This file is indexed.

/usr/include/boost/math/complex/asin.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//  (C) Copyright John Maddock 2005.
//  Distributed under the Boost Software License, Version 1.0. (See accompanying
//  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED
#define BOOST_MATH_COMPLEX_ASIN_INCLUDED

#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
#  include <boost/math/complex/details.hpp>
#endif
#ifndef BOOST_MATH_LOG1P_INCLUDED
#  include <boost/math/special_functions/log1p.hpp>
#endif
#include <boost/assert.hpp>

#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
#endif

namespace boost{ namespace math{

template<class T> 
inline std::complex<T> asin(const std::complex<T>& z)
{
   //
   // This implementation is a transcription of the pseudo-code in:
   //
   // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."
   // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
   // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
   //

   //
   // These static constants should really be in a maths constants library:
   //
   static const T one = static_cast<T>(1);
   //static const T two = static_cast<T>(2);
   static const T half = static_cast<T>(0.5L);
   static const T a_crossover = static_cast<T>(1.5L);
   static const T b_crossover = static_cast<T>(0.6417L);
   //static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L);
   static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
   static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L);
   static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L);
   
   //
   // Get real and imaginary parts, discard the signs as we can 
   // figure out the sign of the result later:
   //
   T x = std::fabs(z.real());
   T y = std::fabs(z.imag());
   T real, imag;  // our results

   //
   // Begin by handling the special cases for infinities and nan's
   // specified in C99, most of this is handled by the regular logic
   // below, but handling it as a special case prevents overflow/underflow
   // arithmetic which may trip up some machines:
   //
   if(detail::test_is_nan(x))
   {
      if(detail::test_is_nan(y))
         return std::complex<T>(x, x);
      if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
      {
         real = x;
         imag = std::numeric_limits<T>::infinity();
      }
      else
         return std::complex<T>(x, x);
   }
   else if(detail::test_is_nan(y))
   {
      if(x == 0)
      {
         real = 0;
         imag = y;
      }
      else if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
      {
         real = y;
         imag = std::numeric_limits<T>::infinity();
      }
      else
         return std::complex<T>(y, y);
   }
   else if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
   {
      if(y == std::numeric_limits<T>::infinity())
      {
         real = quarter_pi;
         imag = std::numeric_limits<T>::infinity();
      }
      else
      {
         real = half_pi;
         imag = std::numeric_limits<T>::infinity();
      }
   }
   else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
   {
      real = 0;
      imag = std::numeric_limits<T>::infinity();
   }
   else
   {
      //
      // special case for real numbers:
      //
      if((y == 0) && (x <= one))
         return std::complex<T>(std::asin(z.real()));
      //
      // Figure out if our input is within the "safe area" identified by Hull et al.
      // This would be more efficient with portable floating point exception handling;
      // fortunately the quantities M and u identified by Hull et al (figure 3), 
      // match with the max and min methods of numeric_limits<T>.
      //
      T safe_max = detail::safe_max(static_cast<T>(8));
      T safe_min = detail::safe_min(static_cast<T>(4));

      T xp1 = one + x;
      T xm1 = x - one;

      if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
      {
         T yy = y * y;
         T r = std::sqrt(xp1*xp1 + yy);
         T s = std::sqrt(xm1*xm1 + yy);
         T a = half * (r + s);
         T b = x / a;

         if(b <= b_crossover)
         {
            real = std::asin(b);
         }
         else
         {
            T apx = a + x;
            if(x <= one)
            {
               real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));
            }
            else
            {
               real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));
            }
         }

         if(a <= a_crossover)
         {
            T am1;
            if(x < one)
            {
               am1 = half * (yy/(r + xp1) + yy/(s - xm1));
            }
            else
            {
               am1 = half * (yy/(r + xp1) + (s + xm1));
            }
            imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
         }
         else
         {
            imag = std::log(a + std::sqrt(a*a - one));
         }
      }
      else
      {
         //
         // This is the Hull et al exception handling code from Fig 3 of their paper:
         //
         if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
         {
            if(x < one)
            {
               real = std::asin(x);
               imag = y / std::sqrt(xp1*xm1);
            }
            else
            {
               real = half_pi;
               if(((std::numeric_limits<T>::max)() / xp1) > xm1)
               {
                  // xp1 * xm1 won't overflow:
                  imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
               }
               else
               {
                  imag = log_two + std::log(x);
               }
            }
         }
         else if(y <= safe_min)
         {
            // There is an assumption in Hull et al's analysis that
            // if we get here then x == 1.  This is true for all "good"
            // machines where :
            // 
            // E^2 > 8*sqrt(u); with:
            //
            // E =  std::numeric_limits<T>::epsilon()
            // u = (std::numeric_limits<T>::min)()
            //
            // Hull et al provide alternative code for "bad" machines
            // but we have no way to test that here, so for now just assert
            // on the assumption:
            //
            BOOST_ASSERT(x == 1);
            real = half_pi - std::sqrt(y);
            imag = std::sqrt(y);
         }
         else if(std::numeric_limits<T>::epsilon() * y - one >= x)
         {
            real = x/y; // This can underflow!
            imag = log_two + std::log(y);
         }
         else if(x > one)
         {
            real = std::atan(x/y);
            T xoy = x/y;
            imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
         }
         else
         {
            T a = std::sqrt(one + y*y);
            real = x/a; // This can underflow!
            imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
         }
      }
   }

   //
   // Finish off by working out the sign of the result:
   //
   if(z.real() < 0)
      real = -real;
   if(z.imag() < 0)
      imag = -imag;

   return std::complex<T>(real, imag);
}

} } // namespaces

#endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED