This file is indexed.

/usr/include/boost/pending/relaxed_heap.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// Copyright 2004 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine
#ifndef BOOST_RELAXED_HEAP_HEADER
#define BOOST_RELAXED_HEAP_HEADER

#include <functional>
#include <boost/property_map/property_map.hpp>
#include <boost/optional.hpp>
#include <vector>
#include <climits> // for CHAR_BIT
#include <boost/none.hpp>

#ifdef BOOST_RELAXED_HEAP_DEBUG
#  include <iostream>
#endif // BOOST_RELAXED_HEAP_DEBUG

#if defined(BOOST_MSVC)
#  pragma warning(push)
#  pragma warning(disable:4355) // complaint about using 'this' to
#endif                          // initialize a member

namespace boost {

template<typename IndexedType,
         typename Compare = std::less<IndexedType>,
         typename ID = identity_property_map>
class relaxed_heap
{
  struct group;

  typedef relaxed_heap self_type;
  typedef std::size_t  rank_type;

public:
  typedef IndexedType  value_type;
  typedef rank_type    size_type;

private:
  /**
   * The kind of key that a group has. The actual values are discussed
   * in-depth in the documentation of the @c kind field of the @c group
   * structure. Note that the order of the enumerators *IS* important
   * and must not be changed.
   */
  enum group_key_kind { smallest_key, stored_key, largest_key };

  struct group {
    explicit group(group_key_kind kind = largest_key)
      : kind(kind), parent(this), rank(0) { }

    /** The value associated with this group. This value is only valid
     *  when @c kind!=largest_key (which indicates a deleted
     *  element). Note that the use of boost::optional increases the
     *  memory requirements slightly but does not result in extraneous
     *  memory allocations or deallocations. The optional could be
     *  eliminated when @c value_type is a model of
     *  DefaultConstructible.
     */
    ::boost::optional<value_type> value;

    /**
     * The kind of key stored at this group. This may be @c
     * smallest_key, which indicates that the key is infinitely small;
     * @c largest_key, which indicates that the key is infinitely
     * large; or @c stored_key, which means that the key is unknown,
     * but its relationship to other keys can be determined via the
     * comparison function object.
     */
    group_key_kind        kind;

    /// The parent of this group. Will only be NULL for the dummy root group
    group*                parent;

    /// The rank of this group. Equivalent to the number of children in
    /// the group.
    rank_type            rank;

    /** The children of this group. For the dummy root group, these are
     * the roots. This is an array of length log n containing pointers
     * to the child groups.
     */
    group**               children;
  };

  size_type log_base_2(size_type n) // log2 is a macro on some platforms
  {
    size_type leading_zeroes = 0;
    do {
      size_type next = n << 1;
      if (n == (next >> 1)) {
        ++leading_zeroes;
        n = next;
      } else {
        break;
      }
    } while (true);
    return sizeof(size_type) * CHAR_BIT - leading_zeroes - 1;
  }

public:
  relaxed_heap(size_type n, const Compare& compare = Compare(),
               const ID& id = ID())
    : compare(compare), id(id), root(smallest_key), groups(n),
      smallest_value(0)
  {
    if (n == 0) {
      root.children = new group*[1];
      return;
    }

    log_n = log_base_2(n);
    if (log_n == 0) log_n = 1;
    size_type g = n / log_n;
    if (n % log_n > 0) ++g;
    size_type log_g = log_base_2(g);
    size_type r = log_g;

    // Reserve an appropriate amount of space for data structures, so
    // that we do not need to expand them.
    index_to_group.resize(g);
    A.resize(r + 1, 0);
    root.rank = r + 1;
    root.children = new group*[(log_g + 1) * (g + 1)];
    for (rank_type i = 0; i < r+1; ++i) root.children[i] = 0;

    // Build initial heap
    size_type idx = 0;
    while (idx < g) {
      root.children[r] = &index_to_group[idx];
      idx = build_tree(root, idx, r, log_g + 1);
      if (idx != g)
        r = static_cast<size_type>(log_base_2(g-idx));
    }
  }

  ~relaxed_heap() { delete [] root.children; }

  void push(const value_type& x)
  {
    groups[get(id, x)] = x;
    update(x);
  }

  void update(const value_type& x)
  {
    group* a = &index_to_group[get(id, x) / log_n];
    if (!a->value
        || *a->value == x
        || compare(x, *a->value)) {
      if (a != smallest_value) smallest_value = 0;
      a->kind = stored_key;
      a->value = x;
      promote(a);
    }
  }

  void remove(const value_type& x)
  {
    group* a = &index_to_group[get(id, x) / log_n];
    assert(groups[get(id, x)] != 0);
    a->value = x;
    a->kind = smallest_key;
    promote(a);
    smallest_value = a;
    pop();
  }

  value_type& top()
  {
    find_smallest();
    assert(smallest_value->value != none);
    return *smallest_value->value;
  }

  const value_type& top() const
  {
    find_smallest();
    assert(smallest_value->value != none);
    return *smallest_value->value;
  }

  bool empty() const
  {
    find_smallest();
    return !smallest_value || (smallest_value->kind == largest_key);
  }

  bool contains(const value_type& x) const { return groups[get(id, x)]; }

  void pop()
  {
    // Fill in smallest_value. This is the group x.
    find_smallest();
    group* x = smallest_value;
    smallest_value = 0;

    // Make x a leaf, giving it the smallest value within its group
    rank_type r = x->rank;
    group* p = x->parent;
    {
      assert(x->value != none);

      // Find x's group
      size_type start = get(id, *x->value) - get(id, *x->value) % log_n;
      size_type end = start + log_n;
      if (end > groups.size()) end = groups.size();

      // Remove the smallest value from the group, and find the new
      // smallest value.
      groups[get(id, *x->value)].reset();
      x->value.reset();
      x->kind = largest_key;
      for (size_type i = start; i < end; ++i) {
        if (groups[i] && (!x->value || compare(*groups[i], *x->value))) {
          x->kind = stored_key;
          x->value = groups[i];
        }
      }
    }
    x->rank = 0;

    // Combine prior children of x with x
    group* y = x;
    for (size_type c = 0; c < r; ++c) {
      group* child = x->children[c];
      if (A[c] == child) A[c] = 0;
      y = combine(y, child);
    }

    // If we got back something other than x, let y take x's place
    if (y != x) {
      y->parent = p;
      p->children[r] = y;

      assert(r == y->rank);
      if (A[y->rank] == x)
        A[y->rank] = do_compare(y, p)? y : 0;
    }
  }

#ifdef BOOST_RELAXED_HEAP_DEBUG
  /*************************************************************************
   * Debugging support                                                     *
   *************************************************************************/
  void dump_tree() { dump_tree(std::cout); }
  void dump_tree(std::ostream& out) { dump_tree(out, &root); }

  void dump_tree(std::ostream& out, group* p, bool in_progress = false)
  {
    if (!in_progress) {
      out << "digraph heap {\n"
          << "  edge[dir=\"back\"];\n";
    }

    size_type p_index = 0;
    if (p != &root) while (&index_to_group[p_index] != p) ++p_index;

    for (size_type i = 0; i < p->rank; ++i) {
      group* c = p->children[i];
      if (c) {
        size_type c_index = 0;
        if (c != &root) while (&index_to_group[c_index] != c) ++c_index;

        out << "  ";
        if (p == &root) out << 'p'; else out << p_index;
        out << " -> ";
        if (c == &root) out << 'p'; else out << c_index;
        if (A[c->rank] == c) out << " [style=\"dotted\"]";
        out << ";\n";
        dump_tree(out, c, true);

        // Emit node information
        out << "  ";
        if (c == &root) out << 'p'; else out << c_index;
        out << " [label=\"";
        if (c == &root) out << 'p'; else out << c_index;
        out << ":";
        size_type start = c_index * log_n;
        size_type end = start + log_n;
        if (end > groups.size()) end = groups.size();
        while (start != end) {
          if (groups[start]) {
            out << " " << get(id, *groups[start]);
            if (*groups[start] == *c->value) out << "(*)";
          }
          ++start;
        }
        out << '"';

        if (do_compare(c, p)) {
          out << "  ";
          if (c == &root) out << 'p'; else out << c_index;
          out << ", style=\"filled\", fillcolor=\"gray\"";
        }
        out << "];\n";
      } else {
        assert(p->parent == p);
      }
    }
    if (!in_progress) out << "}\n";
  }

  bool valid()
  {
    // Check that the ranks in the A array match the ranks of the
    // groups stored there. Also, the active groups must be the last
    // child of their parent.
    for (size_type r = 0; r < A.size(); ++r) {
      if (A[r] && A[r]->rank != r) return false;

      if (A[r] && A[r]->parent->children[A[r]->parent->rank-1] != A[r])
        return false;
    }

    // The root must have no value and a key of -Infinity
    if (root.kind != smallest_key) return false;

    return valid(&root);
  }

  bool valid(group* p)
  {
    for (size_type i = 0; i < p->rank; ++i) {
      group* c = p->children[i];
      if (c) {
        // Check link structure
        if (c->parent != p) return false;
        if (c->rank != i) return false;

        // A bad group must be active
        if (do_compare(c, p) && A[i] != c) return false;

        // Check recursively
        if (!valid(c)) return false;
      } else {
        // Only the root may
        if (p != &root) return false;
      }
    }
    return true;
  }

#endif // BOOST_RELAXED_HEAP_DEBUG

private:
  size_type
  build_tree(group& parent, size_type idx, size_type r, size_type max_rank)
  {
    group& this_group = index_to_group[idx];
    this_group.parent = &parent;
    ++idx;

    this_group.children = root.children + (idx * max_rank);
    this_group.rank = r;
    for (size_type i = 0; i < r; ++i) {
      this_group.children[i] = &index_to_group[idx];
      idx = build_tree(this_group, idx, i, max_rank);
    }
    return idx;
  }

  void find_smallest() const
  {
    group** roots = root.children;

    if (!smallest_value) {
      std::size_t i;
      for (i = 0; i < root.rank; ++i) {
        if (roots[i] &&
            (!smallest_value || do_compare(roots[i], smallest_value))) {
          smallest_value = roots[i];
        }
      }
      for (i = 0; i < A.size(); ++i) {
        if (A[i] && (!smallest_value || do_compare(A[i], smallest_value)))
          smallest_value = A[i];
      }
    }
  }

  bool do_compare(group* x, group* y) const
  {
    return (x->kind < y->kind
            || (x->kind == y->kind
                && x->kind == stored_key
                && compare(*x->value, *y->value)));
  }

  void promote(group* a)
  {
    assert(a != 0);
    rank_type r = a->rank;
    group* p = a->parent;
    assert(p != 0);
    if (do_compare(a, p)) {
      // s is the rank + 1 sibling
      group* s = p->rank > r + 1? p->children[r + 1] : 0;

      // If a is the last child of p
      if (r == p->rank - 1) {
        if (!A[r]) A[r] = a;
        else if (A[r] != a) pair_transform(a);
      } else {
        assert(s != 0);
        if (A[r + 1] == s) active_sibling_transform(a, s);
        else good_sibling_transform(a, s);
      }
    }
  }

  group* combine(group* a1, group* a2)
  {
    assert(a1->rank == a2->rank);
    if (do_compare(a2, a1)) do_swap(a1, a2);
    a1->children[a1->rank++] = a2;
    a2->parent = a1;
    clean(a1);
    return a1;
  }

  void clean(group* q)
  {
    if (2 > q->rank) return;
    group* qp = q->children[q->rank-1];
    rank_type s = q->rank - 2;
    group* x = q->children[s];
    group* xp = qp->children[s];
    assert(s == x->rank);

    // If x is active, swap x and xp
    if (A[s] == x) {
      q->children[s] = xp;
      xp->parent = q;
      qp->children[s] = x;
      x->parent = qp;
    }
  }

  void pair_transform(group* a)
  {
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
    std::cerr << "- pair transform\n";
#endif
    rank_type r = a->rank;

    // p is a's parent
    group* p = a->parent;
    assert(p != 0);

    // g is p's parent (a's grandparent)
    group* g = p->parent;
    assert(g != 0);

    // a' <- A(r)
    assert(A[r] != 0);
    group* ap = A[r];
    assert(ap != 0);

    // A(r) <- nil
    A[r] = 0;

    // let a' have parent p'
    group* pp = ap->parent;
    assert(pp != 0);

    // let a' have grandparent g'
    group* gp = pp->parent;
    assert(gp != 0);

    // Remove a and a' from their parents
    assert(ap == pp->children[pp->rank-1]); // Guaranteed because ap is active
    --pp->rank;

    // Guaranteed by caller
    assert(a == p->children[p->rank-1]);
    --p->rank;

    // Note: a, ap, p, pp all have rank r
    if (do_compare(pp, p)) {
      do_swap(a, ap);
      do_swap(p, pp);
      do_swap(g, gp);
    }

    // Assuming k(p) <= k(p')
    // make p' the rank r child of p
    assert(r == p->rank);
    p->children[p->rank++] = pp;
    pp->parent = p;

    // Combine a, ap into a rank r+1 group c
    group* c = combine(a, ap);

    // make c the rank r+1 child of g'
    assert(gp->rank > r+1);
    gp->children[r+1] = c;
    c->parent = gp;

#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
    std::cerr << "After pair transform...\n";
    dump_tree();
#endif

    if (A[r+1] == pp) A[r+1] = c;
    else promote(c);
  }

  void active_sibling_transform(group* a, group* s)
  {
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
    std::cerr << "- active sibling transform\n";
#endif
    group* p = a->parent;
    group* g = p->parent;

    // remove a, s from their parents
    assert(s->parent == p);
    assert(p->children[p->rank-1] == s);
    --p->rank;
    assert(p->children[p->rank-1] == a);
    --p->rank;

    rank_type r = a->rank;
    A[r+1] = 0;
    a = combine(p, a);
    group* c = combine(a, s);

    // make c the rank r+2 child of g
    assert(g->children[r+2] == p);
    g->children[r+2] = c;
    c->parent = g;
    if (A[r+2] == p) A[r+2] = c;
    else promote(c);
  }

  void good_sibling_transform(group* a, group* s)
  {
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
    std::cerr << "- good sibling transform\n";
#endif
    rank_type r = a->rank;
    group* c = s->children[s->rank-1];
    assert(c->rank == r);
    if (A[r] == c) {
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
      std::cerr << "- good sibling pair transform\n";
#endif
      A[r] = 0;
      group* p = a->parent;

      // Remove c from its parent
      --s->rank;

      // Make s the rank r child of p
      s->parent = p;
      p->children[r] = s;

      // combine a, c and let the result by the rank r+1 child of p
      assert(p->rank > r+1);
      group* x = combine(a, c);
      x->parent = p;
      p->children[r+1] = x;

      if (A[r+1] == s) A[r+1] = x;
      else promote(x);

#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
      dump_tree(std::cerr);
#endif
      //      pair_transform(a);
    } else {
      // Clean operation
      group* p = a->parent;
      s->children[r] = a;
      a->parent = s;
      p->children[r] = c;
      c->parent = p;

      promote(a);
    }
  }

  static void do_swap(group*& x, group*& y)
  {
    group* tmp = x;
    x = y;
    y = tmp;
  }

  /// Function object that compares two values in the heap
  Compare compare;

  /// Mapping from values to indices in the range [0, n).
  ID id;

  /** The root group of the queue. This group is special because it will
   *  never store a value, but it acts as a parent to all of the
   *  roots. Thus, its list of children is the list of roots.
   */
  group root;

  /** Mapping from the group index of a value to the group associated
   *  with that value. If a value is not in the queue, then the "value"
   *  field will be empty.
   */
  std::vector<group> index_to_group;

  /** Flat data structure containing the values in each of the
   *  groups. It will be indexed via the id of the values. The groups
   *  are each log_n long, with the last group potentially being
   *  smaller.
   */
  std::vector< ::boost::optional<value_type> > groups;

  /** The list of active groups, indexed by rank. When A[r] is null,
   *  there is no active group of rank r. Otherwise, A[r] is the active
   *  group of rank r.
   */
  std::vector<group*> A;

  /** The group containing the smallest value in the queue, which must
   *  be either a root or an active group. If this group is null, then we
   *  will need to search for this group when it is needed.
   */
  mutable group* smallest_value;

  /// Cached value log_base_2(n)
  size_type log_n;
};


} // end namespace boost

#if defined(BOOST_MSVC)
#  pragma warning(pop)
#endif

#endif // BOOST_RELAXED_HEAP_HEADER