This file is indexed.

/usr/include/boost/graph/geodesic_distance.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// (C) Copyright Andrew Sutton 2007
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GRAPH_GEODESIC_DISTANCE_HPP
#define BOOST_GRAPH_GEODESIC_DISTANCE_HPP

#include <boost/graph/detail/geodesic.hpp>
#include <boost/graph/exterior_property.hpp>

namespace boost
{
template <typename Graph,
          typename DistanceType,
          typename ResultType,
          typename Divides = std::divides<ResultType> >
struct mean_geodesic_measure
    : public geodesic_measure<Graph, DistanceType, ResultType>
{
    typedef geodesic_measure<Graph, DistanceType, ResultType> base_type;
    typedef typename base_type::distance_type distance_type;
    typedef typename base_type::result_type result_type;

    result_type operator ()(distance_type d, const Graph& g)
    {
        function_requires< VertexListGraphConcept<Graph> >();
        function_requires< NumericValueConcept<DistanceType> >();
        function_requires< NumericValueConcept<ResultType> >();
        function_requires< AdaptableBinaryFunctionConcept<Divides,ResultType,ResultType,ResultType> >();

        return (d == base_type::infinite_distance())
            ? base_type::infinite_result()
            : div(result_type(d), result_type(num_vertices(g) - 1));
    }
    Divides div;
};

template <typename Graph, typename DistanceMap>
inline mean_geodesic_measure<Graph, typename property_traits<DistanceMap>::value_type, double>
measure_mean_geodesic(const Graph&, DistanceMap)
{
    return mean_geodesic_measure<Graph, typename property_traits<DistanceMap>::value_type, double>();
}

template <typename T, typename Graph, typename DistanceMap>
inline mean_geodesic_measure<Graph, typename property_traits<DistanceMap>::value_type, T>
measure_mean_geodesic(const Graph&, DistanceMap)
{
    return mean_geodesic_measure<Graph, typename property_traits<DistanceMap>::value_type, T>();
}

// This is a little different because it's expected that the result type
// should (must?) be the same as the distance type. There's a type of
// transitivity in this thinking... If the average of distances has type
// X then the average of x's should also be type X. Is there a case where this
// is not true?
//
// This type is a little under-genericized... It needs generic parameters
// for addition and division.
template <typename Graph, typename DistanceType>
struct mean_graph_distance_measure
    : public geodesic_measure<Graph, DistanceType, DistanceType>
{
    typedef geodesic_measure<Graph, DistanceType, DistanceType> base_type;
    typedef typename base_type::distance_type distance_type;
    typedef typename base_type::result_type result_type;

    inline result_type operator ()(distance_type d, const Graph& g)
    {
        function_requires< VertexListGraphConcept<Graph> >();
        function_requires< NumericValueConcept<DistanceType> >();

        if(d == base_type::infinite_distance()) {
            return base_type::infinite_result();
        }
        else {
            return d / result_type(num_vertices(g));
        }
    }
};

template <typename Graph, typename DistanceMap>
inline mean_graph_distance_measure<Graph, typename property_traits<DistanceMap>::value_type>
measure_graph_mean_geodesic(const Graph&, DistanceMap)
{
    typedef typename property_traits<DistanceMap>::value_type T;
    return mean_graph_distance_measure<Graph, T>();
}

template <typename Graph,
          typename DistanceMap,
          typename Measure,
          typename Combinator>
inline typename Measure::result_type
mean_geodesic(const Graph& g,
                DistanceMap dist,
                Measure measure,
                Combinator combine)
{
    function_requires< DistanceMeasureConcept<Measure,Graph> >();
    typedef typename Measure::distance_type Distance;

    Distance n = detail::combine_distances(g, dist, combine, Distance(0));
    return measure(n, g);
}

template <typename Graph,
            typename DistanceMap,
            typename Measure>
inline typename Measure::result_type
mean_geodesic(const Graph& g, DistanceMap dist, Measure measure)
{
    function_requires< DistanceMeasureConcept<Measure,Graph> >();
    typedef typename Measure::distance_type Distance;

    return mean_geodesic(g, dist, measure, std::plus<Distance>());
}

template <typename Graph, typename DistanceMap>
inline double
mean_geodesic(const Graph& g, DistanceMap dist)
{ return mean_geodesic(g, dist, measure_mean_geodesic(g, dist)); }

template <typename T, typename Graph, typename DistanceMap>
inline T
mean_geodesic(const Graph& g, DistanceMap dist)
{ return mean_geodesic(g, dist, measure_mean_geodesic<T>(g, dist)); }


template <typename Graph,
            typename DistanceMatrixMap,
            typename GeodesicMap,
            typename Measure>
inline typename property_traits<GeodesicMap>::value_type
all_mean_geodesics(const Graph& g,
                    DistanceMatrixMap dist,
                    GeodesicMap geo,
                    Measure measure)
{
    function_requires< VertexListGraphConcept<Graph> >();
    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
    typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
    function_requires< ReadablePropertyMapConcept<DistanceMatrixMap,Vertex> >();
    typedef typename property_traits<DistanceMatrixMap>::value_type DistanceMap;
    function_requires< DistanceMeasureConcept<Measure,Graph> >();
    typedef typename Measure::result_type Result;
    function_requires< WritablePropertyMapConcept<GeodesicMap,Vertex> >();
    function_requires< NumericValueConcept<Result> >();

    // NOTE: We could compute the mean geodesic here by performing additional
    // computations (i.e., adding and dividing). However, I don't really feel
    // like fully genericizing the entire operation yet so I'm not going to.

    Result inf = numeric_values<Result>::infinity();
    Result sum = numeric_values<Result>::zero();
    VertexIterator i, end;
    for(tie(i, end) = vertices(g); i != end; ++i) {
        DistanceMap dm = get(dist, *i);
        Result r = mean_geodesic(g, dm, measure);
        put(geo, *i, r);

        // compute the sum along with geodesics
        if(r == inf) {
            sum = inf;
        }
        else if(sum != inf) {
            sum += r;
        }
    }

    // return the average of averages.
    return sum / Result(num_vertices(g));
}

template <typename Graph, typename DistanceMatrixMap, typename GeodesicMap>
inline typename property_traits<GeodesicMap>::value_type
all_mean_geodesics(const Graph& g, DistanceMatrixMap dist, GeodesicMap geo)
{
    function_requires< GraphConcept<Graph> >();
    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
    function_requires< ReadablePropertyMapConcept<DistanceMatrixMap,Vertex> >();
    typedef typename property_traits<DistanceMatrixMap>::value_type DistanceMap;
    function_requires< WritablePropertyMapConcept<GeodesicMap,Vertex> >();
    typedef typename property_traits<GeodesicMap>::value_type Result;

    return all_mean_geodesics(g, dist, geo, measure_mean_geodesic<Result>(g, DistanceMap()));
}


template <typename Graph, typename GeodesicMap, typename Measure>
inline typename Measure::result_type
small_world_distance(const Graph& g, GeodesicMap geo, Measure measure)
{
    function_requires< DistanceMeasureConcept<Measure,Graph> >();
    typedef typename Measure::result_type Result;

    Result sum = detail::combine_distances(g, geo, std::plus<Result>(), Result(0));
    return measure(sum, g);
}

template <typename Graph, typename GeodesicMap>
inline typename property_traits<GeodesicMap>::value_type
small_world_distance(const Graph& g, GeodesicMap geo)
{ return small_world_distance(g, geo, measure_graph_mean_geodesic(g, geo)); }

}

#endif