This file is indexed.

/usr/include/boost/graph/incremental_components.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//
//=======================================================================
// Copyright 1997-2001 University of Notre Dame.
// Copyright 2009 Trustees of Indiana University.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Michael Hansen
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//

#ifndef BOOST_INCREMENTAL_COMPONENTS_HPP
#define BOOST_INCREMENTAL_COMPONENTS_HPP

#include <boost/detail/iterator.hpp>
#include <boost/graph/detail/incremental_components.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/make_shared.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <iterator>

namespace boost {

  // A connected component algorithm for the case when dynamically
  // adding (but not removing) edges is common.  The
  // incremental_components() function is a preparing operation. Call
  // same_component to check whether two vertices are in the same
  // component, or use disjoint_set::find_set to determine the
  // representative for a vertex.

  // This version of connected components does not require a full
  // Graph. Instead, it just needs an edge list, where the vertices of
  // each edge need to be of integer type. The edges are assumed to
  // be undirected. The other difference is that the result is stored in
  // a container, instead of just a decorator.  The container should be
  // empty before the algorithm is called. It will grow during the
  // course of the algorithm. The container must be a model of
  // BackInsertionSequence and RandomAccessContainer
  // (std::vector is a good choice). After running the algorithm the
  // index container will map each vertex to the representative
  // vertex of the component to which it belongs.
  //
  // Adapted from an implementation by Alex Stepanov. The disjoint
  // sets data structure is from Tarjan's "Data Structures and Network
  // Algorithms", and the application to connected components is
  // similar to the algorithm described in Ch. 22 of "Intro to
  // Algorithms" by Cormen, et. all.
  //  

  // An implementation of disjoint sets can be found in
  // boost/pending/disjoint_sets.hpp
  
  template <class EdgeListGraph, class DisjointSets>
  void incremental_components(EdgeListGraph& g, DisjointSets& ds)
  {
    typename graph_traits<EdgeListGraph>::edge_iterator e, end;
    for (boost::tie(e,end) = edges(g); e != end; ++e)
      ds.union_set(source(*e,g),target(*e,g));
  }
  
  template <class ParentIterator>
  void compress_components(ParentIterator first, ParentIterator last)
  {
    for (ParentIterator current = first; current != last; ++current) 
      detail::find_representative_with_full_compression(first, current-first);
  }
  
  template <class ParentIterator>
  typename boost::detail::iterator_traits<ParentIterator>::difference_type
  component_count(ParentIterator first, ParentIterator last)
  {
    std::ptrdiff_t count = 0;
    for (ParentIterator current = first; current != last; ++current) 
      if (*current == current - first) ++count; 
    return count;
  }
  
  // This algorithm can be applied to the result container of the
  // connected_components algorithm to normalize
  // the components.
  template <class ParentIterator>
  void normalize_components(ParentIterator first, ParentIterator last)
  {
    for (ParentIterator current = first; current != last; ++current) 
      detail::normalize_node(first, current - first);
  }
  
  template <class VertexListGraph, class DisjointSets> 
  void initialize_incremental_components(VertexListGraph& G, DisjointSets& ds)
  {
    typename graph_traits<VertexListGraph>
      ::vertex_iterator v, vend;
    for (boost::tie(v, vend) = vertices(G); v != vend; ++v)
      ds.make_set(*v);
  }

  template <class Vertex, class DisjointSet>
  inline bool same_component(Vertex u, Vertex v, DisjointSet& ds)
  {
    return ds.find_set(u) == ds.find_set(v);
  }

  // Class that builds a quick-access indexed linked list that allows
  // for fast iterating through a parent component's children.
  template <typename IndexType>
  class component_index {

  private:
    typedef std::vector<IndexType> IndexContainer;

  public:
    typedef counting_iterator<IndexType> iterator;
    typedef iterator const_iterator;
    typedef IndexType value_type;
    typedef IndexType size_type;

    typedef detail::component_index_iterator<typename IndexContainer::iterator>
      component_iterator;

  public:
    template <typename ParentIterator,
              typename ElementIndexMap>
    component_index(ParentIterator parent_start,
                    ParentIterator parent_end,
                    const ElementIndexMap& index_map) :
      m_num_elements(std::distance(parent_start, parent_end)),
      m_components(make_shared<IndexContainer>()),
      m_index_list(make_shared<IndexContainer>(m_num_elements)) {

      build_index_lists(parent_start, index_map);
      
    } // component_index

    template <typename ParentIterator>
    component_index(ParentIterator parent_start,
                    ParentIterator parent_end) :
      m_num_elements(std::distance(parent_start, parent_end)),
      m_components(make_shared<IndexContainer>()),
      m_index_list(make_shared<IndexContainer>(m_num_elements)) {

      build_index_lists(parent_start, boost::identity_property_map());

    } // component_index

    // Returns the number of components
    inline std::size_t size() const {
      return (m_components->size());
    }

    // Beginning iterator for component indices
    iterator begin() const {
      return (iterator(0));
    }

    // End iterator for component indices
    iterator end() const {
      return (iterator(this->size()));
    }

    // Returns a pair of begin and end iterators for the child
    // elements of component [component_index].
    std::pair<component_iterator, component_iterator>
    operator[](IndexType component_index) const {

      IndexType first_index = (*m_components)[component_index];

      return (std::make_pair
              (component_iterator(m_index_list->begin(), first_index),
               component_iterator(m_num_elements)));
    }

  private:
    template <typename ParentIterator,
              typename ElementIndexMap>
    void build_index_lists(ParentIterator parent_start,
                           const ElementIndexMap& index_map) {

      typedef typename std::iterator_traits<ParentIterator>::value_type Element;
      typename IndexContainer::iterator index_list =
        m_index_list->begin();

      // First pass - find root elements, construct index list
      for (IndexType element_index = 0; element_index < m_num_elements;
           ++element_index) {

        Element parent_element = parent_start[element_index];
        IndexType parent_index = get(index_map, parent_element);

        if (element_index != parent_index) {
          index_list[element_index] = parent_index;
        }
        else {
          m_components->push_back(element_index);

          // m_num_elements is the linked list terminator
          index_list[element_index] = m_num_elements;
        }
      }

      // Second pass - build linked list
      for (IndexType element_index = 0; element_index < m_num_elements;
           ++element_index) {

        Element parent_element = parent_start[element_index];
        IndexType parent_index = get(index_map, parent_element);

        if (element_index != parent_index) {

          // Follow list until a component parent is found
          while (index_list[parent_index] != m_num_elements) {
            parent_index = index_list[parent_index];
          }

          // Push element to the front of the linked list
          index_list[element_index] = index_list[parent_index];
          index_list[parent_index] = element_index;
        }
      }

    } // build_index_lists

  protected:
    IndexType m_num_elements;
    shared_ptr<IndexContainer> m_components, m_index_list;

  }; // class component_index
 
} // namespace boost

#endif // BOOST_INCREMENTAL_COMPONENTS_HPP