This file is indexed.

/usr/include/boost/pool/pool.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
// Copyright (C) 2000, 2001 Stephen Cleary
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for updates, documentation, and revision history.

#ifndef BOOST_POOL_HPP
#define BOOST_POOL_HPP

#include <boost/config.hpp>  // for workarounds

// std::less, std::less_equal, std::greater
#include <functional>
// new[], delete[], std::nothrow
#include <new>
// std::size_t, std::ptrdiff_t
#include <cstddef>
// std::malloc, std::free
#include <cstdlib>
// std::invalid_argument
#include <exception>
// std::max
#include <algorithm>

#include <boost/pool/poolfwd.hpp>

// boost::details::pool::ct_lcm
#include <boost/pool/detail/ct_gcd_lcm.hpp>
// boost::details::pool::lcm
#include <boost/pool/detail/gcd_lcm.hpp>
// boost::simple_segregated_storage
#include <boost/pool/simple_segregated_storage.hpp>

#ifdef BOOST_NO_STDC_NAMESPACE
 namespace std { using ::malloc; using ::free; }
#endif

// There are a few places in this file where the expression "this->m" is used.
// This expression is used to force instantiation-time name lookup, which I am
//   informed is required for strict Standard compliance.  It's only necessary
//   if "m" is a member of a base class that is dependent on a template
//   parameter.
// Thanks to Jens Maurer for pointing this out!

namespace boost {

struct default_user_allocator_new_delete
{
  typedef std::size_t size_type;
  typedef std::ptrdiff_t difference_type;

  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
  { return new (std::nothrow) char[bytes]; }
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
  { delete [] block; }
};

struct default_user_allocator_malloc_free
{
  typedef std::size_t size_type;
  typedef std::ptrdiff_t difference_type;

  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
  { return static_cast<char *>(std::malloc(bytes)); }
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
  { std::free(block); }
};

namespace details {

// PODptr is a class that pretends to be a "pointer" to different class types
//  that don't really exist.  It provides member functions to access the "data"
//  of the "object" it points to.  Since these "class" types are of variable
//  size, and contains some information at the *end* of its memory (for
//  alignment reasons), PODptr must contain the size of this "class" as well as
//  the pointer to this "object".
template <typename SizeType>
class PODptr
{
  public:
    typedef SizeType size_type;

  private:
    char * ptr;
    size_type sz;

    char * ptr_next_size() const
    { return (ptr + sz - sizeof(size_type)); }
    char * ptr_next_ptr() const
    {
      return (ptr_next_size() -
          pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
    }

  public:
    PODptr(char * const nptr, const size_type nsize)
    :ptr(nptr), sz(nsize) { }
    PODptr()
    :ptr(0), sz(0) { }

    bool valid() const { return (begin() != 0); }
    void invalidate() { begin() = 0; }
    char * & begin() { return ptr; }
    char * begin() const { return ptr; }
    char * end() const { return ptr_next_ptr(); }
    size_type total_size() const { return sz; }
    size_type element_size() const
    {
      return (sz - sizeof(size_type) -
          pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
    }

    size_type & next_size() const
    {
      return *(static_cast<size_type *>(static_cast<void*>((ptr_next_size()))));
    }
    char * & next_ptr() const
    { return *(static_cast<char **>(static_cast<void*>(ptr_next_ptr()))); }

    PODptr next() const
    { return PODptr<size_type>(next_ptr(), next_size()); }
    void next(const PODptr & arg) const
    {
      next_ptr() = arg.begin();
      next_size() = arg.total_size();
    }
};

} // namespace details

template <typename UserAllocator>
class pool: protected simple_segregated_storage<
    typename UserAllocator::size_type>
{
  public:
    typedef UserAllocator user_allocator;
    typedef typename UserAllocator::size_type size_type;
    typedef typename UserAllocator::difference_type difference_type;

  private:
    BOOST_STATIC_CONSTANT(unsigned, min_alloc_size =
        (::boost::details::pool::ct_lcm<sizeof(void *), sizeof(size_type)>::value) );

    // Returns 0 if out-of-memory
    // Called if malloc/ordered_malloc needs to resize the free list
    void * malloc_need_resize();
    void * ordered_malloc_need_resize();

  protected:
    details::PODptr<size_type> list;

    simple_segregated_storage<size_type> & store() { return *this; }
    const simple_segregated_storage<size_type> & store() const { return *this; }
    const size_type requested_size;
    size_type next_size;
    size_type start_size;
    size_type max_size;

    // finds which POD in the list 'chunk' was allocated from
    details::PODptr<size_type> find_POD(void * const chunk) const;

    // is_from() tests a chunk to determine if it belongs in a block
    static bool is_from(void * const chunk, char * const i,
        const size_type sizeof_i)
    {
      // We use std::less_equal and std::less to test 'chunk'
      //  against the array bounds because standard operators
      //  may return unspecified results.
      // This is to ensure portability.  The operators < <= > >= are only
      //  defined for pointers to objects that are 1) in the same array, or
      //  2) subobjects of the same object [5.9/2].
      // The functor objects guarantee a total order for any pointer [20.3.3/8]
//WAS:
//      return (std::less_equal<void *>()(static_cast<void *>(i), chunk)
//          && std::less<void *>()(chunk,
//              static_cast<void *>(i + sizeof_i)));
      std::less_equal<void *> lt_eq;
      std::less<void *> lt;
      return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
    }

    size_type alloc_size() const
    {
      const unsigned min_size = min_alloc_size;
      return details::pool::lcm<size_type>(requested_size, min_size);
    }

    // for the sake of code readability :)
    static void * & nextof(void * const ptr)
    { return *(static_cast<void **>(ptr)); }

  public:
    // The second parameter here is an extension!
    // pre: npartition_size != 0 && nnext_size != 0
    explicit pool(const size_type nrequested_size,
        const size_type nnext_size = 32,
        const size_type nmax_size = 0)
    :list(0, 0), requested_size(nrequested_size), next_size(nnext_size), start_size(nnext_size),max_size(nmax_size)
    { }

    ~pool() { purge_memory(); }

    // Releases memory blocks that don't have chunks allocated
    // pre: lists are ordered
    //  Returns true if memory was actually deallocated
    bool release_memory();

    // Releases *all* memory blocks, even if chunks are still allocated
    //  Returns true if memory was actually deallocated
    bool purge_memory();

    // These functions are extensions!
    size_type get_next_size() const { return next_size; }
    void set_next_size(const size_type nnext_size) { next_size = start_size = nnext_size; }
    size_type get_max_size() const { return max_size; }
    void set_max_size(const size_type nmax_size) { max_size = nmax_size; }
    size_type get_requested_size() const { return requested_size; }

    // Both malloc and ordered_malloc do a quick inlined check first for any
    //  free chunks.  Only if we need to get another memory block do we call
    //  the non-inlined *_need_resize() functions.
    // Returns 0 if out-of-memory
    void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
    {
      // Look for a non-empty storage
      if (!store().empty())
        return (store().malloc)();
      return malloc_need_resize();
    }

    void * ordered_malloc()
    {
      // Look for a non-empty storage
      if (!store().empty())
        return (store().malloc)();
      return ordered_malloc_need_resize();
    }

    // Returns 0 if out-of-memory
    // Allocate a contiguous section of n chunks
    void * ordered_malloc(size_type n);

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc().
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunk)
    { (store().free)(chunk); }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc().
    void ordered_free(void * const chunk)
    { store().ordered_free(chunk); }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc(n).
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunks, const size_type n)
    {
      const size_type partition_size = alloc_size();
      const size_type total_req_size = n * requested_size;
      const size_type num_chunks = total_req_size / partition_size +
          ((total_req_size % partition_size) ? true : false);

      store().free_n(chunks, num_chunks, partition_size);
    }

    // pre: 'chunk' must have been previously
    //        returned by *this.malloc(n).
    void ordered_free(void * const chunks, const size_type n)
    {
      const size_type partition_size = alloc_size();
      const size_type total_req_size = n * requested_size;
      const size_type num_chunks = total_req_size / partition_size +
          ((total_req_size % partition_size) ? true : false);

      store().ordered_free_n(chunks, num_chunks, partition_size);
    }

    // is_from() tests a chunk to determine if it was allocated from *this
    bool is_from(void * const chunk) const
    {
      return (find_POD(chunk).valid());
    }
};

template <typename UserAllocator>
bool pool<UserAllocator>::release_memory()
{
  // This is the return value: it will be set to true when we actually call
  //  UserAllocator::free(..)
  bool ret = false;

  // This is a current & previous iterator pair over the memory block list
  details::PODptr<size_type> ptr = list;
  details::PODptr<size_type> prev;

  // This is a current & previous iterator pair over the free memory chunk list
  //  Note that "prev_free" in this case does NOT point to the previous memory
  //  chunk in the free list, but rather the last free memory chunk before the
  //  current block.
  void * free_p = this->first;
  void * prev_free_p = 0;

  const size_type partition_size = alloc_size();

  // Search through all the all the allocated memory blocks
  while (ptr.valid())
  {
    // At this point:
    //  ptr points to a valid memory block
    //  free_p points to either:
    //    0 if there are no more free chunks
    //    the first free chunk in this or some next memory block
    //  prev_free_p points to either:
    //    the last free chunk in some previous memory block
    //    0 if there is no such free chunk
    //  prev is either:
    //    the PODptr whose next() is ptr
    //    !valid() if there is no such PODptr

    // If there are no more free memory chunks, then every remaining
    //  block is allocated out to its fullest capacity, and we can't
    //  release any more memory
    if (free_p == 0)
      break;

    // We have to check all the chunks.  If they are *all* free (i.e., present
    //  in the free list), then we can free the block.
    bool all_chunks_free = true;

    // Iterate 'i' through all chunks in the memory block
    // if free starts in the memory block, be careful to keep it there
    void * saved_free = free_p;
    for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
    {
      // If this chunk is not free
      if (i != free_p)
      {
        // We won't be able to free this block
        all_chunks_free = false;

        // free_p might have travelled outside ptr
        free_p = saved_free;
        // Abort searching the chunks; we won't be able to free this
        //  block because a chunk is not free.
        break;
      }

      // We do not increment prev_free_p because we are in the same block
      free_p = nextof(free_p);
    }

    // post: if the memory block has any chunks, free_p points to one of them
    // otherwise, our assertions above are still valid

    const details::PODptr<size_type> next = ptr.next();

    if (!all_chunks_free)
    {
      if (is_from(free_p, ptr.begin(), ptr.element_size()))
      {
        std::less<void *> lt;
        void * const end = ptr.end();
        do
        {
          prev_free_p = free_p;
          free_p = nextof(free_p);
        } while (free_p && lt(free_p, end));
      }
      // This invariant is now restored:
      //     free_p points to the first free chunk in some next memory block, or
      //       0 if there is no such chunk.
      //     prev_free_p points to the last free chunk in this memory block.
      
      // We are just about to advance ptr.  Maintain the invariant:
      // prev is the PODptr whose next() is ptr, or !valid()
      // if there is no such PODptr
      prev = ptr;
    }
    else
    {
      // All chunks from this block are free

      // Remove block from list
      if (prev.valid())
        prev.next(next);
      else
        list = next;

      // Remove all entries in the free list from this block
      if (prev_free_p != 0)
        nextof(prev_free_p) = free_p;
      else
        this->first = free_p;

      // And release memory
      (UserAllocator::free)(ptr.begin());
      ret = true;
    }

    // Increment ptr
    ptr = next;
  }

  next_size = start_size;
  return ret;
}

template <typename UserAllocator>
bool pool<UserAllocator>::purge_memory()
{
  details::PODptr<size_type> iter = list;

  if (!iter.valid())
    return false;

  do
  {
    // hold "next" pointer
    const details::PODptr<size_type> next = iter.next();

    // delete the storage
    (UserAllocator::free)(iter.begin());

    // increment iter
    iter = next;
  } while (iter.valid());

  list.invalidate();
  this->first = 0;
  next_size = start_size;

  return true;
}

template <typename UserAllocator>
void * pool<UserAllocator>::malloc_need_resize()
{
  // No memory in any of our storages; make a new storage,
  const size_type partition_size = alloc_size();
  const size_type POD_size = next_size * partition_size +
      details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
  char * const ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
    return 0;
  const details::PODptr<size_type> node(ptr, POD_size);
  
  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  initialize it,
  store().add_block(node.begin(), node.element_size(), partition_size);

  //  insert it into the list,
  node.next(list);
  list = node;

  //  and return a chunk from it.
  return (store().malloc)();
}

template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc_need_resize()
{
  // No memory in any of our storages; make a new storage,
  const size_type partition_size = alloc_size();
  const size_type POD_size = next_size * partition_size +
      details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
  char * const ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
    return 0;
  const details::PODptr<size_type> node(ptr, POD_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  initialize it,
  //  (we can use "add_block" here because we know that
  //  the free list is empty, so we don't have to use
  //  the slower ordered version)
  store().add_ordered_block(node.begin(), node.element_size(), partition_size);

  //  insert it into the list,
  //   handle border case
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
  {
    node.next(list);
    list = node;
  }
  else
  {
    details::PODptr<size_type> prev = list;

    while (true)
    {
      // if we're about to hit the end or
      //  if we've found where "node" goes
      if (prev.next_ptr() == 0
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
        break;

      prev = prev.next();
    }

    node.next(prev.next());
    prev.next(node);
  }

  //  and return a chunk from it.
  return (store().malloc)();
}

template <typename UserAllocator>
void * pool<UserAllocator>::ordered_malloc(const size_type n)
{
  const size_type partition_size = alloc_size();
  const size_type total_req_size = n * requested_size;
  const size_type num_chunks = total_req_size / partition_size +
      ((total_req_size % partition_size) ? true : false);

  void * ret = store().malloc_n(num_chunks, partition_size);

  if (ret != 0)
    return ret;

  // Not enougn memory in our storages; make a new storage,
  BOOST_USING_STD_MAX();
  next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
  const size_type POD_size = next_size * partition_size +
      details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
  char * const ptr = (UserAllocator::malloc)(POD_size);
  if (ptr == 0)
    return 0;
  const details::PODptr<size_type> node(ptr, POD_size);

  // Split up block so we can use what wasn't requested
  //  (we can use "add_block" here because we know that
  //  the free list is empty, so we don't have to use
  //  the slower ordered version)
  if (next_size > num_chunks)
    store().add_ordered_block(node.begin() + num_chunks * partition_size,
        node.element_size() - num_chunks * partition_size, partition_size);

  BOOST_USING_STD_MIN();
  if(!max_size)
    next_size <<= 1;
  else if( next_size*partition_size/requested_size < max_size)
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);

  //  insert it into the list,
  //   handle border case
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
  {
    node.next(list);
    list = node;
  }
  else
  {
    details::PODptr<size_type> prev = list;

    while (true)
    {
      // if we're about to hit the end or
      //  if we've found where "node" goes
      if (prev.next_ptr() == 0
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
        break;

      prev = prev.next();
    }

    node.next(prev.next());
    prev.next(node);
  }

  //  and return it.
  return node.begin();
}

template <typename UserAllocator>
details::PODptr<typename pool<UserAllocator>::size_type>
pool<UserAllocator>::find_POD(void * const chunk) const
{
  // We have to find which storage this chunk is from.
  details::PODptr<size_type> iter = list;
  while (iter.valid())
  {
    if (is_from(chunk, iter.begin(), iter.element_size()))
      return iter;
    iter = iter.next();
  }

  return iter;
}

} // namespace boost

#endif