/usr/include/boost/pool/pool.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | // Copyright (C) 2000, 2001 Stephen Cleary
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POOL_HPP
#define BOOST_POOL_HPP
#include <boost/config.hpp> // for workarounds
// std::less, std::less_equal, std::greater
#include <functional>
// new[], delete[], std::nothrow
#include <new>
// std::size_t, std::ptrdiff_t
#include <cstddef>
// std::malloc, std::free
#include <cstdlib>
// std::invalid_argument
#include <exception>
// std::max
#include <algorithm>
#include <boost/pool/poolfwd.hpp>
// boost::details::pool::ct_lcm
#include <boost/pool/detail/ct_gcd_lcm.hpp>
// boost::details::pool::lcm
#include <boost/pool/detail/gcd_lcm.hpp>
// boost::simple_segregated_storage
#include <boost/pool/simple_segregated_storage.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std { using ::malloc; using ::free; }
#endif
// There are a few places in this file where the expression "this->m" is used.
// This expression is used to force instantiation-time name lookup, which I am
// informed is required for strict Standard compliance. It's only necessary
// if "m" is a member of a base class that is dependent on a template
// parameter.
// Thanks to Jens Maurer for pointing this out!
namespace boost {
struct default_user_allocator_new_delete
{
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
{ return new (std::nothrow) char[bytes]; }
static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
{ delete [] block; }
};
struct default_user_allocator_malloc_free
{
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
{ return static_cast<char *>(std::malloc(bytes)); }
static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
{ std::free(block); }
};
namespace details {
// PODptr is a class that pretends to be a "pointer" to different class types
// that don't really exist. It provides member functions to access the "data"
// of the "object" it points to. Since these "class" types are of variable
// size, and contains some information at the *end* of its memory (for
// alignment reasons), PODptr must contain the size of this "class" as well as
// the pointer to this "object".
template <typename SizeType>
class PODptr
{
public:
typedef SizeType size_type;
private:
char * ptr;
size_type sz;
char * ptr_next_size() const
{ return (ptr + sz - sizeof(size_type)); }
char * ptr_next_ptr() const
{
return (ptr_next_size() -
pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
}
public:
PODptr(char * const nptr, const size_type nsize)
:ptr(nptr), sz(nsize) { }
PODptr()
:ptr(0), sz(0) { }
bool valid() const { return (begin() != 0); }
void invalidate() { begin() = 0; }
char * & begin() { return ptr; }
char * begin() const { return ptr; }
char * end() const { return ptr_next_ptr(); }
size_type total_size() const { return sz; }
size_type element_size() const
{
return (sz - sizeof(size_type) -
pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
}
size_type & next_size() const
{
return *(static_cast<size_type *>(static_cast<void*>((ptr_next_size()))));
}
char * & next_ptr() const
{ return *(static_cast<char **>(static_cast<void*>(ptr_next_ptr()))); }
PODptr next() const
{ return PODptr<size_type>(next_ptr(), next_size()); }
void next(const PODptr & arg) const
{
next_ptr() = arg.begin();
next_size() = arg.total_size();
}
};
} // namespace details
template <typename UserAllocator>
class pool: protected simple_segregated_storage<
typename UserAllocator::size_type>
{
public:
typedef UserAllocator user_allocator;
typedef typename UserAllocator::size_type size_type;
typedef typename UserAllocator::difference_type difference_type;
private:
BOOST_STATIC_CONSTANT(unsigned, min_alloc_size =
(::boost::details::pool::ct_lcm<sizeof(void *), sizeof(size_type)>::value) );
// Returns 0 if out-of-memory
// Called if malloc/ordered_malloc needs to resize the free list
void * malloc_need_resize();
void * ordered_malloc_need_resize();
protected:
details::PODptr<size_type> list;
simple_segregated_storage<size_type> & store() { return *this; }
const simple_segregated_storage<size_type> & store() const { return *this; }
const size_type requested_size;
size_type next_size;
size_type start_size;
size_type max_size;
// finds which POD in the list 'chunk' was allocated from
details::PODptr<size_type> find_POD(void * const chunk) const;
// is_from() tests a chunk to determine if it belongs in a block
static bool is_from(void * const chunk, char * const i,
const size_type sizeof_i)
{
// We use std::less_equal and std::less to test 'chunk'
// against the array bounds because standard operators
// may return unspecified results.
// This is to ensure portability. The operators < <= > >= are only
// defined for pointers to objects that are 1) in the same array, or
// 2) subobjects of the same object [5.9/2].
// The functor objects guarantee a total order for any pointer [20.3.3/8]
//WAS:
// return (std::less_equal<void *>()(static_cast<void *>(i), chunk)
// && std::less<void *>()(chunk,
// static_cast<void *>(i + sizeof_i)));
std::less_equal<void *> lt_eq;
std::less<void *> lt;
return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
}
size_type alloc_size() const
{
const unsigned min_size = min_alloc_size;
return details::pool::lcm<size_type>(requested_size, min_size);
}
// for the sake of code readability :)
static void * & nextof(void * const ptr)
{ return *(static_cast<void **>(ptr)); }
public:
// The second parameter here is an extension!
// pre: npartition_size != 0 && nnext_size != 0
explicit pool(const size_type nrequested_size,
const size_type nnext_size = 32,
const size_type nmax_size = 0)
:list(0, 0), requested_size(nrequested_size), next_size(nnext_size), start_size(nnext_size),max_size(nmax_size)
{ }
~pool() { purge_memory(); }
// Releases memory blocks that don't have chunks allocated
// pre: lists are ordered
// Returns true if memory was actually deallocated
bool release_memory();
// Releases *all* memory blocks, even if chunks are still allocated
// Returns true if memory was actually deallocated
bool purge_memory();
// These functions are extensions!
size_type get_next_size() const { return next_size; }
void set_next_size(const size_type nnext_size) { next_size = start_size = nnext_size; }
size_type get_max_size() const { return max_size; }
void set_max_size(const size_type nmax_size) { max_size = nmax_size; }
size_type get_requested_size() const { return requested_size; }
// Both malloc and ordered_malloc do a quick inlined check first for any
// free chunks. Only if we need to get another memory block do we call
// the non-inlined *_need_resize() functions.
// Returns 0 if out-of-memory
void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
{
// Look for a non-empty storage
if (!store().empty())
return (store().malloc)();
return malloc_need_resize();
}
void * ordered_malloc()
{
// Look for a non-empty storage
if (!store().empty())
return (store().malloc)();
return ordered_malloc_need_resize();
}
// Returns 0 if out-of-memory
// Allocate a contiguous section of n chunks
void * ordered_malloc(size_type n);
// pre: 'chunk' must have been previously
// returned by *this.malloc().
void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunk)
{ (store().free)(chunk); }
// pre: 'chunk' must have been previously
// returned by *this.malloc().
void ordered_free(void * const chunk)
{ store().ordered_free(chunk); }
// pre: 'chunk' must have been previously
// returned by *this.malloc(n).
void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunks, const size_type n)
{
const size_type partition_size = alloc_size();
const size_type total_req_size = n * requested_size;
const size_type num_chunks = total_req_size / partition_size +
((total_req_size % partition_size) ? true : false);
store().free_n(chunks, num_chunks, partition_size);
}
// pre: 'chunk' must have been previously
// returned by *this.malloc(n).
void ordered_free(void * const chunks, const size_type n)
{
const size_type partition_size = alloc_size();
const size_type total_req_size = n * requested_size;
const size_type num_chunks = total_req_size / partition_size +
((total_req_size % partition_size) ? true : false);
store().ordered_free_n(chunks, num_chunks, partition_size);
}
// is_from() tests a chunk to determine if it was allocated from *this
bool is_from(void * const chunk) const
{
return (find_POD(chunk).valid());
}
};
template <typename UserAllocator>
bool pool<UserAllocator>::release_memory()
{
// This is the return value: it will be set to true when we actually call
// UserAllocator::free(..)
bool ret = false;
// This is a current & previous iterator pair over the memory block list
details::PODptr<size_type> ptr = list;
details::PODptr<size_type> prev;
// This is a current & previous iterator pair over the free memory chunk list
// Note that "prev_free" in this case does NOT point to the previous memory
// chunk in the free list, but rather the last free memory chunk before the
// current block.
void * free_p = this->first;
void * prev_free_p = 0;
const size_type partition_size = alloc_size();
// Search through all the all the allocated memory blocks
while (ptr.valid())
{
// At this point:
// ptr points to a valid memory block
// free_p points to either:
// 0 if there are no more free chunks
// the first free chunk in this or some next memory block
// prev_free_p points to either:
// the last free chunk in some previous memory block
// 0 if there is no such free chunk
// prev is either:
// the PODptr whose next() is ptr
// !valid() if there is no such PODptr
// If there are no more free memory chunks, then every remaining
// block is allocated out to its fullest capacity, and we can't
// release any more memory
if (free_p == 0)
break;
// We have to check all the chunks. If they are *all* free (i.e., present
// in the free list), then we can free the block.
bool all_chunks_free = true;
// Iterate 'i' through all chunks in the memory block
// if free starts in the memory block, be careful to keep it there
void * saved_free = free_p;
for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
{
// If this chunk is not free
if (i != free_p)
{
// We won't be able to free this block
all_chunks_free = false;
// free_p might have travelled outside ptr
free_p = saved_free;
// Abort searching the chunks; we won't be able to free this
// block because a chunk is not free.
break;
}
// We do not increment prev_free_p because we are in the same block
free_p = nextof(free_p);
}
// post: if the memory block has any chunks, free_p points to one of them
// otherwise, our assertions above are still valid
const details::PODptr<size_type> next = ptr.next();
if (!all_chunks_free)
{
if (is_from(free_p, ptr.begin(), ptr.element_size()))
{
std::less<void *> lt;
void * const end = ptr.end();
do
{
prev_free_p = free_p;
free_p = nextof(free_p);
} while (free_p && lt(free_p, end));
}
// This invariant is now restored:
// free_p points to the first free chunk in some next memory block, or
// 0 if there is no such chunk.
// prev_free_p points to the last free chunk in this memory block.
// We are just about to advance ptr. Maintain the invariant:
// prev is the PODptr whose next() is ptr, or !valid()
// if there is no such PODptr
prev = ptr;
}
else
{
// All chunks from this block are free
// Remove block from list
if (prev.valid())
prev.next(next);
else
list = next;
// Remove all entries in the free list from this block
if (prev_free_p != 0)
nextof(prev_free_p) = free_p;
else
this->first = free_p;
// And release memory
(UserAllocator::free)(ptr.begin());
ret = true;
}
// Increment ptr
ptr = next;
}
next_size = start_size;
return ret;
}
template <typename UserAllocator>
bool pool<UserAllocator>::purge_memory()
{
details::PODptr<size_type> iter = list;
if (!iter.valid())
return false;
do
{
// hold "next" pointer
const details::PODptr<size_type> next = iter.next();
// delete the storage
(UserAllocator::free)(iter.begin());
// increment iter
iter = next;
} while (iter.valid());
list.invalidate();
this->first = 0;
next_size = start_size;
return true;
}
template <typename UserAllocator>
void * pool<UserAllocator>::malloc_need_resize()
{
// No memory in any of our storages; make a new storage,
const size_type partition_size = alloc_size();
const size_type POD_size = next_size * partition_size +
details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
char * const ptr = (UserAllocator::malloc)(POD_size);
if (ptr == 0)
return 0;
const details::PODptr<size_type> node(ptr, POD_size);
BOOST_USING_STD_MIN();
if(!max_size)
next_size <<= 1;
else if( next_size*partition_size/requested_size < max_size)
next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
// initialize it,
store().add_block(node.begin(), node.element_size(), partition_size);
// insert it into the list,
node.next(list);
list = node;
// and return a chunk from it.
return (store().malloc)();
}
template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc_need_resize()
{
// No memory in any of our storages; make a new storage,
const size_type partition_size = alloc_size();
const size_type POD_size = next_size * partition_size +
details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
char * const ptr = (UserAllocator::malloc)(POD_size);
if (ptr == 0)
return 0;
const details::PODptr<size_type> node(ptr, POD_size);
BOOST_USING_STD_MIN();
if(!max_size)
next_size <<= 1;
else if( next_size*partition_size/requested_size < max_size)
next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
// initialize it,
// (we can use "add_block" here because we know that
// the free list is empty, so we don't have to use
// the slower ordered version)
store().add_ordered_block(node.begin(), node.element_size(), partition_size);
// insert it into the list,
// handle border case
if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
{
node.next(list);
list = node;
}
else
{
details::PODptr<size_type> prev = list;
while (true)
{
// if we're about to hit the end or
// if we've found where "node" goes
if (prev.next_ptr() == 0
|| std::greater<void *>()(prev.next_ptr(), node.begin()))
break;
prev = prev.next();
}
node.next(prev.next());
prev.next(node);
}
// and return a chunk from it.
return (store().malloc)();
}
template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc(const size_type n)
{
const size_type partition_size = alloc_size();
const size_type total_req_size = n * requested_size;
const size_type num_chunks = total_req_size / partition_size +
((total_req_size % partition_size) ? true : false);
void * ret = store().malloc_n(num_chunks, partition_size);
if (ret != 0)
return ret;
// Not enougn memory in our storages; make a new storage,
BOOST_USING_STD_MAX();
next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
const size_type POD_size = next_size * partition_size +
details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
char * const ptr = (UserAllocator::malloc)(POD_size);
if (ptr == 0)
return 0;
const details::PODptr<size_type> node(ptr, POD_size);
// Split up block so we can use what wasn't requested
// (we can use "add_block" here because we know that
// the free list is empty, so we don't have to use
// the slower ordered version)
if (next_size > num_chunks)
store().add_ordered_block(node.begin() + num_chunks * partition_size,
node.element_size() - num_chunks * partition_size, partition_size);
BOOST_USING_STD_MIN();
if(!max_size)
next_size <<= 1;
else if( next_size*partition_size/requested_size < max_size)
next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
// insert it into the list,
// handle border case
if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
{
node.next(list);
list = node;
}
else
{
details::PODptr<size_type> prev = list;
while (true)
{
// if we're about to hit the end or
// if we've found where "node" goes
if (prev.next_ptr() == 0
|| std::greater<void *>()(prev.next_ptr(), node.begin()))
break;
prev = prev.next();
}
node.next(prev.next());
prev.next(node);
}
// and return it.
return node.begin();
}
template <typename UserAllocator>
details::PODptr<typename pool<UserAllocator>::size_type>
pool<UserAllocator>::find_POD(void * const chunk) const
{
// We have to find which storage this chunk is from.
details::PODptr<size_type> iter = list;
while (iter.valid())
{
if (is_from(chunk, iter.begin(), iter.element_size()))
return iter;
iter = iter.next();
}
return iter;
}
} // namespace boost
#endif
|