/usr/include/boost/graph/strong_components.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | //
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_GRAPH_STRONG_COMPONENTS_HPP
#define BOOST_GRAPH_STRONG_COMPONENTS_HPP
#include <stack>
#include <boost/config.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/type_traits/conversion_traits.hpp>
#include <boost/static_assert.hpp>
#include <boost/graph/overloading.hpp>
namespace boost {
//==========================================================================
// This is Tarjan's algorithm for strongly connected components
// from his paper "Depth first search and linear graph algorithms".
// It calculates the components in a single application of DFS.
// We implement the algorithm as a dfs-visitor.
namespace detail {
template <typename ComponentMap, typename RootMap, typename DiscoverTime,
typename Stack>
class tarjan_scc_visitor : public dfs_visitor<>
{
typedef typename property_traits<ComponentMap>::value_type comp_type;
typedef typename property_traits<DiscoverTime>::value_type time_type;
public:
tarjan_scc_visitor(ComponentMap comp_map, RootMap r, DiscoverTime d,
comp_type& c_, Stack& s_)
: c(c_), comp(comp_map), root(r), discover_time(d),
dfs_time(time_type()), s(s_) { }
template <typename Graph>
void discover_vertex(typename graph_traits<Graph>::vertex_descriptor v,
const Graph&) {
put(root, v, v);
put(comp, v, (std::numeric_limits<comp_type>::max)());
put(discover_time, v, dfs_time++);
s.push(v);
}
template <typename Graph>
void finish_vertex(typename graph_traits<Graph>::vertex_descriptor v,
const Graph& g) {
typename graph_traits<Graph>::vertex_descriptor w;
typename graph_traits<Graph>::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(v, g); ei != ei_end; ++ei) {
w = target(*ei, g);
if (get(comp, w) == (std::numeric_limits<comp_type>::max)())
put(root, v, this->min_discover_time(get(root,v), get(root,w)));
}
if (get(root, v) == v) {
do {
w = s.top(); s.pop();
put(comp, w, c);
} while (w != v);
++c;
}
}
private:
template <typename Vertex>
Vertex min_discover_time(Vertex u, Vertex v) {
return get(discover_time, u) < get(discover_time,v) ? u : v;
}
comp_type& c;
ComponentMap comp;
RootMap root;
DiscoverTime discover_time;
time_type dfs_time;
Stack& s;
};
template <class Graph, class ComponentMap, class RootMap,
class DiscoverTime, class P, class T, class R>
typename property_traits<ComponentMap>::value_type
strong_components_impl
(const Graph& g, // Input
ComponentMap comp, // Output
// Internal record keeping
RootMap root,
DiscoverTime discover_time,
const bgl_named_params<P, T, R>& params)
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
function_requires< ReadWritePropertyMapConcept<ComponentMap, Vertex> >();
function_requires< ReadWritePropertyMapConcept<RootMap, Vertex> >();
typedef typename property_traits<RootMap>::value_type RootV;
function_requires< ConvertibleConcept<RootV, Vertex> >();
function_requires< ReadWritePropertyMapConcept<DiscoverTime, Vertex> >();
typename property_traits<ComponentMap>::value_type total = 0;
std::stack<Vertex> s;
detail::tarjan_scc_visitor<ComponentMap, RootMap, DiscoverTime,
std::stack<Vertex> >
vis(comp, root, discover_time, total, s);
depth_first_search(g, params.visitor(vis));
return total;
}
//-------------------------------------------------------------------------
// The dispatch functions handle the defaults for the rank and discover
// time property maps.
// dispatch with class specialization to avoid VC++ bug
template <class DiscoverTimeMap>
struct strong_comp_dispatch2 {
template <class Graph, class ComponentMap, class RootMap, class P, class T, class R>
inline static typename property_traits<ComponentMap>::value_type
apply(const Graph& g,
ComponentMap comp,
RootMap r_map,
const bgl_named_params<P, T, R>& params,
DiscoverTimeMap time_map)
{
return strong_components_impl(g, comp, r_map, time_map, params);
}
};
template <>
struct strong_comp_dispatch2<detail::error_property_not_found> {
template <class Graph, class ComponentMap, class RootMap,
class P, class T, class R>
inline static typename property_traits<ComponentMap>::value_type
apply(const Graph& g,
ComponentMap comp,
RootMap r_map,
const bgl_named_params<P, T, R>& params,
detail::error_property_not_found)
{
typedef typename graph_traits<Graph>::vertices_size_type size_type;
size_type n = num_vertices(g) > 0 ? num_vertices(g) : 1;
std::vector<size_type> time_vec(n);
return strong_components_impl
(g, comp, r_map,
make_iterator_property_map(time_vec.begin(), choose_const_pmap
(get_param(params, vertex_index),
g, vertex_index), time_vec[0]),
params);
}
};
template <class Graph, class ComponentMap, class RootMap,
class P, class T, class R, class DiscoverTimeMap>
inline typename property_traits<ComponentMap>::value_type
scc_helper2(const Graph& g,
ComponentMap comp,
RootMap r_map,
const bgl_named_params<P, T, R>& params,
DiscoverTimeMap time_map)
{
return strong_comp_dispatch2<DiscoverTimeMap>::apply(g, comp, r_map, params, time_map);
}
template <class RootMap>
struct strong_comp_dispatch1 {
template <class Graph, class ComponentMap, class P, class T, class R>
inline static typename property_traits<ComponentMap>::value_type
apply(const Graph& g,
ComponentMap comp,
const bgl_named_params<P, T, R>& params,
RootMap r_map)
{
return scc_helper2(g, comp, r_map, params, get_param(params, vertex_discover_time));
}
};
template <>
struct strong_comp_dispatch1<detail::error_property_not_found> {
template <class Graph, class ComponentMap,
class P, class T, class R>
inline static typename property_traits<ComponentMap>::value_type
apply(const Graph& g,
ComponentMap comp,
const bgl_named_params<P, T, R>& params,
detail::error_property_not_found)
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typename std::vector<Vertex>::size_type
n = num_vertices(g) > 0 ? num_vertices(g) : 1;
std::vector<Vertex> root_vec(n);
return scc_helper2
(g, comp,
make_iterator_property_map(root_vec.begin(), choose_const_pmap
(get_param(params, vertex_index),
g, vertex_index), root_vec[0]),
params,
get_param(params, vertex_discover_time));
}
};
template <class Graph, class ComponentMap, class RootMap,
class P, class T, class R>
inline typename property_traits<ComponentMap>::value_type
scc_helper1(const Graph& g,
ComponentMap comp,
const bgl_named_params<P, T, R>& params,
RootMap r_map)
{
return detail::strong_comp_dispatch1<RootMap>::apply(g, comp, params,
r_map);
}
} // namespace detail
template <class Graph, class ComponentMap,
class P, class T, class R>
inline typename property_traits<ComponentMap>::value_type
strong_components(const Graph& g, ComponentMap comp,
const bgl_named_params<P, T, R>& params
BOOST_GRAPH_ENABLE_IF_MODELS_PARM(Graph, vertex_list_graph_tag))
{
typedef typename graph_traits<Graph>::directed_category DirCat;
BOOST_STATIC_ASSERT((is_convertible<DirCat*, directed_tag*>::value == true));
return detail::scc_helper1(g, comp, params,
get_param(params, vertex_root_t()));
}
template <class Graph, class ComponentMap>
inline typename property_traits<ComponentMap>::value_type
strong_components(const Graph& g, ComponentMap comp
BOOST_GRAPH_ENABLE_IF_MODELS_PARM(Graph, vertex_list_graph_tag))
{
typedef typename graph_traits<Graph>::directed_category DirCat;
BOOST_STATIC_ASSERT((is_convertible<DirCat*, directed_tag*>::value == true));
bgl_named_params<int, int> params(0);
return strong_components(g, comp, params);
}
template <typename Graph, typename ComponentMap, typename ComponentLists>
void build_component_lists
(const Graph& g,
typename graph_traits<Graph>::vertices_size_type num_scc,
ComponentMap component_number,
ComponentLists& components)
{
components.resize(num_scc);
typename graph_traits<Graph>::vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
components[component_number[*vi]].push_back(*vi);
}
} // namespace boost
#include <queue>
#include <vector>
#include <boost/graph/transpose_graph.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/graph/connected_components.hpp> // for components_recorder
namespace boost {
//==========================================================================
// This is the version of strongly connected components from
// "Intro. to Algorithms" by Cormen, Leiserson, Rivest, which was
// adapted from "Data Structure and Algorithms" by Aho, Hopcroft,
// and Ullman, who credit the algorithm to S.R. Kosaraju and M. Sharir.
// The algorithm is based on computing DFS forests the graph
// and its transpose.
// This algorithm is slower than Tarjan's by a constant factor, uses
// more memory, and puts more requirements on the graph type.
template <class Graph, class DFSVisitor, class ComponentsMap,
class DiscoverTime, class FinishTime,
class ColorMap>
typename property_traits<ComponentsMap>::value_type
kosaraju_strong_components(Graph& G, ComponentsMap c,
FinishTime finish_time, ColorMap color)
{
function_requires< MutableGraphConcept<Graph> >();
// ...
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
typename property_traits<FinishTime>::value_type time = 0;
depth_first_search
(G, make_dfs_visitor(stamp_times(finish_time, time, on_finish_vertex())),
color);
Graph G_T(num_vertices(G));
transpose_graph(G, G_T);
typedef typename property_traits<ComponentsMap>::value_type count_type;
count_type c_count(0);
detail::components_recorder<ComponentsMap>
vis(c, c_count);
// initialize G_T
typename graph_traits<Graph>::vertex_iterator ui, ui_end;
for (boost::tie(ui, ui_end) = vertices(G_T); ui != ui_end; ++ui)
put(color, *ui, Color::white());
typedef typename property_traits<FinishTime>::value_type D;
typedef indirect_cmp< FinishTime, std::less<D> > Compare;
Compare fl(finish_time);
std::priority_queue<Vertex, std::vector<Vertex>, Compare > Q(fl);
typename graph_traits<Graph>::vertex_iterator i, j, iend, jend;
boost::tie(i, iend) = vertices(G_T);
boost::tie(j, jend) = vertices(G);
for ( ; i != iend; ++i, ++j) {
put(finish_time, *i, get(finish_time, *j));
Q.push(*i);
}
while ( !Q.empty() ) {
Vertex u = Q.top();
Q.pop();
if (get(color, u) == Color::white()) {
depth_first_visit(G_T, u, vis, color);
++c_count;
}
}
return c_count;
}
} // namespace boost
#ifdef BOOST_GRAPH_USE_MPI
# include <boost/graph/distributed/strong_components.hpp>
#endif
#endif // BOOST_GRAPH_STRONG_COMPONENTS_HPP
|