This file is indexed.

/usr/include/boost/gil/utilities.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
    Copyright 2005-2007 Adobe Systems Incorporated
   
    Use, modification and distribution are subject to the Boost Software License,
    Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt).

    See http://opensource.adobe.com/gil for most recent version including documentation.
*/

/*************************************************************************************************/

#ifndef GIL_UTILITIES_H
#define GIL_UTILITIES_H

#include "gil_config.hpp"
#include <functional>
#include <boost/config/no_tr1/cmath.hpp>
#include <cstddef>
#include <algorithm>
#include <utility>
#include <iterator>
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/size.hpp>
#include <boost/mpl/distance.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/find.hpp>
#include <boost/mpl/range_c.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_facade.hpp>

////////////////////////////////////////////////////////////////////////////////////////
/// \file               
/// \brief  Various utilities not specific to the image library. Some are non-standard STL extensions or generic iterator adaptors
/// \author Lubomir Bourdev and Hailin Jin \n
///         Adobe Systems Incorporated
/// \date   2005-2007 \n Last updated on September 18, 2007
///
///
////////////////////////////////////////////////////////////////////////////////////////

namespace boost { namespace gil {

/**
\addtogroup PointModel

Example:
\code
point2<std::ptrdiff_t> p(3,2);
assert((p[0] == p.x) && (p[1] == p.y));
assert(axis_value<0>(p) == 3);
assert(axis_value<1>(p) == 2);
\endcode
*/

////////////////////////////////////////////////////////////////////////////////////////
//                           CLASS point2
///
/// \brief 2D point both axes of which have the same dimension type
/// \ingroup PointModel
/// Models: Point2DConcept
///
////////////////////////////////////////////////////////////////////////////////////////

template <typename T>
class point2 {
public:
    typedef T value_type;
    template <std::size_t D> struct axis { typedef value_type coord_t; };
    static const std::size_t num_dimensions=2;

    point2()                : x(0),     y(0)    {}
    point2(T newX, T newY)  : x(newX),  y(newY) {}
    point2(const point2& p) : x(p.x), y(p.y) {}
    ~point2() {}

    point2& operator=(const point2& p)            { x=p.x; y=p.y; return *this; }

    point2        operator<<(std::ptrdiff_t shift)         const   { return point2(x<<shift,y<<shift); }
    point2        operator>>(std::ptrdiff_t shift)         const   { return point2(x>>shift,y>>shift); }
    point2& operator+=(const point2& p)           { x+=p.x; y+=p.y; return *this; }
    point2& operator-=(const point2& p)           { x-=p.x; y-=p.y; return *this; }
    point2& operator/=(double t)                  { x/=t; y/=t; return *this; }

    const T& operator[](std::size_t i)          const   { return this->*mem_array[i]; }
          T& operator[](std::size_t i)                  { return this->*mem_array[i]; }

    T x,y;
private:
    // this static array of pointers to member variables makes operator[] safe and doesn't seem to exhibit any performance penalty
    static T point2<T>::* const mem_array[num_dimensions];
};

template <typename T>
T point2<T>::* const point2<T>::mem_array[point2<T>::num_dimensions] = { &point2<T>::x, &point2<T>::y };

/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
bool operator==(const point2<T>& p1, const point2<T>& p2) { return (p1.x==p2.x && p1.y==p2.y); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
bool operator!=(const point2<T>& p1, const point2<T>& p2) { return  p1.x!=p2.x || p1.y!=p2.y; }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<T> operator+(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x+p2.x,p1.y+p2.y); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<T> operator-(const point2<T>& p) { return point2<T>(-p.x,-p.y); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<T> operator-(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x-p2.x,p1.y-p2.y); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<double> operator/(const point2<T>& p, double t)      { return t==0 ? point2<double>(0,0):point2<double>(p.x/t,p.y/t); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<T> operator*(const point2<T>& p, std::ptrdiff_t t)      { return point2<T>(p.x*t,p.y*t); }
/// \ingroup PointModel
template <typename T> GIL_FORCEINLINE
point2<T> operator*(std::ptrdiff_t t, const point2<T>& p)      { return point2<T>(p.x*t,p.y*t); }

/// \ingroup PointModel
template <std::size_t K, typename T> GIL_FORCEINLINE
const T& axis_value(const point2<T>& p) { return p[K]; }

/// \ingroup PointModel
template <std::size_t K, typename T> GIL_FORCEINLINE
      T& axis_value(      point2<T>& p) { return p[K]; }

////////////////////////////////////////////////////////////////////////////////////////
///
///  Rounding of real numbers / points to integers / integer points
///
////////////////////////////////////////////////////////////////////////////////////////

inline std::ptrdiff_t iround(float x ) { return static_cast<std::ptrdiff_t>(x + (x < 0.0f ? -0.5f : 0.5f)); }
inline std::ptrdiff_t iround(double x) { return static_cast<std::ptrdiff_t>(x + (x < 0.0 ? -0.5 : 0.5)); }
inline std::ptrdiff_t ifloor(float x ) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
inline std::ptrdiff_t ifloor(double x) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
inline std::ptrdiff_t iceil(float x )  { return static_cast<std::ptrdiff_t>(std::ceil(x)); }
inline std::ptrdiff_t iceil(double x)  { return static_cast<std::ptrdiff_t>(std::ceil(x)); }

/**
\addtogroup PointAlgorithm

Example:
\code
assert(iround(point2<double>(3.1, 3.9)) == point2<std::ptrdiff_t>(3,4));
\endcode
*/

/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> iround(const point2<float >& p)  { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> iround(const point2<double>& p)  { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> ifloor(const point2<float >& p)  { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> ifloor(const point2<double>& p)  { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> iceil (const point2<float >& p)  { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }
/// \ingroup PointAlgorithm
inline point2<std::ptrdiff_t> iceil (const point2<double>& p)  { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }

////////////////////////////////////////////////////////////////////////////////////////
///
///  computing size with alignment
///
////////////////////////////////////////////////////////////////////////////////////////

template <typename T> 
inline T align(T val, std::size_t alignment) { 
    return val+(alignment - val%alignment)%alignment; 
}

/// \brief Helper base class for pixel dereference adaptors. 
/// \ingroup PixelDereferenceAdaptorModel
///
template <typename ConstT, typename Value, typename Reference, typename ConstReference,
          typename ArgType, typename ResultType, bool IsMutable>
struct deref_base : public std::unary_function<ArgType, ResultType> {
    typedef ConstT         const_t;
    typedef Value          value_type;
    typedef Reference      reference;
    typedef ConstReference const_reference;
    BOOST_STATIC_CONSTANT(bool, is_mutable = IsMutable);
};

/// \brief Composes two dereference function objects. Similar to std::unary_compose but needs to pull some typedefs from the component types.  Models: PixelDereferenceAdaptorConcept
/// \ingroup PixelDereferenceAdaptorModel
///
template <typename D1, typename D2>
class deref_compose : public deref_base<
      deref_compose<typename D1::const_t, typename D2::const_t>,
      typename D1::value_type, typename D1::reference, typename D1::const_reference, 
      typename D2::argument_type, typename D1::result_type, D1::is_mutable && D2::is_mutable>
{
public:
    D1 _fn1;
    D2 _fn2;

    typedef typename D2::argument_type   argument_type;
    typedef typename D1::result_type     result_type;

    deref_compose() {}
    deref_compose(const D1& x, const D2& y) : _fn1(x), _fn2(y) {}
    deref_compose(const deref_compose& dc)  : _fn1(dc._fn1), _fn2(dc._fn2) {}
    template <typename _D1, typename _D2> deref_compose(const deref_compose<_D1,_D2>& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}

    result_type operator()(argument_type x) const { return _fn1(_fn2(x)); }
    result_type operator()(argument_type x)       { return _fn1(_fn2(x)); }
};

// reinterpret_cast is implementation-defined. Static cast is not.
template <typename OutPtr, typename In> GIL_FORCEINLINE
      OutPtr gil_reinterpret_cast(      In* p) { return static_cast<OutPtr>(static_cast<void*>(p)); }

template <typename OutPtr, typename In> GIL_FORCEINLINE
const OutPtr gil_reinterpret_cast_c(const In* p) { return static_cast<const OutPtr>(static_cast<const void*>(p)); }

namespace detail {

////////////////////////////////////////////////////////////////////////////////////////
///
///  \brief copy_n taken from SGI STL.
///
////////////////////////////////////////////////////////////////////////////////////////

template <class InputIter, class Size, class OutputIter>
std::pair<InputIter, OutputIter> _copy_n(InputIter first, Size count,
                                         OutputIter result,
                                         std::input_iterator_tag) {
   for ( ; count > 0; --count) {
      *result = *first;
      ++first;
      ++result;
   }
   return std::pair<InputIter, OutputIter>(first, result);
}

template <class RAIter, class Size, class OutputIter>
inline std::pair<RAIter, OutputIter>
_copy_n(RAIter first, Size count, OutputIter result, std::random_access_iterator_tag) {
   RAIter last = first + count;
   return std::pair<RAIter, OutputIter>(last, std::copy(first, last, result));
}

template <class InputIter, class Size, class OutputIter>
inline std::pair<InputIter, OutputIter>
_copy_n(InputIter first, Size count, OutputIter result) {
   return _copy_n(first, count, result, typename std::iterator_traits<InputIter>::iterator_category());
}

template <class InputIter, class Size, class OutputIter>
inline std::pair<InputIter, OutputIter>
copy_n(InputIter first, Size count, OutputIter result) {
    return detail::_copy_n(first, count, result);
}

/// \brief identity taken from SGI STL.
template <typename T> 
struct identity : public std::unary_function<T,T> {
    const T& operator()(const T& val) const { return val; }
};

/*************************************************************************************************/

/// \brief plus function object whose arguments may be of different type.
template <typename T1, typename T2>
struct plus_asymmetric : public std::binary_function<T1,T2,T1> {
    T1 operator()(T1 f1, T2 f2) const {
        return f1+f2;
    }
};

/*************************************************************************************************/

/// \brief operator++ wrapped in a function object
template <typename T>
struct inc : public std::unary_function<T,T> {
    T operator()(T x) const { return ++x; }
};

/*************************************************************************************************/

/// \brief operator-- wrapped in a function object
template <typename T>
struct dec : public std::unary_function<T,T> {
    T operator()(T x) const { return --x; }
};

/// \brief Returns the index corresponding to the first occurrance of a given given type in 
//         a given MPL RandomAccessSequence (or size if the type is not present)
template <typename Types, typename T>
struct type_to_index 
    : public mpl::distance<typename mpl::begin<Types>::type, 
                                  typename mpl::find<Types,T>::type>::type {};
} // namespace detail



/// \ingroup ColorSpaceAndLayoutModel
/// \brief Represents a color space and ordering of channels in memory
template <typename ColorSpace, typename ChannelMapping = mpl::range_c<int,0,mpl::size<ColorSpace>::value> >
struct layout {
    typedef ColorSpace      color_space_t;
    typedef ChannelMapping  channel_mapping_t;
};

/// \brief A version of swap that also works with reference proxy objects
template <typename Value, typename T1, typename T2> // where value_type<T1>  == value_type<T2> == Value
void swap_proxy(T1& left, T2& right) {
    Value tmp = left;
    left = right;
    right = tmp;
}

/// \brief Run-time detection of whether the underlying architecture is little endian
inline bool little_endian() {
    short tester = 0x0001;
    return  *(char*)&tester!=0;
}
/// \brief Run-time detection of whether the underlying architecture is big endian
inline bool big_endian() {
    return !little_endian();
}

} }  // namespace boost::gil

#endif