated by the compiler at specific events as defined in
<samp><span class="file">gcc-plugin.h</span></samp>. For each event of interest, the plugin should
call <code>register_callback</code> specifying the name of the event and
address of the callback function that will handle that event.
<p>The header <samp><span class="file">gcc-plugin.h</span></samp> must be the first gcc header to be included.
<h4 class="subsection">23.2.1 Plugin license check</h4>
<p>Every plugin should define the global symbol <code>plugin_is_GPL_compatible</code>
to assert that it has been licensed under a GPL-compatible license.
If this symbol does not exist, the compiler will emit a fatal error
and exit with the error message:
<pre class="smallexample"> fatal error: plugin <var>name</var> is not licensed under a GPL-compatible license
<var>name</var>: undefined symbol: plugin_is_GPL_compatible
compilation terminated
</pre>
<p>The declared type of the symbol should be int, to match a forward declaration
in <samp><span class="file">gcc-plugin.h</span></samp> that suppresses C++ mangling. It does not need to be in
any allocated section, though. The compiler merely asserts that
the symbol exists in the global scope. Something like this is enough:
<pre class="smallexample"> int plugin_is_GPL_compatible;
</pre>
<h4 class="subsection">23.2.2 Plugin initialization</h4>
<p>Every plugin should export a function called <code>plugin_init</code> that
is called right after the plugin is loaded. This function is
responsible for registering all the callbacks required by the plugin
and do any other required initialization.
<p>This function is called from <code>compile_file</code> right before invoking
the parser. The arguments to <code>plugin_init</code> are:
<ul>
<li><code>plugin_info</code>: Plugin invocation information.
<li><code>version</code>: GCC version.
</ul>
<p>The <code>plugin_info</code> struct is defined as follows:
<pre class="smallexample"> struct plugin_name_args
{
char *base_name; /* Short name of the plugin
(filename without .so suffix). */
const char *full_name; /* Path to the plugin as specified with
-fplugin=. */
int argc; /* Number of arguments specified with
-fplugin-arg-.... */
struct plugin_argument *argv; /* Array of ARGC key-value pairs. */
const char *version; /* Version string provided by plugin. */
const char *help; /* Help string provided by plugin. */
}
</pre>
<p>If initialization fails, <code>plugin_init</code> must return a non-zero
value. Otherwise, it should return 0.
<p>The version of the GCC compiler loading the plugin is described by the
following structure:
<pre class="smallexample"> struct plugin_gcc_version
{
const char *basever;
const char *datestamp;
const char *devphase;
const char *revision;
const char *configuration_arguments;
};
</pre>
<p>The function <code>plugin_default_version_check</code> takes two pointers to
such structure and compare them field by field. It can be used by the
plugin's <code>plugin_init</code> function.
<p>The version of GCC used to compile the plugin can be found in the symbol
<code>gcc_version</code> defined in the header <samp><span class="file">plugin-version.h</span></samp>. The
recommended version check to perform looks like
<pre class="smallexample"> #include "plugin-version.h"
...
int
plugin_init (struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version)
{
if (!plugin_default_version_check (version, &gcc_version))
return 1;
}
</pre>
<p>but you can also check the individual fields if you want a less strict check.
<h4 class="subsection">23.2.3 Plugin callbacks</h4>
<p>Callback functions have the following prototype:
<pre class="smallexample"> /* The prototype for a plugin callback function.
gcc_data - event-specific data provided by GCC
user_data - plugin-specific data provided by the plug-in. */
typedef void (*plugin_callback_func)(void *gcc_data, void *user_data);
</pre>
<p>Callbacks can be invoked at the following pre-determined events:
<pre class="smallexample"> enum plugin_event
{
PLUGIN_PASS_MANAGER_SETUP, /* To hook into pass manager. */
PLUGIN_FINISH_TYPE, /* After finishing parsing a type. */
PLUGIN_FINISH_UNIT, /* Useful for summary processing. */
PLUGIN_PRE_GENERICIZE, /* Allows to see low level AST in C and C++ frontends. */
PLUGIN_FINISH, /* Called before GCC exits. */
PLUGIN_INFO, /* Information about the plugin. */
PLUGIN_GGC_START, /* Called at start of GCC Garbage Collection. */
PLUGIN_GGC_MARKING, /* Extend the GGC marking. */
PLUGIN_GGC_END, /* Called at end of GGC. */
PLUGIN_REGISTER_GGC_ROOTS, /* Register an extra GGC root table. */
PLUGIN_REGISTER_GGC_CACHES, /* Register an extra GGC cache table. */
PLUGIN_ATTRIBUTES, /* Called during attribute registration */
PLUGIN_START_UNIT, /* Called before processing a translation unit. */
PLUGIN_PRAGMAS, /* Called during pragma registration. */
/* Called before first pass from all_passes. */
PLUGIN_ALL_PASSES_START,
/* Called after last pass from all_passes. */
PLUGIN_ALL_PASSES_END,
/* Called before first ipa pass. */
PLUGIN_ALL_IPA_PASSES_START,
/* Called after last ipa pass. */
PLUGIN_ALL_IPA_PASSES_END,
/* Allows to override pass gate decision for current_pass. */
PLUGIN_OVERRIDE_GATE,
/* Called before executing a pass. */
PLUGIN_PASS_EXECUTION,
/* Called before executing subpasses of a GIMPLE_PASS in
execute_ipa_pass_list. */
PLUGIN_EARLY_GIMPLE_PASSES_START,
/* Called after executing subpasses of a GIMPLE_PASS in
execute_ipa_pass_list. */
PLUGIN_EARLY_GIMPLE_PASSES_END,
/* Called when a pass is first instantiated. */
PLUGIN_NEW_PASS,
PLUGIN_EVENT_FIRST_DYNAMIC /* Dummy event used for indexing callback
array. */
};
</pre>
<p>In addition, plugins can also look up the enumerator of a named event,
and / or generate new events dynamically, by calling the function
<code>get_named_event_id</code>.
<p>To register a callback, the plugin calls <code>register_callback</code> with
the arguments:
<ul>
<li><code>char *name</code>: Plugin name.
<li><code>int event</code>: The event code.
<li><code>plugin_callback_func callback</code>: The function that handles <code>event</code>.
<li><code>void *user_data</code>: Pointer to plugin-specific data.
</ul>
<p>For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS
and PLUGIN_REGISTER_GGC_CACHES pseudo-events the <code>callback</code> should be
null, and the <code>user_data</code> is specific.
<p>When the PLUGIN_PRAGMAS event is triggered (with a null
pointer as data from GCC), plugins may register their own pragmas
using functions like <code>c_register_pragma</code> or
<code>c_register_pragma_with_expansion</code>.
<h3 class="section">23.3 Interacting with the pass manager</h3>
<p>There needs to be a way to add/reorder/remove passes dynamically. This
is useful for both analysis plugins (plugging in after a certain pass
such as CFG or an IPA pass) and optimization plugins.
<p>Basic support for inserting new passes or replacing existing passes is
provided. A plugin registers a new pass with GCC by calling
<code>register_callback</code> with the <code>PLUGIN_PASS_MANAGER_SETUP</code>
event and a pointer to a <code>struct register_pass_info</code> object defined as follows
<pre class="smallexample"> enum pass_positioning_ops
{
PASS_POS_INSERT_AFTER, // Insert after the reference pass.
PASS_POS_INSERT_BEFORE, // Insert before the reference pass.
PASS_POS_REPLACE // Replace the reference pass.
};
struct register_pass_info
{
struct opt_pass *pass; /* New pass provided by the plugin. */
const char *reference_pass_name; /* Name of the reference pass for hooking
up the new pass. */
int ref_pass_instance_number; /* Insert the pass at the specified
instance number of the reference pass. */
/* Do it for every instance if it is 0. */
enum pass_positioning_ops pos_op; /* how to insert the new pass. */
};
/* Sample plugin code that registers a new pass. */
int
plugin_init (struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version)
{
struct register_pass_info pass_info;
...
/* Code to fill in the pass_info object with new pass information. */
...
/* Register the new pass. */
register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP, NULL, &pass_info);
...
}
</pre>
<h3 class="section">23.4 Interacting with the GCC Garbage Collector</h3>
<p>Some plugins may want to be informed when GGC (the GCC Garbage
Collector) is running. They can register callbacks for the
<code>PLUGIN_GGC_START</code> and <code>PLUGIN_GGC_END</code> events (for which
the callback is called with a null <code>gcc_data</code>) to be notified of
the start or end of the GCC garbage collection.
<p>Some plugins may need to have GGC mark additional data. This can be
done by registering a callback (called with a null <code>gcc_data</code>)
for the <code>PLUGIN_GGC_MARKING</code> event. Such callbacks can call the
<code>ggc_set_mark</code> routine, preferably thru the <code>ggc_mark</code> macro
(and conversely, these routines should usually not be used in plugins
outside of the <code>PLUGIN_GGC_MARKING</code> event).
<p>Some plugins may need to add extra GGC root tables, e.g. to handle their own
<code>GTY</code>-ed data. This can be done with the <code>PLUGIN_REGISTER_GGC_ROOTS</code>
pseudo-event with a null callback and the extra root table (of type <code>struct
ggc_root_tab*</code>) as <code>user_data</code>. Plugins that want to use the
<code>if_marked</code> hash table option can add the extra GGC cache tables generated
by <code>gengtype</code> using the <code>PLUGIN_REGISTER_GGC_CACHES</code> pseudo-event with
a null callback and the extra cache table (of type <code>struct ggc_cache_tab*</code>)
as <code>user_data</code>. Running the <code>gengtype -p </code><var>source-dir</var>
<var>file-list</var> <var>plugin*.c</var><code> ...</code> utility generates these extra root tables.
<p>You should understand the details of memory management inside GCC
before using <code>PLUGIN_GGC_MARKING</code>, <code>PLUGIN_REGISTER_GGC_ROOTS</code>
or <code>PLUGIN_REGISTER_GGC_CACHES</code>.
<h3 class="section">23.5 Giving information about a plugin</h3>
<p>A plugin should give some information to the user about itself. This
uses the following structure:
<pre class="smallexample"> struct plugin_info
{
const char *version;
const char *help;
};
</pre>
<p>Such a structure is passed as the <code>user_data</code> by the plugin's
init routine using <code>register_callback</code> with the
<code>PLUGIN_INFO</code> pseudo-event and a null callback.
<h3 class="section">23.6 Registering custom attributes or pragmas</h3>
<p>For analysis (or other) purposes it is useful to be able to add custom
attributes or pragmas.
<p>The <code>PLUGIN_ATTRIBUTES</code> callback is called during attribute
registration. Use the <code>register_attribute</code> function to register
custom attributes.
<pre class="smallexample"> /* Attribute handler callback */
static tree
handle_user_attribute (tree *node, tree name, tree args,
int flags, bool *no_add_attrs)
{
return NULL_TREE;
}
/* Attribute definition */
static struct attribute_spec user_attr =
{ "user", 1, 1, false, false, false, handle_user_attribute };
/* Plugin callback called during attribute registration.
Registered with register_callback (plugin_name, PLUGIN_ATTRIBUTES, register_attributes, NULL)
*/
static void
register_attributes (void *event_data, void *data)
{
warning (0, G_("Callback to register attributes"));
register_attribute (&user_attr);
}
</pre>
<p>The <code>PLUGIN_PRAGMAS</code> callback is called during pragmas
registration. Use the <code>c_register_pragma</code> or
<code>c_register_pragma_with_expansion</code> functions to register custom
pragmas.
<pre class="smallexample"> /* Plugin callback called during pragmas registration. Registered with
register_callback (plugin_name, PLUGIN_PRAGMAS,
register_my_pragma, NULL);
*/
static void
register_my_pragma (void *event_data, void *data)
{
warning (0, G_("Callback to register pragmas"));
c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello);
}
</pre>
<p>It is suggested to pass <code>"GCCPLUGIN"</code> (or a short name identifying
your plugin) as the “space” argument of your pragma.
<h3 class="section">23.7 Recording information about pass execution</h3>
<p>The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass
(the same as current_pass) as <code>gcc_data</code> to the callback. You can also
inspect cfun to find out about which function this pass is executed for.
Note that this event will only be invoked if the gate check (if
applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds.
You can use other hooks, like <code>PLUGIN_ALL_PASSES_START</code>,
<code>PLUGIN_ALL_PASSES_END</code>, <code>PLUGIN_ALL_IPA_PASSES_START</code>,
<code>PLUGIN_ALL_IPA_PASSES_END</code>, <code>PLUGIN_EARLY_GIMPLE_PASSES_START</code>,
and/or <code>PLUGIN_EARLY_GIMPLE_PASSES_END</code> to manipulate global state
in your plugin(s) in order to get context for the pass execution.
<h3 class="section">23.8 Controlling which passes are being run</h3>
<p>After the original gate function for a pass is called, its result
- the gate status - is stored as an integer.
Then the event <code>PLUGIN_OVERRIDE_GATE</code> is invoked, with a pointer
to the gate status in the <code>gcc_data</code> parameter to the callback function.
A nonzero value of the gate status means that the pass is to be executed.
You can both read and write the gate status via the passed pointer.
<h3 class="section">23.9 Keeping track of available passes</h3>
<p>When your plugin is loaded, you can inspect the various
pass lists to determine what passes are available. However, other
plugins might add new passes. Also, future changes to GCC might cause
generic passes to be added after plugin loading.
When a pass is first added to one of the pass lists, the event
<code>PLUGIN_NEW_PASS</code> is invoked, with the callback parameter
<code>gcc_data</code> pointing to the new pass.
<h3 class="section">23.10 Building GCC plugins</h3>
<p>If plugins are enabled, GCC installs the headers needed to build a
plugin (somewhere in the installation tree, e.g. under
<samp><span class="file">/usr/local</span></samp>). In particular a <samp><span class="file">plugin/include</span></samp> directory
is installed, containing all the header files needed to build plugins.
<p>On most systems, you can query this <code>plugin</code> directory by
invoking <samp><span class="command">gcc -print-file-name=plugin</span></samp> (replace if needed
<samp><span class="command">gcc</span></samp> with the appropriate program path).
<p>Inside plugins, this <code>plugin</code> directory name can be queried by
calling <code>default_plugin_dir_name ()</code>.
<p>The following GNU Makefile excerpt shows how to build a simple plugin:
<pre class="smallexample"> GCC=gcc
PLUGIN_SOURCE_FILES= plugin1.c plugin2.c
PLUGIN_OBJECT_FILES= $(patsubst %.c,%.o,$(PLUGIN_SOURCE_FILES))
GCCPLUGINS_DIR:= $(shell $(GCC) -print-file-name=plugin)
CFLAGS+= -I$(GCCPLUGINS_DIR)/include -fPIC -O2
plugin.so: $(PLUGIN_OBJECT_FILES)
$(GCC) -shared $^ -o $@
</pre>
<p>A single source file plugin may be built with <code>gcc -I`gcc
-print-file-name=plugin`/include -fPIC -shared -O2 plugin.c -o
plugin.so</code>, using backquote shell syntax to query the <samp><span class="file">plugin</span></samp>
directory.
<p>Plugins needing to use <samp><span class="command">gengtype</span></samp> require a GCC build
directory for the same version of GCC that they will be linked
against.
<!-- Copyright (c) 2010 Free Software Foundation, Inc. -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- Contributed by Jan Hubicka <jh@suse.cz> and -->
<!-- Diego Novillo <dnovillo@google.com> -->
<div class="node">
<a name="LTO"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Funding">Funding</a>,
Previous: <a rel="previous" accesskey="p" href="#Plugins">Plugins</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">24 Link Time Optimization</h2>
<p><a name="index-lto-4945"></a><a name="index-whopr-4946"></a><a name="index-wpa-4947"></a><a name="index-ltrans-4948"></a>
<h3 class="section">24.1 Design Overview</h3>
<p>Link time optimization is implemented as a GCC front end for a
bytecode representation of GIMPLE that is emitted in special sections
of <code>.o</code> files. Currently, LTO support is enabled in most
ELF-based systems, as well as darwin, cygwin and mingw systems.
<p>Since GIMPLE bytecode is saved alongside final object code, object
files generated with LTO support are larger than regular object files.
This “fat” object format makes it easy to integrate LTO into
existing build systems, as one can, for instance, produce archives of
the files. Additionally, one might be able to ship one set of fat
objects which could be used both for development and the production of
optimized builds. A, perhaps surprising, side effect of this feature
is that any mistake in the toolchain that leads to LTO information not
being used (e.g. an older <code>libtool</code> calling <code>ld</code> directly).
This is both an advantage, as the system is more robust, and a
disadvantage, as the user is not informed that the optimization has
been disabled.
<p>The current implementation only produces “fat” objects, effectively
doubling compilation time and increasing file sizes up to 5x the
original size. This hides the problem that some tools, such as
<code>ar</code> and <code>nm</code>, need to understand symbol tables of LTO
sections. These tools were extended to use the plugin infrastructure,
and with these problems solved, GCC will also support “slim” objects
consisting of the intermediate code alone.
<p>At the highest level, LTO splits the compiler in two. The first half
(the “writer”) produces a streaming representation of all the
internal data structures needed to optimize and generate code. This
includes declarations, types, the callgraph and the GIMPLE representation
of function bodies.
<p>When <samp><span class="option">-flto</span></samp> is given during compilation of a source file, the
pass manager executes all the passes in <code>all_lto_gen_passes</code>.
Currently, this phase is composed of two IPA passes:
<ul>
<li><code>pass_ipa_lto_gimple_out</code>
This pass executes the function <code>lto_output</code> in
<samp><span class="file">lto-streamer-out.c</span></samp>, which traverses the call graph encoding
every reachable declaration, type and function. This generates a
memory representation of all the file sections described below.
<li><code>pass_ipa_lto_finish_out</code>
This pass executes the function <code>produce_asm_for_decls</code> in
<samp><span class="file">lto-streamer-out.c</span></samp>, which takes the memory image built in the
previous pass and encodes it in the corresponding ELF file sections.
</ul>
<p>The second half of LTO support is the “reader”. This is implemented
as the GCC front end <samp><span class="file">lto1</span></samp> in <samp><span class="file">lto/lto.c</span></samp>. When
<samp><span class="file">collect2</span></samp> detects a link set of <code>.o</code>/<code>.a</code> files with
LTO information and the <samp><span class="option">-flto</span></samp> is enabled, it invokes
<samp><span class="file">lto1</span></samp> which reads the set of files and aggregates them into a
single translation unit for optimization. The main entry point for
the reader is <samp><span class="file">lto/lto.c</span></samp>:<code>lto_main</code>.
<h4 class="subsection">24.1.1 LTO modes of operation</h4>
<p>One of the main goals of the GCC link-time infrastructure was to allow
effective compilation of large programs. For this reason GCC implements two
link-time compilation modes.
<ol type=1 start=1>
<li><em>LTO mode</em>, in which the whole program is read into the
compiler at link-time and optimized in a similar way as if it
were a single source-level compilation unit.
<li><em>WHOPR or partitioned mode</em>, designed to utilize multiple
CPUs and/or a distributed compilation environment to quickly link
large applications. WHOPR stands for WHOle Program optimizeR (not to
be confused with the semantics of <samp><span class="option">-fwhole-program</span></samp>). It
partitions the aggregated callgraph from many different <code>.o</code>
files and distributes the compilation of the sub-graphs to different
CPUs.
<p>Note that distributed compilation is not implemented yet, but since
the parallelism is facilitated via generating a <code>Makefile</code>, it
would be easy to implement.
</ol>
<p>WHOPR splits LTO into three main stages:
<ol type=1 start=1>
<li>Local generation (LGEN)
This stage executes in parallel. Every file in the program is compiled
into the intermediate language and packaged together with the local
call-graph and summary information. This stage is the same for both
the LTO and WHOPR compilation mode.
<li>Whole Program Analysis (WPA)
WPA is performed sequentially. The global call-graph is generated, and
a global analysis procedure makes transformation decisions. The global
call-graph is partitioned to facilitate parallel optimization during
phase 3. The results of the WPA stage are stored into new object files
which contain the partitions of program expressed in the intermediate
language and the optimization decisions.
<li>Local transformations (LTRANS)
This stage executes in parallel. All the decisions made during phase 2
are implemented locally in each partitioned object file, and the final
object code is generated. Optimizations which cannot be decided
efficiently during the phase 2 may be performed on the local
call-graph partitions.
</ol>
<p>WHOPR can be seen as an extension of the usual LTO mode of
compilation. In LTO, WPA and LTRANS are executed within a single
execution of the compiler, after the whole program has been read into
memory.
<p>When compiling in WHOPR mode, the callgraph is partitioned during
the WPA stage. The whole program is split into a given number of
partitions of roughly the same size. The compiler tries to
minimize the number of references which cross partition boundaries.
The main advantage of WHOPR is to allow the parallel execution of
LTRANS stages, which are the most time-consuming part of the
compilation process. Additionally, it avoids the need to load the
whole program into memory.
<h3 class="section">24.2 LTO file sections</h3>
<p>LTO information is stored in several ELF sections inside object files.
Data structures and enum codes for sections are defined in
<samp><span class="file">lto-streamer.h</span></samp>.
<p>These sections are emitted from <samp><span class="file">lto-streamer-out.c</span></samp> and mapped
in all at once from <samp><span class="file">lto/lto.c</span></samp>:<code>lto_file_read</code>. The
individual functions dealing with the reading/writing of each section
are described below.
<ul>
<li>Command line options (<code>.gnu.lto_.opts</code>)
<p>This section contains the command line options used to generate the
object files. This is used at link time to determine the optimization
level and other settings when they are not explicitly specified at the
linker command line.
<p>Currently, GCC does not support combining LTO object files compiled
with different set of the command line options into a single binary.
At link time, the options given on the command line and the options
saved on all the files in a link-time set are applied globally. No
attempt is made at validating the combination of flags (other than the
usual validation done by option processing). This is implemented in
<samp><span class="file">lto/lto.c</span></samp>:<code>lto_read_all_file_options</code>.
<li>Symbol table (<code>.gnu.lto_.symtab</code>)
<p>This table replaces the ELF symbol table for functions and variables
represented in the LTO IL. Symbols used and exported by the optimized
assembly code of “fat” objects might not match the ones used and
exported by the intermediate code. This table is necessary because
the intermediate code is less optimized and thus requires a separate
symbol table.
<p>Additionally, the binary code in the “fat” object will lack a call
to a function, since the call was optimized out at compilation time
after the intermediate language was streamed out. In some special
cases, the same optimization may not happen during link-time
optimization. This would lead to an undefined symbol if only one
symbol table was used.
<p>The symbol table is emitted in
<samp><span class="file">lto-streamer-out.c</span></samp>:<code>produce_symtab</code>.
<li>Global declarations and types (<code>.gnu.lto_.decls</code>)
<p>This section contains an intermediate language dump of all
declarations and types required to represent the callgraph, static
variables and top-level debug info.
<p>The contents of this section are emitted in
<samp><span class="file">lto-streamer-out.c</span></samp>:<code>produce_asm_for_decls</code>. Types and
symbols are emitted in a topological order that preserves the sharing
of pointers when the file is read back in
(<samp><span class="file">lto.c</span></samp>:<code>read_cgraph_and_symbols</code>).
<li>The callgraph (<code>.gnu.lto_.cgraph</code>)
<p>This section contains the basic data structure used by the GCC
inter-procedural optimization infrastructure. This section stores an
annotated multi-graph which represents the functions and call sites as
well as the variables, aliases and top-level <code>asm</code> statements.
<p>This section is emitted in
<samp><span class="file">lto-streamer-out.c</span></samp>:<code>output_cgraph</code> and read in
<samp><span class="file">lto-cgraph.c</span></samp>:<code>input_cgraph</code>.
<li>IPA references (<code>.gnu.lto_.refs</code>)
<p>This section contains references between function and static
variables. It is emitted by <samp><span class="file">lto-cgraph.c</span></samp>:<code>output_refs</code>
and read by <samp><span class="file">lto-cgraph.c</span></samp>:<code>input_refs</code>.
<li>Function bodies (<code>.gnu.lto_.function_body.<name></code>)
<p>This section contains function bodies in the intermediate language
representation. Every function body is in a separate section to allow
copying of the section independently to different object files or
reading the function on demand.
<p>Functions are emitted in
<samp><span class="file">lto-streamer-out.c</span></samp>:<code>output_function</code> and read in
<samp><span class="file">lto-streamer-in.c</span></samp>:<code>input_function</code>.
<li>Static variable initializers (<code>.gnu.lto_.vars</code>)
<p>This section contains all the symbols in the global variable pool. It
is emitted by <samp><span class="file">lto-cgraph.c</span></samp>:<code>output_varpool</code> and read in
<samp><span class="file">lto-cgraph.c</span></samp>:<code>input_cgraph</code>.
<li>Summaries and optimization summaries used by IPA passes
(<code>.gnu.lto_.<xxx></code>, where <code><xxx></code> is one of <code>jmpfuncs</code>,
<code>pureconst</code> or <code>reference</code>)
<p>These sections are used by IPA passes that need to emit summary
information during LTO generation to be read and aggregated at
link time. Each pass is responsible for implementing two pass manager
hooks: one for writing the summary and another for reading it in. The
format of these sections is entirely up to each individual pass. The
only requirement is that the writer and reader hooks agree on the
format.
</ul>
<h3 class="section">24.3 Using summary information in IPA passes</h3>
<p>Programs are represented internally as a <em>callgraph</em> (a
multi-graph where nodes are functions and edges are call sites)
and a <em>varpool</em> (a list of static and external variables in
the program).
<p>The inter-procedural optimization is organized as a sequence of
individual passes, which operate on the callgraph and the
varpool. To make the implementation of WHOPR possible, every
inter-procedural optimization pass is split into several stages
that are executed at different times during WHOPR compilation:
<ul>
<li>LGEN time
<ol type=1 start=1>
<li><em>Generate summary</em> (<code>generate_summary</code> in
<code>struct ipa_opt_pass_d</code>). This stage analyzes every function
body and variable initializer is examined and stores relevant
information into a pass-specific data structure.
<li><em>Write summary</em> (<code>write_summary</code> in
<code>struct ipa_opt_pass_d</code>). This stage writes all the
pass-specific information generated by <code>generate_summary</code>.
Summaries go into their own <code>LTO_section_*</code> sections that
have to be declared in <samp><span class="file">lto-streamer.h</span></samp>:<code>enum
lto_section_type</code>. A new section is created by calling
<code>create_output_block</code> and data can be written using the
<code>lto_output_*</code> routines.
</ol>
<li>WPA time
<ol type=1 start=1>
<li><em>Read summary</em> (<code>read_summary</code> in
<code>struct ipa_opt_pass_d</code>). This stage reads all the
pass-specific information in exactly the same order that it was
written by <code>write_summary</code>.
<li><em>Execute</em> (<code>execute</code> in <code>struct
opt_pass</code>). This performs inter-procedural propagation. This
must be done without actual access to the individual function
bodies or variable initializers. Typically, this results in a
transitive closure operation over the summary information of all
the nodes in the callgraph.
<li><em>Write optimization summary</em>
(<code>write_optimization_summary</code> in <code>struct
ipa_opt_pass_d</code>). This writes the result of the inter-procedural
propagation into the object file. This can use the same data
structures and helper routines used in <code>write_summary</code>.
</ol>
<li>LTRANS time
<ol type=1 start=1>
<li><em>Read optimization summary</em>
(<code>read_optimization_summary</code> in <code>struct
ipa_opt_pass_d</code>). The counterpart to
<code>write_optimization_summary</code>. This reads the interprocedural
optimization decisions in exactly the same format emitted by
<code>write_optimization_summary</code>.
<li><em>Transform</em> (<code>function_transform</code> and
<code>variable_transform</code> in <code>struct ipa_opt_pass_d</code>).
The actual function bodies and variable initializers are updated
based on the information passed down from the <em>Execute</em> stage.
</ol>
</ul>
<p>The implementation of the inter-procedural passes are shared
between LTO, WHOPR and classic non-LTO compilation.
<ul>
<li>During the traditional file-by-file mode every pass executes its
own <em>Generate summary</em>, <em>Execute</em>, and <em>Transform</em>
stages within the single execution context of the compiler.
<li>In LTO compilation mode, every pass uses <em>Generate
summary</em> and <em>Write summary</em> stages at compilation time,
while the <em>Read summary</em>, <em>Execute</em>, and
<em>Transform</em> stages are executed at link time.
<li>In WHOPR mode all stages are used.
</ul>
<p>To simplify development, the GCC pass manager differentiates
between normal inter-procedural passes and small inter-procedural
passes. A <em>small inter-procedural pass</em>
(<code>SIMPLE_IPA_PASS</code>) is a pass that does
everything at once and thus it can not be executed during WPA in
WHOPR mode. It defines only the <em>Execute</em> stage and during
this stage it accesses and modifies the function bodies. Such
passes are useful for optimization at LGEN or LTRANS time and are
used, for example, to implement early optimization before writing
object files. The simple inter-procedural passes can also be used
for easier prototyping and development of a new inter-procedural
pass.
<h4 class="subsection">24.3.1 Virtual clones</h4>
<p>One of the main challenges of introducing the WHOPR compilation
mode was addressing the interactions between optimization passes.
In LTO compilation mode, the passes are executed in a sequence,
each of which consists of analysis (or <em>Generate summary</em>),
propagation (or <em>Execute</em>) and <em>Transform</em> stages.
Once the work of one pass is finished, the next pass sees the
updated program representation and can execute. This makes the
individual passes dependent on each other.
<p>In WHOPR mode all passes first execute their <em>Generate
summary</em> stage. Then summary writing marks the end of the LGEN
stage. At WPA time,
the summaries are read back into memory and all passes run the
<em>Execute</em> stage. Optimization summaries are streamed and
sent to LTRANS, where all the passes execute the <em>Transform</em>
stage.
<p>Most optimization passes split naturally into analysis,
propagation and transformation stages. But some do not. The
main problem arises when one pass performs changes and the
following pass gets confused by seeing different callgraphs
between the <em>Transform</em> stage and the <em>Generate summary</em>
or <em>Execute</em> stage. This means that the passes are required
to communicate their decisions with each other.
<p>To facilitate this communication, the GCC callgraph
infrastructure implements <em>virtual clones</em>, a method of
representing the changes performed by the optimization passes in
the callgraph without needing to update function bodies.
<p>A <em>virtual clone</em> in the callgraph is a function that has no
associated body, just a description of how to create its body based
on a different function (which itself may be a virtual clone).
<p>The description of function modifications includes adjustments to
the function's signature (which allows, for example, removing or
adding function arguments), substitutions to perform on the
function body, and, for inlined functions, a pointer to the
function that it will be inlined into.
<p>It is also possible to redirect any edge of the callgraph from a
function to its virtual clone. This implies updating of the call
site to adjust for the new function signature.
<p>Most of the transformations performed by inter-procedural
optimizations can be represented via virtual clones. For
instance, a constant propagation pass can produce a virtual clone
of the function which replaces one of its arguments by a
constant. The inliner can represent its decisions by producing a
clone of a function whose body will be later integrated into
a given function.
<p>Using <em>virtual clones</em>, the program can be easily updated
during the <em>Execute</em> stage, solving most of pass interactions
problems that would otherwise occur during <em>Transform</em>.
<p>Virtual clones are later materialized in the LTRANS stage and
turned into real functions. Passes executed after the virtual
clone were introduced also perform their <em>Transform</em> stage
on new functions, so for a pass there is no significant
difference between operating on a real function or a virtual
clone introduced before its <em>Execute</em> stage.
<p>Optimization passes then work on virtual clones introduced before
their <em>Execute</em> stage as if they were real functions. The
only difference is that clones are not visible during the
<em>Generate Summary</em> stage.
<p>To keep function summaries updated, the callgraph interface
allows an optimizer to register a callback that is called every
time a new clone is introduced as well as when the actual
function or variable is generated or when a function or variable
is removed. These hooks are registered in the <em>Generate
summary</em> stage and allow the pass to keep its information intact
until the <em>Execute</em> stage. The same hooks can also be
registered during the <em>Execute</em> stage to keep the
optimization summaries updated for the <em>Transform</em> stage.
<h4 class="subsection">24.3.2 IPA references</h4>
<p>GCC represents IPA references in the callgraph. For a function
or variable <code>A</code>, the <em>IPA reference</em> is a list of all
locations where the address of <code>A</code> is taken and, when
<code>A</code> is a variable, a list of all direct stores and reads
to/from <code>A</code>. References represent an oriented multi-graph on
the union of nodes of the callgraph and the varpool. See
<samp><span class="file">ipa-reference.c</span></samp>:<code>ipa_reference_write_optimization_summary</code>
and
<samp><span class="file">ipa-reference.c</span></samp>:<code>ipa_reference_read_optimization_summary</code>
for details.
<h4 class="subsection">24.3.3 Jump functions</h4>
<p>Suppose that an optimization pass sees a function <code>A</code> and it
knows the values of (some of) its arguments. The <em>jump
function</em> describes the value of a parameter of a given function
call in function <code>A</code> based on this knowledge.
<p>Jump functions are used by several optimizations, such as the
inter-procedural constant propagation pass and the
devirtualization pass. The inliner also uses jump functions to
perform inlining of callbacks.
<h3 class="section">24.4 Whole program assumptions, linker plugin and symbol visibilities</h3>
<p>Link-time optimization gives relatively minor benefits when used
alone. The problem is that propagation of inter-procedural
information does not work well across functions and variables
that are called or referenced by other compilation units (such as
from a dynamically linked library). We say that such functions
are variables are <em>externally visible</em>.
<p>To make the situation even more difficult, many applications
organize themselves as a set of shared libraries, and the default
ELF visibility rules allow one to overwrite any externally
visible symbol with a different symbol at runtime. This
basically disables any optimizations across such functions and
variables, because the compiler cannot be sure that the function
body it is seeing is the same function body that will be used at
runtime. Any function or variable not declared <code>static</code> in
the sources degrades the quality of inter-procedural
optimization.
<p>To avoid this problem the compiler must assume that it sees the
whole program when doing link-time optimization. Strictly
speaking, the whole program is rarely visible even at link-time.
Standard system libraries are usually linked dynamically or not
provided with the link-time information. In GCC, the whole
program option (<samp><span class="option">-fwhole-program</span></samp>) asserts that every
function and variable defined in the current compilation
unit is static, except for function <code>main</code> (note: at
link time, the current unit is the union of all objects compiled
with LTO). Since some functions and variables need to
be referenced externally, for example by another DSO or from an
assembler file, GCC also provides the function and variable
attribute <code>externally_visible</code> which can be used to disable
the effect of <samp><span class="option">-fwhole-program</span></samp> on a specific symbol.
<p>The whole program mode assumptions are slightly more complex in
C++, where inline functions in headers are put into <em>COMDAT</em>
sections. COMDAT function and variables can be defined by
multiple object files and their bodies are unified at link-time
and dynamic link-time. COMDAT functions are changed to local only
when their address is not taken and thus un-sharing them with a
library is not harmful. COMDAT variables always remain externally
visible, however for readonly variables it is assumed that their
initializers cannot be overwritten by a different value.
<p>GCC provides the function and variable attribute
<code>visibility</code> that can be used to specify the visibility of
externally visible symbols (or alternatively an
<samp><span class="option">-fdefault-visibility</span></samp> command line option). ELF defines
the <code>default</code>, <code>protected</code>, <code>hidden</code> and
<code>internal</code> visibilities.
<p>The most commonly used is visibility is <code>hidden</code>. It
specifies that the symbol cannot be referenced from outside of
the current shared library. Unfortunately, this information
cannot be used directly by the link-time optimization in the
compiler since the whole shared library also might contain
non-LTO objects and those are not visible to the compiler.
<p>GCC solves this problem using linker plugins. A <em>linker
plugin</em> is an interface to the linker that allows an external
program to claim the ownership of a given object file. The linker
then performs the linking procedure by querying the plugin about
the symbol table of the claimed objects and once the linking
decisions are complete, the plugin is allowed to provide the
final object file before the actual linking is made. The linker
plugin obtains the symbol resolution information which specifies
which symbols provided by the claimed objects are bound from the
rest of a binary being linked.
<p>Currently, the linker plugin works only in combination
with the Gold linker, but a GNU ld implementation is under
development.
<p>GCC is designed to be independent of the rest of the toolchain
and aims to support linkers without plugin support. For this
reason it does not use the linker plugin by default. Instead,
the object files are examined by <samp><span class="command">collect2</span></samp> before being
passed to the linker and objects found to have LTO sections are
passed to <samp><span class="command">lto1</span></samp> first. This mode does not work for
library archives. The decision on what object files from the
archive are needed depends on the actual linking and thus GCC
would have to implement the linker itself. The resolution
information is missing too and thus GCC needs to make an educated
guess based on <samp><span class="option">-fwhole-program</span></samp>. Without the linker
plugin GCC also assumes that symbols are declared <code>hidden</code>
and not referred by non-LTO code by default.
<h3 class="section">24.5 Internal flags controlling <code>lto1</code></h3>
<p>The following flags are passed into <samp><span class="command">lto1</span></samp> and are not
meant to be used directly from the command line.
<ul>
<li>-fwpa
<a name="index-fwpa-4949"></a>This option runs the serial part of the link-time optimizer
performing the inter-procedural propagation (WPA mode). The
compiler reads in summary information from all inputs and
performs an analysis based on summary information only. It
generates object files for subsequent runs of the link-time
optimizer where individual object files are optimized using both
summary information from the WPA mode and the actual function
bodies. It then drives the LTRANS phase.
<li>-fltrans
<a name="index-fltrans-4950"></a>This option runs the link-time optimizer in the
local-transformation (LTRANS) mode, which reads in output from a
previous run of the LTO in WPA mode. In the LTRANS mode, LTO
optimizes an object and produces the final assembly.
<li>-fltrans-output-list=<var>file</var>
<a name="index-fltrans_002doutput_002dlist-4951"></a>This option specifies a file to which the names of LTRANS output
files are written. This option is only meaningful in conjunction
with <samp><span class="option">-fwpa</span></samp>.
</ul>
<div class="node">
<a name="Funding"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GNU-Project">GNU Project</a>,
Previous: <a rel="previous" accesskey="p" href="#LTO">LTO</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">Funding Free Software</h2>
<p>If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development. The most effective approach known is to encourage
commercial redistributors to donate.
<p>Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers—the Free Software Foundation, and others.
<p>The way to convince distributors to do this is to demand it and expect
it from them. So when you compare distributors, judge them partly by
how much they give to free software development. Show distributors
they must compete to be the one who gives the most.
<p>To make this approach work, you must insist on numbers that you can
compare, such as, “We will donate ten dollars to the Frobnitz project
for each disk sold.” Don't be satisfied with a vague promise, such as
“A portion of the profits are donated,” since it doesn't give a basis
for comparison.
<p>Even a precise fraction “of the profits from this disk” is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit.
If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.
<p>Some redistributors do development work themselves. This is useful too;
but to keep everyone honest, you need to inquire how much they do, and
what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection contribute more;
major new features or packages contribute the most.
<p>By establishing the idea that supporting further development is “the
proper thing to do” when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.
<!-- man end -->
<pre class="display"> <!-- man begin COPYRIGHT -->
Copyright © 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.
<!-- man end -->
</pre>
<!-- Copyright (C) 2001 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="GNU-Project"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Copying">Copying</a>,
Previous: <a rel="previous" accesskey="p" href="#Funding">Funding</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">The GNU Project and GNU/Linux</h2>
<p>The GNU Project was launched in 1984 to develop a complete Unix-like
operating system which is free software: the GNU system. (GNU is a
recursive acronym for “GNU's Not Unix”; it is pronounced
“guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often
referred to as “Linux”, they are more accurately called GNU/Linux
systems.
<p>For more information, see:
<pre class="smallexample"> <a href="http://www.gnu.org/">http://www.gnu.org/</a>
<a href="http://www.gnu.org/gnu/linux-and-gnu.html">http://www.gnu.org/gnu/linux-and-gnu.html</a>
</pre>
<div class="node">
<a name="Copying"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Previous: <a rel="previous" accesskey="p" href="#GNU-Project">GNU Project</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">GNU General Public License</h2>
<div align="center">Version 3, 29 June 2007</div>
<!-- This file is intended to be included in another file. -->
<pre class="display"> Copyright © 2007 Free Software Foundation, Inc. <a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
</pre>
<h3 class="heading">Preamble</h3>
<p>The GNU General Public License is a free, copyleft license for
software and other kinds of works.
<p>The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You
can apply it to your programs, too.
<p>When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
<p>To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
<p>For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
<p>Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
<p>For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
<p>Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
<p>Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
<p>The precise terms and conditions for copying, distribution and
modification follow.
<h3 class="heading">TERMS AND CONDITIONS</h3>
<ol type=1 start=0>
<li>Definitions.
<p>“This License” refers to version 3 of the GNU General Public License.
<p>“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
<p>“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.
<p>To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
<p>A “covered work” means either the unmodified Program or a work based
on the Program.
<p>To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
<p>To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
<p>An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
<li>Source Code.
<p>The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.
<p>A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
<p>The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
<p>The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
<p>The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
<p>The Corresponding Source for a work in source code form is that same
work.
<li>Basic Permissions.
<p>All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
<p>You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
<p>Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
<li>Protecting Users' Legal Rights From Anti-Circumvention Law.
<p>No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
<p>When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
<li>Conveying Verbatim Copies.
<p>You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
<p>You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
<li>Conveying Modified Source Versions.
<p>You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
<ol type=a start=1>
<li>The work must carry prominent notices stating that you modified it,
and giving a relevant date.
<li>The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.
<li>You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.
<li>If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.
</ol>
<p>A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
<li>Conveying Non-Source Forms.
<p>You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
<ol type=a start=1>
<li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.
<li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.
<li>Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.
<li>Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.
<li>Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.
</ol>
<p>A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
<p>A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
<p>“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
<p>If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
<p>The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
<p>Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
<li>Additional Terms.
<p>“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
<p>When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
<p>Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
<ol type=a start=1>
<li>Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or
<li>Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or
<li>Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
<li>Limiting the use for publicity purposes of names of licensors or
authors of the material; or
<li>Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or
<li>Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.
</ol>
<p>All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
<p>If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
<p>Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
<li>Termination.
<p>You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
<li>Acceptance Not Required for Having Copies.
<p>You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
<li>Automatic Licensing of Downstream Recipients.
<p>Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
<p>An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
<p>You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
<li>Patents.
<p>A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's “contributor version”.
<p>A contributor's “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
<p>Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
<p>In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
<p>If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
<p>If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
<p>A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
<p>Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
<li>No Surrender of Others' Freedom.
<p>If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
<li>Use with the GNU Affero General Public License.
<p>Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
<li>Revised Versions of this License.
<p>The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
<p>Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.
<p>If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
<p>Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
<li>Disclaimer of Warranty.
<p>THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
<li>Limitation of Liability.
<p>IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
<li>Interpretation of Sections 15 and 16.
<p>If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
</ol>
<h3 class="heading">END OF TERMS AND CONDITIONS</h3>
<h3 class="heading">How to Apply These Terms to Your New Programs</h3>
<p>If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
<p>To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.
<pre class="smallexample"> <var>one line to give the program's name and a brief idea of what it does.</var>
Copyright (C) <var>year</var> <var>name of author</var>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</pre>
<p>Also add information on how to contact you by electronic and paper mail.
<p>If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<pre class="smallexample"> <var>program</var> Copyright (C) <var>year</var> <var>name of author</var>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘<samp><span class="samp">show w</span></samp>’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘<samp><span class="samp">show c</span></samp>’ for details.
</pre>
<p>The hypothetical commands ‘<samp><span class="samp">show w</span></samp>’ and ‘<samp><span class="samp">show c</span></samp>’ should show
the appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an “about box”.
<p>You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
<p>The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <a href="http://www.gnu.org/philosophy/why-not-lgpl.html">http://www.gnu.org/philosophy/why-not-lgpl.html</a>.
<!-- man end -->
<!-- -->
<!-- GFDL -->
<!-- -->
<!-- Special handling for inclusion in the install manual. -->
<!-- man begin DESCRIPTION -->
<div class="node">
<a name="GNU-Free-Documentation-License"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Contributors">Contributors</a>,
Previous: <a rel="previous" accesskey="p" href="#Copying">Copying</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">GNU Free Documentation License</h2>
<p><a name="index-FDL_002c-GNU-Free-Documentation-License-4952"></a><div align="center">Version 1.3, 3 November 2008</div>
<pre class="display"> Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</pre>
<ol type=1 start=0>
<li>PREAMBLE
<p>The purpose of this License is to make a manual, textbook, or other
functional and useful document <dfn>free</dfn> in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
<p>This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
<p>We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
<li>APPLICABILITY AND DEFINITIONS
<p>This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
<p>A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
<p>A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
<p>The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
<p>The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
<p>A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.
<p>Examples of suitable formats for Transparent copies include plain
<span class="sc">ascii</span> without markup, Texinfo input format, LaTeX input
format, <acronym>SGML</acronym> or <acronym>XML</acronym> using a publicly available
<acronym>DTD</acronym>, and standard-conforming simple <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> designed for human modification. Examples
of transparent image formats include <acronym>PNG</acronym>, <acronym>XCF</acronym> and
<acronym>JPG</acronym>. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, <acronym>SGML</acronym> or
<acronym>XML</acronym> for which the <acronym>DTD</acronym> and/or processing tools are
not generally available, and the machine-generated <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> produced by some word processors for
output purposes only.
<p>The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
<p>The “publisher” means any person or entity that distributes copies
of the Document to the public.
<p>A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
<p>The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
<li>VERBATIM COPYING
<p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
<p>You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
<li>COPYING IN QUANTITY
<p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
<p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
<p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
<p>It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
<li>MODIFICATIONS
<p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
<ol type=A start=1>
<li>Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.
<li>List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.
<li>State on the Title page the name of the publisher of the
Modified Version, as the publisher.
<li>Preserve all the copyright notices of the Document.
<li>Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
<li>Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.
<li>Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.
<li>Include an unaltered copy of this License.
<li>Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
<li>Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
<li>For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.
<li>Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
<li>Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.
<li>Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.
<li>Preserve any Warranty Disclaimers.
</ol>
<p>If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
<p>You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
<p>You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
<p>The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
<li>COMBINING DOCUMENTS
<p>You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
<p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
<p>In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”
<li>COLLECTIONS OF DOCUMENTS
<p>You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
<p>You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
<li>AGGREGATION WITH INDEPENDENT WORKS
<p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
<p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
<li>TRANSLATION
<p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
<p>If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
<li>TERMINATION
<p>You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.
<li>FUTURE REVISIONS OF THIS LICENSE
<p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
<a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>.
<p>Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.
<li>RELICENSING
<p>“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC
site.
<p>“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
<p>“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
<p>An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
<p>The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.
</ol>
<h3 class="unnumberedsec">ADDENDUM: How to use this License for your documents</h3>
<p>To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:
<pre class="smallexample"> Copyright (C) <var>year</var> <var>your name</var>.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
</pre>
<p>If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:
<pre class="smallexample"> with the Invariant Sections being <var>list their titles</var>, with
the Front-Cover Texts being <var>list</var>, and with the Back-Cover Texts
being <var>list</var>.
</pre>
<p>If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
<p>If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
<!-- Local Variables: -->
<!-- ispell-local-pdict: "ispell-dict" -->
<!-- End: -->
<!-- man end -->
<!-- Copyright (C) 1988,1989,1992,1993,1994,1995,1996,1997,1998,1999,2000, -->
<!-- 2001,2002,2003,2004,2005,2006,2007,2008,2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributors"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Option-Index">Option Index</a>,
Previous: <a rel="previous" accesskey="p" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Contributors to GCC</h2>
<p><a name="index-contributors-4953"></a>
The GCC project would like to thank its many contributors. Without them the
project would not have been nearly as successful as it has been. Any omissions
in this list are accidental. Feel free to contact
<a href="mailto:law@redhat.com">law@redhat.com</a> or <a href="mailto:gerald@pfeifer.com">gerald@pfeifer.com</a> if you have been left
out or some of your contributions are not listed. Please keep this list in
alphabetical order.
<ul>
<li>Analog Devices helped implement the support for complex data types
and iterators.
<li>John David Anglin for threading-related fixes and improvements to
libstdc++-v3, and the HP-UX port.
<li>James van Artsdalen wrote the code that makes efficient use of
the Intel 80387 register stack.
<li>Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series
port.
<li>Alasdair Baird for various bug fixes.
<li>Giovanni Bajo for analyzing lots of complicated C++ problem reports.
<li>Peter Barada for his work to improve code generation for new
ColdFire cores.
<li>Gerald Baumgartner added the signature extension to the C++ front end.
<li>Godmar Back for his Java improvements and encouragement.
<li>Scott Bambrough for help porting the Java compiler.
<li>Wolfgang Bangerth for processing tons of bug reports.
<li>Jon Beniston for his Microsoft Windows port of Java and port to Lattice Mico32.
<li>Daniel Berlin for better DWARF2 support, faster/better optimizations,
improved alias analysis, plus migrating GCC to Bugzilla.
<li>Geoff Berry for his Java object serialization work and various patches.
<li>Uros Bizjak for the implementation of x87 math built-in functions and
for various middle end and i386 back end improvements and bug fixes.
<li>Eric Blake for helping to make GCJ and libgcj conform to the
specifications.
<li>Janne Blomqvist for contributions to GNU Fortran.
<li>Segher Boessenkool for various fixes.
<li>Hans-J. Boehm for his <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">garbage collector</a>, IA-64 libffi port, and other Java work.
<li>Neil Booth for work on cpplib, lang hooks, debug hooks and other
miscellaneous clean-ups.
<li>Steven Bosscher for integrating the GNU Fortran front end into GCC and for
contributing to the tree-ssa branch.
<li>Eric Botcazou for fixing middle- and backend bugs left and right.
<li>Per Bothner for his direction via the steering committee and various
improvements to the infrastructure for supporting new languages. Chill
front end implementation. Initial implementations of
cpplib, fix-header, config.guess, libio, and past C++ library (libg++)
maintainer. Dreaming up, designing and implementing much of GCJ.
<li>Devon Bowen helped port GCC to the Tahoe.
<li>Don Bowman for mips-vxworks contributions.
<li>Dave Brolley for work on cpplib and Chill.
<li>Paul Brook for work on the ARM architecture and maintaining GNU Fortran.
<li>Robert Brown implemented the support for Encore 32000 systems.
<li>Christian Bruel for improvements to local store elimination.
<li>Herman A.J. ten Brugge for various fixes.
<li>Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
<li>Joe Buck for his direction via the steering committee.
<li>Craig Burley for leadership of the G77 Fortran effort.
<li>Stephan Buys for contributing Doxygen notes for libstdc++.
<li>Paolo Carlini for libstdc++ work: lots of efficiency improvements to
the C++ strings, streambufs and formatted I/O, hard detective work on
the frustrating localization issues, and keeping up with the problem reports.
<li>John Carr for his alias work, SPARC hacking, infrastructure improvements,
previous contributions to the steering committee, loop optimizations, etc.
<li>Stephane Carrez for 68HC11 and 68HC12 ports.
<li>Steve Chamberlain for support for the Renesas SH and H8 processors
and the PicoJava processor, and for GCJ config fixes.
<li>Glenn Chambers for help with the GCJ FAQ.
<li>John-Marc Chandonia for various libgcj patches.
<li>Denis Chertykov for contributing and maintaining the AVR port, the first GCC port
for an 8-bit architecture.
<li>Scott Christley for his Objective-C contributions.
<li>Eric Christopher for his Java porting help and clean-ups.
<li>Branko Cibej for more warning contributions.
<li>The <a href="http://www.gnu.org/software/classpath/">GNU Classpath project</a>
for all of their merged runtime code.
<li>Nick Clifton for arm, mcore, fr30, v850, m32r, rx work,
<samp><span class="option">--help</span></samp>, and other random hacking.
<li>Michael Cook for libstdc++ cleanup patches to reduce warnings.
<li>R. Kelley Cook for making GCC buildable from a read-only directory as
well as other miscellaneous build process and documentation clean-ups.
<li>Ralf Corsepius for SH testing and minor bug fixing.
<li>Stan Cox for care and feeding of the x86 port and lots of behind
the scenes hacking.
<li>Alex Crain provided changes for the 3b1.
<li>Ian Dall for major improvements to the NS32k port.
<li>Paul Dale for his work to add uClinux platform support to the
m68k backend.
<li>Dario Dariol contributed the four varieties of sample programs
that print a copy of their source.
<li>Russell Davidson for fstream and stringstream fixes in libstdc++.
<li>Bud Davis for work on the G77 and GNU Fortran compilers.
<li>Mo DeJong for GCJ and libgcj bug fixes.
<li>DJ Delorie for the DJGPP port, build and libiberty maintenance,
various bug fixes, and the M32C and MeP ports.
<li>Arnaud Desitter for helping to debug GNU Fortran.
<li>Gabriel Dos Reis for contributions to G++, contributions and
maintenance of GCC diagnostics infrastructure, libstdc++-v3,
including <code>valarray<></code>, <code>complex<></code>, maintaining the numerics library
(including that pesky <code><limits></code> :-) and keeping up-to-date anything
to do with numbers.
<li>Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99
support, CFG dumping support, etc., plus support of the C++ runtime
libraries including for all kinds of C interface issues, contributing and
maintaining <code>complex<></code>, sanity checking and disbursement, configuration
architecture, libio maintenance, and early math work.
<li>Zdenek Dvorak for a new loop unroller and various fixes.
<li>Michael Eager for his work on the Xilinx MicroBlaze port.
<li>Richard Earnshaw for his ongoing work with the ARM.
<li>David Edelsohn for his direction via the steering committee, ongoing work
with the RS6000/PowerPC port, help cleaning up Haifa loop changes,
doing the entire AIX port of libstdc++ with his bare hands, and for
ensuring GCC properly keeps working on AIX.
<li>Kevin Ediger for the floating point formatting of num_put::do_put in
libstdc++.
<li>Phil Edwards for libstdc++ work including configuration hackery,
documentation maintainer, chief breaker of the web pages, the occasional
iostream bug fix, and work on shared library symbol versioning.
<li>Paul Eggert for random hacking all over GCC.
<li>Mark Elbrecht for various DJGPP improvements, and for libstdc++
configuration support for locales and fstream-related fixes.
<li>Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
<li>Christian Ehrhardt for dealing with bug reports.
<li>Ben Elliston for his work to move the Objective-C runtime into its
own subdirectory and for his work on autoconf.
<li>Revital Eres for work on the PowerPC 750CL port.
<li>Marc Espie for OpenBSD support.
<li>Doug Evans for much of the global optimization framework, arc, m32r,
and SPARC work.
<li>Christopher Faylor for his work on the Cygwin port and for caring and
feeding the gcc.gnu.org box and saving its users tons of spam.
<li>Fred Fish for BeOS support and Ada fixes.
<li>Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
<li>Peter Gerwinski for various bug fixes and the Pascal front end.
<li>Kaveh R. Ghazi for his direction via the steering committee, amazing
work to make ‘<samp><span class="samp">-W -Wall -W* -Werror</span></samp>’ useful, and continuously
testing GCC on a plethora of platforms. Kaveh extends his gratitude to
the <a href="http://www.caip.rutgers.edu">CAIP Center</a> at Rutgers
University for providing him with computing resources to work on Free
Software since the late 1980s.
<li>John Gilmore for a donation to the FSF earmarked improving GNU Java.
<li>Judy Goldberg for c++ contributions.
<li>Torbjorn Granlund for various fixes and the c-torture testsuite,
multiply- and divide-by-constant optimization, improved long long
support, improved leaf function register allocation, and his direction
via the steering committee.
<li>Anthony Green for his <samp><span class="option">-Os</span></samp> contributions, the moxie port, and
Java front end work.
<li>Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
<li>Michael K. Gschwind contributed the port to the PDP-11.
<li>Richard Guenther for his ongoing middle-end contributions and bug fixes
and for release management.
<li>Ron Guilmette implemented the <samp><span class="command">protoize</span></samp> and <samp><span class="command">unprotoize</span></samp>
tools, the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on the
Intel 386 and 860 support.
<li>Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
<li>Bruno Haible for improvements in the runtime overhead for EH, new
warnings and assorted bug fixes.
<li>Andrew Haley for his amazing Java compiler and library efforts.
<li>Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
<li>Michael Hayes for various thankless work he's done trying to get
the c30/c40 ports functional. Lots of loop and unroll improvements and
fixes.
<li>Dara Hazeghi for wading through myriads of target-specific bug reports.
<li>Kate Hedstrom for staking the G77 folks with an initial testsuite.
<li>Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop
opts, and generally fixing lots of old problems we've ignored for
years, flow rewrite and lots of further stuff, including reviewing
tons of patches.
<li>Aldy Hernandez for working on the PowerPC port, SIMD support, and
various fixes.
<li>Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.
<li>Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
<li>Katherine Holcomb for work on GNU Fortran.
<li>Manfred Hollstein for his ongoing work to keep the m88k alive, lots
of testing and bug fixing, particularly of GCC configury code.
<li>Steve Holmgren for MachTen patches.
<li>Jan Hubicka for his x86 port improvements.
<li>Falk Hueffner for working on C and optimization bug reports.
<li>Bernardo Innocenti for his m68k work, including merging of
ColdFire improvements and uClinux support.
<li>Christian Iseli for various bug fixes.
<li>Kamil Iskra for general m68k hacking.
<li>Lee Iverson for random fixes and MIPS testing.
<li>Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
<li>Jakub Jelinek for his SPARC work and sibling call optimizations as well
as lots of bug fixes and test cases, and for improving the Java build
system.
<li>Janis Johnson for ia64 testing and fixes, her quality improvement
sidetracks, and web page maintenance.
<li>Kean Johnston for SCO OpenServer support and various fixes.
<li>Tim Josling for the sample language treelang based originally on Richard
Kenner's “toy” language.
<li>Nicolai Josuttis for additional libstdc++ documentation.
<li>Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
<li>Steven G. Kargl for work on GNU Fortran.
<li>David Kashtan of SRI adapted GCC to VMS.
<li>Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of
strings, especially member functions, and for auto_ptr fixes.
<li>Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux
and his automatic regression tester.
<li>Brendan Kehoe for his ongoing work with G++ and for a lot of early work
in just about every part of libstdc++.
<li>Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.
<li>Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes. He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination and delay slot scheduling. Richard Kenner was also the
head maintainer of GCC for several years.
<li>Mumit Khan for various contributions to the Cygwin and Mingw32 ports and
maintaining binary releases for Microsoft Windows hosts, and for massive libstdc++
porting work to Cygwin/Mingw32.
<li>Robin Kirkham for cpu32 support.
<li>Mark Klein for PA improvements.
<li>Thomas Koenig for various bug fixes.
<li>Bruce Korb for the new and improved fixincludes code.
<li>Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
<li>Charles LaBrec contributed the support for the Integrated Solutions
68020 system.
<li>Asher Langton and Mike Kumbera for contributing Cray pointer support
to GNU Fortran, and for other GNU Fortran improvements.
<li>Jeff Law for his direction via the steering committee, coordinating the
entire egcs project and GCC 2.95, rolling out snapshots and releases,
handling merges from GCC2, reviewing tons of patches that might have
fallen through the cracks else, and random but extensive hacking.
<li>Marc Lehmann for his direction via the steering committee and helping
with analysis and improvements of x86 performance.
<li>Victor Leikehman for work on GNU Fortran.
<li>Ted Lemon wrote parts of the RTL reader and printer.
<li>Kriang Lerdsuwanakij for C++ improvements including template as template
parameter support, and many C++ fixes.
<li>Warren Levy for tremendous work on libgcj (Java Runtime Library) and
random work on the Java front end.
<li>Alain Lichnewsky ported GCC to the MIPS CPU.
<li>Oskar Liljeblad for hacking on AWT and his many Java bug reports and
patches.
<li>Robert Lipe for OpenServer support, new testsuites, testing, etc.
<li>Chen Liqin for various S+core related fixes/improvement, and for
maintaining the S+core port.
<li>Weiwen Liu for testing and various bug fixes.
<li>Manuel López-Ibáñez for improving <samp><span class="option">-Wconversion</span></samp> and
many other diagnostics fixes and improvements.
<li>Dave Love for his ongoing work with the Fortran front end and
runtime libraries.
<li>Martin von Löwis for internal consistency checking infrastructure,
various C++ improvements including namespace support, and tons of
assistance with libstdc++/compiler merges.
<li>H.J. Lu for his previous contributions to the steering committee, many x86
bug reports, prototype patches, and keeping the GNU/Linux ports working.
<li>Greg McGary for random fixes and (someday) bounded pointers.
<li>Andrew MacLeod for his ongoing work in building a real EH system,
various code generation improvements, work on the global optimizer, etc.
<li>Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking
improvements to compile-time performance, overall knowledge and
direction in the area of instruction scheduling, and design and
implementation of the automaton based instruction scheduler.
<li>Bob Manson for his behind the scenes work on dejagnu.
<li>Philip Martin for lots of libstdc++ string and vector iterator fixes and
improvements, and string clean up and testsuites.
<li>All of the Mauve project
<a href="http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD">contributors</a>,
for Java test code.
<li>Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
<li>Adam Megacz for his work on the Microsoft Windows port of GCJ.
<li>Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
powerpc, haifa, ECOFF debug support, and other assorted hacking.
<li>Jason Merrill for his direction via the steering committee and leading
the G++ effort.
<li>Martin Michlmayr for testing GCC on several architectures using the
entire Debian archive.
<li>David Miller for his direction via the steering committee, lots of
SPARC work, improvements in jump.c and interfacing with the Linux kernel
developers.
<li>Gary Miller ported GCC to Charles River Data Systems machines.
<li>Alfred Minarik for libstdc++ string and ios bug fixes, and turning the
entire libstdc++ testsuite namespace-compatible.
<li>Mark Mitchell for his direction via the steering committee, mountains of
C++ work, load/store hoisting out of loops, alias analysis improvements,
ISO C <code>restrict</code> support, and serving as release manager for GCC 3.x.
<li>Alan Modra for various GNU/Linux bits and testing.
<li>Toon Moene for his direction via the steering committee, Fortran
maintenance, and his ongoing work to make us make Fortran run fast.
<li>Jason Molenda for major help in the care and feeding of all the services
on the gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web
services, ftp services, etc etc. Doing all this work on scrap paper and
the backs of envelopes would have been<small class="dots">...</small> difficult.
<li>Catherine Moore for fixing various ugly problems we have sent her
way, including the haifa bug which was killing the Alpha & PowerPC
Linux kernels.
<li>Mike Moreton for his various Java patches.
<li>David Mosberger-Tang for various Alpha improvements, and for the initial
IA-64 port.
<li>Stephen Moshier contributed the floating point emulator that assists in
cross-compilation and permits support for floating point numbers wider
than 64 bits and for ISO C99 support.
<li>Bill Moyer for his behind the scenes work on various issues.
<li>Philippe De Muyter for his work on the m68k port.
<li>Joseph S. Myers for his work on the PDP-11 port, format checking and ISO
C99 support, and continuous emphasis on (and contributions to) documentation.
<li>Nathan Myers for his work on libstdc++-v3: architecture and authorship
through the first three snapshots, including implementation of locale
infrastructure, string, shadow C headers, and the initial project
documentation (DESIGN, CHECKLIST, and so forth). Later, more work on
MT-safe string and shadow headers.
<li>Felix Natter for documentation on porting libstdc++.
<li>Nathanael Nerode for cleaning up the configuration/build process.
<li>NeXT, Inc. donated the front end that supports the Objective-C
language.
<li>Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search
engine setup, various documentation fixes and other small fixes.
<li>Geoff Noer for his work on getting cygwin native builds working.
<li>Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
tracking web pages, GIMPLE tuples, and assorted fixes.
<li>David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.
<li>Alexandre Oliva for various build infrastructure improvements, scripts and
amazing testing work, including keeping libtool issues sane and happy.
<li>Stefan Olsson for work on mt_alloc.
<li>Melissa O'Neill for various NeXT fixes.
<li>Rainer Orth for random MIPS work, including improvements to GCC's o32
ABI support, improvements to dejagnu's MIPS support, Java configuration
clean-ups and porting work, and maintaining the IRIX, Solaris 2, and
Tru64 UNIX ports.
<li>Hartmut Penner for work on the s390 port.
<li>Paul Petersen wrote the machine description for the Alliant FX/8.
<li>Alexandre Petit-Bianco for implementing much of the Java compiler and
continued Java maintainership.
<li>Matthias Pfaller for major improvements to the NS32k port.
<li>Gerald Pfeifer for his direction via the steering committee, pointing
out lots of problems we need to solve, maintenance of the web pages, and
taking care of documentation maintenance in general.
<li>Andrew Pinski for processing bug reports by the dozen.
<li>Ovidiu Predescu for his work on the Objective-C front end and runtime
libraries.
<li>Jerry Quinn for major performance improvements in C++ formatted I/O.
<li>Ken Raeburn for various improvements to checker, MIPS ports and various
cleanups in the compiler.
<li>Rolf W. Rasmussen for hacking on AWT.
<li>David Reese of Sun Microsystems contributed to the Solaris on PowerPC
port.
<li>Volker Reichelt for keeping up with the problem reports.
<li>Joern Rennecke for maintaining the sh port, loop, regmove & reload
hacking.
<li>Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD
port, threading fixes, thread-related configury changes, critical
threading documentation, and solutions to really tricky I/O problems,
as well as keeping GCC properly working on FreeBSD and continuous testing.
<li>Craig Rodrigues for processing tons of bug reports.
<li>Ola Rönnerup for work on mt_alloc.
<li>Gavin Romig-Koch for lots of behind the scenes MIPS work.
<li>David Ronis inspired and encouraged Craig to rewrite the G77
documentation in texinfo format by contributing a first pass at a
translation of the old <samp><span class="file">g77-0.5.16/f/DOC</span></samp> file.
<li>Ken Rose for fixes to GCC's delay slot filling code.
<li>Paul Rubin wrote most of the preprocessor.
<li>Pétur Runólfsson for major performance improvements in C++ formatted I/O and
large file support in C++ filebuf.
<li>Chip Salzenberg for libstdc++ patches and improvements to locales, traits,
Makefiles, libio, libtool hackery, and “long long” support.
<li>Juha Sarlin for improvements to the H8 code generator.
<li>Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
<li>Roger Sayle for improvements to constant folding and GCC's RTL optimizers
as well as for fixing numerous bugs.
<li>Bradley Schatz for his work on the GCJ FAQ.
<li>Peter Schauer wrote the code to allow debugging to work on the Alpha.
<li>William Schelter did most of the work on the Intel 80386 support.
<li>Tobias Schlüter for work on GNU Fortran.
<li>Bernd Schmidt for various code generation improvements and major
work in the reload pass as well a serving as release manager for
GCC 2.95.3.
<li>Peter Schmid for constant testing of libstdc++—especially application
testing, going above and beyond what was requested for the release
criteria—and libstdc++ header file tweaks.
<li>Jason Schroeder for jcf-dump patches.
<li>Andreas Schwab for his work on the m68k port.
<li>Lars Segerlund for work on GNU Fortran.
<li>Dodji Seketeli for numerous C++ bug fixes and debug info improvements.
<li>Joel Sherrill for his direction via the steering committee, RTEMS
contributions and RTEMS testing.
<li>Nathan Sidwell for many C++ fixes/improvements.
<li>Jeffrey Siegal for helping RMS with the original design of GCC, some
code which handles the parse tree and RTL data structures, constant
folding and help with the original VAX & m68k ports.
<li>Kenny Simpson for prompting libstdc++ fixes due to defect reports from
the LWG (thereby keeping GCC in line with updates from the ISO).
<li>Franz Sirl for his ongoing work with making the PPC port stable
for GNU/Linux.
<li>Andrey Slepuhin for assorted AIX hacking.
<li>Trevor Smigiel for contributing the SPU port.
<li>Christopher Smith did the port for Convex machines.
<li>Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
<li>Randy Smith finished the Sun FPA support.
<li>Scott Snyder for queue, iterator, istream, and string fixes and libstdc++
testsuite entries. Also for providing the patch to G77 to add
rudimentary support for <code>INTEGER*1</code>, <code>INTEGER*2</code>, and
<code>LOGICAL*1</code>.
<li>Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
<li>Richard Stallman, for writing the original GCC and launching the GNU project.
<li>Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.
<li>Nigel Stephens for various mips16 related fixes/improvements.
<li>Jonathan Stone wrote the machine description for the Pyramid computer.
<li>Graham Stott for various infrastructure improvements.
<li>John Stracke for his Java HTTP protocol fixes.
<li>Mike Stump for his Elxsi port, G++ contributions over the years and more
recently his vxworks contributions
<li>Jeff Sturm for Java porting help, bug fixes, and encouragement.
<li>Shigeya Suzuki for this fixes for the bsdi platforms.
<li>Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
support, general configury hacking, fixincludes, etc.
<li>Holger Teutsch provided the support for the Clipper CPU.
<li>Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.
<li>Philipp Thomas for random bug fixes throughout the compiler
<li>Jason Thorpe for thread support in libstdc++ on NetBSD.
<li>Kresten Krab Thorup wrote the run time support for the Objective-C
language and the fantastic Java bytecode interpreter.
<li>Michael Tiemann for random bug fixes, the first instruction scheduler,
initial C++ support, function integration, NS32k, SPARC and M88k
machine description work, delay slot scheduling.
<li>Andreas Tobler for his work porting libgcj to Darwin.
<li>Teemu Torma for thread safe exception handling support.
<li>Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the VAX machine description.
<li>Daniel Towner and Hariharan Sandanagobalane contributed and
maintain the picoChip port.
<li>Tom Tromey for internationalization support and for his many Java
contributions and libgcj maintainership.
<li>Lassi Tuura for improvements to config.guess to determine HP processor
types.
<li>Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
<li>Andy Vaught for the design and initial implementation of the GNU Fortran
front end.
<li>Brent Verner for work with the libstdc++ cshadow files and their
associated configure steps.
<li>Todd Vierling for contributions for NetBSD ports.
<li>Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
guidance.
<li>Dean Wakerley for converting the install documentation from HTML to texinfo
in time for GCC 3.0.
<li>Krister Walfridsson for random bug fixes.
<li>Feng Wang for contributions to GNU Fortran.
<li>Stephen M. Webb for time and effort on making libstdc++ shadow files
work with the tricky Solaris 8+ headers, and for pushing the build-time
header tree.
<li>John Wehle for various improvements for the x86 code generator,
related infrastructure improvements to help x86 code generation,
value range propagation and other work, WE32k port.
<li>Ulrich Weigand for work on the s390 port.
<li>Zack Weinberg for major work on cpplib and various other bug fixes.
<li>Matt Welsh for help with Linux Threads support in GCJ.
<li>Urban Widmark for help fixing java.io.
<li>Mark Wielaard for new Java library code and his work integrating with
Classpath.
<li>Dale Wiles helped port GCC to the Tahoe.
<li>Bob Wilson from Tensilica, Inc. for the Xtensa port.
<li>Jim Wilson for his direction via the steering committee, tackling hard
problems in various places that nobody else wanted to work on, strength
reduction and other loop optimizations.
<li>Paul Woegerer and Tal Agmon for the CRX port.
<li>Carlo Wood for various fixes.
<li>Tom Wood for work on the m88k port.
<li>Canqun Yang for work on GNU Fortran.
<li>Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).
<li>Kevin Zachmann helped port GCC to the Tahoe.
<li>Ayal Zaks for Swing Modulo Scheduling (SMS).
<li>Xiaoqiang Zhang for work on GNU Fortran.
<li>Gilles Zunino for help porting Java to Irix.
</ul>
<p>The following people are recognized for their contributions to GNAT,
the Ada front end of GCC:
<ul>
<li>Bernard Banner
<li>Romain Berrendonner
<li>Geert Bosch
<li>Emmanuel Briot
<li>Joel Brobecker
<li>Ben Brosgol
<li>Vincent Celier
<li>Arnaud Charlet
<li>Chien Chieng
<li>Cyrille Comar
<li>Cyrille Crozes
<li>Robert Dewar
<li>Gary Dismukes
<li>Robert Duff
<li>Ed Falis
<li>Ramon Fernandez
<li>Sam Figueroa
<li>Vasiliy Fofanov
<li>Michael Friess
<li>Franco Gasperoni
<li>Ted Giering
<li>Matthew Gingell
<li>Laurent Guerby
<li>Jerome Guitton
<li>Olivier Hainque
<li>Jerome Hugues
<li>Hristian Kirtchev
<li>Jerome Lambourg
<li>Bruno Leclerc
<li>Albert Lee
<li>Sean McNeil
<li>Javier Miranda
<li>Laurent Nana
<li>Pascal Obry
<li>Dong-Ik Oh
<li>Laurent Pautet
<li>Brett Porter
<li>Thomas Quinot
<li>Nicolas Roche
<li>Pat Rogers
<li>Jose Ruiz
<li>Douglas Rupp
<li>Sergey Rybin
<li>Gail Schenker
<li>Ed Schonberg
<li>Nicolas Setton
<li>Samuel Tardieu
</ul>
<p>The following people are recognized for their contributions of new
features, bug reports, testing and integration of classpath/libgcj for
GCC version 4.1:
<ul>
<li>Lillian Angel for <code>JTree</code> implementation and lots Free Swing
additions and bug fixes.
<li>Wolfgang Baer for <code>GapContent</code> bug fixes.
<li>Anthony Balkissoon for <code>JList</code>, Free Swing 1.5 updates and mouse event
fixes, lots of Free Swing work including <code>JTable</code> editing.
<li>Stuart Ballard for RMI constant fixes.
<li>Goffredo Baroncelli for <code>HTTPURLConnection</code> fixes.
<li>Gary Benson for <code>MessageFormat</code> fixes.
<li>Daniel Bonniot for <code>Serialization</code> fixes.
<li>Chris Burdess for lots of gnu.xml and http protocol fixes, <code>StAX</code>
and <code>DOM xml:id</code> support.
<li>Ka-Hing Cheung for <code>TreePath</code> and <code>TreeSelection</code> fixes.
<li>Archie Cobbs for build fixes, VM interface updates,
<code>URLClassLoader</code> updates.
<li>Kelley Cook for build fixes.
<li>Martin Cordova for Suggestions for better <code>SocketTimeoutException</code>.
<li>David Daney for <code>BitSet</code> bug fixes, <code>HttpURLConnection</code>
rewrite and improvements.
<li>Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D
support. Lots of imageio framework additions, lots of AWT and Free
Swing bug fixes.
<li>Jeroen Frijters for <code>ClassLoader</code> and nio cleanups, serialization fixes,
better <code>Proxy</code> support, bug fixes and IKVM integration.
<li>Santiago Gala for <code>AccessControlContext</code> fixes.
<li>Nicolas Geoffray for <code>VMClassLoader</code> and <code>AccessController</code>
improvements.
<li>David Gilbert for <code>basic</code> and <code>metal</code> icon and plaf support
and lots of documenting, Lots of Free Swing and metal theme
additions. <code>MetalIconFactory</code> implementation.
<li>Anthony Green for <code>MIDI</code> framework, <code>ALSA</code> and <code>DSSI</code>
providers.
<li>Andrew Haley for <code>Serialization</code> and <code>URLClassLoader</code> fixes,
gcj build speedups.
<li>Kim Ho for <code>JFileChooser</code> implementation.
<li>Andrew John Hughes for <code>Locale</code> and net fixes, URI RFC2986
updates, <code>Serialization</code> fixes, <code>Properties</code> XML support and
generic branch work, VMIntegration guide update.
<li>Bastiaan Huisman for <code>TimeZone</code> bug fixing.
<li>Andreas Jaeger for mprec updates.
<li>Paul Jenner for better <samp><span class="option">-Werror</span></samp> support.
<li>Ito Kazumitsu for <code>NetworkInterface</code> implementation and updates.
<li>Roman Kennke for <code>BoxLayout</code>, <code>GrayFilter</code> and
<code>SplitPane</code>, plus bug fixes all over. Lots of Free Swing work
including styled text.
<li>Simon Kitching for <code>String</code> cleanups and optimization suggestions.
<li>Michael Koch for configuration fixes, <code>Locale</code> updates, bug and
build fixes.
<li>Guilhem Lavaux for configuration, thread and channel fixes and Kaffe
integration. JCL native <code>Pointer</code> updates. Logger bug fixes.
<li>David Lichteblau for JCL support library global/local reference
cleanups.
<li>Aaron Luchko for JDWP updates and documentation fixes.
<li>Ziga Mahkovec for <code>Graphics2D</code> upgraded to Cairo 0.5 and new regex
features.
<li>Sven de Marothy for BMP imageio support, CSS and <code>TextLayout</code>
fixes. <code>GtkImage</code> rewrite, 2D, awt, free swing and date/time fixes and
implementing the Qt4 peers.
<li>Casey Marshall for crypto algorithm fixes, <code>FileChannel</code> lock,
<code>SystemLogger</code> and <code>FileHandler</code> rotate implementations, NIO
<code>FileChannel.map</code> support, security and policy updates.
<li>Bryce McKinlay for RMI work.
<li>Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
testing and documenting.
<li>Kalle Olavi Niemitalo for build fixes.
<li>Rainer Orth for build fixes.
<li>Andrew Overholt for <code>File</code> locking fixes.
<li>Ingo Proetel for <code>Image</code>, <code>Logger</code> and <code>URLClassLoader</code>
updates.
<li>Olga Rodimina for <code>MenuSelectionManager</code> implementation.
<li>Jan Roehrich for <code>BasicTreeUI</code> and <code>JTree</code> fixes.
<li>Julian Scheid for documentation updates and gjdoc support.
<li>Christian Schlichtherle for zip fixes and cleanups.
<li>Robert Schuster for documentation updates and beans fixes,
<code>TreeNode</code> enumerations and <code>ActionCommand</code> and various
fixes, XML and URL, AWT and Free Swing bug fixes.
<li>Keith Seitz for lots of JDWP work.
<li>Christian Thalinger for 64-bit cleanups, Configuration and VM
interface fixes and <code>CACAO</code> integration, <code>fdlibm</code> updates.
<li>Gael Thomas for <code>VMClassLoader</code> boot packages support suggestions.
<li>Andreas Tobler for Darwin and Solaris testing and fixing, <code>Qt4</code>
support for Darwin/OS X, <code>Graphics2D</code> support, <code>gtk+</code>
updates.
<li>Dalibor Topic for better <code>DEBUG</code> support, build cleanups and
Kaffe integration. <code>Qt4</code> build infrastructure, <code>SHA1PRNG</code>
and <code>GdkPixbugDecoder</code> updates.
<li>Tom Tromey for Eclipse integration, generics work, lots of bug fixes
and gcj integration including coordinating The Big Merge.
<li>Mark Wielaard for bug fixes, packaging and release management,
<code>Clipboard</code> implementation, system call interrupts and network
timeouts and <code>GdkPixpufDecoder</code> fixes.
</ul>
<p>In addition to the above, all of which also contributed time and energy in
testing GCC, we would like to thank the following for their contributions
to testing:
<ul>
<li>Michael Abd-El-Malek
<li>Thomas Arend
<li>Bonzo Armstrong
<li>Steven Ashe
<li>Chris Baldwin
<li>David Billinghurst
<li>Jim Blandy
<li>Stephane Bortzmeyer
<li>Horst von Brand
<li>Frank Braun
<li>Rodney Brown
<li>Sidney Cadot
<li>Bradford Castalia
<li>Robert Clark
<li>Jonathan Corbet
<li>Ralph Doncaster
<li>Richard Emberson
<li>Levente Farkas
<li>Graham Fawcett
<li>Mark Fernyhough
<li>Robert A. French
<li>Jörgen Freyh
<li>Mark K. Gardner
<li>Charles-Antoine Gauthier
<li>Yung Shing Gene
<li>David Gilbert
<li>Simon Gornall
<li>Fred Gray
<li>John Griffin
<li>Patrik Hagglund
<li>Phil Hargett
<li>Amancio Hasty
<li>Takafumi Hayashi
<li>Bryan W. Headley
<li>Kevin B. Hendricks
<li>Joep Jansen
<li>Christian Joensson
<li>Michel Kern
<li>David Kidd
<li>Tobias Kuipers
<li>Anand Krishnaswamy
<li>A. O. V. Le Blanc
<li>llewelly
<li>Damon Love
<li>Brad Lucier
<li>Matthias Klose
<li>Martin Knoblauch
<li>Rick Lutowski
<li>Jesse Macnish
<li>Stefan Morrell
<li>Anon A. Mous
<li>Matthias Mueller
<li>Pekka Nikander
<li>Rick Niles
<li>Jon Olson
<li>Magnus Persson
<li>Chris Pollard
<li>Richard Polton
<li>Derk Reefman
<li>David Rees
<li>Paul Reilly
<li>Tom Reilly
<li>Torsten Rueger
<li>Danny Sadinoff
<li>Marc Schifer
<li>Erik Schnetter
<li>Wayne K. Schroll
<li>David Schuler
<li>Vin Shelton
<li>Tim Souder
<li>Adam Sulmicki
<li>Bill Thorson
<li>George Talbot
<li>Pedro A. M. Vazquez
<li>Gregory Warnes
<li>Ian Watson
<li>David E. Young
<li>And many others
</ul>
<p>And finally we'd like to thank everyone who uses the compiler, provides
feedback and generally reminds us why we're doing this work in the first
place.
<!-- -->
<!-- Indexes -->
<!-- -->
<div class="node">
<a name="Option-Index"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Concept-Index">Concept Index</a>,
Previous: <a rel="previous" accesskey="p" href="#Contributors">Contributors</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Option Index</h2>
<p>GCC's command line options are indexed here without any initial ‘<samp><span class="samp">-</span></samp>’
or ‘<samp><span class="samp">--</span></samp>’. Where an option has both positive and negative forms
(such as <samp><span class="option">-f</span><var>option</var></samp> and <samp><span class="option">-fno-</span><var>option</var></samp>),
relevant entries in the manual are indexed under the most appropriate
form; it may sometimes be useful to look up both forms.
<ul class="index-op" compact>
<li><a href="#index-fltrans-4950"><code>fltrans</code></a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-fltrans_002doutput_002dlist-4951"><code>fltrans-output-list</code></a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-fwpa-4949"><code>fwpa</code></a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-msoft_002dfloat-78"><code>msoft-float</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
</ul><div class="node">
<a name="Concept-Index"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Option-Index">Option Index</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Concept Index</h2>
<ul class="index-cp" compact>
<li><a href="#index-g_t_0040samp_007b_0021_007d-in-constraint-3299">‘<samp><span class="samp">!</span></samp>’ in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040samp_007b_0023_007d-in-constraint-3311">‘<samp><span class="samp">#</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007b_0023_007d-in-template-3224"><code>#</code> in template</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-g_t_0023pragma-4790"><code>#pragma</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040samp_007b_0025_007d-in-constraint-3310">‘<samp><span class="samp">%</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0025-in-GTY-option-4915">% in GTY option</a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-g_t_0040samp_007b_0025_007d-in-template-3219">‘<samp><span class="samp">%</span></samp>’ in template</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-g_t_0040samp_007b_0026_007d-in-constraint-3308">‘<samp><span class="samp">&</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0028nil_0029-1705">(nil)</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-g_t_0040samp_007b_002a_007d-in-constraint-3312">‘<samp><span class="samp">*</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007b_002a_007d-in-template-3228"><code>*</code> in template</a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-g_t_0040samp_007b_002b_007d-in-constraint-3307">‘<samp><span class="samp">+</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040option_007b_002dfsection_002danchors_007d-4295"><samp><span class="option">-fsection-anchors</span></samp></a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-g_t_0040option_007b_002dfsection_002danchors_007d-1753"><samp><span class="option">-fsection-anchors</span></samp></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-g_t_0040samp_007b_002fc_007d-in-RTL-dump-1873">‘<samp><span class="samp">/c</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002ff_007d-in-RTL-dump-1875">‘<samp><span class="samp">/f</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002fi_007d-in-RTL-dump-1879">‘<samp><span class="samp">/i</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002fj_007d-in-RTL-dump-1881">‘<samp><span class="samp">/j</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002fs_007d-in-RTL-dump-1877">‘<samp><span class="samp">/s</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002fu_007d-in-RTL-dump-1883">‘<samp><span class="samp">/u</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b_002fv_007d-in-RTL-dump-1886">‘<samp><span class="samp">/v</span></samp>’ in RTL dump</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040samp_007b0_007d-in-constraint-3283">‘<samp><span class="samp">0</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003c_007d-in-constraint-3268">‘<samp><span class="samp"><</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003d_007d-in-constraint-3306">‘<samp><span class="samp">=</span></samp>’ in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040samp_007b_003e_007d-in-constraint-3269">‘<samp><span class="samp">></span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003f_007d-in-constraint-3297">‘<samp><span class="samp">?</span></samp>’ in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_005c-3221">\</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-g_t_005f_005fabsvdi2-50"><code>__absvdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fabsvsi2-49"><code>__absvsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005faddda3-388"><code>__addda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fadddf3-80"><code>__adddf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fadddq3-381"><code>__adddq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddha3-386"><code>__addha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddhq3-379"><code>__addhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddqq3-378"><code>__addqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddsa3-387"><code>__addsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddsf3-79"><code>__addsf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005faddsq3-380"><code>__addsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddta3-389"><code>__addta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddtf3-81"><code>__addtf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fadduda3-392"><code>__adduda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddudq3-385"><code>__addudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fadduha3-390"><code>__adduha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fadduhq3-383"><code>__adduhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fadduqq3-382"><code>__adduqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddusa3-391"><code>__addusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddusq3-384"><code>__addusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fadduta3-393"><code>__adduta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005faddvdi3-52"><code>__addvdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005faddvsi3-51"><code>__addvsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005faddxf3-82"><code>__addxf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fashlda3-548"><code>__ashlda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashldi3-18"><code>__ashldi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fashldq3-541"><code>__ashldq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlha3-546"><code>__ashlha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlhq3-539"><code>__ashlhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlqq3-538"><code>__ashlqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlsa3-547"><code>__ashlsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlsi3-17"><code>__ashlsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fashlsq3-540"><code>__ashlsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlta3-549"><code>__ashlta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlti3-19"><code>__ashlti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fashluda3-552"><code>__ashluda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashludq3-545"><code>__ashludq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashluha3-550"><code>__ashluha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashluhq3-543"><code>__ashluhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashluqq3-542"><code>__ashluqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlusa3-551"><code>__ashlusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashlusq3-544"><code>__ashlusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashluta3-553"><code>__ashluta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrda3-560"><code>__ashrda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrdi3-21"><code>__ashrdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fashrdq3-557"><code>__ashrdq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrha3-558"><code>__ashrha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrhq3-555"><code>__ashrhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrqq3-554"><code>__ashrqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrsa3-559"><code>__ashrsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrsi3-20"><code>__ashrsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fashrsq3-556"><code>__ashrsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrta3-561"><code>__ashrta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fashrti3-22"><code>__ashrti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fadddd3-198"><code>__bid_adddd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005faddsd3-196"><code>__bid_addsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005faddtd3-200"><code>__bid_addtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fdivdd3-216"><code>__bid_divdd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fdivsd3-214"><code>__bid_divsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fdivtd3-218"><code>__bid_divtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005feqdd2-342"><code>__bid_eqdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005feqsd2-340"><code>__bid_eqsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005feqtd2-344"><code>__bid_eqtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendddtd2-230"><code>__bid_extendddtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendddtf-272"><code>__bid_extendddtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendddxf-266"><code>__bid_extendddxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextenddfdd-276"><code>__bid_extenddfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextenddftd-242"><code>__bid_extenddftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsddd2-226"><code>__bid_extendsddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsddf-260"><code>__bid_extendsddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsdtd2-228"><code>__bid_extendsdtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsdtf-270"><code>__bid_extendsdtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsdxf-264"><code>__bid_extendsdxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsfdd-238"><code>__bid_extendsfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsfsd-274"><code>__bid_extendsfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendsftd-240"><code>__bid_extendsftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendtftd-278"><code>__bid_extendtftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fextendxftd-244"><code>__bid_extendxftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixdddi-294"><code>__bid_fixdddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixddsi-288"><code>__bid_fixddsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixsddi-292"><code>__bid_fixsddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixsdsi-286"><code>__bid_fixsdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixtddi-296"><code>__bid_fixtddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixtdsi-290"><code>__bid_fixtdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunsdddi-306"><code>__bid_fixunsdddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunsddsi-300"><code>__bid_fixunsddsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunssddi-304"><code>__bid_fixunssddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunssdsi-298"><code>__bid_fixunssdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunstddi-308"><code>__bid_fixunstddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffixunstdsi-302"><code>__bid_fixunstdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatdidd-318"><code>__bid_floatdidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatdisd-316"><code>__bid_floatdisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatditd-320"><code>__bid_floatditd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatsidd-312"><code>__bid_floatsidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatsisd-310"><code>__bid_floatsisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatsitd-314"><code>__bid_floatsitd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunsdidd-330"><code>__bid_floatunsdidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunsdisd-328"><code>__bid_floatunsdisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunsditd-332"><code>__bid_floatunsditd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunssidd-324"><code>__bid_floatunssidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunssisd-322"><code>__bid_floatunssisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ffloatunssitd-326"><code>__bid_floatunssitd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgedd2-354"><code>__bid_gedd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgesd2-352"><code>__bid_gesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgetd2-356"><code>__bid_getd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgtdd2-372"><code>__bid_gtdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgtsd2-370"><code>__bid_gtsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fgttd2-374"><code>__bid_gttd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fledd2-366"><code>__bid_ledd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005flesd2-364"><code>__bid_lesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fletd2-368"><code>__bid_letd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fltdd2-360"><code>__bid_ltdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fltsd2-358"><code>__bid_ltsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005flttd2-362"><code>__bid_lttd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fmuldd3-210"><code>__bid_muldd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fmulsd3-208"><code>__bid_mulsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fmultd3-212"><code>__bid_multd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnedd2-348"><code>__bid_nedd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnegdd2-222"><code>__bid_negdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnegsd2-220"><code>__bid_negsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnegtd2-224"><code>__bid_negtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnesd2-346"><code>__bid_nesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fnetd2-350"><code>__bid_netd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fsubdd3-204"><code>__bid_subdd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fsubsd3-202"><code>__bid_subsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005fsubtd3-206"><code>__bid_subtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncdddf-282"><code>__bid_truncdddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncddsd2-232"><code>__bid_truncddsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncddsf-256"><code>__bid_truncddsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncdfsd-246"><code>__bid_truncdfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncsdsf-280"><code>__bid_truncsdsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctddd2-236"><code>__bid_trunctddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctddf-262"><code>__bid_trunctddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctdsd2-234"><code>__bid_trunctdsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctdsf-258"><code>__bid_trunctdsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctdtf-284"><code>__bid_trunctdtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctdxf-268"><code>__bid_trunctdxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctfdd-254"><code>__bid_trunctfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftrunctfsd-250"><code>__bid_trunctfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncxfdd-252"><code>__bid_truncxfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005ftruncxfsd-248"><code>__bid_truncxfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005funorddd2-336"><code>__bid_unorddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005funordsd2-334"><code>__bid_unordsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbid_005funordtd2-338"><code>__bid_unordtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fbswapdi2-74"><code>__bswapdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fbswapsi2-73"><code>__bswapsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclassify_005ftype-4217"><code>__builtin_classify_type</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnext_005farg-4216"><code>__builtin_next_arg</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fsaveregs-4215"><code>__builtin_saveregs</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-g_t_005f_005fclear_005fcache-1657"><code>__clear_cache</code></a>: <a href="#Miscellaneous-routines">Miscellaneous routines</a></li>
<li><a href="#index-g_t_005f_005fclzdi2-60"><code>__clzdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fclzsi2-59"><code>__clzsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fclzti2-61"><code>__clzti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpda2-595"><code>__cmpda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpdf2-158"><code>__cmpdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpdi2-45"><code>__cmpdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpdq2-588"><code>__cmpdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpha2-593"><code>__cmpha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmphq2-586"><code>__cmphq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpqq2-585"><code>__cmpqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpsa2-594"><code>__cmpsa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpsf2-157"><code>__cmpsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpsq2-587"><code>__cmpsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpta2-596"><code>__cmpta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmptf2-159"><code>__cmptf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpti2-46"><code>__cmpti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpuda2-599"><code>__cmpuda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpudq2-592"><code>__cmpudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpuha2-597"><code>__cmpuha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpuhq2-590"><code>__cmpuhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpuqq2-589"><code>__cmpuqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpusa2-598"><code>__cmpusa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmpusq2-591"><code>__cmpusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fcmputa2-600"><code>__cmputa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fCTOR_005fLIST_005f_005f-4540"><code>__CTOR_LIST__</code></a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-g_t_005f_005fctzdi2-63"><code>__ctzdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fctzsi2-62"><code>__ctzsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fctzti2-64"><code>__ctzti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fdivda3-480"><code>__divda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivdc3-190"><code>__divdc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivdf3-92"><code>__divdf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivdi3-24"><code>__divdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fdivdq3-477"><code>__divdq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivha3-478"><code>__divha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivhq3-475"><code>__divhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivqq3-474"><code>__divqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivsa3-479"><code>__divsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivsc3-189"><code>__divsc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivsf3-91"><code>__divsf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivsi3-23"><code>__divsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fdivsq3-476"><code>__divsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivta3-481"><code>__divta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fdivtc3-191"><code>__divtc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivtf3-93"><code>__divtf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivti3-25"><code>__divti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fdivxc3-192"><code>__divxc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdivxf3-94"><code>__divxf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fadddd3-197"><code>__dpd_adddd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005faddsd3-195"><code>__dpd_addsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005faddtd3-199"><code>__dpd_addtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fdivdd3-215"><code>__dpd_divdd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fdivsd3-213"><code>__dpd_divsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fdivtd3-217"><code>__dpd_divtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005feqdd2-341"><code>__dpd_eqdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005feqsd2-339"><code>__dpd_eqsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005feqtd2-343"><code>__dpd_eqtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendddtd2-229"><code>__dpd_extendddtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendddtf-271"><code>__dpd_extendddtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendddxf-265"><code>__dpd_extendddxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextenddfdd-275"><code>__dpd_extenddfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextenddftd-241"><code>__dpd_extenddftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsddd2-225"><code>__dpd_extendsddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsddf-259"><code>__dpd_extendsddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsdtd2-227"><code>__dpd_extendsdtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsdtf-269"><code>__dpd_extendsdtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsdxf-263"><code>__dpd_extendsdxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsfdd-237"><code>__dpd_extendsfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsfsd-273"><code>__dpd_extendsfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendsftd-239"><code>__dpd_extendsftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendtftd-277"><code>__dpd_extendtftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fextendxftd-243"><code>__dpd_extendxftd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixdddi-293"><code>__dpd_fixdddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixddsi-287"><code>__dpd_fixddsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixsddi-291"><code>__dpd_fixsddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixsdsi-285"><code>__dpd_fixsdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixtddi-295"><code>__dpd_fixtddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixtdsi-289"><code>__dpd_fixtdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunsdddi-305"><code>__dpd_fixunsdddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunsddsi-299"><code>__dpd_fixunsddsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunssddi-303"><code>__dpd_fixunssddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunssdsi-297"><code>__dpd_fixunssdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunstddi-307"><code>__dpd_fixunstddi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffixunstdsi-301"><code>__dpd_fixunstdsi</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatdidd-317"><code>__dpd_floatdidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatdisd-315"><code>__dpd_floatdisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatditd-319"><code>__dpd_floatditd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatsidd-311"><code>__dpd_floatsidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatsisd-309"><code>__dpd_floatsisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatsitd-313"><code>__dpd_floatsitd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunsdidd-329"><code>__dpd_floatunsdidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunsdisd-327"><code>__dpd_floatunsdisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunsditd-331"><code>__dpd_floatunsditd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunssidd-323"><code>__dpd_floatunssidd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunssisd-321"><code>__dpd_floatunssisd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ffloatunssitd-325"><code>__dpd_floatunssitd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgedd2-353"><code>__dpd_gedd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgesd2-351"><code>__dpd_gesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgetd2-355"><code>__dpd_getd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgtdd2-371"><code>__dpd_gtdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgtsd2-369"><code>__dpd_gtsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fgttd2-373"><code>__dpd_gttd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fledd2-365"><code>__dpd_ledd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005flesd2-363"><code>__dpd_lesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fletd2-367"><code>__dpd_letd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fltdd2-359"><code>__dpd_ltdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fltsd2-357"><code>__dpd_ltsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005flttd2-361"><code>__dpd_lttd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fmuldd3-209"><code>__dpd_muldd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fmulsd3-207"><code>__dpd_mulsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fmultd3-211"><code>__dpd_multd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnedd2-347"><code>__dpd_nedd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnegdd2-221"><code>__dpd_negdd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnegsd2-219"><code>__dpd_negsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnegtd2-223"><code>__dpd_negtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnesd2-345"><code>__dpd_nesd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fnetd2-349"><code>__dpd_netd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fsubdd3-203"><code>__dpd_subdd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fsubsd3-201"><code>__dpd_subsd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005fsubtd3-205"><code>__dpd_subtd3</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncdddf-281"><code>__dpd_truncdddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncddsd2-231"><code>__dpd_truncddsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncddsf-255"><code>__dpd_truncddsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncdfsd-245"><code>__dpd_truncdfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncsdsf-279"><code>__dpd_truncsdsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctddd2-235"><code>__dpd_trunctddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctddf-261"><code>__dpd_trunctddf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctdsd2-233"><code>__dpd_trunctdsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctdsf-257"><code>__dpd_trunctdsf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctdtf-283"><code>__dpd_trunctdtf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctdxf-267"><code>__dpd_trunctdxf</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctfdd-253"><code>__dpd_trunctfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftrunctfsd-249"><code>__dpd_trunctfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncxfdd-251"><code>__dpd_truncxfdd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005ftruncxfsd-247"><code>__dpd_truncxfsd</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005funorddd2-335"><code>__dpd_unorddd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005funordsd2-333"><code>__dpd_unordsd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fdpd_005funordtd2-337"><code>__dpd_unordtd2</code></a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-g_t_005f_005fDTOR_005fLIST_005f_005f-4541"><code>__DTOR_LIST__</code></a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-g_t_005f_005feqdf2-164"><code>__eqdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005feqsf2-163"><code>__eqsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005feqtf2-165"><code>__eqtf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fextenddftf2-102"><code>__extenddftf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fextenddfxf2-103"><code>__extenddfxf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fextendsfdf2-99"><code>__extendsfdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fextendsftf2-100"><code>__extendsftf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fextendsfxf2-101"><code>__extendsfxf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fffsdi2-65"><code>__ffsdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fffsti2-66"><code>__ffsti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005ffixdfdi-114"><code>__fixdfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixdfsi-110"><code>__fixdfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixdfti-118"><code>__fixdfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixsfdi-113"><code>__fixsfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixsfsi-109"><code>__fixsfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixsfti-117"><code>__fixsfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixtfdi-115"><code>__fixtfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixtfsi-111"><code>__fixtfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixtfti-119"><code>__fixtfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsdfdi-126"><code>__fixunsdfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsdfsi-122"><code>__fixunsdfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsdfti-130"><code>__fixunsdfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunssfdi-125"><code>__fixunssfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunssfsi-121"><code>__fixunssfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunssfti-129"><code>__fixunssfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunstfdi-127"><code>__fixunstfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunstfsi-123"><code>__fixunstfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunstfti-131"><code>__fixunstfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsxfdi-128"><code>__fixunsxfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsxfsi-124"><code>__fixunsxfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixunsxfti-132"><code>__fixunsxfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixxfdi-116"><code>__fixxfdi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixxfsi-112"><code>__fixxfsi</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffixxfti-120"><code>__fixxfti</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatdidf-138"><code>__floatdidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatdisf-137"><code>__floatdisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatditf-139"><code>__floatditf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatdixf-140"><code>__floatdixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatsidf-134"><code>__floatsidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatsisf-133"><code>__floatsisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatsitf-135"><code>__floatsitf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatsixf-136"><code>__floatsixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloattidf-142"><code>__floattidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloattisf-141"><code>__floattisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloattitf-143"><code>__floattitf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloattixf-144"><code>__floattixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatundidf-150"><code>__floatundidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatundisf-149"><code>__floatundisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatunditf-151"><code>__floatunditf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatundixf-152"><code>__floatundixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatunsidf-146"><code>__floatunsidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatunsisf-145"><code>__floatunsisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatunsitf-147"><code>__floatunsitf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatunsixf-148"><code>__floatunsixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatuntidf-154"><code>__floatuntidf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatuntisf-153"><code>__floatuntisf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatuntitf-155"><code>__floatuntitf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffloatuntixf-156"><code>__floatuntixf</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdadf-754"><code>__fractdadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdadi-751"><code>__fractdadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdadq-736"><code>__fractdadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdaha2-737"><code>__fractdaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdahi-749"><code>__fractdahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdahq-734"><code>__fractdahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdaqi-748"><code>__fractdaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdaqq-733"><code>__fractdaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdasa2-738"><code>__fractdasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdasf-753"><code>__fractdasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdasi-750"><code>__fractdasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdasq-735"><code>__fractdasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdata2-739"><code>__fractdata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdati-752"><code>__fractdati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdauda-746"><code>__fractdauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdaudq-743"><code>__fractdaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdauha-744"><code>__fractdauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdauhq-741"><code>__fractdauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdauqq-740"><code>__fractdauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdausa-745"><code>__fractdausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdausq-742"><code>__fractdausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdauta-747"><code>__fractdauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfda-1055"><code>__fractdfda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfdq-1052"><code>__fractdfdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfha-1053"><code>__fractdfha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfhq-1050"><code>__fractdfhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfqq-1049"><code>__fractdfqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfsa-1054"><code>__fractdfsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfsq-1051"><code>__fractdfsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfta-1056"><code>__fractdfta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfuda-1063"><code>__fractdfuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfudq-1060"><code>__fractdfudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfuha-1061"><code>__fractdfuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfuhq-1058"><code>__fractdfuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfuqq-1057"><code>__fractdfuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfusa-1062"><code>__fractdfusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfusq-1059"><code>__fractdfusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdfuta-1064"><code>__fractdfuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdida-1007"><code>__fractdida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdidq-1004"><code>__fractdidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiha-1005"><code>__fractdiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdihq-1002"><code>__fractdihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiqq-1001"><code>__fractdiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdisa-1006"><code>__fractdisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdisq-1003"><code>__fractdisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdita-1008"><code>__fractdita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiuda-1015"><code>__fractdiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiudq-1012"><code>__fractdiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiuha-1013"><code>__fractdiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiuhq-1010"><code>__fractdiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiuqq-1009"><code>__fractdiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiusa-1014"><code>__fractdiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiusq-1011"><code>__fractdiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdiuta-1016"><code>__fractdiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqda-672"><code>__fractdqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqdf-688"><code>__fractdqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqdi-685"><code>__fractdqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqha-670"><code>__fractdqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqhi-683"><code>__fractdqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqhq2-668"><code>__fractdqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqqi-682"><code>__fractdqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqqq2-667"><code>__fractdqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqsa-671"><code>__fractdqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqsf-687"><code>__fractdqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqsi-684"><code>__fractdqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqsq2-669"><code>__fractdqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqta-673"><code>__fractdqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqti-686"><code>__fractdqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdquda-680"><code>__fractdquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqudq-677"><code>__fractdqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdquha-678"><code>__fractdquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdquhq-675"><code>__fractdquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdquqq-674"><code>__fractdquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqusa-679"><code>__fractdqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdqusq-676"><code>__fractdqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractdquta-681"><code>__fractdquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthada2-694"><code>__fracthada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthadf-710"><code>__fracthadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthadi-707"><code>__fracthadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthadq-692"><code>__fracthadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthahi-705"><code>__fracthahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthahq-690"><code>__fracthahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthaqi-704"><code>__fracthaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthaqq-689"><code>__fracthaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthasa2-693"><code>__fracthasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthasf-709"><code>__fracthasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthasi-706"><code>__fracthasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthasq-691"><code>__fracthasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthata2-695"><code>__fracthata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthati-708"><code>__fracthati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthauda-702"><code>__fracthauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthaudq-699"><code>__fracthaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthauha-700"><code>__fracthauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthauhq-697"><code>__fracthauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthauqq-696"><code>__fracthauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthausa-701"><code>__fracthausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthausq-698"><code>__fracthausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthauta-703"><code>__fracthauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthida-975"><code>__fracthida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthidq-972"><code>__fracthidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiha-973"><code>__fracthiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthihq-970"><code>__fracthihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiqq-969"><code>__fracthiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthisa-974"><code>__fracthisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthisq-971"><code>__fracthisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthita-976"><code>__fracthita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiuda-983"><code>__fracthiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiudq-980"><code>__fracthiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiuha-981"><code>__fracthiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiuhq-978"><code>__fracthiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiuqq-977"><code>__fracthiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiusa-982"><code>__fracthiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiusq-979"><code>__fracthiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthiuta-984"><code>__fracthiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqda-628"><code>__fracthqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqdf-644"><code>__fracthqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqdi-641"><code>__fracthqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqdq2-625"><code>__fracthqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqha-626"><code>__fracthqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqhi-639"><code>__fracthqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqqi-638"><code>__fracthqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqqq2-623"><code>__fracthqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqsa-627"><code>__fracthqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqsf-643"><code>__fracthqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqsi-640"><code>__fracthqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqsq2-624"><code>__fracthqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqta-629"><code>__fracthqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqti-642"><code>__fracthqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthquda-636"><code>__fracthquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqudq-633"><code>__fracthqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthquha-634"><code>__fracthquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthquhq-631"><code>__fracthquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthquqq-630"><code>__fracthquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqusa-635"><code>__fracthqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthqusq-632"><code>__fracthqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracthquta-637"><code>__fracthquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqida-959"><code>__fractqida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqidq-956"><code>__fractqidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiha-957"><code>__fractqiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqihq-954"><code>__fractqihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiqq-953"><code>__fractqiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqisa-958"><code>__fractqisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqisq-955"><code>__fractqisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqita-960"><code>__fractqita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiuda-967"><code>__fractqiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiudq-964"><code>__fractqiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiuha-965"><code>__fractqiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiuhq-962"><code>__fractqiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiuqq-961"><code>__fractqiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiusa-966"><code>__fractqiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiusq-963"><code>__fractqiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqiuta-968"><code>__fractqiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqda-606"><code>__fractqqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqdf-622"><code>__fractqqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqdi-619"><code>__fractqqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqdq2-603"><code>__fractqqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqha-604"><code>__fractqqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqhi-617"><code>__fractqqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqhq2-601"><code>__fractqqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqqi-616"><code>__fractqqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqsa-605"><code>__fractqqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqsf-621"><code>__fractqqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqsi-618"><code>__fractqqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqsq2-602"><code>__fractqqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqta-607"><code>__fractqqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqti-620"><code>__fractqqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqquda-614"><code>__fractqquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqudq-611"><code>__fractqqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqquha-612"><code>__fractqquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqquhq-609"><code>__fractqquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqquqq-608"><code>__fractqquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqusa-613"><code>__fractqqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqqusq-610"><code>__fractqqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractqquta-615"><code>__fractqquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsada2-716"><code>__fractsada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsadf-732"><code>__fractsadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsadi-729"><code>__fractsadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsadq-714"><code>__fractsadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsaha2-715"><code>__fractsaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsahi-727"><code>__fractsahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsahq-712"><code>__fractsahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsaqi-726"><code>__fractsaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsaqq-711"><code>__fractsaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsasf-731"><code>__fractsasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsasi-728"><code>__fractsasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsasq-713"><code>__fractsasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsata2-717"><code>__fractsata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsati-730"><code>__fractsati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsauda-724"><code>__fractsauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsaudq-721"><code>__fractsaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsauha-722"><code>__fractsauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsauhq-719"><code>__fractsauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsauqq-718"><code>__fractsauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsausa-723"><code>__fractsausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsausq-720"><code>__fractsausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsauta-725"><code>__fractsauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfda-1039"><code>__fractsfda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfdq-1036"><code>__fractsfdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfha-1037"><code>__fractsfha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfhq-1034"><code>__fractsfhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfqq-1033"><code>__fractsfqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfsa-1038"><code>__fractsfsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfsq-1035"><code>__fractsfsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfta-1040"><code>__fractsfta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfuda-1047"><code>__fractsfuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfudq-1044"><code>__fractsfudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfuha-1045"><code>__fractsfuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfuhq-1042"><code>__fractsfuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfuqq-1041"><code>__fractsfuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfusa-1046"><code>__fractsfusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfusq-1043"><code>__fractsfusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsfuta-1048"><code>__fractsfuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsida-991"><code>__fractsida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsidq-988"><code>__fractsidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiha-989"><code>__fractsiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsihq-986"><code>__fractsihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiqq-985"><code>__fractsiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsisa-990"><code>__fractsisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsisq-987"><code>__fractsisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsita-992"><code>__fractsita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiuda-999"><code>__fractsiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiudq-996"><code>__fractsiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiuha-997"><code>__fractsiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiuhq-994"><code>__fractsiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiuqq-993"><code>__fractsiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiusa-998"><code>__fractsiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiusq-995"><code>__fractsiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsiuta-1000"><code>__fractsiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqda-650"><code>__fractsqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqdf-666"><code>__fractsqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqdi-663"><code>__fractsqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqdq2-647"><code>__fractsqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqha-648"><code>__fractsqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqhi-661"><code>__fractsqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqhq2-646"><code>__fractsqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqqi-660"><code>__fractsqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqqq2-645"><code>__fractsqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqsa-649"><code>__fractsqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqsf-665"><code>__fractsqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqsi-662"><code>__fractsqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqta-651"><code>__fractsqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqti-664"><code>__fractsqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsquda-658"><code>__fractsquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqudq-655"><code>__fractsqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsquha-656"><code>__fractsquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsquhq-653"><code>__fractsquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsquqq-652"><code>__fractsquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqusa-657"><code>__fractsqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsqusq-654"><code>__fractsqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractsquta-659"><code>__fractsquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttada2-761"><code>__fracttada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttadf-776"><code>__fracttadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttadi-773"><code>__fracttadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttadq-758"><code>__fracttadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttaha2-759"><code>__fracttaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttahi-771"><code>__fracttahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttahq-756"><code>__fracttahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttaqi-770"><code>__fracttaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttaqq-755"><code>__fracttaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttasa2-760"><code>__fracttasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttasf-775"><code>__fracttasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttasi-772"><code>__fracttasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttasq-757"><code>__fracttasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttati-774"><code>__fracttati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttauda-768"><code>__fracttauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttaudq-765"><code>__fracttaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttauha-766"><code>__fracttauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttauhq-763"><code>__fracttauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttauqq-762"><code>__fracttauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttausa-767"><code>__fracttausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttausq-764"><code>__fracttausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttauta-769"><code>__fracttauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttida-1023"><code>__fracttida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttidq-1020"><code>__fracttidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiha-1021"><code>__fracttiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttihq-1018"><code>__fracttihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiqq-1017"><code>__fracttiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttisa-1022"><code>__fracttisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttisq-1019"><code>__fracttisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttita-1024"><code>__fracttita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiuda-1031"><code>__fracttiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiudq-1028"><code>__fracttiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiuha-1029"><code>__fracttiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiuhq-1026"><code>__fracttiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiuqq-1025"><code>__fracttiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiusa-1030"><code>__fracttiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiusq-1027"><code>__fracttiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffracttiuta-1032"><code>__fracttiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudada-915"><code>__fractudada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudadf-930"><code>__fractudadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudadi-927"><code>__fractudadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudadq-912"><code>__fractudadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudaha-913"><code>__fractudaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudahi-925"><code>__fractudahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudahq-910"><code>__fractudahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudaqi-924"><code>__fractudaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudaqq-909"><code>__fractudaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudasa-914"><code>__fractudasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudasf-929"><code>__fractudasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudasi-926"><code>__fractudasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudasq-911"><code>__fractudasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudata-916"><code>__fractudata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudati-928"><code>__fractudati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudaudq-920"><code>__fractudaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudauha2-921"><code>__fractudauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudauhq-918"><code>__fractudauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudauqq-917"><code>__fractudauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudausa2-922"><code>__fractudausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudausq-919"><code>__fractudausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudauta2-923"><code>__fractudauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqda-849"><code>__fractudqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqdf-864"><code>__fractudqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqdi-861"><code>__fractudqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqdq-846"><code>__fractudqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqha-847"><code>__fractudqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqhi-859"><code>__fractudqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqhq-844"><code>__fractudqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqqi-858"><code>__fractudqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqqq-843"><code>__fractudqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqsa-848"><code>__fractudqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqsf-863"><code>__fractudqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqsi-860"><code>__fractudqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqsq-845"><code>__fractudqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqta-850"><code>__fractudqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqti-862"><code>__fractudqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudquda-856"><code>__fractudquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudquha-854"><code>__fractudquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudquhq2-852"><code>__fractudquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudquqq2-851"><code>__fractudquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqusa-855"><code>__fractudqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudqusq2-853"><code>__fractudqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractudquta-857"><code>__fractudquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhada-871"><code>__fractuhada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhadf-886"><code>__fractuhadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhadi-883"><code>__fractuhadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhadq-868"><code>__fractuhadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhaha-869"><code>__fractuhaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhahi-881"><code>__fractuhahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhahq-866"><code>__fractuhahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhaqi-880"><code>__fractuhaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhaqq-865"><code>__fractuhaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhasa-870"><code>__fractuhasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhasf-885"><code>__fractuhasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhasi-882"><code>__fractuhasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhasq-867"><code>__fractuhasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhata-872"><code>__fractuhata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhati-884"><code>__fractuhati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhauda2-878"><code>__fractuhauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhaudq-876"><code>__fractuhaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhauhq-874"><code>__fractuhauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhauqq-873"><code>__fractuhauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhausa2-877"><code>__fractuhausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhausq-875"><code>__fractuhausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhauta2-879"><code>__fractuhauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqda-805"><code>__fractuhqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqdf-820"><code>__fractuhqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqdi-817"><code>__fractuhqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqdq-802"><code>__fractuhqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqha-803"><code>__fractuhqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqhi-815"><code>__fractuhqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqhq-800"><code>__fractuhqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqqi-814"><code>__fractuhqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqqq-799"><code>__fractuhqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqsa-804"><code>__fractuhqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqsf-819"><code>__fractuhqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqsi-816"><code>__fractuhqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqsq-801"><code>__fractuhqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqta-806"><code>__fractuhqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqti-818"><code>__fractuhqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhquda-812"><code>__fractuhquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqudq2-809"><code>__fractuhqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhquha-810"><code>__fractuhquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhquqq2-807"><code>__fractuhquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqusa-811"><code>__fractuhqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhqusq2-808"><code>__fractuhqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuhquta-813"><code>__fractuhquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdadi-1450"><code>__fractunsdadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdahi-1448"><code>__fractunsdahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdaqi-1447"><code>__fractunsdaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdasi-1449"><code>__fractunsdasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdati-1451"><code>__fractunsdati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdida-1551"><code>__fractunsdida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdidq-1548"><code>__fractunsdidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiha-1549"><code>__fractunsdiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdihq-1546"><code>__fractunsdihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiqq-1545"><code>__fractunsdiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdisa-1550"><code>__fractunsdisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdisq-1547"><code>__fractunsdisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdita-1552"><code>__fractunsdita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiuda-1559"><code>__fractunsdiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiudq-1556"><code>__fractunsdiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiuha-1557"><code>__fractunsdiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiuhq-1554"><code>__fractunsdiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiuqq-1553"><code>__fractunsdiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiusa-1558"><code>__fractunsdiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiusq-1555"><code>__fractunsdiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdiuta-1560"><code>__fractunsdiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdqdi-1435"><code>__fractunsdqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdqhi-1433"><code>__fractunsdqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdqqi-1432"><code>__fractunsdqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdqsi-1434"><code>__fractunsdqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsdqti-1436"><code>__fractunsdqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshadi-1440"><code>__fractunshadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshahi-1438"><code>__fractunshahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshaqi-1437"><code>__fractunshaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshasi-1439"><code>__fractunshasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshati-1441"><code>__fractunshati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshida-1519"><code>__fractunshida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshidq-1516"><code>__fractunshidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiha-1517"><code>__fractunshiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshihq-1514"><code>__fractunshihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiqq-1513"><code>__fractunshiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshisa-1518"><code>__fractunshisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshisq-1515"><code>__fractunshisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshita-1520"><code>__fractunshita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiuda-1527"><code>__fractunshiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiudq-1524"><code>__fractunshiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiuha-1525"><code>__fractunshiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiuhq-1522"><code>__fractunshiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiuqq-1521"><code>__fractunshiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiusa-1526"><code>__fractunshiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiusq-1523"><code>__fractunshiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshiuta-1528"><code>__fractunshiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshqdi-1425"><code>__fractunshqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshqhi-1423"><code>__fractunshqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshqqi-1422"><code>__fractunshqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshqsi-1424"><code>__fractunshqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunshqti-1426"><code>__fractunshqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqida-1503"><code>__fractunsqida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqidq-1500"><code>__fractunsqidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiha-1501"><code>__fractunsqiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqihq-1498"><code>__fractunsqihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiqq-1497"><code>__fractunsqiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqisa-1502"><code>__fractunsqisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqisq-1499"><code>__fractunsqisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqita-1504"><code>__fractunsqita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiuda-1511"><code>__fractunsqiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiudq-1508"><code>__fractunsqiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiuha-1509"><code>__fractunsqiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiuhq-1506"><code>__fractunsqiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiuqq-1505"><code>__fractunsqiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiusa-1510"><code>__fractunsqiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiusq-1507"><code>__fractunsqiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqiuta-1512"><code>__fractunsqiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqqdi-1420"><code>__fractunsqqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqqhi-1418"><code>__fractunsqqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqqqi-1417"><code>__fractunsqqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqqsi-1419"><code>__fractunsqqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsqqti-1421"><code>__fractunsqqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssadi-1445"><code>__fractunssadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssahi-1443"><code>__fractunssahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssaqi-1442"><code>__fractunssaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssasi-1444"><code>__fractunssasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssati-1446"><code>__fractunssati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssida-1535"><code>__fractunssida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssidq-1532"><code>__fractunssidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiha-1533"><code>__fractunssiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssihq-1530"><code>__fractunssihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiqq-1529"><code>__fractunssiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssisa-1534"><code>__fractunssisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssisq-1531"><code>__fractunssisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssita-1536"><code>__fractunssita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiuda-1543"><code>__fractunssiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiudq-1540"><code>__fractunssiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiuha-1541"><code>__fractunssiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiuhq-1538"><code>__fractunssiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiuqq-1537"><code>__fractunssiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiusa-1542"><code>__fractunssiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiusq-1539"><code>__fractunssiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssiuta-1544"><code>__fractunssiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssqdi-1430"><code>__fractunssqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssqhi-1428"><code>__fractunssqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssqqi-1427"><code>__fractunssqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssqsi-1429"><code>__fractunssqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunssqti-1431"><code>__fractunssqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstadi-1455"><code>__fractunstadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstahi-1453"><code>__fractunstahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstaqi-1452"><code>__fractunstaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstasi-1454"><code>__fractunstasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstati-1456"><code>__fractunstati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstida-1567"><code>__fractunstida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstidq-1564"><code>__fractunstidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiha-1565"><code>__fractunstiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstihq-1562"><code>__fractunstihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiqq-1561"><code>__fractunstiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstisa-1566"><code>__fractunstisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstisq-1563"><code>__fractunstisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstita-1568"><code>__fractunstita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiuda-1575"><code>__fractunstiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiudq-1572"><code>__fractunstiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiuha-1573"><code>__fractunstiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiuhq-1570"><code>__fractunstiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiuqq-1569"><code>__fractunstiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiusa-1574"><code>__fractunstiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiusq-1571"><code>__fractunstiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunstiuta-1576"><code>__fractunstiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudadi-1490"><code>__fractunsudadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudahi-1488"><code>__fractunsudahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudaqi-1487"><code>__fractunsudaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudasi-1489"><code>__fractunsudasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudati-1491"><code>__fractunsudati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudqdi-1475"><code>__fractunsudqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudqhi-1473"><code>__fractunsudqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudqqi-1472"><code>__fractunsudqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudqsi-1474"><code>__fractunsudqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsudqti-1476"><code>__fractunsudqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhadi-1480"><code>__fractunsuhadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhahi-1478"><code>__fractunsuhahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhaqi-1477"><code>__fractunsuhaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhasi-1479"><code>__fractunsuhasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhati-1481"><code>__fractunsuhati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhqdi-1465"><code>__fractunsuhqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhqhi-1463"><code>__fractunsuhqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhqqi-1462"><code>__fractunsuhqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhqsi-1464"><code>__fractunsuhqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuhqti-1466"><code>__fractunsuhqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuqqdi-1460"><code>__fractunsuqqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuqqhi-1458"><code>__fractunsuqqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuqqqi-1457"><code>__fractunsuqqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuqqsi-1459"><code>__fractunsuqqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsuqqti-1461"><code>__fractunsuqqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusadi-1485"><code>__fractunsusadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusahi-1483"><code>__fractunsusahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusaqi-1482"><code>__fractunsusaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusasi-1484"><code>__fractunsusasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusati-1486"><code>__fractunsusati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusqdi-1470"><code>__fractunsusqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusqhi-1468"><code>__fractunsusqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusqqi-1467"><code>__fractunsusqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusqsi-1469"><code>__fractunsusqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsusqti-1471"><code>__fractunsusqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsutadi-1495"><code>__fractunsutadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsutahi-1493"><code>__fractunsutahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsutaqi-1492"><code>__fractunsutaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsutasi-1494"><code>__fractunsutasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractunsutati-1496"><code>__fractunsutati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqda-783"><code>__fractuqqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqdf-798"><code>__fractuqqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqdi-795"><code>__fractuqqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqdq-780"><code>__fractuqqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqha-781"><code>__fractuqqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqhi-793"><code>__fractuqqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqhq-778"><code>__fractuqqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqqi-792"><code>__fractuqqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqqq-777"><code>__fractuqqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqsa-782"><code>__fractuqqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqsf-797"><code>__fractuqqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqsi-794"><code>__fractuqqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqsq-779"><code>__fractuqqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqta-784"><code>__fractuqqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqti-796"><code>__fractuqqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqquda-790"><code>__fractuqquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqudq2-787"><code>__fractuqqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqquha-788"><code>__fractuqquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqquhq2-785"><code>__fractuqquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqusa-789"><code>__fractuqqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqqusq2-786"><code>__fractuqqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractuqquta-791"><code>__fractuqquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusada-893"><code>__fractusada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusadf-908"><code>__fractusadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusadi-905"><code>__fractusadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusadq-890"><code>__fractusadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusaha-891"><code>__fractusaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusahi-903"><code>__fractusahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusahq-888"><code>__fractusahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusaqi-902"><code>__fractusaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusaqq-887"><code>__fractusaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusasa-892"><code>__fractusasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusasf-907"><code>__fractusasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusasi-904"><code>__fractusasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusasq-889"><code>__fractusasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusata-894"><code>__fractusata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusati-906"><code>__fractusati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusauda2-900"><code>__fractusauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusaudq-898"><code>__fractusaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusauha2-899"><code>__fractusauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusauhq-896"><code>__fractusauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusauqq-895"><code>__fractusauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusausq-897"><code>__fractusausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusauta2-901"><code>__fractusauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqda-827"><code>__fractusqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqdf-842"><code>__fractusqdf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqdi-839"><code>__fractusqdi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqdq-824"><code>__fractusqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqha-825"><code>__fractusqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqhi-837"><code>__fractusqhi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqhq-822"><code>__fractusqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqqi-836"><code>__fractusqqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqqq-821"><code>__fractusqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqsa-826"><code>__fractusqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqsf-841"><code>__fractusqsf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqsi-838"><code>__fractusqsi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqsq-823"><code>__fractusqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqta-828"><code>__fractusqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqti-840"><code>__fractusqti</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusquda-834"><code>__fractusquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqudq2-831"><code>__fractusqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusquha-832"><code>__fractusquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusquhq2-830"><code>__fractusquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusquqq2-829"><code>__fractusquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusqusa-833"><code>__fractusqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractusquta-835"><code>__fractusquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutada-937"><code>__fractutada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutadf-952"><code>__fractutadf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutadi-949"><code>__fractutadi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutadq-934"><code>__fractutadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutaha-935"><code>__fractutaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutahi-947"><code>__fractutahi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutahq-932"><code>__fractutahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutaqi-946"><code>__fractutaqi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutaqq-931"><code>__fractutaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutasa-936"><code>__fractutasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutasf-951"><code>__fractutasf</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutasi-948"><code>__fractutasi</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutasq-933"><code>__fractutasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutata-938"><code>__fractutata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutati-950"><code>__fractutati</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutauda2-945"><code>__fractutauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutaudq-942"><code>__fractutaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutauha2-943"><code>__fractutauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutauhq-940"><code>__fractutauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutauqq-939"><code>__fractutauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutausa2-944"><code>__fractutausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005ffractutausq-941"><code>__fractutausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fgedf2-170"><code>__gedf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fgesf2-169"><code>__gesf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fgetf2-171"><code>__getf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fgtdf2-179"><code>__gtdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fgtsf2-178"><code>__gtsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fgttf2-180"><code>__gttf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fledf2-176"><code>__ledf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005flesf2-175"><code>__lesf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fletf2-177"><code>__letf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005flshrdi3-27"><code>__lshrdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005flshrsi3-26"><code>__lshrsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005flshrti3-28"><code>__lshrti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005flshruda3-568"><code>__lshruda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshrudq3-565"><code>__lshrudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshruha3-566"><code>__lshruha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshruhq3-563"><code>__lshruhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshruqq3-562"><code>__lshruqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshrusa3-567"><code>__lshrusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshrusq3-564"><code>__lshrusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005flshruta3-569"><code>__lshruta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fltdf2-173"><code>__ltdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fltsf2-172"><code>__ltsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005flttf2-174"><code>__lttf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmain-4911"><code>__main</code></a>: <a href="#Collect2">Collect2</a></li>
<li><a href="#index-g_t_005f_005fmoddi3-30"><code>__moddi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmodsi3-29"><code>__modsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmodti3-31"><code>__modti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmorestack_005fcurrent_005fsegment-1660"><code>__morestack_current_segment</code></a>: <a href="#Miscellaneous-routines">Miscellaneous routines</a></li>
<li><a href="#index-g_t_005f_005fmorestack_005finitial_005fsp-1661"><code>__morestack_initial_sp</code></a>: <a href="#Miscellaneous-routines">Miscellaneous routines</a></li>
<li><a href="#index-g_t_005f_005fmorestack_005fsegments-1659"><code>__morestack_segments</code></a>: <a href="#Miscellaneous-routines">Miscellaneous routines</a></li>
<li><a href="#index-g_t_005f_005fmulda3-452"><code>__mulda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuldc3-186"><code>__muldc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmuldf3-88"><code>__muldf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmuldi3-33"><code>__muldi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmuldq3-445"><code>__muldq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulha3-450"><code>__mulha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulhq3-443"><code>__mulhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulqq3-442"><code>__mulqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulsa3-451"><code>__mulsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulsc3-185"><code>__mulsc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmulsf3-87"><code>__mulsf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmulsi3-32"><code>__mulsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmulsq3-444"><code>__mulsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulta3-453"><code>__multa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmultc3-187"><code>__multc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmultf3-89"><code>__multf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmulti3-34"><code>__multi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmuluda3-456"><code>__muluda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuludq3-449"><code>__muludq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuluha3-454"><code>__muluha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuluhq3-447"><code>__muluhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuluqq3-446"><code>__muluqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulusa3-455"><code>__mulusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulusq3-448"><code>__mulusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmuluta3-457"><code>__muluta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fmulvdi3-54"><code>__mulvdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmulvsi3-53"><code>__mulvsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fmulxc3-188"><code>__mulxc3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fmulxf3-90"><code>__mulxf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnedf2-167"><code>__nedf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnegda2-516"><code>__negda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegdf2-96"><code>__negdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnegdi2-35"><code>__negdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fnegdq2-509"><code>__negdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegha2-514"><code>__negha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fneghq2-507"><code>__neghq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegqq2-506"><code>__negqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegsa2-515"><code>__negsa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegsf2-95"><code>__negsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnegsq2-508"><code>__negsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegta2-517"><code>__negta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegtf2-97"><code>__negtf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnegti2-36"><code>__negti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fneguda2-520"><code>__neguda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegudq2-513"><code>__negudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fneguha2-518"><code>__neguha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fneguhq2-511"><code>__neguhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fneguqq2-510"><code>__neguqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegusa2-519"><code>__negusa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegusq2-512"><code>__negusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fneguta2-521"><code>__neguta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fnegvdi2-56"><code>__negvdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fnegvsi2-55"><code>__negvsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fnegxf2-98"><code>__negxf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnesf2-166"><code>__nesf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fnetf2-168"><code>__netf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fparitydi2-68"><code>__paritydi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fparitysi2-67"><code>__paritysi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fparityti2-69"><code>__parityti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fpopcountdi2-71"><code>__popcountdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fpopcountsi2-70"><code>__popcountsi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fpopcountti2-72"><code>__popcountti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fpowidf2-182"><code>__powidf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fpowisf2-181"><code>__powisf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fpowitf2-183"><code>__powitf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fpowixf2-184"><code>__powixf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdadq-1158"><code>__satfractdadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdaha2-1159"><code>__satfractdaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdahq-1156"><code>__satfractdahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdaqq-1155"><code>__satfractdaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdasa2-1160"><code>__satfractdasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdasq-1157"><code>__satfractdasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdata2-1161"><code>__satfractdata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdauda-1168"><code>__satfractdauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdaudq-1165"><code>__satfractdaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdauha-1166"><code>__satfractdauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdauhq-1163"><code>__satfractdauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdauqq-1162"><code>__satfractdauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdausa-1167"><code>__satfractdausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdausq-1164"><code>__satfractdausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdauta-1169"><code>__satfractdauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfda-1407"><code>__satfractdfda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfdq-1404"><code>__satfractdfdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfha-1405"><code>__satfractdfha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfhq-1402"><code>__satfractdfhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfqq-1401"><code>__satfractdfqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfsa-1406"><code>__satfractdfsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfsq-1403"><code>__satfractdfsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfta-1408"><code>__satfractdfta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfuda-1415"><code>__satfractdfuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfudq-1412"><code>__satfractdfudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfuha-1413"><code>__satfractdfuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfuhq-1410"><code>__satfractdfuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfuqq-1409"><code>__satfractdfuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfusa-1414"><code>__satfractdfusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfusq-1411"><code>__satfractdfusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdfuta-1416"><code>__satfractdfuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdida-1359"><code>__satfractdida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdidq-1356"><code>__satfractdidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiha-1357"><code>__satfractdiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdihq-1354"><code>__satfractdihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiqq-1353"><code>__satfractdiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdisa-1358"><code>__satfractdisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdisq-1355"><code>__satfractdisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdita-1360"><code>__satfractdita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiuda-1367"><code>__satfractdiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiudq-1364"><code>__satfractdiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiuha-1365"><code>__satfractdiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiuhq-1362"><code>__satfractdiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiuqq-1361"><code>__satfractdiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiusa-1366"><code>__satfractdiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiusq-1363"><code>__satfractdiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdiuta-1368"><code>__satfractdiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqda-1115"><code>__satfractdqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqha-1113"><code>__satfractdqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqhq2-1111"><code>__satfractdqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqqq2-1110"><code>__satfractdqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqsa-1114"><code>__satfractdqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqsq2-1112"><code>__satfractdqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqta-1116"><code>__satfractdqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdquda-1123"><code>__satfractdquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqudq-1120"><code>__satfractdqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdquha-1121"><code>__satfractdquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdquhq-1118"><code>__satfractdquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdquqq-1117"><code>__satfractdquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqusa-1122"><code>__satfractdqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdqusq-1119"><code>__satfractdqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractdquta-1124"><code>__satfractdquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthada2-1130"><code>__satfracthada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthadq-1128"><code>__satfracthadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthahq-1126"><code>__satfracthahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthaqq-1125"><code>__satfracthaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthasa2-1129"><code>__satfracthasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthasq-1127"><code>__satfracthasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthata2-1131"><code>__satfracthata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthauda-1138"><code>__satfracthauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthaudq-1135"><code>__satfracthaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthauha-1136"><code>__satfracthauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthauhq-1133"><code>__satfracthauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthauqq-1132"><code>__satfracthauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthausa-1137"><code>__satfracthausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthausq-1134"><code>__satfracthausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthauta-1139"><code>__satfracthauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthida-1327"><code>__satfracthida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthidq-1324"><code>__satfracthidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiha-1325"><code>__satfracthiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthihq-1322"><code>__satfracthihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiqq-1321"><code>__satfracthiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthisa-1326"><code>__satfracthisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthisq-1323"><code>__satfracthisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthita-1328"><code>__satfracthita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiuda-1335"><code>__satfracthiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiudq-1332"><code>__satfracthiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiuha-1333"><code>__satfracthiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiuhq-1330"><code>__satfracthiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiuqq-1329"><code>__satfracthiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiusa-1334"><code>__satfracthiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiusq-1331"><code>__satfracthiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthiuta-1336"><code>__satfracthiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqda-1085"><code>__satfracthqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqdq2-1082"><code>__satfracthqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqha-1083"><code>__satfracthqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqqq2-1080"><code>__satfracthqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqsa-1084"><code>__satfracthqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqsq2-1081"><code>__satfracthqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqta-1086"><code>__satfracthqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthquda-1093"><code>__satfracthquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqudq-1090"><code>__satfracthqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthquha-1091"><code>__satfracthquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthquhq-1088"><code>__satfracthquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthquqq-1087"><code>__satfracthquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqusa-1092"><code>__satfracthqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthqusq-1089"><code>__satfracthqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracthquta-1094"><code>__satfracthquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqida-1311"><code>__satfractqida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqidq-1308"><code>__satfractqidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiha-1309"><code>__satfractqiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqihq-1306"><code>__satfractqihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiqq-1305"><code>__satfractqiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqisa-1310"><code>__satfractqisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqisq-1307"><code>__satfractqisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqita-1312"><code>__satfractqita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiuda-1319"><code>__satfractqiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiudq-1316"><code>__satfractqiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiuha-1317"><code>__satfractqiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiuhq-1314"><code>__satfractqiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiuqq-1313"><code>__satfractqiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiusa-1318"><code>__satfractqiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiusq-1315"><code>__satfractqiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqiuta-1320"><code>__satfractqiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqda-1070"><code>__satfractqqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqdq2-1067"><code>__satfractqqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqha-1068"><code>__satfractqqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqhq2-1065"><code>__satfractqqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqsa-1069"><code>__satfractqqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqsq2-1066"><code>__satfractqqsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqta-1071"><code>__satfractqqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqquda-1078"><code>__satfractqquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqudq-1075"><code>__satfractqqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqquha-1076"><code>__satfractqquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqquhq-1073"><code>__satfractqquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqquqq-1072"><code>__satfractqquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqusa-1077"><code>__satfractqqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqqusq-1074"><code>__satfractqqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractqquta-1079"><code>__satfractqquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsada2-1145"><code>__satfractsada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsadq-1143"><code>__satfractsadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsaha2-1144"><code>__satfractsaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsahq-1141"><code>__satfractsahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsaqq-1140"><code>__satfractsaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsasq-1142"><code>__satfractsasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsata2-1146"><code>__satfractsata2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsauda-1153"><code>__satfractsauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsaudq-1150"><code>__satfractsaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsauha-1151"><code>__satfractsauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsauhq-1148"><code>__satfractsauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsauqq-1147"><code>__satfractsauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsausa-1152"><code>__satfractsausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsausq-1149"><code>__satfractsausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsauta-1154"><code>__satfractsauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfda-1391"><code>__satfractsfda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfdq-1388"><code>__satfractsfdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfha-1389"><code>__satfractsfha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfhq-1386"><code>__satfractsfhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfqq-1385"><code>__satfractsfqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfsa-1390"><code>__satfractsfsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfsq-1387"><code>__satfractsfsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfta-1392"><code>__satfractsfta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfuda-1399"><code>__satfractsfuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfudq-1396"><code>__satfractsfudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfuha-1397"><code>__satfractsfuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfuhq-1394"><code>__satfractsfuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfuqq-1393"><code>__satfractsfuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfusa-1398"><code>__satfractsfusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfusq-1395"><code>__satfractsfusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsfuta-1400"><code>__satfractsfuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsida-1343"><code>__satfractsida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsidq-1340"><code>__satfractsidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiha-1341"><code>__satfractsiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsihq-1338"><code>__satfractsihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiqq-1337"><code>__satfractsiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsisa-1342"><code>__satfractsisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsisq-1339"><code>__satfractsisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsita-1344"><code>__satfractsita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiuda-1351"><code>__satfractsiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiudq-1348"><code>__satfractsiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiuha-1349"><code>__satfractsiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiuhq-1346"><code>__satfractsiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiuqq-1345"><code>__satfractsiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiusa-1350"><code>__satfractsiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiusq-1347"><code>__satfractsiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsiuta-1352"><code>__satfractsiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqda-1100"><code>__satfractsqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqdq2-1097"><code>__satfractsqdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqha-1098"><code>__satfractsqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqhq2-1096"><code>__satfractsqhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqqq2-1095"><code>__satfractsqqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqsa-1099"><code>__satfractsqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqta-1101"><code>__satfractsqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsquda-1108"><code>__satfractsquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqudq-1105"><code>__satfractsqudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsquha-1106"><code>__satfractsquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsquhq-1103"><code>__satfractsquhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsquqq-1102"><code>__satfractsquqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqusa-1107"><code>__satfractsqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsqusq-1104"><code>__satfractsqusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractsquta-1109"><code>__satfractsquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttada2-1176"><code>__satfracttada2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttadq-1173"><code>__satfracttadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttaha2-1174"><code>__satfracttaha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttahq-1171"><code>__satfracttahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttaqq-1170"><code>__satfracttaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttasa2-1175"><code>__satfracttasa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttasq-1172"><code>__satfracttasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttauda-1183"><code>__satfracttauda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttaudq-1180"><code>__satfracttaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttauha-1181"><code>__satfracttauha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttauhq-1178"><code>__satfracttauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttauqq-1177"><code>__satfracttauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttausa-1182"><code>__satfracttausa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttausq-1179"><code>__satfracttausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttauta-1184"><code>__satfracttauta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttida-1375"><code>__satfracttida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttidq-1372"><code>__satfracttidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiha-1373"><code>__satfracttiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttihq-1370"><code>__satfracttihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiqq-1369"><code>__satfracttiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttisa-1374"><code>__satfracttisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttisq-1371"><code>__satfracttisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttita-1376"><code>__satfracttita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiuda-1383"><code>__satfracttiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiudq-1380"><code>__satfracttiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiuha-1381"><code>__satfracttiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiuhq-1378"><code>__satfracttiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiuqq-1377"><code>__satfracttiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiusa-1382"><code>__satfracttiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiusq-1379"><code>__satfracttiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfracttiuta-1384"><code>__satfracttiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudada-1281"><code>__satfractudada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudadq-1278"><code>__satfractudadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudaha-1279"><code>__satfractudaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudahq-1276"><code>__satfractudahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudaqq-1275"><code>__satfractudaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudasa-1280"><code>__satfractudasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudasq-1277"><code>__satfractudasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudata-1282"><code>__satfractudata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudaudq-1286"><code>__satfractudaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudauha2-1287"><code>__satfractudauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudauhq-1284"><code>__satfractudauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudauqq-1283"><code>__satfractudauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudausa2-1288"><code>__satfractudausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudausq-1285"><code>__satfractudausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudauta2-1289"><code>__satfractudauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqda-1236"><code>__satfractudqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqdq-1233"><code>__satfractudqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqha-1234"><code>__satfractudqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqhq-1231"><code>__satfractudqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqqq-1230"><code>__satfractudqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqsa-1235"><code>__satfractudqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqsq-1232"><code>__satfractudqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqta-1237"><code>__satfractudqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudquda-1243"><code>__satfractudquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudquha-1241"><code>__satfractudquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudquhq2-1239"><code>__satfractudquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudquqq2-1238"><code>__satfractudquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqusa-1242"><code>__satfractudqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudqusq2-1240"><code>__satfractudqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractudquta-1244"><code>__satfractudquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhada-1251"><code>__satfractuhada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhadq-1248"><code>__satfractuhadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhaha-1249"><code>__satfractuhaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhahq-1246"><code>__satfractuhahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhaqq-1245"><code>__satfractuhaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhasa-1250"><code>__satfractuhasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhasq-1247"><code>__satfractuhasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhata-1252"><code>__satfractuhata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhauda2-1258"><code>__satfractuhauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhaudq-1256"><code>__satfractuhaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhauhq-1254"><code>__satfractuhauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhauqq-1253"><code>__satfractuhauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhausa2-1257"><code>__satfractuhausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhausq-1255"><code>__satfractuhausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhauta2-1259"><code>__satfractuhauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqda-1206"><code>__satfractuhqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqdq-1203"><code>__satfractuhqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqha-1204"><code>__satfractuhqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqhq-1201"><code>__satfractuhqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqqq-1200"><code>__satfractuhqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqsa-1205"><code>__satfractuhqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqsq-1202"><code>__satfractuhqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqta-1207"><code>__satfractuhqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhquda-1213"><code>__satfractuhquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqudq2-1210"><code>__satfractuhqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhquha-1211"><code>__satfractuhquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhquqq2-1208"><code>__satfractuhquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqusa-1212"><code>__satfractuhqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhqusq2-1209"><code>__satfractuhqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuhquta-1214"><code>__satfractuhquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdida-1631"><code>__satfractunsdida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdidq-1628"><code>__satfractunsdidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiha-1629"><code>__satfractunsdiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdihq-1626"><code>__satfractunsdihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiqq-1625"><code>__satfractunsdiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdisa-1630"><code>__satfractunsdisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdisq-1627"><code>__satfractunsdisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdita-1632"><code>__satfractunsdita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiuda-1639"><code>__satfractunsdiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiudq-1636"><code>__satfractunsdiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiuha-1637"><code>__satfractunsdiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiuhq-1634"><code>__satfractunsdiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiuqq-1633"><code>__satfractunsdiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiusa-1638"><code>__satfractunsdiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiusq-1635"><code>__satfractunsdiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsdiuta-1640"><code>__satfractunsdiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshida-1599"><code>__satfractunshida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshidq-1596"><code>__satfractunshidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiha-1597"><code>__satfractunshiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshihq-1594"><code>__satfractunshihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiqq-1593"><code>__satfractunshiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshisa-1598"><code>__satfractunshisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshisq-1595"><code>__satfractunshisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshita-1600"><code>__satfractunshita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiuda-1607"><code>__satfractunshiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiudq-1604"><code>__satfractunshiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiuha-1605"><code>__satfractunshiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiuhq-1602"><code>__satfractunshiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiuqq-1601"><code>__satfractunshiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiusa-1606"><code>__satfractunshiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiusq-1603"><code>__satfractunshiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunshiuta-1608"><code>__satfractunshiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqida-1583"><code>__satfractunsqida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqidq-1580"><code>__satfractunsqidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiha-1581"><code>__satfractunsqiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqihq-1578"><code>__satfractunsqihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiqq-1577"><code>__satfractunsqiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqisa-1582"><code>__satfractunsqisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqisq-1579"><code>__satfractunsqisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqita-1584"><code>__satfractunsqita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiuda-1591"><code>__satfractunsqiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiudq-1588"><code>__satfractunsqiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiuha-1589"><code>__satfractunsqiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiuhq-1586"><code>__satfractunsqiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiuqq-1585"><code>__satfractunsqiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiusa-1590"><code>__satfractunsqiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiusq-1587"><code>__satfractunsqiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunsqiuta-1592"><code>__satfractunsqiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssida-1615"><code>__satfractunssida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssidq-1612"><code>__satfractunssidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiha-1613"><code>__satfractunssiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssihq-1610"><code>__satfractunssihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiqq-1609"><code>__satfractunssiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssisa-1614"><code>__satfractunssisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssisq-1611"><code>__satfractunssisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssita-1616"><code>__satfractunssita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiuda-1623"><code>__satfractunssiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiudq-1620"><code>__satfractunssiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiuha-1621"><code>__satfractunssiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiuhq-1618"><code>__satfractunssiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiuqq-1617"><code>__satfractunssiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiusa-1622"><code>__satfractunssiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiusq-1619"><code>__satfractunssiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunssiuta-1624"><code>__satfractunssiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstida-1647"><code>__satfractunstida</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstidq-1644"><code>__satfractunstidq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiha-1645"><code>__satfractunstiha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstihq-1642"><code>__satfractunstihq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiqq-1641"><code>__satfractunstiqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstisa-1646"><code>__satfractunstisa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstisq-1643"><code>__satfractunstisq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstita-1648"><code>__satfractunstita</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiuda-1655"><code>__satfractunstiuda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiudq-1652"><code>__satfractunstiudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiuha-1653"><code>__satfractunstiuha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiuhq-1650"><code>__satfractunstiuhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiuqq-1649"><code>__satfractunstiuqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiusa-1654"><code>__satfractunstiusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiusq-1651"><code>__satfractunstiusq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractunstiuta-1656"><code>__satfractunstiuta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqda-1191"><code>__satfractuqqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqdq-1188"><code>__satfractuqqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqha-1189"><code>__satfractuqqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqhq-1186"><code>__satfractuqqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqqq-1185"><code>__satfractuqqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqsa-1190"><code>__satfractuqqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqsq-1187"><code>__satfractuqqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqta-1192"><code>__satfractuqqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqquda-1198"><code>__satfractuqquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqudq2-1195"><code>__satfractuqqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqquha-1196"><code>__satfractuqquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqquhq2-1193"><code>__satfractuqquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqusa-1197"><code>__satfractuqqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqqusq2-1194"><code>__satfractuqqusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractuqquta-1199"><code>__satfractuqquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusada-1266"><code>__satfractusada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusadq-1263"><code>__satfractusadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusaha-1264"><code>__satfractusaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusahq-1261"><code>__satfractusahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusaqq-1260"><code>__satfractusaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusasa-1265"><code>__satfractusasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusasq-1262"><code>__satfractusasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusata-1267"><code>__satfractusata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusauda2-1273"><code>__satfractusauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusaudq-1271"><code>__satfractusaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusauha2-1272"><code>__satfractusauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusauhq-1269"><code>__satfractusauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusauqq-1268"><code>__satfractusauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusausq-1270"><code>__satfractusausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusauta2-1274"><code>__satfractusauta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqda-1221"><code>__satfractusqda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqdq-1218"><code>__satfractusqdq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqha-1219"><code>__satfractusqha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqhq-1216"><code>__satfractusqhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqqq-1215"><code>__satfractusqqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqsa-1220"><code>__satfractusqsa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqsq-1217"><code>__satfractusqsq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqta-1222"><code>__satfractusqta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusquda-1228"><code>__satfractusquda</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqudq2-1225"><code>__satfractusqudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusquha-1226"><code>__satfractusquha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusquhq2-1224"><code>__satfractusquhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusquqq2-1223"><code>__satfractusquqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusqusa-1227"><code>__satfractusqusa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractusquta-1229"><code>__satfractusquta</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutada-1296"><code>__satfractutada</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutadq-1293"><code>__satfractutadq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutaha-1294"><code>__satfractutaha</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutahq-1291"><code>__satfractutahq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutaqq-1290"><code>__satfractutaqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutasa-1295"><code>__satfractutasa</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutasq-1292"><code>__satfractutasq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutata-1297"><code>__satfractutata</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutauda2-1304"><code>__satfractutauda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutaudq-1301"><code>__satfractutaudq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutauha2-1302"><code>__satfractutauha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutauhq-1299"><code>__satfractutauhq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutauqq-1298"><code>__satfractutauqq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutausa2-1303"><code>__satfractutausa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsatfractutausq-1300"><code>__satfractutausq</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsplitstack_005ffind-1658"><code>__splitstack_find</code></a>: <a href="#Miscellaneous-routines">Miscellaneous routines</a></li>
<li><a href="#index-g_t_005f_005fssaddda3-400"><code>__ssaddda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssadddq3-397"><code>__ssadddq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddha3-398"><code>__ssaddha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddhq3-395"><code>__ssaddhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddqq3-394"><code>__ssaddqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddsa3-399"><code>__ssaddsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddsq3-396"><code>__ssaddsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssaddta3-401"><code>__ssaddta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlda3-575"><code>__ssashlda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashldq3-572"><code>__ssashldq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlha3-573"><code>__ssashlha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlhq3-570"><code>__ssashlhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlsa3-574"><code>__ssashlsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlsq3-571"><code>__ssashlsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssashlta3-576"><code>__ssashlta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivda3-496"><code>__ssdivda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivdq3-493"><code>__ssdivdq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivha3-494"><code>__ssdivha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivhq3-491"><code>__ssdivhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivqq3-490"><code>__ssdivqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivsa3-495"><code>__ssdivsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivsq3-492"><code>__ssdivsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssdivta3-497"><code>__ssdivta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulda3-464"><code>__ssmulda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmuldq3-461"><code>__ssmuldq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulha3-462"><code>__ssmulha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulhq3-459"><code>__ssmulhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulqq3-458"><code>__ssmulqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulsa3-463"><code>__ssmulsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulsq3-460"><code>__ssmulsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssmulta3-465"><code>__ssmulta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegda2-528"><code>__ssnegda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegdq2-525"><code>__ssnegdq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegha2-526"><code>__ssnegha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssneghq2-523"><code>__ssneghq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegqq2-522"><code>__ssnegqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegsa2-527"><code>__ssnegsa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegsq2-524"><code>__ssnegsq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fssnegta2-529"><code>__ssnegta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubda3-432"><code>__sssubda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubdq3-429"><code>__sssubdq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubha3-430"><code>__sssubha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubhq3-427"><code>__sssubhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubqq3-426"><code>__sssubqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubsa3-431"><code>__sssubsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubsq3-428"><code>__sssubsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsssubta3-433"><code>__sssubta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubda3-420"><code>__subda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubdf3-84"><code>__subdf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fsubdq3-413"><code>__subdq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubha3-418"><code>__subha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubhq3-411"><code>__subhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubqq3-410"><code>__subqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubsa3-419"><code>__subsa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubsf3-83"><code>__subsf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fsubsq3-412"><code>__subsq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubta3-421"><code>__subta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubtf3-85"><code>__subtf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fsubuda3-424"><code>__subuda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubudq3-417"><code>__subudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubuha3-422"><code>__subuha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubuhq3-415"><code>__subuhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubuqq3-414"><code>__subuqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubusa3-423"><code>__subusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubusq3-416"><code>__subusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubuta3-425"><code>__subuta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fsubvdi3-58"><code>__subvdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fsubvsi3-57"><code>__subvsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fsubxf3-86"><code>__subxf3</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ftruncdfsf2-108"><code>__truncdfsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ftrunctfdf2-105"><code>__trunctfdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ftrunctfsf2-107"><code>__trunctfsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ftruncxfdf2-104"><code>__truncxfdf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005ftruncxfsf2-106"><code>__truncxfsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fucmpdi2-47"><code>__ucmpdi2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fucmpti2-48"><code>__ucmpti2</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fudivdi3-38"><code>__udivdi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fudivmoddi3-40"><code>__udivmoddi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fudivsi3-37"><code>__udivsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fudivti3-39"><code>__udivti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fudivuda3-488"><code>__udivuda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivudq3-485"><code>__udivudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivuha3-486"><code>__udivuha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivuhq3-483"><code>__udivuhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivuqq3-482"><code>__udivuqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivusa3-487"><code>__udivusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivusq3-484"><code>__udivusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fudivuta3-489"><code>__udivuta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fumoddi3-43"><code>__umoddi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fumodsi3-42"><code>__umodsi3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005fumodti3-44"><code>__umodti3</code></a>: <a href="#Integer-library-routines">Integer library routines</a></li>
<li><a href="#index-g_t_005f_005funorddf2-161"><code>__unorddf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005funordsf2-160"><code>__unordsf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005funordtf2-162"><code>__unordtf2</code></a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-g_t_005f_005fusadduda3-408"><code>__usadduda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusaddudq3-405"><code>__usaddudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusadduha3-406"><code>__usadduha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusadduhq3-403"><code>__usadduhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusadduqq3-402"><code>__usadduqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusaddusa3-407"><code>__usaddusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusaddusq3-404"><code>__usaddusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusadduta3-409"><code>__usadduta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashluda3-583"><code>__usashluda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashludq3-580"><code>__usashludq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashluha3-581"><code>__usashluha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashluhq3-578"><code>__usashluhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashluqq3-577"><code>__usashluqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashlusa3-582"><code>__usashlusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashlusq3-579"><code>__usashlusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusashluta3-584"><code>__usashluta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivuda3-504"><code>__usdivuda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivudq3-501"><code>__usdivudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivuha3-502"><code>__usdivuha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivuhq3-499"><code>__usdivuhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivuqq3-498"><code>__usdivuqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivusa3-503"><code>__usdivusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivusq3-500"><code>__usdivusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusdivuta3-505"><code>__usdivuta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuluda3-472"><code>__usmuluda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuludq3-469"><code>__usmuludq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuluha3-470"><code>__usmuluha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuluhq3-467"><code>__usmuluhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuluqq3-466"><code>__usmuluqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmulusa3-471"><code>__usmulusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmulusq3-468"><code>__usmulusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusmuluta3-473"><code>__usmuluta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusneguda2-536"><code>__usneguda2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusnegudq2-533"><code>__usnegudq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusneguha2-534"><code>__usneguha2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusneguhq2-531"><code>__usneguhq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusneguqq2-530"><code>__usneguqq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusnegusa2-535"><code>__usnegusa2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusnegusq2-532"><code>__usnegusq2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fusneguta2-537"><code>__usneguta2</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubuda3-440"><code>__ussubuda3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubudq3-437"><code>__ussubudq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubuha3-438"><code>__ussubuha3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubuhq3-435"><code>__ussubuhq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubuqq3-434"><code>__ussubuqq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubusa3-439"><code>__ussubusa3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubusq3-436"><code>__ussubusq3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_005f_005fussubuta3-441"><code>__ussubuta3</code></a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-abort-6"><code>abort</code></a>: <a href="#Portability">Portability</a></li>
<li><a href="#index-abs-2113"><code>abs</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007babs_007d-and-attributes-3647"><code>abs</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-ABS_005fEXPR-2434"><code>ABS_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-absence_005fset-3706"><code>absence_set</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-g_t_0040code_007babs_0040var_007bm_007d2_007d-instruction-pattern-3447"><code>abs</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-absolute-value-2115">absolute value</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-access-to-operands-1716">access to operands</a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-access-to-special-operands-1725">access to special operands</a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-accessors-1715">accessors</a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-ACCUM_005fTYPE_005fSIZE-3880"><code>ACCUM_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-ACCUMULATE_005fOUTGOING_005fARGS-4115"><code>ACCUMULATE_OUTGOING_ARGS</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-g_t_0040code_007bACCUMULATE_005fOUTGOING_005fARGS_007d-and-stack-frames-4191"><code>ACCUMULATE_OUTGOING_ARGS</code> and stack frames</a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-ADA_005fLONG_005fTYPE_005fSIZE-3868"><code>ADA_LONG_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-Adding-a-new-GIMPLE-statement-code-3078">Adding a new GIMPLE statement code</a>: <a href="#Adding-a-new-GIMPLE-statement-code">Adding a new GIMPLE statement code</a></li>
<li><a href="#index-ADDITIONAL_005fREGISTER_005fNAMES-4560"><code>ADDITIONAL_REGISTER_NAMES</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-g_t_0040code_007badd_0040var_007bm_007d3_007d-instruction-pattern-3352"><code>add</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007badd_0040var_007bmode_007dcc_007d-instruction-pattern-3499"><code>add</code><var>mode</var><code>cc</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-addr_005fdiff_005fvec-2197"><code>addr_diff_vec</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007baddr_005fdiff_005fvec_007d_002c-length-of-3669"><code>addr_diff_vec</code>, length of</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-ADDR_005fEXPR-2426"><code>ADDR_EXPR</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-addr_005fvec-2196"><code>addr_vec</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007baddr_005fvec_007d_002c-length-of-3668"><code>addr_vec</code>, length of</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-address-constraints-3289">address constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-address_005foperand-3291"><code>address_operand</code></a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-address_005foperand-3247"><code>address_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-addressing-modes-4251">addressing modes</a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-ADJUST_005fFIELD_005fALIGN-3832"><code>ADJUST_FIELD_ALIGN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-ADJUST_005fINSN_005fLENGTH-3670"><code>ADJUST_INSN_LENGTH</code></a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-ADJUST_005fREG_005fALLOC_005fORDER-3964"><code>ADJUST_REG_ALLOC_ORDER</code></a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-aggregates-as-return-values-4168">aggregates as return values</a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-alias-3109">alias</a>: <a href="#Alias-analysis">Alias analysis</a></li>
<li><a href="#index-ALL_005fCOP_005fADDITIONAL_005fREGISTER_005fNAMES-4735"><code>ALL_COP_ADDITIONAL_REGISTER_NAMES</code></a>: <a href="#MIPS-Coprocessors">MIPS Coprocessors</a></li>
<li><a href="#index-ALL_005fREGS-3989"><code>ALL_REGS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-g_t_0040code_007ballocate_005fstack_007d-instruction-pattern-3526"><code>allocate_stack</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-alternate-entry-points-2231">alternate entry points</a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-anchored-addresses-4294">anchored addresses</a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-and-2088"><code>and</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007band_007d-and-attributes-3631"><code>and</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007band_007d_002c-canonicalization-of-3585"><code>and</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-g_t_0040code_007band_0040var_007bm_007d3_007d-instruction-pattern-3369"><code>and</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-annotations-3085">annotations</a>: <a href="#Annotations">Annotations</a></li>
<li><a href="#index-APPLY_005fRESULT_005fSIZE-4166"><code>APPLY_RESULT_SIZE</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-ARG_005fPOINTER_005fCFA_005fOFFSET-4062"><code>ARG_POINTER_CFA_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-ARG_005fPOINTER_005fREGNUM-4087"><code>ARG_POINTER_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-g_t_0040code_007bARG_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2002"><code>ARG_POINTER_REGNUM</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-arg_005fpointer_005frtx-4096"><code>arg_pointer_rtx</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-ARGS_005fGROW_005fDOWNWARD-4044"><code>ARGS_GROW_DOWNWARD</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-argument-passing-14">argument passing</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-arguments-in-registers-4121">arguments in registers</a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-arguments-on-stack-4108">arguments on stack</a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-arithmetic-library-76">arithmetic library</a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-arithmetic-shift-2102">arithmetic shift</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-arithmetic-shift-with-signed-saturation-2103">arithmetic shift with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-arithmetic-shift-with-unsigned-saturation-2104">arithmetic shift with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-arithmetic_002c-in-RTL-2030">arithmetic, in RTL</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ARITHMETIC_005fTYPE_005fP-2601"><code>ARITHMETIC_TYPE_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-array-2336">array</a>: <a href="#Types">Types</a></li>
<li><a href="#index-ARRAY_005fRANGE_005fREF-2430"><code>ARRAY_RANGE_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-ARRAY_005fREF-2429"><code>ARRAY_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-ARRAY_005fTYPE-2350"><code>ARRAY_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-AS_005fNEEDS_005fDASH_005fFOR_005fPIPED_005fINPUT-3750"><code>AS_NEEDS_DASH_FOR_PIPED_INPUT</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-ashift-2097"><code>ashift</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bashift_007d-and-attributes-3649"><code>ashift</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-ashiftrt-2107"><code>ashiftrt</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bashiftrt_007d-and-attributes-3651"><code>ashiftrt</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bashl_0040var_007bm_007d3_007d-instruction-pattern-3432"><code>ashl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bashr_0040var_007bm_007d3_007d-instruction-pattern-3435"><code>ashr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-ASM_005fAPP_005fOFF-4440"><code>ASM_APP_OFF</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-ASM_005fAPP_005fON-4439"><code>ASM_APP_ON</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-ASM_005fCOMMENT_005fSTART-4438"><code>ASM_COMMENT_START</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-ASM_005fDECLARE_005fCLASS_005fREFERENCE-4534"><code>ASM_DECLARE_CLASS_REFERENCE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fDECLARE_005fFUNCTION_005fNAME-4499"><code>ASM_DECLARE_FUNCTION_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fDECLARE_005fFUNCTION_005fSIZE-4500"><code>ASM_DECLARE_FUNCTION_SIZE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fDECLARE_005fOBJECT_005fNAME-4501"><code>ASM_DECLARE_OBJECT_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fDECLARE_005fREGISTER_005fGLOBAL-4503"><code>ASM_DECLARE_REGISTER_GLOBAL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fDECLARE_005fUNRESOLVED_005fREFERENCE-4535"><code>ASM_DECLARE_UNRESOLVED_REFERENCE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fFINAL_005fSPEC-3749"><code>ASM_FINAL_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-ASM_005fFINISH_005fDECLARE_005fOBJECT-4504"><code>ASM_FINISH_DECLARE_OBJECT</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fFORMAT_005fPRIVATE_005fNAME-4526"><code>ASM_FORMAT_PRIVATE_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-asm_005ffprintf-4574"><code>asm_fprintf</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-ASM_005fFPRINTF_005fEXTENSIONS-4579"><code>ASM_FPRINTF_EXTENSIONS</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-ASM_005fGENERATE_005fINTERNAL_005fLABEL-4525"><code>ASM_GENERATE_INTERNAL_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-asm_005finput-2193"><code>asm_input</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007basm_005finput_007d-and-_0040samp_007b_002fv_007d-1808"><code>asm_input</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-ASM_005fMAYBE_005fOUTPUT_005fENCODED_005fADDR_005fRTX-4071"><code>ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-ASM_005fNO_005fSKIP_005fIN_005fTEXT-4616"><code>ASM_NO_SKIP_IN_TEXT</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-asm_005fnoperands-2256"><code>asm_noperands</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007basm_005foperands_007d-and-_0040samp_007b_002fv_007d-1809"><code>asm_operands</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007basm_005foperands_007d_002c-RTL-sharing-2299"><code>asm_operands</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-g_t_0040code_007basm_005foperands_007d_002c-usage-2210"><code>asm_operands</code>, usage</a>: <a href="#Assembler">Assembler</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fADDR_005fDIFF_005fELT-4584"><code>ASM_OUTPUT_ADDR_DIFF_ELT</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fADDR_005fVEC_005fELT-4585"><code>ASM_OUTPUT_ADDR_VEC_ELT</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGN-4617"><code>ASM_OUTPUT_ALIGN</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGN_005fWITH_005fNOP-4618"><code>ASM_OUTPUT_ALIGN_WITH_NOP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGNED_005fBSS-4484"><code>ASM_OUTPUT_ALIGNED_BSS</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGNED_005fCOMMON-4481"><code>ASM_OUTPUT_ALIGNED_COMMON</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGNED_005fDECL_005fCOMMON-4482"><code>ASM_OUTPUT_ALIGNED_DECL_COMMON</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGNED_005fDECL_005fLOCAL-4487"><code>ASM_OUTPUT_ALIGNED_DECL_LOCAL</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fALIGNED_005fLOCAL-4486"><code>ASM_OUTPUT_ALIGNED_LOCAL</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fASCII-4465"><code>ASM_OUTPUT_ASCII</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fBSS-4483"><code>ASM_OUTPUT_BSS</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fCASE_005fEND-4587"><code>ASM_OUTPUT_CASE_END</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fCASE_005fLABEL-4586"><code>ASM_OUTPUT_CASE_LABEL</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fCOMMON-4480"><code>ASM_OUTPUT_COMMON</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDEBUG_005fLABEL-4524"><code>ASM_OUTPUT_DEBUG_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDEF-4527"><code>ASM_OUTPUT_DEF</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDEF_005fFROM_005fDECLS-4529"><code>ASM_OUTPUT_DEF_FROM_DECLS</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDWARF_005fDELTA-4663"><code>ASM_OUTPUT_DWARF_DELTA</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDWARF_005fOFFSET-4665"><code>ASM_OUTPUT_DWARF_OFFSET</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDWARF_005fPCREL-4666"><code>ASM_OUTPUT_DWARF_PCREL</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDWARF_005fTABLE_005fREF-4667"><code>ASM_OUTPUT_DWARF_TABLE_REF</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fDWARF_005fVMS_005fDELTA-4664"><code>ASM_OUTPUT_DWARF_VMS_DELTA</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fEXTERNAL-4516"><code>ASM_OUTPUT_EXTERNAL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fFDESC-4466"><code>ASM_OUTPUT_FDESC</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fFUNCTION_005fLABEL-4490"><code>ASM_OUTPUT_FUNCTION_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fIDENT-4444"><code>ASM_OUTPUT_IDENT</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fINTERNAL_005fLABEL-4492"><code>ASM_OUTPUT_INTERNAL_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fLABEL-4489"><code>ASM_OUTPUT_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fLABEL_005fREF-4522"><code>ASM_OUTPUT_LABEL_REF</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fLABELREF-4519"><code>ASM_OUTPUT_LABELREF</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fLOCAL-4485"><code>ASM_OUTPUT_LOCAL</code></a>: <a href="#Uninitialized-Data">Uninitialized Data</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fMAX_005fSKIP_005fALIGN-4619"><code>ASM_OUTPUT_MAX_SKIP_ALIGN</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fMEASURED_005fSIZE-4495"><code>ASM_OUTPUT_MEASURED_SIZE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fOPCODE-4562"><code>ASM_OUTPUT_OPCODE</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fPOOL_005fEPILOGUE-4470"><code>ASM_OUTPUT_POOL_EPILOGUE</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fPOOL_005fPROLOGUE-4468"><code>ASM_OUTPUT_POOL_PROLOGUE</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fREG_005fPOP-4582"><code>ASM_OUTPUT_REG_POP</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fREG_005fPUSH-4581"><code>ASM_OUTPUT_REG_PUSH</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fSIZE_005fDIRECTIVE-4494"><code>ASM_OUTPUT_SIZE_DIRECTIVE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fSKIP-4615"><code>ASM_OUTPUT_SKIP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fSOURCE_005fFILENAME-4441"><code>ASM_OUTPUT_SOURCE_FILENAME</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fSPECIAL_005fPOOL_005fENTRY-4469"><code>ASM_OUTPUT_SPECIAL_POOL_ENTRY</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fSYMBOL_005fREF-4521"><code>ASM_OUTPUT_SYMBOL_REF</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fTYPE_005fDIRECTIVE-4498"><code>ASM_OUTPUT_TYPE_DIRECTIVE</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fWEAK_005fALIAS-4532"><code>ASM_OUTPUT_WEAK_ALIAS</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fOUTPUT_005fWEAKREF-4509"><code>ASM_OUTPUT_WEAKREF</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fPREFERRED_005fEH_005fDATA_005fFORMAT-4070"><code>ASM_PREFERRED_EH_DATA_FORMAT</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-ASM_005fSPEC-3748"><code>ASM_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-ASM_005fSTABD_005fOP-4629"><code>ASM_STABD_OP</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-ASM_005fSTABN_005fOP-4630"><code>ASM_STABN_OP</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-ASM_005fSTABS_005fOP-4628"><code>ASM_STABS_OP</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-ASM_005fWEAKEN_005fDECL-4508"><code>ASM_WEAKEN_DECL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-ASM_005fWEAKEN_005fLABEL-4507"><code>ASM_WEAKEN_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-assemble_005fname-4488"><code>assemble_name</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-assemble_005fname_005fraw-4491"><code>assemble_name_raw</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-assembler-format-4427">assembler format</a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-assembler-instructions-in-RTL-2209">assembler instructions in RTL</a>: <a href="#Assembler">Assembler</a></li>
<li><a href="#index-ASSEMBLER_005fDIALECT-4580"><code>ASSEMBLER_DIALECT</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-assigning-attribute-values-to-insns-3657">assigning attribute values to insns</a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-asterisk-in-template-3229">asterisk in template</a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-g_t_0040code_007batan2_0040var_007bm_007d3_007d-instruction-pattern-3456"><code>atan2</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-attr-3660"><code>attr</code></a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-attr-3655"><code>attr</code></a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-attr_005fflag-3654"><code>attr_flag</code></a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-attribute-expressions-3623">attribute expressions</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-attribute-specifications-3663">attribute specifications</a>: <a href="#Attr-Example">Attr Example</a></li>
<li><a href="#index-attribute-specifications-example-3662">attribute specifications example</a>: <a href="#Attr-Example">Attr Example</a></li>
<li><a href="#index-ATTRIBUTE_005fALIGNED_005fVALUE-3829"><code>ATTRIBUTE_ALIGNED_VALUE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-attributes-2407">attributes</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-defining-3619">attributes, defining</a>: <a href="#Defining-Attributes">Defining Attributes</a></li>
<li><a href="#index-attributes_002c-target_002dspecific-4703">attributes, target-specific</a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-autoincrement-addressing_002c-availability-5">autoincrement addressing, availability</a>: <a href="#Portability">Portability</a></li>
<li><a href="#index-autoincrement_002fdecrement-addressing-3266">autoincrement/decrement addressing</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-automata_005foption-3710"><code>automata_option</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-automaton-based-pipeline-description-3682">automaton based pipeline description</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-automaton-based-scheduler-3685">automaton based scheduler</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-AVOID_005fCCMODE_005fCOPIES-3976"><code>AVOID_CCMODE_COPIES</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-backslash-3222">backslash</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-barrier-2232"><code>barrier</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bbarrier_007d-and-_0040samp_007b_002ff_007d-1830"><code>barrier</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bbarrier_007d-and-_0040samp_007b_002fv_007d-1781"><code>barrier</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-BASE_005fREG_005fCLASS-3997"><code>BASE_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-basic-block-3128">basic block</a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-Basic-Statements-2523">Basic Statements</a>: <a href="#Basic-Statements">Basic Statements</a></li>
<li><a href="#index-basic_002dblock_002eh-3127"><code>basic-block.h</code></a>: <a href="#Control-Flow">Control Flow</a></li>
<li><a href="#index-BASIC_005fBLOCK-3131"><code>BASIC_BLOCK</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-basic_005fblock-3129"><code>basic_block</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-BB_005fHEAD_002c-BB_005fEND-3185"><code>BB_HEAD, BB_END</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bb_005fseq-3040"><code>bb_seq</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-BIGGEST_005fALIGNMENT-3827"><code>BIGGEST_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-BIGGEST_005fFIELD_005fALIGNMENT-3831"><code>BIGGEST_FIELD_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-BImode-1890"><code>BImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-BIND_005fEXPR-2496"><code>BIND_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-BINFO_005fTYPE-2620"><code>BINFO_TYPE</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-bit_002dfields-2149">bit-fields</a>: <a href="#Bit_002dFields">Bit-Fields</a></li>
<li><a href="#index-BIT_005fAND_005fEXPR-2456"><code>BIT_AND_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-BIT_005fIOR_005fEXPR-2454"><code>BIT_IOR_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-BIT_005fNOT_005fEXPR-2435"><code>BIT_NOT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-BIT_005fXOR_005fEXPR-2455"><code>BIT_XOR_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-BITFIELD_005fNBYTES_005fLIMITED-3846"><code>BITFIELD_NBYTES_LIMITED</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-BITS_005fBIG_005fENDIAN-3809"><code>BITS_BIG_ENDIAN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bBITS_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsign_005fextract_007d-2151"><code>BITS_BIG_ENDIAN</code>, effect on <code>sign_extract</code></a>: <a href="#Bit_002dFields">Bit-Fields</a></li>
<li><a href="#index-BITS_005fPER_005fUNIT-3813"><code>BITS_PER_UNIT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-BITS_005fPER_005fWORD-3814"><code>BITS_PER_WORD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-bitwise-complement-2087">bitwise complement</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-bitwise-exclusive_002dor-2096">bitwise exclusive-or</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-bitwise-inclusive_002dor-2093">bitwise inclusive-or</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-bitwise-logical_002dand-2090">bitwise logical-and</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-BLKmode-1928"><code>BLKmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bBLKmode_007d_002c-and-function-return-values-2285"><code>BLKmode</code>, and function return values</a>: <a href="#Calls">Calls</a></li>
<li><a href="#index-block-statement-iterators-3176">block statement iterators</a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-block-statement-iterators-3136">block statement iterators</a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-BLOCK_005fFOR_005fINSN_002c-bb_005ffor_005fstmt-3175"><code>BLOCK_FOR_INSN, bb_for_stmt</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-BLOCK_005fREG_005fPADDING-4141"><code>BLOCK_REG_PADDING</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-g_t_0040code_007bblockage_007d-instruction-pattern-3542"><code>blockage</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-Blocks-2524">Blocks</a>: <a href="#Blocks">Blocks</a></li>
<li><a href="#index-bool-4841"><code>bool</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-BOOL_005fTYPE_005fSIZE-3871"><code>BOOL_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-BOOLEAN_005fTYPE-2345"><code>BOOLEAN_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-branch-prediction-3166">branch prediction</a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-BRANCH_005fCOST-4324"><code>BRANCH_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-break_005fout_005fmemory_005frefs-4270"><code>break_out_memory_refs</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-BREAK_005fSTMT-2668"><code>BREAK_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-bsi_005fcommit_005fedge_005finserts-3192"><code>bsi_commit_edge_inserts</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005fend_005fp-3179"><code>bsi_end_p</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005finsert_005fafter-3182"><code>bsi_insert_after</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005finsert_005fbefore-3183"><code>bsi_insert_before</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005finsert_005fon_005fedge-3191"><code>bsi_insert_on_edge</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005flast-3178"><code>bsi_last</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005fnext-3180"><code>bsi_next</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005fprev-3181"><code>bsi_prev</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005fremove-3184"><code>bsi_remove</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-bsi_005fstart-3177"><code>bsi_start</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-BSS_005fSECTION_005fASM_005fOP-4394"><code>BSS_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-bswap-2123"><code>bswap</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bbtrunc_0040var_007bm_007d2_007d-instruction-pattern-3458"><code>btrunc</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-build0-2309"><code>build0</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build1-2310"><code>build1</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build2-2311"><code>build2</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build3-2312"><code>build3</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build4-2313"><code>build4</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build5-2314"><code>build5</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-build6-2315"><code>build6</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-g_t_0040code_007bbuiltin_005flongjmp_007d-instruction-pattern-3534"><code>builtin_longjmp</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bbuiltin_005fsetjmp_005freceiver_007d-instruction-pattern-3533"><code>builtin_setjmp_receiver</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bbuiltin_005fsetjmp_005fsetup_007d-instruction-pattern-3532"><code>builtin_setjmp_setup</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-byte_005fmode-1971"><code>byte_mode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-BYTES_005fBIG_005fENDIAN-3810"><code>BYTES_BIG_ENDIAN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bBYTES_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsubreg_007d-2014"><code>BYTES_BIG_ENDIAN</code>, effect on <code>subreg</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-C-statements-for-assembler-output-3226">C statements for assembler output</a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-C99-math-functions_002c-implicit-usage-4246">C99 math functions, implicit usage</a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-C_005fCOMMON_005fOVERRIDE_005fOPTIONS-3798"><code>C_COMMON_OVERRIDE_OPTIONS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-c_005fregister_005fpragma-4793"><code>c_register_pragma</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-c_005fregister_005fpragma_005fwith_005fexpansion-4794"><code>c_register_pragma_with_expansion</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-call-2186"><code>call</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-call-1872"><code>call</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_007d-instruction-pattern-3503"><code>call</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcall_007d-usage-2284"><code>call</code> usage</a>: <a href="#Calls">Calls</a></li>
<li><a href="#index-g_t_0040code_007bcall_007d_002c-in-_0040code_007bcall_005finsn_007d-1770"><code>call</code>, in <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_007d_002c-in-_0040code_007bmem_007d-1813"><code>call</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-call_002dclobbered-register-3939">call-clobbered register</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-call_002dsaved-register-3940">call-saved register</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-call_002dused-register-3938">call-used register</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-CALL_005fEXPR-2494"><code>CALL_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-call_005finsn-2223"><code>call_insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fc_007d-1769"><code>call_insn</code> and ‘<samp><span class="samp">/c</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002ff_007d-1828"><code>call_insn</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fi_007d-1764"><code>call_insn</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fj_007d-1845"><code>call_insn</code> and ‘<samp><span class="samp">/j</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fs_007d-1787"><code>call_insn</code> and ‘<samp><span class="samp">/s</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fu_007d-1761"><code>call_insn</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fu_007d-or-_0040samp_007b_002fi_007d-1767"><code>call_insn</code> and ‘<samp><span class="samp">/u</span></samp>’ or ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcall_005finsn_007d-and-_0040samp_007b_002fv_007d-1778"><code>call_insn</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-CALL_005fINSN_005fFUNCTION_005fUSAGE-2224"><code>CALL_INSN_FUNCTION_USAGE</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bcall_005fpop_007d-instruction-pattern-3505"><code>call_pop</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CALL_005fPOPS_005fARGS-4120"><code>CALL_POPS_ARGS</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-CALL_005fREALLY_005fUSED_005fREGISTERS-3941"><code>CALL_REALLY_USED_REGISTERS</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-CALL_005fUSED_005fREGISTERS-3937"><code>CALL_USED_REGISTERS</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-call_005fused_005fregs-3950"><code>call_used_regs</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-g_t_0040code_007bcall_005fvalue_007d-instruction-pattern-3504"><code>call_value</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcall_005fvalue_005fpop_007d-instruction-pattern-3506"><code>call_value_pop</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CALLER_005fSAVE_005fPROFITABLE-4178"><code>CALLER_SAVE_PROFITABLE</code></a>: <a href="#Caller-Saves">Caller Saves</a></li>
<li><a href="#index-calling-conventions-4038">calling conventions</a>: <a href="#Stack-and-Calling">Stack and Calling</a></li>
<li><a href="#index-calling-functions-in-RTL-2281">calling functions in RTL</a>: <a href="#Calls">Calls</a></li>
<li><a href="#index-can_005fcreate_005fpseudo_005fp-3335"><code>can_create_pseudo_p</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-can_005ffallthru-3134"><code>can_fallthru</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-canadian-1663">canadian</a>: <a href="#Configure-Terms">Configure Terms</a></li>
<li><a href="#index-CANNOT_005fCHANGE_005fMODE_005fCLASS-4022"><code>CANNOT_CHANGE_MODE_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-g_t_0040code_007bCANNOT_005fCHANGE_005fMODE_005fCLASS_007d-and-subreg-semantics-2016"><code>CANNOT_CHANGE_MODE_CLASS</code> and subreg semantics</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-canonicalization-of-instructions-3576">canonicalization of instructions</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-CANONICALIZE_005fCOMPARISON-4309"><code>CANONICALIZE_COMPARISON</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-g_t_0040code_007bcanonicalize_005ffuncptr_005ffor_005fcompare_007d-instruction-pattern-3519"><code>canonicalize_funcptr_for_compare</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CASE_005fUSE_005fBIT_005fTESTS-4769"><code>CASE_USE_BIT_TESTS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-CASE_005fVECTOR_005fMODE-4765"><code>CASE_VECTOR_MODE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-CASE_005fVECTOR_005fPC_005fRELATIVE-4767"><code>CASE_VECTOR_PC_RELATIVE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-CASE_005fVECTOR_005fSHORTEN_005fMODE-4766"><code>CASE_VECTOR_SHORTEN_MODE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bcasesi_007d-instruction-pattern-3514"><code>casesi</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcbranch_0040var_007bmode_007d4_007d-instruction-pattern-3501"><code>cbranch</code><var>mode</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-cc0-4301"><code>cc0</code></a>: <a href="#CC0-Condition-Codes">CC0 Condition Codes</a></li>
<li><a href="#index-cc0-2021"><code>cc0</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007bcc0_007d_002c-RTL-sharing-2293"><code>cc0</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-cc0_005frtx-2023"><code>cc0_rtx</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-CC1_005fSPEC-3746"><code>CC1_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-CC1PLUS_005fSPEC-3747"><code>CC1PLUS_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-cc_005fstatus-4302"><code>cc_status</code></a>: <a href="#CC0-Condition-Codes">CC0 Condition Codes</a></li>
<li><a href="#index-CC_005fSTATUS_005fMDEP-4303"><code>CC_STATUS_MDEP</code></a>: <a href="#CC0-Condition-Codes">CC0 Condition Codes</a></li>
<li><a href="#index-CC_005fSTATUS_005fMDEP_005fINIT-4304"><code>CC_STATUS_MDEP_INIT</code></a>: <a href="#CC0-Condition-Codes">CC0 Condition Codes</a></li>
<li><a href="#index-CCmode-4306"><code>CCmode</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-CCmode-1927"><code>CCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-CDImode-1939"><code>CDImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-CEIL_005fDIV_005fEXPR-2469"><code>CEIL_DIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-CEIL_005fMOD_005fEXPR-2473"><code>CEIL_MOD_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-g_t_0040code_007bceil_0040var_007bm_007d2_007d-instruction-pattern-3460"><code>ceil</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CFA_005fFRAME_005fBASE_005fOFFSET-4064"><code>CFA_FRAME_BASE_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-CFG_002c-Control-Flow-Graph-3126">CFG, Control Flow Graph</a>: <a href="#Control-Flow">Control Flow</a></li>
<li><a href="#index-cfghooks_002eh-3174"><code>cfghooks.h</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-cgraph_005ffinalize_005ffunction-1681"><code>cgraph_finalize_function</code></a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-chain_005fcircular-4933"><code>chain_circular</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-chain_005fnext-4931"><code>chain_next</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-chain_005fprev-4932"><code>chain_prev</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-change_005faddress-3333"><code>change_address</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CHAR_005fTYPE_005fSIZE-3870"><code>CHAR_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-g_t_0040code_007bcheck_005fstack_007d-instruction-pattern-3527"><code>check_stack</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CHImode-1937"><code>CHImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-class-definitions_002c-register-3988">class definitions, register</a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-class-preference-constraints-3301">class preference constraints</a>: <a href="#Class-Preferences">Class Preferences</a></li>
<li><a href="#index-class_002c-scope-2615">class, scope</a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-CLASS_005fMAX_005fNREGS-4021"><code>CLASS_MAX_NREGS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-CLASS_005fTYPE_005fP-2602"><code>CLASS_TYPE_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-classes-of-RTX-codes-1708">classes of RTX codes</a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-CLASSTYPE_005fDECLARED_005fCLASS-2618"><code>CLASSTYPE_DECLARED_CLASS</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-CLASSTYPE_005fHAS_005fMUTABLE-2627"><code>CLASSTYPE_HAS_MUTABLE</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-CLASSTYPE_005fNON_005fPOD_005fP-2629"><code>CLASSTYPE_NON_POD_P</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-CLEANUP_005fDECL-2670"><code>CLEANUP_DECL</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-CLEANUP_005fEXPR-2671"><code>CLEANUP_EXPR</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-CLEANUP_005fPOINT_005fEXPR-2499"><code>CLEANUP_POINT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-CLEANUP_005fSTMT-2669"><code>CLEANUP_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-Cleanups-2528">Cleanups</a>: <a href="#Cleanups">Cleanups</a></li>
<li><a href="#index-CLEAR_005fBY_005fPIECES_005fP-4331"><code>CLEAR_BY_PIECES_P</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-g_t_0040code_007bclear_005fcache_007d-instruction-pattern-3567"><code>clear_cache</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CLEAR_005fINSN_005fCACHE-4230"><code>CLEAR_INSN_CACHE</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-CLEAR_005fRATIO-4330"><code>CLEAR_RATIO</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-clobber-2187"><code>clobber</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-clz-2119"><code>clz</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-CLZ_005fDEFINED_005fVALUE_005fAT_005fZERO-4784"><code>CLZ_DEFINED_VALUE_AT_ZERO</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bclz_0040var_007bm_007d2_007d-instruction-pattern-3469"><code>clz</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcmpmem_0040var_007bm_007d_007d-instruction-pattern-3479"><code>cmpmem</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcmpstr_0040var_007bm_007d_007d-instruction-pattern-3478"><code>cmpstr</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcmpstrn_0040var_007bm_007d_007d-instruction-pattern-3477"><code>cmpstrn</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-code-generation-RTL-sequences-3592">code generation RTL sequences</a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-code-iterators-in-_0040file_007b_002emd_007d-files-3730">code iterators in <samp><span class="file">.md</span></samp> files</a>: <a href="#Code-Iterators">Code Iterators</a></li>
<li><a href="#index-code_005flabel-2225"><code>code_label</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bcode_005flabel_007d-and-_0040samp_007b_002fi_007d-1790"><code>code_label</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bcode_005flabel_007d-and-_0040samp_007b_002fv_007d-1780"><code>code_label</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-CODE_005fLABEL_005fNUMBER-2226"><code>CODE_LABEL_NUMBER</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-codes_002c-RTL-expression-1702">codes, RTL expression</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-COImode-1941"><code>COImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-COLLECT2_005fHOST_005fINITIALIZATION-4889"><code>COLLECT2_HOST_INITIALIZATION</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-COLLECT_005fEXPORT_005fLIST-4830"><code>COLLECT_EXPORT_LIST</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-COLLECT_005fSHARED_005fFINI_005fFUNC-4547"><code>COLLECT_SHARED_FINI_FUNC</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-COLLECT_005fSHARED_005fINIT_005fFUNC-4546"><code>COLLECT_SHARED_INIT_FUNC</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-commit_005fedge_005finsertions-3190"><code>commit_edge_insertions</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-compare-2048"><code>compare</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bcompare_007d_002c-canonicalization-of-3583"><code>compare</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-comparison_005foperator-3254"><code>comparison_operator</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-compiler-passes-and-files-1670">compiler passes and files</a>: <a href="#Passes">Passes</a></li>
<li><a href="#index-complement_002c-bitwise-2086">complement, bitwise</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-COMPLEX_005fCST-2421"><code>COMPLEX_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-COMPLEX_005fEXPR-2443"><code>COMPLEX_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-COMPLEX_005fTYPE-2343"><code>COMPLEX_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-COMPONENT_005fREF-2432"><code>COMPONENT_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-Compound-Expressions-2716">Compound Expressions</a>: <a href="#Compound-Expressions">Compound Expressions</a></li>
<li><a href="#index-Compound-Lvalues-2717">Compound Lvalues</a>: <a href="#Compound-Lvalues">Compound Lvalues</a></li>
<li><a href="#index-COMPOUND_005fEXPR-2492"><code>COMPOUND_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-COMPOUND_005fLITERAL_005fEXPR-2501"><code>COMPOUND_LITERAL_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-COMPOUND_005fLITERAL_005fEXPR_005fDECL-2506"><code>COMPOUND_LITERAL_EXPR_DECL</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-COMPOUND_005fLITERAL_005fEXPR_005fDECL_005fEXPR-2505"><code>COMPOUND_LITERAL_EXPR_DECL_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-computed-jump-3157">computed jump</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-computing-the-length-of-an-insn-3665">computing the length of an insn</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-concat-2028"><code>concat</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-concatn-2029"><code>concatn</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-cond-2148"><code>cond</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bcond_007d-and-attributes-3627"><code>cond</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-cond_005fexec-2191"><code>cond_exec</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-COND_005fEXPR-2493"><code>COND_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-condition-code-register-2022">condition code register</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-condition-code-status-4300">condition code status</a>: <a href="#Condition-Code">Condition Code</a></li>
<li><a href="#index-condition-codes-2125">condition codes</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-conditional-execution-4314"><code>conditional execution</code></a>: <a href="#Cond-Exec-Macros">Cond Exec Macros</a></li>
<li><a href="#index-conditional-execution-3714">conditional execution</a>: <a href="#Conditional-Execution">Conditional Execution</a></li>
<li><a href="#index-Conditional-Expressions-2718">Conditional Expressions</a>: <a href="#Conditional-Expressions">Conditional Expressions</a></li>
<li><a href="#index-conditions_002c-in-patterns-3201">conditions, in patterns</a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-configuration-file-4884">configuration file</a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-configuration-file-4870">configuration file</a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-configure-terms-1662">configure terms</a>: <a href="#Configure-Terms">Configure Terms</a></li>
<li><a href="#index-CONJ_005fEXPR-2444"><code>CONJ_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-const-1988"><code>const</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-CONST0_005fRTX-1990"><code>CONST0_RTX</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-const0_005frtx-1976"><code>const0_rtx</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-CONST1_005fRTX-1991"><code>CONST1_RTX</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-const1_005frtx-1977"><code>const1_rtx</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-CONST2_005fRTX-1992"><code>CONST2_RTX</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-const2_005frtx-1978"><code>const2_rtx</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-CONST_005fDECL-2387"><code>CONST_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-const_005fdouble-1981"><code>const_double</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fdouble_007d_002c-RTL-sharing-2294"><code>const_double</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-CONST_005fDOUBLE_005fLOW-1982"><code>CONST_DOUBLE_LOW</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-CONST_005fDOUBLE_005fOK_005fFOR_005fCONSTRAINT_005fP-4033"><code>CONST_DOUBLE_OK_FOR_CONSTRAINT_P</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-CONST_005fDOUBLE_005fOK_005fFOR_005fLETTER_005fP-4032"><code>CONST_DOUBLE_OK_FOR_LETTER_P</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-const_005fdouble_005foperand-3242"><code>const_double_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-const_005ffixed-1983"><code>const_fixed</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-const_005fint-1975"><code>const_int</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fint_007d-and-attribute-tests-3628"><code>const_int</code> and attribute tests</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fint_007d-and-attributes-3624"><code>const_int</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fint_007d_002c-RTL-sharing-2291"><code>const_int</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-const_005fint_005foperand-3241"><code>const_int_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-CONST_005fOK_005fFOR_005fCONSTRAINT_005fP-4031"><code>CONST_OK_FOR_CONSTRAINT_P</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-CONST_005fOK_005fFOR_005fLETTER_005fP-4030"><code>CONST_OK_FOR_LETTER_P</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-const_005fstring-1985"><code>const_string</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fstring_007d-and-attributes-3625"><code>const_string</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-const_005ftrue_005frtx-1980"><code>const_true_rtx</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-const_005fvector-1984"><code>const_vector</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007bconst_005fvector_007d_002c-RTL-sharing-2295"><code>const_vector</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-constant-attributes-3672">constant attributes</a>: <a href="#Constant-Attributes">Constant Attributes</a></li>
<li><a href="#index-constant-definitions-3718">constant definitions</a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-CONSTANT_005fADDRESS_005fP-4260"><code>CONSTANT_ADDRESS_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-CONSTANT_005fALIGNMENT-3837"><code>CONSTANT_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-CONSTANT_005fP-4261"><code>CONSTANT_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-CONSTANT_005fPOOL_005fADDRESS_005fP-1757"><code>CONSTANT_POOL_ADDRESS_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-CONSTANT_005fPOOL_005fBEFORE_005fFUNCTION-4467"><code>CONSTANT_POOL_BEFORE_FUNCTION</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-constants-in-constraints-3272">constants in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-constm1_005frtx-1979"><code>constm1_rtx</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-constraint-modifier-characters-3305">constraint modifier characters</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-constraint_002c-matching-3286">constraint, matching</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-CONSTRAINT_005fLEN-4027"><code>CONSTRAINT_LEN</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-constraint_005fnum-3324"><code>constraint_num</code></a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-constraint_005fsatisfied_005fp-3326"><code>constraint_satisfied_p</code></a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-constraints-3260">constraints</a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-constraints_002c-defining-3317">constraints, defining</a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-constraints_002c-defining_002c-obsolete-method-4026">constraints, defining, obsolete method</a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-constraints_002c-machine-specific-3314">constraints, machine specific</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-constraints_002c-testing-3323">constraints, testing</a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-CONSTRUCTOR-2500"><code>CONSTRUCTOR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-constructors_002c-automatic-calls-4912">constructors, automatic calls</a>: <a href="#Collect2">Collect2</a></li>
<li><a href="#index-constructors_002c-output-of-4538">constructors, output of</a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-container-2323">container</a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-CONTINUE_005fSTMT-2672"><code>CONTINUE_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-contributors-4953">contributors</a>: <a href="#Contributors">Contributors</a></li>
<li><a href="#index-controlling-register-usage-3956">controlling register usage</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-controlling-the-compilation-driver-3741">controlling the compilation driver</a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-conventions_002c-run_002dtime-10">conventions, run-time</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-conversions-2158">conversions</a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-CONVERT_005fEXPR-2449"><code>CONVERT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-copy_005frtx-4274"><code>copy_rtx</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-copy_005frtx_005fif_005fshared-2301"><code>copy_rtx_if_shared</code></a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-g_t_0040code_007bcopysign_0040var_007bm_007d3_007d-instruction-pattern-3467"><code>copysign</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bcos_0040var_007bm_007d2_007d-instruction-pattern-3451"><code>cos</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-costs-of-instructions-4317">costs of instructions</a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-CP_005fINTEGRAL_005fTYPE-2600"><code>CP_INTEGRAL_TYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-cp_005fnamespace_005fdecls-2614"><code>cp_namespace_decls</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-CP_005fTYPE_005fCONST_005fNON_005fVOLATILE_005fP-2596"><code>CP_TYPE_CONST_NON_VOLATILE_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-CP_005fTYPE_005fCONST_005fP-2593"><code>CP_TYPE_CONST_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-CP_005fTYPE_005fQUALS-2572"><code>CP_TYPE_QUALS</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-CP_005fTYPE_005fRESTRICT_005fP-2595"><code>CP_TYPE_RESTRICT_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-CP_005fTYPE_005fVOLATILE_005fP-2594"><code>CP_TYPE_VOLATILE_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-CPLUSPLUS_005fCPP_005fSPEC-3745"><code>CPLUSPLUS_CPP_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-CPP_005fSPEC-3744"><code>CPP_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-CQImode-1936"><code>CQImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-cross-compilation-and-floating-point-4675">cross compilation and floating point</a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-CRT_005fCALL_005fSTATIC_005fFUNCTION-4402"><code>CRT_CALL_STATIC_FUNCTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-CRTSTUFF_005fT_005fCFLAGS-4900"><code>CRTSTUFF_T_CFLAGS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-CRTSTUFF_005fT_005fCFLAGS_005fS-4901"><code>CRTSTUFF_T_CFLAGS_S</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-CSImode-1938"><code>CSImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bcstore_0040var_007bmode_007d4_007d-instruction-pattern-3500"><code>cstore</code><var>mode</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CTImode-1940"><code>CTImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bctrap_0040var_007bMM_007d4_007d-instruction-pattern-3540"><code>ctrap</code><var>MM</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-ctz-2120"><code>ctz</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-CTZ_005fDEFINED_005fVALUE_005fAT_005fZERO-4785"><code>CTZ_DEFINED_VALUE_AT_ZERO</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bctz_0040var_007bm_007d2_007d-instruction-pattern-3470"><code>ctz</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-CUMULATIVE_005fARGS-4132"><code>CUMULATIVE_ARGS</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-current_005ffunction_005fepilogue_005fdelay_005flist-4197"><code>current_function_epilogue_delay_list</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-current_005ffunction_005fis_005fleaf-3981"><code>current_function_is_leaf</code></a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-current_005ffunction_005foutgoing_005fargs_005fsize-4114"><code>current_function_outgoing_args_size</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-current_005ffunction_005fpops_005fargs-4189"><code>current_function_pops_args</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-current_005ffunction_005fpretend_005fargs_005fsize-4190"><code>current_function_pretend_args_size</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-current_005ffunction_005fuses_005fonly_005fleaf_005fregs-3982"><code>current_function_uses_only_leaf_regs</code></a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-current_005finsn_005fpredicate-3717"><code>current_insn_predicate</code></a>: <a href="#Conditional-Execution">Conditional Execution</a></li>
<li><a href="#index-DAmode-1921"><code>DAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-data-bypass-3698">data bypass</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-data-dependence-delays-3679">data dependence delays</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-Data-Dependency-Analysis-3123">Data Dependency Analysis</a>: <a href="#Dependency-analysis">Dependency analysis</a></li>
<li><a href="#index-data-structures-3805">data structures</a>: <a href="#Per_002dFunction-Data">Per-Function Data</a></li>
<li><a href="#index-DATA_005fALIGNMENT-3835"><code>DATA_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-DATA_005fSECTION_005fASM_005fOP-4391"><code>DATA_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-DBR_005fOUTPUT_005fSEQEND-4572"><code>DBR_OUTPUT_SEQEND</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-dbr_005fsequence_005flength-4571"><code>dbr_sequence_length</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-DBX_005fBLOCKS_005fFUNCTION_005fRELATIVE-4640"><code>DBX_BLOCKS_FUNCTION_RELATIVE</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fCONTIN_005fCHAR-4633"><code>DBX_CONTIN_CHAR</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fCONTIN_005fLENGTH-4632"><code>DBX_CONTIN_LENGTH</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fDEBUGGING_005fINFO-4624"><code>DBX_DEBUGGING_INFO</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fFUNCTION_005fFIRST-4639"><code>DBX_FUNCTION_FIRST</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fLINES_005fFUNCTION_005fRELATIVE-4641"><code>DBX_LINES_FUNCTION_RELATIVE</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fNO_005fXREFS-4631"><code>DBX_NO_XREFS</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fLBRAC-4643"><code>DBX_OUTPUT_LBRAC</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fMAIN_005fSOURCE_005fFILE_005fEND-4652"><code>DBX_OUTPUT_MAIN_SOURCE_FILE_END</code></a>: <a href="#File-Names-and-DBX">File Names and DBX</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fMAIN_005fSOURCE_005fFILENAME-4649"><code>DBX_OUTPUT_MAIN_SOURCE_FILENAME</code></a>: <a href="#File-Names-and-DBX">File Names and DBX</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fNFUN-4645"><code>DBX_OUTPUT_NFUN</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fNULL_005fN_005fSO_005fAT_005fMAIN_005fSOURCE_005fFILE_005fEND-4653"><code>DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END</code></a>: <a href="#File-Names-and-DBX">File Names and DBX</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fRBRAC-4644"><code>DBX_OUTPUT_RBRAC</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-DBX_005fOUTPUT_005fSOURCE_005fLINE-4646"><code>DBX_OUTPUT_SOURCE_LINE</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-DBX_005fREGISTER_005fNUMBER-4620"><code>DBX_REGISTER_NUMBER</code></a>: <a href="#All-Debuggers">All Debuggers</a></li>
<li><a href="#index-DBX_005fREGPARM_005fSTABS_005fCODE-4637"><code>DBX_REGPARM_STABS_CODE</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fREGPARM_005fSTABS_005fLETTER-4638"><code>DBX_REGPARM_STABS_LETTER</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fSTATIC_005fCONST_005fVAR_005fCODE-4636"><code>DBX_STATIC_CONST_VAR_CODE</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fSTATIC_005fSTAB_005fDATA_005fSECTION-4634"><code>DBX_STATIC_STAB_DATA_SECTION</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fTYPE_005fDECL_005fSTABS_005fCODE-4635"><code>DBX_TYPE_DECL_STABS_CODE</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DBX_005fUSE_005fBINCL-4642"><code>DBX_USE_BINCL</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DCmode-1933"><code>DCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-DDmode-1906"><code>DDmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-De-Morgan_0027s-law-3586">De Morgan's law</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-dead_005for_005fset_005fp-3612"><code>dead_or_set_p</code></a>: <a href="#define_005fpeephole">define_peephole</a></li>
<li><a href="#index-debug_005fexpr-2213"><code>debug_expr</code></a>: <a href="#Debug-Information">Debug Information</a></li>
<li><a href="#index-DEBUG_005fEXPR_005fDECL-2391"><code>DEBUG_EXPR_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-debug_005finsn-2249"><code>debug_insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-DEBUG_005fSYMS_005fTEXT-4627"><code>DEBUG_SYMS_TEXT</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DEBUGGER_005fARG_005fOFFSET-4622"><code>DEBUGGER_ARG_OFFSET</code></a>: <a href="#All-Debuggers">All Debuggers</a></li>
<li><a href="#index-DEBUGGER_005fAUTO_005fOFFSET-4621"><code>DEBUGGER_AUTO_OFFSET</code></a>: <a href="#All-Debuggers">All Debuggers</a></li>
<li><a href="#index-decimal-float-library-193">decimal float library</a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-DECL_005fALIGN-2400"><code>DECL_ALIGN</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-DECL_005fANTICIPATED-2642"><code>DECL_ANTICIPATED</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fARGUMENTS-2551"><code>DECL_ARGUMENTS</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fARRAY_005fDELETE_005fOPERATOR_005fP-2666"><code>DECL_ARRAY_DELETE_OPERATOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fARTIFICIAL-2565"><code>DECL_ARTIFICIAL</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fARTIFICIAL-2546"><code>DECL_ARTIFICIAL</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fARTIFICIAL-2406"><code>DECL_ARTIFICIAL</code></a>: <a href="#Working-with-declarations">Working with declarations</a></li>
<li><a href="#index-DECL_005fASSEMBLER_005fNAME-2544"><code>DECL_ASSEMBLER_NAME</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fATTRIBUTES-2408"><code>DECL_ATTRIBUTES</code></a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-DECL_005fBASE_005fCONSTRUCTOR_005fP-2653"><code>DECL_BASE_CONSTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCOMPLETE_005fCONSTRUCTOR_005fP-2652"><code>DECL_COMPLETE_CONSTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCOMPLETE_005fDESTRUCTOR_005fP-2656"><code>DECL_COMPLETE_DESTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCONST_005fMEMFUNC_005fP-2648"><code>DECL_CONST_MEMFUNC_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCONSTRUCTOR_005fP-2650"><code>DECL_CONSTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCONTEXT-2611"><code>DECL_CONTEXT</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-DECL_005fCONV_005fFN_005fP-2658"><code>DECL_CONV_FN_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fCOPY_005fCONSTRUCTOR_005fP-2654"><code>DECL_COPY_CONSTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fDESTRUCTOR_005fP-2655"><code>DECL_DESTRUCTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fEXTERN_005fC_005fFUNCTION_005fP-2643"><code>DECL_EXTERN_C_FUNCTION_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fEXTERNAL-2558"><code>DECL_EXTERNAL</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fEXTERNAL-2401"><code>DECL_EXTERNAL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-DECL_005fFUNCTION_005fMEMBER_005fP-2645"><code>DECL_FUNCTION_MEMBER_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fFUNCTION_005fSPECIFIC_005fOPTIMIZATION-2567"><code>DECL_FUNCTION_SPECIFIC_OPTIMIZATION</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fFUNCTION_005fSPECIFIC_005fOPTIMIZATION-2548"><code>DECL_FUNCTION_SPECIFIC_OPTIMIZATION</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fFUNCTION_005fSPECIFIC_005fTARGET-2566"><code>DECL_FUNCTION_SPECIFIC_TARGET</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fFUNCTION_005fSPECIFIC_005fTARGET-2547"><code>DECL_FUNCTION_SPECIFIC_TARGET</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fGLOBAL_005fCTOR_005fP-2659"><code>DECL_GLOBAL_CTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fGLOBAL_005fDTOR_005fP-2660"><code>DECL_GLOBAL_DTOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fINITIAL-2555"><code>DECL_INITIAL</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fINITIAL-2398"><code>DECL_INITIAL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-DECL_005fLINKONCE_005fP-2644"><code>DECL_LINKONCE_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fLOCAL_005fFUNCTION_005fP-2641"><code>DECL_LOCAL_FUNCTION_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fMAIN_005fP-2640"><code>DECL_MAIN_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fNAME-2610"><code>DECL_NAME</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-DECL_005fNAME-2543"><code>DECL_NAME</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fNAME-2402"><code>DECL_NAME</code></a>: <a href="#Working-with-declarations">Working with declarations</a></li>
<li><a href="#index-DECL_005fNAMESPACE_005fALIAS-2612"><code>DECL_NAMESPACE_ALIAS</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-DECL_005fNAMESPACE_005fSTD_005fP-2613"><code>DECL_NAMESPACE_STD_P</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-DECL_005fNON_005fTHUNK_005fFUNCTION_005fP-2662"><code>DECL_NON_THUNK_FUNCTION_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fNONCONVERTING_005fP-2651"><code>DECL_NONCONVERTING_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fNONSTATIC_005fMEMBER_005fFUNCTION_005fP-2647"><code>DECL_NONSTATIC_MEMBER_FUNCTION_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fOVERLOADED_005fOPERATOR_005fP-2657"><code>DECL_OVERLOADED_OPERATOR_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fPURE_005fP-2563"><code>DECL_PURE_P</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fRESULT-2552"><code>DECL_RESULT</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fSAVED_005fTREE-2553"><code>DECL_SAVED_TREE</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-DECL_005fSIZE-2399"><code>DECL_SIZE</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-DECL_005fSTATIC_005fFUNCTION_005fP-2646"><code>DECL_STATIC_FUNCTION_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fSTMT-2673"><code>DECL_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-DECL_005fSTMT_005fDECL-2674"><code>DECL_STMT_DECL</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-DECL_005fTHUNK_005fP-2661"><code>DECL_THUNK_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-DECL_005fVIRTUAL_005fP-2564"><code>DECL_VIRTUAL_P</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-DECL_005fVOLATILE_005fMEMFUNC_005fP-2649"><code>DECL_VOLATILE_MEMFUNC_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-declaration-2383">declaration</a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-declarations_002c-RTL-2176">declarations, RTL</a>: <a href="#RTL-Declarations">RTL Declarations</a></li>
<li><a href="#index-DECLARE_005fLIBRARY_005fRENAMES-4235"><code>DECLARE_LIBRARY_RENAMES</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-g_t_0040code_007bdecrement_005fand_005fbranch_005funtil_005fzero_007d-instruction-pattern-3516"><code>decrement_and_branch_until_zero</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-default-4920"><code>default</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-default_005ffile_005fstart-4429"><code>default_file_start</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-DEFAULT_005fGDB_005fEXTENSIONS-4626"><code>DEFAULT_GDB_EXTENSIONS</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-DEFAULT_005fPCC_005fSTRUCT_005fRETURN-4173"><code>DEFAULT_PCC_STRUCT_RETURN</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-DEFAULT_005fSIGNED_005fCHAR-3893"><code>DEFAULT_SIGNED_CHAR</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-define_005faddress_005fconstraint-3321"><code>define_address_constraint</code></a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-define_005fasm_005fattributes-3661"><code>define_asm_attributes</code></a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-define_005fattr-3620"><code>define_attr</code></a>: <a href="#Defining-Attributes">Defining Attributes</a></li>
<li><a href="#index-define_005fautomaton-3689"><code>define_automaton</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fbypass-3700"><code>define_bypass</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fc_005fenum-3721"><code>define_c_enum</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-define_005fcode_005fattr-3732"><code>define_code_attr</code></a>: <a href="#Code-Iterators">Code Iterators</a></li>
<li><a href="#index-define_005fcode_005fiterator-3731"><code>define_code_iterator</code></a>: <a href="#Code-Iterators">Code Iterators</a></li>
<li><a href="#index-define_005fcond_005fexec-3716"><code>define_cond_exec</code></a>: <a href="#Conditional-Execution">Conditional Execution</a></li>
<li><a href="#index-define_005fconstants-3719"><code>define_constants</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-define_005fconstraint-3319"><code>define_constraint</code></a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-define_005fcpu_005funit-3691"><code>define_cpu_unit</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fdelay-3674"><code>define_delay</code></a>: <a href="#Delay-Slots">Delay Slots</a></li>
<li><a href="#index-define_005fenum-3724"><code>define_enum</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-define_005fenum_005fattr-3725"><code>define_enum_attr</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-define_005fenum_005fattr-3622"><code>define_enum_attr</code></a>: <a href="#Defining-Attributes">Defining Attributes</a></li>
<li><a href="#index-define_005fexpand-3594"><code>define_expand</code></a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-define_005finsn-3199"><code>define_insn</code></a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-g_t_0040code_007bdefine_005finsn_007d-example-3204"><code>define_insn</code> example</a>: <a href="#Example">Example</a></li>
<li><a href="#index-define_005finsn_005fand_005fsplit-3602"><code>define_insn_and_split</code></a>: <a href="#Insn-Splitting">Insn Splitting</a></li>
<li><a href="#index-define_005finsn_005freservation-3695"><code>define_insn_reservation</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fmemory_005fconstraint-3320"><code>define_memory_constraint</code></a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-define_005fmode_005fattr-3729"><code>define_mode_attr</code></a>: <a href="#Substitutions">Substitutions</a></li>
<li><a href="#index-define_005fmode_005fiterator-3728"><code>define_mode_iterator</code></a>: <a href="#Defining-Mode-Iterators">Defining Mode Iterators</a></li>
<li><a href="#index-define_005fpeephole-3610"><code>define_peephole</code></a>: <a href="#define_005fpeephole">define_peephole</a></li>
<li><a href="#index-define_005fpeephole2-3613"><code>define_peephole2</code></a>: <a href="#define_005fpeephole2">define_peephole2</a></li>
<li><a href="#index-define_005fpredicate-3257"><code>define_predicate</code></a>: <a href="#Defining-Predicates">Defining Predicates</a></li>
<li><a href="#index-define_005fquery_005fcpu_005funit-3693"><code>define_query_cpu_unit</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fregister_005fconstraint-3318"><code>define_register_constraint</code></a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-define_005freservation-3699"><code>define_reservation</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-define_005fspecial_005fpredicate-3258"><code>define_special_predicate</code></a>: <a href="#Defining-Predicates">Defining Predicates</a></li>
<li><a href="#index-define_005fsplit-3601"><code>define_split</code></a>: <a href="#Insn-Splitting">Insn Splitting</a></li>
<li><a href="#index-defining-attributes-and-their-values-3618">defining attributes and their values</a>: <a href="#Defining-Attributes">Defining Attributes</a></li>
<li><a href="#index-defining-constraints-3316">defining constraints</a>: <a href="#Define-Constraints">Define Constraints</a></li>
<li><a href="#index-defining-constraints_002c-obsolete-method-4025">defining constraints, obsolete method</a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-defining-jump-instruction-patterns-3573">defining jump instruction patterns</a>: <a href="#Jump-Patterns">Jump Patterns</a></li>
<li><a href="#index-defining-looping-instruction-patterns-3575">defining looping instruction patterns</a>: <a href="#Looping-Patterns">Looping Patterns</a></li>
<li><a href="#index-defining-peephole-optimizers-3609">defining peephole optimizers</a>: <a href="#Peephole-Definitions">Peephole Definitions</a></li>
<li><a href="#index-defining-predicates-3256">defining predicates</a>: <a href="#Defining-Predicates">Defining Predicates</a></li>
<li><a href="#index-defining-RTL-sequences-for-code-generation-3593">defining RTL sequences for code generation</a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-delay-slots_002c-defining-3673">delay slots, defining</a>: <a href="#Delay-Slots">Delay Slots</a></li>
<li><a href="#index-DELAY_005fSLOTS_005fFOR_005fEPILOGUE-4195"><code>DELAY_SLOTS_FOR_EPILOGUE</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-deletable-4926"><code>deletable</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-DELETE_005fIF_005fORDINARY-4882"><code>DELETE_IF_ORDINARY</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-Dependent-Patterns-3570">Dependent Patterns</a>: <a href="#Dependent-Patterns">Dependent Patterns</a></li>
<li><a href="#index-desc-4918"><code>desc</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-destructors_002c-output-of-4539">destructors, output of</a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-deterministic-finite-state-automaton-3684">deterministic finite state automaton</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-DF_005fSIZE-3888"><code>DF_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-DFmode-1903"><code>DFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-digits-in-constraint-3284">digits in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-DImode-1896"><code>DImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-DIR_005fSEPARATOR-4873"><code>DIR_SEPARATOR</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-DIR_005fSEPARATOR_005f2-4874"><code>DIR_SEPARATOR_2</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-directory-options-_002emd-3605">directory options .md</a>: <a href="#Including-Patterns">Including Patterns</a></li>
<li><a href="#index-disabling-certain-registers-3955">disabling certain registers</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-dispatch-table-4583">dispatch table</a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-div-2064"><code>div</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bdiv_007d-and-attributes-3645"><code>div</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-division-2066">division</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bdiv_0040var_007bm_007d3_007d-instruction-pattern-3361"><code>div</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bdivmod_0040var_007bm_007d4_007d-instruction-pattern-3430"><code>divmod</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-DO_005fBODY-2676"><code>DO_BODY</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-DO_005fCOND-2677"><code>DO_COND</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-DO_005fSTMT-2675"><code>DO_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-DOLLARS_005fIN_005fIDENTIFIERS-4798"><code>DOLLARS_IN_IDENTIFIERS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bdoloop_005fbegin_007d-instruction-pattern-3518"><code>doloop_begin</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bdoloop_005fend_007d-instruction-pattern-3517"><code>doloop_end</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-DONE-3595"><code>DONE</code></a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-DONT_005fUSE_005fBUILTIN_005fSETJMP-4600"><code>DONT_USE_BUILTIN_SETJMP</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-DOUBLE_005fTYPE_005fSIZE-3873"><code>DOUBLE_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-DQmode-1912"><code>DQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-driver-3740">driver</a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-DRIVER_005fSELF_005fSPECS-3742"><code>DRIVER_SELF_SPECS</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-DUMPFILE_005fFORMAT-4881"><code>DUMPFILE_FORMAT</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-DWARF2_005fASM_005fLINE_005fDEBUG_005fINFO-4659"><code>DWARF2_ASM_LINE_DEBUG_INFO</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-DWARF2_005fDEBUGGING_005fINFO-4655"><code>DWARF2_DEBUGGING_INFO</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-DWARF2_005fFRAME_005fINFO-4657"><code>DWARF2_FRAME_INFO</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-DWARF2_005fFRAME_005fREG_005fOUT-4101"><code>DWARF2_FRAME_REG_OUT</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-DWARF2_005fUNWIND_005fINFO-4597"><code>DWARF2_UNWIND_INFO</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-DWARF_005fALT_005fFRAME_005fRETURN_005fCOLUMN-4058"><code>DWARF_ALT_FRAME_RETURN_COLUMN</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-DWARF_005fCIE_005fDATA_005fALIGNMENT-4601"><code>DWARF_CIE_DATA_ALIGNMENT</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-DWARF_005fFRAME_005fREGISTERS-4097"><code>DWARF_FRAME_REGISTERS</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-DWARF_005fFRAME_005fREGNUM-4100"><code>DWARF_FRAME_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-DWARF_005fREG_005fTO_005fUNWIND_005fCOLUMN-4099"><code>DWARF_REG_TO_UNWIND_COLUMN</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-DWARF_005fZERO_005fREG-4059"><code>DWARF_ZERO_REG</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-DYNAMIC_005fCHAIN_005fADDRESS-4051"><code>DYNAMIC_CHAIN_ADDRESS</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040samp_007bE_007d-in-constraint-3276">‘<samp><span class="samp">E</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-earlyclobber-operand-3309">earlyclobber operand</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-edge-3138"><code>edge</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-edge-in-the-flow-graph-3137">edge in the flow graph</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-edge-iterators-3139">edge iterators</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-edge-splitting-3193">edge splitting</a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-EDGE_005fABNORMAL-3158"><code>EDGE_ABNORMAL</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-EDGE_005fABNORMAL_002c-EDGE_005fABNORMAL_005fCALL-3160"><code>EDGE_ABNORMAL, EDGE_ABNORMAL_CALL</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-EDGE_005fABNORMAL_002c-EDGE_005fEH-3151"><code>EDGE_ABNORMAL, EDGE_EH</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-EDGE_005fABNORMAL_002c-EDGE_005fSIBCALL-3156"><code>EDGE_ABNORMAL, EDGE_SIBCALL</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-EDGE_005fFALLTHRU_002c-force_005fnonfallthru-3149"><code>EDGE_FALLTHRU, force_nonfallthru</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-g_t_0040code_007bEDOM_007d_002c-implicit-usage-4241"><code>EDOM</code>, implicit usage</a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-EH_005fFRAME_005fIN_005fDATA_005fSECTION-4594"><code>EH_FRAME_IN_DATA_SECTION</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-EH_005fFRAME_005fSECTION_005fNAME-4593"><code>EH_FRAME_SECTION_NAME</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-g_t_0040code_007beh_005freturn_007d-instruction-pattern-3535"><code>eh_return</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-EH_005fRETURN_005fDATA_005fREGNO-4066"><code>EH_RETURN_DATA_REGNO</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-EH_005fRETURN_005fHANDLER_005fRTX-4068"><code>EH_RETURN_HANDLER_RTX</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-EH_005fRETURN_005fSTACKADJ_005fRTX-4067"><code>EH_RETURN_STACKADJ_RTX</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-EH_005fTABLES_005fCAN_005fBE_005fREAD_005fONLY-4595"><code>EH_TABLES_CAN_BE_READ_ONLY</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-EH_005fUSES-4194"><code>EH_USES</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-ei_005fedge-3146"><code>ei_edge</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fend_005fp-3142"><code>ei_end_p</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005flast-3141"><code>ei_last</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fnext-3144"><code>ei_next</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fone_005fbefore_005fend_005fp-3143"><code>ei_one_before_end_p</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fprev-3145"><code>ei_prev</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fsafe_005fsafe-3147"><code>ei_safe_safe</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ei_005fstart-3140"><code>ei_start</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-ELIGIBLE_005fFOR_005fEPILOGUE_005fDELAY-4196"><code>ELIGIBLE_FOR_EPILOGUE_DELAY</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-ELIMINABLE_005fREGS-4105"><code>ELIMINABLE_REGS</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-ELSE_005fCLAUSE-2690"><code>ELSE_CLAUSE</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-Embedded-C-377">Embedded C</a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-EMIT_005fMODE_005fSET-4700"><code>EMIT_MODE_SET</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-Empty-Statements-2526">Empty Statements</a>: <a href="#Empty-Statements">Empty Statements</a></li>
<li><a href="#index-EMPTY_005fCLASS_005fEXPR-2678"><code>EMPTY_CLASS_EXPR</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-EMPTY_005fFIELD_005fBOUNDARY-3842"><code>EMPTY_FIELD_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-Emulated-TLS-4723">Emulated TLS</a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-ENABLE_005fEXECUTE_005fSTACK-4231"><code>ENABLE_EXECUTE_STACK</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-enabled-3315">enabled</a>: <a href="#Disable-Insn-Alternatives">Disable Insn Alternatives</a></li>
<li><a href="#index-ENDFILE_005fSPEC-3758"><code>ENDFILE_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-endianness-4">endianness</a>: <a href="#Portability">Portability</a></li>
<li><a href="#index-ENTRY_005fBLOCK_005fPTR_002c-EXIT_005fBLOCK_005fPTR-3132"><code>ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-enum-machine_005fmode-1889"><code>enum machine_mode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-enum-reg_005fclass-3992"><code>enum reg_class</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-ENUMERAL_005fTYPE-2344"><code>ENUMERAL_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-enumerations-3720">enumerations</a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-epilogue-4182">epilogue</a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-g_t_0040code_007bepilogue_007d-instruction-pattern-3537"><code>epilogue</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-EPILOGUE_005fUSES-4193"><code>EPILOGUE_USES</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-eq-2126"><code>eq</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007beq_007d-and-attributes-3641"><code>eq</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-eq_005fattr-3653"><code>eq_attr</code></a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-EQ_005fEXPR-2480"><code>EQ_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-equal-2127">equal</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007berrno_007d_002c-implicit-usage-4244"><code>errno</code>, implicit usage</a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-EXACT_005fDIV_005fEXPR-2475"><code>EXACT_DIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-examining-SSA_005fNAMEs-3104">examining SSA_NAMEs</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-exception-handling-4065">exception handling</a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-exception-handling-3150">exception handling</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-g_t_0040code_007bexception_005freceiver_007d-instruction-pattern-3531"><code>exception_receiver</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-exclamation-point-3300">exclamation point</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-exclusion_005fset-3703"><code>exclusion_set</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-exclusive_002dor_002c-bitwise-2095">exclusive-or, bitwise</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-EXIT_005fEXPR-2498"><code>EXIT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-EXIT_005fIGNORE_005fSTACK-4192"><code>EXIT_IGNORE_STACK</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-expander-definitions-3591">expander definitions</a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-g_t_0040code_007bexp_0040var_007bm_007d2_007d-instruction-pattern-3453"><code>exp</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-EXPR_005fFILENAME-2404"><code>EXPR_FILENAME</code></a>: <a href="#Working-with-declarations">Working with declarations</a></li>
<li><a href="#index-EXPR_005fLINENO-2405"><code>EXPR_LINENO</code></a>: <a href="#Working-with-declarations">Working with declarations</a></li>
<li><a href="#index-expr_005flist-2280"><code>expr_list</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-EXPR_005fSTMT-2679"><code>EXPR_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-EXPR_005fSTMT_005fEXPR-2680"><code>EXPR_STMT_EXPR</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-expression-2410">expression</a>: <a href="#Expression-trees">Expression trees</a></li>
<li><a href="#index-expression-codes-1701">expression codes</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-g_t_0040code_007bextend_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3489"><code>extend</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-extensible-constraints-3293">extensible constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-EXTRA_005fADDRESS_005fCONSTRAINT-4037"><code>EXTRA_ADDRESS_CONSTRAINT</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-EXTRA_005fCONSTRAINT-4034"><code>EXTRA_CONSTRAINT</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-EXTRA_005fCONSTRAINT_005fSTR-4035"><code>EXTRA_CONSTRAINT_STR</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-EXTRA_005fMEMORY_005fCONSTRAINT-4036"><code>EXTRA_MEMORY_CONSTRAINT</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-EXTRA_005fSPECS-3762"><code>EXTRA_SPECS</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-g_t_0040code_007bextv_007d-instruction-pattern-3495"><code>extv</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bextzv_007d-instruction-pattern-3496"><code>extzv</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040samp_007bF_007d-in-constraint-3277">‘<samp><span class="samp">F</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-FAIL-3596"><code>FAIL</code></a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-fall_002dthru-3148"><code>fall-thru</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-FATAL_005fEXIT_005fCODE-4886"><code>FATAL_EXIT_CODE</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-FDL_002c-GNU-Free-Documentation-License-4952">FDL, GNU Free Documentation License</a>: <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#index-features_002c-optional_002c-in-system-conventions-3790">features, optional, in system conventions</a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-ffs-2118"><code>ffs</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bffs_0040var_007bm_007d2_007d-instruction-pattern-3468"><code>ffs</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-FIELD_005fDECL-2392"><code>FIELD_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-file_005fend_005findicate_005fexec_005fstack-4434"><code>file_end_indicate_exec_stack</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-files-and-passes-of-the-compiler-1669">files and passes of the compiler</a>: <a href="#Passes">Passes</a></li>
<li><a href="#index-files_002c-generated-4940">files, generated</a>: <a href="#Files">Files</a></li>
<li><a href="#index-final_005fabsence_005fset-3707"><code>final_absence_set</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-FINAL_005fPRESCAN_005fINSN-4564"><code>FINAL_PRESCAN_INSN</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-final_005fpresence_005fset-3705"><code>final_presence_set</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-final_005fscan_005finsn-4198"><code>final_scan_insn</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-final_005fsequence-4573"><code>final_sequence</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-FIND_005fBASE_005fTERM-4268"><code>FIND_BASE_TERM</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-FINI_005fARRAY_005fSECTION_005fASM_005fOP-4401"><code>FINI_ARRAY_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-FINI_005fSECTION_005fASM_005fOP-4399"><code>FINI_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-finite-state-automaton-minimization-3713">finite state automaton minimization</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-FIRST_005fPARM_005fOFFSET-4048"><code>FIRST_PARM_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040code_007bFIRST_005fPARM_005fOFFSET_007d-and-virtual-registers-2001"><code>FIRST_PARM_OFFSET</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-FIRST_005fPSEUDO_005fREGISTER-3934"><code>FIRST_PSEUDO_REGISTER</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-FIRST_005fSTACK_005fREG-3985"><code>FIRST_STACK_REG</code></a>: <a href="#Stack-Registers">Stack Registers</a></li>
<li><a href="#index-FIRST_005fVIRTUAL_005fREGISTER-1998"><code>FIRST_VIRTUAL_REGISTER</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-fix-2169"><code>fix</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-FIX_005fTRUNC_005fEXPR-2441"><code>FIX_TRUNC_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-g_t_0040code_007bfix_005ftrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3486"><code>fix_trunc</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-fixed-register-3936">fixed register</a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-fixed_002dpoint-fractional-library-375">fixed-point fractional library</a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-FIXED_005fCONVERT_005fEXPR-2450"><code>FIXED_CONVERT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-FIXED_005fCST-2420"><code>FIXED_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-FIXED_005fPOINT_005fTYPE-2342"><code>FIXED_POINT_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-FIXED_005fREGISTERS-3935"><code>FIXED_REGISTERS</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-fixed_005fregs-3949"><code>fixed_regs</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-g_t_0040code_007bfix_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3483"><code>fix</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-FIXUNS_005fTRUNC_005fLIKE_005fFIX_005fTRUNC-4773"><code>FIXUNS_TRUNC_LIKE_FIX_TRUNC</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bfixuns_005ftrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3487"><code>fixuns_trunc</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfixuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3484"><code>fixuns</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-flags-in-RTL-expression-1756">flags in RTL expression</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-float-2167"><code>float</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-FLOAT_005fEXPR-2442"><code>FLOAT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-float_005fextend-2162"><code>float_extend</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-FLOAT_005fLIB_005fCOMPARE_005fRETURNS_005fBOOL-4239"><code>FLOAT_LIB_COMPARE_RETURNS_BOOL</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-FLOAT_005fSTORE_005fFLAG_005fVALUE-4782"><code>FLOAT_STORE_FLAG_VALUE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-float_005ftruncate-2166"><code>float_truncate</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-FLOAT_005fTYPE_005fSIZE-3872"><code>FLOAT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-FLOAT_005fWORDS_005fBIG_005fENDIAN-3812"><code>FLOAT_WORDS_BIG_ENDIAN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bFLOAT_005fWORDS_005fBIG_005fENDIAN_007d_002c-_0028lack-of_0029-effect-on-_0040code_007bsubreg_007d-2015"><code>FLOAT_WORDS_BIG_ENDIAN</code>, (lack of) effect on <code>subreg</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-floating-point-and-cross-compilation-4676">floating point and cross compilation</a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-Floating-Point-Emulation-4899"><code>Floating Point Emulation</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-g_t_0040code_007bfloat_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3481"><code>float</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfloatuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3482"><code>floatuns</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-FLOOR_005fDIV_005fEXPR-2468"><code>FLOOR_DIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-FLOOR_005fMOD_005fEXPR-2472"><code>FLOOR_MOD_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-g_t_0040code_007bfloor_0040var_007bm_007d2_007d-instruction-pattern-3457"><code>floor</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-flow_002dinsensitive-alias-analysis-3111">flow-insensitive alias analysis</a>: <a href="#Alias-analysis">Alias analysis</a></li>
<li><a href="#index-flow_002dsensitive-alias-analysis-3110">flow-sensitive alias analysis</a>: <a href="#Alias-analysis">Alias analysis</a></li>
<li><a href="#index-fma-2063"><code>fma</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bfma_0040var_007bm_007d4_007d-instruction-pattern-3372"><code>fma</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfmod_0040var_007bm_007d3_007d-instruction-pattern-3449"><code>fmod</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfms_0040var_007bm_007d4_007d-instruction-pattern-3373"><code>fms</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfnma_0040var_007bm_007d4_007d-instruction-pattern-3374"><code>fnma</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfnms_0040var_007bm_007d4_007d-instruction-pattern-3375"><code>fnms</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-FOR_005fBODY-2685"><code>FOR_BODY</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-FOR_005fCOND-2683"><code>FOR_COND</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-FOR_005fEXPR-2684"><code>FOR_EXPR</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-FOR_005fINIT_005fSTMT-2682"><code>FOR_INIT_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-FOR_005fSTMT-2681"><code>FOR_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-FORCE_005fCODE_005fSECTION_005fALIGN-4404"><code>FORCE_CODE_SECTION_ALIGN</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-force_005freg-3332"><code>force_reg</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-fract_005fconvert-2171"><code>fract_convert</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-FRACT_005fTYPE_005fSIZE-3876"><code>FRACT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-fractional-types-376">fractional types</a>: <a href="#Fixed_002dpoint-fractional-library-routines">Fixed-point fractional library routines</a></li>
<li><a href="#index-g_t_0040code_007bfract_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3491"><code>fract</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bfractuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3493"><code>fractuns</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-frame-layout-4040">frame layout</a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-FRAME_005fADDR_005fRTX-4054"><code>FRAME_ADDR_RTX</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-FRAME_005fGROWS_005fDOWNWARD-4043"><code>FRAME_GROWS_DOWNWARD</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040code_007bFRAME_005fGROWS_005fDOWNWARD_007d-and-virtual-registers-2004"><code>FRAME_GROWS_DOWNWARD</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-FRAME_005fPOINTER_005fCFA_005fOFFSET-4063"><code>FRAME_POINTER_CFA_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-frame_005fpointer_005fneeded-4185"><code>frame_pointer_needed</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-FRAME_005fPOINTER_005fREGNUM-4085"><code>FRAME_POINTER_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-g_t_0040code_007bFRAME_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2006"><code>FRAME_POINTER_REGNUM</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-frame_005fpointer_005frtx-4095"><code>frame_pointer_rtx</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-frame_005frelated-1874"><code>frame_related</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bcall_005finsn_007d_002c-_0040code_007bjump_005finsn_007d_002c-_0040code_007bbarrier_007d_002c-and-_0040code_007bset_007d-1832"><code>frame_related</code>, in <code>insn</code>, <code>call_insn</code>, <code>jump_insn</code>, <code>barrier</code>, and <code>set</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007bmem_007d-1816"><code>frame_related</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007breg_007d-1822"><code>frame_related</code>, in <code>reg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bframe_005frelated_007d_002c-in-_0040code_007bsymbol_005fref_007d-1849"><code>frame_related</code>, in <code>symbol_ref</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-frequency_002c-count_002c-BB_005fFREQ_005fBASE-3168"><code>frequency, count, BB_FREQ_BASE</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-g_t_0040code_007bftrunc_0040var_007bm_007d2_007d-instruction-pattern-3485"><code>ftrunc</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-function-2635">function</a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-function-2541">function</a>: <a href="#Functions">Functions</a></li>
<li><a href="#index-function-call-conventions-9">function call conventions</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-function-entry-and-exit-4180">function entry and exit</a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-function-entry-point_002c-alternate-function-entry-point-3161">function entry point, alternate function entry point</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-function-properties-2556">function properties</a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-function_002dcall-insns-2283">function-call insns</a>: <a href="#Calls">Calls</a></li>
<li><a href="#index-FUNCTION_005fARG-4123"><code>FUNCTION_ARG</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fARG_005fADVANCE-4137"><code>FUNCTION_ARG_ADVANCE</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fARG_005fOFFSET-4138"><code>FUNCTION_ARG_OFFSET</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fARG_005fPADDING-4139"><code>FUNCTION_ARG_PADDING</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fARG_005fREGNO_005fP-4143"><code>FUNCTION_ARG_REGNO_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fBOUNDARY-3826"><code>FUNCTION_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-FUNCTION_005fDECL-2636"><code>FUNCTION_DECL</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-FUNCTION_005fDECL-2542"><code>FUNCTION_DECL</code></a>: <a href="#Functions">Functions</a></li>
<li><a href="#index-FUNCTION_005fINCOMING_005fARG-4128"><code>FUNCTION_INCOMING_ARG</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-FUNCTION_005fMODE-4787"><code>FUNCTION_MODE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-FUNCTION_005fPROFILER-4202"><code>FUNCTION_PROFILER</code></a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-FUNCTION_005fTYPE-2348"><code>FUNCTION_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-FUNCTION_005fVALUE-4161"><code>FUNCTION_VALUE</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-FUNCTION_005fVALUE_005fREGNO_005fP-4164"><code>FUNCTION_VALUE_REGNO_P</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-functions_002c-leaf-3978">functions, leaf</a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-fundamental-type-2335">fundamental type</a>: <a href="#Types">Types</a></li>
<li><a href="#index-g_t_0040samp_007bg_007d-in-constraint-3281">‘<samp><span class="samp">g</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bG_007d-in-constraint-3278">‘<samp><span class="samp">G</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-garbage-collector_002c-invocation-4941">garbage collector, invocation</a>: <a href="#Invoking-the-garbage-collector">Invoking the garbage collector</a></li>
<li><a href="#index-garbage-collector_002c-troubleshooting-4943">garbage collector, troubleshooting</a>: <a href="#Troubleshooting">Troubleshooting</a></li>
<li><a href="#index-GCC-and-portability-3">GCC and portability</a>: <a href="#Portability">Portability</a></li>
<li><a href="#index-GCC_005fDRIVER_005fHOST_005fINITIALIZATION-4890"><code>GCC_DRIVER_HOST_INITIALIZATION</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-gcov_005ftype-3169"><code>gcov_type</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-ge-2139"><code>ge</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bge_007d-and-attributes-3638"><code>ge</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-GE_005fEXPR-2479"><code>GE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-GEN_005fERRNO_005fRTX-4245"><code>GEN_ERRNO_RTX</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-gencodes-1688"><code>gencodes</code></a>: <a href="#RTL-passes">RTL passes</a></li>
<li><a href="#index-general_005foperand-3253"><code>general_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-GENERAL_005fREGS-3991"><code>GENERAL_REGS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-generated-files-4939">generated files</a>: <a href="#Files">Files</a></li>
<li><a href="#index-generating-assembler-output-3227">generating assembler output</a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-generating-insns-3206">generating insns</a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-GENERIC-2302">GENERIC</a>: <a href="#GENERIC">GENERIC</a></li>
<li><a href="#index-GENERIC-1671">GENERIC</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-generic-predicates-3239">generic predicates</a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-genflags-1687"><code>genflags</code></a>: <a href="#RTL-passes">RTL passes</a></li>
<li><a href="#index-get_005fattr-3652"><code>get_attr</code></a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-get_005fattr_005flength-3671"><code>get_attr_length</code></a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-GET_005fCLASS_005fNARROWEST_005fMODE-1970"><code>GET_CLASS_NARROWEST_MODE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fCODE-1703"><code>GET_CODE</code></a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-get_005fframe_005fsize-4103"><code>get_frame_size</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-get_005finsns-2218"><code>get_insns</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-get_005flast_005finsn-2219"><code>get_last_insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-GET_005fMODE-1956"><code>GET_MODE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fALIGNMENT-1967"><code>GET_MODE_ALIGNMENT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fBITSIZE-1963"><code>GET_MODE_BITSIZE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fCLASS-1960"><code>GET_MODE_CLASS</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fFBIT-1965"><code>GET_MODE_FBIT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fIBIT-1964"><code>GET_MODE_IBIT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fMASK-1966"><code>GET_MODE_MASK</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fNAME-1959"><code>GET_MODE_NAME</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fNUNITS-1969"><code>GET_MODE_NUNITS</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fSIZE-1962"><code>GET_MODE_SIZE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fUNIT_005fSIZE-1968"><code>GET_MODE_UNIT_SIZE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fMODE_005fWIDER_005fMODE-1961"><code>GET_MODE_WIDER_MODE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-GET_005fRTX_005fCLASS-1710"><code>GET_RTX_CLASS</code></a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-GET_005fRTX_005fFORMAT-1714"><code>GET_RTX_FORMAT</code></a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-GET_005fRTX_005fLENGTH-1713"><code>GET_RTX_LENGTH</code></a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-geu-2141"><code>geu</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bgeu_007d-and-attributes-3639"><code>geu</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-GGC-4913">GGC</a>: <a href="#Type-Information">Type Information</a></li>
<li><a href="#index-ggc_005fcollect-4942"><code>ggc_collect</code></a>: <a href="#Invoking-the-garbage-collector">Invoking the garbage collector</a></li>
<li><a href="#index-GIMPLE-2708">GIMPLE</a>: <a href="#GIMPLE">GIMPLE</a></li>
<li><a href="#index-GIMPLE-1683">GIMPLE</a>: <a href="#Gimplification-pass">Gimplification pass</a></li>
<li><a href="#index-GIMPLE-1673">GIMPLE</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-GIMPLE-Exception-Handling-2713">GIMPLE Exception Handling</a>: <a href="#GIMPLE-Exception-Handling">GIMPLE Exception Handling</a></li>
<li><a href="#index-GIMPLE-instruction-set-2712">GIMPLE instruction set</a>: <a href="#GIMPLE-instruction-set">GIMPLE instruction set</a></li>
<li><a href="#index-GIMPLE-sequences-3027">GIMPLE sequences</a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005faddresses_005ftaken-2759"><code>gimple_addresses_taken</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fASM_007d-2777"><code>GIMPLE_ASM</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fclear_005fvolatile-2792"><code>gimple_asm_clear_volatile</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fclobber_005fop-2787"><code>gimple_asm_clobber_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005finput_005fop-2783"><code>gimple_asm_input_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fnclobbers-2782"><code>gimple_asm_nclobbers</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fninputs-2780"><code>gimple_asm_ninputs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fnoutputs-2781"><code>gimple_asm_noutputs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005foutput_005fop-2785"><code>gimple_asm_output_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fset_005fclobber_005fop-2788"><code>gimple_asm_set_clobber_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fset_005finput_005fop-2784"><code>gimple_asm_set_input_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fset_005foutput_005fop-2786"><code>gimple_asm_set_output_op</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fset_005fvolatile-2791"><code>gimple_asm_set_volatile</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fstring-2789"><code>gimple_asm_string</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fasm_005fvolatile_005fp-2790"><code>gimple_asm_volatile_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fASSIGN_007d-2793"><code>GIMPLE_ASSIGN</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fcast_005fp-2811"><code>gimple_assign_cast_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fcast_005fp-2735"><code>gimple_assign_cast_p</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-gimple_005fassign_005flhs-2799"><code>gimple_assign_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005flhs_005fptr-2800"><code>gimple_assign_lhs_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs1-2801"><code>gimple_assign_rhs1</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs1_005fptr-2802"><code>gimple_assign_rhs1_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs2-2803"><code>gimple_assign_rhs2</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs2_005fptr-2804"><code>gimple_assign_rhs2_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs3-2805"><code>gimple_assign_rhs3</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs3_005fptr-2806"><code>gimple_assign_rhs3_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs_005fclass-2798"><code>gimple_assign_rhs_class</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005frhs_005fcode-2797"><code>gimple_assign_rhs_code</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fset_005flhs-2807"><code>gimple_assign_set_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fset_005frhs1-2808"><code>gimple_assign_set_rhs1</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fset_005frhs2-2809"><code>gimple_assign_set_rhs2</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fassign_005fset_005frhs3-2810"><code>gimple_assign_set_rhs3</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fbb-2739"><code>gimple_bb</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fBIND_007d-2812"><code>GIMPLE_BIND</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fadd_005fseq-2820"><code>gimple_bind_add_seq</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fadd_005fstmt-2819"><code>gimple_bind_add_stmt</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fappend_005fvars-2816"><code>gimple_bind_append_vars</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fblock-2821"><code>gimple_bind_block</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fbody-2817"><code>gimple_bind_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fset_005fblock-2822"><code>gimple_bind_set_block</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fset_005fbody-2818"><code>gimple_bind_set_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fset_005fvars-2815"><code>gimple_bind_set_vars</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbind_005fvars-2814"><code>gimple_bind_vars</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fblock-2740"><code>gimple_block</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fbuild_005fasm-2778"><code>gimple_build_asm</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fbuild_005fasm_005fvec-2779"><code>gimple_build_asm_vec</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASM_003c_002fcode_003e"><code>GIMPLE_ASM</code></a></li>
<li><a href="#index-gimple_005fbuild_005fassign-2794"><code>gimple_build_assign</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fbuild_005fassign_005fwith_005fops-2796"><code>gimple_build_assign_with_ops</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimple_005fbuild_005fbind-2813"><code>gimple_build_bind</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fBIND_003c_002fcode_003e"><code>GIMPLE_BIND</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcall-2824"><code>gimple_build_call</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcall_005ffrom_005ftree-2825"><code>gimple_build_call_from_tree</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcall_005fvec-2826"><code>gimple_build_call_vec</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcatch-2848"><code>gimple_build_catch</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcond-2855"><code>gimple_build_cond</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fbuild_005fcond_005ffrom_005ftree-2856"><code>gimple_build_cond_from_tree</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fbuild_005fdebug_005fbind-2871"><code>gimple_build_debug_bind</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fbuild_005feh_005ffilter-2880"><code>gimple_build_eh_filter</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005fbuild_005fgoto-2892"><code>gimple_build_goto</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005fbuild_005flabel-2889"><code>gimple_build_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fnop-2896"><code>gimple_build_nop</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fatomic_005fload-2899"><code>gimple_build_omp_atomic_load</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fatomic_005fstore-2905"><code>gimple_build_omp_atomic_store</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fcontinue-2909"><code>gimple_build_omp_continue</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fcritical-2917"><code>gimple_build_omp_critical</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005ffor-2922"><code>gimple_build_omp_for</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fmaster-2943"><code>gimple_build_omp_master</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"><code>GIMPLE_OMP_MASTER</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fordered-2945"><code>gimple_build_omp_ordered</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"><code>GIMPLE_OMP_ORDERED</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fparallel-2947"><code>gimple_build_omp_parallel</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005freturn-2963"><code>gimple_build_omp_return</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fsection-2967"><code>gimple_build_omp_section</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fsections-2971"><code>gimple_build_omp_sections</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fsections_005fswitch-2972"><code>gimple_build_omp_sections_switch</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fbuild_005fomp_005fsingle-2980"><code>gimple_build_omp_single</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a></li>
<li><a href="#index-gimple_005fbuild_005fresx-2994"><code>gimple_build_resx</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a></li>
<li><a href="#index-gimple_005fbuild_005freturn-2998"><code>gimple_build_return</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a></li>
<li><a href="#index-gimple_005fbuild_005fswitch-3002"><code>gimple_build_switch</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fbuild_005fswitch_005fvec-3003"><code>gimple_build_switch_vec</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fbuild_005ftry-3013"><code>gimple_build_try</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005fbuild_005fwce-3022"><code>gimple_build_wce</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fCALL_007d-2823"><code>GIMPLE_CALL</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005farg-2838"><code>gimple_call_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005farg_005fptr-2839"><code>gimple_call_arg_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fcannot_005finline_005fp-2844"><code>gimple_call_cannot_inline_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fchain-2835"><code>gimple_call_chain</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fcopy_005fskip_005fargs-2846"><code>gimple_call_copy_skip_args</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005ffn-2830"><code>gimple_call_fn</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005ffndecl-2832"><code>gimple_call_fndecl</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005flhs-2827"><code>gimple_call_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005flhs_005fptr-2828"><code>gimple_call_lhs_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fmark_005funinlinable-2843"><code>gimple_call_mark_uninlinable</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fnoreturn_005fp-2845"><code>gimple_call_noreturn_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fnum_005fargs-2837"><code>gimple_call_num_args</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005freturn_005ftype-2834"><code>gimple_call_return_type</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005farg-2840"><code>gimple_call_set_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005fchain-2836"><code>gimple_call_set_chain</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005ffn-2831"><code>gimple_call_set_fn</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005ffndecl-2833"><code>gimple_call_set_fndecl</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005flhs-2829"><code>gimple_call_set_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005fset_005ftail-2841"><code>gimple_call_set_tail</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-gimple_005fcall_005ftail_005fp-2842"><code>gimple_call_tail_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCALL_003c_002fcode_003e"><code>GIMPLE_CALL</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fCATCH_007d-2847"><code>GIMPLE_CATCH</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcatch_005fhandler-2851"><code>gimple_catch_handler</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcatch_005fset_005fhandler-2853"><code>gimple_catch_set_handler</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcatch_005fset_005ftypes-2852"><code>gimple_catch_set_types</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcatch_005ftypes-2849"><code>gimple_catch_types</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcatch_005ftypes_005fptr-2850"><code>gimple_catch_types_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCATCH_003c_002fcode_003e"><code>GIMPLE_CATCH</code></a></li>
<li><a href="#index-gimple_005fcode-2738"><code>gimple_code</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fCOND_007d-2854"><code>GIMPLE_COND</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fcode-2857"><code>gimple_cond_code</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005ffalse_005flabel-2866"><code>gimple_cond_false_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005flhs-2859"><code>gimple_cond_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fmake_005ffalse-2867"><code>gimple_cond_make_false</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fmake_005ftrue-2868"><code>gimple_cond_make_true</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005frhs-2861"><code>gimple_cond_rhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fset_005fcode-2858"><code>gimple_cond_set_code</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fset_005ffalse_005flabel-2865"><code>gimple_cond_set_false_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fset_005flhs-2860"><code>gimple_cond_set_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fset_005frhs-2862"><code>gimple_cond_set_rhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005fset_005ftrue_005flabel-2864"><code>gimple_cond_set_true_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcond_005ftrue_005flabel-2863"><code>gimple_cond_true_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fCOND_003c_002fcode_003e"><code>GIMPLE_COND</code></a></li>
<li><a href="#index-gimple_005fcopy-2775"><code>gimple_copy</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fDEBUG_007d-2869"><code>GIMPLE_DEBUG</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fDEBUG_005fBIND_007d-2870"><code>GIMPLE_DEBUG_BIND</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fget_005fvalue-2873"><code>gimple_debug_bind_get_value</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fget_005fvalue_005fptr-2874"><code>gimple_debug_bind_get_value_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fget_005fvar-2872"><code>gimple_debug_bind_get_var</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fhas_005fvalue_005fp-2878"><code>gimple_debug_bind_has_value_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fp-2736"><code>gimple_debug_bind_p</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005freset_005fvalue-2877"><code>gimple_debug_bind_reset_value</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fset_005fvalue-2876"><code>gimple_debug_bind_set_value</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdebug_005fbind_005fset_005fvar-2875"><code>gimple_debug_bind_set_var</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fDEBUG_003c_002fcode_003e"><code>GIMPLE_DEBUG</code></a></li>
<li><a href="#index-gimple_005fdef_005fops-2760"><code>gimple_def_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fEH_005fFILTER_007d-2879"><code>GIMPLE_EH_FILTER</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005ffailure-2883"><code>gimple_eh_filter_failure</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005fmust_005fnot_005fthrow-2886"><code>gimple_eh_filter_must_not_throw</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005fset_005ffailure-2885"><code>gimple_eh_filter_set_failure</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005fset_005fmust_005fnot_005fthrow-2887"><code>gimple_eh_filter_set_must_not_throw</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005fset_005ftypes-2884"><code>gimple_eh_filter_set_types</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005ftypes-2881"><code>gimple_eh_filter_types</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005feh_005ffilter_005ftypes_005fptr-2882"><code>gimple_eh_filter_types_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fEH_005fFILTER_003c_002fcode_003e"><code>GIMPLE_EH_FILTER</code></a></li>
<li><a href="#index-gimple_005fexpr_005fcode-2742"><code>gimple_expr_code</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fexpr_005ftype-2741"><code>gimple_expr_type</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fgoto_005fdest-2893"><code>gimple_goto_dest</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005fgoto_005fset_005fdest-2894"><code>gimple_goto_set_dest</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005fhas_005fmem_005fops-2753"><code>gimple_has_mem_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fhas_005fops-2752"><code>gimple_has_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fhas_005fvolatile_005fops-2771"><code>gimple_has_volatile_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fLABEL_007d-2888"><code>GIMPLE_LABEL</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005flabel_005flabel-2890"><code>gimple_label_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005flabel_005fset_005flabel-2891"><code>gimple_label_set_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fLABEL_003c_002fcode_003e"><code>GIMPLE_LABEL</code></a></li>
<li><a href="#index-gimple_005floaded_005fsyms-2768"><code>gimple_loaded_syms</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005flocus-2744"><code>gimple_locus</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005flocus_005fempty_005fp-2746"><code>gimple_locus_empty_p</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fmodified_005fp-2770"><code>gimple_modified_p</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fno_005fwarning_005fp-2747"><code>gimple_no_warning_p</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fNOP_007d-2895"><code>GIMPLE_NOP</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a></li>
<li><a href="#index-gimple_005fnop_005fp-2897"><code>gimple_nop_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fNOP_003c_002fcode_003e"><code>GIMPLE_NOP</code></a></li>
<li><a href="#index-gimple_005fnum_005fops-2754"><code>gimple_num_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fnum_005fops-2720"><code>gimple_num_ops</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fATOMIC_005fLOAD_007d-2898"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fload_005flhs-2901"><code>gimple_omp_atomic_load_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fload_005frhs-2903"><code>gimple_omp_atomic_load_rhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fload_005fset_005flhs-2900"><code>gimple_omp_atomic_load_set_lhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fload_005fset_005frhs-2902"><code>gimple_omp_atomic_load_set_rhs</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fLOAD_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_LOAD</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fATOMIC_005fSTORE_007d-2904"><code>GIMPLE_OMP_ATOMIC_STORE</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fstore_005fset_005fval-2906"><code>gimple_omp_atomic_store_set_val</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a></li>
<li><a href="#index-gimple_005fomp_005fatomic_005fstore_005fval-2907"><code>gimple_omp_atomic_store_val</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fATOMIC_005fSTORE_003c_002fcode_003e"><code>GIMPLE_OMP_ATOMIC_STORE</code></a></li>
<li><a href="#index-gimple_005fomp_005fbody-2950"><code>gimple_omp_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fCONTINUE_007d-2908"><code>GIMPLE_OMP_CONTINUE</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fcontrol_005fdef-2910"><code>gimple_omp_continue_control_def</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fcontrol_005fdef_005fptr-2911"><code>gimple_omp_continue_control_def_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fcontrol_005fuse-2913"><code>gimple_omp_continue_control_use</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fcontrol_005fuse_005fptr-2914"><code>gimple_omp_continue_control_use_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fset_005fcontrol_005fdef-2912"><code>gimple_omp_continue_set_control_def</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-gimple_005fomp_005fcontinue_005fset_005fcontrol_005fuse-2915"><code>gimple_omp_continue_set_control_use</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCONTINUE_003c_002fcode_003e"><code>GIMPLE_OMP_CONTINUE</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fCRITICAL_007d-2916"><code>GIMPLE_OMP_CRITICAL</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a></li>
<li><a href="#index-gimple_005fomp_005fcritical_005fname-2918"><code>gimple_omp_critical_name</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a></li>
<li><a href="#index-gimple_005fomp_005fcritical_005fname_005fptr-2919"><code>gimple_omp_critical_name_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a></li>
<li><a href="#index-gimple_005fomp_005fcritical_005fset_005fname-2920"><code>gimple_omp_critical_set_name</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fCRITICAL_003c_002fcode_003e"><code>GIMPLE_OMP_CRITICAL</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fFOR_007d-2921"><code>GIMPLE_OMP_FOR</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fclauses-2923"><code>gimple_omp_for_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fclauses_005fptr-2924"><code>gimple_omp_for_clauses_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fcond-2941"><code>gimple_omp_for_cond</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005ffinal-2932"><code>gimple_omp_for_final</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005ffinal_005fptr-2933"><code>gimple_omp_for_final_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fincr-2935"><code>gimple_omp_for_incr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fincr_005fptr-2936"><code>gimple_omp_for_incr_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005findex-2926"><code>gimple_omp_for_index</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005findex_005fptr-2927"><code>gimple_omp_for_index_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005finitial-2929"><code>gimple_omp_for_initial</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005finitial_005fptr-2930"><code>gimple_omp_for_initial_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fpre_005fbody-2938"><code>gimple_omp_for_pre_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005fclauses-2925"><code>gimple_omp_for_set_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005fcond-2940"><code>gimple_omp_for_set_cond</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005ffinal-2934"><code>gimple_omp_for_set_final</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005fincr-2937"><code>gimple_omp_for_set_incr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005findex-2928"><code>gimple_omp_for_set_index</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005finitial-2931"><code>gimple_omp_for_set_initial</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-gimple_005fomp_005ffor_005fset_005fpre_005fbody-2939"><code>gimple_omp_for_set_pre_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fFOR_003c_002fcode_003e"><code>GIMPLE_OMP_FOR</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fMASTER_007d-2942"><code>GIMPLE_OMP_MASTER</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fMASTER_003c_002fcode_003e"><code>GIMPLE_OMP_MASTER</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fORDERED_007d-2944"><code>GIMPLE_OMP_ORDERED</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fORDERED_003c_002fcode_003e"><code>GIMPLE_OMP_ORDERED</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fPARALLEL_007d-2946"><code>GIMPLE_OMP_PARALLEL</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fchild_005ffn-2955"><code>gimple_omp_parallel_child_fn</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fchild_005ffn_005fptr-2956"><code>gimple_omp_parallel_child_fn_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fclauses-2952"><code>gimple_omp_parallel_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fclauses_005fptr-2953"><code>gimple_omp_parallel_clauses_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fcombined_005fp-2948"><code>gimple_omp_parallel_combined_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fdata_005farg-2958"><code>gimple_omp_parallel_data_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fdata_005farg_005fptr-2959"><code>gimple_omp_parallel_data_arg_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fset_005fchild_005ffn-2957"><code>gimple_omp_parallel_set_child_fn</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fset_005fclauses-2954"><code>gimple_omp_parallel_set_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fset_005fcombined_005fp-2949"><code>gimple_omp_parallel_set_combined_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-gimple_005fomp_005fparallel_005fset_005fdata_005farg-2960"><code>gimple_omp_parallel_set_data_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fRETURN_007d-2962"><code>GIMPLE_OMP_RETURN</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a></li>
<li><a href="#index-gimple_005fomp_005freturn_005fnowait_005fp-2965"><code>gimple_omp_return_nowait_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a></li>
<li><a href="#index-gimple_005fomp_005freturn_005fset_005fnowait-2964"><code>gimple_omp_return_set_nowait</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fRETURN_003c_002fcode_003e"><code>GIMPLE_OMP_RETURN</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fSECTION_007d-2966"><code>GIMPLE_OMP_SECTION</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a></li>
<li><a href="#index-gimple_005fomp_005fsection_005flast_005fp-2968"><code>gimple_omp_section_last_p</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a></li>
<li><a href="#index-gimple_005fomp_005fsection_005fset_005flast-2969"><code>gimple_omp_section_set_last</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTION_003c_002fcode_003e"><code>GIMPLE_OMP_SECTION</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fSECTIONS_007d-2970"><code>GIMPLE_OMP_SECTIONS</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fclauses-2976"><code>gimple_omp_sections_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fclauses_005fptr-2977"><code>gimple_omp_sections_clauses_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fcontrol-2973"><code>gimple_omp_sections_control</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fcontrol_005fptr-2974"><code>gimple_omp_sections_control_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fset_005fclauses-2978"><code>gimple_omp_sections_set_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fsections_005fset_005fcontrol-2975"><code>gimple_omp_sections_set_control</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSECTIONS_003c_002fcode_003e"><code>GIMPLE_OMP_SECTIONS</code></a></li>
<li><a href="#index-gimple_005fomp_005fset_005fbody-2951"><code>gimple_omp_set_body</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fOMP_005fSINGLE_007d-2979"><code>GIMPLE_OMP_SINGLE</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a></li>
<li><a href="#index-gimple_005fomp_005fsingle_005fclauses-2981"><code>gimple_omp_single_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a></li>
<li><a href="#index-gimple_005fomp_005fsingle_005fclauses_005fptr-2982"><code>gimple_omp_single_clauses_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a></li>
<li><a href="#index-gimple_005fomp_005fsingle_005fset_005fclauses-2983"><code>gimple_omp_single_set_clauses</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fSINGLE_003c_002fcode_003e"><code>GIMPLE_OMP_SINGLE</code></a></li>
<li><a href="#index-gimple_005fop-2756"><code>gimple_op</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fop-2721"><code>gimple_op</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-gimple_005fop_005fptr-2757"><code>gimple_op_ptr</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fops-2755"><code>gimple_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fops-2722"><code>gimple_ops</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fPHI_007d-2984"><code>GIMPLE_PHI</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005farg-2991"><code>gimple_phi_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fcapacity-2986"><code>gimple_phi_capacity</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fnum_005fargs-2987"><code>gimple_phi_num_args</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fresult-2988"><code>gimple_phi_result</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fresult_005fptr-2989"><code>gimple_phi_result_ptr</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fset_005farg-2992"><code>gimple_phi_set_arg</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fphi_005fset_005fresult-2990"><code>gimple_phi_set_result</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-gimple_005fplf-2751"><code>gimple_plf</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fRESX_007d-2993"><code>GIMPLE_RESX</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a></li>
<li><a href="#index-gimple_005fresx_005fregion-2995"><code>gimple_resx_region</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a></li>
<li><a href="#index-gimple_005fresx_005fset_005fregion-2996"><code>gimple_resx_set_region</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRESX_003c_002fcode_003e"><code>GIMPLE_RESX</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fRETURN_007d-2997"><code>GIMPLE_RETURN</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a></li>
<li><a href="#index-gimple_005freturn_005fretval-2999"><code>gimple_return_retval</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a></li>
<li><a href="#index-gimple_005freturn_005fset_005fretval-3000"><code>gimple_return_set_retval</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fRETURN_003c_002fcode_003e"><code>GIMPLE_RETURN</code></a></li>
<li><a href="#index-gimple_005fseq_005fadd_005fseq-3029"><code>gimple_seq_add_seq</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fadd_005fstmt-3028"><code>gimple_seq_add_stmt</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005falloc-3037"><code>gimple_seq_alloc</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fcopy-3038"><code>gimple_seq_copy</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fdeep_005fcopy-3030"><code>gimple_seq_deep_copy</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fempty_005fp-3039"><code>gimple_seq_empty_p</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005ffirst-3032"><code>gimple_seq_first</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005finit-3036"><code>gimple_seq_init</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005flast-3033"><code>gimple_seq_last</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005freverse-3031"><code>gimple_seq_reverse</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fset_005ffirst-3035"><code>gimple_seq_set_first</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fset_005flast-3034"><code>gimple_seq_set_last</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fseq_005fsingleton_005fp-3042"><code>gimple_seq_singleton_p</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-gimple_005fset_005fblock-2743"><code>gimple_set_block</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fdef_005fops-2761"><code>gimple_set_def_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fhas_005fvolatile_005fops-2772"><code>gimple_set_has_volatile_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005flocus-2745"><code>gimple_set_locus</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fop-2758"><code>gimple_set_op</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fplf-2750"><code>gimple_set_plf</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fuse_005fops-2763"><code>gimple_set_use_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fvdef_005fops-2767"><code>gimple_set_vdef_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fvisited-2748"><code>gimple_set_visited</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fset_005fvuse_005fops-2765"><code>gimple_set_vuse_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fstatement_005fbase-2710">gimple_statement_base</a>: <a href="#Tuple-representation">Tuple representation</a></li>
<li><a href="#index-gimple_005fstatement_005fwith_005fops-2711">gimple_statement_with_ops</a>: <a href="#Tuple-representation">Tuple representation</a></li>
<li><a href="#index-gimple_005fstored_005fsyms-2769"><code>gimple_stored_syms</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fSWITCH_007d-3001"><code>GIMPLE_SWITCH</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fdefault_005flabel-3010"><code>gimple_switch_default_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005findex-3006"><code>gimple_switch_index</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005flabel-3008"><code>gimple_switch_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fnum_005flabels-3004"><code>gimple_switch_num_labels</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fset_005fdefault_005flabel-3011"><code>gimple_switch_set_default_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fset_005findex-3007"><code>gimple_switch_set_index</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fset_005flabel-3009"><code>gimple_switch_set_label</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-gimple_005fswitch_005fset_005fnum_005flabels-3005"><code>gimple_switch_set_num_labels</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fSWITCH_003c_002fcode_003e"><code>GIMPLE_SWITCH</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fTRY_007d-3012"><code>GIMPLE_TRY</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fcatch_005fis_005fcleanup-3015"><code>gimple_try_catch_is_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fcleanup-3017"><code>gimple_try_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005feval-3016"><code>gimple_try_eval</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fkind-3014"><code>gimple_try_kind</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fset_005fcatch_005fis_005fcleanup-3018"><code>gimple_try_set_catch_is_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fset_005fcleanup-3020"><code>gimple_try_set_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005ftry_005fset_005feval-3019"><code>gimple_try_set_eval</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fTRY_003c_002fcode_003e"><code>GIMPLE_TRY</code></a></li>
<li><a href="#index-gimple_005fuse_005fops-2762"><code>gimple_use_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fvdef_005fops-2766"><code>gimple_vdef_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fvisited_005fp-2749"><code>gimple_visited_p</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fvuse_005fops-2764"><code>gimple_vuse_ops</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-gimple_005fwce_005fcleanup-3023"><code>gimple_wce_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-gimple_005fwce_005fcleanup_005feh_005fonly-3025"><code>gimple_wce_cleanup_eh_only</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-gimple_005fwce_005fset_005fcleanup-3024"><code>gimple_wce_set_cleanup</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-gimple_005fwce_005fset_005fcleanup_005feh_005fonly-3026"><code>gimple_wce_set_cleanup_eh_only</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-g_t_0040code_007bGIMPLE_005fWITH_005fCLEANUP_005fEXPR_007d-3021"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fWITH_005fCLEANUP_005fEXPR_003c_002fcode_003e"><code>GIMPLE_WITH_CLEANUP_EXPR</code></a></li>
<li><a href="#index-gimplification-1682">gimplification</a>: <a href="#Gimplification-pass">Gimplification pass</a></li>
<li><a href="#index-gimplification-1674">gimplification</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-gimplifier-1675">gimplifier</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-gimplify_005fassign-2795"><code>gimplify_assign</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fASSIGN_003c_002fcode_003e"><code>GIMPLE_ASSIGN</code></a></li>
<li><a href="#index-gimplify_005fexpr-1685"><code>gimplify_expr</code></a>: <a href="#Gimplification-pass">Gimplification pass</a></li>
<li><a href="#index-gimplify_005ffunction_005ftree-1684"><code>gimplify_function_tree</code></a>: <a href="#Gimplification-pass">Gimplification pass</a></li>
<li><a href="#index-GLOBAL_005fINIT_005fPRIORITY-2663"><code>GLOBAL_INIT_PRIORITY</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-global_005fregs-3951"><code>global_regs</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-g_t_0040code_007bGO_005fIF_005fLEGITIMATE_005fADDRESS_007d-4265"><code>GO_IF_LEGITIMATE_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-GO_005fIF_005fMODE_005fDEPENDENT_005fADDRESS-4276"><code>GO_IF_MODE_DEPENDENT_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-greater-than-2131">greater than</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-gsi_005fafter_005flabels-3053"><code>gsi_after_labels</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fbb-3055"><code>gsi_bb</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fcommit_005fedge_005finserts-3077"><code>gsi_commit_edge_inserts</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fcommit_005fone_005fedge_005finsert-3076"><code>gsi_commit_one_edge_insert</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fend_005fp-3048"><code>gsi_end_p</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005ffor_005fstmt-3069"><code>gsi_for_stmt</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fafter-3067"><code>gsi_insert_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fbefore-3065"><code>gsi_insert_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fon_005fedge-3073"><code>gsi_insert_on_edge</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fon_005fedge_005fimmediate-3075"><code>gsi_insert_on_edge_immediate</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fseq_005fafter-3068"><code>gsi_insert_seq_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fseq_005fbefore-3066"><code>gsi_insert_seq_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005finsert_005fseq_005fon_005fedge-3074"><code>gsi_insert_seq_on_edge</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flast-3046"><code>gsi_last</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flast_005fbb-3047"><code>gsi_last_bb</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flink_005fafter-3061"><code>gsi_link_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flink_005fbefore-3059"><code>gsi_link_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flink_005fseq_005fafter-3060"><code>gsi_link_seq_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005flink_005fseq_005fbefore-3058"><code>gsi_link_seq_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fmove_005fafter-3070"><code>gsi_move_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fmove_005fbefore-3071"><code>gsi_move_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fmove_005fto_005fbb_005fend-3072"><code>gsi_move_to_bb_end</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fnext-3050"><code>gsi_next</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fone_005fbefore_005fend_005fp-3049"><code>gsi_one_before_end_p</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fprev-3051"><code>gsi_prev</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fremove-3057"><code>gsi_remove</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005freplace-3064"><code>gsi_replace</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fseq-3056"><code>gsi_seq</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fsplit_005fseq_005fafter-3062"><code>gsi_split_seq_after</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fsplit_005fseq_005fbefore-3063"><code>gsi_split_seq_before</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fstart-3044"><code>gsi_start</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fstart_005fbb-3045"><code>gsi_start_bb</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fstmt-3052"><code>gsi_stmt</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gsi_005fstmt_005fptr-3054"><code>gsi_stmt_ptr</code></a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-gt-2130"><code>gt</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bgt_007d-and-attributes-3636"><code>gt</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-GT_005fEXPR-2478"><code>GT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-gtu-2132"><code>gtu</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bgtu_007d-and-attributes-3637"><code>gtu</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-GTY-4914"><code>GTY</code></a>: <a href="#Type-Information">Type Information</a></li>
<li><a href="#index-g_t_0040samp_007bH_007d-in-constraint-3279">‘<samp><span class="samp">H</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-HAmode-1919"><code>HAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-HANDLE_005fPRAGMA_005fPACK_005fWITH_005fEXPANSION-4795"><code>HANDLE_PRAGMA_PACK_WITH_EXPANSION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-HANDLER-2686"><code>HANDLER</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-HANDLER_005fBODY-2702"><code>HANDLER_BODY</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-HANDLER_005fPARMS-2701"><code>HANDLER_PARMS</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-hard-registers-1996">hard registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-HARD_005fFRAME_005fPOINTER_005fIS_005fARG_005fPOINTER-4089"><code>HARD_FRAME_POINTER_IS_ARG_POINTER</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-HARD_005fFRAME_005fPOINTER_005fIS_005fFRAME_005fPOINTER-4088"><code>HARD_FRAME_POINTER_IS_FRAME_POINTER</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-HARD_005fFRAME_005fPOINTER_005fREGNUM-4086"><code>HARD_FRAME_POINTER_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-HARD_005fREGNO_005fCALL_005fPART_005fCLOBBERED-3945"><code>HARD_REGNO_CALL_PART_CLOBBERED</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-HARD_005fREGNO_005fCALLER_005fSAVE_005fMODE-4179"><code>HARD_REGNO_CALLER_SAVE_MODE</code></a>: <a href="#Caller-Saves">Caller Saves</a></li>
<li><a href="#index-HARD_005fREGNO_005fMODE_005fOK-3971"><code>HARD_REGNO_MODE_OK</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-HARD_005fREGNO_005fNREGS-3967"><code>HARD_REGNO_NREGS</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-HARD_005fREGNO_005fNREGS_005fHAS_005fPADDING-3968"><code>HARD_REGNO_NREGS_HAS_PADDING</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-HARD_005fREGNO_005fNREGS_005fWITH_005fPADDING-3969"><code>HARD_REGNO_NREGS_WITH_PADDING</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-HARD_005fREGNO_005fRENAME_005fOK-3973"><code>HARD_REGNO_RENAME_OK</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-HAS_005fINIT_005fSECTION-4543"><code>HAS_INIT_SECTION</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-HAS_005fLONG_005fCOND_005fBRANCH-4763"><code>HAS_LONG_COND_BRANCH</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-HAS_005fLONG_005fUNCOND_005fBRANCH-4764"><code>HAS_LONG_UNCOND_BRANCH</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-HAVE_005fDOS_005fBASED_005fFILE_005fSYSTEM-4872"><code>HAVE_DOS_BASED_FILE_SYSTEM</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-HAVE_005fPOST_005fDECREMENT-4255"><code>HAVE_POST_DECREMENT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPOST_005fINCREMENT-4254"><code>HAVE_POST_INCREMENT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPOST_005fMODIFY_005fDISP-4257"><code>HAVE_POST_MODIFY_DISP</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPOST_005fMODIFY_005fREG-4259"><code>HAVE_POST_MODIFY_REG</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPRE_005fDECREMENT-4253"><code>HAVE_PRE_DECREMENT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPRE_005fINCREMENT-4252"><code>HAVE_PRE_INCREMENT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPRE_005fMODIFY_005fDISP-4256"><code>HAVE_PRE_MODIFY_DISP</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HAVE_005fPRE_005fMODIFY_005fREG-4258"><code>HAVE_PRE_MODIFY_REG</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-HCmode-1931"><code>HCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-HFmode-1900"><code>HFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-high-1989"><code>high</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-HImode-1892"><code>HImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bHImode_007d_002c-in-_0040code_007binsn_007d-2252"><code>HImode</code>, in <code>insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-HONOR_005fREG_005fALLOC_005fORDER-3965"><code>HONOR_REG_ALLOC_ORDER</code></a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-host-configuration-4863">host configuration</a>: <a href="#Host-Config">Host Config</a></li>
<li><a href="#index-host-functions-4865">host functions</a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-host-hooks-4864">host hooks</a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-host-makefile-fragment-4909">host makefile fragment</a>: <a href="#Host-Fragment">Host Fragment</a></li>
<li><a href="#index-HOST_005fBIT_005fBUCKET-4879"><code>HOST_BIT_BUCKET</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-HOST_005fEXECUTABLE_005fSUFFIX-4878"><code>HOST_EXECUTABLE_SUFFIX</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-HOST_005fHOOKS_005fEXTRA_005fSIGNALS-4866"><code>HOST_HOOKS_EXTRA_SIGNALS</code></a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-HOST_005fHOOKS_005fGT_005fPCH_005fALLOC_005fGRANULARITY-4869"><code>HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY</code></a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-HOST_005fHOOKS_005fGT_005fPCH_005fGET_005fADDRESS-4867"><code>HOST_HOOKS_GT_PCH_GET_ADDRESS</code></a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-HOST_005fHOOKS_005fGT_005fPCH_005fUSE_005fADDRESS-4868"><code>HOST_HOOKS_GT_PCH_USE_ADDRESS</code></a>: <a href="#Host-Common">Host Common</a></li>
<li><a href="#index-HOST_005fLACKS_005fINODE_005fNUMBERS-4883"><code>HOST_LACKS_INODE_NUMBERS</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-HOST_005fLONG_005fFORMAT-4892"><code>HOST_LONG_FORMAT</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-HOST_005fLONG_005fLONG_005fFORMAT-4891"><code>HOST_LONG_LONG_FORMAT</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-HOST_005fOBJECT_005fSUFFIX-4877"><code>HOST_OBJECT_SUFFIX</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-HOST_005fPTR_005fPRINTF-4893"><code>HOST_PTR_PRINTF</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-HOT_005fTEXT_005fSECTION_005fNAME-4389"><code>HOT_TEXT_SECTION_NAME</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-HQmode-1910"><code>HQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040samp_007bI_007d-in-constraint-3275">‘<samp><span class="samp">I</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bi_007d-in-constraint-3273">‘<samp><span class="samp">i</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-identifier-2316">identifier</a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IDENTIFIER_005fLENGTH-2320"><code>IDENTIFIER_LENGTH</code></a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IDENTIFIER_005fNODE-2318"><code>IDENTIFIER_NODE</code></a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IDENTIFIER_005fOPNAME_005fP-2321"><code>IDENTIFIER_OPNAME_P</code></a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IDENTIFIER_005fPOINTER-2319"><code>IDENTIFIER_POINTER</code></a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IDENTIFIER_005fTYPENAME_005fP-2322"><code>IDENTIFIER_TYPENAME_P</code></a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-IEEE-754_002d2008-194">IEEE 754-2008</a>: <a href="#Decimal-float-library-routines">Decimal float library routines</a></li>
<li><a href="#index-IF_005fCOND-2688"><code>IF_COND</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-if_005fmarked-4927"><code>if_marked</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-IF_005fSTMT-2687"><code>IF_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-if_005fthen_005felse-2147"><code>if_then_else</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bif_005fthen_005felse_007d-and-attributes-3626"><code>if_then_else</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bif_005fthen_005felse_007d-usage-2182"><code>if_then_else</code> usage</a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-IFCVT_005fEXTRA_005fFIELDS-4815"><code>IFCVT_EXTRA_FIELDS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fINIT_005fEXTRA_005fFIELDS-4814"><code>IFCVT_INIT_EXTRA_FIELDS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fMODIFY_005fCANCEL-4813"><code>IFCVT_MODIFY_CANCEL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fMODIFY_005fFINAL-4812"><code>IFCVT_MODIFY_FINAL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fMODIFY_005fINSN-4811"><code>IFCVT_MODIFY_INSN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fMODIFY_005fMULTIPLE_005fTESTS-4810"><code>IFCVT_MODIFY_MULTIPLE_TESTS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IFCVT_005fMODIFY_005fTESTS-4809"><code>IFCVT_MODIFY_TESTS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-IMAGPART_005fEXPR-2446"><code>IMAGPART_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-Immediate-Uses-3092">Immediate Uses</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-immediate_005foperand-3240"><code>immediate_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-IMMEDIATE_005fPREFIX-4578"><code>IMMEDIATE_PREFIX</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-in_005fstruct-1876"><code>in_struct</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bcode_005flabel_007d-and-_0040code_007bnote_007d-1792"><code>in_struct</code>, in <code>code_label</code> and <code>note</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007binsn_007d-and-_0040code_007bjump_005finsn_007d-and-_0040code_007bcall_005finsn_007d-1788"><code>in_struct</code>, in <code>insn</code> and <code>jump_insn</code> and <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bjump_005finsn_007d-and-_0040code_007bcall_005finsn_007d-1840"><code>in_struct</code>, in <code>insn</code>, <code>jump_insn</code> and <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bmem_007d-1799"><code>in_struct</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bin_005fstruct_007d_002c-in-_0040code_007bsubreg_007d-1860"><code>in_struct</code>, in <code>subreg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-include-3604"><code>include</code></a>: <a href="#Including-Patterns">Including Patterns</a></li>
<li><a href="#index-INCLUDE_005fDEFAULTS-3780"><code>INCLUDE_DEFAULTS</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-inclusive_002dor_002c-bitwise-2092">inclusive-or, bitwise</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-INCOMING_005fFRAME_005fSP_005fOFFSET-4061"><code>INCOMING_FRAME_SP_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-INCOMING_005fREGNO-3957"><code>INCOMING_REGNO</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-INCOMING_005fRETURN_005fADDR_005fRTX-4057"><code>INCOMING_RETURN_ADDR_RTX</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-INCOMING_005fSTACK_005fBOUNDARY-3825"><code>INCOMING_STACK_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-INDEX_005fREG_005fCLASS-4001"><code>INDEX_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-g_t_0040code_007bindirect_005fjump_007d-instruction-pattern-3513"><code>indirect_jump</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-indirect_005foperand-3248"><code>indirect_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-INDIRECT_005fREF-2427"><code>INDIRECT_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-INIT_005fARRAY_005fSECTION_005fASM_005fOP-4400"><code>INIT_ARRAY_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-INIT_005fCUMULATIVE_005fARGS-4134"><code>INIT_CUMULATIVE_ARGS</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-INIT_005fCUMULATIVE_005fINCOMING_005fARGS-4136"><code>INIT_CUMULATIVE_INCOMING_ARGS</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-INIT_005fCUMULATIVE_005fLIBCALL_005fARGS-4135"><code>INIT_CUMULATIVE_LIBCALL_ARGS</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-INIT_005fENVIRONMENT-3775"><code>INIT_ENVIRONMENT</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-INIT_005fEXPANDERS-3806"><code>INIT_EXPANDERS</code></a>: <a href="#Per_002dFunction-Data">Per-Function Data</a></li>
<li><a href="#index-INIT_005fEXPR-2491"><code>INIT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-init_005fmachine_005fstatus-3807"><code>init_machine_status</code></a>: <a href="#Per_002dFunction-Data">Per-Function Data</a></li>
<li><a href="#index-init_005fone_005flibfunc-4237"><code>init_one_libfunc</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-INIT_005fSECTION_005fASM_005fOP-4542"><code>INIT_SECTION_ASM_OP</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-INIT_005fSECTION_005fASM_005fOP-4398"><code>INIT_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-INITIAL_005fELIMINATION_005fOFFSET-4107"><code>INITIAL_ELIMINATION_OFFSET</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-INITIAL_005fFRAME_005fADDRESS_005fRTX-4050"><code>INITIAL_FRAME_ADDRESS_RTX</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-INITIAL_005fFRAME_005fPOINTER_005fOFFSET-4104"><code>INITIAL_FRAME_POINTER_OFFSET</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-initialization-routines-4536">initialization routines</a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-inlining-4715">inlining</a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-insert_005finsn_005fon_005fedge-3189"><code>insert_insn_on_edge</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-insn-2220"><code>insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002ff_007d-1827"><code>insn</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fj_007d-1842"><code>insn</code> and ‘<samp><span class="samp">/j</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fs_007d-1785"><code>insn</code> and ‘<samp><span class="samp">/s</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fu_007d-1774"><code>insn</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007binsn_007d-and-_0040samp_007b_002fv_007d-1777"><code>insn</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-insn-attributes-3616">insn attributes</a>: <a href="#Insn-Attributes">Insn Attributes</a></li>
<li><a href="#index-insn-canonicalization-3577">insn canonicalization</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-insn-includes-3603">insn includes</a>: <a href="#Including-Patterns">Including Patterns</a></li>
<li><a href="#index-insn-lengths_002c-computing-3664">insn lengths, computing</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-insn-splitting-3598">insn splitting</a>: <a href="#Insn-Splitting">Insn Splitting</a></li>
<li><a href="#index-insn_002dattr_002eh-3621"><code>insn-attr.h</code></a>: <a href="#Defining-Attributes">Defining Attributes</a></li>
<li><a href="#index-INSN_005fANNULLED_005fBRANCH_005fP-1771"><code>INSN_ANNULLED_BRANCH_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-INSN_005fCODE-2255"><code>INSN_CODE</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-INSN_005fDELETED_005fP-1776"><code>INSN_DELETED_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-INSN_005fFROM_005fTARGET_005fP-1784"><code>INSN_FROM_TARGET_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-insn_005flist-2279"><code>insn_list</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-INSN_005fREFERENCES_005fARE_005fDELAYED-4802"><code>INSN_REFERENCES_ARE_DELAYED</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-INSN_005fSETS_005fARE_005fDELAYED-4801"><code>INSN_SETS_ARE_DELAYED</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-INSN_005fUID-2215"><code>INSN_UID</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-INSN_005fVAR_005fLOCATION-2250"><code>INSN_VAR_LOCATION</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-insns-2214">insns</a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-insns_002c-generating-3207">insns, generating</a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-insns_002c-recognizing-3209">insns, recognizing</a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-instruction-attributes-3617">instruction attributes</a>: <a href="#Insn-Attributes">Insn Attributes</a></li>
<li><a href="#index-instruction-latency-time-3677">instruction latency time</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-instruction-patterns-3198">instruction patterns</a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-instruction-splitting-3599">instruction splitting</a>: <a href="#Insn-Splitting">Insn Splitting</a></li>
<li><a href="#index-g_t_0040code_007binsv_007d-instruction-pattern-3497"><code>insv</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-INT16_005fTYPE-3904"><code>INT16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT32_005fTYPE-3905"><code>INT32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT64_005fTYPE-3906"><code>INT64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT8_005fTYPE-3903"><code>INT8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fFAST16_005fTYPE-3920"><code>INT_FAST16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fFAST32_005fTYPE-3921"><code>INT_FAST32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fFAST64_005fTYPE-3922"><code>INT_FAST64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fFAST8_005fTYPE-3919"><code>INT_FAST8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fLEAST16_005fTYPE-3912"><code>INT_LEAST16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fLEAST32_005fTYPE-3913"><code>INT_LEAST32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fLEAST64_005fTYPE-3914"><code>INT_LEAST64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fLEAST8_005fTYPE-3911"><code>INT_LEAST8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INT_005fTYPE_005fSIZE-3865"><code>INT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INTEGER_005fCST-2414"><code>INTEGER_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-INTEGER_005fTYPE-2338"><code>INTEGER_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-Interdependence-of-Patterns-3571">Interdependence of Patterns</a>: <a href="#Dependent-Patterns">Dependent Patterns</a></li>
<li><a href="#index-interfacing-to-GCC-output-7">interfacing to GCC output</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-interlock-delays-3678">interlock delays</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-intermediate-representation-lowering-1677">intermediate representation lowering</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-INTMAX_005fTYPE-3900"><code>INTMAX_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-INTPTR_005fTYPE-3927"><code>INTPTR_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-introduction-1">introduction</a>: <a href="#Top">Top</a></li>
<li><a href="#index-INVOKE_005f_005fmain-4548"><code>INVOKE__main</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-ior-2091"><code>ior</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bior_007d-and-attributes-3630"><code>ior</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bior_007d_002c-canonicalization-of-3584"><code>ior</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-g_t_0040code_007bior_0040var_007bm_007d3_007d-instruction-pattern-3370"><code>ior</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-IRA_005fCOVER_005fCLASSES-4024"><code>IRA_COVER_CLASSES</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-IRA_005fHARD_005fREGNO_005fADD_005fCOST_005fMULTIPLIER-3966"><code>IRA_HARD_REGNO_ADD_COST_MULTIPLIER</code></a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-IS_005fASM_005fLOGICAL_005fLINE_005fSEPARATOR-4471"><code>IS_ASM_LOGICAL_LINE_SEPARATOR</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-is_005fgimple_005faddressable-2724"><code>is_gimple_addressable</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fasm_005fval-2725"><code>is_gimple_asm_val</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fassign-2732"><code>is_gimple_assign</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fcall-2733"><code>is_gimple_call</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fcall_005faddr-2726"><code>is_gimple_call_addr</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fconstant-2728"><code>is_gimple_constant</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fdebug-2734"><code>is_gimple_debug</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fip_005finvariant-2730"><code>is_gimple_ip_invariant</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fip_005finvariant_005faddress-2731"><code>is_gimple_ip_invariant_address</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fmem_005fref_005faddr-2727"><code>is_gimple_mem_ref_addr</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fmin_005finvariant-2729"><code>is_gimple_min_invariant</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-is_005fgimple_005fomp-2961"><code>is_gimple_omp</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fOMP_005fPARALLEL_003c_002fcode_003e"><code>GIMPLE_OMP_PARALLEL</code></a></li>
<li><a href="#index-is_005fgimple_005fval-2723"><code>is_gimple_val</code></a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-iterators-in-_0040file_007b_002emd_007d-files-3726">iterators in <samp><span class="file">.md</span></samp> files</a>: <a href="#Iterators">Iterators</a></li>
<li><a href="#index-IV-analysis-on-GIMPLE-3120">IV analysis on GIMPLE</a>: <a href="#Scalar-evolutions">Scalar evolutions</a></li>
<li><a href="#index-IV-analysis-on-RTL-3121">IV analysis on RTL</a>: <a href="#loop_002div">loop-iv</a></li>
<li><a href="#index-jump-1880"><code>jump</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_007d-instruction-pattern-3502"><code>jump</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-jump-instruction-patterns-3572">jump instruction patterns</a>: <a href="#Jump-Patterns">Jump Patterns</a></li>
<li><a href="#index-jump-instructions-and-_0040code_007bset_007d-2181">jump instructions and <code>set</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007bjump_007d_002c-in-_0040code_007bcall_005finsn_007d-1846"><code>jump</code>, in <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_007d_002c-in-_0040code_007binsn_007d-1843"><code>jump</code>, in <code>insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_007d_002c-in-_0040code_007bmem_007d-1802"><code>jump</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-JUMP_005fALIGN-4607"><code>JUMP_ALIGN</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-jump_005finsn-2221"><code>jump_insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002ff_007d-1829"><code>jump_insn</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fs_007d-1786"><code>jump_insn</code> and ‘<samp><span class="samp">/s</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fu_007d-1772"><code>jump_insn</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bjump_005finsn_007d-and-_0040samp_007b_002fv_007d-1779"><code>jump_insn</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-JUMP_005fLABEL-2222"><code>JUMP_LABEL</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-JUMP_005fTABLES_005fIN_005fTEXT_005fSECTION-4405"><code>JUMP_TABLES_IN_TEXT_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-Jumps-2527">Jumps</a>: <a href="#Jumps">Jumps</a></li>
<li><a href="#index-LABEL_005fALIGN-4613"><code>LABEL_ALIGN</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-LABEL_005fALIGN_005fAFTER_005fBARRIER-4609"><code>LABEL_ALIGN_AFTER_BARRIER</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-LABEL_005fALT_005fENTRY_005fP-2230"><code>LABEL_ALT_ENTRY_P</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-LABEL_005fALTERNATE_005fNAME-3162"><code>LABEL_ALTERNATE_NAME</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-LABEL_005fDECL-2386"><code>LABEL_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-LABEL_005fKIND-2228"><code>LABEL_KIND</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-LABEL_005fNUSES-2227"><code>LABEL_NUSES</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-LABEL_005fPRESERVE_005fP-1789"><code>LABEL_PRESERVE_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-label_005fref-1987"><code>label_ref</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007blabel_005fref_007d-and-_0040samp_007b_002fv_007d-1794"><code>label_ref</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007blabel_005fref_007d_002c-RTL-sharing-2296"><code>label_ref</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-LABEL_005fREF_005fNONLOCAL_005fP-1793"><code>LABEL_REF_NONLOCAL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-lang_005fhooks_002egimplify_005fexpr-1686"><code>lang_hooks.gimplify_expr</code></a>: <a href="#Gimplification-pass">Gimplification pass</a></li>
<li><a href="#index-lang_005fhooks_002eparse_005ffile-1672"><code>lang_hooks.parse_file</code></a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-language_002ddependent-trees-2568">language-dependent trees</a>: <a href="#Language_002ddependent-trees">Language-dependent trees</a></li>
<li><a href="#index-language_002dindependent-intermediate-representation-1676">language-independent intermediate representation</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-large-return-values-4169">large return values</a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-LARGEST_005fEXPONENT_005fIS_005fNORMAL-3858"><code>LARGEST_EXPONENT_IS_NORMAL</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-LAST_005fSTACK_005fREG-3986"><code>LAST_STACK_REG</code></a>: <a href="#Stack-Registers">Stack Registers</a></li>
<li><a href="#index-LAST_005fVIRTUAL_005fREGISTER-1999"><code>LAST_VIRTUAL_REGISTER</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007blceil_0040var_007bm_007d_0040var_007bn_007d2_007d-3466"><code>lceil</code><var>m</var><var>n</var><code>2</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LCSSA-3117">LCSSA</a>: <a href="#LCSSA">LCSSA</a></li>
<li><a href="#index-LD_005fFINI_005fSWITCH-4545"><code>LD_FINI_SWITCH</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-LD_005fINIT_005fSWITCH-4544"><code>LD_INIT_SWITCH</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-LDD_005fSUFFIX-4556"><code>LDD_SUFFIX</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-le-2143"><code>le</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007ble_007d-and-attributes-3633"><code>le</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-LE_005fEXPR-2477"><code>LE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-leaf-functions-3977">leaf functions</a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-leaf_005ffunction_005fp-3510"><code>leaf_function_p</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LEAF_005fREG_005fREMAP-3980"><code>LEAF_REG_REMAP</code></a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-LEAF_005fREGISTERS-3979"><code>LEAF_REGISTERS</code></a>: <a href="#Leaf-Functions">Leaf Functions</a></li>
<li><a href="#index-left-rotate-2110">left rotate</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-left-shift-2100">left shift</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-LEGITIMATE_005fPIC_005fOPERAND_005fP-4426"><code>LEGITIMATE_PIC_OPERAND_P</code></a>: <a href="#PIC">PIC</a></li>
<li><a href="#index-LEGITIMIZE_005fRELOAD_005fADDRESS-4271"><code>LEGITIMIZE_RELOAD_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-length-4916"><code>length</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-less-than-2136">less than</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-less-than-or-equal-2144">less than or equal</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-leu-2145"><code>leu</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bleu_007d-and-attributes-3634"><code>leu</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007blfloor_0040var_007bm_007d_0040var_007bn_007d2_007d-3465"><code>lfloor</code><var>m</var><var>n</var><code>2</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LIB2FUNCS_005fEXTRA-4898"><code>LIB2FUNCS_EXTRA</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-LIB_005fSPEC-3752"><code>LIB_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LIBCALL_005fVALUE-4162"><code>LIBCALL_VALUE</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-g_t_0040file_007blibgcc_002ea_007d-4234"><samp><span class="file">libgcc.a</span></samp></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-LIBGCC2_005fCFLAGS-4897"><code>LIBGCC2_CFLAGS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-LIBGCC2_005fHAS_005fDF_005fMODE-3884"><code>LIBGCC2_HAS_DF_MODE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LIBGCC2_005fHAS_005fTF_005fMODE-3886"><code>LIBGCC2_HAS_TF_MODE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LIBGCC2_005fHAS_005fXF_005fMODE-3885"><code>LIBGCC2_HAS_XF_MODE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LIBGCC2_005fLONG_005fDOUBLE_005fTYPE_005fSIZE-3883"><code>LIBGCC2_LONG_DOUBLE_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LIBGCC2_005fUNWIND_005fATTRIBUTE-4858"><code>LIBGCC2_UNWIND_ATTRIBUTE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-LIBGCC_005fSPEC-3753"><code>LIBGCC_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-library-subroutine-names-4233">library subroutine names</a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-LIBRARY_005fPATH_005fENV-4806"><code>LIBRARY_PATH_ENV</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-LIMIT_005fRELOAD_005fCLASS-4012"><code>LIMIT_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-Linear-loop-transformations-framework-3124">Linear loop transformations framework</a>: <a href="#Lambda">Lambda</a></li>
<li><a href="#index-LINK_005fCOMMAND_005fSPEC-3765"><code>LINK_COMMAND_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LINK_005fEH_005fSPEC-3756"><code>LINK_EH_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LINK_005fELIMINATE_005fDUPLICATE_005fLDIRECTORIES-3766"><code>LINK_ELIMINATE_DUPLICATE_LDIRECTORIES</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LINK_005fGCC_005fC_005fSEQUENCE_005fSPEC-3764"><code>LINK_GCC_C_SEQUENCE_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LINK_005fLIBGCC_005fSPECIAL_005f1-3763"><code>LINK_LIBGCC_SPECIAL_1</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LINK_005fSPEC-3751"><code>LINK_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-list-2324">list</a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-Liveness-representation-3194">Liveness representation</a>: <a href="#Liveness-information">Liveness information</a></li>
<li><a href="#index-lo_005fsum-2040"><code>lo_sum</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-load-address-instruction-3287">load address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-LOAD_005fEXTEND_005fOP-4771"><code>LOAD_EXTEND_OP</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bload_005fmultiple_007d-instruction-pattern-3340"><code>load_multiple</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LOCAL_005fALIGNMENT-3838"><code>LOCAL_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-LOCAL_005fCLASS_005fP-2624"><code>LOCAL_CLASS_P</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-LOCAL_005fDECL_005fALIGNMENT-3840"><code>LOCAL_DECL_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-LOCAL_005fINCLUDE_005fDIR-3776"><code>LOCAL_INCLUDE_DIR</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-LOCAL_005fLABEL_005fPREFIX-4576"><code>LOCAL_LABEL_PREFIX</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-LOCAL_005fREGNO-3959"><code>LOCAL_REGNO</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-LOG_005fLINKS-2257"><code>LOG_LINKS</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-Logical-Operators-2719">Logical Operators</a>: <a href="#Logical-Operators">Logical Operators</a></li>
<li><a href="#index-logical_002dand_002c-bitwise-2089">logical-and, bitwise</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007blog_0040var_007bm_007d2_007d-instruction-pattern-3454"><code>log</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LONG_005fACCUM_005fTYPE_005fSIZE-3881"><code>LONG_ACCUM_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fDOUBLE_005fTYPE_005fSIZE-3874"><code>LONG_DOUBLE_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fFRACT_005fTYPE_005fSIZE-3877"><code>LONG_FRACT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fLONG_005fACCUM_005fTYPE_005fSIZE-3882"><code>LONG_LONG_ACCUM_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fLONG_005fFRACT_005fTYPE_005fSIZE-3878"><code>LONG_LONG_FRACT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fLONG_005fTYPE_005fSIZE-3869"><code>LONG_LONG_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-LONG_005fTYPE_005fSIZE-3867"><code>LONG_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-g_t_0040code_007blongjmp_007d-and-automatic-variables-16"><code>longjmp</code> and automatic variables</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-Loop-analysis-3114">Loop analysis</a>: <a href="#Loop-representation">Loop representation</a></li>
<li><a href="#index-Loop-manipulation-3116">Loop manipulation</a>: <a href="#Loop-manipulation">Loop manipulation</a></li>
<li><a href="#index-Loop-querying-3115">Loop querying</a>: <a href="#Loop-querying">Loop querying</a></li>
<li><a href="#index-Loop-representation-3113">Loop representation</a>: <a href="#Loop-representation">Loop representation</a></li>
<li><a href="#index-Loop_002dclosed-SSA-form-3118">Loop-closed SSA form</a>: <a href="#LCSSA">LCSSA</a></li>
<li><a href="#index-LOOP_005fALIGN-4611"><code>LOOP_ALIGN</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-LOOP_005fEXPR-2497"><code>LOOP_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-looping-instruction-patterns-3574">looping instruction patterns</a>: <a href="#Looping-Patterns">Looping Patterns</a></li>
<li><a href="#index-lowering_002c-language_002ddependent-intermediate-representation-1678">lowering, language-dependent intermediate representation</a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-g_t_0040code_007blrint_0040var_007bm_007d_0040var_007bn_007d2_007d-3463"><code>lrint</code><var>m</var><var>n</var><code>2</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007blround_0040var_007bm_007d_0040var_007bn_007d2_007d-3464"><code>lround</code><var>m</var><var>n</var><code>2</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-LSHIFT_005fEXPR-2452"><code>LSHIFT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-lshiftrt-2105"><code>lshiftrt</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007blshiftrt_007d-and-attributes-3650"><code>lshiftrt</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007blshr_0040var_007bm_007d3_007d-instruction-pattern-3436"><code>lshr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-lt-2135"><code>lt</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007blt_007d-and-attributes-3635"><code>lt</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-LT_005fEXPR-2476"><code>LT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-LTGT_005fEXPR-2489"><code>LTGT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-lto-4945">lto</a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-ltrans-4948">ltrans</a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-ltu-2137"><code>ltu</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040samp_007bm_007d-in-constraint-3262">‘<samp><span class="samp">m</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-machine-attributes-4702">machine attributes</a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-machine-description-macros-3733">machine description macros</a>: <a href="#Target-Macros">Target Macros</a></li>
<li><a href="#index-machine-descriptions-3196">machine descriptions</a>: <a href="#Machine-Desc">Machine Desc</a></li>
<li><a href="#index-machine-mode-conversions-2159">machine mode conversions</a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-machine-modes-1888">machine modes</a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-machine-specific-constraints-3313">machine specific constraints</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-machine_002dindependent-predicates-3238">machine-independent predicates</a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-macros_002c-target-description-3735">macros, target description</a>: <a href="#Target-Macros">Target Macros</a></li>
<li><a href="#index-g_t_0040code_007bmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3422"><code>madd</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-MAKE_005fDECL_005fONE_005fONLY-4512"><code>MAKE_DECL_ONE_ONLY</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-make_005fphi_005fnode-2985"><code>make_phi_node</code></a>: <a href="#g_t_003ccode_003eGIMPLE_005fPHI_003c_002fcode_003e"><code>GIMPLE_PHI</code></a></li>
<li><a href="#index-make_005fsafe_005ffrom-3597"><code>make_safe_from</code></a>: <a href="#Expander-Definitions">Expander Definitions</a></li>
<li><a href="#index-makefile-fragment-4894">makefile fragment</a>: <a href="#Fragments">Fragments</a></li>
<li><a href="#index-makefile-targets-1664">makefile targets</a>: <a href="#Makefile">Makefile</a></li>
<li><a href="#index-MALLOC_005fABI_005fALIGNMENT-3828"><code>MALLOC_ABI_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-Manipulating-GIMPLE-statements-2737">Manipulating GIMPLE statements</a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-mark_005fhook-4928"><code>mark_hook</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-marking-roots-4938">marking roots</a>: <a href="#GGC-Roots">GGC Roots</a></li>
<li><a href="#index-MASK_005fRETURN_005fADDR-4596"><code>MASK_RETURN_ADDR</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-match_005fdup-3615"><code>match_dup</code></a>: <a href="#define_005fpeephole2">define_peephole2</a></li>
<li><a href="#index-match_005fdup-3212"><code>match_dup</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-g_t_0040code_007bmatch_005fdup_007d-and-attributes-3666"><code>match_dup</code> and attributes</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-match_005fop_005fdup-3214"><code>match_op_dup</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-match_005foperand-3210"><code>match_operand</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-g_t_0040code_007bmatch_005foperand_007d-and-attributes-3632"><code>match_operand</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-match_005foperator-3213"><code>match_operator</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-match_005fpar_005fdup-3216"><code>match_par_dup</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-match_005fparallel-3215"><code>match_parallel</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-match_005fscratch-3614"><code>match_scratch</code></a>: <a href="#define_005fpeephole2">define_peephole2</a></li>
<li><a href="#index-match_005fscratch-3211"><code>match_scratch</code></a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-matching-constraint-3285">matching constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-matching-operands-3223">matching operands</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-math-library-77">math library</a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-math_002c-in-RTL-2031">math, in RTL</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-MATH_005fLIBRARY-4805"><code>MATH_LIBRARY</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-matherr-4242"><code>matherr</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-MAX_005fBITS_005fPER_005fWORD-3815"><code>MAX_BITS_PER_WORD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-MAX_005fCONDITIONAL_005fEXECUTE-4808"><code>MAX_CONDITIONAL_EXECUTE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-MAX_005fFIXED_005fMODE_005fSIZE-3851"><code>MAX_FIXED_MODE_SIZE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-MAX_005fMOVE_005fMAX-4776"><code>MAX_MOVE_MAX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-MAX_005fOFILE_005fALIGNMENT-3834"><code>MAX_OFILE_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-MAX_005fREGS_005fPER_005fADDRESS-4262"><code>MAX_REGS_PER_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-MAX_005fSTACK_005fALIGNMENT-3833"><code>MAX_STACK_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bmax_0040var_007bm_007d3_007d-instruction-pattern-3377"><code>max</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-may_005ftrap_005fp_002c-tree_005fcould_005ftrap_005fp-3154"><code>may_trap_p, tree_could_trap_p</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-maybe_005fundef-4929"><code>maybe_undef</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-mcount-4203"><code>mcount</code></a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-MD_005fCAN_005fREDIRECT_005fBRANCH-4823"><code>MD_CAN_REDIRECT_BRANCH</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-MD_005fEXEC_005fPREFIX-3769"><code>MD_EXEC_PREFIX</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-MD_005fFALLBACK_005fFRAME_005fSTATE_005fFOR-4073"><code>MD_FALLBACK_FRAME_STATE_FOR</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-MD_005fHANDLE_005fUNWABI-4074"><code>MD_HANDLE_UNWABI</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-MD_005fSTARTFILE_005fPREFIX-3773"><code>MD_STARTFILE_PREFIX</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-MD_005fSTARTFILE_005fPREFIX_005f1-3774"><code>MD_STARTFILE_PREFIX_1</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-MD_005fUNWIND_005fSUPPORT-4072"><code>MD_UNWIND_SUPPORT</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-mem-2027"><code>mem</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fc_007d-1812"><code>mem</code> and ‘<samp><span class="samp">/c</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002ff_007d-1815"><code>mem</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fi_007d-1804"><code>mem</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fj_007d-1801"><code>mem</code> and ‘<samp><span class="samp">/j</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fs_007d-1798"><code>mem</code> and ‘<samp><span class="samp">/s</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fu_007d-1834"><code>mem</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d-and-_0040samp_007b_002fv_007d-1807"><code>mem</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bmem_007d_002c-RTL-sharing-2298"><code>mem</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-MEM_005fADDR_005fSPACE-1731"><code>MEM_ADDR_SPACE</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fALIAS_005fSET-1726"><code>MEM_ALIAS_SET</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fALIGN-1730"><code>MEM_ALIGN</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fEXPR-1727"><code>MEM_EXPR</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fIN_005fSTRUCT_005fP-1797"><code>MEM_IN_STRUCT_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fKEEP_005fALIAS_005fSET_005fP-1800"><code>MEM_KEEP_ALIAS_SET_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fNOTRAP_005fP-1811"><code>MEM_NOTRAP_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fOFFSET-1728"><code>MEM_OFFSET</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fPOINTER-1814"><code>MEM_POINTER</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fREADONLY_005fP-1833"><code>MEM_READONLY_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fREF-2428"><code>MEM_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-MEM_005fSCALAR_005fP-1803"><code>MEM_SCALAR_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEM_005fSIZE-1729"><code>MEM_SIZE</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-MEM_005fVOLATILE_005fP-1806"><code>MEM_VOLATILE_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-MEMBER_005fTYPE_005fFORCES_005fBLK-3849"><code>MEMBER_TYPE_FORCES_BLK</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-memory-model-3112">memory model</a>: <a href="#Memory-model">Memory model</a></li>
<li><a href="#index-memory-reference_002c-nonoffsettable-3295">memory reference, nonoffsettable</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-memory-references-in-constraints-3263">memory references in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007bmemory_005fbarrier_007d-instruction-pattern-3543"><code>memory_barrier</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-MEMORY_005fMOVE_005fCOST-4322"><code>MEMORY_MOVE_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-memory_005foperand-3246"><code>memory_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-METHOD_005fTYPE-2349"><code>METHOD_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-MIN_005fUNITS_005fPER_005fWORD-3817"><code>MIN_UNITS_PER_WORD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-MINIMUM_005fALIGNMENT-3841"><code>MINIMUM_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-MINIMUM_005fATOMIC_005fALIGNMENT-3830"><code>MINIMUM_ATOMIC_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bmin_0040var_007bm_007d3_007d-instruction-pattern-3376"><code>min</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-minus-2041"><code>minus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bminus_007d-and-attributes-3643"><code>minus</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bminus_007d_002c-canonicalization-of-3582"><code>minus</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-MINUS_005fEXPR-2464"><code>MINUS_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-MIPS-coprocessor_002ddefinition-macros-4734">MIPS coprocessor-definition macros</a>: <a href="#MIPS-Coprocessors">MIPS Coprocessors</a></li>
<li><a href="#index-mod-2074"><code>mod</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bmod_007d-and-attributes-3646"><code>mod</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-mode-classes-1942">mode classes</a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-mode-iterators-in-_0040file_007b_002emd_007d-files-3727">mode iterators in <samp><span class="file">.md</span></samp> files</a>: <a href="#Mode-Iterators">Mode Iterators</a></li>
<li><a href="#index-mode-switching-4692">mode switching</a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fACCUM-1949"><code>MODE_ACCUM</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fAFTER-4696"><code>MODE_AFTER</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fBASE_005fREG_005fCLASS-3998"><code>MODE_BASE_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-MODE_005fBASE_005fREG_005fREG_005fCLASS-3999"><code>MODE_BASE_REG_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-MODE_005fCC-4307"><code>MODE_CC</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-MODE_005fCC-1954"><code>MODE_CC</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fCODE_005fBASE_005fREG_005fCLASS-4000"><code>MODE_CODE_BASE_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-MODE_005fCOMPLEX_005fFLOAT-1952"><code>MODE_COMPLEX_FLOAT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fCOMPLEX_005fINT-1951"><code>MODE_COMPLEX_INT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fDECIMAL_005fFLOAT-1946"><code>MODE_DECIMAL_FLOAT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fENTRY-4697"><code>MODE_ENTRY</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fEXIT-4698"><code>MODE_EXIT</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fFLOAT-1945"><code>MODE_FLOAT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fFRACT-1947"><code>MODE_FRACT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fFUNCTION-1953"><code>MODE_FUNCTION</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fINT-1943"><code>MODE_INT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fNEEDED-4695"><code>MODE_NEEDED</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fPARTIAL_005fINT-1944"><code>MODE_PARTIAL_INT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fPRIORITY_005fTO_005fMODE-4699"><code>MODE_PRIORITY_TO_MODE</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-MODE_005fRANDOM-1955"><code>MODE_RANDOM</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fUACCUM-1950"><code>MODE_UACCUM</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODE_005fUFRACT-1948"><code>MODE_UFRACT</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-MODES_005fTIEABLE_005fP-3974"><code>MODES_TIEABLE_P</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-modifiers-in-constraints-3304">modifiers in constraints</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-MODIFY_005fEXPR-2490"><code>MODIFY_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-MODIFY_005fJNI_005fMETHOD_005fCALL-4831"><code>MODIFY_JNI_METHOD_CALL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bmod_0040var_007bm_007d3_007d-instruction-pattern-3365"><code>mod</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-modulo-scheduling-1689">modulo scheduling</a>: <a href="#RTL-passes">RTL passes</a></li>
<li><a href="#index-MOVE_005fBY_005fPIECES_005fP-4328"><code>MOVE_BY_PIECES_P</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-MOVE_005fMAX-4775"><code>MOVE_MAX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-MOVE_005fMAX_005fPIECES-4329"><code>MOVE_MAX_PIECES</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-MOVE_005fRATIO-4327"><code>MOVE_RATIO</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-g_t_0040code_007bmov_0040var_007bm_007d_007d-instruction-pattern-3331"><code>mov</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmovmem_0040var_007bm_007d_007d-instruction-pattern-3474"><code>movmem</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmovmisalign_0040var_007bm_007d_007d-instruction-pattern-3339"><code>movmisalign</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmov_0040var_007bmode_007dcc_007d-instruction-pattern-3498"><code>mov</code><var>mode</var><code>cc</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmovstr_007d-instruction-pattern-3475"><code>movstr</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmovstrict_0040var_007bm_007d_007d-instruction-pattern-3338"><code>movstrict</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3426"><code>msub</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmulhisi3_007d-instruction-pattern-3411"><code>mulhisi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmul_0040var_007bm_007d3_007d-instruction-pattern-3358"><code>mul</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmulqihi3_007d-instruction-pattern-3412"><code>mulqihi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bmulsidi3_007d-instruction-pattern-3413"><code>mulsidi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-mult-2056"><code>mult</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bmult_007d-and-attributes-3644"><code>mult</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bmult_007d_002c-canonicalization-of-3580"><code>mult</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-MULT_005fEXPR-2465"><code>MULT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-MULTILIB_005fDEFAULTS-3767"><code>MULTILIB_DEFAULTS</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-MULTILIB_005fDIRNAMES-4903"><code>MULTILIB_DIRNAMES</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-MULTILIB_005fEXCEPTIONS-4905"><code>MULTILIB_EXCEPTIONS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-MULTILIB_005fEXTRA_005fOPTS-4906"><code>MULTILIB_EXTRA_OPTS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-MULTILIB_005fMATCHES-4904"><code>MULTILIB_MATCHES</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-MULTILIB_005fOPTIONS-4902"><code>MULTILIB_OPTIONS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-multiple-alternative-constraints-3296">multiple alternative constraints</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-MULTIPLE_005fSYMBOL_005fSPACES-4803"><code>MULTIPLE_SYMBOL_SPACES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-multiplication-2059">multiplication</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-multiplication-with-signed-saturation-2061">multiplication with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-multiplication-with-unsigned-saturation-2062">multiplication with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040samp_007bn_007d-in-constraint-3274">‘<samp><span class="samp">n</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-N_005fREG_005fCLASSES-3993"><code>N_REG_CLASSES</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-name-2317">name</a>: <a href="#Identifiers">Identifiers</a></li>
<li><a href="#index-named-address-spaces-4754">named address spaces</a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-named-patterns-and-conditions-3202">named patterns and conditions</a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-names_002c-pattern-3330">names, pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-namespace_002c-scope-2608">namespace, scope</a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-NAMESPACE_005fDECL-2609"><code>NAMESPACE_DECL</code></a>: <a href="#Namespaces">Namespaces</a></li>
<li><a href="#index-NAMESPACE_005fDECL-2393"><code>NAMESPACE_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-NATIVE_005fSYSTEM_005fHEADER_005fDIR-4907"><code>NATIVE_SYSTEM_HEADER_DIR</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-ne-2128"><code>ne</code></a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bne_007d-and-attributes-3640"><code>ne</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-NE_005fEXPR-2481"><code>NE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-g_t_0040code_007bnearbyint_0040var_007bm_007d2_007d-instruction-pattern-3461"><code>nearbyint</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-neg-2050"><code>neg</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bneg_007d-and-attributes-3648"><code>neg</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bneg_007d_002c-canonicalization-of-3578"><code>neg</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-NEGATE_005fEXPR-2433"><code>NEGATE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-negation-2053">negation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-negation-with-signed-saturation-2054">negation with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-negation-with-unsigned-saturation-2055">negation with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bneg_0040var_007bm_007d2_007d-instruction-pattern-3444"><code>neg</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-nested-functions_002c-trampolines-for-4223">nested functions, trampolines for</a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-nested_005fptr-4930"><code>nested_ptr</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-next_005fbb_002c-prev_005fbb_002c-FOR_005fEACH_005fBB-3130"><code>next_bb, prev_bb, FOR_EACH_BB</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-NEXT_005fINSN-2217"><code>NEXT_INSN</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NEXT_005fOBJC_005fRUNTIME-4250"><code>NEXT_OBJC_RUNTIME</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-nil-1706">nil</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-NM_005fFLAGS-4555"><code>NM_FLAGS</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-NO_005fDBX_005fBNSYM_005fENSYM-4648"><code>NO_DBX_BNSYM_ENSYM</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-NO_005fDBX_005fFUNCTION_005fEND-4647"><code>NO_DBX_FUNCTION_END</code></a>: <a href="#DBX-Hooks">DBX Hooks</a></li>
<li><a href="#index-NO_005fDBX_005fGCC_005fMARKER-4651"><code>NO_DBX_GCC_MARKER</code></a>: <a href="#File-Names-and-DBX">File Names and DBX</a></li>
<li><a href="#index-NO_005fDBX_005fMAIN_005fSOURCE_005fDIRECTORY-4650"><code>NO_DBX_MAIN_SOURCE_DIRECTORY</code></a>: <a href="#File-Names-and-DBX">File Names and DBX</a></li>
<li><a href="#index-NO_005fDOLLAR_005fIN_005fLABEL-4799"><code>NO_DOLLAR_IN_LABEL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-NO_005fDOT_005fIN_005fLABEL-4800"><code>NO_DOT_IN_LABEL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-NO_005fFUNCTION_005fCSE-4343"><code>NO_FUNCTION_CSE</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-NO_005fIMPLICIT_005fEXTERN_005fC-4789"><code>NO_IMPLICIT_EXTERN_C</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-NO_005fPROFILE_005fCOUNTERS-4205"><code>NO_PROFILE_COUNTERS</code></a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-NO_005fREGS-3990"><code>NO_REGS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-NON_005fLVALUE_005fEXPR-2447"><code>NON_LVALUE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-nondeterministic-finite-state-automaton-3712">nondeterministic finite state automaton</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-nonimmediate_005foperand-3252"><code>nonimmediate_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-nonlocal-goto-handler-3159">nonlocal goto handler</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-g_t_0040code_007bnonlocal_005fgoto_007d-instruction-pattern-3529"><code>nonlocal_goto</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bnonlocal_005fgoto_005freceiver_007d-instruction-pattern-3530"><code>nonlocal_goto_receiver</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-nonmemory_005foperand-3251"><code>nonmemory_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-nonoffsettable-memory-reference-3294">nonoffsettable memory reference</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007bnop_007d-instruction-pattern-3512"><code>nop</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-NOP_005fEXPR-2448"><code>NOP_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-normal-predicates-3236">normal predicates</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-not-2085"><code>not</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bnot_007d-and-attributes-3629"><code>not</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-not-equal-2129">not equal</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-g_t_0040code_007bnot_007d_002c-canonicalization-of-3579"><code>not</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-note-2233"><code>note</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007bnote_007d-and-_0040samp_007b_002fi_007d-1791"><code>note</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bnote_007d-and-_0040samp_007b_002fv_007d-1782"><code>note</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-NOTE_005fINSN_005fBASIC_005fBLOCK_002c-CODE_005fLABEL_002c-notes-3133"><code>NOTE_INSN_BASIC_BLOCK, CODE_LABEL, notes</code></a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-NOTE_005fINSN_005fBLOCK_005fBEG-2238"><code>NOTE_INSN_BLOCK_BEG</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fBLOCK_005fEND-2239"><code>NOTE_INSN_BLOCK_END</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fDELETED-2236"><code>NOTE_INSN_DELETED</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fDELETED_005fLABEL-2237"><code>NOTE_INSN_DELETED_LABEL</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fEH_005fREGION_005fBEG-2240"><code>NOTE_INSN_EH_REGION_BEG</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fEH_005fREGION_005fEND-2241"><code>NOTE_INSN_EH_REGION_END</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fFUNCTION_005fBEG-2246"><code>NOTE_INSN_FUNCTION_BEG</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fLOOP_005fBEG-2242"><code>NOTE_INSN_LOOP_BEG</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fLOOP_005fCONT-2244"><code>NOTE_INSN_LOOP_CONT</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fLOOP_005fEND-2243"><code>NOTE_INSN_LOOP_END</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fLOOP_005fVTOP-2245"><code>NOTE_INSN_LOOP_VTOP</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fINSN_005fVAR_005fLOCATION-2247"><code>NOTE_INSN_VAR_LOCATION</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fLINE_005fNUMBER-2234"><code>NOTE_LINE_NUMBER</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fSOURCE_005fFILE-2235"><code>NOTE_SOURCE_FILE</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTE_005fVAR_005fLOCATION-2248"><code>NOTE_VAR_LOCATION</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-NOTICE_005fUPDATE_005fCC-4305"><code>NOTICE_UPDATE_CC</code></a>: <a href="#CC0-Condition-Codes">CC0 Condition Codes</a></li>
<li><a href="#index-NUM_005fMACHINE_005fMODES-1958"><code>NUM_MACHINE_MODES</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-NUM_005fMODES_005fFOR_005fMODE_005fSWITCHING-4694"><code>NUM_MODES_FOR_MODE_SWITCHING</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-Number-of-iterations-analysis-3122">Number of iterations analysis</a>: <a href="#Number-of-iterations">Number of iterations</a></li>
<li><a href="#index-g_t_0040samp_007bo_007d-in-constraint-3265">‘<samp><span class="samp">o</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-OBJC_005fGEN_005fMETHOD_005fLABEL-4533"><code>OBJC_GEN_METHOD_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-OBJC_005fJBLEN-4857"><code>OBJC_JBLEN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-OBJECT_005fFORMAT_005fCOFF-4553"><code>OBJECT_FORMAT_COFF</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-OFFSET_005fTYPE-2354"><code>OFFSET_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-offsettable-address-3264">offsettable address</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-OImode-1898"><code>OImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-Omega-a-solver-for-linear-programming-problems-3125">Omega a solver for linear programming problems</a>: <a href="#Omega">Omega</a></li>
<li><a href="#index-OMP_005fATOMIC-2539"><code>OMP_ATOMIC</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fCLAUSE-2540"><code>OMP_CLAUSE</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fCONTINUE-2538"><code>OMP_CONTINUE</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fCRITICAL-2536"><code>OMP_CRITICAL</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fFOR-2530"><code>OMP_FOR</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fMASTER-2534"><code>OMP_MASTER</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fORDERED-2535"><code>OMP_ORDERED</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fPARALLEL-2529"><code>OMP_PARALLEL</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fRETURN-2537"><code>OMP_RETURN</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fSECTION-2533"><code>OMP_SECTION</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fSECTIONS-2531"><code>OMP_SECTIONS</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-OMP_005fSINGLE-2532"><code>OMP_SINGLE</code></a>: <a href="#OpenMP">OpenMP</a></li>
<li><a href="#index-g_t_0040code_007bone_005fcmpl_0040var_007bm_007d2_007d-instruction-pattern-3473"><code>one_cmpl</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-operand-access-1717">operand access</a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-Operand-Access-Routines-3091">Operand Access Routines</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-operand-constraints-3259">operand constraints</a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-Operand-Iterators-3090">Operand Iterators</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-operand-predicates-3233">operand predicates</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-operand-substitution-3218">operand substitution</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-operands-3203"><code>operands</code></a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-operands-3086">operands</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-Operands-2715">Operands</a>: <a href="#Operands">Operands</a></li>
<li><a href="#index-operator-predicates-3234">operator predicates</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-g_t_0040samp_007boptc_002dgen_002eawk_007d-1667">‘<samp><span class="samp">optc-gen.awk</span></samp>’</a>: <a href="#Options">Options</a></li>
<li><a href="#index-Optimization-infrastructure-for-GIMPLE-3084">Optimization infrastructure for GIMPLE</a>: <a href="#Tree-SSA">Tree SSA</a></li>
<li><a href="#index-OPTIMIZE_005fMODE_005fSWITCHING-4693"><code>OPTIMIZE_MODE_SWITCHING</code></a>: <a href="#Mode-Switching">Mode Switching</a></li>
<li><a href="#index-option-specification-files-1666">option specification files</a>: <a href="#Options">Options</a></li>
<li><a href="#index-OPTION_005fDEFAULT_005fSPECS-3743"><code>OPTION_DEFAULT_SPECS</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-optional-hardware-or-system-features-3789">optional hardware or system features</a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-options_002c-directory-search-3606">options, directory search</a>: <a href="#Including-Patterns">Including Patterns</a></li>
<li><a href="#index-order-of-register-allocation-3961">order of register allocation</a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-ordered_005fcomparison_005foperator-3255"><code>ordered_comparison_operator</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-ORDERED_005fEXPR-2482"><code>ORDERED_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-Ordering-of-Patterns-3569">Ordering of Patterns</a>: <a href="#Pattern-Ordering">Pattern Ordering</a></li>
<li><a href="#index-ORIGINAL_005fREGNO-1732"><code>ORIGINAL_REGNO</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-other-register-constraints-3292">other register constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-OUTGOING_005fREG_005fPARM_005fSTACK_005fSPACE-4117"><code>OUTGOING_REG_PARM_STACK_SPACE</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-OUTGOING_005fREGNO-3958"><code>OUTGOING_REGNO</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-output-of-assembler-code-4428">output of assembler code</a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-output-statements-3225">output statements</a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-output-templates-3217">output templates</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-OUTPUT_005fADDR_005fCONST_005fEXTRA-4464"><code>OUTPUT_ADDR_CONST_EXTRA</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-output_005fasm_005finsn-3230"><code>output_asm_insn</code></a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-OUTPUT_005fQUOTED_005fSTRING-4443"><code>OUTPUT_QUOTED_STRING</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-OVERLAPPING_005fREGISTER_005fNAMES-4561"><code>OVERLAPPING_REGISTER_NAMES</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-OVERLOAD-2637"><code>OVERLOAD</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-OVERRIDE_005fABI_005fFORMAT-4133"><code>OVERRIDE_ABI_FORMAT</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-OVL_005fCURRENT-2638"><code>OVL_CURRENT</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-OVL_005fNEXT-2639"><code>OVL_NEXT</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-g_t_0040samp_007bp_007d-in-constraint-3290">‘<samp><span class="samp">p</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-PAD_005fVARARGS_005fDOWN-4140"><code>PAD_VARARGS_DOWN</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-parallel-2189"><code>parallel</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-param_005fis-4921"><code>param_is</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-parameters_002c-c_002b_002b-abi-4740">parameters, c++ abi</a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-parameters_002c-miscellaneous-4762">parameters, miscellaneous</a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-parameters_002c-precompiled-headers-4736">parameters, precompiled headers</a>: <a href="#PCH-Target">PCH Target</a></li>
<li><a href="#index-param_0040var_007bn_007d_005fis-4923"><code>param</code><var>n</var><code>_is</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-parity-2122"><code>parity</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bparity_0040var_007bm_007d2_007d-instruction-pattern-3472"><code>parity</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-PARM_005fBOUNDARY-3822"><code>PARM_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-PARM_005fDECL-2390"><code>PARM_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-PARSE_005fLDD_005fOUTPUT-4557"><code>PARSE_LDD_OUTPUT</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-passes-and-files-of-the-compiler-1668">passes and files of the compiler</a>: <a href="#Passes">Passes</a></li>
<li><a href="#index-passing-arguments-15">passing arguments</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-PATH_005fSEPARATOR-4875"><code>PATH_SEPARATOR</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-PATTERN-2254"><code>PATTERN</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-pattern-conditions-3200">pattern conditions</a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-pattern-names-3329">pattern names</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-Pattern-Ordering-3568">Pattern Ordering</a>: <a href="#Pattern-Ordering">Pattern Ordering</a></li>
<li><a href="#index-patterns-3197">patterns</a>: <a href="#Patterns">Patterns</a></li>
<li><a href="#index-pc-2024"><code>pc</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007bpc_007d-and-attributes-3667"><code>pc</code> and attributes</a>: <a href="#Insn-Lengths">Insn Lengths</a></li>
<li><a href="#index-g_t_0040code_007bpc_007d_002c-RTL-sharing-2292"><code>pc</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-PC_005fREGNUM-3960"><code>PC_REGNUM</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-pc_005frtx-2026"><code>pc_rtx</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-PCC_005fBITFIELD_005fTYPE_005fMATTERS-3845"><code>PCC_BITFIELD_TYPE_MATTERS</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-PCC_005fSTATIC_005fSTRUCT_005fRETURN-4175"><code>PCC_STATIC_STRUCT_RETURN</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-PDImode-1895"><code>PDImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-peephole-optimization_002c-RTL-representation-2190">peephole optimization, RTL representation</a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-peephole-optimizer-definitions-3608">peephole optimizer definitions</a>: <a href="#Peephole-Definitions">Peephole Definitions</a></li>
<li><a href="#index-per_002dfunction-data-3804">per-function data</a>: <a href="#Per_002dFunction-Data">Per-Function Data</a></li>
<li><a href="#index-percent-sign-3220">percent sign</a>: <a href="#Output-Template">Output Template</a></li>
<li><a href="#index-PHI-nodes-3095">PHI nodes</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PHI_005fARG_005fDEF-3100"><code>PHI_ARG_DEF</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PHI_005fARG_005fEDGE-3099"><code>PHI_ARG_EDGE</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PHI_005fARG_005fELT-3098"><code>PHI_ARG_ELT</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PHI_005fNUM_005fARGS-3097"><code>PHI_NUM_ARGS</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PHI_005fRESULT-3096"><code>PHI_RESULT</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-PIC-4423">PIC</a>: <a href="#PIC">PIC</a></li>
<li><a href="#index-PIC_005fOFFSET_005fTABLE_005fREG_005fCALL_005fCLOBBERED-4425"><code>PIC_OFFSET_TABLE_REG_CALL_CLOBBERED</code></a>: <a href="#PIC">PIC</a></li>
<li><a href="#index-PIC_005fOFFSET_005fTABLE_005fREGNUM-4424"><code>PIC_OFFSET_TABLE_REGNUM</code></a>: <a href="#PIC">PIC</a></li>
<li><a href="#index-pipeline-hazard-recognizer-3681">pipeline hazard recognizer</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-Plugins-4944">Plugins</a>: <a href="#Plugins">Plugins</a></li>
<li><a href="#index-plus-2033"><code>plus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bplus_007d-and-attributes-3642"><code>plus</code> and attributes</a>: <a href="#Expressions">Expressions</a></li>
<li><a href="#index-g_t_0040code_007bplus_007d_002c-canonicalization-of-3581"><code>plus</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-PLUS_005fEXPR-2463"><code>PLUS_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-Pmode-4786"><code>Pmode</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-pmode_005fregister_005foperand-3244"><code>pmode_register_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-pointer-2333">pointer</a>: <a href="#Types">Types</a></li>
<li><a href="#index-POINTER_005fPLUS_005fEXPR-2462"><code>POINTER_PLUS_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-POINTER_005fSIZE-3818"><code>POINTER_SIZE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-POINTER_005fTYPE-2346"><code>POINTER_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-POINTERS_005fEXTEND_005fUNSIGNED-3819"><code>POINTERS_EXTEND_UNSIGNED</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-pop_005foperand-3250"><code>pop_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-popcount-2121"><code>popcount</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bpopcount_0040var_007bm_007d2_007d-instruction-pattern-3471"><code>popcount</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-portability-2">portability</a>: <a href="#Portability">Portability</a></li>
<li><a href="#index-position-independent-code-4422">position independent code</a>: <a href="#PIC">PIC</a></li>
<li><a href="#index-post_005fdec-2205"><code>post_dec</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-post_005finc-2206"><code>post_inc</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-post_005fmodify-2207"><code>post_modify</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-POSTDECREMENT_005fEXPR-2439"><code>POSTDECREMENT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-POSTINCREMENT_005fEXPR-2440"><code>POSTINCREMENT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-POWI_005fMAX_005fMULTS-4837"><code>POWI_MAX_MULTS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040code_007bpow_0040var_007bm_007d3_007d-instruction-pattern-3455"><code>pow</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-pragma-4791"><code>pragma</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-pre_005fdec-2203"><code>pre_dec</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-PRE_005fGCC3_005fDWARF_005fFRAME_005fREGISTERS-4098"><code>PRE_GCC3_DWARF_FRAME_REGISTERS</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-pre_005finc-2204"><code>pre_inc</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-pre_005fmodify-2208"><code>pre_modify</code></a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-PREDECREMENT_005fEXPR-2437"><code>PREDECREMENT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-predefined-macros-3782">predefined macros</a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-predicates-3232">predicates</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-predicates-and-machine-modes-3235">predicates and machine modes</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-predication-4315"><code>predication</code></a>: <a href="#Cond-Exec-Macros">Cond Exec Macros</a></li>
<li><a href="#index-predication-3715">predication</a>: <a href="#Conditional-Execution">Conditional Execution</a></li>
<li><a href="#index-predict_002edef-3167"><code>predict.def</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-PREFERRED_005fDEBUGGING_005fTYPE-4623"><code>PREFERRED_DEBUGGING_TYPE</code></a>: <a href="#All-Debuggers">All Debuggers</a></li>
<li><a href="#index-PREFERRED_005fOUTPUT_005fRELOAD_005fCLASS-4010"><code>PREFERRED_OUTPUT_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-PREFERRED_005fRELOAD_005fCLASS-4009"><code>PREFERRED_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-PREFERRED_005fSTACK_005fBOUNDARY-3824"><code>PREFERRED_STACK_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-prefetch-2198"><code>prefetch</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007bprefetch_007d-and-_0040samp_007b_002fv_007d-1870"><code>prefetch</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bprefetch_007d-instruction-pattern-3541"><code>prefetch</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-PREFETCH_005fSCHEDULE_005fBARRIER_005fP-1869"><code>PREFETCH_SCHEDULE_BARRIER_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-PREINCREMENT_005fEXPR-2438"><code>PREINCREMENT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-presence_005fset-3704"><code>presence_set</code></a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-preserving-SSA-form-3102">preserving SSA form</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-preserving-virtual-SSA-form-3103">preserving virtual SSA form</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-prev_005factive_005finsn-3611"><code>prev_active_insn</code></a>: <a href="#define_005fpeephole">define_peephole</a></li>
<li><a href="#index-PREV_005fINSN-2216"><code>PREV_INSN</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-PRINT_005fOPERAND-4566"><code>PRINT_OPERAND</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-PRINT_005fOPERAND_005fADDRESS-4569"><code>PRINT_OPERAND_ADDRESS</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-PRINT_005fOPERAND_005fPUNCT_005fVALID_005fP-4568"><code>PRINT_OPERAND_PUNCT_VALID_P</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-g_t_0040code_007bprobe_005fstack_007d-instruction-pattern-3528"><code>probe_stack</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-processor-functional-units-3676">processor functional units</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-processor-pipeline-description-3675">processor pipeline description</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-product-2060">product</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-profile-feedback-3164">profile feedback</a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-profile-representation-3163">profile representation</a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-PROFILE_005fBEFORE_005fPROLOGUE-4206"><code>PROFILE_BEFORE_PROLOGUE</code></a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-PROFILE_005fHOOK-4204"><code>PROFILE_HOOK</code></a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-profiling_002c-code-generation-4201">profiling, code generation</a>: <a href="#Profiling">Profiling</a></li>
<li><a href="#index-program-counter-2025">program counter</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-prologue-4181">prologue</a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-g_t_0040code_007bprologue_007d-instruction-pattern-3536"><code>prologue</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-PROMOTE_005fMODE-3820"><code>PROMOTE_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-pseudo-registers-1997">pseudo registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-PSImode-1893"><code>PSImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-PTRDIFF_005fTYPE-3896"><code>PTRDIFF_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-purge_005fdead_005fedges-3186"><code>purge_dead_edges</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-purge_005fdead_005fedges-3152"><code>purge_dead_edges</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-push-address-instruction-3288">push address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-PUSH_005fARGS-4111"><code>PUSH_ARGS</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-PUSH_005fARGS_005fREVERSED-4112"><code>PUSH_ARGS_REVERSED</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-push_005foperand-3249"><code>push_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-push_005freload-4272"><code>push_reload</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-PUSH_005fROUNDING-4113"><code>PUSH_ROUNDING</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-g_t_0040code_007bpush_0040var_007bm_007d1_007d-instruction-pattern-3351"><code>push</code><var>m</var><code>1</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-PUT_005fCODE-1704"><code>PUT_CODE</code></a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-PUT_005fMODE-1957"><code>PUT_MODE</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-PUT_005fREG_005fNOTE_005fKIND-2260"><code>PUT_REG_NOTE_KIND</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-PUT_005fSDB_005f-4669"><code>PUT_SDB_</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-QCmode-1930"><code>QCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-QFmode-1899"><code>QFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-QImode-1891"><code>QImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bQImode_007d_002c-in-_0040code_007binsn_007d-2253"><code>QImode</code>, in <code>insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-QQmode-1909"><code>QQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-qualified-type-2578">qualified type</a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-qualified-type-2360">qualified type</a>: <a href="#Types">Types</a></li>
<li><a href="#index-querying-function-unit-reservations-3694">querying function unit reservations</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-question-mark-3298">question mark</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-quotient-2069">quotient</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040samp_007br_007d-in-constraint-3270">‘<samp><span class="samp">r</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-RANGE_005fTEST_005fNON_005fSHORT_005fCIRCUIT-4344"><code>RANGE_TEST_NON_SHORT_CIRCUIT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-RDIV_005fEXPR-2466"><code>RDIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-READONLY_005fDATA_005fSECTION_005fASM_005fOP-4393"><code>READONLY_DATA_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-real-operands-3088">real operands</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-REAL_005fARITHMETIC-4686"><code>REAL_ARITHMETIC</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fCST-2419"><code>REAL_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-REAL_005fLIBGCC_005fSPEC-3754"><code>REAL_LIBGCC_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-REAL_005fNM_005fFILE_005fNAME-4554"><code>REAL_NM_FILE_NAME</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-REAL_005fTYPE-2341"><code>REAL_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-REAL_005fVALUE_005fABS-4688"><code>REAL_VALUE_ABS</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fATOF-4682"><code>REAL_VALUE_ATOF</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fFIX-4680"><code>REAL_VALUE_FIX</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fFROM_005fINT-4691"><code>REAL_VALUE_FROM_INT</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fISINF-4684"><code>REAL_VALUE_ISINF</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fISNAN-4685"><code>REAL_VALUE_ISNAN</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fNEGATE-4687"><code>REAL_VALUE_NEGATE</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fNEGATIVE-4683"><code>REAL_VALUE_NEGATIVE</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fINT-4690"><code>REAL_VALUE_TO_INT</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL128-4479"><code>REAL_VALUE_TO_TARGET_DECIMAL128</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL32-4477"><code>REAL_VALUE_TO_TARGET_DECIMAL32</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fDECIMAL64-4478"><code>REAL_VALUE_TO_TARGET_DECIMAL64</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fDOUBLE-4475"><code>REAL_VALUE_TO_TARGET_DOUBLE</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fLONG_005fDOUBLE-4476"><code>REAL_VALUE_TO_TARGET_LONG_DOUBLE</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTO_005fTARGET_005fSINGLE-4474"><code>REAL_VALUE_TO_TARGET_SINGLE</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-REAL_005fVALUE_005fTRUNCATE-4689"><code>REAL_VALUE_TRUNCATE</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fTYPE-4677"><code>REAL_VALUE_TYPE</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUE_005fUNSIGNED_005fFIX-4681"><code>REAL_VALUE_UNSIGNED_FIX</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUES_005fEQUAL-4678"><code>REAL_VALUES_EQUAL</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REAL_005fVALUES_005fLESS-4679"><code>REAL_VALUES_LESS</code></a>: <a href="#Floating-Point">Floating Point</a></li>
<li><a href="#index-REALPART_005fEXPR-2445"><code>REALPART_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-recog_005fdata_002eoperand-4563"><code>recog_data.operand</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-recognizing-insns-3208">recognizing insns</a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-RECORD_005fTYPE-2616"><code>RECORD_TYPE</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-RECORD_005fTYPE-2351"><code>RECORD_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-redirect_005fedge_005fand_005fbranch-3172"><code>redirect_edge_and_branch</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-redirect_005fedge_005fand_005fbranch_002c-redirect_005fjump-3187"><code>redirect_edge_and_branch, redirect_jump</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fsmax_005f_0040var_007bm_007d_007d-instruction-pattern-3379"><code>reduc_smax_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fsmin_005f_0040var_007bm_007d_007d-instruction-pattern-3378"><code>reduc_smin_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fsplus_005f_0040var_007bm_007d_007d-instruction-pattern-3382"><code>reduc_splus_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fumax_005f_0040var_007bm_007d_007d-instruction-pattern-3381"><code>reduc_umax_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fumin_005f_0040var_007bm_007d_007d-instruction-pattern-3380"><code>reduc_umin_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breduc_005fuplus_005f_0040var_007bm_007d_007d-instruction-pattern-3383"><code>reduc_uplus_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-reference-2334">reference</a>: <a href="#Types">Types</a></li>
<li><a href="#index-REFERENCE_005fTYPE-2347"><code>REFERENCE_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-reg-1995"><code>reg</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007breg_007d-and-_0040samp_007b_002ff_007d-1821"><code>reg</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breg_007d-and-_0040samp_007b_002fi_007d-1818"><code>reg</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breg_007d-and-_0040samp_007b_002fv_007d-1824"><code>reg</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breg_007d_002c-RTL-sharing-2288"><code>reg</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-REG_005fALLOC_005fORDER-3963"><code>REG_ALLOC_ORDER</code></a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-REG_005fBR_005fPRED-2277"><code>REG_BR_PRED</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fBR_005fPROB-2276"><code>REG_BR_PROB</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fBR_005fPROB_005fBASE_002c-BB_005fFREQ_005fBASE_002c-count-3173"><code>REG_BR_PROB_BASE, BB_FREQ_BASE, count</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-REG_005fBR_005fPROB_005fBASE_002c-EDGE_005fFREQUENCY-3170"><code>REG_BR_PROB_BASE, EDGE_FREQUENCY</code></a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-REG_005fCC_005fSETTER-2271"><code>REG_CC_SETTER</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fCC_005fUSER-2272"><code>REG_CC_USER</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fCLASS_005fCONTENTS-3995"><code>REG_CLASS_CONTENTS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-reg_005fclass_005fcontents-3953"><code>reg_class_contents</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-REG_005fCLASS_005fFROM_005fCONSTRAINT-4029"><code>REG_CLASS_FROM_CONSTRAINT</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-REG_005fCLASS_005fFROM_005fLETTER-4028"><code>REG_CLASS_FROM_LETTER</code></a>: <a href="#Old-Constraints">Old Constraints</a></li>
<li><a href="#index-REG_005fCLASS_005fNAMES-3994"><code>REG_CLASS_NAMES</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REG_005fCROSSING_005fJUMP-2267"><code>REG_CROSSING_JUMP</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fDEAD-2261"><code>REG_DEAD</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fDEAD_002c-REG_005fUNUSED-3195"><code>REG_DEAD, REG_UNUSED</code></a>: <a href="#Liveness-information">Liveness information</a></li>
<li><a href="#index-REG_005fDEP_005fANTI-2275"><code>REG_DEP_ANTI</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fDEP_005fOUTPUT-2274"><code>REG_DEP_OUTPUT</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fDEP_005fTRUE-2273"><code>REG_DEP_TRUE</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fEH_005fREGION_002c-EDGE_005fABNORMAL_005fCALL-3153"><code>REG_EH_REGION, EDGE_ABNORMAL_CALL</code></a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-REG_005fEQUAL-2270"><code>REG_EQUAL</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fEQUIV-2269"><code>REG_EQUIV</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fEXPR-1733"><code>REG_EXPR</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-REG_005fFRAME_005fRELATED_005fEXPR-2278"><code>REG_FRAME_RELATED_EXPR</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fFUNCTION_005fVALUE_005fP-1817"><code>REG_FUNCTION_VALUE_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-REG_005fINC-2263"><code>REG_INC</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-g_t_0040code_007breg_005flabel_007d-and-_0040samp_007b_002fv_007d-1795"><code>reg_label</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-REG_005fLABEL_005fOPERAND-2265"><code>REG_LABEL_OPERAND</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fLABEL_005fTARGET-2266"><code>REG_LABEL_TARGET</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-reg_005fnames-4567"><code>reg_names</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-reg_005fnames-3952"><code>reg_names</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-REG_005fNONNEG-2264"><code>REG_NONNEG</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fNOTE_005fKIND-2259"><code>REG_NOTE_KIND</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fNOTES-2258"><code>REG_NOTES</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fOFFSET-1734"><code>REG_OFFSET</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-REG_005fOK_005fSTRICT-4266"><code>REG_OK_STRICT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-REG_005fPARM_005fSTACK_005fSPACE-4116"><code>REG_PARM_STACK_SPACE</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-g_t_0040code_007bREG_005fPARM_005fSTACK_005fSPACE_007d_002c-and-_0040code_007bFUNCTION_005fARG_007d-4126"><code>REG_PARM_STACK_SPACE</code>, and <code>FUNCTION_ARG</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-REG_005fPOINTER-1820"><code>REG_POINTER</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-REG_005fSETJMP-2268"><code>REG_SETJMP</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fUNUSED-2262"><code>REG_UNUSED</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-REG_005fUSERVAR_005fP-1823"><code>REG_USERVAR_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-regclass_005ffor_005fconstraint-3327"><code>regclass_for_constraint</code></a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-register-allocation-order-3962">register allocation order</a>: <a href="#Allocation-Order">Allocation Order</a></li>
<li><a href="#index-register-class-definitions-3987">register class definitions</a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-register-class-preference-constraints-3302">register class preference constraints</a>: <a href="#Class-Preferences">Class Preferences</a></li>
<li><a href="#index-register-pairs-3972">register pairs</a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-Register-Transfer-Language-_0028RTL_0029-1694">Register Transfer Language (RTL)</a>: <a href="#RTL">RTL</a></li>
<li><a href="#index-register-usage-3933">register usage</a>: <a href="#Registers">Registers</a></li>
<li><a href="#index-REGISTER_005fMOVE_005fCOST-4320"><code>REGISTER_MOVE_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-REGISTER_005fNAMES-4559"><code>REGISTER_NAMES</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-register_005foperand-3243"><code>register_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-REGISTER_005fPREFIX-4575"><code>REGISTER_PREFIX</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-REGISTER_005fTARGET_005fPRAGMAS-4792"><code>REGISTER_TARGET_PRAGMAS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-registers-arguments-4122">registers arguments</a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-registers-in-constraints-3271">registers in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-REGMODE_005fNATURAL_005fSIZE-3970"><code>REGMODE_NATURAL_SIZE</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-REGNO_005fMODE_005fCODE_005fOK_005fFOR_005fBASE_005fP-4005"><code>REGNO_MODE_CODE_OK_FOR_BASE_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REGNO_005fMODE_005fOK_005fFOR_005fBASE_005fP-4003"><code>REGNO_MODE_OK_FOR_BASE_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REGNO_005fMODE_005fOK_005fFOR_005fREG_005fBASE_005fP-4004"><code>REGNO_MODE_OK_FOR_REG_BASE_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REGNO_005fOK_005fFOR_005fBASE_005fP-4002"><code>REGNO_OK_FOR_BASE_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REGNO_005fOK_005fFOR_005fINDEX_005fP-4006"><code>REGNO_OK_FOR_INDEX_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-REGNO_005fREG_005fCLASS-3996"><code>REGNO_REG_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-regs_005fever_005flive-4184"><code>regs_ever_live</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-regular-expressions-3683">regular expressions</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-relative-costs-4318">relative costs</a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-RELATIVE_005fPREFIX_005fNOT_005fLINKDIR-3768"><code>RELATIVE_PREFIX_NOT_LINKDIR</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-reload_005fcompleted-3509"><code>reload_completed</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breload_005fin_007d-instruction-pattern-3336"><code>reload_in</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-reload_005fin_005fprogress-3334"><code>reload_in_progress</code></a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007breload_005fout_007d-instruction-pattern-3337"><code>reload_out</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-reloading-1691">reloading</a>: <a href="#RTL-passes">RTL passes</a></li>
<li><a href="#index-remainder-2076">remainder</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bremainder_0040var_007bm_007d3_007d-instruction-pattern-3450"><code>remainder</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-reorder-4934"><code>reorder</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-representation-of-RTL-1693">representation of RTL</a>: <a href="#RTL">RTL</a></li>
<li><a href="#index-reservation-delays-3680">reservation delays</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-rest_005fof_005fdecl_005fcompilation-1679"><code>rest_of_decl_compilation</code></a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-rest_005fof_005ftype_005fcompilation-1680"><code>rest_of_type_compilation</code></a>: <a href="#Parsing-pass">Parsing pass</a></li>
<li><a href="#index-g_t_0040code_007brestore_005fstack_005fblock_007d-instruction-pattern-3523"><code>restore_stack_block</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007brestore_005fstack_005ffunction_007d-instruction-pattern-3524"><code>restore_stack_function</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007brestore_005fstack_005fnonlocal_007d-instruction-pattern-3525"><code>restore_stack_nonlocal</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-RESULT_005fDECL-2394"><code>RESULT_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-return-2185"><code>return</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007breturn_007d-instruction-pattern-3508"><code>return</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-return-values-in-registers-4157">return values in registers</a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-RETURN_005fADDR_005fIN_005fPREVIOUS_005fFRAME-4056"><code>RETURN_ADDR_IN_PREVIOUS_FRAME</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-RETURN_005fADDR_005fOFFSET-4069"><code>RETURN_ADDR_OFFSET</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-RETURN_005fADDR_005fRTX-4055"><code>RETURN_ADDR_RTX</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-RETURN_005fADDRESS_005fPOINTER_005fREGNUM-4090"><code>RETURN_ADDRESS_POINTER_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-RETURN_005fEXPR-2692"><code>RETURN_EXPR</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-RETURN_005fSTMT-2691"><code>RETURN_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-return_005fval-1878"><code>return_val</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bcall_005finsn_007d-1765"><code>return_val</code>, in <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bmem_007d-1805"><code>return_val</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007breg_007d-1819"><code>return_val</code>, in <code>reg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007breturn_005fval_007d_002c-in-_0040code_007bsymbol_005fref_007d-1865"><code>return_val</code>, in <code>symbol_ref</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-returning-aggregate-values-4170">returning aggregate values</a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-returning-structures-and-unions-13">returning structures and unions</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-reverse-probability-3171">reverse probability</a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-REVERSE_005fCONDEXEC_005fPREDICATES_005fP-4316"><code>REVERSE_CONDEXEC_PREDICATES_P</code></a>: <a href="#Cond-Exec-Macros">Cond Exec Macros</a></li>
<li><a href="#index-REVERSE_005fCONDITION-4311"><code>REVERSE_CONDITION</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-REVERSIBLE_005fCC_005fMODE-4310"><code>REVERSIBLE_CC_MODE</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-right-rotate-2112">right rotate</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-right-shift-2106">right shift</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007brint_0040var_007bm_007d2_007d-instruction-pattern-3462"><code>rint</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-RISC-3686">RISC</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-roots_002c-marking-4937">roots, marking</a>: <a href="#GGC-Roots">GGC Roots</a></li>
<li><a href="#index-rotate-2108"><code>rotate</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-rotatert-2111"><code>rotatert</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007brotl_0040var_007bm_007d3_007d-instruction-pattern-3437"><code>rotl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007brotr_0040var_007bm_007d3_007d-instruction-pattern-3438"><code>rotr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-ROUND_005fDIV_005fEXPR-2470"><code>ROUND_DIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-ROUND_005fMOD_005fEXPR-2474"><code>ROUND_MOD_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-ROUND_005fTOWARDS_005fZERO-3857"><code>ROUND_TOWARDS_ZERO</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-ROUND_005fTYPE_005fALIGN-3850"><code>ROUND_TYPE_ALIGN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bround_0040var_007bm_007d2_007d-instruction-pattern-3459"><code>round</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-RSHIFT_005fEXPR-2453"><code>RSHIFT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-RTL-addition-2037">RTL addition</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-addition-with-signed-saturation-2038">RTL addition with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-addition-with-unsigned-saturation-2039">RTL addition with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-classes-1707">RTL classes</a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-RTL-comparison-2049">RTL comparison</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-comparison-operations-2124">RTL comparison operations</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-RTL-constant-expression-types-1974">RTL constant expression types</a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-RTL-constants-1973">RTL constants</a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-RTL-declarations-2175">RTL declarations</a>: <a href="#RTL-Declarations">RTL Declarations</a></li>
<li><a href="#index-RTL-difference-2044">RTL difference</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-expression-1699">RTL expression</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTL-expressions-for-arithmetic-2032">RTL expressions for arithmetic</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-format-1711">RTL format</a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-RTL-format-characters-1712">RTL format characters</a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-RTL-function_002dcall-insns-2282">RTL function-call insns</a>: <a href="#Calls">Calls</a></li>
<li><a href="#index-RTL-insn-template-3205">RTL insn template</a>: <a href="#RTL-Template">RTL Template</a></li>
<li><a href="#index-RTL-integers-1696">RTL integers</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTL-memory-expressions-1994">RTL memory expressions</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-RTL-object-types-1695">RTL object types</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTL-postdecrement-2202">RTL postdecrement</a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-RTL-postincrement-2200">RTL postincrement</a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-RTL-predecrement-2201">RTL predecrement</a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-RTL-preincrement-2199">RTL preincrement</a>: <a href="#Incdec">Incdec</a></li>
<li><a href="#index-RTL-register-expressions-1993">RTL register expressions</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-RTL-representation-1692">RTL representation</a>: <a href="#RTL">RTL</a></li>
<li><a href="#index-RTL-side-effect-expressions-2179">RTL side effect expressions</a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-RTL-strings-1697">RTL strings</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTL-structure-sharing-assumptions-2287">RTL structure sharing assumptions</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-RTL-subtraction-2045">RTL subtraction</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-subtraction-with-signed-saturation-2046">RTL subtraction with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-subtraction-with-unsigned-saturation-2047">RTL subtraction with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-sum-2036">RTL sum</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-RTL-vectors-1698">RTL vectors</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTL_005fCONST_005fCALL_005fP-1760"><code>RTL_CONST_CALL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-RTL_005fCONST_005fOR_005fPURE_005fCALL_005fP-1766"><code>RTL_CONST_OR_PURE_CALL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-RTL_005fLOOPING_005fCONST_005fOR_005fPURE_005fCALL_005fP-1768"><code>RTL_LOOPING_CONST_OR_PURE_CALL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-RTL_005fPURE_005fCALL_005fP-1763"><code>RTL_PURE_CALL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-RTX-_0028See-RTL_0029-1700">RTX (See RTL)</a>: <a href="#RTL-Objects">RTL Objects</a></li>
<li><a href="#index-RTX-codes_002c-classes-of-1709">RTX codes, classes of</a>: <a href="#RTL-Classes">RTL Classes</a></li>
<li><a href="#index-RTX_005fFRAME_005fRELATED_005fP-1826"><code>RTX_FRAME_RELATED_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-run_002dtime-conventions-8">run-time conventions</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-run_002dtime-target-specification-3781">run-time target specification</a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-g_t_0040samp_007bs_007d-in-constraint-3280">‘<samp><span class="samp">s</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-same_005ftype_005fp-2382"><code>same_type_p</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-SAmode-1920"><code>SAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-sat_005ffract-2172"><code>sat_fract</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-g_t_0040code_007bsatfract_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3492"><code>satfract</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsatfractuns_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3494"><code>satfractuns</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-satisfies_005fconstraint_005f-3325"><code>satisfies_constraint_</code></a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-SAVE_005fEXPR-2502"><code>SAVE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-g_t_0040code_007bsave_005fstack_005fblock_007d-instruction-pattern-3520"><code>save_stack_block</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsave_005fstack_005ffunction_007d-instruction-pattern-3521"><code>save_stack_function</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsave_005fstack_005fnonlocal_007d-instruction-pattern-3522"><code>save_stack_nonlocal</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-SBSS_005fSECTION_005fASM_005fOP-4395"><code>SBSS_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-Scalar-evolutions-3119">Scalar evolutions</a>: <a href="#Scalar-evolutions">Scalar evolutions</a></li>
<li><a href="#index-scalars_002c-returned-as-values-4159">scalars, returned as values</a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-SCHED_005fGROUP_005fP-1836"><code>SCHED_GROUP_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SCmode-1932"><code>SCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-scratch-2019"><code>scratch</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-scratch-operands-2020">scratch operands</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007bscratch_007d_002c-RTL-sharing-2297"><code>scratch</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-scratch_005foperand-3245"><code>scratch_operand</code></a>: <a href="#Machine_002dIndependent-Predicates">Machine-Independent Predicates</a></li>
<li><a href="#index-SDATA_005fSECTION_005fASM_005fOP-4392"><code>SDATA_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-SDB_005fALLOW_005fFORWARD_005fREFERENCES-4672"><code>SDB_ALLOW_FORWARD_REFERENCES</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-SDB_005fALLOW_005fUNKNOWN_005fREFERENCES-4671"><code>SDB_ALLOW_UNKNOWN_REFERENCES</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-SDB_005fDEBUGGING_005fINFO-4654"><code>SDB_DEBUGGING_INFO</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-SDB_005fDELIM-4670"><code>SDB_DELIM</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-SDB_005fOUTPUT_005fSOURCE_005fLINE-4673"><code>SDB_OUTPUT_SOURCE_LINE</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-SDmode-1905"><code>SDmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bsdot_005fprod_0040var_007bm_007d_007d-instruction-pattern-3384"><code>sdot_prod</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-search-options-3607">search options</a>: <a href="#Including-Patterns">Including Patterns</a></li>
<li><a href="#index-SECONDARY_005fINPUT_005fRELOAD_005fCLASS-4015"><code>SECONDARY_INPUT_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SECONDARY_005fMEMORY_005fNEEDED-4017"><code>SECONDARY_MEMORY_NEEDED</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SECONDARY_005fMEMORY_005fNEEDED_005fMODE-4019"><code>SECONDARY_MEMORY_NEEDED_MODE</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SECONDARY_005fMEMORY_005fNEEDED_005fRTX-4018"><code>SECONDARY_MEMORY_NEEDED_RTX</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SECONDARY_005fOUTPUT_005fRELOAD_005fCLASS-4016"><code>SECONDARY_OUTPUT_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SECONDARY_005fRELOAD_005fCLASS-4014"><code>SECONDARY_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-SELECT_005fCC_005fMODE-4308"><code>SELECT_CC_MODE</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-sequence-2192"><code>sequence</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-Sequence-iterators-3043">Sequence iterators</a>: <a href="#Sequence-iterators">Sequence iterators</a></li>
<li><a href="#index-set-2180"><code>set</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007bset_007d-and-_0040samp_007b_002ff_007d-1831"><code>set</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SET_005fASM_005fOP-4528"><code>SET_ASM_OP</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-set_005fattr-3658"><code>set_attr</code></a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-set_005fattr_005falternative-3659"><code>set_attr_alternative</code></a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-set_005fbb_005fseq-3041"><code>set_bb_seq</code></a>: <a href="#GIMPLE-sequences">GIMPLE sequences</a></li>
<li><a href="#index-SET_005fBY_005fPIECES_005fP-4333"><code>SET_BY_PIECES_P</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-SET_005fDEST-2183"><code>SET_DEST</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-SET_005fIS_005fRETURN_005fP-1841"><code>SET_IS_RETURN_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SET_005fLABEL_005fKIND-2229"><code>SET_LABEL_KIND</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-set_005foptab_005flibfunc-4236"><code>set_optab_libfunc</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-SET_005fRATIO-4332"><code>SET_RATIO</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-SET_005fSRC-2184"><code>SET_SRC</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-SET_005fTYPE_005fSTRUCTURAL_005fEQUALITY-2374"><code>SET_TYPE_STRUCTURAL_EQUALITY</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-g_t_0040code_007bsetmem_0040var_007bm_007d_007d-instruction-pattern-3476"><code>setmem</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-SETUP_005fFRAME_005fADDRESSES-4052"><code>SETUP_FRAME_ADDRESSES</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-SF_005fSIZE-3887"><code>SF_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-SFmode-1902"><code>SFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-sharing-of-RTL-components-2286">sharing of RTL components</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-shift-2101">shift</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-SHIFT_005fCOUNT_005fTRUNCATED-4777"><code>SHIFT_COUNT_TRUNCATED</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-SHLIB_005fSUFFIX-4558"><code>SHLIB_SUFFIX</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-SHORT_005fACCUM_005fTYPE_005fSIZE-3879"><code>SHORT_ACCUM_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-SHORT_005fFRACT_005fTYPE_005fSIZE-3875"><code>SHORT_FRACT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-SHORT_005fIMMEDIATES_005fSIGN_005fEXTEND-4772"><code>SHORT_IMMEDIATES_SIGN_EXTEND</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-SHORT_005fTYPE_005fSIZE-3866"><code>SHORT_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-g_t_0040code_007bsibcall_005fepilogue_007d-instruction-pattern-3538"><code>sibcall_epilogue</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-sibling-call-3155">sibling call</a>: <a href="#Edges">Edges</a></li>
<li><a href="#index-SIBLING_005fCALL_005fP-1844"><code>SIBLING_CALL_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SIG_005fATOMIC_005fTYPE-3902"><code>SIG_ATOMIC_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-sign_005fextend-2160"><code>sign_extend</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-sign_005fextract-2150"><code>sign_extract</code></a>: <a href="#Bit_002dFields">Bit-Fields</a></li>
<li><a href="#index-g_t_0040code_007bsign_005fextract_007d_002c-canonicalization-of-3589"><code>sign_extract</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-signed-division-2067">signed division</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-signed-division-with-signed-saturation-2068">signed division with signed saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-signed-maximum-2081">signed maximum</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-signed-minimum-2080">signed minimum</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-SImode-1894"><code>SImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-simple-constraints-3261">simple constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-sincos-math-function_002c-implicit-usage-4248">sincos math function, implicit usage</a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-g_t_0040code_007bsin_0040var_007bm_007d2_007d-instruction-pattern-3452"><code>sin</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-SIZE_005fASM_005fOP-4493"><code>SIZE_ASM_OP</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-SIZE_005fTYPE-3895"><code>SIZE_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-skip-4917"><code>skip</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-SLOW_005fBYTE_005fACCESS-4325"><code>SLOW_BYTE_ACCESS</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-SLOW_005fUNALIGNED_005fACCESS-4326"><code>SLOW_UNALIGNED_ACCESS</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-smax-2079"><code>smax</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-smin-2078"><code>smin</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-sms_002c-swing_002c-software-pipelining-1690">sms, swing, software pipelining</a>: <a href="#RTL-passes">RTL passes</a></li>
<li><a href="#index-g_t_0040code_007bsmul_0040var_007bm_007d3_005fhighpart_007d-instruction-pattern-3420"><code>smul</code><var>m</var><code>3_highpart</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-soft-float-library-75">soft float library</a>: <a href="#Soft-float-library-routines">Soft float library routines</a></li>
<li><a href="#index-special-4936"><code>special</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-special-predicates-3237">special predicates</a>: <a href="#Predicates">Predicates</a></li>
<li><a href="#index-SPECS-4908"><code>SPECS</code></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-speed-of-instructions-4319">speed of instructions</a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-split_005fblock-3188"><code>split_block</code></a>: <a href="#Maintaining-the-CFG">Maintaining the CFG</a></li>
<li><a href="#index-splitting-instructions-3600">splitting instructions</a>: <a href="#Insn-Splitting">Insn Splitting</a></li>
<li><a href="#index-SQmode-1911"><code>SQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-sqrt-2116"><code>sqrt</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bsqrt_0040var_007bm_007d2_007d-instruction-pattern-3448"><code>sqrt</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-square-root-2117">square root</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fabs-2114"><code>ss_abs</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fashift-2098"><code>ss_ashift</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fdiv-2065"><code>ss_div</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fminus-2042"><code>ss_minus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fmult-2057"><code>ss_mult</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fneg-2051"><code>ss_neg</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005fplus-2034"><code>ss_plus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-ss_005ftruncate-2164"><code>ss_truncate</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-SSA-3093">SSA</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-SSA_005fNAME_005fDEF_005fSTMT-3105"><code>SSA_NAME_DEF_STMT</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-SSA_005fNAME_005fVERSION-3106"><code>SSA_NAME_VERSION</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-g_t_0040code_007bssadd_0040var_007bm_007d3_007d-instruction-pattern-3353"><code>ssadd</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssashl_0040var_007bm_007d3_007d-instruction-pattern-3433"><code>ssashl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssdiv_0040var_007bm_007d3_007d-instruction-pattern-3362"><code>ssdiv</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3424"><code>ssmadd</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3428"><code>ssmsub</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssmul_0040var_007bm_007d3_007d-instruction-pattern-3359"><code>ssmul</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssneg_0040var_007bm_007d2_007d-instruction-pattern-3445"><code>ssneg</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsssub_0040var_007bm_007d3_007d-instruction-pattern-3356"><code>sssub</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bssum_005fwiden_0040var_007bm3_007d_007d-instruction-pattern-3386"><code>ssum_widen</code><var>m3</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-stack-arguments-4109">stack arguments</a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-stack-frame-layout-4039">stack frame layout</a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-stack-smashing-protection-4210">stack smashing protection</a>: <a href="#Stack-Smashing-Protection">Stack Smashing Protection</a></li>
<li><a href="#index-STACK_005fALIGNMENT_005fNEEDED-4046"><code>STACK_ALIGNMENT_NEEDED</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-STACK_005fBOUNDARY-3823"><code>STACK_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-STACK_005fCHECK_005fBUILTIN-4076"><code>STACK_CHECK_BUILTIN</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fFIXED_005fFRAME_005fSIZE-4082"><code>STACK_CHECK_FIXED_FRAME_SIZE</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fMAX_005fFRAME_005fSIZE-4081"><code>STACK_CHECK_MAX_FRAME_SIZE</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fMAX_005fVAR_005fSIZE-4083"><code>STACK_CHECK_MAX_VAR_SIZE</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fMOVING_005fSP-4079"><code>STACK_CHECK_MOVING_SP</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fPROBE_005fINTERVAL_005fEXP-4078"><code>STACK_CHECK_PROBE_INTERVAL_EXP</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fPROTECT-4080"><code>STACK_CHECK_PROTECT</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fCHECK_005fSTATIC_005fBUILTIN-4077"><code>STACK_CHECK_STATIC_BUILTIN</code></a>: <a href="#Stack-Checking">Stack Checking</a></li>
<li><a href="#index-STACK_005fDYNAMIC_005fOFFSET-4049"><code>STACK_DYNAMIC_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040code_007bSTACK_005fDYNAMIC_005fOFFSET_007d-and-virtual-registers-2008"><code>STACK_DYNAMIC_OFFSET</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-STACK_005fGROWS_005fDOWNWARD-4041"><code>STACK_GROWS_DOWNWARD</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-STACK_005fPARMS_005fIN_005fREG_005fPARM_005fAREA-4118"><code>STACK_PARMS_IN_REG_PARM_AREA</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-STACK_005fPOINTER_005fOFFSET-4047"><code>STACK_POINTER_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040code_007bSTACK_005fPOINTER_005fOFFSET_007d-and-virtual-registers-2011"><code>STACK_POINTER_OFFSET</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-STACK_005fPOINTER_005fREGNUM-4084"><code>STACK_POINTER_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-g_t_0040code_007bSTACK_005fPOINTER_005fREGNUM_007d-and-virtual-registers-2009"><code>STACK_POINTER_REGNUM</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-stack_005fpointer_005frtx-4094"><code>stack_pointer_rtx</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-g_t_0040code_007bstack_005fprotect_005fset_007d-instruction-pattern-3565"><code>stack_protect_set</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bstack_005fprotect_005ftest_007d-instruction-pattern-3566"><code>stack_protect_test</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-STACK_005fPUSH_005fCODE-4042"><code>STACK_PUSH_CODE</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-STACK_005fREG_005fCOVER_005fCLASS-3984"><code>STACK_REG_COVER_CLASS</code></a>: <a href="#Stack-Registers">Stack Registers</a></li>
<li><a href="#index-STACK_005fREGS-3983"><code>STACK_REGS</code></a>: <a href="#Stack-Registers">Stack Registers</a></li>
<li><a href="#index-STACK_005fSAVEAREA_005fMODE-3852"><code>STACK_SAVEAREA_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-STACK_005fSIZE_005fMODE-3853"><code>STACK_SIZE_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-STACK_005fSLOT_005fALIGNMENT-3839"><code>STACK_SLOT_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-standard-pattern-names-3328">standard pattern names</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-STANDARD_005fINCLUDE_005fCOMPONENT-3779"><code>STANDARD_INCLUDE_COMPONENT</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STANDARD_005fINCLUDE_005fDIR-3778"><code>STANDARD_INCLUDE_DIR</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STANDARD_005fSTARTFILE_005fPREFIX-3770"><code>STANDARD_STARTFILE_PREFIX</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STANDARD_005fSTARTFILE_005fPREFIX_005f1-3771"><code>STANDARD_STARTFILE_PREFIX_1</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STANDARD_005fSTARTFILE_005fPREFIX_005f2-3772"><code>STANDARD_STARTFILE_PREFIX_2</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STARTFILE_005fSPEC-3757"><code>STARTFILE_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-STARTING_005fFRAME_005fOFFSET-4045"><code>STARTING_FRAME_OFFSET</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-g_t_0040code_007bSTARTING_005fFRAME_005fOFFSET_007d-and-virtual-registers-2005"><code>STARTING_FRAME_OFFSET</code> and virtual registers</a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-Statement-and-operand-traversals-3079">Statement and operand traversals</a>: <a href="#Statement-and-operand-traversals">Statement and operand traversals</a></li>
<li><a href="#index-Statement-Sequences-2525">Statement Sequences</a>: <a href="#Statement-Sequences">Statement Sequences</a></li>
<li><a href="#index-statements-2667">statements</a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-statements-2557">statements</a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-Statements-2522">Statements</a>: <a href="#Statements">Statements</a></li>
<li><a href="#index-Static-profile-estimation-3165">Static profile estimation</a>: <a href="#Profile-information">Profile information</a></li>
<li><a href="#index-static-single-assignment-3094">static single assignment</a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-STATIC_005fCHAIN_005fINCOMING_005fREGNUM-4092"><code>STATIC_CHAIN_INCOMING_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-STATIC_005fCHAIN_005fREGNUM-4091"><code>STATIC_CHAIN_REGNUM</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-g_t_0040file_007bstdarg_002eh_007d-and-register-arguments-4124"><samp><span class="file">stdarg.h</span></samp> and register arguments</a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-STDC_005f0_005fIN_005fSYSTEM_005fHEADERS-4788"><code>STDC_0_IN_SYSTEM_HEADERS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-STMT_005fEXPR-2495"><code>STMT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-STMT_005fIS_005fFULL_005fEXPR_005fP-2707"><code>STMT_IS_FULL_EXPR_P</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-storage-layout-3808">storage layout</a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-STORE_005fBY_005fPIECES_005fP-4334"><code>STORE_BY_PIECES_P</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-STORE_005fFLAG_005fVALUE-4781"><code>STORE_FLAG_VALUE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-g_t_0040samp_007bstore_005fmultiple_007d-instruction-pattern-3341">‘<samp><span class="samp">store_multiple</span></samp>’ instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-strcpy-3836"><code>strcpy</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-STRICT_005fALIGNMENT-3844"><code>STRICT_ALIGNMENT</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-strict_005flow_005fpart-2177"><code>strict_low_part</code></a>: <a href="#RTL-Declarations">RTL Declarations</a></li>
<li><a href="#index-strict_005fmemory_005faddress_005fp-4273"><code>strict_memory_address_p</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-STRING_005fCST-2423"><code>STRING_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-STRING_005fPOOL_005fADDRESS_005fP-1847"><code>STRING_POOL_ADDRESS_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bstrlen_0040var_007bm_007d_007d-instruction-pattern-3480"><code>strlen</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-structure-value-address-4171">structure value address</a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-STRUCTURE_005fSIZE_005fBOUNDARY-3843"><code>STRUCTURE_SIZE_BOUNDARY</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-structures_002c-returning-12">structures, returning</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-g_t_0040code_007bsub_0040var_007bm_007d3_007d-instruction-pattern-3355"><code>sub</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-SUBOBJECT-2693"><code>SUBOBJECT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-SUBOBJECT_005fCLEANUP-2694"><code>SUBOBJECT_CLEANUP</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-subreg-2012"><code>subreg</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fs_007d-1859"><code>subreg</code> and ‘<samp><span class="samp">/s</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fu_007d-1855"><code>subreg</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsubreg_007d-and-_0040samp_007b_002fu_007d-and-_0040samp_007b_002fv_007d-1851"><code>subreg</code> and ‘<samp><span class="samp">/u</span></samp>’ and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsubreg_007d_002c-in-_0040code_007bstrict_005flow_005fpart_007d-2178"><code>subreg</code>, in <code>strict_low_part</code></a>: <a href="#RTL-Declarations">RTL Declarations</a></li>
<li><a href="#index-SUBREG_005fBYTE-2018"><code>SUBREG_BYTE</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-SUBREG_005fPROMOTED_005fUNSIGNED_005fP-1850"><code>SUBREG_PROMOTED_UNSIGNED_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SUBREG_005fPROMOTED_005fUNSIGNED_005fSET-1854"><code>SUBREG_PROMOTED_UNSIGNED_SET</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SUBREG_005fPROMOTED_005fVAR_005fP-1858"><code>SUBREG_PROMOTED_VAR_P</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SUBREG_005fREG-2017"><code>SUBREG_REG</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-SUCCESS_005fEXIT_005fCODE-4887"><code>SUCCESS_EXIT_CODE</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-SUPPORTS_005fINIT_005fPRIORITY-4549"><code>SUPPORTS_INIT_PRIORITY</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-SUPPORTS_005fONE_005fONLY-4513"><code>SUPPORTS_ONE_ONLY</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-SUPPORTS_005fWEAK-4510"><code>SUPPORTS_WEAK</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-SWITCH_005fBODY-2697"><code>SWITCH_BODY</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-SWITCH_005fCOND-2696"><code>SWITCH_COND</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-SWITCH_005fSTMT-2695"><code>SWITCH_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-SWITCHABLE_005fTARGET-3803"><code>SWITCHABLE_TARGET</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fANCHOR-1752"><code>SYMBOL_FLAG_ANCHOR</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fEXTERNAL-1744"><code>SYMBOL_FLAG_EXTERNAL</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fFUNCTION-1740"><code>SYMBOL_FLAG_FUNCTION</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fHAS_005fBLOCK_005fINFO-1750"><code>SYMBOL_FLAG_HAS_BLOCK_INFO</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fLOCAL-1742"><code>SYMBOL_FLAG_LOCAL</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fSMALL-1746"><code>SYMBOL_FLAG_SMALL</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fFLAG_005fTLS_005fSHIFT-1747"><code>SYMBOL_FLAG_TLS_SHIFT</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-symbol_005fref-1986"><code>symbol_ref</code></a>: <a href="#Constants">Constants</a></li>
<li><a href="#index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002ff_007d-1848"><code>symbol_ref</code> and ‘<samp><span class="samp">/f</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fi_007d-1864"><code>symbol_ref</code> and ‘<samp><span class="samp">/i</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fu_007d-1758"><code>symbol_ref</code> and ‘<samp><span class="samp">/u</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsymbol_005fref_007d-and-_0040samp_007b_002fv_007d-1867"><code>symbol_ref</code> and ‘<samp><span class="samp">/v</span></samp>’</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bsymbol_005fref_007d_002c-RTL-sharing-2290"><code>symbol_ref</code>, RTL sharing</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-SYMBOL_005fREF_005fANCHOR_005fP-1751"><code>SYMBOL_REF_ANCHOR_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fBLOCK-1754"><code>SYMBOL_REF_BLOCK</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fBLOCK_005fOFFSET-1755"><code>SYMBOL_REF_BLOCK_OFFSET</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fCONSTANT-1736"><code>SYMBOL_REF_CONSTANT</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fDATA-1737"><code>SYMBOL_REF_DATA</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fDECL-1735"><code>SYMBOL_REF_DECL</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fEXTERNAL_005fP-1743"><code>SYMBOL_REF_EXTERNAL_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fFLAG-1866"><code>SYMBOL_REF_FLAG</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bSYMBOL_005fREF_005fFLAG_007d_002c-in-_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-4415"><code>SYMBOL_REF_FLAG</code>, in <code>TARGET_ENCODE_SECTION_INFO</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-SYMBOL_005fREF_005fFLAGS-1738"><code>SYMBOL_REF_FLAGS</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fFUNCTION_005fP-1739"><code>SYMBOL_REF_FUNCTION_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fHAS_005fBLOCK_005fINFO_005fP-1749"><code>SYMBOL_REF_HAS_BLOCK_INFO_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fLOCAL_005fP-1741"><code>SYMBOL_REF_LOCAL_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fSMALL_005fP-1745"><code>SYMBOL_REF_SMALL_P</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fTLS_005fMODEL-1748"><code>SYMBOL_REF_TLS_MODEL</code></a>: <a href="#Special-Accessors">Special Accessors</a></li>
<li><a href="#index-SYMBOL_005fREF_005fUSED-1861"><code>SYMBOL_REF_USED</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-SYMBOL_005fREF_005fWEAK-1863"><code>SYMBOL_REF_WEAK</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-symbolic-label-2289">symbolic label</a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3545"><code>sync_add</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fand_0040var_007bmode_007d_007d-instruction-pattern-3548"><code>sync_and</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fcompare_005fand_005fswap_0040var_007bmode_007d_007d-instruction-pattern-3544"><code>sync_compare_and_swap</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fior_0040var_007bmode_007d_007d-instruction-pattern-3547"><code>sync_ior</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005flock_005frelease_0040var_007bmode_007d_007d-instruction-pattern-3564"><code>sync_lock_release</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005flock_005ftest_005fand_005fset_0040var_007bmode_007d_007d-instruction-pattern-3563"><code>sync_lock_test_and_set</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3550"><code>sync_nand</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3557"><code>sync_new_add</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fand_0040var_007bmode_007d_007d-instruction-pattern-3560"><code>sync_new_and</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fior_0040var_007bmode_007d_007d-instruction-pattern-3559"><code>sync_new_ior</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3562"><code>sync_new_nand</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3558"><code>sync_new_sub</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fnew_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3561"><code>sync_new_xor</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fadd_0040var_007bmode_007d_007d-instruction-pattern-3551"><code>sync_old_add</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fand_0040var_007bmode_007d_007d-instruction-pattern-3554"><code>sync_old_and</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fior_0040var_007bmode_007d_007d-instruction-pattern-3553"><code>sync_old_ior</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fnand_0040var_007bmode_007d_007d-instruction-pattern-3556"><code>sync_old_nand</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3552"><code>sync_old_sub</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fold_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3555"><code>sync_old_xor</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fsub_0040var_007bmode_007d_007d-instruction-pattern-3546"><code>sync_sub</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bsync_005fxor_0040var_007bmode_007d_007d-instruction-pattern-3549"><code>sync_xor</code><var>mode</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-SYSROOT_005fHEADERS_005fSUFFIX_005fSPEC-3761"><code>SYSROOT_HEADERS_SUFFIX_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-SYSROOT_005fSUFFIX_005fSPEC-3760"><code>SYSROOT_SUFFIX_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-SYSTEM_005fINCLUDE_005fDIR-3777"><code>SYSTEM_INCLUDE_DIR</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-g_t_0040file_007bt_002d_0040var_007btarget_007d_007d-4896"><samp><span class="file">t-</span><var>target</var></samp></a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-table-jump-3135">table jump</a>: <a href="#Basic-Blocks">Basic Blocks</a></li>
<li><a href="#index-g_t_0040code_007btablejump_007d-instruction-pattern-3515"><code>tablejump</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-tag-4919"><code>tag</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-tagging-insns-3656">tagging insns</a>: <a href="#Tagging-Insns">Tagging Insns</a></li>
<li><a href="#index-tail-calls-4207">tail calls</a>: <a href="#Tail-Calls">Tail Calls</a></li>
<li><a href="#index-TAmode-1922"><code>TAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-target-attributes-4701">target attributes</a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-target-description-macros-3734">target description macros</a>: <a href="#Target-Macros">Target Macros</a></li>
<li><a href="#index-target-functions-3738">target functions</a>: <a href="#Target-Structure">Target Structure</a></li>
<li><a href="#index-target-hooks-3737">target hooks</a>: <a href="#Target-Structure">Target Structure</a></li>
<li><a href="#index-target-makefile-fragment-4895">target makefile fragment</a>: <a href="#Target-Fragment">Target Fragment</a></li>
<li><a href="#index-target-specifications-3783">target specifications</a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fADDRESS_005fMODE-4756"><code>TARGET_ADDR_SPACE_ADDRESS_MODE</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fCONVERT-4761"><code>TARGET_ADDR_SPACE_CONVERT</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fLEGITIMATE_005fADDRESS_005fP-4758"><code>TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fLEGITIMIZE_005fADDRESS-4759"><code>TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fPOINTER_005fMODE-4755"><code>TARGET_ADDR_SPACE_POINTER_MODE</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fSUBSET_005fP-4760"><code>TARGET_ADDR_SPACE_SUBSET_P</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDR_005fSPACE_005fVALID_005fPOINTER_005fMODE-4757"><code>TARGET_ADDR_SPACE_VALID_POINTER_MODE</code></a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-TARGET_005fADDRESS_005fCOST-4346"><code>TARGET_ADDRESS_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-TARGET_005fALIGN_005fANON_005fBITFIELD-3847"><code>TARGET_ALIGN_ANON_BITFIELD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fALLOCATE_005fINITIAL_005fVALUE-4825"><code>TARGET_ALLOCATE_INITIAL_VALUE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fALLOCATE_005fSTACK_005fSLOTS_005fFOR_005fARGS-4861"><code>TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fARG_005fPARTIAL_005fBYTES-4129"><code>TARGET_ARG_PARTIAL_BYTES</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fARM_005fEABI_005fUNWINDER-4606"><code>TARGET_ARM_EABI_UNWINDER</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fARRAY_005fMODE_005fSUPPORTED_005fP-4154"><code>TARGET_ARRAY_MODE_SUPPORTED_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fASM_005fALIGNED_005fDI_005fOP-4456"><code>TARGET_ASM_ALIGNED_DI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fALIGNED_005fHI_005fOP-4454"><code>TARGET_ASM_ALIGNED_HI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fALIGNED_005fSI_005fOP-4455"><code>TARGET_ASM_ALIGNED_SI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fALIGNED_005fTI_005fOP-4457"><code>TARGET_ASM_ALIGNED_TI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fASSEMBLE_005fVISIBILITY-4514"><code>TARGET_ASM_ASSEMBLE_VISIBILITY</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fBYTE_005fOP-4453"><code>TARGET_ASM_BYTE_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fCAN_005fOUTPUT_005fMI_005fTHUNK-4200"><code>TARGET_ASM_CAN_OUTPUT_MI_THUNK</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fCLOSE_005fPAREN-4473"><code>TARGET_ASM_CLOSE_PAREN</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fCODE_005fEND-4437"><code>TARGET_ASM_CODE_END</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fCONSTRUCTOR-4551"><code>TARGET_ASM_CONSTRUCTOR</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-TARGET_005fASM_005fDECLARE_005fCONSTANT_005fNAME-4502"><code>TARGET_ASM_DECLARE_CONSTANT_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fDESTRUCTOR-4552"><code>TARGET_ASM_DESTRUCTOR</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-TARGET_005fASM_005fEMIT_005fEXCEPT_005fPERSONALITY-4590"><code>TARGET_ASM_EMIT_EXCEPT_PERSONALITY</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-TARGET_005fASM_005fEMIT_005fEXCEPT_005fTABLE_005fLABEL-4589"><code>TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-TARGET_005fASM_005fEMIT_005fUNWIND_005fLABEL-4588"><code>TARGET_ASM_EMIT_UNWIND_LABEL</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-TARGET_005fASM_005fEXTERNAL_005fLIBCALL-4517"><code>TARGET_ASM_EXTERNAL_LIBCALL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fFILE_005fEND-4433"><code>TARGET_ASM_FILE_END</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fFILE_005fSTART-4430"><code>TARGET_ASM_FILE_START</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fFILE_005fSTART_005fAPP_005fOFF-4431"><code>TARGET_ASM_FILE_START_APP_OFF</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fFILE_005fSTART_005fFILE_005fDIRECTIVE-4432"><code>TARGET_ASM_FILE_START_FILE_DIRECTIVE</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fFINAL_005fPOSTSCAN_005fINSN-4565"><code>TARGET_ASM_FINAL_POSTSCAN_INSN</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fBEGIN_005fEPILOGUE-4187"><code>TARGET_ASM_FUNCTION_BEGIN_EPILOGUE</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fEND_005fPROLOGUE-4186"><code>TARGET_ASM_FUNCTION_END_PROLOGUE</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fEPILOGUE-4188"><code>TARGET_ASM_FUNCTION_EPILOGUE</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fPROLOGUE-4183"><code>TARGET_ASM_FUNCTION_PROLOGUE</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fRODATA_005fSECTION-4411"><code>TARGET_ASM_FUNCTION_RODATA_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fSECTION-4446"><code>TARGET_ASM_FUNCTION_SECTION</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fFUNCTION_005fSWITCHED_005fTEXT_005fSECTIONS-4447"><code>TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fGLOBALIZE_005fDECL_005fNAME-4506"><code>TARGET_ASM_GLOBALIZE_DECL_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fGLOBALIZE_005fLABEL-4505"><code>TARGET_ASM_GLOBALIZE_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fINIT_005fSECTIONS-4406"><code>TARGET_ASM_INIT_SECTIONS</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fINTEGER-4462"><code>TARGET_ASM_INTEGER</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fINTERNAL_005fLABEL-4523"><code>TARGET_ASM_INTERNAL_LABEL</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fJUMP_005fALIGN_005fMAX_005fSKIP-4608"><code>TARGET_ASM_JUMP_ALIGN_MAX_SKIP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-TARGET_005fASM_005fLABEL_005fALIGN_005fAFTER_005fBARRIER_005fMAX_005fSKIP-4610"><code>TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-TARGET_005fASM_005fLABEL_005fALIGN_005fMAX_005fSKIP-4614"><code>TARGET_ASM_LABEL_ALIGN_MAX_SKIP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-TARGET_005fASM_005fLOOP_005fALIGN_005fMAX_005fSKIP-4612"><code>TARGET_ASM_LOOP_ALIGN_MAX_SKIP</code></a>: <a href="#Alignment-Output">Alignment Output</a></li>
<li><a href="#index-TARGET_005fASM_005fLTO_005fEND-4436"><code>TARGET_ASM_LTO_END</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fLTO_005fSTART-4435"><code>TARGET_ASM_LTO_START</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fMARK_005fDECL_005fPRESERVED-4518"><code>TARGET_ASM_MARK_DECL_PRESERVED</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fASM_005fNAMED_005fSECTION-4445"><code>TARGET_ASM_NAMED_SECTION</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fOPEN_005fPAREN-4472"><code>TARGET_ASM_OPEN_PAREN</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fOUTPUT_005fADDR_005fCONST_005fEXTRA-4463"><code>TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fOUTPUT_005fANCHOR-4298"><code>TARGET_ASM_OUTPUT_ANCHOR</code></a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-TARGET_005fASM_005fOUTPUT_005fDWARF_005fDTPREL-4668"><code>TARGET_ASM_OUTPUT_DWARF_DTPREL</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fASM_005fOUTPUT_005fMI_005fTHUNK-4199"><code>TARGET_ASM_OUTPUT_MI_THUNK</code></a>: <a href="#Function-Entry">Function Entry</a></li>
<li><a href="#index-TARGET_005fASM_005fOUTPUT_005fSOURCE_005fFILENAME-4442"><code>TARGET_ASM_OUTPUT_SOURCE_FILENAME</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fRECORD_005fGCC_005fSWITCHES-4451"><code>TARGET_ASM_RECORD_GCC_SWITCHES</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fRECORD_005fGCC_005fSWITCHES_005fSECTION-4452"><code>TARGET_ASM_RECORD_GCC_SWITCHES_SECTION</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fASM_005fRELOC_005fRW_005fMASK-4407"><code>TARGET_ASM_RELOC_RW_MASK</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fSELECT_005fRTX_005fSECTION-4412"><code>TARGET_ASM_SELECT_RTX_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fSELECT_005fSECTION-4408"><code>TARGET_ASM_SELECT_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fTRAMPOLINE_005fTEMPLATE-4224"><code>TARGET_ASM_TRAMPOLINE_TEMPLATE</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TARGET_005fASM_005fTTYPE-4605"><code>TARGET_ASM_TTYPE</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fASM_005fUNALIGNED_005fDI_005fOP-4460"><code>TARGET_ASM_UNALIGNED_DI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fUNALIGNED_005fHI_005fOP-4458"><code>TARGET_ASM_UNALIGNED_HI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fUNALIGNED_005fSI_005fOP-4459"><code>TARGET_ASM_UNALIGNED_SI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fUNALIGNED_005fTI_005fOP-4461"><code>TARGET_ASM_UNALIGNED_TI_OP</code></a>: <a href="#Data-Output">Data Output</a></li>
<li><a href="#index-TARGET_005fASM_005fUNIQUE_005fSECTION-4410"><code>TARGET_ASM_UNIQUE_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fASM_005fUNWIND_005fEMIT-4591"><code>TARGET_ASM_UNWIND_EMIT</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-TARGET_005fASM_005fUNWIND_005fEMIT_005fBEFORE_005fINSN-4592"><code>TARGET_ASM_UNWIND_EMIT_BEFORE_INSN</code></a>: <a href="#Dispatch-Tables">Dispatch Tables</a></li>
<li><a href="#index-TARGET_005fATTRIBUTE_005fTABLE-4704"><code>TARGET_ATTRIBUTE_TABLE</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fATTRIBUTE_005fTAKES_005fIDENTIFIER_005fP-4705"><code>TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fBINDS_005fLOCAL_005fP-4420"><code>TARGET_BINDS_LOCAL_P</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fBRANCH_005fTARGET_005fREGISTER_005fCALLEE_005fSAVED-4834"><code>TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fBRANCH_005fTARGET_005fREGISTER_005fCLASS-4833"><code>TARGET_BRANCH_TARGET_REGISTER_CLASS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fBUILD_005fBUILTIN_005fVA_005fLIST-4145"><code>TARGET_BUILD_BUILTIN_VA_LIST</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fBUILTIN_005fDECL-4818"><code>TARGET_BUILTIN_DECL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fBUILTIN_005fRECIPROCAL-4281"><code>TARGET_BUILTIN_RECIPROCAL</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fBUILTIN_005fSETJMP_005fFRAME_005fVALUE-4053"><code>TARGET_BUILTIN_SETJMP_FRAME_VALUE</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-TARGET_005fC99_005fFUNCTIONS-4247"><code>TARGET_C99_FUNCTIONS</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-TARGET_005fCALLEE_005fCOPIES-4131"><code>TARGET_CALLEE_COPIES</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fCAN_005fELIMINATE-4106"><code>TARGET_CAN_ELIMINATE</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-TARGET_005fCAN_005fINLINE_005fP-4722"><code>TARGET_CAN_INLINE_P</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fCANNOT_005fFORCE_005fCONST_005fMEM-4279"><code>TARGET_CANNOT_FORCE_CONST_MEM</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fCANNOT_005fMODIFY_005fJUMPS_005fP-4832"><code>TARGET_CANNOT_MODIFY_JUMPS_P</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fCANONICAL_005fVA_005fLIST_005fTYPE-4148"><code>TARGET_CANONICAL_VA_LIST_TYPE</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fCASE_005fVALUES_005fTHRESHOLD-4768"><code>TARGET_CASE_VALUES_THRESHOLD</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fCC_005fMODES_005fCOMPATIBLE-4313"><code>TARGET_CC_MODES_COMPATIBLE</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-TARGET_005fCHECK_005fPCH_005fTARGET_005fFLAGS-4739"><code>TARGET_CHECK_PCH_TARGET_FLAGS</code></a>: <a href="#PCH-Target">PCH Target</a></li>
<li><a href="#index-TARGET_005fCHECK_005fSTRING_005fOBJECT_005fFORMAT_005fARG-3795"><code>TARGET_CHECK_STRING_OBJECT_FORMAT_ARG</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fCLASS_005fLIKELY_005fSPILLED_005fP-4020"><code>TARGET_CLASS_LIKELY_SPILLED_P</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fCOMMUTATIVE_005fP-4824"><code>TARGET_COMMUTATIVE_P</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fCOMP_005fTYPE_005fATTRIBUTES-4706"><code>TARGET_COMP_TYPE_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fCONDITIONAL_005fREGISTER_005fUSAGE-3954"><code>TARGET_CONDITIONAL_REGISTER_USAGE</code></a>: <a href="#Register-Basics">Register Basics</a></li>
<li><a href="#index-TARGET_005fCONST_005fANCHOR-4862"><code>TARGET_CONST_ANCHOR</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fCONVERT_005fTO_005fTYPE-4855"><code>TARGET_CONVERT_TO_TYPE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fCPU_005fCPP_005fBUILTINS-3784"><code>TARGET_CPU_CPP_BUILTINS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fCXX_005fADJUST_005fCLASS_005fAT_005fDEFINITION-4753"><code>TARGET_CXX_ADJUST_CLASS_AT_DEFINITION</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fCDTOR_005fRETURNS_005fTHIS-4746"><code>TARGET_CXX_CDTOR_RETURNS_THIS</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fCLASS_005fDATA_005fALWAYS_005fCOMDAT-4749"><code>TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fCOOKIE_005fHAS_005fSIZE-4744"><code>TARGET_CXX_COOKIE_HAS_SIZE</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fDETERMINE_005fCLASS_005fDATA_005fVISIBILITY-4748"><code>TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fGET_005fCOOKIE_005fSIZE-4743"><code>TARGET_CXX_GET_COOKIE_SIZE</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fGUARD_005fMASK_005fBIT-4742"><code>TARGET_CXX_GUARD_MASK_BIT</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fGUARD_005fTYPE-4741"><code>TARGET_CXX_GUARD_TYPE</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fIMPORT_005fEXPORT_005fCLASS-4745"><code>TARGET_CXX_IMPORT_EXPORT_CLASS</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fKEY_005fMETHOD_005fMAY_005fBE_005fINLINE-4747"><code>TARGET_CXX_KEY_METHOD_MAY_BE_INLINE</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fLIBRARY_005fRTTI_005fCOMDAT-4750"><code>TARGET_CXX_LIBRARY_RTTI_COMDAT</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fUSE_005fAEABI_005fATEXIT-4751"><code>TARGET_CXX_USE_AEABI_ATEXIT</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fCXX_005fUSE_005fATEXIT_005fFOR_005fCXA_005fATEXIT-4752"><code>TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT</code></a>: <a href="#C_002b_002b-ABI">C++ ABI</a></li>
<li><a href="#index-TARGET_005fDEBUG_005fUNWIND_005fINFO-4658"><code>TARGET_DEBUG_UNWIND_INFO</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fDECIMAL_005fFLOAT_005fSUPPORTED_005fP-3860"><code>TARGET_DECIMAL_FLOAT_SUPPORTED_P</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fDECLSPEC-4712"><code>TARGET_DECLSPEC</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fDEFAULT_005fPACK_005fSTRUCT-4797"><code>TARGET_DEFAULT_PACK_STRUCT</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fDEFAULT_005fSHORT_005fENUMS-3894"><code>TARGET_DEFAULT_SHORT_ENUMS</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fDEFAULT_005fTARGET_005fFLAGS-3788"><code>TARGET_DEFAULT_TARGET_FLAGS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fDEFERRED_005fOUTPUT_005fDEFS-4531"><code>TARGET_DEFERRED_OUTPUT_DEFS</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fDELAY_005fSCHED2-4661"><code>TARGET_DELAY_SCHED2</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fDELAY_005fVARTRACK-4662"><code>TARGET_DELAY_VARTRACK</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fDELEGITIMIZE_005fADDRESS-4278"><code>TARGET_DELEGITIMIZE_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fDLLIMPORT_005fDECL_005fATTRIBUTES-4710"><code>TARGET_DLLIMPORT_DECL_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fDWARF_005fCALLING_005fCONVENTION-4656"><code>TARGET_DWARF_CALLING_CONVENTION</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fDWARF_005fHANDLE_005fFRAME_005fUNSPEC-4060"><code>TARGET_DWARF_HANDLE_FRAME_UNSPEC</code></a>: <a href="#Frame-Layout">Frame Layout</a></li>
<li><a href="#index-TARGET_005fDWARF_005fREGISTER_005fSPAN-4603"><code>TARGET_DWARF_REGISTER_SPAN</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fEDOM-4243"><code>TARGET_EDOM</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fDEBUG_005fFORM_005fTLS_005fADDRESS-4733"><code>TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fGET_005fADDRESS-4724"><code>TARGET_EMUTLS_GET_ADDRESS</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fREGISTER_005fCOMMON-4725"><code>TARGET_EMUTLS_REGISTER_COMMON</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fTMPL_005fPREFIX-4729"><code>TARGET_EMUTLS_TMPL_PREFIX</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fTMPL_005fSECTION-4727"><code>TARGET_EMUTLS_TMPL_SECTION</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fVAR_005fALIGN_005fFIXED-4732"><code>TARGET_EMUTLS_VAR_ALIGN_FIXED</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fVAR_005fFIELDS-4730"><code>TARGET_EMUTLS_VAR_FIELDS</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fVAR_005fINIT-4731"><code>TARGET_EMUTLS_VAR_INIT</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fVAR_005fPREFIX-4728"><code>TARGET_EMUTLS_VAR_PREFIX</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fEMUTLS_005fVAR_005fSECTION-4726"><code>TARGET_EMUTLS_VAR_SECTION</code></a>: <a href="#Emulated-TLS">Emulated TLS</a></li>
<li><a href="#index-TARGET_005fENCODE_005fSECTION_005fINFO-4414"><code>TARGET_ENCODE_SECTION_INFO</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-g_t_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-and-address-validation-4264"><code>TARGET_ENCODE_SECTION_INFO</code> and address validation</a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-g_t_0040code_007bTARGET_005fENCODE_005fSECTION_005fINFO_007d-usage-4570"><code>TARGET_ENCODE_SECTION_INFO</code> usage</a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-TARGET_005fENUM_005fVA_005fLIST_005fP-4146"><code>TARGET_ENUM_VA_LIST_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fEXCEPT_005fUNWIND_005fINFO-4598"><code>TARGET_EXCEPT_UNWIND_INFO</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fEXECUTABLE_005fSUFFIX-4829"><code>TARGET_EXECUTABLE_SUFFIX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fEXPAND_005fBUILTIN-4819"><code>TARGET_EXPAND_BUILTIN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fEXPAND_005fBUILTIN_005fSAVEREGS-4218"><code>TARGET_EXPAND_BUILTIN_SAVEREGS</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-TARGET_005fEXPAND_005fTO_005fRTL_005fHOOK-3862"><code>TARGET_EXPAND_TO_RTL_HOOK</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fEXPR-2503"><code>TARGET_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TARGET_005fEXTRA_005fINCLUDES-4838"><code>TARGET_EXTRA_INCLUDES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fEXTRA_005fLIVE_005fON_005fENTRY-4209"><code>TARGET_EXTRA_LIVE_ON_ENTRY</code></a>: <a href="#Tail-Calls">Tail Calls</a></li>
<li><a href="#index-TARGET_005fEXTRA_005fPRE_005fINCLUDES-4839"><code>TARGET_EXTRA_PRE_INCLUDES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fFIXED_005fCONDITION_005fCODE_005fREGS-4312"><code>TARGET_FIXED_CONDITION_CODE_REGS</code></a>: <a href="#MODE_005fCC-Condition-Codes">MODE_CC Condition Codes</a></li>
<li><a href="#index-TARGET_005fFIXED_005fPOINT_005fSUPPORTED_005fP-3861"><code>TARGET_FIXED_POINT_SUPPORTED_P</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-target_005fflags-3787"><code>target_flags</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fFLAGS_005fREGNUM-4156"><code>TARGET_FLAGS_REGNUM</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fFLT_005fEVAL_005fMETHOD-3891"><code>TARGET_FLT_EVAL_METHOD</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fFN_005fABI_005fVA_005fLIST-4147"><code>TARGET_FN_ABI_VA_LIST</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fFOLD_005fBUILTIN-4821"><code>TARGET_FOLD_BUILTIN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fFORMAT_005fTYPES-4842"><code>TARGET_FORMAT_TYPES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fFRAME_005fPOINTER_005fREQUIRED-4102"><code>TARGET_FRAME_POINTER_REQUIRED</code></a>: <a href="#Elimination">Elimination</a></li>
<li><a href="#index-TARGET_005fFUNCTION_005fARG_005fBOUNDARY-4142"><code>TARGET_FUNCTION_ARG_BOUNDARY</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fFUNCTION_005fATTRIBUTE_005fINLINABLE_005fP-4714"><code>TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fFUNCTION_005fOK_005fFOR_005fSIBCALL-4208"><code>TARGET_FUNCTION_OK_FOR_SIBCALL</code></a>: <a href="#Tail-Calls">Tail Calls</a></li>
<li><a href="#index-TARGET_005fFUNCTION_005fVALUE-4160"><code>TARGET_FUNCTION_VALUE</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-TARGET_005fFUNCTION_005fVALUE_005fREGNO_005fP-4165"><code>TARGET_FUNCTION_VALUE_REGNO_P</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-TARGET_005fGET_005fDRAP_005fRTX-4860"><code>TARGET_GET_DRAP_RTX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fGET_005fPCH_005fVALIDITY-4737"><code>TARGET_GET_PCH_VALIDITY</code></a>: <a href="#PCH-Target">PCH Target</a></li>
<li><a href="#index-TARGET_005fGET_005fRAW_005fARG_005fMODE-4177"><code>TARGET_GET_RAW_ARG_MODE</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-TARGET_005fGET_005fRAW_005fRESULT_005fMODE-4176"><code>TARGET_GET_RAW_RESULT_MODE</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-TARGET_005fGIMPLIFY_005fVA_005fARG_005fEXPR-4149"><code>TARGET_GIMPLIFY_VA_ARG_EXPR</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fHANDLE_005fC_005fOPTION-3792"><code>TARGET_HANDLE_C_OPTION</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fHANDLE_005fOPTION-3791"><code>TARGET_HANDLE_OPTION</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fHANDLE_005fPRAGMA_005fEXTERN_005fPREFIX-4796"><code>TARGET_HANDLE_PRAGMA_EXTERN_PREFIX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fHARD_005fREGNO_005fSCRATCH_005fOK-3975"><code>TARGET_HARD_REGNO_SCRATCH_OK</code></a>: <a href="#Values-in-Registers">Values in Registers</a></li>
<li><a href="#index-TARGET_005fHAS_005fSINCOS-4249"><code>TARGET_HAS_SINCOS</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-TARGET_005fHAVE_005fCONDITIONAL_005fEXECUTION-4835"><code>TARGET_HAVE_CONDITIONAL_EXECUTION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fHAVE_005fCTORS_005fDTORS-4550"><code>TARGET_HAVE_CTORS_DTORS</code></a>: <a href="#Macros-for-Initialization">Macros for Initialization</a></li>
<li><a href="#index-TARGET_005fHAVE_005fNAMED_005fSECTIONS-4448"><code>TARGET_HAVE_NAMED_SECTIONS</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fHAVE_005fSRODATA_005fSECTION-4418"><code>TARGET_HAVE_SRODATA_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fHAVE_005fSWITCHABLE_005fBSS_005fSECTIONS-4449"><code>TARGET_HAVE_SWITCHABLE_BSS_SECTIONS</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fHAVE_005fTLS-4421"><code>TARGET_HAVE_TLS</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fHELP-3802"><code>TARGET_HELP</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fIN_005fSMALL_005fDATA_005fP-4417"><code>TARGET_IN_SMALL_DATA_P</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fINIT_005fBUILTINS-4817"><code>TARGET_INIT_BUILTINS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINIT_005fDWARF_005fREG_005fSIZES_005fEXTRA-4604"><code>TARGET_INIT_DWARF_REG_SIZES_EXTRA</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fINIT_005fLIBFUNCS-4238"><code>TARGET_INIT_LIBFUNCS</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-TARGET_005fINSERT_005fATTRIBUTES-4713"><code>TARGET_INSERT_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fINSTANTIATE_005fDECLS-3863"><code>TARGET_INSTANTIATE_DECLS</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fINVALID_005fARG_005fFOR_005fUNPROTOTYPED_005fFN-4848"><code>TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fBINARY_005fOP-4851"><code>TARGET_INVALID_BINARY_OP</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fCONVERSION-4849"><code>TARGET_INVALID_CONVERSION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fPARAMETER_005fTYPE-4852"><code>TARGET_INVALID_PARAMETER_TYPE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fRETURN_005fTYPE-4853"><code>TARGET_INVALID_RETURN_TYPE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fUNARY_005fOP-4850"><code>TARGET_INVALID_UNARY_OP</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fINVALID_005fWITHIN_005fDOLOOP-4822"><code>TARGET_INVALID_WITHIN_DOLOOP</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fIRA_005fCOVER_005fCLASSES-4023"><code>TARGET_IRA_COVER_CLASSES</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fLEGITIMATE_005fADDRESS_005fP-4263"><code>TARGET_LEGITIMATE_ADDRESS_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fLEGITIMATE_005fCONSTANT_005fP-4277"><code>TARGET_LEGITIMATE_CONSTANT_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fLEGITIMIZE_005fADDRESS-4269"><code>TARGET_LEGITIMIZE_ADDRESS</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fLIB_005fINT_005fCMP_005fBIASED-4240"><code>TARGET_LIB_INT_CMP_BIASED</code></a>: <a href="#Library-Calls">Library Calls</a></li>
<li><a href="#index-TARGET_005fLIBCALL_005fVALUE-4163"><code>TARGET_LIBCALL_VALUE</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-TARGET_005fLIBGCC_005fCMP_005fRETURN_005fMODE-3854"><code>TARGET_LIBGCC_CMP_RETURN_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fLIBGCC_005fSDATA_005fSECTION-4403"><code>TARGET_LIBGCC_SDATA_SECTION</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fLIBGCC_005fSHIFT_005fCOUNT_005fMODE-3855"><code>TARGET_LIBGCC_SHIFT_COUNT_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fLOOP_005fUNROLL_005fADJUST-4836"><code>TARGET_LOOP_UNROLL_ADJUST</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fMACHINE_005fDEPENDENT_005fREORG-4816"><code>TARGET_MACHINE_DEPENDENT_REORG</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fMANGLE_005fASSEMBLER_005fNAME-4520"><code>TARGET_MANGLE_ASSEMBLER_NAME</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fMANGLE_005fDECL_005fASSEMBLER_005fNAME-4413"><code>TARGET_MANGLE_DECL_ASSEMBLER_NAME</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fMANGLE_005fTYPE-3864"><code>TARGET_MANGLE_TYPE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fMAX_005fANCHOR_005fOFFSET-4297"><code>TARGET_MAX_ANCHOR_OFFSET</code></a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-TARGET_005fMD_005fASM_005fCLOBBERS-4804"><code>TARGET_MD_ASM_CLOBBERS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fMEM_005fCONSTRAINT-4267"><code>TARGET_MEM_CONSTRAINT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fMEM_005fREF-2431"><code>TARGET_MEM_REF</code></a>: <a href="#Storage-References">Storage References</a></li>
<li><a href="#index-TARGET_005fMEMORY_005fMOVE_005fCOST-4323"><code>TARGET_MEMORY_MOVE_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-TARGET_005fMERGE_005fDECL_005fATTRIBUTES-4709"><code>TARGET_MERGE_DECL_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fMERGE_005fTYPE_005fATTRIBUTES-4708"><code>TARGET_MERGE_TYPE_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fMIN_005fANCHOR_005fOFFSET-4296"><code>TARGET_MIN_ANCHOR_OFFSET</code></a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-TARGET_005fMIN_005fDIVISIONS_005fFOR_005fRECIP_005fMUL-4774"><code>TARGET_MIN_DIVISIONS_FOR_RECIP_MUL</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fMODE_005fDEPENDENT_005fADDRESS_005fP-4275"><code>TARGET_MODE_DEPENDENT_ADDRESS_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fMODE_005fREP_005fEXTENDED-4780"><code>TARGET_MODE_REP_EXTENDED</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fMS_005fBITFIELD_005fLAYOUT_005fP-3859"><code>TARGET_MS_BITFIELD_LAYOUT_P</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fMUST_005fPASS_005fIN_005fSTACK-4127"><code>TARGET_MUST_PASS_IN_STACK</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-g_t_0040code_007bTARGET_005fMUST_005fPASS_005fIN_005fSTACK_007d_002c-and-_0040code_007bFUNCTION_005fARG_007d-4125"><code>TARGET_MUST_PASS_IN_STACK</code>, and <code>FUNCTION_ARG</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fN_005fFORMAT_005fTYPES-4843"><code>TARGET_N_FORMAT_TYPES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fNARROW_005fVOLATILE_005fBITFIELD-3848"><code>TARGET_NARROW_VOLATILE_BITFIELD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fOBJC_005fCONSTRUCT_005fSTRING_005fOBJECT-3793"><code>TARGET_OBJC_CONSTRUCT_STRING_OBJECT</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOBJECT_005fSUFFIX-4828"><code>TARGET_OBJECT_SUFFIX</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fOBJFMT_005fCPP_005fBUILTINS-3786"><code>TARGET_OBJFMT_CPP_BUILTINS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOPTF-4840"><code>TARGET_OPTF</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fOPTION_005fDEFAULT_005fPARAMS-3801"><code>TARGET_OPTION_DEFAULT_PARAMS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOPTION_005fINIT_005fSTRUCT-3800"><code>TARGET_OPTION_INIT_STRUCT</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOPTION_005fOPTIMIZATION_005fTABLE-3799"><code>TARGET_OPTION_OPTIMIZATION_TABLE</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOPTION_005fOVERRIDE-4721"><code>TARGET_OPTION_OVERRIDE</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOPTION_005fPRAGMA_005fPARSE-4720"><code>TARGET_OPTION_PRAGMA_PARSE</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOPTION_005fPRINT-4719"><code>TARGET_OPTION_PRINT</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOPTION_005fRESTORE-4718"><code>TARGET_OPTION_RESTORE</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOPTION_005fSAVE-4717"><code>TARGET_OPTION_SAVE</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOPTION_005fVALID_005fATTRIBUTE_005fP-4716"><code>TARGET_OPTION_VALID_ATTRIBUTE_P</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fOS_005fCPP_005fBUILTINS-3785"><code>TARGET_OS_CPP_BUILTINS</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOVERRIDE_005fOPTIONS_005fAFTER_005fCHANGE-3797"><code>TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fOVERRIDES_005fFORMAT_005fATTRIBUTES-4844"><code>TARGET_OVERRIDES_FORMAT_ATTRIBUTES</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fOVERRIDES_005fFORMAT_005fATTRIBUTES_005fCOUNT-4845"><code>TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fOVERRIDES_005fFORMAT_005fINIT-4846"><code>TARGET_OVERRIDES_FORMAT_INIT</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fPASS_005fBY_005fREFERENCE-4130"><code>TARGET_PASS_BY_REFERENCE</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fPCH_005fVALID_005fP-4738"><code>TARGET_PCH_VALID_P</code></a>: <a href="#PCH-Target">PCH Target</a></li>
<li><a href="#index-TARGET_005fPOSIX_005fIO-4807"><code>TARGET_POSIX_IO</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fPREFERRED_005fOUTPUT_005fRELOAD_005fCLASS-4011"><code>TARGET_PREFERRED_OUTPUT_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fPREFERRED_005fRELOAD_005fCLASS-4008"><code>TARGET_PREFERRED_RELOAD_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fPREFERRED_005fRENAME_005fCLASS-4007"><code>TARGET_PREFERRED_RENAME_CLASS</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fPRETEND_005fOUTGOING_005fVARARGS_005fNAMED-4221"><code>TARGET_PRETEND_OUTGOING_VARARGS_NAMED</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-TARGET_005fPROFILE_005fBEFORE_005fPROLOGUE-4419"><code>TARGET_PROFILE_BEFORE_PROLOGUE</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fPROMOTE_005fFUNCTION_005fMODE-3821"><code>TARGET_PROMOTE_FUNCTION_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fPROMOTE_005fPROTOTYPES-4110"><code>TARGET_PROMOTE_PROTOTYPES</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-TARGET_005fPROMOTED_005fTYPE-4854"><code>TARGET_PROMOTED_TYPE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fPTRMEMFUNC_005fVBIT_005fLOCATION-3929"><code>TARGET_PTRMEMFUNC_VBIT_LOCATION</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fREF_005fMAY_005fALIAS_005fERRNO-4151"><code>TARGET_REF_MAY_ALIAS_ERRNO</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fREGISTER_005fMOVE_005fCOST-4321"><code>TARGET_REGISTER_MOVE_COST</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-TARGET_005fRELAXED_005fORDERING-4847"><code>TARGET_RELAXED_ORDERING</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fRESOLVE_005fOVERLOADED_005fBUILTIN-4820"><code>TARGET_RESOLVE_OVERLOADED_BUILTIN</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fRETURN_005fIN_005fMEMORY-4172"><code>TARGET_RETURN_IN_MEMORY</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-TARGET_005fRETURN_005fIN_005fMSB-4167"><code>TARGET_RETURN_IN_MSB</code></a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-TARGET_005fRETURN_005fPOPS_005fARGS-4119"><code>TARGET_RETURN_POPS_ARGS</code></a>: <a href="#Stack-Arguments">Stack Arguments</a></li>
<li><a href="#index-TARGET_005fRTX_005fCOSTS-4345"><code>TARGET_RTX_COSTS</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-TARGET_005fSCALAR_005fMODE_005fSUPPORTED_005fP-4152"><code>TARGET_SCALAR_MODE_SUPPORTED_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fSCHED_005fADJUST_005fCOST-4349"><code>TARGET_SCHED_ADJUST_COST</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fADJUST_005fPRIORITY-4350"><code>TARGET_SCHED_ADJUST_PRIORITY</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fALLOC_005fSCHED_005fCONTEXT-4375"><code>TARGET_SCHED_ALLOC_SCHED_CONTEXT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fCLEAR_005fSCHED_005fCONTEXT-4378"><code>TARGET_SCHED_CLEAR_SCHED_CONTEXT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDEPENDENCIES_005fEVALUATION_005fHOOK-4353"><code>TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDFA_005fNEW_005fCYCLE-4372"><code>TARGET_SCHED_DFA_NEW_CYCLE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDFA_005fPOST_005fADVANCE_005fCYCLE-4363"><code>TARGET_SCHED_DFA_POST_ADVANCE_CYCLE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDFA_005fPOST_005fCYCLE_005fINSN-4360"><code>TARGET_SCHED_DFA_POST_CYCLE_INSN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDFA_005fPRE_005fADVANCE_005fCYCLE-4362"><code>TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDFA_005fPRE_005fCYCLE_005fINSN-4358"><code>TARGET_SCHED_DFA_PRE_CYCLE_INSN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDISPATCH-4386"><code>TARGET_SCHED_DISPATCH</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fDISPATCH_005fDO-4387"><code>TARGET_SCHED_DISPATCH_DO</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFINISH-4355"><code>TARGET_SCHED_FINISH</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFINISH_005fGLOBAL-4357"><code>TARGET_SCHED_FINISH_GLOBAL</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fBACKTRACK-4368"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fBEGIN-4366"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD-4364"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD_005fGUARD-4365"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fDFA_005fLOOKAHEAD_005fGUARD_005fSPEC-4383"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fEND-4369"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fFINI-4371"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fINIT-4370"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFIRST_005fCYCLE_005fMULTIPASS_005fISSUE-4367"><code>TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fFREE_005fSCHED_005fCONTEXT-4379"><code>TARGET_SCHED_FREE_SCHED_CONTEXT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fGEN_005fSPEC_005fCHECK-4382"><code>TARGET_SCHED_GEN_SPEC_CHECK</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fH_005fI_005fD_005fEXTENDED-4374"><code>TARGET_SCHED_H_I_D_EXTENDED</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fINIT-4354"><code>TARGET_SCHED_INIT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fINIT_005fDFA_005fPOST_005fCYCLE_005fINSN-4361"><code>TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fINIT_005fDFA_005fPRE_005fCYCLE_005fINSN-4359"><code>TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fINIT_005fGLOBAL-4356"><code>TARGET_SCHED_INIT_GLOBAL</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fINIT_005fSCHED_005fCONTEXT-4376"><code>TARGET_SCHED_INIT_SCHED_CONTEXT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fIS_005fCOSTLY_005fDEPENDENCE-4373"><code>TARGET_SCHED_IS_COSTLY_DEPENDENCE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fISSUE_005fRATE-4347"><code>TARGET_SCHED_ISSUE_RATE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fNEEDS_005fBLOCK_005fP-4381"><code>TARGET_SCHED_NEEDS_BLOCK_P</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fREORDER-4351"><code>TARGET_SCHED_REORDER</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fREORDER2-4352"><code>TARGET_SCHED_REORDER2</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fSET_005fSCHED_005fCONTEXT-4377"><code>TARGET_SCHED_SET_SCHED_CONTEXT</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fSET_005fSCHED_005fFLAGS-4384"><code>TARGET_SCHED_SET_SCHED_FLAGS</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fSMS_005fRES_005fMII-4385"><code>TARGET_SCHED_SMS_RES_MII</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fSPECULATE_005fINSN-4380"><code>TARGET_SCHED_SPECULATE_INSN</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSCHED_005fVARIABLE_005fISSUE-4348"><code>TARGET_SCHED_VARIABLE_ISSUE</code></a>: <a href="#Scheduling">Scheduling</a></li>
<li><a href="#index-TARGET_005fSECONDARY_005fRELOAD-4013"><code>TARGET_SECONDARY_RELOAD</code></a>: <a href="#Register-Classes">Register Classes</a></li>
<li><a href="#index-TARGET_005fSECTION_005fTYPE_005fFLAGS-4450"><code>TARGET_SECTION_TYPE_FLAGS</code></a>: <a href="#File-Framework">File Framework</a></li>
<li><a href="#index-TARGET_005fSET_005fCURRENT_005fFUNCTION-4827"><code>TARGET_SET_CURRENT_FUNCTION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fSET_005fDEFAULT_005fTYPE_005fATTRIBUTES-4707"><code>TARGET_SET_DEFAULT_TYPE_ATTRIBUTES</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fSETUP_005fINCOMING_005fVARARGS-4219"><code>TARGET_SETUP_INCOMING_VARARGS</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-TARGET_005fSHIFT_005fTRUNCATION_005fMASK-4778"><code>TARGET_SHIFT_TRUNCATION_MASK</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fSMALL_005fREGISTER_005fCLASSES_005fFOR_005fMODE_005fP-4155"><code>TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fSPLIT_005fCOMPLEX_005fARG-4144"><code>TARGET_SPLIT_COMPLEX_ARG</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fSTACK_005fPROTECT_005fFAIL-4212"><code>TARGET_STACK_PROTECT_FAIL</code></a>: <a href="#Stack-Smashing-Protection">Stack Smashing Protection</a></li>
<li><a href="#index-TARGET_005fSTACK_005fPROTECT_005fGUARD-4211"><code>TARGET_STACK_PROTECT_GUARD</code></a>: <a href="#Stack-Smashing-Protection">Stack Smashing Protection</a></li>
<li><a href="#index-TARGET_005fSTATIC_005fCHAIN-4093"><code>TARGET_STATIC_CHAIN</code></a>: <a href="#Frame-Registers">Frame Registers</a></li>
<li><a href="#index-TARGET_005fSTRICT_005fARGUMENT_005fNAMING-4220"><code>TARGET_STRICT_ARGUMENT_NAMING</code></a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-TARGET_005fSTRING_005fOBJECT_005fREF_005fTYPE_005fP-3794"><code>TARGET_STRING_OBJECT_REF_TYPE_P</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fSTRIP_005fNAME_005fENCODING-4416"><code>TARGET_STRIP_NAME_ENCODING</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TARGET_005fSTRUCT_005fVALUE_005fRTX-4174"><code>TARGET_STRUCT_VALUE_RTX</code></a>: <a href="#Aggregate-Return">Aggregate Return</a></li>
<li><a href="#index-TARGET_005fSUPPORTS_005fSPLIT_005fSTACK-4213"><code>TARGET_SUPPORTS_SPLIT_STACK</code></a>: <a href="#Stack-Smashing-Protection">Stack Smashing Protection</a></li>
<li><a href="#index-TARGET_005fSUPPORTS_005fWEAK-4511"><code>TARGET_SUPPORTS_WEAK</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TARGET_005fTERMINATE_005fDW2_005fEH_005fFRAME_005fINFO-4602"><code>TARGET_TERMINATE_DW2_EH_FRAME_INFO</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fTRAMPOLINE_005fADJUST_005fADDRESS-4229"><code>TARGET_TRAMPOLINE_ADJUST_ADDRESS</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TARGET_005fTRAMPOLINE_005fINIT-4228"><code>TARGET_TRAMPOLINE_INIT</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TARGET_005fUNSPEC_005fMAY_005fTRAP_005fP-4826"><code>TARGET_UNSPEC_MAY_TRAP_P</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fUNWIND_005fTABLES_005fDEFAULT-4599"><code>TARGET_UNWIND_TABLES_DEFAULT</code></a>: <a href="#Exception-Region-Output">Exception Region Output</a></li>
<li><a href="#index-TARGET_005fUNWIND_005fWORD_005fMODE-3856"><code>TARGET_UNWIND_WORD_MODE</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-TARGET_005fUPDATE_005fSTACK_005fBOUNDARY-4859"><code>TARGET_UPDATE_STACK_BOUNDARY</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fUSE_005fANCHORS_005fFOR_005fSYMBOL_005fP-4299"><code>TARGET_USE_ANCHORS_FOR_SYMBOL_P</code></a>: <a href="#Anchored-Addresses">Anchored Addresses</a></li>
<li><a href="#index-TARGET_005fUSE_005fBLOCKS_005fFOR_005fCONSTANT_005fP-4280"><code>TARGET_USE_BLOCKS_FOR_CONSTANT_P</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fUSE_005fJCR_005fSECTION-4856"><code>TARGET_USE_JCR_SECTION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TARGET_005fUSES_005fWEAK_005fUNWIND_005fINFO-4075"><code>TARGET_USES_WEAK_UNWIND_INFO</code></a>: <a href="#Exception-Handling">Exception Handling</a></li>
<li><a href="#index-TARGET_005fVALID_005fDLLIMPORT_005fATTRIBUTE_005fP-4711"><code>TARGET_VALID_DLLIMPORT_ATTRIBUTE_P</code></a>: <a href="#Target-Attributes">Target Attributes</a></li>
<li><a href="#index-TARGET_005fVALID_005fPOINTER_005fMODE-4150"><code>TARGET_VALID_POINTER_MODE</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fVECTOR_005fMODE_005fSUPPORTED_005fP-4153"><code>TARGET_VECTOR_MODE_SUPPORTED_P</code></a>: <a href="#Register-Arguments">Register Arguments</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fAUTOVECTORIZE_005fVECTOR_005fSIZES-4293"><code>TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fCONVERSION-4289"><code>TARGET_VECTORIZE_BUILTIN_CONVERSION</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fMASK_005fFOR_005fLOAD-4282"><code>TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fMUL_005fWIDEN_005fEVEN-4283"><code>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fMUL_005fWIDEN_005fODD-4284"><code>TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fVEC_005fPERM-4287"><code>TARGET_VECTORIZE_BUILTIN_VEC_PERM</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fVEC_005fPERM_005fOK-4288"><code>TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fVECTORIZATION_005fCOST-4285"><code>TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fBUILTIN_005fVECTORIZED_005fFUNCTION-4290"><code>TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fPREFERRED_005fSIMD_005fMODE-4292"><code>TARGET_VECTORIZE_PREFERRED_SIMD_MODE</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fSUPPORT_005fVECTOR_005fMISALIGNMENT-4291"><code>TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVECTORIZE_005fVECTOR_005fALIGNMENT_005fREACHABLE-4286"><code>TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE</code></a>: <a href="#Addressing-Modes">Addressing Modes</a></li>
<li><a href="#index-TARGET_005fVERSION-3796"><code>TARGET_VERSION</code></a>: <a href="#Run_002dtime-Target">Run-time Target</a></li>
<li><a href="#index-TARGET_005fVTABLE_005fDATA_005fENTRY_005fDISTANCE-3932"><code>TARGET_VTABLE_DATA_ENTRY_DISTANCE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fVTABLE_005fENTRY_005fALIGN-3931"><code>TARGET_VTABLE_ENTRY_ALIGN</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fVTABLE_005fUSES_005fDESCRIPTORS-3930"><code>TARGET_VTABLE_USES_DESCRIPTORS</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TARGET_005fWANT_005fDEBUG_005fPUB_005fSECTIONS-4660"><code>TARGET_WANT_DEBUG_PUB_SECTIONS</code></a>: <a href="#SDB-and-DWARF">SDB and DWARF</a></li>
<li><a href="#index-TARGET_005fWEAK_005fNOT_005fIN_005fARCHIVE_005fTOC-4515"><code>TARGET_WEAK_NOT_IN_ARCHIVE_TOC</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-targetm-3739"><code>targetm</code></a>: <a href="#Target-Structure">Target Structure</a></li>
<li><a href="#index-targets_002c-makefile-1665">targets, makefile</a>: <a href="#Makefile">Makefile</a></li>
<li><a href="#index-TCmode-1935"><code>TCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-TDmode-1907"><code>TDmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-TEMPLATE_005fDECL-2395"><code>TEMPLATE_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-Temporaries-2714">Temporaries</a>: <a href="#Temporaries">Temporaries</a></li>
<li><a href="#index-termination-routines-4537">termination routines</a>: <a href="#Initialization">Initialization</a></li>
<li><a href="#index-testing-constraints-3322">testing constraints</a>: <a href="#C-Constraint-Interface">C Constraint Interface</a></li>
<li><a href="#index-TEXT_005fSECTION_005fASM_005fOP-4388"><code>TEXT_SECTION_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TF_005fSIZE-3890"><code>TF_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-TFmode-1908"><code>TFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-THEN_005fCLAUSE-2689"><code>THEN_CLAUSE</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-THREAD_005fMODEL_005fSPEC-3759"><code>THREAD_MODEL_SPEC</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-THROW_005fEXPR-2451"><code>THROW_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-THUNK_005fDECL-2396"><code>THUNK_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-THUNK_005fDELTA-2397"><code>THUNK_DELTA</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-TImode-1897"><code>TImode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bTImode_007d_002c-in-_0040code_007binsn_007d-2251"><code>TImode</code>, in <code>insn</code></a>: <a href="#Insns">Insns</a></li>
<li><a href="#index-TLS_005fCOMMON_005fASM_005fOP-4396"><code>TLS_COMMON_ASM_OP</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-TLS_005fSECTION_005fASM_005fFLAG-4397"><code>TLS_SECTION_ASM_FLAG</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-g_t_0040file_007btm_002eh_007d-macros-3736"><samp><span class="file">tm.h</span></samp> macros</a>: <a href="#Target-Macros">Target Macros</a></li>
<li><a href="#index-TQFmode-1901"><code>TQFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-TQmode-1913"><code>TQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-TRAMPOLINE_005fALIGNMENT-4227"><code>TRAMPOLINE_ALIGNMENT</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TRAMPOLINE_005fSECTION-4225"><code>TRAMPOLINE_SECTION</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TRAMPOLINE_005fSIZE-4226"><code>TRAMPOLINE_SIZE</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-trampolines-for-nested-functions-4222">trampolines for nested functions</a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-TRANSFER_005fFROM_005fTRAMPOLINE-4232"><code>TRANSFER_FROM_TRAMPOLINE</code></a>: <a href="#Trampolines">Trampolines</a></li>
<li><a href="#index-g_t_0040code_007btrap_007d-instruction-pattern-3539"><code>trap</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-tree-2305">tree</a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-tree-2303">tree</a>: <a href="#Tree-overview">Tree overview</a></li>
<li><a href="#index-Tree-SSA-3083">Tree SSA</a>: <a href="#Tree-SSA">Tree SSA</a></li>
<li><a href="#index-TREE_005fCHAIN-2306"><code>TREE_CHAIN</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-TREE_005fCODE-2304"><code>TREE_CODE</code></a>: <a href="#Tree-overview">Tree overview</a></li>
<li><a href="#index-tree_005fint_005fcst_005fequal-2418"><code>tree_int_cst_equal</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-TREE_005fINT_005fCST_005fHIGH-2415"><code>TREE_INT_CST_HIGH</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-TREE_005fINT_005fCST_005fLOW-2416"><code>TREE_INT_CST_LOW</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-tree_005fint_005fcst_005flt-2417"><code>tree_int_cst_lt</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-TREE_005fLIST-2326"><code>TREE_LIST</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TREE_005fOPERAND-2412"><code>TREE_OPERAND</code></a>: <a href="#Expression-trees">Expression trees</a></li>
<li><a href="#index-TREE_005fPUBLIC-2559"><code>TREE_PUBLIC</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-TREE_005fPUBLIC-2545"><code>TREE_PUBLIC</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-TREE_005fPURPOSE-2328"><code>TREE_PURPOSE</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TREE_005fREADONLY-2562"><code>TREE_READONLY</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-tree_005fsize-2308"><code>tree_size</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-TREE_005fSTATIC-2560"><code>TREE_STATIC</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-TREE_005fSTRING_005fLENGTH-2424"><code>TREE_STRING_LENGTH</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-TREE_005fSTRING_005fPOINTER-2425"><code>TREE_STRING_POINTER</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-TREE_005fTHIS_005fVOLATILE-2561"><code>TREE_THIS_VOLATILE</code></a>: <a href="#Function-Properties">Function Properties</a></li>
<li><a href="#index-TREE_005fTYPE-2586"><code>TREE_TYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TREE_005fTYPE-2554"><code>TREE_TYPE</code></a>: <a href="#Function-Basics">Function Basics</a></li>
<li><a href="#index-TREE_005fTYPE-2411"><code>TREE_TYPE</code></a>: <a href="#Expression-trees">Expression trees</a></li>
<li><a href="#index-TREE_005fTYPE-2403"><code>TREE_TYPE</code></a>: <a href="#Working-with-declarations">Working with declarations</a></li>
<li><a href="#index-TREE_005fTYPE-2367"><code>TREE_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TREE_005fTYPE-2307"><code>TREE_TYPE</code></a>: <a href="#Macros-and-Functions">Macros and Functions</a></li>
<li><a href="#index-TREE_005fVALUE-2329"><code>TREE_VALUE</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TREE_005fVEC-2327"><code>TREE_VEC</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TREE_005fVEC_005fELT-2331"><code>TREE_VEC_ELT</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TREE_005fVEC_005fLENGTH-2330"><code>TREE_VEC_LENGTH</code></a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-TRULY_005fNOOP_005fTRUNCATION-4779"><code>TRULY_NOOP_TRUNCATION</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-TRUNC_005fDIV_005fEXPR-2467"><code>TRUNC_DIV_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUNC_005fMOD_005fEXPR-2471"><code>TRUNC_MOD_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-truncate-2163"><code>truncate</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-g_t_0040code_007btrunc_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3488"><code>trunc</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-TRUTH_005fAND_005fEXPR-2459"><code>TRUTH_AND_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUTH_005fANDIF_005fEXPR-2457"><code>TRUTH_ANDIF_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUTH_005fNOT_005fEXPR-2436"><code>TRUTH_NOT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUTH_005fOR_005fEXPR-2460"><code>TRUTH_OR_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUTH_005fORIF_005fEXPR-2458"><code>TRUTH_ORIF_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRUTH_005fXOR_005fEXPR-2461"><code>TRUTH_XOR_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-TRY_005fBLOCK-2698"><code>TRY_BLOCK</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-TRY_005fHANDLERS-2700"><code>TRY_HANDLERS</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-TRY_005fSTMTS-2699"><code>TRY_STMTS</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-Tuple-specific-accessors-2776">Tuple specific accessors</a>: <a href="#Tuple-specific-accessors">Tuple specific accessors</a></li>
<li><a href="#index-tuples-2709">tuples</a>: <a href="#Tuple-representation">Tuple representation</a></li>
<li><a href="#index-type-2332">type</a>: <a href="#Types">Types</a></li>
<li><a href="#index-type-declaration-2385">type declaration</a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-TYPE_005fALIGN-2580"><code>TYPE_ALIGN</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fALIGN-2362"><code>TYPE_ALIGN</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fARG_005fTYPES-2582"><code>TYPE_ARG_TYPES</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fARG_005fTYPES-2364"><code>TYPE_ARG_TYPES</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fASM_005fOP-4496"><code>TYPE_ASM_OP</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TYPE_005fATTRIBUTES-2409"><code>TYPE_ATTRIBUTES</code></a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-TYPE_005fBINFO-2619"><code>TYPE_BINFO</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fBUILT_005fIN-2603"><code>TYPE_BUILT_IN</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fCANONICAL-2372"><code>TYPE_CANONICAL</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fCONTEXT-2587"><code>TYPE_CONTEXT</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fCONTEXT-2368"><code>TYPE_CONTEXT</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fDECL-2388"><code>TYPE_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-TYPE_005fFIELDS-2621"><code>TYPE_FIELDS</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fFIELDS-2590"><code>TYPE_FIELDS</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fFIELDS-2371"><code>TYPE_FIELDS</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fHAS_005fARRAY_005fNEW_005fOPERATOR-2631"><code>TYPE_HAS_ARRAY_NEW_OPERATOR</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fHAS_005fDEFAULT_005fCONSTRUCTOR-2626"><code>TYPE_HAS_DEFAULT_CONSTRUCTOR</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fHAS_005fMUTABLE_005fP-2628"><code>TYPE_HAS_MUTABLE_P</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fHAS_005fNEW_005fOPERATOR-2630"><code>TYPE_HAS_NEW_OPERATOR</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fMAIN_005fVARIANT-2577"><code>TYPE_MAIN_VARIANT</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fMAIN_005fVARIANT-2359"><code>TYPE_MAIN_VARIANT</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fMAX_005fVALUE-2340"><code>TYPE_MAX_VALUE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fMETHOD_005fBASETYPE-2583"><code>TYPE_METHOD_BASETYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fMETHOD_005fBASETYPE-2365"><code>TYPE_METHOD_BASETYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fMETHODS-2623"><code>TYPE_METHODS</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fMIN_005fVALUE-2339"><code>TYPE_MIN_VALUE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fNAME-2588"><code>TYPE_NAME</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fNAME-2369"><code>TYPE_NAME</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fNOTHROW_005fP-2665"><code>TYPE_NOTHROW_P</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-TYPE_005fOFFSET_005fBASETYPE-2585"><code>TYPE_OFFSET_BASETYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fOFFSET_005fBASETYPE-2366"><code>TYPE_OFFSET_BASETYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fOPERAND_005fFMT-4497"><code>TYPE_OPERAND_FMT</code></a>: <a href="#Label-Output">Label Output</a></li>
<li><a href="#index-TYPE_005fOVERLOADS_005fARRAY_005fREF-2633"><code>TYPE_OVERLOADS_ARRAY_REF</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fOVERLOADS_005fARROW-2634"><code>TYPE_OVERLOADS_ARROW</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fOVERLOADS_005fCALL_005fEXPR-2632"><code>TYPE_OVERLOADS_CALL_EXPR</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fPOLYMORPHIC_005fP-2625"><code>TYPE_POLYMORPHIC_P</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPE_005fPRECISION-2581"><code>TYPE_PRECISION</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fPRECISION-2363"><code>TYPE_PRECISION</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fPTR_005fP-2605"><code>TYPE_PTR_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fPTRFN_005fP-2606"><code>TYPE_PTRFN_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fPTRMEM_005fP-2584"><code>TYPE_PTRMEM_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fPTROB_005fP-2607"><code>TYPE_PTROB_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fPTROBV_005fP-2591"><code>TYPE_PTROBV_P</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fQUAL_005fCONST-2574"><code>TYPE_QUAL_CONST</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fQUAL_005fCONST-2356"><code>TYPE_QUAL_CONST</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fQUAL_005fRESTRICT-2576"><code>TYPE_QUAL_RESTRICT</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fQUAL_005fRESTRICT-2358"><code>TYPE_QUAL_RESTRICT</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fQUAL_005fVOLATILE-2575"><code>TYPE_QUAL_VOLATILE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fQUAL_005fVOLATILE-2357"><code>TYPE_QUAL_VOLATILE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fRAISES_005fEXCEPTIONS-2664"><code>TYPE_RAISES_EXCEPTIONS</code></a>: <a href="#Functions-for-C_002b_002b">Functions for C++</a></li>
<li><a href="#index-TYPE_005fSIZE-2579"><code>TYPE_SIZE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fSIZE-2361"><code>TYPE_SIZE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fSTRUCTURAL_005fEQUALITY_005fP-2373"><code>TYPE_STRUCTURAL_EQUALITY_P</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fUNQUALIFIED-2573"><code>TYPE_UNQUALIFIED</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPE_005fUNQUALIFIED-2355"><code>TYPE_UNQUALIFIED</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPE_005fVFIELD-2622"><code>TYPE_VFIELD</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-TYPENAME_005fTYPE-2570"><code>TYPENAME_TYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPENAME_005fTYPE_005fFULLNAME-2589"><code>TYPENAME_TYPE_FULLNAME</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-TYPENAME_005fTYPE_005fFULLNAME-2370"><code>TYPENAME_TYPE_FULLNAME</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-TYPEOF_005fTYPE-2571"><code>TYPEOF_TYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-UDAmode-1925"><code>UDAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-udiv-2070"><code>udiv</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007budiv_0040var_007bm_007d3_007d-instruction-pattern-3363"><code>udiv</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007budivmod_0040var_007bm_007d4_007d-instruction-pattern-3431"><code>udivmod</code><var>m</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007budot_005fprod_0040var_007bm_007d_007d-instruction-pattern-3385"><code>udot_prod</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-UDQmode-1917"><code>UDQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-UHAmode-1923"><code>UHAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-UHQmode-1915"><code>UHQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-UINT16_005fTYPE-3908"><code>UINT16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT32_005fTYPE-3909"><code>UINT32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT64_005fTYPE-3910"><code>UINT64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT8_005fTYPE-3907"><code>UINT8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fFAST16_005fTYPE-3924"><code>UINT_FAST16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fFAST32_005fTYPE-3925"><code>UINT_FAST32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fFAST64_005fTYPE-3926"><code>UINT_FAST64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fFAST8_005fTYPE-3923"><code>UINT_FAST8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fLEAST16_005fTYPE-3916"><code>UINT_LEAST16_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fLEAST32_005fTYPE-3917"><code>UINT_LEAST32_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fLEAST64_005fTYPE-3918"><code>UINT_LEAST64_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINT_005fLEAST8_005fTYPE-3915"><code>UINT_LEAST8_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINTMAX_005fTYPE-3901"><code>UINTMAX_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-UINTPTR_005fTYPE-3928"><code>UINTPTR_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-g_t_0040code_007bumadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3423"><code>umadd</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-umax-2083"><code>umax</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bumax_0040var_007bm_007d3_007d-instruction-pattern-3368"><code>umax</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-umin-2082"><code>umin</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bumin_0040var_007bm_007d3_007d-instruction-pattern-3367"><code>umin</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-umod-2075"><code>umod</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bumod_0040var_007bm_007d3_007d-instruction-pattern-3366"><code>umod</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bumsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3427"><code>umsub</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bumulhisi3_007d-instruction-pattern-3415"><code>umulhisi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bumul_0040var_007bm_007d3_005fhighpart_007d-instruction-pattern-3421"><code>umul</code><var>m</var><code>3_highpart</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bumulqihi3_007d-instruction-pattern-3414"><code>umulqihi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bumulsidi3_007d-instruction-pattern-3416"><code>umulsidi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-unchanging-1882"><code>unchanging</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bcall_005finsn_007d-1762"><code>unchanging</code>, in <code>call_insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bjump_005finsn_007d_002c-_0040code_007bcall_005finsn_007d-and-_0040code_007binsn_007d-1775"><code>unchanging</code>, in <code>jump_insn</code>, <code>call_insn</code> and <code>insn</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bmem_007d-1835"><code>unchanging</code>, in <code>mem</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bsubreg_007d-1852"><code>unchanging</code>, in <code>subreg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bunchanging_007d_002c-in-_0040code_007bsymbol_005fref_007d-1759"><code>unchanging</code>, in <code>symbol_ref</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-UNEQ_005fEXPR-2488"><code>UNEQ_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-UNGE_005fEXPR-2487"><code>UNGE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-UNGT_005fEXPR-2486"><code>UNGT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-UNION_005fTYPE-2617"><code>UNION_TYPE</code></a>: <a href="#Classes">Classes</a></li>
<li><a href="#index-UNION_005fTYPE-2352"><code>UNION_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-unions_002c-returning-11">unions, returning</a>: <a href="#Interface">Interface</a></li>
<li><a href="#index-UNITS_005fPER_005fWORD-3816"><code>UNITS_PER_WORD</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-UNKNOWN_005fTYPE-2569"><code>UNKNOWN_TYPE</code></a>: <a href="#Types-for-C_002b_002b">Types for C++</a></li>
<li><a href="#index-UNKNOWN_005fTYPE-2353"><code>UNKNOWN_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-UNLE_005fEXPR-2485"><code>UNLE_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-UNLIKELY_005fEXECUTED_005fTEXT_005fSECTION_005fNAME-4390"><code>UNLIKELY_EXECUTED_TEXT_SECTION_NAME</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-UNLT_005fEXPR-2484"><code>UNLT_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-UNORDERED_005fEXPR-2483"><code>UNORDERED_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-unshare_005fall_005frtl-2300"><code>unshare_all_rtl</code></a>: <a href="#Sharing">Sharing</a></li>
<li><a href="#index-unsigned-division-2071">unsigned division</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-unsigned-division-with-unsigned-saturation-2072">unsigned division with unsigned saturation</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-unsigned-greater-than-2134">unsigned greater than</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-unsigned-less-than-2138">unsigned less than</a>: <a href="#Comparisons">Comparisons</a></li>
<li><a href="#index-unsigned-minimum-and-maximum-2084">unsigned minimum and maximum</a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-unsigned_005ffix-2170"><code>unsigned_fix</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-unsigned_005ffloat-2168"><code>unsigned_float</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-unsigned_005ffract_005fconvert-2173"><code>unsigned_fract_convert</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-unsigned_005fsat_005ffract-2174"><code>unsigned_sat_fract</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-unspec-3723"><code>unspec</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-unspec-2194"><code>unspec</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-unspec_005fvolatile-3722"><code>unspec_volatile</code></a>: <a href="#Constant-Definitions">Constant Definitions</a></li>
<li><a href="#index-unspec_005fvolatile-2195"><code>unspec_volatile</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-g_t_0040code_007buntyped_005fcall_007d-instruction-pattern-3507"><code>untyped_call</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007buntyped_005freturn_007d-instruction-pattern-3511"><code>untyped_return</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-UPDATE_005fPATH_005fHOST_005fCANONICALIZE-_0028_0040var_007bpath_007d_0029-4880"><code>UPDATE_PATH_HOST_CANONICALIZE (</code><var>path</var><code>)</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-update_005fssa-3101"><code>update_ssa</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-update_005fstmt-3089"><code>update_stmt</code></a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-update_005fstmt-2773"><code>update_stmt</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-update_005fstmt_005fif_005fmodified-2774"><code>update_stmt_if_modified</code></a>: <a href="#Manipulating-GIMPLE-statements">Manipulating GIMPLE statements</a></li>
<li><a href="#index-UQQmode-1914"><code>UQQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-us_005fashift-2099"><code>us_ashift</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-us_005fminus-2043"><code>us_minus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-us_005fmult-2058"><code>us_mult</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-us_005fneg-2052"><code>us_neg</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-us_005fplus-2035"><code>us_plus</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-us_005ftruncate-2165"><code>us_truncate</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-g_t_0040code_007busadd_0040var_007bm_007d3_007d-instruction-pattern-3354"><code>usadd</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-USAmode-1924"><code>USAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007busashl_0040var_007bm_007d3_007d-instruction-pattern-3434"><code>usashl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busdiv_0040var_007bm_007d3_007d-instruction-pattern-3364"><code>usdiv</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-use-2188"><code>use</code></a>: <a href="#Side-Effects">Side Effects</a></li>
<li><a href="#index-USE_005fC_005fALLOCA-4888"><code>USE_C_ALLOCA</code></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-USE_005fLD_005fAS_005fNEEDED-3755"><code>USE_LD_AS_NEEDED</code></a>: <a href="#Driver">Driver</a></li>
<li><a href="#index-USE_005fLOAD_005fPOST_005fDECREMENT-4336"><code>USE_LOAD_POST_DECREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fLOAD_005fPOST_005fINCREMENT-4335"><code>USE_LOAD_POST_INCREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fLOAD_005fPRE_005fDECREMENT-4338"><code>USE_LOAD_PRE_DECREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fLOAD_005fPRE_005fINCREMENT-4337"><code>USE_LOAD_PRE_INCREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-use_005fparam-4922"><code>use_param</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-use_005fparam_0040var_007bn_007d-4924"><code>use_param</code><var>n</var></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-use_005fparams-4925"><code>use_params</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-USE_005fSELECT_005fSECTION_005fFOR_005fFUNCTIONS-4409"><code>USE_SELECT_SECTION_FOR_FUNCTIONS</code></a>: <a href="#Sections">Sections</a></li>
<li><a href="#index-USE_005fSTORE_005fPOST_005fDECREMENT-4340"><code>USE_STORE_POST_DECREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fSTORE_005fPOST_005fINCREMENT-4339"><code>USE_STORE_POST_INCREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fSTORE_005fPRE_005fDECREMENT-4342"><code>USE_STORE_PRE_DECREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-USE_005fSTORE_005fPRE_005fINCREMENT-4341"><code>USE_STORE_PRE_INCREMENT</code></a>: <a href="#Costs">Costs</a></li>
<li><a href="#index-used-1884"><code>used</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bused_007d_002c-in-_0040code_007bsymbol_005fref_007d-1862"><code>used</code>, in <code>symbol_ref</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-USER_005fLABEL_005fPREFIX-4577"><code>USER_LABEL_PREFIX</code></a>: <a href="#Instruction-Output">Instruction Output</a></li>
<li><a href="#index-USING_005fSTMT-2703"><code>USING_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-g_t_0040code_007busmadd_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3425"><code>usmadd</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busmsub_0040var_007bm_007d_0040var_007bn_007d4_007d-instruction-pattern-3429"><code>usmsub</code><var>m</var><var>n</var><code>4</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busmulhisi3_007d-instruction-pattern-3418"><code>usmulhisi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busmul_0040var_007bm_007d3_007d-instruction-pattern-3360"><code>usmul</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busmulqihi3_007d-instruction-pattern-3417"><code>usmulqihi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busmulsidi3_007d-instruction-pattern-3419"><code>usmulsidi3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busneg_0040var_007bm_007d2_007d-instruction-pattern-3446"><code>usneg</code><var>m</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-USQmode-1916"><code>USQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040code_007bussub_0040var_007bm_007d3_007d-instruction-pattern-3357"><code>ussub</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007busum_005fwiden_0040var_007bm3_007d_007d-instruction-pattern-3387"><code>usum_widen</code><var>m3</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-UTAmode-1926"><code>UTAmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-UTQmode-1918"><code>UTQmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-g_t_0040samp_007bV_007d-in-constraint-3267">‘<samp><span class="samp">V</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-VA_005fARG_005fEXPR-2504"><code>VA_ARG_EXPR</code></a>: <a href="#Unary-and-Binary-Expressions">Unary and Binary Expressions</a></li>
<li><a href="#index-values_002c-returned-by-functions-4158">values, returned by functions</a>: <a href="#Scalar-Return">Scalar Return</a></li>
<li><a href="#index-VAR_005fDECL-2389"><code>VAR_DECL</code></a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-var_005flocation-2212"><code>var_location</code></a>: <a href="#Debug-Information">Debug Information</a></li>
<li><a href="#index-varargs-implementation-4214">varargs implementation</a>: <a href="#Varargs">Varargs</a></li>
<li><a href="#index-variable-2384">variable</a>: <a href="#Declarations">Declarations</a></li>
<li><a href="#index-Variable-Location-Debug-Information-in-RTL-2211">Variable Location Debug Information in RTL</a>: <a href="#Debug-Information">Debug Information</a></li>
<li><a href="#index-variable_005fsize-4935"><code>variable_size</code></a>: <a href="#GTY-Options">GTY Options</a></li>
<li><a href="#index-g_t_0040code_007bvashl_0040var_007bm_007d3_007d-instruction-pattern-3439"><code>vashl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvashr_0040var_007bm_007d3_007d-instruction-pattern-3440"><code>vashr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-vec_005fconcat-2156"><code>vec_concat</code></a>: <a href="#Vector-Operations">Vector Operations</a></li>
<li><a href="#index-vec_005fduplicate-2157"><code>vec_duplicate</code></a>: <a href="#Vector-Operations">Vector Operations</a></li>
<li><a href="#index-VEC_005fEXTRACT_005fEVEN_005fEXPR-2518"><code>VEC_EXTRACT_EVEN_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fextract_005feven_0040var_007bm_007d_007d-instruction-pattern-3346"><code>vec_extract_even</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fEXTRACT_005fODD_005fEXPR-2519"><code>VEC_EXTRACT_ODD_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fextract_005fodd_0040var_007bm_007d_007d-instruction-pattern-3347"><code>vec_extract_odd</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fextract_0040var_007bm_007d_007d-instruction-pattern-3345"><code>vec_extract</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005finit_0040var_007bm_007d_007d-instruction-pattern-3350"><code>vec_init</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fINTERLEAVE_005fHIGH_005fEXPR-2520"><code>VEC_INTERLEAVE_HIGH_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005finterleave_005fhigh_0040var_007bm_007d_007d-instruction-pattern-3348"><code>vec_interleave_high</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fINTERLEAVE_005fLOW_005fEXPR-2521"><code>VEC_INTERLEAVE_LOW_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005finterleave_005flow_0040var_007bm_007d_007d-instruction-pattern-3349"><code>vec_interleave_low</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fload_005flanes_0040var_007bm_007d_0040var_007bn_007d_007d-instruction-pattern-3342"><code>vec_load_lanes</code><var>m</var><var>n</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fLSHIFT_005fEXPR-2507"><code>VEC_LSHIFT_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-vec_005fmerge-2154"><code>vec_merge</code></a>: <a href="#Vector-Operations">Vector Operations</a></li>
<li><a href="#index-VEC_005fPACK_005fFIX_005fTRUNC_005fEXPR-2517"><code>VEC_PACK_FIX_TRUNC_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-VEC_005fPACK_005fSAT_005fEXPR-2516"><code>VEC_PACK_SAT_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fpack_005fsfix_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3393"><code>vec_pack_sfix_trunc_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fpack_005fssat_005f_0040var_007bm_007d_007d-instruction-pattern-3391"><code>vec_pack_ssat_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fPACK_005fTRUNC_005fEXPR-2515"><code>VEC_PACK_TRUNC_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fpack_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3390"><code>vec_pack_trunc_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fpack_005fufix_005ftrunc_005f_0040var_007bm_007d_007d-instruction-pattern-3394"><code>vec_pack_ufix_trunc_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fpack_005fusat_005f_0040var_007bm_007d_007d-instruction-pattern-3392"><code>vec_pack_usat_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fRSHIFT_005fEXPR-2508"><code>VEC_RSHIFT_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-vec_005fselect-2155"><code>vec_select</code></a>: <a href="#Vector-Operations">Vector Operations</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fset_0040var_007bm_007d_007d-instruction-pattern-3344"><code>vec_set</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fshl_005f_0040var_007bm_007d_007d-instruction-pattern-3388"><code>vec_shl_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fshr_005f_0040var_007bm_007d_007d-instruction-pattern-3389"><code>vec_shr_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fstore_005flanes_0040var_007bm_007d_0040var_007bn_007d_007d-instruction-pattern-3343"><code>vec_store_lanes</code><var>m</var><var>n</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fUNPACK_005fFLOAT_005fHI_005fEXPR-2513"><code>VEC_UNPACK_FLOAT_HI_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-VEC_005fUNPACK_005fFLOAT_005fLO_005fEXPR-2514"><code>VEC_UNPACK_FLOAT_LO_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-VEC_005fUNPACK_005fHI_005fEXPR-2511"><code>VEC_UNPACK_HI_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-VEC_005fUNPACK_005fLO_005fEXPR-2512"><code>VEC_UNPACK_LO_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacks_005ffloat_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3399"><code>vec_unpacks_float_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacks_005ffloat_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3400"><code>vec_unpacks_float_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacks_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3395"><code>vec_unpacks_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacks_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3396"><code>vec_unpacks_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacku_005ffloat_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3401"><code>vec_unpacku_float_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacku_005ffloat_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3402"><code>vec_unpacku_float_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacku_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3397"><code>vec_unpacku_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005funpacku_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3398"><code>vec_unpacku_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VEC_005fWIDEN_005fMULT_005fHI_005fEXPR-2509"><code>VEC_WIDEN_MULT_HI_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-VEC_005fWIDEN_005fMULT_005fLO_005fEXPR-2510"><code>VEC_WIDEN_MULT_LO_EXPR</code></a>: <a href="#Vectors">Vectors</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fsmult_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3405"><code>vec_widen_smult_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fsmult_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3406"><code>vec_widen_smult_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fsshiftl_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3409"><code>vec_widen_sshiftl_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fsshiftl_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3410"><code>vec_widen_sshiftl_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fumult_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3403"><code>vec_widen_umult_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fumult_005flo_005f_005f_0040var_007bm_007d_007d-instruction-pattern-3404"><code>vec_widen_umult_lo__</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fushiftl_005fhi_005f_0040var_007bm_007d_007d-instruction-pattern-3407"><code>vec_widen_ushiftl_hi_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvec_005fwiden_005fushiftl_005flo_005f_0040var_007bm_007d_007d-instruction-pattern-3408"><code>vec_widen_ushiftl_lo_</code><var>m</var> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-vector-2325">vector</a>: <a href="#Containers">Containers</a></li>
<li><a href="#index-vector-operations-2153">vector operations</a>: <a href="#Vector-Operations">Vector Operations</a></li>
<li><a href="#index-VECTOR_005fCST-2422"><code>VECTOR_CST</code></a>: <a href="#Constant-expressions">Constant expressions</a></li>
<li><a href="#index-VECTOR_005fSTORE_005fFLAG_005fVALUE-4783"><code>VECTOR_STORE_FLAG_VALUE</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-virtual-operands-3087">virtual operands</a>: <a href="#SSA-Operands">SSA Operands</a></li>
<li><a href="#index-VIRTUAL_005fINCOMING_005fARGS_005fREGNUM-2000"><code>VIRTUAL_INCOMING_ARGS_REGNUM</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-VIRTUAL_005fOUTGOING_005fARGS_005fREGNUM-2010"><code>VIRTUAL_OUTGOING_ARGS_REGNUM</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-VIRTUAL_005fSTACK_005fDYNAMIC_005fREGNUM-2007"><code>VIRTUAL_STACK_DYNAMIC_REGNUM</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-VIRTUAL_005fSTACK_005fVARS_005fREGNUM-2003"><code>VIRTUAL_STACK_VARS_REGNUM</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-VLIW-3687">VLIW</a>: <a href="#Processor-pipeline-description">Processor pipeline description</a></li>
<li><a href="#index-g_t_0040code_007bvlshr_0040var_007bm_007d3_007d-instruction-pattern-3441"><code>vlshr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-VMS-4876"><code>VMS</code></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-VMS_005fDEBUGGING_005fINFO-4674"><code>VMS_DEBUGGING_INFO</code></a>: <a href="#VMS-Debug">VMS Debug</a></li>
<li><a href="#index-VOID_005fTYPE-2337"><code>VOID_TYPE</code></a>: <a href="#Types">Types</a></li>
<li><a href="#index-VOIDmode-1929"><code>VOIDmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-volatil-1885"><code>volatil</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007binsn_007d_002c-_0040code_007bcall_005finsn_007d_002c-_0040code_007bjump_005finsn_007d_002c-_0040code_007bcode_005flabel_007d_002c-_0040code_007bbarrier_007d_002c-and-_0040code_007bnote_007d-1783"><code>volatil</code>, in <code>insn</code>, <code>call_insn</code>, <code>jump_insn</code>, <code>code_label</code>, <code>barrier</code>, and <code>note</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007blabel_005fref_007d-and-_0040code_007breg_005flabel_007d-1796"><code>volatil</code>, in <code>label_ref</code> and <code>reg_label</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bmem_007d_002c-_0040code_007basm_005foperands_007d_002c-and-_0040code_007basm_005finput_007d-1810"><code>volatil</code>, in <code>mem</code>, <code>asm_operands</code>, and <code>asm_input</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007breg_007d-1825"><code>volatil</code>, in <code>reg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bsubreg_007d-1853"><code>volatil</code>, in <code>subreg</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatil_007d_002c-in-_0040code_007bsymbol_005fref_007d-1868"><code>volatil</code>, in <code>symbol_ref</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-volatile-memory-references-1887">volatile memory references</a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-g_t_0040code_007bvolatile_007d_002c-in-_0040code_007bprefetch_007d-1871"><code>volatile</code>, in <code>prefetch</code></a>: <a href="#Flags">Flags</a></li>
<li><a href="#index-voting-between-constraint-alternatives-3303">voting between constraint alternatives</a>: <a href="#Class-Preferences">Class Preferences</a></li>
<li><a href="#index-g_t_0040code_007bvrotl_0040var_007bm_007d3_007d-instruction-pattern-3442"><code>vrotl</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-g_t_0040code_007bvrotr_0040var_007bm_007d3_007d-instruction-pattern-3443"><code>vrotr</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-walk_005fdominator_005ftree-3108"><code>walk_dominator_tree</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-walk_005fgimple_005fop-3081"><code>walk_gimple_op</code></a>: <a href="#Statement-and-operand-traversals">Statement and operand traversals</a></li>
<li><a href="#index-walk_005fgimple_005fseq-3082"><code>walk_gimple_seq</code></a>: <a href="#Statement-and-operand-traversals">Statement and operand traversals</a></li>
<li><a href="#index-walk_005fgimple_005fstmt-3080"><code>walk_gimple_stmt</code></a>: <a href="#Statement-and-operand-traversals">Statement and operand traversals</a></li>
<li><a href="#index-walk_005fuse_005fdef_005fchains-3107"><code>walk_use_def_chains</code></a>: <a href="#SSA">SSA</a></li>
<li><a href="#index-WCHAR_005fTYPE-3897"><code>WCHAR_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-WCHAR_005fTYPE_005fSIZE-3898"><code>WCHAR_TYPE_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-which_005falternative-3231"><code>which_alternative</code></a>: <a href="#Output-Statement">Output Statement</a></li>
<li><a href="#index-WHILE_005fBODY-2705"><code>WHILE_BODY</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-WHILE_005fCOND-2706"><code>WHILE_COND</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-WHILE_005fSTMT-2704"><code>WHILE_STMT</code></a>: <a href="#Statements-for-C_002b_002b">Statements for C++</a></li>
<li><a href="#index-whopr-4946">whopr</a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-WIDEST_005fHARDWARE_005fFP_005fSIZE-3892"><code>WIDEST_HARDWARE_FP_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-WINT_005fTYPE-3899"><code>WINT_TYPE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-word_005fmode-1972"><code>word_mode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-WORD_005fREGISTER_005fOPERATIONS-4770"><code>WORD_REGISTER_OPERATIONS</code></a>: <a href="#Misc">Misc</a></li>
<li><a href="#index-WORDS_005fBIG_005fENDIAN-3811"><code>WORDS_BIG_ENDIAN</code></a>: <a href="#Storage-Layout">Storage Layout</a></li>
<li><a href="#index-g_t_0040code_007bWORDS_005fBIG_005fENDIAN_007d_002c-effect-on-_0040code_007bsubreg_007d-2013"><code>WORDS_BIG_ENDIAN</code>, effect on <code>subreg</code></a>: <a href="#Regs-and-Memory">Regs and Memory</a></li>
<li><a href="#index-wpa-4947">wpa</a>: <a href="#LTO">LTO</a></li>
<li><a href="#index-g_t_0040samp_007bX_007d-in-constraint-3282">‘<samp><span class="samp">X</span></samp>’ in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040file_007bx_002d_0040var_007bhost_007d_007d-4910"><samp><span class="file">x-</span><var>host</var></samp></a>: <a href="#Host-Fragment">Host Fragment</a></li>
<li><a href="#index-XCmode-1934"><code>XCmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-XCOFF_005fDEBUGGING_005fINFO-4625"><code>XCOFF_DEBUGGING_INFO</code></a>: <a href="#DBX-Options">DBX Options</a></li>
<li><a href="#index-XEXP-1718"><code>XEXP</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-XF_005fSIZE-3889"><code>XF_SIZE</code></a>: <a href="#Type-Layout">Type Layout</a></li>
<li><a href="#index-XFmode-1904"><code>XFmode</code></a>: <a href="#Machine-Modes">Machine Modes</a></li>
<li><a href="#index-XINT-1719"><code>XINT</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-g_t_0040file_007bxm_002d_0040var_007bmachine_007d_002eh_007d-4885"><samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp></a>: <a href="#Host-Misc">Host Misc</a></li>
<li><a href="#index-g_t_0040file_007bxm_002d_0040var_007bmachine_007d_002eh_007d-4871"><samp><span class="file">xm-</span><var>machine</var><span class="file">.h</span></samp></a>: <a href="#Filesystem">Filesystem</a></li>
<li><a href="#index-xor-2094"><code>xor</code></a>: <a href="#Arithmetic">Arithmetic</a></li>
<li><a href="#index-g_t_0040code_007bxor_007d_002c-canonicalization-of-3587"><code>xor</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
<li><a href="#index-g_t_0040code_007bxor_0040var_007bm_007d3_007d-instruction-pattern-3371"><code>xor</code><var>m</var><code>3</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-XSTR-1721"><code>XSTR</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-XVEC-1722"><code>XVEC</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-XVECEXP-1724"><code>XVECEXP</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-XVECLEN-1723"><code>XVECLEN</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-XWINT-1720"><code>XWINT</code></a>: <a href="#Accessors">Accessors</a></li>
<li><a href="#index-zero_005fextend-2161"><code>zero_extend</code></a>: <a href="#Conversions">Conversions</a></li>
<li><a href="#index-g_t_0040code_007bzero_005fextend_0040var_007bm_007d_0040var_007bn_007d2_007d-instruction-pattern-3490"><code>zero_extend</code><var>m</var><var>n</var><code>2</code> instruction pattern</a>: <a href="#Standard-Names">Standard Names</a></li>
<li><a href="#index-zero_005fextract-2152"><code>zero_extract</code></a>: <a href="#Bit_002dFields">Bit-Fields</a></li>
<li><a href="#index-g_t_0040code_007bzero_005fextract_007d_002c-canonicalization-of-3588"><code>zero_extract</code>, canonicalization of</a>: <a href="#Insn-Canonicalizations">Insn Canonicalizations</a></li>
</ul><!-- -->
<!-- Epilogue -->
<!-- -->
<div class="footnote">
<hr>
<a name="texinfo-footnotes-in-document"></a><h4>Footnotes</h4><p class="footnote"><small>[<a name="fn-1" href="#fnd-1">1</a>]</small> Except if the compiler was buggy and miscompiled
some of the files that were not modified. In this case, it's best
to use <samp><span class="command">make restrap</span></samp>.</p>
<p class="footnote"><small>[<a name="fn-2" href="#fnd-2">2</a>]</small> Customarily, the system compiler
is also termed the <samp><span class="file">stage0</span></samp> GCC.</p>
<p class="footnote"><small>[<a name="fn-3" href="#fnd-3">3</a>]</small> These restrictions are derived
from those in Morgan 4.8.</p>
<p class="footnote"><small>[<a name="fn-4" href="#fnd-4">4</a>]</small> <code>note</code> insns can separate them, though.</p>
<p class="footnote"><small>[<a name="fn-5" href="#fnd-5">5</a>]</small> However, the size of the automaton depends on
processor complexity. To limit this effect, machine descriptions
can split orthogonal parts of the machine description among several
automata: but then, since each of these must be stepped independently,
this does cause a small decrease in the algorithm's performance.</p>
<hr></div>
</body></html>
|