/usr/include/boost/math/distributions/laplace.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | // Copyright Thijs van den Berg, 2008.
// Copyright John Maddock 2008.
// Copyright Paul A. Bristow 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This module implements the Laplace distribution.
// Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/LaplaceDistribution.html
// http://en.wikipedia.org/wiki/Laplace_distribution
//
// Abramowitz and Stegun 1972, p 930
// http://www.math.sfu.ca/~cbm/aands/page_930.htm
#ifndef BOOST_STATS_LAPLACE_HPP
#define BOOST_STATS_LAPLACE_HPP
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/constants/constants.hpp>
#include <limits>
namespace boost{ namespace math{
template <class RealType = double, class Policy = policies::policy<> >
class laplace_distribution
{
public:
// ----------------------------------
// public Types
// ----------------------------------
typedef RealType value_type;
typedef Policy policy_type;
// ----------------------------------
// Constructor(s)
// ----------------------------------
laplace_distribution(RealType location = 0, RealType scale = 1)
: m_location(location), m_scale(scale)
{
RealType result;
check_parameters("boost::math::laplace_distribution<%1%>::laplace_distribution()", &result);
}
// ----------------------------------
// Public functions
// ----------------------------------
RealType location() const
{
return m_location;
}
RealType scale() const
{
return m_scale;
}
bool check_parameters(const char* function, RealType* result) const
{
if(false == detail::check_scale(function, m_scale, result, Policy())) return false;
if(false == detail::check_location(function, m_location, result, Policy())) return false;
return true;
}
private:
RealType m_location;
RealType m_scale;
}; // class laplace_distribution
//
// Convenient type synonym for double
typedef laplace_distribution<double> laplace;
//
// Non member functions
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const laplace_distribution<RealType, Policy>&)
{
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const laplace_distribution<RealType, Policy>&)
{
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
inline RealType pdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result;
const char* function = "boost::math::pdf(const laplace_distribution<%1%>&, %1%))";
if (false == dist.check_parameters(function, &result)) return result;
if (false == detail::check_x(function, x, &result, Policy())) return result;
// Special pdf values
if((boost::math::isinf)(x))
return 0; // pdf + and - infinity is zero.
// General case
RealType scale( dist.scale() );
RealType location( dist.location() );
RealType exponent = x - location;
if (exponent>0) exponent = -exponent;
exponent /= scale;
result = exp(exponent);
result /= 2 * scale;
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result;
const char* function = "boost::math::cdf(const laplace_distribution<%1%>&, %1%)";
if (false == dist.check_parameters(function, &result)) return result;
if (false == detail::check_x(function, x, &result, Policy())) return result;
// Special cdf values:
if((boost::math::isinf)(x))
{
if(x < 0) return 0; // -infinity
return 1; // + infinity
}
// General cdf values
RealType scale( dist.scale() );
RealType location( dist.location() );
if (x < location)
result = exp( (x-location)/scale )/2;
else
result = 1 - exp( (location-x)/scale )/2;
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const laplace_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions.
// Checking function argument
RealType result;
const char* function = "boost::math::quantile(const laplace_distribution<%1%>&, %1%)";
if (false == dist.check_parameters(function, &result)) return result;
if(false == detail::check_probability(function, p, &result, Policy())) return result;
// Extreme values of p:
if(p == 0)
{
result = policies::raise_overflow_error<RealType>(function,
"probability parameter is 0, but must be > 0!", Policy());
return -result; // -std::numeric_limits<RealType>::infinity();
}
if(p == 1)
{
result = policies::raise_overflow_error<RealType>(function,
"probability parameter is 1, but must be < 1!", Policy());
return result; // std::numeric_limits<RealType>::infinity();
}
// Calculate Quantile
RealType scale( dist.scale() );
RealType location( dist.location() );
if (p - 0.5 < 0.0)
result = location + scale*log( static_cast<RealType>(p*2) );
else
result = location - scale*log( static_cast<RealType>(-p*2 + 2) );
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = c.dist.scale();
RealType location = c.dist.location();
RealType x = c.param;
// Checking function argument
RealType result;
const char* function = "boost::math::cdf(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
if(false == detail::check_x(function, x, &result, Policy()))return result;
// Calculate cdf
// Special cdf value
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero
}
// Cdf interval value
if (-x < location)
result = exp( (-x-location)/scale )/2;
else
result = 1 - exp( (location+x)/scale )/2;
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Calculate quantile
RealType scale = c.dist.scale();
RealType location = c.dist.location();
RealType q = c.param;
// Checking function argument
RealType result;
const char* function = "quantile(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
if(false == detail::check_probability(function, q, &result, Policy())) return result;
// extreme values
if(q == 0) return std::numeric_limits<RealType>::infinity();
if(q == 1) return -std::numeric_limits<RealType>::infinity();
if (0.5 - q < 0.0)
result = location + scale*log( static_cast<RealType>(-q*2 + 2) );
else
result = location - scale*log( static_cast<RealType>(q*2) );
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const laplace_distribution<RealType, Policy>& dist)
{
return constants::root_two<RealType>() * dist.scale();
}
template <class RealType, class Policy>
inline RealType mode(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType median(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType skewness(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
template <class RealType, class Policy>
inline RealType kurtosis(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 6;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 3;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_LAPLACE_HPP
|