/usr/include/boost/math/complex/acos.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | // (C) Copyright John Maddock 2005.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED
#define BOOST_MATH_COMPLEX_ACOS_INCLUDED
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
# include <boost/math/complex/details.hpp>
#endif
#ifndef BOOST_MATH_LOG1P_INCLUDED
# include <boost/math/special_functions/log1p.hpp>
#endif
#include <boost/assert.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
#endif
namespace boost{ namespace math{
template<class T>
std::complex<T> acos(const std::complex<T>& z)
{
//
// This implementation is a transcription of the pseudo-code in:
//
// "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling."
// T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
// ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
//
//
// These static constants should really be in a maths constants library:
//
static const T one = static_cast<T>(1);
//static const T two = static_cast<T>(2);
static const T half = static_cast<T>(0.5L);
static const T a_crossover = static_cast<T>(1.5L);
static const T b_crossover = static_cast<T>(0.6417L);
static const T s_pi = static_cast<T>(3.141592653589793238462643383279502884197L);
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L);
static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L);
//
// Get real and imaginary parts, discard the signs as we can
// figure out the sign of the result later:
//
T x = std::fabs(z.real());
T y = std::fabs(z.imag());
T real, imag; // these hold our result
//
// Handle special cases specified by the C99 standard,
// many of these special cases aren't really needed here,
// but doing it this way prevents overflow/underflow arithmetic
// in the main body of the logic, which may trip up some machines:
//
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
{
if(y == std::numeric_limits<T>::infinity())
{
real = quarter_pi;
imag = std::numeric_limits<T>::infinity();
}
else if(detail::test_is_nan(y))
{
return std::complex<T>(y, -std::numeric_limits<T>::infinity());
}
else
{
// y is not infinity or nan:
real = 0;
imag = std::numeric_limits<T>::infinity();
}
}
else if(detail::test_is_nan(x))
{
if(y == std::numeric_limits<T>::infinity())
return std::complex<T>(x, (z.imag() < 0) ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity());
return std::complex<T>(x, x);
}
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
{
real = half_pi;
imag = std::numeric_limits<T>::infinity();
}
else if(detail::test_is_nan(y))
{
return std::complex<T>((x == 0) ? half_pi : y, y);
}
else
{
//
// What follows is the regular Hull et al code,
// begin with the special case for real numbers:
//
if((y == 0) && (x <= one))
return std::complex<T>((x == 0) ? half_pi : std::acos(z.real()));
//
// Figure out if our input is within the "safe area" identified by Hull et al.
// This would be more efficient with portable floating point exception handling;
// fortunately the quantities M and u identified by Hull et al (figure 3),
// match with the max and min methods of numeric_limits<T>.
//
T safe_max = detail::safe_max(static_cast<T>(8));
T safe_min = detail::safe_min(static_cast<T>(4));
T xp1 = one + x;
T xm1 = x - one;
if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
{
T yy = y * y;
T r = std::sqrt(xp1*xp1 + yy);
T s = std::sqrt(xm1*xm1 + yy);
T a = half * (r + s);
T b = x / a;
if(b <= b_crossover)
{
real = std::acos(b);
}
else
{
T apx = a + x;
if(x <= one)
{
real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x);
}
else
{
real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x);
}
}
if(a <= a_crossover)
{
T am1;
if(x < one)
{
am1 = half * (yy/(r + xp1) + yy/(s - xm1));
}
else
{
am1 = half * (yy/(r + xp1) + (s + xm1));
}
imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
}
else
{
imag = std::log(a + std::sqrt(a*a - one));
}
}
else
{
//
// This is the Hull et al exception handling code from Fig 6 of their paper:
//
if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
{
if(x < one)
{
real = std::acos(x);
imag = y / std::sqrt(xp1*(one-x));
}
else
{
real = 0;
if(((std::numeric_limits<T>::max)() / xp1) > xm1)
{
// xp1 * xm1 won't overflow:
imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
}
else
{
imag = log_two + std::log(x);
}
}
}
else if(y <= safe_min)
{
// There is an assumption in Hull et al's analysis that
// if we get here then x == 1. This is true for all "good"
// machines where :
//
// E^2 > 8*sqrt(u); with:
//
// E = std::numeric_limits<T>::epsilon()
// u = (std::numeric_limits<T>::min)()
//
// Hull et al provide alternative code for "bad" machines
// but we have no way to test that here, so for now just assert
// on the assumption:
//
BOOST_ASSERT(x == 1);
real = std::sqrt(y);
imag = std::sqrt(y);
}
else if(std::numeric_limits<T>::epsilon() * y - one >= x)
{
real = half_pi;
imag = log_two + std::log(y);
}
else if(x > one)
{
real = std::atan(y/x);
T xoy = x/y;
imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
}
else
{
real = half_pi;
T a = std::sqrt(one + y*y);
imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
}
}
}
//
// Finish off by working out the sign of the result:
//
if(z.real() < 0)
real = s_pi - real;
if(z.imag() > 0)
imag = -imag;
return std::complex<T>(real, imag);
}
} } // namespaces
#endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
|