This file is indexed.

/usr/include/boost/interprocess/segment_manager.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP
#define BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP

#if (defined _MSC_VER) && (_MSC_VER >= 1200)
#  pragma once
#endif

#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>

#include <boost/detail/no_exceptions_support.hpp>
#include <boost/interprocess/detail/type_traits.hpp>

#include <boost/interprocess/detail/transform_iterator.hpp>

#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/segment_manager_helper.hpp>
#include <boost/interprocess/detail/named_proxy.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/offset_ptr.hpp>
#include <boost/interprocess/indexes/iset_index.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <cstddef>   //std::size_t
#include <string>    //char_traits
#include <new>       //std::nothrow
#include <utility>   //std::pair
#include <boost/assert.hpp>
#ifndef BOOST_NO_EXCEPTIONS
#include <exception>
#endif

//!\file
//!Describes the object placed in a memory segment that provides
//!named object allocation capabilities for single-segment and
//!multi-segment allocations.

namespace boost{
namespace interprocess{

//!This object is the public base class of segment manager.
//!This class only depends on the memory allocation algorithm
//!and implements all the allocation features not related
//!to named or unique objects.
//!
//!Storing a reference to segment_manager forces
//!the holder class to be dependent on index types and character types.
//!When such dependence is not desirable and only anonymous and raw
//!allocations are needed, segment_manager_base is the correct answer.
template<class MemoryAlgorithm>
class segment_manager_base
   :  private MemoryAlgorithm
{
   public:
   typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type;
   typedef typename MemoryAlgorithm::void_pointer  void_pointer;
   typedef typename MemoryAlgorithm::mutex_family  mutex_family;
   typedef MemoryAlgorithm memory_algorithm;
   
   /// @cond
   
   //Experimental. Don't use
   typedef typename MemoryAlgorithm::multiallocation_chain    multiallocation_chain;

   /// @endcond

   //!This constant indicates the payload size
   //!associated with each allocation of the memory algorithm
   static const std::size_t PayloadPerAllocation = MemoryAlgorithm::PayloadPerAllocation;

   //!Constructor of the segment_manager_base
   //!
   //!"size" is the size of the memory segment where
   //!the basic segment manager is being constructed.
   //!
   //!"reserved_bytes" is the number of bytes 
   //!after the end of the memory algorithm object itself
   //!that the memory algorithm will exclude from
   //!dynamic allocation
   //!
   //!Can throw
   segment_manager_base(std::size_t size, std::size_t reserved_bytes)
      :  MemoryAlgorithm(size, reserved_bytes)
   {
      BOOST_ASSERT((sizeof(segment_manager_base<MemoryAlgorithm>) == sizeof(MemoryAlgorithm)));
   }

   //!Returns the size of the memory
   //!segment
   std::size_t get_size() const
   {  return MemoryAlgorithm::get_size();  }

   //!Returns the number of free bytes of the memory
   //!segment
   std::size_t get_free_memory() const
   {  return MemoryAlgorithm::get_free_memory();  }

   //!Obtains the minimum size needed by
   //!the segment manager
   static std::size_t get_min_size (std::size_t size)
   {  return MemoryAlgorithm::get_min_size(size);  }

   //!Allocates nbytes bytes. This function is only used in 
   //!single-segment management. Never throws
   void * allocate (std::size_t nbytes, std::nothrow_t)
   {  return MemoryAlgorithm::allocate(nbytes);   }

   /// @cond

   //Experimental. Dont' use.
   //!Allocates n_elements of
   //!elem_size bytes. Throws bad_alloc on failure.
   multiallocation_chain allocate_many(std::size_t elem_bytes, std::size_t num_elements)
   {
      multiallocation_chain mem(MemoryAlgorithm::allocate_many(elem_bytes, num_elements));
      if(mem.empty()) throw bad_alloc();
      return boost::interprocess::move(mem);
   }

   //!Allocates n_elements, each one of
   //!element_lenghts[i]*sizeof_element bytes. Throws bad_alloc on failure.
   multiallocation_chain allocate_many
      (const std::size_t *element_lenghts, std::size_t n_elements, std::size_t sizeof_element = 1)
   {
      multiallocation_chain mem(MemoryAlgorithm::allocate_many(element_lenghts, n_elements, sizeof_element));
      if(mem.empty()) throw bad_alloc();
      return boost::interprocess::move(mem);
   }

   //!Allocates n_elements of
   //!elem_size bytes. Returns a default constructed iterator on failure.
   multiallocation_chain allocate_many
      (std::size_t elem_bytes, std::size_t num_elements, std::nothrow_t)
   {  return MemoryAlgorithm::allocate_many(elem_bytes, num_elements); }

   //!Allocates n_elements, each one of
   //!element_lenghts[i]*sizeof_element bytes.
   //!Returns a default constructed iterator on failure.
   multiallocation_chain allocate_many
      (const std::size_t *elem_sizes, std::size_t n_elements, std::size_t sizeof_element, std::nothrow_t)
   {  return MemoryAlgorithm::allocate_many(elem_sizes, n_elements, sizeof_element); }

   //!Deallocates elements pointed by the
   //!multiallocation iterator range.
   void deallocate_many(multiallocation_chain chain)
   {  MemoryAlgorithm::deallocate_many(boost::interprocess::move(chain)); }

   /// @endcond

   //!Allocates nbytes bytes. Throws boost::interprocess::bad_alloc
   //!on failure
   void * allocate(std::size_t nbytes)
   {  
      void * ret = MemoryAlgorithm::allocate(nbytes);
      if(!ret)
         throw bad_alloc();
      return ret;
   }

   //!Allocates nbytes bytes. This function is only used in 
   //!single-segment management. Never throws
   void * allocate_aligned (std::size_t nbytes, std::size_t alignment, std::nothrow_t)
   {  return MemoryAlgorithm::allocate_aligned(nbytes, alignment);   }

   //!Allocates nbytes bytes. This function is only used in 
   //!single-segment management. Throws bad_alloc when fails
   void * allocate_aligned(std::size_t nbytes, std::size_t alignment)
   {  
      void * ret = MemoryAlgorithm::allocate_aligned(nbytes, alignment);
      if(!ret)
         throw bad_alloc();
      return ret;
   }

   template<class T>
   std::pair<T *, bool>
      allocation_command  (boost::interprocess::allocation_type command,   std::size_t limit_size,
                           std::size_t preferred_size,std::size_t &received_size,
                           T *reuse_ptr = 0)
   {
      std::pair<T *, bool> ret = MemoryAlgorithm::allocation_command
         ( command | boost::interprocess::nothrow_allocation, limit_size, preferred_size, received_size
         , reuse_ptr);
      if(!(command & boost::interprocess::nothrow_allocation) && !ret.first)
         throw bad_alloc();
      return ret;
   }

   std::pair<void *, bool>
      raw_allocation_command  (boost::interprocess::allocation_type command,   std::size_t limit_objects,
                           std::size_t preferred_objects,std::size_t &received_objects,
                           void *reuse_ptr = 0, std::size_t sizeof_object = 1)
   {
      std::pair<void *, bool> ret = MemoryAlgorithm::raw_allocation_command
         ( command | boost::interprocess::nothrow_allocation, limit_objects, preferred_objects, received_objects
         , reuse_ptr, sizeof_object);
      if(!(command & boost::interprocess::nothrow_allocation) && !ret.first)
         throw bad_alloc();
      return ret;
   }

   //!Deallocates the bytes allocated with allocate/allocate_many()
   //!pointed by addr
   void   deallocate          (void *addr)
   {  MemoryAlgorithm::deallocate(addr);   }

   //!Increases managed memory in extra_size bytes more. This only works
   //!with single-segment management.
   void grow(std::size_t extra_size)
   {  MemoryAlgorithm::grow(extra_size);   }

   //!Decreases managed memory to the minimum. This only works
   //!with single-segment management.
   void shrink_to_fit()
   {  MemoryAlgorithm::shrink_to_fit();   }

   //!Returns the result of "all_memory_deallocated()" function
   //!of the used memory algorithm
   bool all_memory_deallocated()
   {   return MemoryAlgorithm::all_memory_deallocated(); }

   //!Returns the result of "check_sanity()" function
   //!of the used memory algorithm
   bool check_sanity()
   {   return MemoryAlgorithm::check_sanity(); }

   //!Writes to zero free memory (memory not yet allocated)
   //!of the memory algorithm
   void zero_free_memory()
   {   MemoryAlgorithm::zero_free_memory(); }

   //!Returns the size of the buffer previously allocated pointed by ptr
   std::size_t size(const void *ptr) const
   {   return MemoryAlgorithm::size(ptr); }

   /// @cond
   protected:
   void * prot_anonymous_construct
      (std::size_t num, bool dothrow, detail::in_place_interface &table)
   {
      typedef detail::block_header block_header_t;
      block_header_t block_info (  table.size*num
                                 , table.alignment
                                 , anonymous_type
                                 , 1
                                 , 0);

      //Allocate memory
      void *ptr_struct = this->allocate(block_info.total_size(), std::nothrow_t());

      //Check if there is enough memory
      if(!ptr_struct){
         if(dothrow){
            throw bad_alloc();
         }
         else{
            return 0; 
         }
      }

      //Build scoped ptr to avoid leaks with constructor exception
      detail::mem_algo_deallocator<MemoryAlgorithm> mem(ptr_struct, *this);

      //Now construct the header
      block_header_t * hdr = new(ptr_struct) block_header_t(block_info);
      void *ptr = 0; //avoid gcc warning
      ptr = hdr->value();

      //Now call constructors
      detail::array_construct(ptr, num, table);

      //All constructors successful, we don't want erase memory
      mem.release();
      return ptr;
   }

   //!Calls the destructor and makes an anonymous deallocate
   void prot_anonymous_destroy(const void *object, detail::in_place_interface &table)
   {

      //Get control data from associated with this object    
      typedef detail::block_header block_header_t;
      block_header_t *ctrl_data = block_header_t::block_header_from_value(object, table.size, table.alignment);

      //-------------------------------
      //scoped_lock<rmutex> guard(m_header);
      //-------------------------------

      if(ctrl_data->alloc_type() != anonymous_type){
         //This is not an anonymous object, the pointer is wrong!
         BOOST_ASSERT(0);
      }

      //Call destructors and free memory
      //Build scoped ptr to avoid leaks with destructor exception
      std::size_t destroyed = 0;
      table.destroy_n(const_cast<void*>(object), ctrl_data->m_value_bytes/table.size, destroyed);
      this->deallocate(ctrl_data);
   }
   /// @endcond
};

//!This object is placed in the beginning of memory segment and
//!implements the allocation (named or anonymous) of portions
//!of the segment. This object contains two indexes that
//!maintain an association between a name and a portion of the segment. 
//!
//!The first index contains the mappings for normal named objects using the 
//!char type specified in the template parameter.
//!
//!The second index contains the association for unique instances. The key will
//!be the const char * returned from type_info.name() function for the unique
//!type to be constructed.
//!
//!segment_manager<CharType, MemoryAlgorithm, IndexType> inherits publicly
//!from segment_manager_base<MemoryAlgorithm> and inherits from it
//!many public functions related to anonymous object and raw memory allocation.
//!See segment_manager_base reference to know about those functions.
template<class CharType
        ,class MemoryAlgorithm
        ,template<class IndexConfig> class IndexType>
class segment_manager
   :  public segment_manager_base<MemoryAlgorithm>
{ 
   /// @cond
   //Non-copyable
   segment_manager();
   segment_manager(const segment_manager &);
   segment_manager &operator=(const segment_manager &);
   typedef segment_manager_base<MemoryAlgorithm> Base;
   typedef detail::block_header block_header_t;
   /// @endcond

   public:
   typedef MemoryAlgorithm                memory_algorithm;
   typedef typename Base::void_pointer    void_pointer;
   typedef CharType                       char_type;

   typedef segment_manager_base<MemoryAlgorithm>   segment_manager_base_type;

   static const std::size_t PayloadPerAllocation = Base::PayloadPerAllocation;

   /// @cond
   private:
   typedef detail::index_config<CharType, MemoryAlgorithm>  index_config_named;
   typedef detail::index_config<char, MemoryAlgorithm>      index_config_unique;
   typedef IndexType<index_config_named>                    index_type;
   typedef detail::bool_<is_intrusive_index<index_type>::value >    is_intrusive_t;
   typedef detail::bool_<is_node_index<index_type>::value>          is_node_index_t;

   public:
   typedef IndexType<index_config_named>                    named_index_t;
   typedef IndexType<index_config_unique>                   unique_index_t;
   typedef detail::char_ptr_holder<CharType>                char_ptr_holder_t;
   typedef detail::segment_manager_iterator_transform
      <typename named_index_t::const_iterator
      ,is_intrusive_index<index_type>::value>   named_transform;

   typedef detail::segment_manager_iterator_transform
      <typename unique_index_t::const_iterator
      ,is_intrusive_index<index_type>::value>   unique_transform;
   /// @endcond

   typedef typename Base::mutex_family       mutex_family;

   typedef transform_iterator
      <typename named_index_t::const_iterator, named_transform> const_named_iterator;
   typedef transform_iterator
      <typename unique_index_t::const_iterator, unique_transform> const_unique_iterator;

   /// @cond

   //!Constructor proxy object definition helper class
   template<class T>
   struct construct_proxy
   {
      typedef detail::named_proxy<segment_manager, T, false>   type;
   };

   //!Constructor proxy object definition helper class
   template<class T>
   struct construct_iter_proxy
   {
      typedef detail::named_proxy<segment_manager, T, true>   type;
   };

   /// @endcond

   //!Constructor of the segment manager
   //!"size" is the size of the memory segment where
   //!the segment manager is being constructed.
   //!Can throw
   segment_manager(std::size_t size)
      :  Base(size, priv_get_reserved_bytes())
      ,  m_header(static_cast<Base*>(get_this_pointer()))
   {
      (void) anonymous_instance;   (void) unique_instance;
      BOOST_ASSERT(static_cast<const void*>(this) == static_cast<const void*>(static_cast<Base*>(this)));
   }

   //!Tries to find a previous named allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0.
   template <class T>
   std::pair<T*, std::size_t> find  (const CharType* name)
   {  return this->priv_find_impl<T>(name, true);  }

   //!Tries to find a previous unique allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0.
   template <class T>
   std::pair<T*, std::size_t> find (const detail::unique_instance_t* name)
   {  return this->priv_find_impl<T>(name, true);  }

   //!Tries to find a previous named allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0. This search is not mutex-protected!
   template <class T>
   std::pair<T*, std::size_t> find_no_lock  (const CharType* name)
   {  return this->priv_find_impl<T>(name, false);  }

   //!Tries to find a previous unique allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0. This search is not mutex-protected!
   template <class T>
   std::pair<T*, std::size_t> find_no_lock (const detail::unique_instance_t* name)
   {  return this->priv_find_impl<T>(name, false);  }

   //!Returns throwing "construct" proxy
   //!object
   template <class T>
   typename construct_proxy<T>::type      
      construct(char_ptr_holder_t name)
   {  return typename construct_proxy<T>::type (this, name, false, true);  }

   //!Returns throwing "search or construct" proxy
   //!object
   template <class T>
   typename construct_proxy<T>::type find_or_construct(char_ptr_holder_t name)
   {  return typename construct_proxy<T>::type (this, name, true, true);  }

   //!Returns no throwing "construct" proxy
   //!object
   template <class T>
   typename construct_proxy<T>::type
      construct(char_ptr_holder_t name, std::nothrow_t)
   {  return typename construct_proxy<T>::type (this, name, false, false);  }

   //!Returns no throwing "search or construct"
   //!proxy object
   template <class T>
   typename construct_proxy<T>::type   
      find_or_construct(char_ptr_holder_t name, std::nothrow_t)
   {  return typename construct_proxy<T>::type (this, name, true, false);  }

   //!Returns throwing "construct from iterators" proxy object
   template <class T>
   typename construct_iter_proxy<T>::type     
      construct_it(char_ptr_holder_t name)
   {  return typename construct_iter_proxy<T>::type (this, name, false, true);  }

   //!Returns throwing "search or construct from iterators"
   //!proxy object
   template <class T>
   typename construct_iter_proxy<T>::type   
      find_or_construct_it(char_ptr_holder_t name)
   {  return typename construct_iter_proxy<T>::type (this, name, true, true);  }

   //!Returns no throwing "construct from iterators"
   //!proxy object
   template <class T>
   typename construct_iter_proxy<T>::type   
      construct_it(char_ptr_holder_t name, std::nothrow_t)
   {  return typename construct_iter_proxy<T>::type (this, name, false, false);  }

   //!Returns no throwing "search or construct from iterators"
   //!proxy object
   template <class T>
   typename construct_iter_proxy<T>::type 
      find_or_construct_it(char_ptr_holder_t name, std::nothrow_t)
   {  return typename construct_iter_proxy<T>::type (this, name, true, false);  }

   //!Calls object function blocking recursive interprocess_mutex and guarantees that 
   //!no new named_alloc or destroy will be executed by any process while 
   //!executing the object function call*/
   template <class Func>
   void atomic_func(Func &f)
   {  scoped_lock<rmutex> guard(m_header);  f();  }

   //!Tries to calls a functor guaranteeing that no new construction, search or
   //!destruction will be executed by any process while executing the object
   //!function call. If the atomic function can't be immediatelly executed
   //!because the internal mutex is already locked, returns false.
   //!If the functor throws, this function throws.
   template <class Func>
   bool try_atomic_func(Func &f)
   {
      scoped_lock<rmutex> guard(m_header, try_to_lock);
      if(guard){
         f();
         return true;
      }
      else{
         return false;
      }
   }

   //!Destroys a previously created unique instance.
   //!Returns false if the object was not present.
   template <class T>
   bool destroy(const detail::unique_instance_t *)
   {
      detail::placement_destroy<T> dtor;
      return this->priv_generic_named_destroy<char>
         (typeid(T).name(), m_header.m_unique_index, dtor, is_intrusive_t());
   }

   //!Destroys the named object with
   //!the given name. Returns false if that object can't be found.
   template <class T>
   bool destroy(const CharType *name)
   {
      detail::placement_destroy<T> dtor;
      return this->priv_generic_named_destroy<CharType>
               (name, m_header.m_named_index, dtor, is_intrusive_t());
   }

   //!Destroys an anonymous, unique or named object
   //!using it's address
   template <class T>
   void destroy_ptr(const T *p)
   {
      //If T is void transform it to char
      typedef typename detail::char_if_void<T>::type data_t;
      detail::placement_destroy<data_t> dtor;
      priv_destroy_ptr(p, dtor);
   }

   //!Returns the name of an object created with construct/find_or_construct
   //!functions. Does not throw
   template<class T>
   static const CharType *get_instance_name(const T *ptr)
   { return priv_get_instance_name(block_header_t::block_header_from_value(ptr));  }

   //!Returns the length of an object created with construct/find_or_construct
   //!functions. Does not throw.
   template<class T>
   static std::size_t get_instance_length(const T *ptr)
   {  return priv_get_instance_length(block_header_t::block_header_from_value(ptr), sizeof(T));  }

   //!Returns is the the name of an object created with construct/find_or_construct
   //!functions. Does not throw
   template<class T>
   static instance_type get_instance_type(const T *ptr)
   {  return priv_get_instance_type(block_header_t::block_header_from_value(ptr));  }

   //!Preallocates needed index resources to optimize the 
   //!creation of "num" named objects in the managed memory segment.
   //!Can throw boost::interprocess::bad_alloc if there is no enough memory.
   void reserve_named_objects(std::size_t num)
   {  
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      m_header.m_named_index.reserve(num);  
   }

   //!Preallocates needed index resources to optimize the 
   //!creation of "num" unique objects in the managed memory segment.
   //!Can throw boost::interprocess::bad_alloc if there is no enough memory.
   void reserve_unique_objects(std::size_t num)
   {  
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      m_header.m_unique_index.reserve(num);
   }

   //!Calls shrink_to_fit in both named and unique object indexes
   //!to try to free unused memory from those indexes.
   void shrink_to_fit_indexes()
   {  
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      m_header.m_named_index.shrink_to_fit();  
      m_header.m_unique_index.shrink_to_fit();  
   }

   //!Returns the number of named objects stored in
   //!the segment.
   std::size_t get_num_named_objects()
   {  
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      return m_header.m_named_index.size();  
   }

   //!Returns the number of unique objects stored in
   //!the segment.
   std::size_t get_num_unique_objects()
   {  
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      return m_header.m_unique_index.size();  
   }

   //!Obtains the minimum size needed by the
   //!segment manager
   static std::size_t get_min_size()
   {  return Base::get_min_size(priv_get_reserved_bytes());  }

   //!Returns a constant iterator to the beginning of the information about
   //!the named allocations performed in this segment manager
   const_named_iterator named_begin() const
   {
      return make_transform_iterator
         (m_header.m_named_index.begin(), named_transform());
   }

   //!Returns a constant iterator to the end of the information about
   //!the named allocations performed in this segment manager
   const_named_iterator named_end() const
   {
      return make_transform_iterator
         (m_header.m_named_index.end(), named_transform());
   }

   //!Returns a constant iterator to the beginning of the information about
   //!the unique allocations performed in this segment manager
   const_unique_iterator unique_begin() const
   {
      return make_transform_iterator
         (m_header.m_unique_index.begin(), unique_transform());
   }

   //!Returns a constant iterator to the end of the information about
   //!the unique allocations performed in this segment manager
   const_unique_iterator unique_end() const
   {
      return make_transform_iterator
         (m_header.m_unique_index.end(), unique_transform());
   }

   //!This is the default allocator to allocate types T
   //!from this managed segment
   template<class T>
   struct allocator
   {
      typedef boost::interprocess::allocator<T, segment_manager> type;
   };

   //!Returns an instance of the default allocator for type T
   //!initialized that allocates memory from this segment manager.
   template<class T>
   typename allocator<T>::type
      get_allocator()
   {   return typename allocator<T>::type(this); }

   //!This is the default deleter to delete types T
   //!from this managed segment.
   template<class T>
   struct deleter
   {
      typedef boost::interprocess::deleter<T, segment_manager> type;
   };

   //!Returns an instance of the default allocator for type T
   //!initialized that allocates memory from this segment manager.
   template<class T>
   typename deleter<T>::type
      get_deleter()
   {   return typename deleter<T>::type(this); }

   /// @cond

   //!Generic named/anonymous new function. Offers all the possibilities, 
   //!such as throwing, search before creating, and the constructor is 
   //!encapsulated in an object function.
   template<class T>
   T *generic_construct(const CharType *name, 
                         std::size_t num, 
                         bool try2find, 
                         bool dothrow,
                         detail::in_place_interface &table)
   {
      return static_cast<T*>
         (priv_generic_construct(name, num, try2find, dothrow, table));
   }

   private:
   //!Tries to find a previous named allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0.
   template <class T>
   std::pair<T*, std::size_t> priv_find_impl (const CharType* name, bool lock)
   {  
      //The name can't be null, no anonymous object can be found by name
      BOOST_ASSERT(name != 0);
      detail::placement_destroy<T> table;
      std::size_t size;
      void *ret;

      if(name == reinterpret_cast<const CharType*>(-1)){
         ret = priv_generic_find<char> (typeid(T).name(), m_header.m_unique_index, table, size, is_intrusive_t(), lock);
      }
      else{
         ret = priv_generic_find<CharType> (name, m_header.m_named_index, table, size, is_intrusive_t(), lock);
      }
      return std::pair<T*, std::size_t>(static_cast<T*>(ret), size);
   }

   //!Tries to find a previous unique allocation. Returns the address
   //!and the object count. On failure the first member of the
   //!returned pair is 0.
   template <class T>
   std::pair<T*, std::size_t> priv_find__impl (const detail::unique_instance_t* name, bool lock)
   {
      detail::placement_destroy<T> table;
      std::size_t size;
      void *ret = priv_generic_find<char>(name, m_header.m_unique_index, table, size, is_intrusive_t(), lock); 
      return std::pair<T*, std::size_t>(static_cast<T*>(ret), size);
   }

   void *priv_generic_construct(const CharType *name, 
                         std::size_t num, 
                         bool try2find, 
                         bool dothrow,
                         detail::in_place_interface &table)
   {
      void *ret;
      //Security overflow check
      if(num > ((std::size_t)-1)/table.size){
         if(dothrow)
            throw bad_alloc();
         else
            return 0;
      }
      if(name == 0){
         ret = this->prot_anonymous_construct(num, dothrow, table);
      }
      else if(name == reinterpret_cast<const CharType*>(-1)){
         ret = this->priv_generic_named_construct<char>
            (unique_type, table.type_name, num, try2find, dothrow, table, m_header.m_unique_index, is_intrusive_t());
      }
      else{
         ret = this->priv_generic_named_construct<CharType>
            (named_type, name, num, try2find, dothrow, table, m_header.m_named_index, is_intrusive_t());
      }
      return ret;
   }

   void priv_destroy_ptr(const void *ptr, detail::in_place_interface &dtor)
   {
      block_header_t *ctrl_data = block_header_t::block_header_from_value(ptr, dtor.size, dtor.alignment);
      switch(ctrl_data->alloc_type()){
         case anonymous_type:
            this->prot_anonymous_destroy(ptr, dtor);
         break;

         case named_type:
            this->priv_generic_named_destroy<CharType>
               (ctrl_data, m_header.m_named_index, dtor, is_node_index_t());
         break;

         case unique_type:
            this->priv_generic_named_destroy<char>
               (ctrl_data, m_header.m_unique_index, dtor, is_node_index_t());
         break;

         default:
            //This type is unknown, bad pointer passed to this function!
            BOOST_ASSERT(0);
         break;
      }
   }

   //!Returns the name of an object created with construct/find_or_construct
   //!functions. Does not throw
   static const CharType *priv_get_instance_name(block_header_t *ctrl_data)
   {
      boost::interprocess::allocation_type type = ctrl_data->alloc_type();
      if(type != named_type){
         BOOST_ASSERT((type == anonymous_type && ctrl_data->m_num_char == 0) ||
                (type == unique_type    && ctrl_data->m_num_char != 0) );
         return 0;
      }
      CharType *name = static_cast<CharType*>(ctrl_data->template name<CharType>());
   
      //Sanity checks
      BOOST_ASSERT(ctrl_data->sizeof_char() == sizeof(CharType));
      BOOST_ASSERT(ctrl_data->m_num_char == std::char_traits<CharType>::length(name));
      return name;
   }

   static std::size_t priv_get_instance_length(block_header_t *ctrl_data, std::size_t sizeofvalue)
   {
      //Get header
      BOOST_ASSERT((ctrl_data->value_bytes() %sizeofvalue) == 0);
      return ctrl_data->value_bytes()/sizeofvalue;
   }

   //!Returns is the the name of an object created with construct/find_or_construct
   //!functions. Does not throw
   static instance_type priv_get_instance_type(block_header_t *ctrl_data)
   {
      //Get header
      BOOST_ASSERT((instance_type)ctrl_data->alloc_type() < max_allocation_type);
      return (instance_type)ctrl_data->alloc_type();
   }

   static std::size_t priv_get_reserved_bytes()
   {
      //Get the number of bytes until the end of (*this)
      //beginning in the end of the Base base.
      return sizeof(segment_manager) - sizeof(Base);
   }

   template <class CharT>
   void *priv_generic_find
      (const CharT* name, 
       IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
       detail::in_place_interface &table,
       std::size_t &length,
       detail::true_ is_intrusive,
       bool use_lock)
   {
      (void)is_intrusive;
      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >         index_type;
      typedef detail::index_key<CharT, void_pointer>  index_key_t;
      typedef typename index_type::iterator           index_it;

      //-------------------------------
      scoped_lock<rmutex> guard(priv_get_lock(use_lock));
      //-------------------------------
      //Find name in index
      detail::intrusive_compare_key<CharT> key
         (name, std::char_traits<CharT>::length(name));
      index_it it = index.find(key);

      //Initialize return values
      void *ret_ptr  = 0;
      length         = 0;

      //If found, assign values
      if(it != index.end()){
         //Get header
         block_header_t *ctrl_data = it->get_block_header();

         //Sanity check
         BOOST_ASSERT((ctrl_data->m_value_bytes % table.size) == 0);
         BOOST_ASSERT(ctrl_data->sizeof_char() == sizeof(CharT));
         ret_ptr  = ctrl_data->value();
         length  = ctrl_data->m_value_bytes/table.size;
      }
      return ret_ptr;
   }

   template <class CharT>
   void *priv_generic_find
      (const CharT* name, 
       IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
       detail::in_place_interface &table,
       std::size_t &length,
       detail::false_ is_intrusive,
       bool use_lock)
   {
      (void)is_intrusive;
      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >      index_type;
      typedef typename index_type::key_type        key_type;
      typedef typename index_type::iterator        index_it;

      //-------------------------------
      scoped_lock<rmutex> guard(priv_get_lock(use_lock));
      //-------------------------------
      //Find name in index
      index_it it = index.find(key_type(name, std::char_traits<CharT>::length(name)));

      //Initialize return values
      void *ret_ptr  = 0;
      length         = 0;

      //If found, assign values
      if(it != index.end()){
         //Get header
         block_header_t *ctrl_data = reinterpret_cast<block_header_t*>
                                    (detail::get_pointer(it->second.m_ptr));

         //Sanity check
         BOOST_ASSERT((ctrl_data->m_value_bytes % table.size) == 0);
         BOOST_ASSERT(ctrl_data->sizeof_char() == sizeof(CharT));
         ret_ptr  = ctrl_data->value();
         length  = ctrl_data->m_value_bytes/table.size;
      }
      return ret_ptr;
   }

   template <class CharT>
   bool priv_generic_named_destroy
     (block_header_t *block_header,
      IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
      detail::in_place_interface &table,
      detail::true_ is_node_index)
   {
      (void)is_node_index;
      typedef typename IndexType<detail::index_config<CharT, MemoryAlgorithm> >::iterator index_it;

      index_it *ihdr = block_header_t::to_first_header<index_it>(block_header);
      return this->priv_generic_named_destroy_impl<CharT>(*ihdr, index, table);
   }

   template <class CharT>
   bool priv_generic_named_destroy
     (block_header_t *block_header,
      IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
      detail::in_place_interface &table,
      detail::false_ is_node_index)
   {
      (void)is_node_index;
      CharT *name = static_cast<CharT*>(block_header->template name<CharT>());
      return this->priv_generic_named_destroy<CharT>(name, index, table, is_intrusive_t());
   }

   template <class CharT>
   bool priv_generic_named_destroy(const CharT *name, 
                                   IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
                                   detail::in_place_interface &table,
                                   detail::true_ is_intrusive_index)
   {
      (void)is_intrusive_index;
      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >         index_type;
      typedef detail::index_key<CharT, void_pointer>  index_key_t;
      typedef typename index_type::iterator           index_it;
      typedef typename index_type::value_type         intrusive_value_type;
      
      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      //Find name in index
      detail::intrusive_compare_key<CharT> key
         (name, std::char_traits<CharT>::length(name));
      index_it it = index.find(key);

      //If not found, return false
      if(it == index.end()){
         //This name is not present in the index, wrong pointer or name!
         //BOOST_ASSERT(0);
         return false;
      }

      block_header_t *ctrl_data = it->get_block_header();
      intrusive_value_type *iv = intrusive_value_type::get_intrusive_value_type(ctrl_data);
      void *memory = iv;
      void *values = ctrl_data->value();
      std::size_t num = ctrl_data->m_value_bytes/table.size;
      
      //Sanity check
      BOOST_ASSERT((ctrl_data->m_value_bytes % table.size) == 0);
      BOOST_ASSERT(sizeof(CharT) == ctrl_data->sizeof_char());

      //Erase node from index
      index.erase(it);

      //Destroy the headers
      ctrl_data->~block_header_t();
      iv->~intrusive_value_type();

      //Call destructors and free memory
      std::size_t destroyed;
      table.destroy_n(values, num, destroyed);
      this->deallocate(memory);
      return true;
   }

   template <class CharT>
   bool priv_generic_named_destroy(const CharT *name, 
                                   IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
                                   detail::in_place_interface &table,
                                   detail::false_ is_intrusive_index)
   {
      (void)is_intrusive_index;
      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >            index_type;
      typedef typename index_type::iterator              index_it;
      typedef typename index_type::key_type              key_type;

      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      //Try to find the name in the index
      index_it it = index.find(key_type (name, 
                                     std::char_traits<CharT>::length(name)));

      //If not found, return false
      if(it == index.end()){
         //This name is not present in the index, wrong pointer or name!
         //BOOST_ASSERT(0);
         return false;
      }
      return this->priv_generic_named_destroy_impl<CharT>(it, index, table);
   }

   template <class CharT>
   bool priv_generic_named_destroy_impl
      (const typename IndexType<detail::index_config<CharT, MemoryAlgorithm> >::iterator &it,
      IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
      detail::in_place_interface &table)
   {
      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >      index_type;
      typedef typename index_type::iterator        index_it;

      //Get allocation parameters
      block_header_t *ctrl_data = reinterpret_cast<block_header_t*>
                                 (detail::get_pointer(it->second.m_ptr));
      char *stored_name       = static_cast<char*>(static_cast<void*>(const_cast<CharT*>(it->first.name())));
      (void)stored_name;

      //Check if the distance between the name pointer and the memory pointer 
      //is correct (this can detect incorrect type in destruction)
      std::size_t num = ctrl_data->m_value_bytes/table.size;
      void *values = ctrl_data->value();

      //Sanity check
      BOOST_ASSERT((ctrl_data->m_value_bytes % table.size) == 0);
      BOOST_ASSERT(static_cast<void*>(stored_name) == static_cast<void*>(ctrl_data->template name<CharT>()));
      BOOST_ASSERT(sizeof(CharT) == ctrl_data->sizeof_char());

      //Erase node from index
      index.erase(it);

      //Destroy the header
      ctrl_data->~block_header_t();

      void *memory;
      if(is_node_index_t::value){
         index_it *ihdr = block_header_t::
            to_first_header<index_it>(ctrl_data);
         ihdr->~index_it();
         memory = ihdr;
      }
      else{
         memory = ctrl_data;
      }

      //Call destructors and free memory
      std::size_t destroyed;
      table.destroy_n(values, num, destroyed);
      this->deallocate(memory);
      return true;
   }

   template<class CharT>
   void * priv_generic_named_construct(std::size_t type,
                               const CharT *name,
                               std::size_t num, 
                               bool try2find, 
                               bool dothrow,
                               detail::in_place_interface &table,
                               IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
                               detail::true_ is_intrusive)
   {
      (void)is_intrusive;
      std::size_t namelen  = std::char_traits<CharT>::length(name);

      block_header_t block_info ( table.size*num
                                 , table.alignment
                                 , type
                                 , sizeof(CharT)
                                 , namelen);

      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >            index_type;
      typedef typename index_type::iterator              index_it;
      typedef std::pair<index_it, bool>                  index_ib;

      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      //Insert the node. This can throw.
      //First, we want to know if the key is already present before
      //we allocate any memory, and if the key is not present, we 
      //want to allocate all memory in a single buffer that will
      //contain the name and the user buffer.
      //
      //Since equal_range(key) + insert(hint, value) approach is
      //quite inefficient in container implementations 
      //(they re-test if the position is correct), I've chosen
      //to insert the node, do an ugly un-const cast and modify
      //the key (which is a smart pointer) to an equivalent one
      index_ib insert_ret;

      typename index_type::insert_commit_data   commit_data;
      typedef typename index_type::value_type   intrusive_value_type;

      BOOST_TRY{
         detail::intrusive_compare_key<CharT> key(name, namelen);
         insert_ret = index.insert_check(key, commit_data);
      }
      //Ignore exceptions
      BOOST_CATCH(...){
         if(dothrow)
            BOOST_RETHROW
         return 0;
      }
      BOOST_CATCH_END

      index_it it = insert_ret.first;

      //If found and this is find or construct, return data
      //else return null
      if(!insert_ret.second){
         if(try2find){
            return it->get_block_header()->value();
         }
         if(dothrow){
            throw interprocess_exception(already_exists_error);
         }
         else{
            return 0;
         }
      }

      //Allocates buffer for name + data, this can throw (it hurts)
      void *buffer_ptr; 

      //Check if there is enough memory
      if(dothrow){
         buffer_ptr = this->allocate
            (block_info.total_size_with_header<intrusive_value_type>());
      }
      else{
         buffer_ptr = this->allocate
            (block_info.total_size_with_header<intrusive_value_type>(), std::nothrow_t());
         if(!buffer_ptr)
            return 0; 
      }

      //Now construct the intrusive hook plus the header
      intrusive_value_type * intrusive_hdr = new(buffer_ptr) intrusive_value_type();
      block_header_t * hdr = new(intrusive_hdr->get_block_header())block_header_t(block_info);
      void *ptr = 0; //avoid gcc warning
      ptr = hdr->value();

      //Copy name to memory segment and insert data
      CharT *name_ptr = static_cast<CharT *>(hdr->template name<CharT>());
      std::char_traits<CharT>::copy(name_ptr, name, namelen+1);

      BOOST_TRY{
         //Now commit the insertion using previous context data
         it = index.insert_commit(*intrusive_hdr, commit_data);
      }
      //Ignore exceptions
      BOOST_CATCH(...){
         if(dothrow)
            BOOST_RETHROW
         return 0;
      }
      BOOST_CATCH_END

      //Avoid constructions if constructor is trivial
      //Build scoped ptr to avoid leaks with constructor exception
      detail::mem_algo_deallocator<segment_manager_base_type> mem
         (buffer_ptr, *static_cast<segment_manager_base_type*>(this));

      //Initialize the node value_eraser to erase inserted node
      //if something goes wrong. This will be executed *before*
      //the memory allocation as the intrusive value is built in that
      //memory
      value_eraser<index_type> v_eraser(index, it);
      
      //Construct array, this can throw
      detail::array_construct(ptr, num, table);

      //Release rollbacks since construction was successful
      v_eraser.release();
      mem.release();
      return ptr;
   }

   //!Generic named new function for
   //!named functions
   template<class CharT>
   void * priv_generic_named_construct(std::size_t type,  
                               const CharT *name,
                               std::size_t num, 
                               bool try2find, 
                               bool dothrow,
                               detail::in_place_interface &table,
                               IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
                               detail::false_ is_intrusive)
   {
      (void)is_intrusive;
      std::size_t namelen  = std::char_traits<CharT>::length(name);

      block_header_t block_info ( table.size*num
                                 , table.alignment
                                 , type
                                 , sizeof(CharT)
                                 , namelen);

      typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> >            index_type;
      typedef typename index_type::key_type              key_type;
      typedef typename index_type::mapped_type           mapped_type;
      typedef typename index_type::value_type            value_type;
      typedef typename index_type::iterator              index_it;
      typedef std::pair<index_it, bool>                  index_ib;

      //-------------------------------
      scoped_lock<rmutex> guard(m_header);
      //-------------------------------
      //Insert the node. This can throw.
      //First, we want to know if the key is already present before
      //we allocate any memory, and if the key is not present, we 
      //want to allocate all memory in a single buffer that will
      //contain the name and the user buffer.
      //
      //Since equal_range(key) + insert(hint, value) approach is
      //quite inefficient in container implementations 
      //(they re-test if the position is correct), I've chosen
      //to insert the node, do an ugly un-const cast and modify
      //the key (which is a smart pointer) to an equivalent one
      index_ib insert_ret;
      BOOST_TRY{
         insert_ret = index.insert(value_type(key_type (name, namelen), mapped_type(0)));
      }
      //Ignore exceptions
      BOOST_CATCH(...){
         if(dothrow)
            BOOST_RETHROW;
         return 0;
      }
      BOOST_CATCH_END

      index_it it = insert_ret.first;

      //If found and this is find or construct, return data
      //else return null
      if(!insert_ret.second){
         if(try2find){
            block_header_t *hdr = static_cast<block_header_t*>
               (detail::get_pointer(it->second.m_ptr));
            return hdr->value();
         }
         return 0;
      }
      //Initialize the node value_eraser to erase inserted node
      //if something goes wrong
      value_eraser<index_type> v_eraser(index, it);

      //Allocates buffer for name + data, this can throw (it hurts)
      void *buffer_ptr; 
      block_header_t * hdr;

      //Allocate and construct the headers
      if(is_node_index_t::value){
         std::size_t total_size = block_info.total_size_with_header<index_it>();
         if(dothrow){
            buffer_ptr = this->allocate(total_size);
         }
         else{
            buffer_ptr = this->allocate(total_size, std::nothrow_t());
            if(!buffer_ptr)
               return 0; 
         }
         index_it *idr = new(buffer_ptr) index_it(it);
         hdr = block_header_t::from_first_header<index_it>(idr);
      }
      else{
         if(dothrow){
            buffer_ptr = this->allocate(block_info.total_size());
         }
         else{
            buffer_ptr = this->allocate(block_info.total_size(), std::nothrow_t());
            if(!buffer_ptr)
               return 0; 
         }
         hdr = static_cast<block_header_t*>(buffer_ptr);
      }

      hdr = new(hdr)block_header_t(block_info);
      void *ptr = 0; //avoid gcc warning
      ptr = hdr->value();

      //Copy name to memory segment and insert data
      CharT *name_ptr = static_cast<CharT *>(hdr->template name<CharT>());
      std::char_traits<CharT>::copy(name_ptr, name, namelen+1);

      //Do the ugly cast, please mama, forgive me!
      //This new key points to an identical string, so it must have the 
      //same position than the overwritten key according to the predicate
      const_cast<key_type &>(it->first).name(name_ptr);
      it->second.m_ptr  = hdr;

      //Build scoped ptr to avoid leaks with constructor exception
      detail::mem_algo_deallocator<segment_manager_base_type> mem
         (buffer_ptr, *static_cast<segment_manager_base_type*>(this));

      //Construct array, this can throw
      detail::array_construct(ptr, num, table);

      //All constructors successful, we don't want to release memory
      mem.release();

      //Release node v_eraser since construction was successful
      v_eraser.release();
      return ptr;
   }

   private:
   //!Returns the this pointer
   segment_manager *get_this_pointer()
   {  return this;  }

   typedef typename MemoryAlgorithm::mutex_family::recursive_mutex_type   rmutex;

   scoped_lock<rmutex> priv_get_lock(bool use_lock)
   {
      scoped_lock<rmutex> local(m_header, defer_lock);
      if(use_lock){
         local.lock();
      }
      return scoped_lock<rmutex>(boost::interprocess::move(local));
   }

   //!This struct includes needed data and derives from
   //!rmutex to allow EBO when using null interprocess_mutex
   struct header_t
      :  public rmutex
   {
      named_index_t           m_named_index;
      unique_index_t          m_unique_index;
   
      header_t(Base *restricted_segment_mngr)
         :  m_named_index (restricted_segment_mngr)
         ,  m_unique_index(restricted_segment_mngr)
      {}
   }  m_header;

   /// @endcond
};


}} //namespace boost { namespace interprocess

#include <boost/interprocess/detail/config_end.hpp>

#endif //#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP