/usr/include/boost/math/complex/atanh.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | // (C) Copyright John Maddock 2005.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
#define BOOST_MATH_COMPLEX_ATANH_INCLUDED
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
# include <boost/math/complex/details.hpp>
#endif
#ifndef BOOST_MATH_LOG1P_INCLUDED
# include <boost/math/special_functions/log1p.hpp>
#endif
#include <boost/assert.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
#endif
namespace boost{ namespace math{
template<class T>
std::complex<T> atanh(const std::complex<T>& z)
{
//
// References:
//
// Eric W. Weisstein. "Inverse Hyperbolic Tangent."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/InverseHyperbolicTangent.html
//
// Also: The Wolfram Functions Site,
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
//
// Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
// at : http://jove.prohosting.com/~skripty/toc.htm
//
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L);
static const T one = static_cast<T>(1.0L);
static const T two = static_cast<T>(2.0L);
static const T four = static_cast<T>(4.0L);
static const T zero = static_cast<T>(0);
static const T a_crossover = static_cast<T>(0.3L);
T x = std::fabs(z.real());
T y = std::fabs(z.imag());
T real, imag; // our results
T safe_upper = detail::safe_max(two);
T safe_lower = detail::safe_min(static_cast<T>(2));
//
// Begin by handling the special cases specified in C99:
//
if(detail::test_is_nan(x))
{
if(detail::test_is_nan(y))
return std::complex<T>(x, x);
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi));
else
return std::complex<T>(x, x);
}
else if(detail::test_is_nan(y))
{
if(x == 0)
return std::complex<T>(x, y);
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
return std::complex<T>(0, y);
else
return std::complex<T>(y, y);
}
else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
{
T xx = x*x;
T yy = y*y;
T x2 = x * two;
///
// The real part is given by:
//
// real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x))
//
// However, when x is either large (x > 1/E) or very small
// (x < E) then this effectively simplifies
// to log(1), leading to wildly inaccurate results.
// By dividing the above (top and bottom) by (1 + x^2 + y^2) we get:
//
// real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2))))
//
// which is much more sensitive to the value of x, when x is not near 1
// (remember we can compute log(1+x) for small x very accurately).
//
// The cross-over from one method to the other has to be determined
// experimentally, the value used below appears correct to within a
// factor of 2 (and there are larger errors from other parts
// of the input domain anyway).
//
T alpha = two*x / (one + xx + yy);
if(alpha < a_crossover)
{
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
}
else
{
T xm1 = x - one;
real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy);
}
real /= four;
if(z.real() < 0)
real = -real;
imag = std::atan2((y * two), (one - xx - yy));
imag /= two;
if(z.imag() < 0)
imag = -imag;
}
else
{
//
// This section handles exception cases that would normally cause
// underflow or overflow in the main formulas.
//
// Begin by working out the real part, we need to approximate
// alpha = 2x / (1 + x^2 + y^2)
// without either overflow or underflow in the squared terms.
//
T alpha = 0;
if(x >= safe_upper)
{
// this is really a test for infinity,
// but we may not have the necessary numeric_limits support:
if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)()))
{
alpha = 0;
}
else if(y >= safe_upper)
{
// Big x and y: divide alpha through by x*y:
alpha = (two/y) / (x/y + y/x);
}
else if(y > one)
{
// Big x: divide through by x:
alpha = two / (x + y*y/x);
}
else
{
// Big x small y, as above but neglect y^2/x:
alpha = two/x;
}
}
else if(y >= safe_upper)
{
if(x > one)
{
// Big y, medium x, divide through by y:
alpha = (two*x/y) / (y + x*x/y);
}
else
{
// Small x and y, whatever alpha is, it's too small to calculate:
alpha = 0;
}
}
else
{
// one or both of x and y are small, calculate divisor carefully:
T div = one;
if(x > safe_lower)
div += x*x;
if(y > safe_lower)
div += y*y;
alpha = two*x/div;
}
if(alpha < a_crossover)
{
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
}
else
{
// We can only get here as a result of small y and medium sized x,
// we can simply neglect the y^2 terms:
BOOST_ASSERT(x >= safe_lower);
BOOST_ASSERT(x <= safe_upper);
//BOOST_ASSERT(y <= safe_lower);
T xm1 = x - one;
real = std::log(1 + two*x + x*x) - std::log(xm1*xm1);
}
real /= four;
if(z.real() < 0)
real = -real;
//
// Now handle imaginary part, this is much easier,
// if x or y are large, then the formula:
// atan2(2y, 1 - x^2 - y^2)
// evaluates to +-(PI - theta) where theta is negligible compared to PI.
//
if((x >= safe_upper) || (y >= safe_upper))
{
imag = pi;
}
else if(x <= safe_lower)
{
//
// If both x and y are small then atan(2y),
// otherwise just x^2 is negligible in the divisor:
//
if(y <= safe_lower)
imag = std::atan2(two*y, one);
else
{
if((y == zero) && (x == zero))
imag = 0;
else
imag = std::atan2(two*y, one - y*y);
}
}
else
{
//
// y^2 is negligible:
//
if((y == zero) && (x == one))
imag = 0;
else
imag = std::atan2(two*y, 1 - x*x);
}
imag /= two;
if(z.imag() < 0)
imag = -imag;
}
return std::complex<T>(real, imag);
}
} } // namespaces
#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
|