/usr/include/boost/numeric/ublas/operation.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | //
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_
#define _BOOST_UBLAS_OPERATION_
#include <boost/numeric/ublas/matrix_proxy.hpp>
/** \file operation.hpp
* \brief This file contains some specialized products.
*/
// axpy-based products
// Alexei Novakov had a lot of ideas to improve these. Thanks.
// Hendrik Kueck proposed some new kernel. Thanks again.
namespace boost { namespace numeric { namespace ublas {
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, row_major_tag) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
for (size_type i = 0; i < e1.filled1 () -1; ++ i) {
size_type begin = e1.index1_data () [i];
size_type end = e1.index1_data () [i + 1];
value_type t (v (i));
for (size_type j = begin; j < end; ++ j)
t += e1.value_data () [j] * e2 () (e1.index2_data () [j]);
v (i) = t;
}
return v;
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, column_major_tag) {
typedef typename V::size_type size_type;
for (size_type j = 0; j < e1.filled1 () -1; ++ j) {
size_type begin = e1.index1_data () [j];
size_type end = e1.index1_data () [j + 1];
for (size_type i = begin; i < end; ++ i)
v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j);
}
return v;
}
// Dispatcher
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename L1::orientation_category orientation_category;
if (init)
v.assign (zero_vector<value_type> (e1.size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e1.size1 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
typedef L1 layout_type;
size_type size1 = e1.size1();
size_type size2 = e1.size2();
if (init) {
noalias(v) = zero_vector<value_type>(size1);
}
for (size_type i = 0; i < e1.nnz(); ++i) {
size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] );
size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] );
v( row_index ) += e1.value_data () [i] * e2 () (col_index);
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, row_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
v (index1) += *it2 * e2 () (it2.index2 ());
++ it2;
}
++ it1;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, column_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator2 it2 (e1 ().begin2 ());
typename expression1_type::const_iterator2 it2_end (e1 ().end2 ());
while (it2 != it2_end) {
size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator1 it1 (it2.begin ());
typename expression1_type::const_iterator1 it1_end (it2.end ());
#else
typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
v (it1.index1 ()) += *it1 * e2 () (index2);
++ it1;
}
++ it2;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, sparse_bidirectional_iterator_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator it (e2 ().begin ());
typename expression2_type::const_iterator it_end (e2 ().end ());
while (it != it_end) {
v.plus_assign (column (e1 (), it.index ()) * *it);
++ it;
}
return v;
}
// Dispatcher
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E1::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
/** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the vector expression \c x
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(A, x, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a matrix expression \c A
\param E2 type of a vector expression \c x
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E2::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e1 ().size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e1 ().size1 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class E1, class T2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2,
V &v, column_major_tag) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
size_type begin = e2.index1_data () [j];
size_type end = e2.index1_data () [j + 1];
value_type t (v (j));
for (size_type i = begin; i < end; ++ i)
t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
v (j) = t;
}
return v;
}
template<class V, class E1, class T2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
V &v, row_major_tag) {
typedef typename V::size_type size_type;
for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
size_type begin = e2.index1_data () [i];
size_type end = e2.index1_data () [i + 1];
for (size_type j = begin; j < end; ++ j)
v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
}
return v;
}
// Dispatcher
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename L2::orientation_category orientation_category;
if (init)
v.assign (zero_vector<value_type> (e2.size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
typedef V vector_type;
vector_type v (e2.size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, column_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
v (index2) += *it1 * e1 () (it1.index1 ());
++ it1;
}
++ it2;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, row_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
while (it1 != it1_end) {
size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator2 it2 (it1.begin ());
typename expression2_type::const_iterator2 it2_end (it1.end ());
#else
typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
v (it2.index2 ()) += *it2 * e1 () (index1);
++ it2;
}
++ it1;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, sparse_bidirectional_iterator_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator it (e1 ().begin ());
typename expression1_type::const_iterator it_end (e1 ().end ());
while (it != it_end) {
v.plus_assign (*it * row (e2 (), it.index ()));
++ it;
}
return v;
}
// Dispatcher
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E2::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
/** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
optimized fashion.
\param e1 the vector expression \c x
\param e2 the matrix expression \c A
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a vector expression \c x
\param E2 type of a matrix expression \c A
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E1::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e2 ().size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e2 ().size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
size_type size1 (e1 ().size1 ());
size_type size2 (e1 ().size2 ());
for (size_type i = 0; i < size1; ++ i)
for (size_type j = 0; j < size2; ++ j)
row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
sparse_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
if (triangular_restriction::other (it1.index1 (), itr.index ()))
m (it1.index1 (), itr.index ()) += *it2 * *itr;
++ itr;
}
++ it2;
}
++ it1;
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
size_type size1 (e2 ().size1 ());
size_type size2 (e2 ().size2 ());
for (size_type j = 0; j < size2; ++ j)
for (size_type i = 0; i < size1; ++ i)
column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
sparse_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
while (itc != itc_end) {
if(triangular_restriction::other (itc.index (), it2.index2 ()))
m (itc.index (), it2.index2 ()) += *it1 * *itc;
++ itc;
}
++ it1;
}
++ it2;
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
typedef TRI triangular_restriction;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
TRI) {
typedef M matrix_type;
typedef TRI triangular_restriction;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return axpy_prod (e1, e2, m, triangular_restriction (), true);
}
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>axpy_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are no specialisations.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return axpy_prod (e1, e2, m, full (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>opb_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
This function may give a speedup if \c A has less columns than
rows, because the product is computed as a sum of outer
products.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return opb_prod (e1, e2, m, storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return opb_prod (e1, e2, m, true);
}
}}}
#endif
|