This file is indexed.

/usr/include/boost/math/tools/rational.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_RATIONAL_HPP
#define BOOST_MATH_TOOLS_RATIONAL_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/array.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/mpl/int.hpp>

#if BOOST_MATH_POLY_METHOD == 1
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#elif BOOST_MATH_POLY_METHOD == 2
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#elif BOOST_MATH_POLY_METHOD == 3
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#endif
#if BOOST_MATH_RATIONAL_METHOD == 1
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#elif BOOST_MATH_RATIONAL_METHOD == 2
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#elif BOOST_MATH_RATIONAL_METHOD == 3
#  define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp>
#  include BOOST_HEADER()
#  undef BOOST_HEADER
#endif

#if 0
//
// This just allows dependency trackers to find the headers
// used in the above PP-magic.
//
#include <boost/math/tools/detail/polynomial_horner1_2.hpp>
#include <boost/math/tools/detail/polynomial_horner1_3.hpp>
#include <boost/math/tools/detail/polynomial_horner1_4.hpp>
#include <boost/math/tools/detail/polynomial_horner1_5.hpp>
#include <boost/math/tools/detail/polynomial_horner1_6.hpp>
#include <boost/math/tools/detail/polynomial_horner1_7.hpp>
#include <boost/math/tools/detail/polynomial_horner1_8.hpp>
#include <boost/math/tools/detail/polynomial_horner1_9.hpp>
#include <boost/math/tools/detail/polynomial_horner1_10.hpp>
#include <boost/math/tools/detail/polynomial_horner1_11.hpp>
#include <boost/math/tools/detail/polynomial_horner1_12.hpp>
#include <boost/math/tools/detail/polynomial_horner1_13.hpp>
#include <boost/math/tools/detail/polynomial_horner1_14.hpp>
#include <boost/math/tools/detail/polynomial_horner1_15.hpp>
#include <boost/math/tools/detail/polynomial_horner1_16.hpp>
#include <boost/math/tools/detail/polynomial_horner1_17.hpp>
#include <boost/math/tools/detail/polynomial_horner1_18.hpp>
#include <boost/math/tools/detail/polynomial_horner1_19.hpp>
#include <boost/math/tools/detail/polynomial_horner1_20.hpp>
#include <boost/math/tools/detail/polynomial_horner2_2.hpp>
#include <boost/math/tools/detail/polynomial_horner2_3.hpp>
#include <boost/math/tools/detail/polynomial_horner2_4.hpp>
#include <boost/math/tools/detail/polynomial_horner2_5.hpp>
#include <boost/math/tools/detail/polynomial_horner2_6.hpp>
#include <boost/math/tools/detail/polynomial_horner2_7.hpp>
#include <boost/math/tools/detail/polynomial_horner2_8.hpp>
#include <boost/math/tools/detail/polynomial_horner2_9.hpp>
#include <boost/math/tools/detail/polynomial_horner2_10.hpp>
#include <boost/math/tools/detail/polynomial_horner2_11.hpp>
#include <boost/math/tools/detail/polynomial_horner2_12.hpp>
#include <boost/math/tools/detail/polynomial_horner2_13.hpp>
#include <boost/math/tools/detail/polynomial_horner2_14.hpp>
#include <boost/math/tools/detail/polynomial_horner2_15.hpp>
#include <boost/math/tools/detail/polynomial_horner2_16.hpp>
#include <boost/math/tools/detail/polynomial_horner2_17.hpp>
#include <boost/math/tools/detail/polynomial_horner2_18.hpp>
#include <boost/math/tools/detail/polynomial_horner2_19.hpp>
#include <boost/math/tools/detail/polynomial_horner2_20.hpp>
#include <boost/math/tools/detail/polynomial_horner3_2.hpp>
#include <boost/math/tools/detail/polynomial_horner3_3.hpp>
#include <boost/math/tools/detail/polynomial_horner3_4.hpp>
#include <boost/math/tools/detail/polynomial_horner3_5.hpp>
#include <boost/math/tools/detail/polynomial_horner3_6.hpp>
#include <boost/math/tools/detail/polynomial_horner3_7.hpp>
#include <boost/math/tools/detail/polynomial_horner3_8.hpp>
#include <boost/math/tools/detail/polynomial_horner3_9.hpp>
#include <boost/math/tools/detail/polynomial_horner3_10.hpp>
#include <boost/math/tools/detail/polynomial_horner3_11.hpp>
#include <boost/math/tools/detail/polynomial_horner3_12.hpp>
#include <boost/math/tools/detail/polynomial_horner3_13.hpp>
#include <boost/math/tools/detail/polynomial_horner3_14.hpp>
#include <boost/math/tools/detail/polynomial_horner3_15.hpp>
#include <boost/math/tools/detail/polynomial_horner3_16.hpp>
#include <boost/math/tools/detail/polynomial_horner3_17.hpp>
#include <boost/math/tools/detail/polynomial_horner3_18.hpp>
#include <boost/math/tools/detail/polynomial_horner3_19.hpp>
#include <boost/math/tools/detail/polynomial_horner3_20.hpp>
#include <boost/math/tools/detail/rational_horner1_2.hpp>
#include <boost/math/tools/detail/rational_horner1_3.hpp>
#include <boost/math/tools/detail/rational_horner1_4.hpp>
#include <boost/math/tools/detail/rational_horner1_5.hpp>
#include <boost/math/tools/detail/rational_horner1_6.hpp>
#include <boost/math/tools/detail/rational_horner1_7.hpp>
#include <boost/math/tools/detail/rational_horner1_8.hpp>
#include <boost/math/tools/detail/rational_horner1_9.hpp>
#include <boost/math/tools/detail/rational_horner1_10.hpp>
#include <boost/math/tools/detail/rational_horner1_11.hpp>
#include <boost/math/tools/detail/rational_horner1_12.hpp>
#include <boost/math/tools/detail/rational_horner1_13.hpp>
#include <boost/math/tools/detail/rational_horner1_14.hpp>
#include <boost/math/tools/detail/rational_horner1_15.hpp>
#include <boost/math/tools/detail/rational_horner1_16.hpp>
#include <boost/math/tools/detail/rational_horner1_17.hpp>
#include <boost/math/tools/detail/rational_horner1_18.hpp>
#include <boost/math/tools/detail/rational_horner1_19.hpp>
#include <boost/math/tools/detail/rational_horner1_20.hpp>
#include <boost/math/tools/detail/rational_horner2_2.hpp>
#include <boost/math/tools/detail/rational_horner2_3.hpp>
#include <boost/math/tools/detail/rational_horner2_4.hpp>
#include <boost/math/tools/detail/rational_horner2_5.hpp>
#include <boost/math/tools/detail/rational_horner2_6.hpp>
#include <boost/math/tools/detail/rational_horner2_7.hpp>
#include <boost/math/tools/detail/rational_horner2_8.hpp>
#include <boost/math/tools/detail/rational_horner2_9.hpp>
#include <boost/math/tools/detail/rational_horner2_10.hpp>
#include <boost/math/tools/detail/rational_horner2_11.hpp>
#include <boost/math/tools/detail/rational_horner2_12.hpp>
#include <boost/math/tools/detail/rational_horner2_13.hpp>
#include <boost/math/tools/detail/rational_horner2_14.hpp>
#include <boost/math/tools/detail/rational_horner2_15.hpp>
#include <boost/math/tools/detail/rational_horner2_16.hpp>
#include <boost/math/tools/detail/rational_horner2_17.hpp>
#include <boost/math/tools/detail/rational_horner2_18.hpp>
#include <boost/math/tools/detail/rational_horner2_19.hpp>
#include <boost/math/tools/detail/rational_horner2_20.hpp>
#include <boost/math/tools/detail/rational_horner3_2.hpp>
#include <boost/math/tools/detail/rational_horner3_3.hpp>
#include <boost/math/tools/detail/rational_horner3_4.hpp>
#include <boost/math/tools/detail/rational_horner3_5.hpp>
#include <boost/math/tools/detail/rational_horner3_6.hpp>
#include <boost/math/tools/detail/rational_horner3_7.hpp>
#include <boost/math/tools/detail/rational_horner3_8.hpp>
#include <boost/math/tools/detail/rational_horner3_9.hpp>
#include <boost/math/tools/detail/rational_horner3_10.hpp>
#include <boost/math/tools/detail/rational_horner3_11.hpp>
#include <boost/math/tools/detail/rational_horner3_12.hpp>
#include <boost/math/tools/detail/rational_horner3_13.hpp>
#include <boost/math/tools/detail/rational_horner3_14.hpp>
#include <boost/math/tools/detail/rational_horner3_15.hpp>
#include <boost/math/tools/detail/rational_horner3_16.hpp>
#include <boost/math/tools/detail/rational_horner3_17.hpp>
#include <boost/math/tools/detail/rational_horner3_18.hpp>
#include <boost/math/tools/detail/rational_horner3_19.hpp>
#include <boost/math/tools/detail/rational_horner3_20.hpp>
#endif

namespace boost{ namespace math{ namespace tools{

//
// Forward declaration to keep two phase lookup happy:
//
template <class T, class U>
U evaluate_polynomial(const T* poly, U const& z, std::size_t count);

namespace detail{

template <class T, class V, class Tag>
inline V evaluate_polynomial_c_imp(const T* a, const V& val, const Tag*)
{
   return evaluate_polynomial(a, val, Tag::value);
}

} // namespace detail

//
// Polynomial evaluation with runtime size.
// This requires a for-loop which may be more expensive than
// the loop expanded versions above:
//
template <class T, class U>
inline U evaluate_polynomial(const T* poly, U const& z, std::size_t count)
{
   BOOST_ASSERT(count > 0);
   U sum = static_cast<U>(poly[count - 1]);
   for(int i = static_cast<int>(count) - 2; i >= 0; --i)
   {
      sum *= z;
      sum += static_cast<U>(poly[i]);
   }
   return sum;
}
//
// Compile time sized polynomials, just inline forwarders to the
// implementations above:
//
template <std::size_t N, class T, class V>
inline V evaluate_polynomial(const T(&a)[N], const V& val)
{
   typedef mpl::int_<N> tag_type;
   return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a), val, static_cast<tag_type const*>(0));
}

template <std::size_t N, class T, class V>
inline V evaluate_polynomial(const boost::array<T,N>& a, const V& val)
{
   typedef mpl::int_<N> tag_type;
   return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()), val, static_cast<tag_type const*>(0));
}
//
// Even polynomials are trivial: just square the argument!
//
template <class T, class U>
inline U evaluate_even_polynomial(const T* poly, U z, std::size_t count)
{
   return evaluate_polynomial(poly, U(z*z), count);
}

template <std::size_t N, class T, class V>
inline V evaluate_even_polynomial(const T(&a)[N], const V& z)
{
   return evaluate_polynomial(a, V(z*z));
}

template <std::size_t N, class T, class V>
inline V evaluate_even_polynomial(const boost::array<T,N>& a, const V& z)
{
   return evaluate_polynomial(a, V(z*z));
}
//
// Odd polynomials come next:
//
template <class T, class U>
inline U evaluate_odd_polynomial(const T* poly, U z, std::size_t count)
{
   return poly[0] + z * evaluate_polynomial(poly+1, U(z*z), count-1);
}

template <std::size_t N, class T, class V>
inline V evaluate_odd_polynomial(const T(&a)[N], const V& z)
{
   typedef mpl::int_<N-1> tag_type;
   return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a) + 1, V(z*z), static_cast<tag_type const*>(0));
}

template <std::size_t N, class T, class V>
inline V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z)
{
   typedef mpl::int_<N-1> tag_type;
   return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()) + 1, V(z*z), static_cast<tag_type const*>(0));
}

template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count);

namespace detail{

template <class T, class U, class V, class Tag>
inline V evaluate_rational_c_imp(const T* num, const U* denom, const V& z, const Tag*)
{
   return boost::math::tools::evaluate_rational(num, denom, z, Tag::value);
}

}
//
// Rational functions: numerator and denominator must be
// equal in size.  These always have a for-loop and so may be less
// efficient than evaluating a pair of polynomials. However, there
// are some tricks we can use to prevent overflow that might otherwise
// occur in polynomial evaluation, if z is large.  This is important
// in our Lanczos code for example.
//
template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count)
{
   V z(z_);
   V s1, s2;
   if(z <= 1)
   {
      s1 = static_cast<V>(num[count-1]);
      s2 = static_cast<V>(denom[count-1]);
      for(int i = (int)count - 2; i >= 0; --i)
      {
         s1 *= z;
         s2 *= z;
         s1 += num[i];
         s2 += denom[i];
      }
   }
   else
   {
      z = 1 / z;
      s1 = static_cast<V>(num[0]);
      s2 = static_cast<V>(denom[0]);
      for(unsigned i = 1; i < count; ++i)
      {
         s1 *= z;
         s2 *= z;
         s1 += num[i];
         s2 += denom[i];
      }
   }
   return s1 / s2;
}

template <std::size_t N, class T, class U, class V>
inline V evaluate_rational(const T(&a)[N], const U(&b)[N], const V& z)
{
   return detail::evaluate_rational_c_imp(a, b, z, static_cast<const mpl::int_<N>*>(0));
}

template <std::size_t N, class T, class U, class V>
inline V evaluate_rational(const boost::array<T,N>& a, const boost::array<U,N>& b, const V& z)
{
   return detail::evaluate_rational_c_imp(a.data(), b.data(), z, static_cast<mpl::int_<N>*>(0));
}

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_RATIONAL_HPP