/usr/share/texmf-texlive/dvips/pst-geo/pst-map3d.pro is in texlive-pstricks 2009-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | % premiere version 29 novembre 2003
% entierement modifiee le 11/08/2009
% allegee de 3D.pro
% version 1.01 2009-08-11 (hv)
% manuel.luque27@gmail.com
% hvoss@tug.org
%
/tx@map3DDict 100 dict def
tx@map3DDict begin
%%
/CalcCoor{
/Y exch def /X exch def
/Xpoint Y cos X cos mul Rsphere mul def
/Ypoint Y cos X sin mul Rsphere mul def
/Zpoint Y sin Rsphere mul def
} def
/CompteurRegions{%
/regions_visibles [] def
/compteur 0 def
{
/region exch def
/nbr region length def % nombre de points
0 1 nbr 1 sub {
/counter exch def % pour memoriser le premier point vu
region counter get aload pop
CalcCoor
CalculsPointsAfterTransformations
Test
PS condition {% marque le point
/regions_visibles [regions_visibles aload pop compteur ] def
exit % termine
} if
} for
/compteur compteur 1 add def
} forall
/TableauRegionsVisibles [
0 1 regions_visibles length 1 sub {
/NoRegion exch def
/No regions_visibles NoRegion get def
REGION No get
} for
] def
TableauRegionsVisibles
} def
/CalculsPointsRegion{%
/region1 exch def
region1 0 get aload pop
CalcCoor
newpath
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { moveto }{ 2 mul exch 2 mul exch moveto} ifelse
%
0 1 region1 length 1 sub {
/NoPoint exch def
region1 NoPoint get aload pop
CalcCoor
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { lineto }{ 2 mul exch 2 mul exch lineto} ifelse
} for
} def
/MatriceTransformation{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul def
/M12 RotZ cos RotY sin mul RotX sin mul
RotZ sin RotX cos mul sub def
/M13 RotZ cos RotY sin mul RotX cos mul
RotZ sin RotX sin mul add def
/M21 RotZ sin RotY cos mul def
/M22 RotZ sin RotY sin RotX sin mul mul
RotZ cos RotX cos mul add def
/M23 RotZ sin RotY sin mul RotX cos mul
RotZ cos RotX sin mul sub def
/M31 RotY sin neg def
/M32 RotX sin RotY cos mul def
/M33 RotX cos RotY cos mul def
} def
% RotZ -> RotX -> RotY
/MatriceTransformationZXY{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul RotZ sin RotX sin mul RotY sin mul sub def
/M12 RotZ sin RotY cos mul RotZ cos RotX sin mul RotY sin mul add def
/M13 RotX cos RotY sin mul def
/M21 RotZ sin RotX cos mul neg def
/M22 RotZ cos RotX cos mul def
/M23 RotX sin neg def
/M31 RotZ cos neg RotY sin mul RotZ sin RotX sin mul RotY cos mul sub def
/M32 RotZ sin neg RotY sin mul RotZ cos RotX sin mul RotY cos mul add def
/M33 RotX cos RotY cos mul def
} def
%
/CalcCoordinates{%
formulesTroisD
Xi xunit Yi yunit
} def
% pour la 3D conventionnelle
/formulesTroisD{%
/xObservateur Xabscisse Sin1 mul neg Yordonnee Cos1 mul add def
/yObservateur Xabscisse Cos1Sin2 mul neg Yordonnee Sin1Sin2 mul sub Zcote Cos2 mul add def
/zObservateur Xabscisse neg Cos1Cos2 mul Yordonnee Sin1Cos2 mul sub Zcote Sin2 mul sub Dobs add def
/Xi DScreen xObservateur mul zObservateur div def
/Yi DScreen yObservateur mul zObservateur div def
} def
%
/CalculsPointsAfterTransformations{%
/Xabscisse M11 Xpoint mul M12 Ypoint mul add M13 Zpoint mul add def
/Yordonnee M21 Xpoint mul M22 Ypoint mul add M23 Zpoint mul add def
/Zcote M31 Xpoint mul M32 Ypoint mul add M33 Zpoint mul add def
}
def
%
/Test { % test de visibilite d'un point
% rayon vers point de vue
/RXvue XpointVue Xabscisse sub def
/RYvue YpointVue Yordonnee sub def
/RZvue ZpointVue Zcote sub def
% test de visibilite
/PS RXvue Xabscisse mul % produit scalaire
RYvue Yordonnee mul add
RZvue Zcote mul add
def
} def
%
/MaillageSphere {
gsave
maillagewidth
maillagecolor
0.25 setlinewidth
0 increment 360 increment sub {%
/theta exch def
-90 increment 90 increment sub {%
/phi exch def
% newpath
/Xpoint Rsphere theta cos mul phi cos mul def
/Ypoint Rsphere theta sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
% Centre de la facette
/Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul def
/Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul def
/Zpoint Rsphere phi increment 2 div add sin mul def
CalculsPointsAfterTransformations
/xCentreFacette Xabscisse def
/yCentreFacette Yordonnee def
/zCentreFacette Zcote def
% normale a la facette
/nXfacette xCentreFacette def
/nYfacette yCentreFacette def
/nZfacette zCentreFacette def
% rayon vers point de vue
/RXvue XpointVue xCentreFacette sub def
/RYvue YpointVue yCentreFacette sub def
/RZvue ZpointVue zCentreFacette sub def
% test de visibilite
/PSfacette RXvue nXfacette mul
RYvue nYfacette mul add
RZvue nZfacette mul add
def
PSfacette condition {
theta 1 theta increment add {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi cos mul def
/Ypoint Rsphere theta1 sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi 1 phi increment add {
/phi1 exch def
/Xpoint Rsphere theta increment add cos mul phi1 cos mul def
/Ypoint Rsphere theta increment add sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
theta increment add -1 theta {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi increment add cos mul def
/Ypoint Rsphere theta1 sin mul phi increment add cos mul def
/Zpoint Rsphere phi increment add sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi increment add -1 phi {
/phi1 exch def
/Xpoint Rsphere theta cos mul phi1 cos mul def
/Ypoint Rsphere theta sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
} if
} for
} for
stroke
} def
%
/DrawCitys {
/CITY exch def
/Rayon exch def
/nbr CITY length def % nombre de villes
0 1 nbr 1 sub {
/compteur exch def
CITY compteur get aload pop
/X exch def /Y exch def
/Xpoint {%
Y cos X cos mul Rsphere mul
} def
/Ypoint {%
Y cos X sin mul Rsphere mul
} def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition %
{1 0 0 setrgbcolor newpath Rayon 0 360 arc closepath fill}{pop pop}
ifelse
} for
} def
/oceans_seas_hatched {
-90 circlesep 90 {
/latitude_parallel exch def
Parallel
circlecolor
circlewidth
stroke
} for
} def
/meridien {
% liste des points vus
/TabPointsVusNeg[
-180 1 0{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
% plus grand et plus petit
/phi_minNeg 0 def
/phi_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_minNeg le {/phi_minNeg phi def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_maxNeg ge {/phi_maxNeg phi def} if
} for
/phi_minPos 180 def
/phi_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_minPos le {/phi_minPos phi def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_maxPos ge {/phi_maxPos phi def} if
} for
/Xpoint Rsphere longitude_meridien cos mul phi_minNeg cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minNeg cos mul def
/Zpoint Rsphere phi_minNeg sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minNeg 1 phi_maxNeg{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
/Xpoint Rsphere longitude_meridien cos mul phi_minPos cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minPos cos mul def
/Zpoint Rsphere phi_minPos sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minPos 1 phi_maxPos{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
}
def
%% macros de Jean-Paul Vignault
%% dans solides.pro
%% produit vectoriel de deux vecteurs 3d
/vectprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
y zp mul z yp mul sub
z xp mul x zp mul sub
x yp mul y xp mul sub
end
} def
% coordonnees spheriques -> coordonnees cartesiennes
/rtp2xyz {
6 dict begin
/phi exch def
/theta exch def
/r exch def
/x phi cos theta cos mul r mul def
/y phi cos theta sin mul r mul def
/z phi sin r mul def
x y z
end
} def
%% norme d'un vecteur 3d
/norme3d { %% x y z
3 dict begin
/z exch def
/y exch def
/x exch def
x dup mul y dup mul add z dup mul add sqrt
end
} def
%% duplique le vecteur 3d
/dupp3d { %% x y z
3 copy
} def
/dupv3d {dupp3d} def
%%%%% ### mulv3d ###
%% (scalaire)*(vecteur 3d) Attention : dans l autre sens !
/mulv3d { %% x y z lambda
4 dict begin
/lambda exch def
/z exch def
/y exch def
/x exch def
x lambda mul
y lambda mul
z lambda mul
end
} def
%%%%% ### defpoint3d ###
%% creation du point A a partir de xA yA yB et du nom /A
/defpoint3d { %% xA yA zA /nom
1 dict begin
/memo exch def
[ 4 1 roll ] cvx memo exch
end def
}def
%%%%% ### scalprod3d ###
%% produit scalaire de deux vecteurs 3d
/scalprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp mul y yp mul add z zp mul add
end
} def
%%%%% ### addv3d ###
%% addition de deux vecteurs 3d
/addv3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp add
y yp add
z zp add
end
} def
/arccos {
dup
dup mul neg 1 add sqrt
exch
atan
} def
%% fin des macros de Jean-Paul Vignault
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% ### rotV3d ###
%% rotation autour d'un vecteur u
%% defini par (ux,uy,uz)
%% ici l'axe des peles de la Terre
%% d'un angle theta
/rotV3d {
15 dict begin
/N2uvw ux dup mul uy dup mul add uz dup mul add def
/N2uv ux dup mul uy dup mul add def
/N2vw uz dup mul uy dup mul add def
/N2uw uz dup mul ux dup mul add def
/z exch def /y exch def /x exch def
/uxvywz ux x mul uy y mul add uz z mul add def
/uxvy ux x mul uy y mul add def
/uxwz ux x mul uz z mul add def
/vywz uy y mul uz z mul add def
/_wyvz uz y mul neg uy z mul add def
/wx_uz uz x mul ux z mul sub def
/_vxuy uy x mul neg ux y mul add def
ux uxvywz mul x N2vw mul ux vywz mul sub theta cos mul add N2uvw sqrt _wyvz mul theta sin mul add N2uvw div
uy uxvywz mul y N2uw mul uy uxwz mul sub theta cos mul add N2uvw sqrt wx_uz mul theta sin mul add N2uvw div
uz uxvywz mul z N2uv mul uz uxvy mul sub theta cos mul add N2uvw sqrt _vxuy mul theta sin mul add N2uvw div
end
} def
/the_night{
50 dict begin
/theta {180 hour 15 mul sub} bind def
% direction des rayons du soleil au solstice d'hiver
u1 u2 u3 /u defpoint3d
% vecteur normal dans le plan meridien
% la latitude
% /phi0 u2 neg u3 atan def
u1 u2 u3 rotV3d
/nZ exch def /nY exch def pop
/phi0 nY neg nZ atan def
% vecteur normal dans le plan equateur
/theta0 u1 neg u2 atan def
theta0 cos theta0 sin 0 /v defpoint3d
% w tels que le triadre u v w soit direct
u v vectprod3d dupp3d norme3d 1 exch div mulv3d /w defpoint3d
/TabPointsVusNeg[
-180 1 0{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
/t_minNeg 0 def
/t_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_minNeg le {/t_minNeg t def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_maxNeg ge {/t_maxNeg t def} if
} for
/t_minPos 180 def
/t_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_minPos le {/t_minPos t def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_maxPos ge {/t_maxPos t def} if
} for
theta -90 ge theta 90 le and {
v t_minNeg cos Rsphere mul mulv3d
w t_minNeg sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minNeg 1 t_maxPos{
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
}{
v t_minPos cos Rsphere mul mulv3d
w t_minPos sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minPos 1 t_maxPos {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
t_minNeg 1 t_maxNeg {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
} ifelse
closepath
end
}
def
% ondes seismes
/ondes {
50 dict begin
/l exch def % latitude : phi
/L exch def % longitude : theta
/dlmax exch def % intervalle maximal en degres
/nbr exch def % nombre de cercles
/dl dlmax nbr div def
% le vecteur unitaire normal
% a la sphere au point considere
L cos l cos mul
L sin l cos mul
l sin
/u defpoint3d
1 1 nbr { /i exch def
/l' l dl i mul add def
/r Rsphere dl i mul cos mul def
/r' Rsphere dl i mul sin mul def
% le centre de l'onde
/x_o r L cos mul l cos mul def
/y_o r L sin mul l cos mul def
/z_o r l sin mul def
% un vecteur unitaire du plan du cercle
% perpendiculaire a n et dans le plan meridien
% donc meme longitude
/x_I Rsphere L cos mul l' cos mul def
/y_I Rsphere L sin mul l' cos mul def
/z_I Rsphere l' sin mul def
x_I x_o sub
y_I y_o sub
z_I z_o sub
/uOI defpoint3d
uOI dupp3d norme3d 1 exch div mulv3d
/v defpoint3d
% un vecteur w normal a u et v dans le plan du cercle
u v vectprod3d dupp3d norme3d 1 exch div mulv3d
/w defpoint3d
% on decrit le cercle
v 0 cos r' mul mulv3d
w 0 sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
MatriceTransformation %%%%%%%%%%%%%%%%% hv 2009-08-11
CalculsPointsAfterTransformations
CalcCoordinates
moveto
0 1 360 {
/t exch def
v t cos r' mul mulv3d
w t sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
stroke
} for
end
} def
%% nouvelle construction des paralleles
/Parallel {
0 1 360{ % for
/theta exch def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
moveto
/theta theta 1 add def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
lineto }
{
/theta theta 1 sub def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} ifelse
} if
} for
} def
end
|