This file is indexed.

/usr/include/boost/math/complex/atanh.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//  (C) Copyright John Maddock 2005.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
#define BOOST_MATH_COMPLEX_ATANH_INCLUDED

#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
#  include <boost/math/complex/details.hpp>
#endif
#ifndef BOOST_MATH_LOG1P_INCLUDED
#  include <boost/math/special_functions/log1p.hpp>
#endif
#include <boost/assert.hpp>

#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
#endif

namespace boost{ namespace math{

template<class T> 
std::complex<T> atanh(const std::complex<T>& z)
{
   //
   // References:
   //
   // Eric W. Weisstein. "Inverse Hyperbolic Tangent." 
   // From MathWorld--A Wolfram Web Resource. 
   // http://mathworld.wolfram.com/InverseHyperbolicTangent.html
   //
   // Also: The Wolfram Functions Site,
   // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
   //
   // Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
   // at : http://jove.prohosting.com/~skripty/toc.htm
   //
   
   static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
   static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L);
   static const T one = static_cast<T>(1.0L);
   static const T two = static_cast<T>(2.0L);
   static const T four = static_cast<T>(4.0L);
   static const T zero = static_cast<T>(0);
   static const T a_crossover = static_cast<T>(0.3L);

   T x = std::fabs(z.real());
   T y = std::fabs(z.imag());

   T real, imag;  // our results

   T safe_upper = detail::safe_max(two);
   T safe_lower = detail::safe_min(static_cast<T>(2));

   //
   // Begin by handling the special cases specified in C99:
   //
   if(detail::test_is_nan(x))
   {
      if(detail::test_is_nan(y))
         return std::complex<T>(x, x);
      else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
         return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi));
      else
         return std::complex<T>(x, x);
   }
   else if(detail::test_is_nan(y))
   {
      if(x == 0)
         return std::complex<T>(x, y);
      if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
         return std::complex<T>(0, y);
      else
         return std::complex<T>(y, y);
   }
   else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
   {

      T xx = x*x;
      T yy = y*y;
      T x2 = x * two;

      ///
      // The real part is given by:
      // 
      // real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x))
      // 
      // However, when x is either large (x > 1/E) or very small
      // (x < E) then this effectively simplifies
      // to log(1), leading to wildly inaccurate results.  
      // By dividing the above (top and bottom) by (1 + x^2 + y^2) we get:
      //
      // real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2))))
      //
      // which is much more sensitive to the value of x, when x is not near 1
      // (remember we can compute log(1+x) for small x very accurately).
      //
      // The cross-over from one method to the other has to be determined
      // experimentally, the value used below appears correct to within a 
      // factor of 2 (and there are larger errors from other parts
      // of the input domain anyway).
      //
      T alpha = two*x / (one + xx + yy);
      if(alpha < a_crossover)
      {
         real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
      }
      else
      {
         T xm1 = x - one;
         real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy);
      }
      real /= four;
      if(z.real() < 0)
         real = -real;

      imag = std::atan2((y * two), (one - xx - yy));
      imag /= two;
      if(z.imag() < 0)
         imag = -imag;
   }
   else
   {
      //
      // This section handles exception cases that would normally cause
      // underflow or overflow in the main formulas.
      //
      // Begin by working out the real part, we need to approximate
      //    alpha = 2x / (1 + x^2 + y^2)
      // without either overflow or underflow in the squared terms.
      //
      T alpha = 0;
      if(x >= safe_upper)
      {
         // this is really a test for infinity, 
         // but we may not have the necessary numeric_limits support:
         if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)()))
         {
            alpha = 0;
         }
         else if(y >= safe_upper)
         {
            // Big x and y: divide alpha through by x*y:
            alpha = (two/y) / (x/y + y/x);
         }
         else if(y > one)
         {
            // Big x: divide through by x:
            alpha = two / (x + y*y/x);
         }
         else
         {
            // Big x small y, as above but neglect y^2/x:
            alpha = two/x;
         }
      }
      else if(y >= safe_upper)
      {
         if(x > one)
         {
            // Big y, medium x, divide through by y:
            alpha = (two*x/y) / (y + x*x/y);
         }
         else
         {
            // Small x and y, whatever alpha is, it's too small to calculate:
            alpha = 0;
         }
      }
      else
      {
         // one or both of x and y are small, calculate divisor carefully:
         T div = one;
         if(x > safe_lower)
            div += x*x;
         if(y > safe_lower)
            div += y*y;
         alpha = two*x/div;
      }
      if(alpha < a_crossover)
      {
         real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
      }
      else
      {
         // We can only get here as a result of small y and medium sized x,
         // we can simply neglect the y^2 terms:
         BOOST_ASSERT(x >= safe_lower);
         BOOST_ASSERT(x <= safe_upper);
         //BOOST_ASSERT(y <= safe_lower);
         T xm1 = x - one;
         real = std::log(1 + two*x + x*x) - std::log(xm1*xm1);
      }
      
      real /= four;
      if(z.real() < 0)
         real = -real;

      //
      // Now handle imaginary part, this is much easier,
      // if x or y are large, then the formula:
      //    atan2(2y, 1 - x^2 - y^2)
      // evaluates to +-(PI - theta) where theta is negligible compared to PI.
      //
      if((x >= safe_upper) || (y >= safe_upper))
      {
         imag = pi;
      }
      else if(x <= safe_lower)
      {
         //
         // If both x and y are small then atan(2y),
         // otherwise just x^2 is negligible in the divisor:
         //
         if(y <= safe_lower)
            imag = std::atan2(two*y, one);
         else
         {
            if((y == zero) && (x == zero))
               imag = 0;
            else
               imag = std::atan2(two*y, one - y*y);
         }
      }
      else
      {
         //
         // y^2 is negligible:
         //
         if((y == zero) && (x == one))
            imag = 0;
         else
            imag = std::atan2(two*y, 1 - x*x);
      }
      imag /= two;
      if(z.imag() < 0)
         imag = -imag;
   }
   return std::complex<T>(real, imag);
}

} } // namespaces

#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED