This file is indexed.

/usr/include/boost/math/distributions/bernoulli.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// boost\math\distributions\bernoulli.hpp

// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// http://en.wikipedia.org/wiki/bernoulli_distribution
// http://mathworld.wolfram.com/BernoulliDistribution.html

// bernoulli distribution is the discrete probability distribution of
// the number (k) of successes, in a single Bernoulli trials.
// It is a version of the binomial distribution when n = 1.

// But note that the bernoulli distribution
// (like others including the poisson, binomial & negative binomial)
// is strictly defined as a discrete function: only integral values of k are envisaged.
// However because of the method of calculation using a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.

#ifndef BOOST_MATH_SPECIAL_BERNOULLI_HPP
#define BOOST_MATH_SPECIAL_BERNOULLI_HPP

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.

#include <utility>

namespace boost
{
  namespace math
  {
    namespace bernoulli_detail
    {
      // Common error checking routines for bernoulli distribution functions:
      template <class RealType, class Policy>
      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
      {
        if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, Policy());
          return false;
        }
        return true;
      }
      template <class RealType, class Policy>
      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
      {
        return check_success_fraction(function, p, result, Policy());
      }
      template <class RealType, class Policy>
      inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol)
      {
        if(check_dist(function, p, result, Policy()) == false)
        {
          return false;
        }
        if(!(boost::math::isfinite)(k) || !((k == 0) || (k == 1)))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Number of successes argument is %1%, but must be 0 or 1 !", k, pol);
          return false;
        }
       return true;
      }
      template <class RealType, class Policy>
      inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& /* pol */)
      {
        if(check_dist(function, p, result, Policy()) && detail::check_probability(function, prob, result, Policy()) == false)
        {
          return false;
        }
        return true;
      }
    } // namespace bernoulli_detail


    template <class RealType = double, class Policy = policies::policy<> >
    class bernoulli_distribution
    {
    public:
      typedef RealType value_type;
      typedef Policy policy_type;

      bernoulli_distribution(RealType p = 0.5) : m_p(p)
      { // Default probability = half suits 'fair' coin tossing
        // where probability of heads == probability of tails.
        RealType result; // of checks.
        bernoulli_detail::check_dist(
           "boost::math::bernoulli_distribution<%1%>::bernoulli_distribution",
          m_p,
          &result, Policy());
      } // bernoulli_distribution constructor.

      RealType success_fraction() const
      { // Probability.
        return m_p;
      }

    private:
      RealType m_p; // success_fraction
    }; // template <class RealType> class bernoulli_distribution

    typedef bernoulli_distribution<double> bernoulli;

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> range(const bernoulli_distribution<RealType, Policy>& /* dist */)
    { // Range of permissible values for random variable k = {0, 1}.
      using boost::math::tools::max_value;
      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
    }

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> support(const bernoulli_distribution<RealType, Policy>& /* dist */)
    { // Range of supported values for random variable k = {0, 1}.
      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
    }

    template <class RealType, class Policy>
    inline RealType mean(const bernoulli_distribution<RealType, Policy>& dist)
    { // Mean of bernoulli distribution = p (n = 1).
      return dist.success_fraction();
    } // mean

    // Rely on dereived_accessors quantile(half)
    //template <class RealType>
    //inline RealType median(const bernoulli_distribution<RealType, Policy>& dist)
    //{ // Median of bernoulli distribution is not defined.
    //  return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
    //} // median

    template <class RealType, class Policy>
    inline RealType variance(const bernoulli_distribution<RealType, Policy>& dist)
    { // Variance of bernoulli distribution =p * q.
      return  dist.success_fraction() * (1 - dist.success_fraction());
    } // variance

    template <class RealType, class Policy>
    RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
    { // Probability Density/Mass Function.
      BOOST_FPU_EXCEPTION_GUARD
      // Error check:
      RealType result; // of checks.
      if(false == bernoulli_detail::check_dist_and_k(
        "boost::math::pdf(bernoulli_distribution<%1%>, %1%)",
        dist.success_fraction(), // 0 to 1
        k, // 0 or 1
        &result, Policy()))
      {
        return result;
      }
      // Assume k is integral.
      if (k == 0)
      {
        return 1 - dist.success_fraction(); // 1 - p
      }
      else  // k == 1
      {
        return dist.success_fraction(); // p
      }
    } // pdf

    template <class RealType, class Policy>
    inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
    { // Cumulative Distribution Function Bernoulli.
      RealType p = dist.success_fraction();
      // Error check:
      RealType result;
      if(false == bernoulli_detail::check_dist_and_k(
        "boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
        p,
        k,
        &result, Policy()))
      {
        return result;
      }
      if (k == 0)
      {
        return 1 - p;
      }
      else
      { // k == 1
        return 1;
      }
    } // bernoulli cdf

    template <class RealType, class Policy>
    inline RealType cdf(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
    { // Complemented Cumulative Distribution Function bernoulli.
      RealType const& k = c.param;
      bernoulli_distribution<RealType, Policy> const& dist = c.dist;
      RealType p = dist.success_fraction();
      // Error checks:
      RealType result;
      if(false == bernoulli_detail::check_dist_and_k(
        "boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
        p,
        k,
        &result, Policy()))
      {
        return result;
      }
      if (k == 0)
      {
        return p;
      }
      else
      { // k == 1
        return 0;
      }
    } // bernoulli cdf complement

    template <class RealType, class Policy>
    inline RealType quantile(const bernoulli_distribution<RealType, Policy>& dist, const RealType& p)
    { // Quantile or Percent Point Bernoulli function.
      // Return the number of expected successes k either 0 or 1.
      // for a given probability p.

      RealType result; // of error checks:
      if(false == bernoulli_detail::check_dist_and_prob(
        "boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
        dist.success_fraction(),
        p,
        &result, Policy()))
      {
        return result;
      }
      if (p <= (1 - dist.success_fraction()))
      { // p <= pdf(dist, 0) == cdf(dist, 0)
        return 0;
      }
      else
      {
        return 1;
      }
    } // quantile

    template <class RealType, class Policy>
    inline RealType quantile(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
    { // Quantile or Percent Point bernoulli function.
      // Return the number of expected successes k for a given
      // complement of the probability q.
      //
      // Error checks:
      RealType q = c.param;
      const bernoulli_distribution<RealType, Policy>& dist = c.dist;
      RealType result;
      if(false == bernoulli_detail::check_dist_and_prob(
        "boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
        dist.success_fraction(),
        q,
        &result, Policy()))
      {
        return result;
      }

      if (q <= 1 - dist.success_fraction())
      { // // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
        return 1;
      }
      else
      {
        return 0;
      }
    } // quantile complemented.

    template <class RealType, class Policy>
    inline RealType mode(const bernoulli_distribution<RealType, Policy>& dist)
    {
      return static_cast<RealType>((dist.success_fraction() <= 0.5) ? 0 : 1); // p = 0.5 can be 0 or 1
    }

    template <class RealType, class Policy>
    inline RealType skewness(const bernoulli_distribution<RealType, Policy>& dist)
    {
      BOOST_MATH_STD_USING; // Aid ADL for sqrt.
      RealType p = dist.success_fraction();
      return (1 - 2 * p) / sqrt(p * (1 - p));
    }

    template <class RealType, class Policy>
    inline RealType kurtosis_excess(const bernoulli_distribution<RealType, Policy>& dist)
    {
      RealType p = dist.success_fraction();
      // Note Wolfram says this is kurtosis in text, but gamma2 is the kurtosis excess,
      // and Wikipedia also says this is the kurtosis excess formula.
      // return (6 * p * p - 6 * p + 1) / (p * (1 - p));
      // But Wolfram kurtosis article gives this simpler formula for kurtosis excess:
      return 1 / (1 - p) + 1/p -6;
    }

    template <class RealType, class Policy>
    inline RealType kurtosis(const bernoulli_distribution<RealType, Policy>& dist)
    {
      RealType p = dist.success_fraction();
      return 1 / (1 - p) + 1/p -6 + 3;
      // Simpler than:
      // return (6 * p * p - 6 * p + 1) / (p * (1 - p)) + 3;
    }

  } // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#endif // BOOST_MATH_SPECIAL_BERNOULLI_HPP