/usr/include/boost/lambda/detail/ret.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | // Boost Lambda Library ret.hpp -----------------------------------------
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
#ifndef BOOST_LAMBDA_RET_HPP
#define BOOST_LAMBDA_RET_HPP
namespace boost {
namespace lambda {
// TODO:
// Add specializations for function references for ret, protect and unlambda
// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
// for a function type.
// on the other hand unlambda(*foo) does work
// -- ret -------------------------
// the explicit return type template
// TODO: It'd be nice to make ret a nop for other than lambda functors
// but causes an ambiguiyty with gcc (not with KCC), check what is the
// right interpretation.
// // ret for others than lambda functors has no effect
// template <class U, class T>
// inline const T& ret(const T& t) { return t; }
template<class RET, class Arg>
inline const
lambda_functor<
lambda_functor_base<
explicit_return_type_action<RET>,
tuple<lambda_functor<Arg> >
>
>
ret(const lambda_functor<Arg>& a1)
{
return
lambda_functor_base<
explicit_return_type_action<RET>,
tuple<lambda_functor<Arg> >
>
(tuple<lambda_functor<Arg> >(a1));
}
// protect ------------------
// protecting others than lambda functors has no effect
template <class T>
inline const T& protect(const T& t) { return t; }
template<class Arg>
inline const
lambda_functor<
lambda_functor_base<
protect_action,
tuple<lambda_functor<Arg> >
>
>
protect(const lambda_functor<Arg>& a1)
{
return
lambda_functor_base<
protect_action,
tuple<lambda_functor<Arg> >
>
(tuple<lambda_functor<Arg> >(a1));
}
// -------------------------------------------------------------------
// Hides the lambda functorness of a lambda functor.
// After this, the functor is immune to argument substitution, etc.
// This can be used, e.g. to make it safe to pass lambda functors as
// arguments to functions, which might use them as target functions
// note, unlambda and protect are different things. Protect hides the lambda
// functor for one application, unlambda for good.
template <class LambdaFunctor>
class non_lambda_functor
{
LambdaFunctor lf;
public:
// This functor defines the result_type typedef.
// The result type must be deducible without knowing the arguments
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::
template sig<typename SigArgs::tail_type>::type type;
};
explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
typename LambdaFunctor::nullary_return_type
operator()() const {
return lf.template
call<typename LambdaFunctor::nullary_return_type>
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
}
template<class A>
typename sig<tuple<const non_lambda_functor, A&> >::type
operator()(A& a) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const non_lambda_functor, A&, B&> >::type
operator()(A& a, B& b) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
operator()(A& a, B& b, C& c) const {
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
}
};
template <class Arg>
inline const Arg& unlambda(const Arg& a) { return a; }
template <class Arg>
inline const non_lambda_functor<lambda_functor<Arg> >
unlambda(const lambda_functor<Arg>& a)
{
return non_lambda_functor<lambda_functor<Arg> >(a);
}
// Due to a language restriction, lambda functors cannot be made to
// accept non-const rvalue arguments. Usually iterators do not return
// temporaries, but sometimes they do. That's why a workaround is provided.
// Note, that this potentially breaks const correctness, so be careful!
// any lambda functor can be turned into a const_incorrect_lambda_functor
// The operator() takes arguments as consts and then casts constness
// away. So this breaks const correctness!!! but is a necessary workaround
// in some cases due to language limitations.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.
template <class LambdaFunctor>
struct const_incorrect_lambda_functor {
LambdaFunctor lf;
public:
explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::template
sig<typename SigArgs::tail_type>::type type;
};
// The nullary case is not needed (no arguments, no parameter type problems)
template<class A>
typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
operator()(const A& a) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
operator()(const A& a, const B& b) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
operator()(const A& a, const B& b, const C& c) const {
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
}
};
// ------------------------------------------------------------------------
// any lambda functor can be turned into a const_parameter_lambda_functor
// The operator() takes arguments as const.
// This is useful if lambda functors are called with non-const rvalues.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.
template <class LambdaFunctor>
struct const_parameter_lambda_functor {
LambdaFunctor lf;
public:
explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
template <class SigArgs> struct sig {
typedef typename
LambdaFunctor::inherited::template
sig<typename SigArgs::tail_type>::type type;
};
// The nullary case is not needed: no arguments, no constness problems.
template<class A>
typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
operator()(const A& a) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
operator()(const A& a, const B& b) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
>::type
operator()(const A& a, const B& b, const C& c) const {
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
}
};
template <class Arg>
inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
break_const(const lambda_functor<Arg>& lf)
{
return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
}
template <class Arg>
inline const const_parameter_lambda_functor<lambda_functor<Arg> >
const_parameters(const lambda_functor<Arg>& lf)
{
return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
}
// make void ------------------------------------------------
// make_void( x ) turns a lambda functor x with some return type y into
// another lambda functor, which has a void return type
// when called, the original return type is discarded
// we use this action. The action class will be called, which means that
// the wrapped lambda functor is evaluated, but we just don't do anything
// with the result.
struct voidifier_action {
template<class Ret, class A> static void apply(A&) {}
};
template<class Args> struct return_type_N<voidifier_action, Args> {
typedef void type;
};
template<class Arg1>
inline const
lambda_functor<
lambda_functor_base<
action<1, voidifier_action>,
tuple<lambda_functor<Arg1> >
>
>
make_void(const lambda_functor<Arg1>& a1) {
return
lambda_functor_base<
action<1, voidifier_action>,
tuple<lambda_functor<Arg1> >
>
(tuple<lambda_functor<Arg1> > (a1));
}
// for non-lambda functors, make_void does nothing
// (the argument gets evaluated immediately)
template<class Arg1>
inline const
lambda_functor<
lambda_functor_base<do_nothing_action, null_type>
>
make_void(const Arg1& a1) {
return
lambda_functor_base<do_nothing_action, null_type>();
}
// std_functor -----------------------------------------------------
// The STL uses the result_type typedef as the convention to let binders know
// the return type of a function object.
// LL uses the sig template.
// To let LL know that the function object has the result_type typedef
// defined, it can be wrapped with the std_functor function.
// Just inherit form the template parameter (the standard functor),
// and provide a sig template. So we have a class which is still the
// same functor + the sig template.
template<class T>
struct result_type_to_sig : public T {
template<class Args> struct sig { typedef typename T::result_type type; };
result_type_to_sig(const T& t) : T(t) {}
};
template<class F>
inline result_type_to_sig<F> std_functor(const F& f) { return f; }
} // namespace lambda
} // namespace boost
#endif
|