This file is indexed.

/usr/include/boost/math/distributions/cauchy.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright John Maddock 2006, 2007.
// Copyright Paul A. Bristow 2007.

//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_STATS_CAUCHY_HPP
#define BOOST_STATS_CAUCHY_HPP

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/config/no_tr1/cmath.hpp>

#include <utility>

namespace boost{ namespace math
{

template <class RealType, class Policy>
class cauchy_distribution;

namespace detail
{

template <class RealType, class Policy>
RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
{
   //
   // This calculates the cdf of the Cauchy distribution and/or its complement.
   //
   // The usual formula for the Cauchy cdf is:
   //
   // cdf = 0.5 + atan(x)/pi
   //
   // But that suffers from cancellation error as x -> -INF.
   //
   // Recall that for x < 0:
   //
   // atan(x) = -pi/2 - atan(1/x)
   //
   // Substituting into the above we get:
   //
   // CDF = -atan(1/x)  ; x < 0
   //
   // So the proceedure is to calculate the cdf for -fabs(x)
   // using the above formula, and then subtract from 1 when required
   // to get the result.
   //
   BOOST_MATH_STD_USING // for ADL of std functions
   static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
   RealType result;
   RealType location = dist.location();
   RealType scale = dist.scale();
   if(false == detail::check_location(function, location, &result, Policy()))
   {
     return result;
   }
   if(false == detail::check_scale(function, scale, &result, Policy()))
   {
      return result;
   }
   if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
   { // cdf +infinity is unity.
     return static_cast<RealType>((complement) ? 0 : 1);
   }
   if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
   { // cdf -infinity is zero.
     return static_cast<RealType>((complement) ? 1 : 0);
   }
   if(false == detail::check_x(function, x, &result, Policy()))
   { // Catches x == NaN
      return result;
   }
   RealType mx = -fabs((x - location) / scale); // scale is > 0
   if(mx > -tools::epsilon<RealType>() / 8)
   {  // special case first: x extremely close to location.
      return 0.5;
   }
   result = -atan(1 / mx) / constants::pi<RealType>();
   return (((x > location) != complement) ? 1 - result : result);
} // cdf

template <class RealType, class Policy>
RealType quantile_imp(
      const cauchy_distribution<RealType, Policy>& dist,
      const RealType& p,
      bool complement)
{
   // This routine implements the quantile for the Cauchy distribution,
   // the value p may be the probability, or its complement if complement=true.
   //
   // The procedure first performs argument reduction on p to avoid error
   // when calculating the tangent, then calulates the distance from the
   // mid-point of the distribution.  This is either added or subtracted
   // from the location parameter depending on whether `complement` is true.
   //
   static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
   BOOST_MATH_STD_USING // for ADL of std functions

   RealType result;
   RealType location = dist.location();
   RealType scale = dist.scale();
   if(false == detail::check_location(function, location, &result, Policy()))
   {
     return result;
   }
   if(false == detail::check_scale(function, scale, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_probability(function, p, &result, Policy()))
   {
      return result;
   }
   // Special cases:
   if(p == 1)
   {
      return (complement ? -1 : 1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
   }
   if(p == 0)
   {
      return (complement ? 1 : -1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
   }

   RealType P = p - floor(p);   // argument reduction of p:
   if(P > 0.5)
   {
      P = P - 1;
   }
   if(P == 0.5)   // special case:
   {
      return location;
   }
   result = -scale / tan(constants::pi<RealType>() * P);
   return complement ? RealType(location - result) : RealType(location + result);
} // quantile

} // namespace detail

template <class RealType = double, class Policy = policies::policy<> >
class cauchy_distribution
{
public:
   typedef RealType value_type;
   typedef Policy policy_type;

   cauchy_distribution(RealType location = 0, RealType scale = 1)
      : m_a(location), m_hg(scale)
   {
    static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
     RealType result;
     detail::check_location(function, location, &result, Policy());
     detail::check_scale(function, scale, &result, Policy());
   } // cauchy_distribution

   RealType location()const
   {
      return m_a;
   }
   RealType scale()const
   {
      return m_hg;
   }

private:
   RealType m_a;    // The location, this is the median of the distribution.
   RealType m_hg;   // The scale )or shape), this is the half width at half height.
};

typedef cauchy_distribution<double> cauchy;

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
{ // Range of permissible values for random variable x.
   using boost::math::tools::max_value;
   return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity.
}

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
{ // Range of supported values for random variable x.
   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
   return std::pair<RealType, RealType>(-tools::max_value<RealType>(), tools::max_value<RealType>()); // - to + infinity.
}

template <class RealType, class Policy>
inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
{  
   BOOST_MATH_STD_USING  // for ADL of std functions

   static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
   RealType result;
   RealType location = dist.location();
   RealType scale = dist.scale();
   if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy()))
   {
      return result;
   }
   if((boost::math::isinf)(x))
   {
     return 0; // pdf + and - infinity is zero.
   }
   // These produce MSVC 4127 warnings, so the above used instead.
   //if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
   //{ // pdf + and - infinity is zero.
   //  return 0;
   //}

   if(false == detail::check_x(function, x, &result, Policy()))
   { // Catches x = NaN
      return result;
   }

   RealType xs = (x - location) / scale;
   result = 1 / (constants::pi<RealType>() * scale * (1 + xs * xs));
   return result;
} // pdf

template <class RealType, class Policy>
inline RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
{
   return detail::cdf_imp(dist, x, false);
} // cdf

template <class RealType, class Policy>
inline RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
{
   return detail::quantile_imp(dist, p, false);
} // quantile

template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
{
   return detail::cdf_imp(c.dist, c.param, true);
} //  cdf complement

template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
{
   return detail::quantile_imp(c.dist, c.param, true);
} // quantile complement

template <class RealType, class Policy>
inline RealType mean(const cauchy_distribution<RealType, Policy>&)
{  // There is no mean:
   typedef typename Policy::assert_undefined_type assert_type;
   BOOST_STATIC_ASSERT(assert_type::value == 0);

   return policies::raise_domain_error<RealType>(
      "boost::math::mean(cauchy<%1%>&)",
      "The Cauchy distribution does not have a mean: "
      "the only possible return value is %1%.",
      std::numeric_limits<RealType>::quiet_NaN(), Policy());
}

template <class RealType, class Policy>
inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
{
   // There is no variance:
   typedef typename Policy::assert_undefined_type assert_type;
   BOOST_STATIC_ASSERT(assert_type::value == 0);

   return policies::raise_domain_error<RealType>(
      "boost::math::variance(cauchy<%1%>&)",
      "The Cauchy distribution does not have a variance: "
      "the only possible return value is %1%.",
      std::numeric_limits<RealType>::quiet_NaN(), Policy());
}

template <class RealType, class Policy>
inline RealType mode(const cauchy_distribution<RealType, Policy>& dist)
{
   return dist.location();
}

template <class RealType, class Policy>
inline RealType median(const cauchy_distribution<RealType, Policy>& dist)
{
   return dist.location();
}
template <class RealType, class Policy>
inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
{
   // There is no skewness:
   typedef typename Policy::assert_undefined_type assert_type;
   BOOST_STATIC_ASSERT(assert_type::value == 0);

   return policies::raise_domain_error<RealType>(
      "boost::math::skewness(cauchy<%1%>&)",
      "The Cauchy distribution does not have a skewness: "
      "the only possible return value is %1%.",
      std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
}

template <class RealType, class Policy>
inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
{
   // There is no kurtosis:
   typedef typename Policy::assert_undefined_type assert_type;
   BOOST_STATIC_ASSERT(assert_type::value == 0);

   return policies::raise_domain_error<RealType>(
      "boost::math::kurtosis(cauchy<%1%>&)",
      "The Cauchy distribution does not have a kurtosis: "
      "the only possible return value is %1%.",
      std::numeric_limits<RealType>::quiet_NaN(), Policy());
}

template <class RealType, class Policy>
inline RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
{
   // There is no kurtosis excess:
   typedef typename Policy::assert_undefined_type assert_type;
   BOOST_STATIC_ASSERT(assert_type::value == 0);

   return policies::raise_domain_error<RealType>(
      "boost::math::kurtosis_excess(cauchy<%1%>&)",
      "The Cauchy distribution does not have a kurtosis: "
      "the only possible return value is %1%.",
      std::numeric_limits<RealType>::quiet_NaN(), Policy());
}

} // namespace math
} // namespace boost

#ifdef _MSC_VER
#pragma warning(pop)
#endif

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#endif // BOOST_STATS_CAUCHY_HPP