This file is indexed.

/usr/include/boost/graph/transitive_closure.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>
// Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

// NOTE: this final is generated by libs/graph/doc/transitive_closure.w

#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP

#include <vector>
#include <algorithm> // for std::min and std::max
#include <functional>
#include <boost/config.hpp>
#include <boost/bind.hpp>
#include <boost/graph/vector_as_graph.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/named_function_params.hpp>

namespace boost
{

  namespace detail
  {
    inline void
      union_successor_sets(const std::vector < std::size_t > &s1,
                           const std::vector < std::size_t > &s2,
                           std::vector < std::size_t > &s3)
    {
      BOOST_USING_STD_MIN();
      for (std::size_t k = 0; k < s1.size(); ++k)
        s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);
    }
  }                             // namespace detail

  namespace detail
  {
    template < typename TheContainer, typename ST = std::size_t,
      typename VT = typename TheContainer::value_type >
      struct subscript_t:public std::unary_function < ST, VT >
    {
      typedef VT& result_type;

      subscript_t(TheContainer & c):container(&c)
      {
      }
      VT & operator() (const ST & i) const
      {
        return (*container)[i];
      }
    protected:
        TheContainer * container;
    };
    template < typename TheContainer >
      subscript_t < TheContainer > subscript(TheContainer & c) {
      return subscript_t < TheContainer > (c);
    }
  }                             // namespace detail

  template < typename Graph, typename GraphTC,
    typename G_to_TC_VertexMap,
    typename VertexIndexMap >
    void transitive_closure(const Graph & g, GraphTC & tc,
                            G_to_TC_VertexMap g_to_tc_map,
                            VertexIndexMap index_map)
  {
    if (num_vertices(g) == 0)
      return;
    typedef typename graph_traits < Graph >::vertex_descriptor vertex;
    typedef typename graph_traits < Graph >::edge_descriptor edge;
    typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator;
    typedef typename property_traits < VertexIndexMap >::value_type size_type;
    typedef typename graph_traits <
      Graph >::adjacency_iterator adjacency_iterator;

    function_requires < VertexListGraphConcept < Graph > >();
    function_requires < AdjacencyGraphConcept < Graph > >();
    function_requires < VertexMutableGraphConcept < GraphTC > >();
    function_requires < EdgeMutableGraphConcept < GraphTC > >();
    function_requires < ReadablePropertyMapConcept < VertexIndexMap,
      vertex > >();

    typedef size_type cg_vertex;
    std::vector < cg_vertex > component_number_vec(num_vertices(g));
    iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& >
      component_number(&component_number_vec[0], index_map);

    int num_scc = strong_components(g, component_number,
                                    vertex_index_map(index_map));

    std::vector < std::vector < vertex > >components;
    build_component_lists(g, num_scc, component_number, components);

    typedef std::vector<std::vector<cg_vertex> > CG_t;
    CG_t CG(num_scc);
    for (cg_vertex s = 0; s < components.size(); ++s) {
      std::vector < cg_vertex > adj;
      for (size_type i = 0; i < components[s].size(); ++i) {
        vertex u = components[s][i];
        adjacency_iterator v, v_end;
        for (boost::tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
          cg_vertex t = component_number[*v];
          if (s != t)           // Avoid loops in the condensation graph
            adj.push_back(t);
        }
      }
      std::sort(adj.begin(), adj.end());
      typename std::vector<cg_vertex>::iterator di =
        std::unique(adj.begin(), adj.end());
      if (di != adj.end())
        adj.erase(di, adj.end());
      CG[s] = adj;
    }

    std::vector<cg_vertex> topo_order;
    std::vector<cg_vertex> topo_number(num_vertices(CG));
    topological_sort(CG, std::back_inserter(topo_order),
                     vertex_index_map(identity_property_map()));
    std::reverse(topo_order.begin(), topo_order.end());
    size_type n = 0;
    for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin();
         iter != topo_order.end(); ++iter)
      topo_number[*iter] = n++;

    for (size_type i = 0; i < num_vertices(CG); ++i)
      std::sort(CG[i].begin(), CG[i].end(),
                boost::bind(std::less<cg_vertex>(),
                            boost::bind(detail::subscript(topo_number), _1),
                            boost::bind(detail::subscript(topo_number), _2)));

    std::vector<std::vector<cg_vertex> > chains;
    {
      std::vector<cg_vertex> in_a_chain(num_vertices(CG));
      for (typename std::vector<cg_vertex>::iterator i = topo_order.begin();
           i != topo_order.end(); ++i) {
        cg_vertex v = *i;
        if (!in_a_chain[v]) {
          chains.resize(chains.size() + 1);
          std::vector<cg_vertex>& chain = chains.back();
          for (;;) {
            chain.push_back(v);
            in_a_chain[v] = true;
            typename graph_traits<CG_t>::adjacency_iterator adj_first, adj_last;
            boost::tie(adj_first, adj_last) = adjacent_vertices(v, CG);
            typename graph_traits<CG_t>::adjacency_iterator next
              = std::find_if(adj_first, adj_last,
                             std::not1(detail::subscript(in_a_chain)));
            if (next != adj_last)
              v = *next;
            else
              break;            // end of chain, dead-end

          }
        }
      }
    }
    std::vector<size_type> chain_number(num_vertices(CG));
    std::vector<size_type> pos_in_chain(num_vertices(CG));
    for (size_type i = 0; i < chains.size(); ++i)
      for (size_type j = 0; j < chains[i].size(); ++j) {
        cg_vertex v = chains[i][j];
        chain_number[v] = i;
        pos_in_chain[v] = j;
      }

    cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();
    std::vector<std::vector<cg_vertex> > successors(num_vertices(CG),
                                                    std::vector<cg_vertex>
                                                    (chains.size(), inf));
    for (typename std::vector<cg_vertex>::reverse_iterator
           i = topo_order.rbegin(); i != topo_order.rend(); ++i) {
      cg_vertex u = *i;
      typename graph_traits<CG_t>::adjacency_iterator adj, adj_last;
      for (boost::tie(adj, adj_last) = adjacent_vertices(u, CG);
           adj != adj_last; ++adj) {
        cg_vertex v = *adj;
        if (topo_number[v] < successors[u][chain_number[v]]) {
          // Succ(u) = Succ(u) U Succ(v)
          detail::union_successor_sets(successors[u], successors[v],
                                       successors[u]);
          // Succ(u) = Succ(u) U {v}
          successors[u][chain_number[v]] = topo_number[v];
        }
      }
    }

    for (size_type i = 0; i < CG.size(); ++i)
      CG[i].clear();
    for (size_type i = 0; i < CG.size(); ++i)
      for (size_type j = 0; j < chains.size(); ++j) {
        size_type topo_num = successors[i][j];
        if (topo_num < inf) {
          cg_vertex v = topo_order[topo_num];
          for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
            CG[i].push_back(chains[j][k]);
        }
      }


    // Add vertices to the transitive closure graph
    typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
    {
      vertex_iterator i, i_end;
      for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)
        g_to_tc_map[*i] = add_vertex(tc);
    }
    // Add edges between all the vertices in two adjacent SCCs
    typename graph_traits<CG_t>::vertex_iterator si, si_end;
    for (boost::tie(si, si_end) = vertices(CG); si != si_end; ++si) {
      cg_vertex s = *si;
      typename graph_traits<CG_t>::adjacency_iterator i, i_end;
      for (boost::tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) {
        cg_vertex t = *i;
        for (size_type k = 0; k < components[s].size(); ++k)
          for (size_type l = 0; l < components[t].size(); ++l)
            add_edge(g_to_tc_map[components[s][k]],
                     g_to_tc_map[components[t][l]], tc);
      }
    }
    // Add edges connecting all vertices in a SCC
    for (size_type i = 0; i < components.size(); ++i)
      if (components[i].size() > 1)
        for (size_type k = 0; k < components[i].size(); ++k)
          for (size_type l = 0; l < components[i].size(); ++l) {
            vertex u = components[i][k], v = components[i][l];
            add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
          }

    // Find loopbacks in the original graph.
    // Need to add it to transitive closure.
    {
      vertex_iterator i, i_end;
      for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)
        {
          adjacency_iterator ab, ae;
          for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
            {
              if (*ab == *i)
                if (components[component_number[*i]].size() == 1)
                  add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
            }
        }
    }
  }

  template <typename Graph, typename GraphTC>
  void transitive_closure(const Graph & g, GraphTC & tc)
  {
    if (num_vertices(g) == 0)
      return;
    typedef typename property_map<Graph, vertex_index_t>::const_type
      VertexIndexMap;
    VertexIndexMap index_map = get(vertex_index, g);

    typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
    std::vector<tc_vertex> to_tc_vec(num_vertices(g));
    iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&>
      g_to_tc_map(&to_tc_vec[0], index_map);

    transitive_closure(g, tc, g_to_tc_map, index_map);
  }

  namespace detail
  {
    template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,
      typename VertexIndexMap>
    void transitive_closure_dispatch
      (const Graph & g, GraphTC & tc,
       G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)
    {
      typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
      typename std::vector < tc_vertex >::size_type
        n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
      std::vector < tc_vertex > to_tc_vec(n);

      transitive_closure
        (g, tc,
         choose_param(g_to_tc_map, make_iterator_property_map
                      (to_tc_vec.begin(), index_map, to_tc_vec[0])),
         index_map);
    }
  }                             // namespace detail

  template < typename Graph, typename GraphTC,
    typename P, typename T, typename R >
    void transitive_closure(const Graph & g, GraphTC & tc,
                            const bgl_named_params < P, T, R > &params)
  {
    if (num_vertices(g) == 0)
      return;
    detail::transitive_closure_dispatch
      (g, tc, get_param(params, orig_to_copy_t()),
       choose_const_pmap(get_param(params, vertex_index), g, vertex_index) );
  }


  template < typename G > void warshall_transitive_closure(G & g)
  {
    typedef typename graph_traits < G >::vertex_descriptor vertex;
    typedef typename graph_traits < G >::vertex_iterator vertex_iterator;

    function_requires < AdjacencyMatrixConcept < G > >();
    function_requires < EdgeMutableGraphConcept < G > >();

    // Matrix form:
    // for k
    //  for i
    //    if A[i,k]
    //      for j
    //        A[i,j] = A[i,j] | A[k,j]
    vertex_iterator ki, ke, ii, ie, ji, je;
    for (boost::tie(ki, ke) = vertices(g); ki != ke; ++ki)
      for (boost::tie(ii, ie) = vertices(g); ii != ie; ++ii)
        if (edge(*ii, *ki, g).second)
          for (boost::tie(ji, je) = vertices(g); ji != je; ++ji)
            if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) {
              add_edge(*ii, *ji, g);
            }
  }


  template < typename G > void warren_transitive_closure(G & g)
  {
    using namespace boost;
    typedef typename graph_traits < G >::vertex_descriptor vertex;
    typedef typename graph_traits < G >::vertex_iterator vertex_iterator;

    function_requires < AdjacencyMatrixConcept < G > >();
    function_requires < EdgeMutableGraphConcept < G > >();

    // Make sure second loop will work
    if (num_vertices(g) == 0)
      return;

    // for i = 2 to n
    //    for k = 1 to i - 1
    //      if A[i,k]
    //        for j = 1 to n
    //          A[i,j] = A[i,j] | A[k,j]

    vertex_iterator ic, ie, jc, je, kc, ke;
    for (boost::tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
      for (boost::tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
        if (edge(*ic, *kc, g).second)
          for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)
            if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
              add_edge(*ic, *jc, g);
            }
    //  for i = 1 to n - 1
    //    for k = i + 1 to n
    //      if A[i,k]
    //        for j = 1 to n
    //          A[i,j] = A[i,j] | A[k,j]

    for (boost::tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
      for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
        if (edge(*ic, *kc, g).second)
          for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)
            if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
              add_edge(*ic, *jc, g);
            }
  }


}                               // namespace boost

#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP