/usr/include/boost/math/distributions/poisson.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 | // boost\math\distributions\poisson.hpp
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Poisson distribution is a discrete probability distribution.
// It expresses the probability of a number (k) of
// events, occurrences, failures or arrivals occurring in a fixed time,
// assuming these events occur with a known average or mean rate (lambda)
// and are independent of the time since the last event.
// The distribution was discovered by Simeon-Denis Poisson (1781-1840).
// Parameter lambda is the mean number of events in the given time interval.
// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Note that the Poisson distribution
// (like others including the binomial, negative binomial & Bernoulli)
// is strictly defined as a discrete function:
// only integral values of k are envisaged.
// However because the method of calculation uses a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.
// See http://en.wikipedia.org/wiki/Poisson_distribution
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
#ifndef BOOST_MATH_SPECIAL_POISSON_HPP
#define BOOST_MATH_SPECIAL_POISSON_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
#include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/special_functions/factorials.hpp> // factorials.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
#include <utility>
namespace boost
{
namespace math
{
namespace detail{
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_nearest>&,
boost::uintmax_t& max_iter);
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_up>&,
boost::uintmax_t& max_iter);
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_down>&,
boost::uintmax_t& max_iter);
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_outwards>&,
boost::uintmax_t& max_iter);
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_inwards>&,
boost::uintmax_t& max_iter);
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::real>&,
boost::uintmax_t& max_iter);
}
namespace poisson_detail
{
// Common error checking routines for Poisson distribution functions.
// These are convoluted, & apparently redundant, to try to ensure that
// checks are always performed, even if exceptions are not enabled.
template <class RealType, class Policy>
inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
{
if(!(boost::math::isfinite)(mean) || (mean < 0))
{
*result = policies::raise_domain_error<RealType>(
function,
"Mean argument is %1%, but must be >= 0 !", mean, pol);
return false;
}
return true;
} // bool check_mean
template <class RealType, class Policy>
inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol)
{ // mean == 0 is considered an error.
if( !(boost::math::isfinite)(mean) || (mean <= 0))
{
*result = policies::raise_domain_error<RealType>(
function,
"Mean argument is %1%, but must be > 0 !", mean, pol);
return false;
}
return true;
} // bool check_mean_NZ
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol)
{ // Only one check, so this is redundant really but should be optimized away.
return check_mean_NZ(function, mean, result, pol);
} // bool check_dist
template <class RealType, class Policy>
inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol)
{
if((k < 0) || !(boost::math::isfinite)(k))
{
*result = policies::raise_domain_error<RealType>(
function,
"Number of events k argument is %1%, but must be >= 0 !", k, pol);
return false;
}
return true;
} // bool check_k
template <class RealType, class Policy>
inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol)
{
if((check_dist(function, mean, result, pol) == false) ||
(check_k(function, k, result, pol) == false))
{
return false;
}
return true;
} // bool check_dist_and_k
template <class RealType, class Policy>
inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
{ // Check 0 <= p <= 1
if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
{
*result = policies::raise_domain_error<RealType>(
function,
"Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
return false;
}
return true;
} // bool check_prob
template <class RealType, class Policy>
inline bool check_dist_and_prob(const char* function, RealType mean, RealType p, RealType* result, const Policy& pol)
{
if((check_dist(function, mean, result, pol) == false) ||
(check_prob(function, p, result, pol) == false))
{
return false;
}
return true;
} // bool check_dist_and_prob
} // namespace poisson_detail
template <class RealType = double, class Policy = policies::policy<> >
class poisson_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
poisson_distribution(RealType mean = 1) : m_l(mean) // mean (lambda).
{ // Expected mean number of events that occur during the given interval.
RealType r;
poisson_detail::check_dist(
"boost::math::poisson_distribution<%1%>::poisson_distribution",
m_l,
&r, Policy());
} // poisson_distribution constructor.
RealType mean() const
{ // Private data getter function.
return m_l;
}
private:
// Data member, initialized by constructor.
RealType m_l; // mean number of occurrences.
}; // template <class RealType, class Policy> class poisson_distribution
typedef poisson_distribution<double> poisson; // Reserved name of type double.
// Non-member functions to give properties of the distribution.
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
}
template <class RealType, class Policy>
inline RealType mean(const poisson_distribution<RealType, Policy>& dist)
{ // Mean of poisson distribution = lambda.
return dist.mean();
} // mean
template <class RealType, class Policy>
inline RealType mode(const poisson_distribution<RealType, Policy>& dist)
{ // mode.
BOOST_MATH_STD_USING // ADL of std functions.
return floor(dist.mean());
}
//template <class RealType, class Policy>
//inline RealType median(const poisson_distribution<RealType, Policy>& dist)
//{ // median = approximately lambda + 1/3 - 0.2/lambda
// RealType l = dist.mean();
// return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333)
// - static_cast<RealType>(0.2) / l;
//} // BUT this formula appears to be out-by-one compared to quantile(half)
// Query posted on Wikipedia.
// Now implemented via quantile(half) in derived accessors.
template <class RealType, class Policy>
inline RealType variance(const poisson_distribution<RealType, Policy>& dist)
{ // variance.
return dist.mean();
}
// RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist)
// standard_deviation provided by derived accessors.
template <class RealType, class Policy>
inline RealType skewness(const poisson_distribution<RealType, Policy>& dist)
{ // skewness = sqrt(l).
BOOST_MATH_STD_USING // ADL of std functions.
return 1 / sqrt(dist.mean());
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist)
{ // skewness = sqrt(l).
return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31.
// http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
// is more convenient because the kurtosis excess of a normal distribution is zero
// whereas the true kurtosis is 3.
} // RealType kurtosis_excess
template <class RealType, class Policy>
inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist)
{ // kurtosis is 4th moment about the mean = u4 / sd ^ 4
// http://en.wikipedia.org/wiki/Curtosis
// kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails).
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
return 3 + 1 / dist.mean(); // NIST.
// http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
// is more convenient because the kurtosis excess of a normal distribution is zero
// whereas the true kurtosis is 3.
} // RealType kurtosis
template <class RealType, class Policy>
RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
// Probability that there are EXACTLY k occurrences (or arrivals).
BOOST_FPU_EXCEPTION_GUARD
BOOST_MATH_STD_USING // for ADL of std functions.
RealType mean = dist.mean();
// Error check:
RealType result;
if(false == poisson_detail::check_dist_and_k(
"boost::math::pdf(const poisson_distribution<%1%>&, %1%)",
mean,
k,
&result, Policy()))
{
return result;
}
// Special case of mean zero, regardless of the number of events k.
if (mean == 0)
{ // Probability for any k is zero.
return 0;
}
if (k == 0)
{ // mean ^ k = 1, and k! = 1, so can simplify.
return exp(-mean);
}
return boost::math::gamma_p_derivative(k+1, mean, Policy());
} // pdf
template <class RealType, class Policy>
RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Poisson.
// The random variate k is the number of occurrences(or arrivals)
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf).
// But note that the Poisson distribution
// (like others including the binomial, negative binomial & Bernoulli)
// is strictly defined as a discrete function: only integral values of k are envisaged.
// However because of the method of calculation using a continuous gamma function,
// it is convenient to treat it as if it is a continous function
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// outside this function to ensure that k is integral.
// The terms are not summed directly (at least for larger k)
// instead the incomplete gamma integral is employed,
BOOST_MATH_STD_USING // for ADL of std function exp.
RealType mean = dist.mean();
// Error checks:
RealType result;
if(false == poisson_detail::check_dist_and_k(
"boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
mean,
k,
&result, Policy()))
{
return result;
}
// Special cases:
if (mean == 0)
{ // Probability for any k is zero.
return 0;
}
if (k == 0)
{ // return pdf(dist, static_cast<RealType>(0));
// but mean (and k) have already been checked,
// so this avoids unnecessary repeated checks.
return exp(-mean);
}
// For small integral k could use a finite sum -
// it's cheaper than the gamma function.
// BUT this is now done efficiently by gamma_q function.
// Calculate poisson cdf using the gamma_q function.
return gamma_q(k+1, mean, Policy());
} // binomial cdf
template <class RealType, class Policy>
RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function Poisson
// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// But note that the Poisson distribution
// (like others including the binomial, negative binomial & Bernoulli)
// is strictly defined as a discrete function: only integral values of k are envisaged.
// However because of the method of calculation using a continuous gamma function,
// it is convenient to treat it as is it is a continous function
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// outside this function to ensure that k is integral.
// Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf).
// The terms are not summed directly (at least for larger k)
// instead the incomplete gamma integral is employed,
RealType const& k = c.param;
poisson_distribution<RealType, Policy> const& dist = c.dist;
RealType mean = dist.mean();
// Error checks:
RealType result;
if(false == poisson_detail::check_dist_and_k(
"boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
mean,
k,
&result, Policy()))
{
return result;
}
// Special case of mean, regardless of the number of events k.
if (mean == 0)
{ // Probability for any k is unity, complement of zero.
return 1;
}
if (k == 0)
{ // Avoid repeated checks on k and mean in gamma_p.
return -boost::math::expm1(-mean, Policy());
}
// Unlike un-complemented cdf (sum from 0 to k),
// can't use finite sum from k+1 to infinity for small integral k,
// anyway it is now done efficiently by gamma_p.
return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function.
// CCDF = gamma_p(k+1, lambda)
} // poisson ccdf
template <class RealType, class Policy>
inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p)
{ // Quantile (or Percent Point) Poisson function.
// Return the number of expected events k for a given probability p.
RealType result; // of Argument checks:
if(false == poisson_detail::check_prob(
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
p,
&result, Policy()))
{
return result;
}
// Special case:
if (dist.mean() == 0)
{ // if mean = 0 then p = 0, so k can be anything?
if (false == poisson_detail::check_mean_NZ(
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
dist.mean(),
&result, Policy()))
{
return result;
}
}
/*
BOOST_MATH_STD_USING // ADL of std functions.
// if(p == 0) NOT necessarily zero!
// Not necessarily any special value of k because is unlimited.
if (p <= exp(-dist.mean()))
{ // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero.
return 0;
}
return gamma_q_inva(dist.mean(), p, Policy()) - 1;
*/
typedef typename Policy::discrete_quantile_type discrete_type;
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
RealType guess, factor = 8;
RealType z = dist.mean();
if(z < 1)
guess = z;
else
guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy());
if(z > 5)
{
if(z > 1000)
factor = 1.01f;
else if(z > 50)
factor = 1.1f;
else if(guess > 10)
factor = 1.25f;
else
factor = 2;
if(guess < 1.1)
factor = 8;
}
return detail::inverse_discrete_quantile(
dist,
p,
1-p,
guess,
factor,
RealType(1),
discrete_type(),
max_iter);
} // quantile
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
{ // Quantile (or Percent Point) of Poisson function.
// Return the number of expected events k for a given
// complement of the probability q.
//
// Error checks:
RealType q = c.param;
const poisson_distribution<RealType, Policy>& dist = c.dist;
RealType result; // of argument checks.
if(false == poisson_detail::check_prob(
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
q,
&result, Policy()))
{
return result;
}
// Special case:
if (dist.mean() == 0)
{ // if mean = 0 then p = 0, so k can be anything?
if (false == poisson_detail::check_mean_NZ(
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)",
dist.mean(),
&result, Policy()))
{
return result;
}
}
/*
if (-q <= boost::math::expm1(-dist.mean()))
{ // if q <= cdf(complement for 0 events, then quantile must be zero.
return 0;
}
return gamma_p_inva(dist.mean(), q, Policy()) -1;
*/
typedef typename Policy::discrete_quantile_type discrete_type;
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
RealType guess, factor = 8;
RealType z = dist.mean();
if(z < 1)
guess = z;
else
guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy());
if(z > 5)
{
if(z > 1000)
factor = 1.01f;
else if(z > 50)
factor = 1.1f;
else if(guess > 10)
factor = 1.25f;
else
factor = 2;
if(guess < 1.1)
factor = 8;
}
return detail::inverse_discrete_quantile(
dist,
1-q,
q,
guess,
factor,
RealType(1),
discrete_type(),
max_iter);
} // quantile complement.
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
#endif // BOOST_MATH_SPECIAL_POISSON_HPP
|