This file is indexed.

/usr/include/boost/lambda/detail/ret.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// Boost Lambda Library  ret.hpp -----------------------------------------

// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org


#ifndef BOOST_LAMBDA_RET_HPP
#define BOOST_LAMBDA_RET_HPP

namespace boost { 
namespace lambda {

  // TODO:

//  Add specializations for function references for ret, protect and unlambda
//  e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
  // for a function type. 
  // on the other hand unlambda(*foo) does work


// -- ret -------------------------
// the explicit return type template 

  // TODO: It'd be nice to make ret a nop for other than lambda functors
  // but causes an ambiguiyty with gcc (not with KCC), check what is the
  // right interpretation.

  //  // ret for others than lambda functors has no effect
  // template <class U, class T>
  // inline const T& ret(const T& t) { return t; }


template<class RET, class Arg>
inline const 
lambda_functor<
  lambda_functor_base<
    explicit_return_type_action<RET>, 
    tuple<lambda_functor<Arg> >
  > 
>
ret(const lambda_functor<Arg>& a1)
{
  return  
    lambda_functor_base<
      explicit_return_type_action<RET>, 
      tuple<lambda_functor<Arg> >
    > 
    (tuple<lambda_functor<Arg> >(a1));
}

// protect ------------------

  // protecting others than lambda functors has no effect
template <class T>
inline const T& protect(const T& t) { return t; }

template<class Arg>
inline const 
lambda_functor<
  lambda_functor_base<
    protect_action, 
    tuple<lambda_functor<Arg> >
  > 
>
protect(const lambda_functor<Arg>& a1)
{
  return 
      lambda_functor_base<
        protect_action, 
        tuple<lambda_functor<Arg> >
      > 
    (tuple<lambda_functor<Arg> >(a1));
}
   
// -------------------------------------------------------------------

// Hides the lambda functorness of a lambda functor. 
// After this, the functor is immune to argument substitution, etc.
// This can be used, e.g. to make it safe to pass lambda functors as 
// arguments to functions, which might use them as target functions

// note, unlambda and protect are different things. Protect hides the lambda
// functor for one application, unlambda for good.

template <class LambdaFunctor>
class non_lambda_functor
{
  LambdaFunctor lf;
public:
  
  // This functor defines the result_type typedef.
  // The result type must be deducible without knowing the arguments

  template <class SigArgs> struct sig {
    typedef typename 
      LambdaFunctor::inherited:: 
        template sig<typename SigArgs::tail_type>::type type;
  };

  explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}

  typename LambdaFunctor::nullary_return_type  
  operator()() const {
    return lf.template 
      call<typename LambdaFunctor::nullary_return_type>
        (cnull_type(), cnull_type(), cnull_type(), cnull_type()); 
  }

  template<class A>
  typename sig<tuple<const non_lambda_functor, A&> >::type 
  operator()(A& a) const {
    return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); 
  }

  template<class A, class B>
  typename sig<tuple<const non_lambda_functor, A&, B&> >::type 
  operator()(A& a, B& b) const {
    return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); 
  }

  template<class A, class B, class C>
  typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type 
  operator()(A& a, B& b, C& c) const {
    return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); 
  }
};

template <class Arg>
inline const Arg& unlambda(const Arg& a) { return a; }

template <class Arg>
inline const non_lambda_functor<lambda_functor<Arg> > 
unlambda(const lambda_functor<Arg>& a)
{
  return non_lambda_functor<lambda_functor<Arg> >(a);
}

  // Due to a language restriction, lambda functors cannot be made to
  // accept non-const rvalue arguments. Usually iterators do not return 
  // temporaries, but sometimes they do. That's why a workaround is provided.
  // Note, that this potentially breaks const correctness, so be careful!

// any lambda functor can be turned into a const_incorrect_lambda_functor
// The operator() takes arguments as consts and then casts constness
// away. So this breaks const correctness!!! but is a necessary workaround
// in some cases due to language limitations.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.

template <class LambdaFunctor>
struct const_incorrect_lambda_functor {
  LambdaFunctor lf;
public:

  explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}

  template <class SigArgs> struct sig {
    typedef typename
      LambdaFunctor::inherited::template 
        sig<typename SigArgs::tail_type>::type type;
  };

  // The nullary case is not needed (no arguments, no parameter type problems)

  template<class A>
  typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
  operator()(const A& a) const {
    return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
  }

  template<class A, class B>
  typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
  operator()(const A& a, const B& b) const {
    return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
  }

  template<class A, class B, class C>
  typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
  operator()(const A& a, const B& b, const C& c) const {
    return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
  }
};

// ------------------------------------------------------------------------
// any lambda functor can be turned into a const_parameter_lambda_functor
// The operator() takes arguments as const.
// This is useful if lambda functors are called with non-const rvalues.
// Note, that this is not a lambda_functor anymore, so it can not be used
// as a sub lambda expression.

template <class LambdaFunctor>
struct const_parameter_lambda_functor {
  LambdaFunctor lf;
public:

  explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}

  template <class SigArgs> struct sig {
    typedef typename
      LambdaFunctor::inherited::template 
        sig<typename SigArgs::tail_type>::type type;
  };

  // The nullary case is not needed: no arguments, no constness problems.

  template<class A>
  typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
  operator()(const A& a) const {
    return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
  }

  template<class A, class B>
  typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
  operator()(const A& a, const B& b) const {
    return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
  }

  template<class A, class B, class C>
  typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
>::type
  operator()(const A& a, const B& b, const C& c) const {
    return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
  }
};

template <class Arg>
inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
break_const(const lambda_functor<Arg>& lf)
{
  return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
}


template <class Arg>
inline const const_parameter_lambda_functor<lambda_functor<Arg> >
const_parameters(const lambda_functor<Arg>& lf)
{
  return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
}

// make void ------------------------------------------------
// make_void( x ) turns a lambda functor x with some return type y into
// another lambda functor, which has a void return type
// when called, the original return type is discarded

// we use this action. The action class will be called, which means that
// the wrapped lambda functor is evaluated, but we just don't do anything
// with the result.
struct voidifier_action {
  template<class Ret, class A> static void apply(A&) {}
};

template<class Args> struct return_type_N<voidifier_action, Args> {
  typedef void type;
};

template<class Arg1>
inline const 
lambda_functor<
  lambda_functor_base<
    action<1, voidifier_action>,
    tuple<lambda_functor<Arg1> >
  > 
> 
make_void(const lambda_functor<Arg1>& a1) { 
return 
    lambda_functor_base<
      action<1, voidifier_action>,
      tuple<lambda_functor<Arg1> >
    > 
  (tuple<lambda_functor<Arg1> > (a1));
}

// for non-lambda functors, make_void does nothing 
// (the argument gets evaluated immediately)

template<class Arg1>
inline const 
lambda_functor<
  lambda_functor_base<do_nothing_action, null_type> 
> 
make_void(const Arg1& a1) { 
return 
    lambda_functor_base<do_nothing_action, null_type>();
}

// std_functor -----------------------------------------------------

//  The STL uses the result_type typedef as the convention to let binders know
//  the return type of a function object. 
//  LL uses the sig template.
//  To let LL know that the function object has the result_type typedef 
//  defined, it can be wrapped with the std_functor function.


// Just inherit form the template parameter (the standard functor), 
// and provide a sig template. So we have a class which is still the
// same functor + the sig template.

template<class T>
struct result_type_to_sig : public T {
  template<class Args> struct sig { typedef typename T::result_type type; };
  result_type_to_sig(const T& t) : T(t) {}
};

template<class F>
inline result_type_to_sig<F> std_functor(const F& f) { return f; }


} // namespace lambda 
} // namespace boost

#endif