/usr/share/pyshared/fixtures-0.3.6.egg-info is in python-fixtures 0.3.6-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | Metadata-Version: 1.1
Name: fixtures
Version: 0.3.6
Summary: Fixtures, reusable state for writing clean tests and more.
Home-page: https://launchpad.net/python-fixtures
Author: Robert Collins
Author-email: robertc@robertcollins.net
License: UNKNOWN
Description: *************************************************************
fixtures: Fixtures with cleanups for testing and convenience.
*************************************************************
Copyright (c) 2010, Robert Collins <robertc@robertcollins.net>
Licensed under either the Apache License, Version 2.0 or the BSD 3-clause
license at the users choice. A copy of both licenses are available in the
project source as Apache-2.0 and BSD. You may not use this file except in
compliance with one of these two licences.
Unless required by applicable law or agreed to in writing, software
distributed under these licenses is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
license you chose for the specific language governing permissions and
limitations under that license.
Fixtures defines a Python contract for reusable state / support logic,
primarily for unit testing. Helper and adaption logic is included to make it
easy to write your own fixtures using the fixtures contract. Glue code is
provided that makes using fixtures that meet the Fixtures contract in unittest
compatible test cases easy and straight forward.
Dependencies
============
* Python 2.4+
This is the base language fixtures is written in and for.
* testtools <https://launchpad.net/testtools> 0.9.8 or newer.
testtools provides helpful glue functions for the details API used to report
information about a fixture (whether its used in a testing or production
environment).
For use in a unit test suite using the included glue, one of:
* Python 2.7
* unittest2
* bzrlib.tests
* Or any other test environment that supports TestCase.addCleanup.
Writing your own glue code is easy, or you can simply use Fixtures directly
without any support code.
To run the test suite for fixtures, testtools is needed.
Why Fixtures
============
Standard Python unittest.py provides no obvious method for making and reusing
state needed in a test case other than by adding a method on the test class.
This scales poorly - complex helper functions propogating up a test class
hierarchy is a regular pattern when this is done. Mocking while a great tool
doesn't itself prevent this (and helpers to mock complex things can accumulate
in the same way if placed on the test class).
By defining a uniform contract where helpers have no dependency on the test
class we permit all the regular code hygiene activities to take place without
the distorting influence of being in a class hierarchy that is modelling an
entirely different thing - which is what helpers on a TestCase suffer from.
About Fixtures
==============
A Fixture represents some state. Each fixture has attributes on it that are
specific to the fixture. For instance, a fixture representing a directory that
can be used for temporary files might have a attribute 'path'.
Creating Fixtures
=================
Minimally, subclass Fixture, define setUp to initialize your state and schedule
a cleanup for when cleanUp is called and you're done::
>>> import unittest
>>> import fixtures
>>> class NoddyFixture(fixtures.Fixture):
... def setUp(self):
... super(NoddyFixture, self).setUp()
... self.frobnozzle = 42
... self.addCleanup(delattr, self, 'frobnozzle')
This will initialize frobnozzle when setUp is called, and when cleanUp is
called get rid of the frobnozzle attribute.
There is a helper for adapting a function or function pair into Fixtures. it
puts the result of the function in fn_result::
>>> import os.path
>>> import shutil
>>> import tempfile
>>> def setup_function():
... return tempfile.mkdtemp()
>>> def teardown_function(fixture):
... shutil.rmtree(fixture)
>>> fixture = fixtures.FunctionFixture(setup_function, teardown_function)
>>> fixture.setUp()
>>> print os.path.isdir(fixture.fn_result)
True
>>> fixture.cleanUp()
This can be expressed even more pithily:
>>> fixture = fixtures.FunctionFixture(tempfile.mkdtemp, shutil.rmtree)
>>> fixture.setUp()
>>> print os.path.isdir(fixture.fn_result)
True
>>> fixture.cleanUp()
Another variation is is MethodFixture which is useful for adapting alternate
fixture implementations to Fixture::
>>> class MyServer:
... def start(self):
... pass
... def stop(self):
... pass
>>> server = MyServer()
>>> fixture = fixtures.MethodFixture(server, server.start, server.stop)
The Fixture API
===============
The example above introduces some of the Fixture API. In order to be able to
clean up after a fixture has been used, all fixtures define a ``cleanUp``
method which should be called when a fixture is finished with.
Because its nice to be able to build a particular set of related fixtures in
advance of using them, fixtures also have define a ``setUp`` method which
should be called before trying to use them.
One common desire with fixtures that are expensive to create is to reuse them
in many test cases; to support this the base Fixture also defines a ``reset``
which calls ``self.cleanUp(); self.setUp()``. Fixtures that can more
efficiently make themselves reusable should override this method. This can then
be used with multiple test state via things like ``testresources``,
``setUpClass``, or ``setUpModule``.
When using a fixture with a test you can manually call the setUp and cleanUp
methods. More convenient though is to use the included glue from
``fixtures.TestWithFixtures`` which provides a mixin defining
``useFixture`` (camel case because unittest is camel case throughout) method.
It will call setUp on the fixture, call self.addCleanup(fixture) to schedule a
cleanup, and return the fixture. This lets one write::
>>> import testtools
>>> import unittest
Note that we use testtools TestCase here as we need to guarantee a
TestCase.addCleanup method.
>>> class NoddyTest(testtools.TestCase, fixtures.TestWithFixtures):
... def test_example(self):
... fixture = self.useFixture(NoddyFixture())
... self.assertEqual(42, fixture.frobnozzle)
>>> result = unittest.TestResult()
>>> _ = NoddyTest('test_example').run(result)
>>> print result.wasSuccessful()
True
Fixtures implement the context protocol, so you can also use a fixture as a
context manager::
>>> with fixtures.FunctionFixture(setup_function, teardown_function) as fixture:
... print os.path.isdir(fixture.fn_result)
True
When multiple cleanups error, fixture.cleanUp() will raise a wrapper exception
rather than choosing an arbitrary single exception to raise::
>>> import sys
>>> from fixtures.fixture import MultipleExceptions
>>> class BrokenFixture(fixtures.Fixture):
... def setUp(self):
... fixtures.Fixture.setUp(self)
... self.addCleanup(lambda:1/0)
... self.addCleanup(lambda:1/0)
>>> fixture = BrokenFixture()
>>> fixture.setUp()
>>> try:
... fixture.cleanUp()
... except MultipleExceptions:
... exc_info = sys.exc_info()
>>> print exc_info[1].args[0][0]
<type 'exceptions.ZeroDivisionError'>
Shared Dependencies
+++++++++++++++++++
A common use case within complex environments is having some fixtures shared by
other ones.
Consider the case of testing using a ``TempDir`` with two fixtures built on top
of it; say a small database and a web server. Writing either one is nearly
trivial. However handling ``reset()`` correctly is hard: both the database and
web server would reasonably expect to be able to discard operating system
resources they may have open within the temporary directory before its removed.
A recursive ``reset()`` implementation would work for one, but not both.
Calling ``reset()`` on the ``TempDir`` instance between each test is probably
desirable but we don't want to have to do a complete ``cleanUp`` of the higher
layer fixtures (which would make the ``TempDir`` be unused and trivially
resettable. We have a few options available to us.
Imagine that the webserver does not depend on the DB fixture in any way - we
just want the webserver and DB fixture to coexist in the same tempdir.
A simple option is to just provide an explicit dependency fixture for the
higher layer fixtures to use. This pushes complexity out of the core and onto
users of fixtures::
>>> class WithDep(fixtures.Fixture):
... def __init__(self, tempdir, dependency_fixture):
... super(WithDep, self).__init__()
... self.tempdir = tempdir
... self.dependency_fixture = dependency_fixture
... def setUp(self):
... super(WithDep, self).setUp()
... self.addCleanup(self.dependency_fixture.cleanUp)
... self.dependency_fixture.setUp()
... # we assume that at this point self.tempdir is usable.
>>> DB = WithDep
>>> WebServer = WithDep
>>> tempdir = fixtures.TempDir()
>>> db = DB(tempdir, tempdir)
>>> server = WebServer(tempdir, db)
>>> server.setUp()
>>> server.cleanUp()
Another option is to write the fixtures to gracefully handle a dependency
being reset underneath them. This is insufficient if the fixtures would
block the dependency resetting (for instance by holding file locks open
in a tempdir - on Windows this will prevent the directory being deleted).
Another approach which ``fixtures`` neither helps nor hinders is to raise
a signal of some sort for each user of a fixture before it is reset. In the
example here, ``TempDir`` might offer a subscribers attribute that both the
DB and web server would be registered in. Calling ``reset`` or ``cleanUp``
on the tempdir would trigger a callback to all the subscribers; the DB and
web server reset methods would look something like:
>>> def reset(self):
... if not self._cleaned:
... self._clean()
(Their action on the callback from the tempdir would be to do whatever work
was needed and set ``self._cleaned``.) This approach has the (perhaps)
suprising effect that resetting the webserver may reset the DB - if the
webserver were to be depending on ``tempdir.reset`` as a way to reset the
webservers state.
Another approach which is not currently implemented is to provide an object
graph of dependencies and a reset mechanism that can traverse that, along with
a separation between 'reset starting' and 'reset finishing' - the DB and
webserver would both have their ``reset_starting`` methods called, then the
tempdir would be reset, and finally the DB and webserver would have
``reset_finishing`` called.
Stock Fixtures
==============
In addition to the Fixture, FunctionFixture and MethodFixture classes fixtures
includes a number of precanned fixtures. The API docs for fixtures will list
the complete set of these, should the dcs be out of date or not to hand.
EnvironmentVariableFixture
++++++++++++++++++++++++++
Isolate your code from environmental variables, delete them or set them to a
new value.
>>> fixture = fixtures.EnvironmentVariableFixture('HOME')
MonkeyPatch
+++++++++++
Control the value of a named python attribute.
>>> def fake_open(path, mode):
... pass
>>> fixture = fixtures.MonkeyPatch('__builtin__.open', fake_open)
PackagePathEntry
++++++++++++++++
Adds a single directory to the path for an existing python package. This adds
to the package.__path__ list. If the directory is already in the path, nothing
happens, if it isn't then it is added on setUp and removed on cleanUp.
>>> fixture = fixtures.PackagePathEntry('package/name', '/foo/bar')
PopenFixture
++++++++++++
Pretend to run an external command rather than needing it to be present to run
tests.
>>> from StringIO import StringIO
>>> fixture = fixtures.PopenFixture(lambda _:{'stdout': StringIO('foobar')})
PythonPackage
+++++++++++++
Creates a python package directory. Particularly useful for testing code that
dynamically loads packages/modules, or for mocking out the command line entry
points to Python programs.
>>> fixture = fixtures.PythonPackage('foo.bar', [('quux.py', '')])
PythonPathEntry
+++++++++++++++
Adds a single directory to sys.path. If the directory is already in the path,
nothing happens, if it isn't then it is added on setUp and removed on cleanUp.
>>> fixture = fixtures.PythonPathEntry('/foo/bar')
TempDir
+++++++
Create a temporary directory and clean it up later.
>>> fixture = fixtures.TempDir()
The created directory is stored in the ``path`` attribute of the fixture after
setUp.
Platform: UNKNOWN
Classifier: Development Status :: 6 - Mature
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development :: Quality Assurance
Classifier: Topic :: Software Development :: Testing
|