This file is indexed.

/usr/include/boost/math/distributions/poisson.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// boost\math\distributions\poisson.hpp

// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// Poisson distribution is a discrete probability distribution.
// It expresses the probability of a number (k) of
// events, occurrences, failures or arrivals occurring in a fixed time,
// assuming these events occur with a known average or mean rate (lambda)
// and are independent of the time since the last event.
// The distribution was discovered by Simeon-Denis Poisson (1781-1840).

// Parameter lambda is the mean number of events in the given time interval.
// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.

// Note that the Poisson distribution
// (like others including the binomial, negative binomial & Bernoulli)
// is strictly defined as a discrete function:
// only integral values of k are envisaged.
// However because the method of calculation uses a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.

// See http://en.wikipedia.org/wiki/Poisson_distribution
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html

#ifndef BOOST_MATH_SPECIAL_POISSON_HPP
#define BOOST_MATH_SPECIAL_POISSON_HPP

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
#include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/special_functions/factorials.hpp> // factorials.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>

#include <utility>

namespace boost
{
  namespace math
  {
     namespace detail{
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::integer_round_nearest>&,
            boost::uintmax_t& max_iter);
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::integer_round_up>&,
            boost::uintmax_t& max_iter);
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::integer_round_down>&,
            boost::uintmax_t& max_iter);
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::integer_round_outwards>&,
            boost::uintmax_t& max_iter);
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::integer_round_inwards>&,
            boost::uintmax_t& max_iter);
      template <class Dist>
      inline typename Dist::value_type
         inverse_discrete_quantile(
            const Dist& dist,
            const typename Dist::value_type& p,
            const typename Dist::value_type& guess,
            const typename Dist::value_type& multiplier,
            const typename Dist::value_type& adder,
            const policies::discrete_quantile<policies::real>&,
            boost::uintmax_t& max_iter);
     }
    namespace poisson_detail
    {
      // Common error checking routines for Poisson distribution functions.
      // These are convoluted, & apparently redundant, to try to ensure that
      // checks are always performed, even if exceptions are not enabled.

      template <class RealType, class Policy>
      inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(mean) || (mean < 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Mean argument is %1%, but must be >= 0 !", mean, pol);
          return false;
        }
        return true;
      } // bool check_mean

      template <class RealType, class Policy>
      inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol)
      { // mean == 0 is considered an error.
        if( !(boost::math::isfinite)(mean) || (mean <= 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Mean argument is %1%, but must be > 0 !", mean, pol);
          return false;
        }
        return true;
      } // bool check_mean_NZ

      template <class RealType, class Policy>
      inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol)
      { // Only one check, so this is redundant really but should be optimized away.
        return check_mean_NZ(function, mean, result, pol);
      } // bool check_dist

      template <class RealType, class Policy>
      inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol)
      {
        if((k < 0) || !(boost::math::isfinite)(k))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Number of events k argument is %1%, but must be >= 0 !", k, pol);
          return false;
        }
        return true;
      } // bool check_k

      template <class RealType, class Policy>
      inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol)
      {
        if((check_dist(function, mean, result, pol) == false) ||
          (check_k(function, k, result, pol) == false))
        {
          return false;
        }
        return true;
      } // bool check_dist_and_k

      template <class RealType, class Policy>
      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
      { // Check 0 <= p <= 1
        if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
          return false;
        }
        return true;
      } // bool check_prob

      template <class RealType, class Policy>
      inline bool check_dist_and_prob(const char* function, RealType mean,  RealType p, RealType* result, const Policy& pol)
      {
        if((check_dist(function, mean, result, pol) == false) ||
          (check_prob(function, p, result, pol) == false))
        {
          return false;
        }
        return true;
      } // bool check_dist_and_prob

    } // namespace poisson_detail

    template <class RealType = double, class Policy = policies::policy<> >
    class poisson_distribution
    {
    public:
      typedef RealType value_type;
      typedef Policy policy_type;

      poisson_distribution(RealType mean = 1) : m_l(mean) // mean (lambda).
      { // Expected mean number of events that occur during the given interval.
        RealType r;
        poisson_detail::check_dist(
           "boost::math::poisson_distribution<%1%>::poisson_distribution",
          m_l,
          &r, Policy());
      } // poisson_distribution constructor.

      RealType mean() const
      { // Private data getter function.
        return m_l;
      }
    private:
      // Data member, initialized by constructor.
      RealType m_l; // mean number of occurrences.
    }; // template <class RealType, class Policy> class poisson_distribution

    typedef poisson_distribution<double> poisson; // Reserved name of type double.

    // Non-member functions to give properties of the distribution.

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */)
    { // Range of permissible values for random variable k.
       using boost::math::tools::max_value;
       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
    }

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */)
    { // Range of supported values for random variable k.
       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
       using boost::math::tools::max_value;
       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
    }

    template <class RealType, class Policy>
    inline RealType mean(const poisson_distribution<RealType, Policy>& dist)
    { // Mean of poisson distribution = lambda.
      return dist.mean();
    } // mean

    template <class RealType, class Policy>
    inline RealType mode(const poisson_distribution<RealType, Policy>& dist)
    { // mode.
      BOOST_MATH_STD_USING // ADL of std functions.
      return floor(dist.mean());
    }

    //template <class RealType, class Policy>
    //inline RealType median(const poisson_distribution<RealType, Policy>& dist)
    //{ // median = approximately lambda + 1/3 - 0.2/lambda
    //  RealType l = dist.mean();
    //  return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333)
    //   - static_cast<RealType>(0.2) / l;
    //} // BUT this formula appears to be out-by-one compared to quantile(half)
    // Query posted on Wikipedia.
    // Now implemented via quantile(half) in derived accessors.

    template <class RealType, class Policy>
    inline RealType variance(const poisson_distribution<RealType, Policy>& dist)
    { // variance.
      return dist.mean();
    }

    // RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist)
    // standard_deviation provided by derived accessors.

    template <class RealType, class Policy>
    inline RealType skewness(const poisson_distribution<RealType, Policy>& dist)
    { // skewness = sqrt(l).
      BOOST_MATH_STD_USING // ADL of std functions.
      return 1 / sqrt(dist.mean());
    }

    template <class RealType, class Policy>
    inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist)
    { // skewness = sqrt(l).
      return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31.
      // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
      // is more convenient because the kurtosis excess of a normal distribution is zero
      // whereas the true kurtosis is 3.
    } // RealType kurtosis_excess

    template <class RealType, class Policy>
    inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist)
    { // kurtosis is 4th moment about the mean = u4 / sd ^ 4
      // http://en.wikipedia.org/wiki/Curtosis
      // kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails).
      // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
      return 3 + 1 / dist.mean(); // NIST.
      // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
      // is more convenient because the kurtosis excess of a normal distribution is zero
      // whereas the true kurtosis is 3.
    } // RealType kurtosis

    template <class RealType, class Policy>
    RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
    { // Probability Density/Mass Function.
      // Probability that there are EXACTLY k occurrences (or arrivals).
      BOOST_FPU_EXCEPTION_GUARD

      BOOST_MATH_STD_USING // for ADL of std functions.

      RealType mean = dist.mean();
      // Error check:
      RealType result;
      if(false == poisson_detail::check_dist_and_k(
        "boost::math::pdf(const poisson_distribution<%1%>&, %1%)",
        mean,
        k,
        &result, Policy()))
      {
        return result;
      }

      // Special case of mean zero, regardless of the number of events k.
      if (mean == 0)
      { // Probability for any k is zero.
        return 0;
      }
      if (k == 0)
      { // mean ^ k = 1, and k! = 1, so can simplify.
        return exp(-mean);
      }
      return boost::math::gamma_p_derivative(k+1, mean, Policy());
    } // pdf

    template <class RealType, class Policy>
    RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
    { // Cumulative Distribution Function Poisson.
      // The random variate k is the number of occurrences(or arrivals)
      // k argument may be integral, signed, or unsigned, or floating point.
      // If necessary, it has already been promoted from an integral type.
      // Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf).

      // But note that the Poisson distribution
      // (like others including the binomial, negative binomial & Bernoulli)
      // is strictly defined as a discrete function: only integral values of k are envisaged.
      // However because of the method of calculation using a continuous gamma function,
      // it is convenient to treat it as if it is a continous function
      // and permit non-integral values of k.
      // To enforce the strict mathematical model, users should use floor or ceil functions
      // outside this function to ensure that k is integral.

      // The terms are not summed directly (at least for larger k)
      // instead the incomplete gamma integral is employed,

      BOOST_MATH_STD_USING // for ADL of std function exp.

      RealType mean = dist.mean();
      // Error checks:
      RealType result;
      if(false == poisson_detail::check_dist_and_k(
        "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
        mean,
        k,
        &result, Policy()))
      {
        return result;
      }
      // Special cases:
      if (mean == 0)
      { // Probability for any k is zero.
        return 0;
      }
      if (k == 0)
      { // return pdf(dist, static_cast<RealType>(0));
        // but mean (and k) have already been checked,
        // so this avoids unnecessary repeated checks.
       return exp(-mean);
      }
      // For small integral k could use a finite sum -
      // it's cheaper than the gamma function.
      // BUT this is now done efficiently by gamma_q function.
      // Calculate poisson cdf using the gamma_q function.
      return gamma_q(k+1, mean, Policy());
    } // binomial cdf

    template <class RealType, class Policy>
    RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
    { // Complemented Cumulative Distribution Function Poisson
      // The random variate k is the number of events, occurrences or arrivals.
      // k argument may be integral, signed, or unsigned, or floating point.
      // If necessary, it has already been promoted from an integral type.
      // But note that the Poisson distribution
      // (like others including the binomial, negative binomial & Bernoulli)
      // is strictly defined as a discrete function: only integral values of k are envisaged.
      // However because of the method of calculation using a continuous gamma function,
      // it is convenient to treat it as is it is a continous function
      // and permit non-integral values of k.
      // To enforce the strict mathematical model, users should use floor or ceil functions
      // outside this function to ensure that k is integral.

      // Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf).
      // The terms are not summed directly (at least for larger k)
      // instead the incomplete gamma integral is employed,

      RealType const& k = c.param;
      poisson_distribution<RealType, Policy> const& dist = c.dist;

      RealType mean = dist.mean();

      // Error checks:
      RealType result;
      if(false == poisson_detail::check_dist_and_k(
        "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
        mean,
        k,
        &result, Policy()))
      {
        return result;
      }
      // Special case of mean, regardless of the number of events k.
      if (mean == 0)
      { // Probability for any k is unity, complement of zero.
        return 1;
      }
      if (k == 0)
      { // Avoid repeated checks on k and mean in gamma_p.
         return -boost::math::expm1(-mean, Policy());
      }
      // Unlike un-complemented cdf (sum from 0 to k),
      // can't use finite sum from k+1 to infinity for small integral k,
      // anyway it is now done efficiently by gamma_p.
      return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function.
      // CCDF = gamma_p(k+1, lambda)
    } // poisson ccdf

    template <class RealType, class Policy>
    inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p)
    { // Quantile (or Percent Point) Poisson function.
      // Return the number of expected events k for a given probability p.
      RealType result; // of Argument checks:
      if(false == poisson_detail::check_prob(
        "boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
        p,
        &result, Policy()))
      {
        return result;
      }
      // Special case:
      if (dist.mean() == 0)
      { // if mean = 0 then p = 0, so k can be anything?
         if (false == poisson_detail::check_mean_NZ(
         "boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
         dist.mean(),
         &result, Policy()))
        {
          return result;
        }
      }
      /*
      BOOST_MATH_STD_USING // ADL of std functions.
      // if(p == 0) NOT necessarily zero!
      // Not necessarily any special value of k because is unlimited.
      if (p <= exp(-dist.mean()))
      { // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero.
         return 0;
      }
      return gamma_q_inva(dist.mean(), p, Policy()) - 1;
      */
      typedef typename Policy::discrete_quantile_type discrete_type;
      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
      RealType guess, factor = 8;
      RealType z = dist.mean();
      if(z < 1)
         guess = z;
      else
         guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy());
      if(z > 5)
      {
         if(z > 1000)
            factor = 1.01f;
         else if(z > 50)
            factor = 1.1f;
         else if(guess > 10)
            factor = 1.25f;
         else
            factor = 2;
         if(guess < 1.1)
            factor = 8;
      }

      return detail::inverse_discrete_quantile(
         dist,
         p,
         1-p,
         guess,
         factor,
         RealType(1),
         discrete_type(),
         max_iter);
   } // quantile

    template <class RealType, class Policy>
    inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
    { // Quantile (or Percent Point) of Poisson function.
      // Return the number of expected events k for a given
      // complement of the probability q.
      //
      // Error checks:
      RealType q = c.param;
      const poisson_distribution<RealType, Policy>& dist = c.dist;
      RealType result;  // of argument checks.
      if(false == poisson_detail::check_prob(
        "boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
        q,
        &result, Policy()))
      {
        return result;
      }
      // Special case:
      if (dist.mean() == 0)
      { // if mean = 0 then p = 0, so k can be anything?
         if (false == poisson_detail::check_mean_NZ(
         "boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
         dist.mean(),
         &result, Policy()))
        {
          return result;
        }
      }
      /*
      if (-q <= boost::math::expm1(-dist.mean()))
      { // if q <= cdf(complement for 0 events, then quantile must be zero.
         return 0;
      }
      return gamma_p_inva(dist.mean(), q, Policy()) -1;
      */
      typedef typename Policy::discrete_quantile_type discrete_type;
      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
      RealType guess, factor = 8;
      RealType z = dist.mean();
      if(z < 1)
         guess = z;
      else
         guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy());
      if(z > 5)
      {
         if(z > 1000)
            factor = 1.01f;
         else if(z > 50)
            factor = 1.1f;
         else if(guess > 10)
            factor = 1.25f;
         else
            factor = 2;
         if(guess < 1.1)
            factor = 8;
      }

      return detail::inverse_discrete_quantile(
         dist,
         1-q,
         q,
         guess,
         factor,
         RealType(1),
         discrete_type(),
         max_iter);
   } // quantile complement.

  } // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>

#endif // BOOST_MATH_SPECIAL_POISSON_HPP