This file is indexed.

/usr/include/boost/graph/parallel/distribution.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright 2004 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Peter Gottschling
//           Andrew Lumsdaine
#ifndef BOOST_PARALLEL_DISTRIBUTION_HPP
#define BOOST_PARALLEL_DISTRIBUTION_HPP

#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif

#include <cstddef>
#include <vector>
#include <algorithm>
#include <numeric>
#include <boost/assert.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/shared_ptr.hpp>
#include <typeinfo>

namespace boost { namespace parallel {

template<typename ProcessGroup, typename SizeType = std::size_t>
class variant_distribution
{
public:
  typedef typename ProcessGroup::process_id_type process_id_type;
  typedef typename ProcessGroup::process_size_type process_size_type;
  typedef SizeType size_type;

private:
  struct basic_distribution
  {
    virtual ~basic_distribution() {}
    virtual size_type block_size(process_id_type, size_type) const = 0;
    virtual process_id_type in_process(size_type) const = 0;
    virtual size_type local(size_type) const = 0;
    virtual size_type global(size_type) const = 0;
    virtual size_type global(process_id_type, size_type) const = 0;
    virtual void* address() = 0;
    virtual const void* address() const = 0;
    virtual const std::type_info& type() const = 0;
  };

  template<typename Distribution>
  struct poly_distribution : public basic_distribution
  {
    explicit poly_distribution(const Distribution& distribution)
      : distribution_(distribution) { }

    virtual size_type block_size(process_id_type id, size_type n) const
    { return distribution_.block_size(id, n); }

    virtual process_id_type in_process(size_type i) const
    { return distribution_(i); }

    virtual size_type local(size_type i) const
    { return distribution_.local(i); }

    virtual size_type global(size_type n) const
    { return distribution_.global(n); }

    virtual size_type global(process_id_type id, size_type n) const
    { return distribution_.global(id, n); }

    virtual void* address() { return &distribution_; }
    virtual const void* address() const { return &distribution_; }
    virtual const std::type_info& type() const { return typeid(Distribution); }

  private:
    Distribution distribution_;
  };

public:
  variant_distribution() { }

  template<typename Distribution>
  variant_distribution(const Distribution& distribution)
    : distribution_(new poly_distribution<Distribution>(distribution)) { }

  size_type block_size(process_id_type id, size_type n) const
  { return distribution_->block_size(id, n); }
  
  process_id_type operator()(size_type i) const
  { return distribution_->in_process(i); }
  
  size_type local(size_type i) const
  { return distribution_->local(i); }
  
  size_type global(size_type n) const
  { return distribution_->global(n); }

  size_type global(process_id_type id, size_type n) const
  { return distribution_->global(id, n); }

  operator bool() const { return distribution_; }

  void clear() { distribution_.reset(); }

  template<typename T>
  T* as()
  {
    if (distribution_->type() == typeid(T))
      return static_cast<T*>(distribution_->address());
    else
      return 0;
  }

  template<typename T>
  const T* as() const
  {
    if (distribution_->type() == typeid(T))
      return static_cast<T*>(distribution_->address());
    else
      return 0;
  }

private:
  shared_ptr<basic_distribution> distribution_;
};

struct block
{
  template<typename LinearProcessGroup>
  explicit block(const LinearProcessGroup& pg, std::size_t n) 
    : id(process_id(pg)), p(num_processes(pg)), n(n) { }

  // If there are n elements in the distributed data structure, returns the number of elements stored locally.
  template<typename SizeType>
  SizeType block_size(SizeType n) const
  { return (n / p) + ((std::size_t)(n % p) > id? 1 : 0); }

  // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType n) const
  { return (n / p) + ((ProcessID)(n % p) > id? 1 : 0); }

  // Returns the processor on which element with global index i is stored
  template<typename SizeType>
  SizeType operator()(SizeType i) const
  { 
    SizeType cutoff_processor = n % p;
    SizeType cutoff = cutoff_processor * (n / p + 1);

    if (i < cutoff) return i / (n / p + 1);
    else return cutoff_processor + (i - cutoff) / (n / p);
  }

  // Find the starting index for processor with the given id
  template<typename ID>
  std::size_t start(ID id) const
  {
    std::size_t estimate = id * (n / p + 1);
    ID cutoff_processor = n % p;
    if (id < cutoff_processor) return estimate;
    else return estimate - (id - cutoff_processor);
  }

  // Find the local index for the ith global element
  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    SizeType owner = (*this)(i);
    return i - start(owner);
  }

  // Returns the global index of local element i
  template<typename SizeType>
  SizeType global(SizeType i) const
  { return global(id, i); }

  // Returns the global index of the ith local element on processor id
  template<typename ProcessID, typename SizeType>
  SizeType global(ProcessID id, SizeType i) const
  { return i + start(id); }

 private:
  std::size_t id; //< The ID number of this processor
  std::size_t p;  //< The number of processors
  std::size_t n;  //< The size of the problem space
};

// Block distribution with arbitrary block sizes
struct uneven_block
{
  typedef std::vector<std::size_t>    size_vector;

  template<typename LinearProcessGroup>
  explicit uneven_block(const LinearProcessGroup& pg, const std::vector<std::size_t>& local_sizes) 
    : id(process_id(pg)), p(num_processes(pg)), local_sizes(local_sizes)
  { 
    BOOST_ASSERT(local_sizes.size() == p);
    local_starts.resize(p + 1);
    local_starts[0] = 0;
    std::partial_sum(local_sizes.begin(), local_sizes.end(), &local_starts[1]);
    n = local_starts[p];
  }

  // To do maybe: enter local size in each process and gather in constructor (much handier)
  // template<typename LinearProcessGroup>
  // explicit uneven_block(const LinearProcessGroup& pg, std::size_t my_local_size) 

  // If there are n elements in the distributed data structure, returns the number of elements stored locally.
  template<typename SizeType>
  SizeType block_size(SizeType) const
  { return local_sizes[id]; }

  // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType) const
  { return local_sizes[id]; }

  // Returns the processor on which element with global index i is stored
  template<typename SizeType>
  SizeType operator()(SizeType i) const
  {
    BOOST_ASSERT (i >= (SizeType) 0 && i < (SizeType) n); // check for valid range
    size_vector::const_iterator lb = std::lower_bound(local_starts.begin(), local_starts.end(), (std::size_t) i);
    return ((SizeType)(*lb) == i ? lb : --lb) - local_starts.begin();
  }

  // Find the starting index for processor with the given id
  template<typename ID>
  std::size_t start(ID id) const 
  {
    return local_starts[id];
  }

  // Find the local index for the ith global element
  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    SizeType owner = (*this)(i);
    return i - start(owner);
  }

  // Returns the global index of local element i
  template<typename SizeType>
  SizeType global(SizeType i) const
  { return global(id, i); }

  // Returns the global index of the ith local element on processor id
  template<typename ProcessID, typename SizeType>
  SizeType global(ProcessID id, SizeType i) const
  { return i + start(id); }

 private:
  std::size_t              id;           //< The ID number of this processor
  std::size_t              p;            //< The number of processors
  std::size_t              n;            //< The size of the problem space
  std::vector<std::size_t> local_sizes;  //< The sizes of all blocks
  std::vector<std::size_t> local_starts; //< Lowest global index of each block
};


struct oned_block_cyclic
{
  template<typename LinearProcessGroup>
  explicit oned_block_cyclic(const LinearProcessGroup& pg, std::size_t size)
    : id(process_id(pg)), p(num_processes(pg)), size(size) { }
      
  template<typename SizeType>
  SizeType block_size(SizeType n) const
  { 
    return block_size(id, n);
  }

  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType n) const
  {
    SizeType all_blocks = n / size;
    SizeType extra_elements = n % size;
    SizeType everyone_gets = all_blocks / p;
    SizeType extra_blocks = all_blocks % p;
    SizeType my_blocks = everyone_gets + (p < extra_blocks? 1 : 0);
    SizeType my_elements = my_blocks * size 
                         + (p == extra_blocks? extra_elements : 0);
    return my_elements;
  }

  template<typename SizeType>
  SizeType operator()(SizeType i) const
  { 
    return (i / size) % p;
  }

  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    return ((i / size) / p) * size + i % size;
  }

  template<typename SizeType>
  SizeType global(SizeType i) const
  { return global(id, i); }

  template<typename ProcessID, typename SizeType>
  SizeType global(ProcessID id, SizeType i) const
  { 
    return ((i / size) * p + id) * size + i % size;
  }

 private:
  std::size_t id;                   //< The ID number of this processor
  std::size_t p;                    //< The number of processors
  std::size_t size;                 //< Block size
};

struct twod_block_cyclic
{
  template<typename LinearProcessGroup>
  explicit twod_block_cyclic(const LinearProcessGroup& pg,
                             std::size_t block_rows, std::size_t block_columns,
                             std::size_t data_columns_per_row)
    : id(process_id(pg)), p(num_processes(pg)), 
      block_rows(block_rows), block_columns(block_columns), 
      data_columns_per_row(data_columns_per_row)
  { }
      
  template<typename SizeType>
  SizeType block_size(SizeType n) const
  { 
    return block_size(id, n);
  }

  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType n) const
  {
    // TBD: This is really lame :)
    int result = -1;
    while (n > 0) {
      --n;
      if ((*this)(n) == id && (int)local(n) > result) result = local(n);
    }
    ++result;

    //    std::cerr << "Block size of id " << id << " is " << result << std::endl;
    return result;
  }

  template<typename SizeType>
  SizeType operator()(SizeType i) const
  { 
    SizeType result = get_block_num(i) % p;
    //    std::cerr << "Item " << i << " goes on processor " << result << std::endl;
    return result;
  }

  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    // Compute the start of the block
    std::size_t block_num = get_block_num(i);
    //    std::cerr << "Item " << i << " is in block #" << block_num << std::endl;

    std::size_t local_block_num = block_num / p;
    std::size_t block_start = local_block_num * block_rows * block_columns;

    // Compute the offset into the block 
    std::size_t data_row = i / data_columns_per_row;
    std::size_t data_col = i % data_columns_per_row;
    std::size_t block_offset = (data_row % block_rows) * block_columns 
                             + (data_col % block_columns);    

    //    std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
    return block_start + block_offset;
  }

  template<typename SizeType>
  SizeType global(SizeType i) const
  { 
    // Compute the (global) block in which this element resides
    SizeType local_block_num = i / (block_rows * block_columns);
    SizeType block_offset = i % (block_rows * block_columns);
    SizeType block_num = local_block_num * p + id;

    // Compute the position of the start of the block (globally)
    SizeType block_start = block_num * block_rows * block_columns;

    std::cerr << "Block " << block_num << " starts at index " << block_start
              << std::endl;

    // Compute the row and column of this block
    SizeType block_row = block_num / (data_columns_per_row / block_columns);
    SizeType block_col = block_num % (data_columns_per_row / block_columns);

    SizeType row_in_block = block_offset / block_columns;
    SizeType col_in_block = block_offset % block_columns;

    std::cerr << "Local index " << i << " is in block at row " << block_row
              << ", column " << block_col << ", in-block row " << row_in_block
              << ", in-block col " << col_in_block << std::endl;

    SizeType result = block_row * block_rows + block_col * block_columns
                    + row_in_block * block_rows + col_in_block;


    std::cerr << "global(" << i << "@" << id << ") = " << result 
              << " =? " << local(result) << std::endl;
    BOOST_ASSERT(i == local(result));
    return result;
  }

 private:
  template<typename SizeType>
  std::size_t get_block_num(SizeType i) const
  {
    std::size_t data_row = i / data_columns_per_row;
    std::size_t data_col = i % data_columns_per_row;
    std::size_t block_row = data_row / block_rows;
    std::size_t block_col = data_col / block_columns;
    std::size_t blocks_in_row = data_columns_per_row / block_columns;
    std::size_t block_num = block_col * blocks_in_row + block_row;
    return block_num;
  }

  std::size_t id;                   //< The ID number of this processor
  std::size_t p;                    //< The number of processors
  std::size_t block_rows;           //< The # of rows in each block
  std::size_t block_columns;        //< The # of columns in each block
  std::size_t data_columns_per_row; //< The # of columns per row of data
};

class twod_random
{
  template<typename RandomNumberGen>
  struct random_int
  {
    explicit random_int(RandomNumberGen& gen) : gen(gen) { }

    template<typename T>
    T operator()(T n) const
    {
      uniform_int<T> distrib(0, n-1);
      return distrib(gen);
    }

  private:
    RandomNumberGen& gen;
  };
  
 public:
  template<typename LinearProcessGroup, typename RandomNumberGen>
  explicit twod_random(const LinearProcessGroup& pg,
                       std::size_t block_rows, std::size_t block_columns,
                       std::size_t data_columns_per_row,
                       std::size_t n,
                       RandomNumberGen& gen)
    : id(process_id(pg)), p(num_processes(pg)), 
      block_rows(block_rows), block_columns(block_columns), 
      data_columns_per_row(data_columns_per_row),
      global_to_local(n / (block_rows * block_columns))
  { 
    std::copy(make_counting_iterator(std::size_t(0)),
              make_counting_iterator(global_to_local.size()),
              global_to_local.begin());

    random_int<RandomNumberGen> rand(gen);
    std::random_shuffle(global_to_local.begin(), global_to_local.end(), rand);
  }
      
  template<typename SizeType>
  SizeType block_size(SizeType n) const
  { 
    return block_size(id, n);
  }

  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType n) const
  {
    // TBD: This is really lame :)
    int result = -1;
    while (n > 0) {
      --n;
      if ((*this)(n) == id && (int)local(n) > result) result = local(n);
    }
    ++result;

    //    std::cerr << "Block size of id " << id << " is " << result << std::endl;
    return result;
  }

  template<typename SizeType>
  SizeType operator()(SizeType i) const
  { 
    SizeType result = get_block_num(i) % p;
    //    std::cerr << "Item " << i << " goes on processor " << result << std::endl;
    return result;
  }

  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    // Compute the start of the block
    std::size_t block_num = get_block_num(i);
    //    std::cerr << "Item " << i << " is in block #" << block_num << std::endl;

    std::size_t local_block_num = block_num / p;
    std::size_t block_start = local_block_num * block_rows * block_columns;

    // Compute the offset into the block 
    std::size_t data_row = i / data_columns_per_row;
    std::size_t data_col = i % data_columns_per_row;
    std::size_t block_offset = (data_row % block_rows) * block_columns 
                             + (data_col % block_columns);    

    //    std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
    return block_start + block_offset;
  }

 private:
  template<typename SizeType>
  std::size_t get_block_num(SizeType i) const
  {
    std::size_t data_row = i / data_columns_per_row;
    std::size_t data_col = i % data_columns_per_row;
    std::size_t block_row = data_row / block_rows;
    std::size_t block_col = data_col / block_columns;
    std::size_t blocks_in_row = data_columns_per_row / block_columns;
    std::size_t block_num = block_col * blocks_in_row + block_row;
    return global_to_local[block_num];
  }

  std::size_t id;                   //< The ID number of this processor
  std::size_t p;                    //< The number of processors
  std::size_t block_rows;           //< The # of rows in each block
  std::size_t block_columns;        //< The # of columns in each block
  std::size_t data_columns_per_row; //< The # of columns per row of data
  std::vector<std::size_t> global_to_local;
};

class random_distribution
{
  template<typename RandomNumberGen>
  struct random_int
  {
    explicit random_int(RandomNumberGen& gen) : gen(gen) { }

    template<typename T>
    T operator()(T n) const
    {
      uniform_int<T> distrib(0, n-1);
      return distrib(gen);
    }

  private:
    RandomNumberGen& gen;
  };
  
 public:
  template<typename LinearProcessGroup, typename RandomNumberGen>
  random_distribution(const LinearProcessGroup& pg, RandomNumberGen& gen,
                      std::size_t n)
    : base(pg, n), local_to_global(n), global_to_local(n)
  {
    std::copy(make_counting_iterator(std::size_t(0)),
              make_counting_iterator(n),
              local_to_global.begin());

    random_int<RandomNumberGen> rand(gen);
    std::random_shuffle(local_to_global.begin(), local_to_global.end(), rand);
                        

    for (std::vector<std::size_t>::size_type i = 0; i < n; ++i)
      global_to_local[local_to_global[i]] = i;
  }

  template<typename SizeType>
  SizeType block_size(SizeType n) const
  { return base.block_size(n); }

  template<typename SizeType, typename ProcessID>
  SizeType block_size(ProcessID id, SizeType n) const
  { return base.block_size(id, n); }

  template<typename SizeType>
  SizeType operator()(SizeType i) const
  {
    return base(global_to_local[i]);
  }

  template<typename SizeType>
  SizeType local(SizeType i) const
  { 
    return base.local(global_to_local[i]);
  }

  template<typename ProcessID, typename SizeType>
  SizeType global(ProcessID p, SizeType i) const
  { 
    return local_to_global[base.global(p, i)];
  }

  template<typename SizeType>
  SizeType global(SizeType i) const
  { 
    return local_to_global[base.global(i)];
  }

 private:
  block base;
  std::vector<std::size_t> local_to_global;
  std::vector<std::size_t> global_to_local;
};

} } // end namespace boost::parallel

#endif // BOOST_PARALLEL_DISTRIBUTION_HPP