/usr/include/boost/math/distributions/geometric.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 | // boost\math\distributions\geometric.hpp
// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// geometric distribution is a discrete probability distribution.
// It expresses the probability distribution of the number (k) of
// events, occurrences, failures or arrivals before the first success.
// supported on the set {0, 1, 2, 3...}
// Note that the set includes zero (unlike some definitions that start at one).
// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Note that the geometric distribution
// (like others including the binomial, geometric & Bernoulli)
// is strictly defined as a discrete function:
// only integral values of k are envisaged.
// However because the method of calculation uses a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.
// See http://en.wikipedia.org/wiki/geometric_distribution
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
// http://mathworld.wolfram.com/GeometricDistribution.html
#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
#include <boost/math/distributions/complement.hpp> // complement.
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/if.hpp>
#include <limits> // using std::numeric_limits;
#include <utility>
#if defined (BOOST_MSVC)
# pragma warning(push)
// This believed not now necessary, so commented out.
//# pragma warning(disable: 4702) // unreachable code.
// in domain_error_imp in error_handling.
#endif
namespace boost
{
namespace math
{
namespace geometric_detail
{
// Common error checking routines for geometric distribution function:
template <class RealType, class Policy>
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
{
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
{
*result = policies::raise_domain_error<RealType>(
function,
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
{
return check_success_fraction(function, p, result, pol);
}
template <class RealType, class Policy>
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol)
{
if(check_dist(function, p, result, pol) == false)
{
return false;
}
if( !(boost::math::isfinite)(k) || (k < 0) )
{ // Check k failures.
*result = policies::raise_domain_error<RealType>(
function,
"Number of failures argument is %1%, but must be >= 0 !", k, pol);
return false;
}
return true;
} // Check_dist_and_k
template <class RealType, class Policy>
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
{
if(check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol) == false)
{
return false;
}
return true;
} // check_dist_and_prob
} // namespace geometric_detail
template <class RealType = double, class Policy = policies::policy<> >
class geometric_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
geometric_distribution(RealType p) : m_p(p)
{ // Constructor stores success_fraction p.
RealType result;
geometric_detail::check_dist(
"geometric_distribution<%1%>::geometric_distribution",
m_p, // Check success_fraction 0 <= p <= 1.
&result, Policy());
} // geometric_distribution constructor.
// Private data getter class member functions.
RealType success_fraction() const
{ // Probability of success as fraction in range 0 to 1.
return m_p;
}
RealType successes() const
{ // Total number of successes r = 1 (for compatibility with negative binomial?).
return 1;
}
// Parameter estimation.
// (These are copies of negative_binomial distribution with successes = 1).
static RealType find_lower_bound_on_p(
RealType trials,
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
{
static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
RealType result; // of error checks.
RealType successes = 1;
RealType failures = trials - successes;
if(false == detail::check_probability(function, alpha, &result, Policy())
&& geometric_detail::check_dist_and_k(
function, RealType(0), failures, &result, Policy()))
{
return result;
}
// Use complement ibeta_inv function for lower bound.
// This is adapted from the corresponding binomial formula
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
// This is a Clopper-Pearson interval, and may be overly conservative,
// see also "A Simple Improved Inferential Method for Some
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
//
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
} // find_lower_bound_on_p
static RealType find_upper_bound_on_p(
RealType trials,
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
{
static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
RealType result; // of error checks.
RealType successes = 1;
RealType failures = trials - successes;
if(false == geometric_detail::check_dist_and_k(
function, RealType(0), failures, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
if(failures == 0)
{
return 1;
}// Use complement ibetac_inv function for upper bound.
// Note adjusted failures value: *not* failures+1 as usual.
// This is adapted from the corresponding binomial formula
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
// This is a Clopper-Pearson interval, and may be overly conservative,
// see also "A Simple Improved Inferential Method for Some
// Discrete Distributions" Yong CAI and K. Krishnamoorthy
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
//
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
} // find_upper_bound_on_p
// Estimate number of trials :
// "How many trials do I need to be P% sure of seeing k or fewer failures?"
static RealType find_minimum_number_of_trials(
RealType k, // number of failures (k >= 0).
RealType p, // success fraction 0 <= p <= 1.
RealType alpha) // risk level threshold 0 <= alpha <= 1.
{
static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
// Error checks:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function, p, k, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
} // RealType find_number_of_failures
static RealType find_maximum_number_of_trials(
RealType k, // number of failures (k >= 0).
RealType p, // success fraction 0 <= p <= 1.
RealType alpha) // risk level threshold 0 <= alpha <= 1.
{
static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
// Error checks:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function, p, k, &result, Policy())
&& detail::check_probability(function, alpha, &result, Policy()))
{
return result;
}
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
} // RealType find_number_of_trials complemented
private:
//RealType m_r; // successes fixed at unity.
RealType m_p; // success_fraction
}; // template <class RealType, class Policy> class geometric_distribution
typedef geometric_distribution<double> geometric; // Reserved name of type double.
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
{ // Mean of geometric distribution = (1-p)/p.
return (1 - dist.success_fraction() ) / dist.success_fraction();
} // mean
// median implemented via quantile(half) in derived accessors.
template <class RealType, class Policy>
inline RealType mode(const geometric_distribution<RealType, Policy>&)
{ // Mode of geometric distribution = zero.
BOOST_MATH_STD_USING // ADL of std functions.
return 0;
} // mode
template <class RealType, class Policy>
inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
{ // Variance of Binomial distribution = (1-p) / p^2.
return (1 - dist.success_fraction())
/ (dist.success_fraction() * dist.success_fraction());
} // variance
template <class RealType, class Policy>
inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
{ // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
return (2 - p) / sqrt(1 - p);
} // skewness
template <class RealType, class Policy>
inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
{ // kurtosis of geometric distribution
// http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
RealType p = dist.success_fraction();
return 3 + (p*p - 6*p + 6) / (1 - p);
} // kurtosis
template <class RealType, class Policy>
inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
{ // kurtosis excess of geometric distribution
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
RealType p = dist.success_fraction();
return (p*p - 6*p + 6) / (1 - p);
} // kurtosis_excess
// RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
// standard_deviation provided by derived accessors.
// RealType hazard(const geometric_distribution<RealType, Policy>& dist)
// hazard of geometric distribution provided by derived accessors.
// RealType chf(const geometric_distribution<RealType, Policy>& dist)
// chf of geometric distribution provided by derived accessors.
template <class RealType, class Policy>
inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
BOOST_MATH_STD_USING // For ADL of math functions.
static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";
RealType p = dist.success_fraction();
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
if (k == 0)
{
return p; // success_fraction
}
RealType q = 1 - p; // Inaccurate for small p?
// So try to avoid inaccuracy for large or small p.
// but has little effect > last significant bit.
//cout << "p * pow(q, k) " << result << endl; // seems best whatever p
//cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
//if (p < 0.5)
//{
// result = p * pow(q, k);
//}
//else
//{
// result = p * exp(k * log1p(-p));
//}
result = p * pow(q, k);
return result;
} // geometric_pdf
template <class RealType, class Policy>
inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function of geometric.
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
RealType p = dist.success_fraction();
// Error check:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
if(k == 0)
{
return p; // success_fraction
}
//RealType q = 1 - p; // Bad for small p
//RealType probability = 1 - std::pow(q, k+1);
RealType z = boost::math::log1p(-p) * (k+1);
RealType probability = -boost::math::expm1(z);
return probability;
} // cdf Cumulative Distribution Function geometric.
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function geometric.
BOOST_MATH_STD_USING
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
RealType const& k = c.param;
geometric_distribution<RealType, Policy> const& dist = c.dist;
RealType p = dist.success_fraction();
// Error check:
RealType result;
if(false == geometric_detail::check_dist_and_k(
function,
p,
k,
&result, Policy()))
{
return result;
}
RealType z = boost::math::log1p(-p) * (k+1);
RealType probability = exp(z);
return probability;
} // cdf Complemented Cumulative Distribution Function geometric.
template <class RealType, class Policy>
inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
{ // Quantile, percentile/100 or Percent Point geometric function.
// Return the number of expected failures k for a given probability p.
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
// k argument may be integral, signed, or unsigned, or floating point.
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
BOOST_MATH_STD_USING // ADL of std functions.
RealType success_fraction = dist.success_fraction();
// Check dist and x.
RealType result;
if(false == geometric_detail::check_dist_and_prob
(function, success_fraction, x, &result, Policy()))
{
return result;
}
// Special cases.
if (x == 1)
{ // Would need +infinity failures for total confidence.
result = policies::raise_overflow_error<RealType>(
function,
"Probability argument is 1, which implies infinite failures !", Policy());
return result;
// usually means return +std::numeric_limits<RealType>::infinity();
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
}
if (x == 0)
{ // No failures are expected if P = 0.
return 0; // Total trials will be just dist.successes.
}
// if (P <= pow(dist.success_fraction(), 1))
if (x <= success_fraction)
{ // p <= pdf(dist, 0) == cdf(dist, 0)
return 0;
}
if (x == 1)
{
return 0;
}
// log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
result = boost::math::log1p(-x) / boost::math::log1p(-success_fraction) -1;
// Subtract a few epsilons here too?
// to make sure it doesn't slip over, so ceil would be one too many.
return result;
} // RealType quantile(const geometric_distribution dist, p)
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
{ // Quantile or Percent Point Binomial function.
// Return the number of expected failures k for a given
// complement of the probability Q = 1 - P.
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
BOOST_MATH_STD_USING
// Error checks:
RealType x = c.param;
const geometric_distribution<RealType, Policy>& dist = c.dist;
RealType success_fraction = dist.success_fraction();
RealType result;
if(false == geometric_detail::check_dist_and_prob(
function,
success_fraction,
x,
&result, Policy()))
{
return result;
}
// Special cases:
if(x == 1)
{ // There may actually be no answer to this question,
// since the probability of zero failures may be non-zero,
return 0; // but zero is the best we can do:
}
if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
return 0; //
}
if(x == 0)
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty.
// Would need +infinity failures for total confidence.
result = policies::raise_overflow_error<RealType>(
function,
"Probability argument complement is 0, which implies infinite failures !", Policy());
return result;
// usually means return +std::numeric_limits<RealType>::infinity();
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
}
// log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
result = log(x) / boost::math::log1p(-success_fraction) -1;
return result;
} // quantile complement
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#if defined (BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
|