This file is indexed.

/usr/include/boost/math/tools/fraction.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//  (C) Copyright John Maddock 2005-2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_FRACTION_INCLUDED
#define BOOST_MATH_TOOLS_FRACTION_INCLUDED

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/config/no_tr1/cmath.hpp>
#include <boost/cstdint.hpp>
#include <boost/type_traits/integral_constant.hpp>
#include <boost/mpl/if.hpp>
#include <boost/math/tools/precision.hpp>

namespace boost{ namespace math{ namespace tools{

namespace detail
{

   template <class T>
   struct is_pair : public boost::false_type{};

   template <class T, class U>
   struct is_pair<std::pair<T,U> > : public boost::true_type{};

   template <class Gen>
   struct fraction_traits_simple
   {
       typedef typename Gen::result_type result_type;
       typedef typename Gen::result_type value_type;

       static result_type a(const value_type& v)
       {
          return 1;
       }
       static result_type b(const value_type& v)
       {
          return v;
       }
   };

   template <class Gen>
   struct fraction_traits_pair
   {
       typedef typename Gen::result_type value_type;
       typedef typename value_type::first_type result_type;

       static result_type a(const value_type& v)
       {
          return v.first;
       }
       static result_type b(const value_type& v)
       {
          return v.second;
       }
   };

   template <class Gen>
   struct fraction_traits
       : public boost::mpl::if_c<
         is_pair<typename Gen::result_type>::value,
         fraction_traits_pair<Gen>,
         fraction_traits_simple<Gen> >::type
   {
   };

} // namespace detail

//
// continued_fraction_b
// Evaluates:
//
// b0 +       a1
//      ---------------
//      b1 +     a2
//           ----------
//           b2 +   a3
//                -----
//                b3 + ...
//
// Note that the first a0 returned by generator Gen is disarded.
//
template <class Gen, class U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor, boost::uintmax_t& max_terms)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;
   typedef typename traits::value_type value_type;

   result_type tiny = tools::min_value<result_type>();

   value_type v = g();

   result_type f, C, D, delta;
   f = traits::b(v);
   if(f == 0)
      f = tiny;
   C = f;
   D = 0;

   boost::uintmax_t counter(max_terms);

   do{
      v = g();
      D = traits::b(v) + traits::a(v) * D;
      if(D == 0)
         D = tiny;
      C = traits::b(v) + traits::a(v) / C;
      if(C == 0)
         C = tiny;
      D = 1/D;
      delta = C*D;
      f = f * delta;
   }while((fabs(delta - 1) > factor) && --counter);

   max_terms = max_terms - counter;

   return f;
}

template <class Gen, class U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor)
{
   boost::uintmax_t max_terms = (std::numeric_limits<boost::uintmax_t>::max)();
   return continued_fraction_b(g, factor, max_terms);
}

template <class Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;

   result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits);
   boost::uintmax_t max_terms = (std::numeric_limits<boost::uintmax_t>::max)();
   return continued_fraction_b(g, factor, max_terms);
}

template <class Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits, boost::uintmax_t& max_terms)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;

   result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits);
   return continued_fraction_b(g, factor, max_terms);
}

//
// continued_fraction_a
// Evaluates:
//
//            a1
//      ---------------
//      b1 +     a2
//           ----------
//           b2 +   a3
//                -----
//                b3 + ...
//
// Note that the first a1 and b1 returned by generator Gen are both used.
//
template <class Gen, class U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor, boost::uintmax_t& max_terms)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;
   typedef typename traits::value_type value_type;

   result_type tiny = tools::min_value<result_type>();

   value_type v = g();

   result_type f, C, D, delta, a0;
   f = traits::b(v);
   a0 = traits::a(v);
   if(f == 0)
      f = tiny;
   C = f;
   D = 0;

   boost::uintmax_t counter(max_terms);

   do{
      v = g();
      D = traits::b(v) + traits::a(v) * D;
      if(D == 0)
         D = tiny;
      C = traits::b(v) + traits::a(v) / C;
      if(C == 0)
         C = tiny;
      D = 1/D;
      delta = C*D;
      f = f * delta;
   }while((fabs(delta - 1) > factor) && --counter);

   max_terms = max_terms - counter;

   return a0/f;
}

template <class Gen, class U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor)
{
   boost::uintmax_t max_iter = (std::numeric_limits<boost::uintmax_t>::max)();
   return continued_fraction_a(g, factor, max_iter);
}

template <class Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;

   result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits);
   boost::uintmax_t max_iter = (std::numeric_limits<boost::uintmax_t>::max)();

   return continued_fraction_a(g, factor, max_iter);
}

template <class Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits, boost::uintmax_t& max_terms)
{
   BOOST_MATH_STD_USING // ADL of std names

   typedef detail::fraction_traits<Gen> traits;
   typedef typename traits::result_type result_type;

   result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits);
   return continued_fraction_a(g, factor, max_terms);
}

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_FRACTION_INCLUDED